WorldWideScience

Sample records for curtain wall cladding

  1. The Solar Dynamic Buffer Zone (SDBZ) curtain wall: Validation and design of a solar air collector curtain wall

    Science.gov (United States)

    Richman, Russell Corey

    research. This research shows a SDBZ curtain wall has the potential to act as a significant solar collector. By coupling a simple method with an existing cladding system, the SDBZ curtain wall can reduce a building's heating load by at least 5--10%.

  2. Solar collector wall with active curtain system; Lasikatteinen massiivienen aurinkokeraeaejaeseinae

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Heimonen, I. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1998-12-01

    Integration of solar collector into the building envelope structure brings many advantages. The disadvantage of a passive solar collector wall is that its thermal performance can not be controlled, which may cause temporary overheating and low thermal efficiency of the collector. The thermal performance of the collector wall can be improved by using controllable, active collector systems. In this paper a solar collector wall with a controllable curtain between the transparent and absorption layers is investigated. The curtain is made of several low-emissivity foil layers, which ensures low radiation heat transfer through the curtain. The curtain decreases the heat losses out from the collector wall and it improves the U-value of the wall. The curtain is used when the solar radiation intensity to the wall is not high enough or when the wall needs protection against overheating during warm weather conditions. The materials and building components used in the collector wall, except those of the curtain, are ordinary in buildings. The transparent layer can be made by using normal glazing technology and the thermal storage layer can be made out of brick or similar material. The solar energy gains through the glazing can be utilised better than in passive systems, because the curtain provides the wall with high thermal resistance outside the solar radiation periods. The thermal performance of the collector wall was studied experimentally using a Hot-Box apparatus equipped with a solar lamp. Numerical simulations were carried out to study the yearly performance of the collector wall under real climate conditions. The objectives were to determine the thermal performance of the collector wall and to study how to optimise the use of solar radiation in this system. When the curtain with high thermal resistance is used actively, the temperature level of the thermal storage layer in the wall is relatively high also during dark periods and the heat losses out from the storage

  3. Delivering COBie data - Focus on curtain walls and building envelopes

    DEFF Research Database (Denmark)

    Karlshøj, Jan; Borin, P.; Carradori, M.

    COBie is a standard data framework whose main purpose is to transmit useful, reliable and us-able information collected throughout the whole building process and to be consumed in order to properly maintain the facility. Focusing on Facility Management information exchanges and considering the UK...... BIM policies and requirements, this paper shows the results obtained applying COBie to complex products such as curtain walls. Two Information Delivery Manuals (IDMs) were also developed, in order to provide a com-monly known and standardized framework, which can regulate the COBie-based information...

  4. PV glass curtain walls; Kenzai ittaigata taiyo denchi gaiheki no kaihatsu (glass curtain wall eno tekiyo)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T.; Iwai, T.; Ouchi, T.; Ito, T.; Nagai, T.; Shu, I. [Kajima Corp., Tokyo (Japan); Arai, T. [Showa Shell Sekiyu K.K., Tokyo (Japan); Ishikawa, N.; Tazawa, K.

    1997-12-20

    Reported in this article are PV (photovoltaic) modules now under development for integration into building walls. First of all, the power generating capability of PV modules and appropriate use of the generated power are studied, and the performance (resistance to fire or incombustibility, strength and durability, appearance and design, and dimensional standardization) that such outer wall materials are to be equipped with are determined. Next, module development, installation technique, computer graphics-aided facade designing, and real size module-using proof test are studied before installability, the power to be generated, and designs are finalized. In the development of modules, design evaluation involves the combining of various kinds of glass, solar cells, back sheets, and fillers, and the importance is confirmed of the prevention of insulation degradation around the modules. As for the methods of installation, the gasket method and aluminum sash method, etc., are tested. In the study of facade design, it is found that various expressions are possible by properly choosing gasket colors, module types, and kinds of glass to cover the openings. 1 ref., 6 figs., 3 tabs.

  5. Case study installation of a HDPE curtain wall with sheetpile tie-in on both ends

    International Nuclear Information System (INIS)

    Schindler, R.M.; Maltese, P.C.

    1997-01-01

    The plans for eliminating the off-site migration of non-aqueous phase liquid (NAPL) from a refinery into a nearby river included the installation of a High Density Polyethylene (HDPE) curtain wall and an underdrain system. A 640 m (2100 lineal feet) HDPE Curtain Wall was installed along the river boundary, tying into an existing sheet pile wall on both ends. The wall varied from approximately 4.5 m (15 feet) deep at the northern end to about 7 m (23 feet) deep at the southern end, running approximately 3 to 3.6 m (10 to 12 feet) inland of an existing wooden bulkhead. The curtain wall was successfully installed through a slurry supported trench. A 930 m (3050 lineal feet) interception/collection trench was installed parallel to the HDPE Curtain Wall, continuing on beyond the curtain wall on the southern end. The depth of the trench varied from approximately 3 to 4 m (10 to 13 feet) deep. A 20.32 cm (8 inch) diameter perforated HDPE header pipe was placed in the trench to convey groundwater and product to two sumps. The trench is 53.34 cm (21 inches) wide and contained aggregate to approximately 0.9 m (3 feet) below ground. This work was accomplished using the bio-polymer slurry drainage trench (BP Drain) technique. This paper briefly describes the construction methods utilized during this project, specifically HDPE curtain wall installation thru a bentonite slurry and tie-in to the existing sheet pile wall

  6. Evaluation of Strategies to Improve the Thermal Performance of Steel Frames in Curtain Wall Systems

    Directory of Open Access Journals (Sweden)

    Ji Hyun Oh

    2016-12-01

    Full Text Available Recently, metal curtain wall systems have been widely used in high-rise buildings due to many advantages, including being lightweight, rapid construction, and aesthetic features. Since the metal frame may lead to lower energy performance, thermal discomfort, and condensation risk due to the high thermal conductivity, its thermal performance can be important for the improvement of the overall thermal performance of the curtain wall system, as well as the energy efficiency of the building envelope. This study aims to evaluate variety of design strategies to improve the thermal performance of steel curtain wall frames. Five base cases and three further steps were selected for two different head profile shapes based on a state-of-the art technology review, and their thermal transmittances were calculated through simulations according to the ISO 12631 standard which is an international standard for calculating thermal transmittance of curtain wall system. Measured results that were obtained from hot-box tests were compared with the calculated results to validate the simulation method of this study. The shape of the head profile did not strongly influence the overall thermal transmittance, and the choice of strategies for the rabbet space was more important. More effective strategies could be decided according to the steps for variation development. This result can serve as a guideline for the design of high-performance curtain wall frames.

  7. PECULIARITIES OF DESIGN OF CURTAIN WALL SYSTEMS TO ASSURE THERMAL INSULATION

    Directory of Open Access Journals (Sweden)

    Golunov Sergej Anatolevich

    2012-10-01

    The results of laboratory tests (given the adjustments for permissible tolerances may be regarded as the principal criteria in the assessment of applicability of a curtain wall system in the course of a major building repair project or a new construction to assure the required reliability and durability.

  8. Blast Analysis of Laminated Glass Curtain Walls Equipped by Viscoelastic Dissipative Devices

    Directory of Open Access Journals (Sweden)

    Chiara Bedon

    2012-09-01

    Full Text Available Nonlinear numerical simulations are reported for a conventional unitized laminated glass curtain wall subjected to high- and low-level air blast loading. The studied curtain wall, spanning floor to floor, consisted of a laminated glass panel, a continuous bead of structural silicone sealant, a split screw spline frame and four rigid brackets. Firstly, a linear elastic FE-model (M01 is presented to investigate dynamic stresses and deflections due to explosion, by taking into account geometrical nonlinearities. Since, in similar glazing systems, it is important to take into account the possible cracking of glass lites, a second model (M02, calibrated to previous experimental data, is proposed. In it, glass behaves as a brittle-elastic material, whereas an elastoplastic characteristic curve is assumed for mullions. As a result, the design explosion seriously affects the main components of the curtain wall, especially the bead of silicone. To address these criticalities, additional viscoelastic (VE devices are installed at the frame corners (M03. Their effectiveness explains the additional deformability provided to the conventional curtain wall, as well as the obvious dissipation of the incoming energy due to blast loading. Structural and energy capabilities provided by devices are highlighted by means of numerical simulations.

  9. Study on construction technology of metro tunnel under a glass curtain wall

    Science.gov (United States)

    Zhang, Jian; Yu, Deqiang

    2018-03-01

    To ensure the safety of the glass curtain wall building above loess tunnel and get an optimal scheme, an elastic-plastic FEM model is established to simulate three reinforcement schemes based on a tunnel section in Xi’an Metro Line 3. The results show that the settlement value of the optimal scheme is reduced by 69.89% compared with the drainage measures, and the uneven settlement value is reduced by 57.5%. The construction points, technical processes and technical indexes of the optimal scheme are introduced. According to the actual project, the cumulative settlement of the building under construction is 16mm, which meets the control standards. According to the actual project, the cumulative settlement of the glass curtain wall building is 16mm, which meets the control standards. The reinforcement scheme can provide some reference for the design and construction of the metro in loess area.

  10. Maintenance and Durability of the Concrete External Layer of Curtain Walls in Prefabricated Technological Poznan Large Panel System

    Science.gov (United States)

    Jasiczak, Józef; Girus, Krzysztof

    2017-10-01

    The issue of usability and durability of large-panel building constructed several decades ago is a subject of an in-depth analysis of many domestic and foreign investments. When considering the durability of specific large-panel system, one should consider, among others, the process of making external walls. The long-term and direct impact of weather conditions on the external layer of curtain walls is significant for the durability of large-panel buildings. For the needs of the presented paper, in 2016, the survey of cracks and a series of other tests of large-panel façade, residential building constructed in 1986, in Poland, in the PLP process system - Rataje was executed. Several hundred large-size, triple-layer curtain-wall slab with a 6-cm, concrete exterior cladding layer anchored using pins and hangers with the load-bearing layer, a 9-cm insulation layer made of mineral wool, and a 21-cm structural layer were surveyed. Significant deviations in thicknesses of particular wall layers were proven. Other significant damages and defects of external layers were found. At the second stage, many tests, both nondestructive and destructive, were conducted. They involved determining mechanical properties of an external layer. The concrete thickness was measured using with a type N Schmidt sclerometer and core samples were taken from this layer in order to mark concrete’s compressive strength. The range of carbonation (by phenolphthalein method) and the actual location and condition of reinforcement were estimated using a ferromagnetic device to determine the condition of the external layer. The diagnosis conducted in such a manner was the verification of necessary repair of the walls and their thermal efficiency improvement while ensuring safe conditions of their operation and modern functional and utility requirements. It should be also emphasized that the method of diagnosing the external walls presented in this paper may be popularized when evaluating such

  11. Integral Facade Construction. Towards a new product architecture for curtain walls

    Directory of Open Access Journals (Sweden)

    Tillmann Klein

    2013-06-01

    Full Text Available Curtain wall constructions are one of the most applied facade constructions today. Independently attached to the primary load bearing structure of the building they protect the building’s interior from external climate conditions and allow great design freedom. With continuously rising requirements in terms of energy savings the constructional principle has reached its limits and strategies for improvement are needed. Incrementally evolved over time it is closely related to the architectural design and building processes. Based on literature research and stakeholder interviews the dissertation maps out the traditional and craftsmanship related facade design and construction process currently employed. In a next step, future challenges for facade constructions to cope with a changing market environment are identified. A facade function tree is developed and the theory of product architecture is applied to create a comparative basis for analysing different historical and contemporary facade products and systems. The function tree as well as the analysis clearly show how the fragmented market structures has influenced contemporary facade construction and leads to extremely modular product architectures. Numerous case studies for a new approach are conducted and summarised in several matrices. The case studies show how different modular and integral constructional strategies can respond to the future challenges. The pros and cons of different facade solutions, their potential for innovation and robustness in terms of market conditions are investigated. The dissertation concludes that a greater diversity of fa.ade types with a more integral construction is needed to meet the sometimes conflicting future challenges. If this can be realised, a greater diversity of more integral design and construction processes will evolve simultaneously. The role of the different stakeholders will change and a new way of educating architects or facade specialists

  12. Construction Technology and Management of Stone Curtain Wall%石材幕墙的施工工艺及施工管理

    Institute of Scientific and Technical Information of China (English)

    黄博杰

    2015-01-01

    由于石材幕墙整体效果美观,颜色均匀一致,具有较好的耐久性且不会造成玻璃幕墙所导致的光污染,目前越来越多的住宅、酒店、写字楼的外墙用石材来进行装饰。随着其广泛地运用,对石材幕墙的施工进行管理显得日益重要。该文将从石材幕墙的施工工艺及施工管理的质量、安全、进度三方面来进行分析。%Due to stone curtain wall’s merits of the overall satisfactory effect,consistent color,good durability and no light pollution generally caused by glass curtain wall,stone is increasingly widely used for the exterior wall decora-tion of residential houses,hotels and office buildings.With the wide application of stone curtain wall,the importance of the construction management of stone curtain wall is increasingly obvious.This paper briefly studies the stone cur-tain wall from aspects of the quality,safety and process of construction technology and construction management.

  13. Assessment of thin-walled cladding tube mechanical properties by segmented expanding Mandrel test

    International Nuclear Information System (INIS)

    Nilsson, Karl-Fredrik

    2015-01-01

    This paper presents the principles of the segmented expanding mandrel test for thin-walled cladding tubes, which can be used as a basic material characterisation test to determine stress-strain curves and ductility or as a test to simulate mechanical pellet-cladding interaction. The paper discusses the strengths and weaknesses of the test method and it illustrates how the test can be used to simulate hydride reorientations in zirconium claddings and quantify how hydride reorientation affects ductility. (authors)

  14. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  15. Inner wall attack and its inhibition method for FBR fuel pin cladding at high burnup

    International Nuclear Information System (INIS)

    Xu Yongli; Long Bin; Li Jingang; Wan Jiaying

    1998-01-01

    The inner wall attack of the modified 316-Ti S.S. cladding tubes manufactured in China used FBR at 10at.% burnup was investigated by means of the out of pile simulation tests. The inner surface morphologies of the cladding tubes attached by fission products Cs, Te, I and Se at 700 deg. C under lower and high oxygen potentials were observed respectively, and the depth of attack was also measured. The burst strength, maximum circum expansion and the appearances of fracture were measured and observed respectively for the cladding tubes attacked by fission products. Based on the mechanism of FBR fuel cladding chemical interaction (FCCI), Cr, Zr and Nb were used as the oxygen absorbers respectively, in order to inhibit the inner wall attack of the cladding tubes. The corrosion morphologies and depth, the penetration depth of the fission products in the inner surface of the cladding tubes were detected. The inhibition effectiveness of the oxygen absorbers for the inner wall attack of the cladding tubes was evaluated. (author)

  16. Development of laser cladding technology for maintenance of pipe wall thinning

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi

    2011-01-01

    We are developing the laser welding and cladding device for the maintenance of heat exchanger pipes. In the case of flow accelerated corrosion where pipe wall thinning occurred after a long time operation, laser cladding is mostly expected. A laser processing head was proposed in order to access the pipe wall. A composite-type optical fiber scope was used for real time observation and laser processing. An air-cooled compact fiber laser was used for spot heating. We present the concept of the laser cladding device which have the following features: 1) Wire feeding modules, 2) Module capable of laser irradiation in the vertical heat exchanger pipe, 3) Assist gas injection module. (author)

  17. 多向可调节柔性连接式石材幕墙施工技术%Multi Direction Adjustable Connection Stone Curtain Wall Construction Technology

    Institute of Scientific and Technical Information of China (English)

    杨军

    2016-01-01

    This paper introduces a new type of surface stone curtain wall construction technology, the technology used to adjust the flexible back bolt of the multi direction can be adjusted, improved the construction efficiency of special⁃shaped curved surface stone, irregular curved surface stone curtain wall facade effect can be better.%介绍了一种新的异形曲面石材幕墙施工技术,该技术运用多向可调节柔性背栓的多向可调节性,提高了异形曲面石材的施工效率,异形曲面石材幕墙的外立面效果得以更好呈现。

  18. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  19. Development of laser cladding system to repair wall thinning of 1-inch heat exchanger tube

    International Nuclear Information System (INIS)

    Terada, Takaya

    2013-01-01

    We developed a laser cladding system to repair the inner wall wastage of heat exchanger tubes. Our system, which is designed to repair thinning tube walls within 100 mm from the edge of a heat exchanger tube, consists of a fiber laser, a composite-type optical fiberscope, a coupling device, a laser processing head, and a wire-feeding device. All of these components were reconfigured from the technologies of FBR maintenance. The laser processing head, which has a 15-mm outer diameter, was designed to be inserted into a 1-inch heat exchanger tube. We mounted a heatproof broadband mirror for laser cladding and fiberscope observation with visible light inside the laser processing head. The wire-feeding device continuously supplied 0.4-mm wire to the laser irradiation spot with variable feeding speeds from 0.5 to 20 mm/s. We are planning to apply our proposed system to the maintenance of aging industrial plants. (author)

  20. A study of cladding technology on tube wall surface by a hand-held laser torch

    International Nuclear Information System (INIS)

    Terada, Takaya; Nishimura, Akihiko; Oka, Kiyoshi; Moriyama, Taku; Matsuda, Hiroyasu

    2015-01-01

    New maintenance technique was proposed using a hand-held laser torch for aging chemical plants and power plants. The hand-held laser torch was specially designed to be able to access limited tubular space in various cases. A composite-type optical fiberscope was composed of a center fiber for beam delivery and surrounded fibers for visible image delivery. Laser irradiation on a work pieces with the best accuracy of filler wire was carried out. And, we found that the optimized wire-feed speed was 2 mm/s in laser cladding. We succeeded to make a line clad on the inner wall of 23 mm tube. This technique was discussed to be applied to the maintenance for cracks or corrosions of tubes in various harsh environments. (author)

  1. Analysis on the construction technology of stone curtain wall in building engineering%关于建筑工程中石材幕墙施工工艺技术的探析

    Institute of Scientific and Technical Information of China (English)

    李苏慧

    2016-01-01

    This paper introduced the construction characteristics of stone curtain wall,from the positioning,lightning protection connection,stone panel installation,pendant installation and other aspects,elaborated the construction technology of stone curtain wall,and discussed the methods to improve the construction quality,conducive to promote the popularization and application of stone curtain wall.%介绍了石材幕墙的施工特点,从定位放线、防雷连接、石材面板安装、挂件安装等方面,阐述了石材幕墙的施工技术,以及提高其施工质量的方法,有利于促进石材幕墙的推广应用。

  2. Analysis on the construction technology of stone curtain wall in building engineering%谈钢结构技术在土木工程施工中的应用

    Institute of Scientific and Technical Information of China (English)

    齐鑫

    2016-01-01

    This paper introduced the construction characteristics of stone curtain wall,from the positioning,lightning protection connection,stone panel installation,pendant installation and other aspects,elaborated the construction technology of stone curtain wall,and discussed the methods to improve the construction quality,conducive to promote the popularization and application of stone curtain wall.%结合实践经验,分析了土木工程中钢结构施工技术存在的问题,并从吊装施工、焊接技术、现场勘测、材料选择四方面,提出了改进钢结构施工技术的建议,从而提高钢结构的施工水平。

  3. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  4. Effect of cladding systems on moisture performance of wood-framed walls in a mixed-humid climate

    Science.gov (United States)

    S. Craig Drumheller; Charles G. Carll

    2010-01-01

    A 22-month field investigation of nine different north-and south-oriented wood-framed wall assemblies was conducted to determine the moisture performance of various wall construction types, most of which incorporated absorptive cladding. The study was conducted on the campus of the National Association of Home Builders (NAHB) Research Center, in Upper Marlboro, MD, 20...

  5. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  6. Clad vent set cup open end (closure weld zone) wall-thickness study

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, G.B.; Sherrill, M.W.

    1994-09-01

    The wall thickness at the open end of Clad Vent Set (CVS) cups is a very important parameter for maintaining control of the fueled CVS closure weld process. Ideally, the wall thickness in the closure weld zone should be constant. The DOP-26 iridium alloy is very difficult to machine; therefore, key dimensional features are established during the two-draw warm-forming operation. Unfortunately, anisotropy in the forming blanks produces four ears at the open end of each cup. Formation of these ears produces axial and circumferential variations in wall thickness. The cup certification requirement is that the wall thickness in the closure weld zone, defined as the 2.5-mm band at the open end of a cup, measure from 0.63 to 0.73 mm. The wall thickness certification data for the open end of the CVS cups have been statistically evaluated. These data show that the cups recently produced for the Cassini mission have well-controlled open-end wall thicknesses.

  7. Water curtain

    Energy Technology Data Exchange (ETDEWEB)

    Kutepov, A.I.; Fedotov, I.N.; Prokopov, O.I.

    1982-01-01

    The patented water curtain is used to eliminate gas-oil gushers and is distinguished by the fact that in order to simplify operation, the water-line collector is made out of two symmetrical parts installed with the possibility of relative rotation. The collector is equipped with at least one pipe arranged in the zone of the collector and has openings for the supply of water.

  8. Timber Curtain

    DEFF Research Database (Denmark)

    2015-01-01

    Timber Curtain is a site specific architectural installation, which is part of a research project conducted at the Aarhus School of Architecture as collaboration between Ph.D. and associate professor Niels Martin Larsen and the author. Through a digitally scripted associative model we performed s...... of pinewood timber, machined with a CMS Antares 5-axis CNC router. The digital process generation and simulation was implemented with Rhinoceros 3D, Grasshopper and GHPython, and AlphaCAM was used for preparing the CNC-routing....

  9. The secondary stress analyses in the fuel pin cladding due to the swelling gradient across the wall thickness

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2002-01-01

    Irradiation deformation analyses of FBR fuel cladding were made by using the finite element method. In these analyses the history of the stress occurred in the cladding was evaluated paying attention to the secondary stress induced by the swelling difference across the wall thickness. It was revealed that the difference of the swelling incubation dose in the direction of the thickness and the irradiation creep deformation play an important role in the history of the secondary stress. The effect of the stress-enhanced swelling was also analyzed in this study

  10. A standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    International Nuclear Information System (INIS)

    Barat, P.; Raj, B.; Bhattacharya, D.K.

    1982-01-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed. (author)

  11. Standardized procedure for eddy-current testing of stainless steel, thin-walled nuclear fuel element cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Barat, P; Raj, B; Bhattacharya, D K [Reactor Research Centre, Kalpakkam (India)

    1982-10-01

    Thin-walled nuclear fuel cladding tubes made of AISI 316 stainless steel have been examined by eddy-current testing. Standardization of the procedures has required investigations on optimizing the test frequency, finding a method to locate a defect with respect to the probe reference end, and the use of standard defects and sequential metallography of natural defects detected by eddy-current testing, to understand the influence of the nature of defects on the impedance output signals. Test frequency and method of locating the defect were optimized by the use of standard defects made by machining in reference cladding tubes. Subsequent metallography of natural defects detected by eddy-current testing revealed mainly clusters of inclusions but also other types of defects. The effect of the distribution of inclusions along the length of the tube on the impedance output is discussed.

  12. 石材幕墙安装技术要点控制%The Control Points of Stone Curtain Wall Installation Technology

    Institute of Scientific and Technical Information of China (English)

    陈慧

    2013-01-01

      随着经济的发展,城市建筑外墙结构采用天然石材幕墙的不断增多。石材幕墙具有独特的艺术风格、高雅的外在造型,能使城市景观得到进一步的提升。石材幕墙的施工方法分为干挂法和湿挂法。本文着重针对干挂法石材幕墙安装的技术要点与质量控制进行探讨。%With the development of economy, exterior wal st-ructure of urban architecture using the natural stone curtain wal structure is increasing. The external appearance of stone curtain wal has a unique artistic style, elegant, can make the city landscape has been further improved. Construction metho-d for stone curtain wal is divided into dry hanging method and wet hanging method. This paper discusses focused on the law of dry hanging stone curtain wal technology points and the quality control of instal ation.

  13. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data

  14. Radiation shielding curtain

    International Nuclear Information System (INIS)

    Winkler, N.T.

    1976-01-01

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  15. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  16. Determination of the stresses and displacements in the cut off curtain body executed by the << Wall-in-the ground >> method.; Opredelenie napryazhenij i peremeshchenij v tele protivofil`tratsionnoj zavesy, vypolnennoj metodom << stena v grunte >>.

    Energy Technology Data Exchange (ETDEWEB)

    Snisarenko, V I; Mel` nikov, A I [Myinyisterstvo Budyivel` noyi Arkhyitekturi, Kyiv (Ukraine); [Myizhgaluzevij Naukovo-Tekhnyichnij Tsentr ` ` Ukrittya ` ` , Natsyional` na Akademyiya Nauk Ukrayini, Chornobil` (Ukraine)

    1994-12-31

    Construction of the cut-off-curtain (COC) is analyzed as a possible variant to reduce the rate of radioactive horizontal migration. Such constructions can be executed by the << wall-in-the ground >> method. The theoretical analysis of the stress-strained state of the carried out using the methods of the theory of elasticity and of the limit equilibrium of the strewing medium. Theoretical dependences are obtained and formulas for practical calculations of the COC-body stress-strained state in the depth intervals which are of practical interest are suggested. The dependences obtained may be used to calculate the consolidation parameters and filtration coefficients, to choose materials for the COC body, geometrical size and film elements included.

  17. Acoustic assessment of speech privacy curtains in two nursing units.

    Science.gov (United States)

    Pope, Diana S; Miller-Klein, Erik T

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s' standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  18. Acoustic assessment of speech privacy curtains in two nursing units

    Directory of Open Access Journals (Sweden)

    Diana S Pope

    2016-01-01

    Full Text Available Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient′s bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s′ standard hospital construction and the other was newly refurbished (2013 with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered.

  19. Acoustic assessment of speech privacy curtains in two nursing units

    Science.gov (United States)

    Pope, Diana S.; Miller-Klein, Erik T.

    2016-01-01

    Hospitals have complex soundscapes that create challenges to patient care. Extraneous noise and high reverberation rates impair speech intelligibility, which leads to raised voices. In an unintended spiral, the increasing noise may result in diminished speech privacy, as people speak loudly to be heard over the din. The products available to improve hospital soundscapes include construction materials that absorb sound (acoustic ceiling tiles, carpet, wall insulation) and reduce reverberation rates. Enhanced privacy curtains are now available and offer potential for a relatively simple way to improve speech privacy and speech intelligibility by absorbing sound at the hospital patient's bedside. Acoustic assessments were performed over 2 days on two nursing units with a similar design in the same hospital. One unit was built with the 1970s’ standard hospital construction and the other was newly refurbished (2013) with sound-absorbing features. In addition, we determined the effect of an enhanced privacy curtain versus standard privacy curtains using acoustic measures of speech privacy and speech intelligibility indexes. Privacy curtains provided auditory protection for the patients. In general, that protection was increased by the use of enhanced privacy curtains. On an average, the enhanced curtain improved sound absorption from 20% to 30%; however, there was considerable variability, depending on the configuration of the rooms tested. Enhanced privacy curtains provide measureable improvement to the acoustics of patient rooms but cannot overcome larger acoustic design issues. To shorten reverberation time, additional absorption, and compact and more fragmented nursing unit floor plate shapes should be considered. PMID:26780959

  20. Retrofit curtain for overhead doors

    Energy Technology Data Exchange (ETDEWEB)

    Leckie, R E

    1987-12-29

    A heat insulating curtain has been developed for reducing heat losses through overhead doors of the type commonly found in industrial warehouses. The curtain consists of a reinforced polyester fabric attached to the outside top of the overhead door and moves with the door as it opens and closes. A T-shaped edge track seals the edges of the curtain to the door frame; the edge of the curtain is also T-shaped and runs up and down the track as the curtain is raised and lowered. The curtain fabric is ultraviolet resistant, durable, flexible, and transparent, and transforms the door into a solar collector which provides solar heated air to the building interior. Two curtains have been satisfactorily installed and tested at a warehouse in Calgary, Alberta. A market evaluation study was conducted to determine the possible buyers for such a door curtain. A target market consisting of those wishing to fix old, leaky doors was selected and a marketing strategy developed. The described strategy includes product development, pricing, distribution, promotion, and advertising. 2 figs., 1 tab.

  1. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  2. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  3. Electrostatic curtain studies

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1992-05-01

    This report presents the results of experiments using electrostatic curtains (ESCS) as a transuranic (TRU) contamination control technique. The TRU contaminants included small (micrometer to sub micrometer) particles of plutonium and americium compounds associated with defense-related waste. Three series of experiments were conducted. The first was with uncontaminated Idaho National Engineering Laboratory (INEL) soil, the second used contaminated soil containing plutonium-239 (from a mixture of Rocky Flats Plant contaminated soil and INEL uncontaminated soil), and the third was uncontaminated INEL soil spiked with plutonium-239. All experiments with contaminated soil were conducted inside a glove box containing a dust generator, low volume cascade impactor (LVCI), electrostatic separator, and electrostatic materials. The data for these experiments consisted of the mass of dust collected on the various material coupons, plates, and filters; radiochemical analysis of selected samples; and photographs, as well as computer printouts giving particle size distributions and dimensions from the scanning electron microscope (SEM). The following results were found: (a) plutonium content (pCi/g) was found to increase with smaller soil particle sizes and (b) the electrostatic field had a stronger influence on smaller particle sizes compared to larger particle sizes. The SEM analysis indicated that the particle size of the tracer Pu239 used in the spiked soil experiments was below the detectable size limit (0.5 μm) of the SEM and, thus, may not be representative of plutonium particles found in defense-related waste. The use of radiochemical analysis indicated that plutonium could be found on separator plates of both polarities, as well as passing through the electric field and collecting on LVCI filters

  4. Overview of fire curtains in construction

    Directory of Open Access Journals (Sweden)

    Nedryshkin Oleg

    2016-01-01

    Full Text Available A fire curtain is use where, if there is a fire, it is necessary to create a temporary barrier within an opening, which seals off the area on fire. The curtain descends and prevents any fire and smoke from spreading from one area to another. It also allows people access to protected escape routes without any loss of fire resistance. The paper aims to presents the results of analysis of the scientific literature on the subject of fire curtains.

  5. Effect of Viscosity on Liquid Curtain Stability

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration

    2016-11-01

    The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.

  6. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  7. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  8. The use of sparge curtains for contaminant plume control

    International Nuclear Information System (INIS)

    Molnaa, B.; Dablow, J.

    1994-01-01

    Contamination by petroleum hydrocarbons and organic solvents represents a major impact to soil and groundwater. Following recent research and development, several technologies have evolved to treat saturated zone adsorbed- and dissolved-phase contaminants in situ. These technologies include bioremediation and air sparging. Funnel and gate approaches have been developed at the Waterloo Center for Groundwater Research to control contaminant plume migration and treat dissolved-phase contaminants before allowing migration downgradient and off site. The process consists of using low hydraulic conductivity cutoff walls to funnel groundwater flow through gates that contain in situ bioreactors. These systems can maintain hydraulic control and treat dissolved-phase contaminants at the downgradient margins of plumes, while minimizing, or in some cases eliminating, the need for groundwater pumping. Sparge curtains can be applied to treat dissolved-phase contaminants and prevent downgradient, off-site migration of contaminated groundwater

  9. AA, radiation shielding curtain along the target area

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    At the far left is the beam tube for the high-intensity proton beam from the 26 GeV PS. The tube ends in a thin window and the proton beam continues in air through a hole in the shielding blocks (see also 8010308), behind which the target (see 7905091, 7905094)was located. After the target followed the magnetic horn, focusing the antiprotons, and the first part of the injection line with a proton dump. The antiprotons, deflected by a magnet, left the target area through another shielding wall, to make their way to the AA ring. Laterally, this sequence of components was shielded with movable, suspended, concrete blocks: the "curtain". Balasz Szeless, who had constructed it, is standing at its side.

  10. Embedded cladding surface thermocouples on Zircaloy-sheathed heater rods

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1977-06-01

    Titanium-sheathed Type K thermocouples embedded in the cladding wall of zircaloy-sheathed heater rods are described. These thermocouples constitute part of a program intended to characterize the uncertainty of measurements made by surface-mounted cladding thermocouples on nuclear fuel rods. Fabrication and installation detail, and laboratory testing of sample thermocouple installations are included

  11. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  12. Scientific communication across the Iron Curtain

    CERN Document Server

    Hollings, Christopher D

    2016-01-01

    This monograph provides a concise introduction to the tangled issues of communication between Russian and Western scientists during the Cold War. It details the extent to which mid-twentieth-century researchers and practitioners were able to communicate with their counterparts on the opposite side of the Iron Curtain. Drawing upon evidence from a range of disciplines, a decade-by-decade account is first given of the varying levels of contact that existed via private correspondence and conference attendance. Next, the book examines the exchange of publications and the availability of one side's work in the libraries of the other. It then goes on to compare general language abilities on opposite sides of the Iron Curtain, with comments on efforts in the West to learn Russian and the systematic translation of Russian work. In the end, author Christopher Hollings argues that physical accessibility was generally good in both directions, but that Western scientists were afflicted by greater linguistic difficultie...

  13. Timber Curtain: Designing with material capabilities

    DEFF Research Database (Denmark)

    Lahmy, Maya; Larsen, Niels Martin

    2015-01-01

    of the generative phase to fabrication of the artefact. Brought together by various conceptual and structural elements the Timber Curtain forms a 4.5 x 2.5 x 0.5 m construct of assembled wood components, digitally crafted through advanced production techniques. Concerned with materiality and processing of the wood......Timber Curtain explores relations between digital precision and material indeterminacy. It is an installation engaging spatially through its presence as a 1:1 architectural component as well as it is exploring novel technologies in the architectural design process from the very beginning...... an associative digital model that could gather and compute in put from material behaviour and out put manufacturing data was scripted. This method enables material capacity to be pushed to the limit of its performance allowing novel sensuous and structural qualities to emerge. The method is developed with use...

  14. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  15. Drawing the Curtain on Enceladus' South-Polar Eruptions

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-11-01

    For a comprehensive description of Enceladus' south-polar eruptions observed at high resolution, they must be represented as broad curtains rather than discrete jets. Meanders in the fractures from which the curtains of material erupt give rise to optical illusions that look like discrete jets, even along fractures with no local variations in eruptive activity, implying that many features previously identified as "jets" are in fact phantoms. By comparing Cassini images with model curtain eruptions, we are able to obtain maps of eruptive activity that are not biased by the presence of those phantom jets. The average of our activity maps over all times agrees well with thermal maps produced by Cassini CIRS. We can best explain the observed curtains by assuming spreading angles with altitude of up to 14° and zenith angles of up to 8°, for curtains observed in geometries that are sensitive to those quantities.

  16. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  17. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  18. Radiative and conductive heat transfer in a nongrey semitransparent medium. Application to fire protection curtains

    Energy Technology Data Exchange (ETDEWEB)

    Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard

    2004-06-01

    This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.

  19. Stone cladding engineering

    National Research Council Canada - National Science Library

    Camposinhos, Rui de Sousa

    2014-01-01

    .... Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements...

  20. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  1. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  2. Effect of Rheological Properties on Liquid Curtain Coating

    Science.gov (United States)

    Mohammad Karim, Alireza; Suszynski, Wieslaw; Griffith, William; Pujari, Saswati; Carvalho, Marcio; Francis, Lorraine; Dow Chemical Company Collaboration; PUC-Rio Collaboration

    2017-11-01

    Curtain coating is one of the preferred methods for high-speed precision application of single-layer and multi-layer coatings in technology. However, uniform coatings are only obtained in a certain range of operating parameters, called coating window. The two main physical mechanisms that limit successful curtain coating are liquid curtain breakup and air entrainment. The rheological properties of the liquid play an important role on these mechanisms, but the fundamental understanding of these relations is still not complete. The effect of rate-dependent shear and extensional viscosities on the stability of viscoelastic and shear thinning liquid curtains were explored by high-speed visualization. Aqueous solutions of polyethylene oxide (PEO) and polyethylene glycol (PEG) were used as viscoelastic liquids. Xanthan Gum in water and glycerol solutions with a range of compositions were used as shear thinning liquids. The critical condition was determined by examining flow rate below which curtain broke. In this work, we also analyze relative importance of rate-dependent shear and extensional viscosity on both curtain breakup and air entrainment. We would like to acknowledge the financial support from the Dow Chemical Company.

  3. Controlling allergens in animal rooms by using curtains

    DEFF Research Database (Denmark)

    Krohn, Thomas Cæcius; Itter, Gabi; Fosse, Richard

    2006-01-01

    The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room. The experimen......The reduction and control of allergens in the animal facility is important for staff working with laboratory animals. This study was designed to evaluate the efficiency of perforated Makrolon curtains in front of racks as a method to reduce the amount of allergen in the animal room....... The experimental situation we studied provides some information regarding allergen disposition in animal rooms but is clearly artificial and does not reflect a typical, ‘real-world’ environment in terms of preventing exposure of workers to allergens. Plastic curtains with holes were placed in front of racks......, and a corridor between the racks and a curtain was present. The room was ventilated with air, which was blown into the room through the middle of the corridor, flowing downstream and passing through the holes in the curtain. This set-up resulted in air flow from the corridor through the curtain. Air samples were...

  4. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  5. Oxide thickness measurement technique for duplex-layer Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    McClelland, R.G.; O'Leary, P.M.

    1992-01-01

    Siemens Nuclear Power Corporation (SNP) is investigating the use of duplex-layer Zircaloy-4 tubing to improve the waterside corrosion resistance of cladding for high-burnup pressurized water reactor (PWR) fuel designs. Standard SNP PWR cladding is typically 0.762-mm (0.030-in.)-thick Zircaloy-4. The SNP duplex cladding is nominally 0.660-mm (0.026-in.)-thick Zircalloy-4 with an ∼0.102-mm (0.004-in.) outer layer of another, more corrosion-resistant, zirconium-based alloy. It is common industry practice to monitor the in-reactor corrosion behavior of Zircaloy cladding by using an eddy-current 'lift-off' technique to measure the oxide thickness on the outer surface of the fuel cladding. The test program evaluated three different cladding samples, all with the same outer diameter and wall thickness: Zircaloy-4 and duplex clad types D2 and D4

  6. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  7. Compare the difference of architecture design in Hong Kong and Penang – Exterior wall

    Directory of Open Access Journals (Sweden)

    Liu Wen Tao

    2015-12-01

    Full Text Available This research focuses on the exterior wall of architecture design of Hong Kong and Penang, it also analyzes how light pollution affects human life. As we know, Hong Kong prefers to use steel to build skyscrapers and middle or high rise buildings. However, Penang prefers to use concrete to do the construction. So, there are some advantages and disadvantages between the glass curtain wall and concrete wall in Hong Kong and Penang. The researcher used 400 samples to determine effect of the glass curtain wall and concrete wall on human life in Hong Kong and Penang separately. The result is light pollution created by glass curtain wall in Hong Kong is a serious problem to residents’ life. The glass curtain wall seriously glaze people’s eyes who drive or walk on the street. Thus, many car accidents were caused by this problem. The concrete wall is more often contaminated by fungus and difficult to clean. But, concrete wall is more natural and green for humans. Therefore, from the sustainable aspect that concrete is more healthy for humans, the previous researchers suggest that if the exterior wall is a mixture of both glass curtain and concrete it will not cause light pollution and will be easily involved in the natural environment.

  8. The influence of residual stresses on small through-clad cracks in pressure vessels

    International Nuclear Information System (INIS)

    deLorenzi, H.G.; Schumacher, B.I.

    1984-01-01

    The influence of cladding residual stresses on the crack driving force for shallow cracks in the wall of a nuclear pressure vessel is investigated. Thermo-elastic-plastic analyses were carried out on long axial through-clad and sub-clad flaws on the inside of the vessel. The depth of the flaws were one and three times the cladding thickness, respectively. An analysis of a semielliptical axial through-clad flaw was also performed. It was assumed that the residual stresses arise due to the difference in the thermal expansion between the cladding and the base material during the cool down from stress relieving temperature to room temperature and due to the subsequent proof test before the vessel is put into service. The variation of the crack tip opening displacement during these loadings and during a subsequent thermal shock on the inside wall is described. The analyses for the long axial flaws suggest that the crack driving force is smaller for this type of flaw if the residual stresses in the cladding are taken into account than if one assumes that the cladding has no residual stresses. However, the analysis of the semielliptical flaw shows significantly different results. Here the crack driving force is higher than when the residual stresses are not taken into account and is maximum in the cladding at or near the clad/base material interface. This suggests that the crack would propagate along the clad/base material interface before it would penetrate deeper into the wall. The elastic-plastic behavior found in the analyses show that the cladding and the residual stresses in the cladding should be taken into acocunt when evaluating the severity of shallow surface cracks on the inside of a nuclear pressure vessel

  9. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  10. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  11. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  12. Timber frame walls

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2010-01-01

    A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....

  13. Experimental investigation of hysteresis in the break-up of liquid curtains

    KAUST Repository

    Marston, Jeremy; Thoroddsen, Sigurdur T; Thompson, John W.; Blyth, Mark G.; Henry, Daniel; Uddin, Jamal

    2014-01-01

    Findings from an experimental investigation of the break-up of liquid curtains are reported, with the overall aim of examining stability windows for multi-layer liquid curtains composed of Newtonian fluids, where the properties of each layer can

  14. Curtain Antenna Array Simulation Research Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Hongbo LIU

    2014-01-01

    Full Text Available For the radiating capacity of curtain antenna array, this paper constructs a three- line-four-column curtain antenna array using cage antenna as the antenna array element and obtains a normalizing 3D radiation patterns through conducting simulation with MATLAB. Meanwhile, the relationships between the antenna spacing and the largest directivity coefficient, as well as the communication frequency and largest directivity coefficient are analyzed in this paper. It turns out that the max value will generate when the antenna spacing is around 18 m and the best communication effect will be achieved when the communication frequency is about 12.4 MHz.

  15. 40 CFR 60.1445 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1445 Section 60.1445 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1445 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If your air curtain incinerator combusts...

  16. In-situ crack repair by laser cladding

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2010-09-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  17. Laser cladding crack repair of austenitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-06-01

    Full Text Available Laser cladding crack repair of austenitic stainless steel vessels subjected to internal water pressure was evaluated. The purpose of this investigation was to develop process parameters for in-situ repair of through-wall cracks in components...

  18. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  19. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The reference fuel for Integral Fast Reactor (IFR) is a ternary U-Pu-Zr alloy with a low swelling austenitic or ferritic stainless steel cladding. It is known that low melting point eutectics may form in such metallic fuel-cladding systems which could contribute to cladding failure under accident conditions. This paper will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel

  20. Clad vent set cup closure-weld-zone grinding evaluation

    International Nuclear Information System (INIS)

    Ulrich, G.B.; Woods, A.T.; Ohriner, E.K.

    1996-04-01

    Clad vent set (CVS) cups were ground in the closure-weld zone to reduce the wall-thickness variation created by the cup deep-drawing process. A significantly more uniform wall thickness would be beneficial for the CVS closure-weld operation. The goal was to reduce the average within-cup wall-thickness variation (defined as the range of wall thicknesses in the closure-weld zone) approximately 50% from the Cassini production value of 42 microm. This goal was shown to be achievable but, unfortunately, not with the existing blank and formed cup thicknesses

  1. PCI resistant light water reactor fuel cladding

    International Nuclear Information System (INIS)

    Foster, J.P.; Sabol, G.P.

    1988-01-01

    A tubular nuclear fuel element cladding tube is described, the fuel element cladding tube forming the entire fuel element cladding and consisting of: a single continuous wall, the single continuous wall consisting of a single alloy selected from the group consisting of zirconium base alloys, A, B, C, D, and E; the single continuous wall characterized by a cold worked and stress relieved microstructure throughout; wherein the zirconium base alloy A contains 0.2 - 0.6 w/o Sn, 0.03 - 0.11 w/o sum of Fe and Cr, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy B contains 0.1 - 0.6 w/oo Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O and section 1500 ppm total impurities; the zirconium base alloy C contains 1.2 - 1.7 w/o Sn, 0.04 - 0.24 w/o Fe, 0.05 - 0.15 w/o Cr, section 0.08 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities; the zirconium base alloy D contains 0.15 - 0.6 w/o Sn, 0.15 - 0.5 w/o Fe, section 600 ppm O, and section 1500 ppm total impurities; and the zirconium base alloy E contains 0.4 - 0.6 w/o Sn, 0.1 - 0.3 w/o Fe, 0.03 - 0.07 w/o Ni, section 600 ppm O, and section 1500 ppm total impurities

  2. Winston Churchill's "Iron Curtain" Address: Implications for the Present.

    Science.gov (United States)

    Bush, George

    1988-01-01

    Evaluates the "Iron Curtain" speech made by Winston Churchill in 1946, discussing its relevance and implications for the present. Examines Churchill's predictions for the future and his assessment of the USSR. Reviews world developments since the speech and proposes foreign policy goals for the next 40 years. (GEA)

  3. Flow of a falling liquid curtain onto a moving substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yekun; Itoh, Masahiro [Graduate school of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki 302-8573 (Japan); Kyotoh, Harumichi, E-mail: yekunliu@hotmail.com [Division of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki 302-8573 (Japan)

    2017-10-15

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed. (paper)

  4. Flow of a falling liquid curtain onto a moving substrate

    International Nuclear Information System (INIS)

    Liu, Yekun; Itoh, Masahiro; Kyotoh, Harumichi

    2017-01-01

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed. (paper)

  5. Detailed analysis of turbulent flows in air curtains

    NARCIS (Netherlands)

    Jaramillo, Julian E.; Perez-Segarra, Carlos D.; Lehmkuhl, Oriol; Castro, Jesus

    2011-01-01

    In order to prevent entrainment, an air curtain should provide a jet with low turbulence level, and enough momentum to counteract pressure differences across the opening. Consequently, the analysis of the discharge plenum should be taken into consideration. Hence, the main object of this paper is to

  6. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  7. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  8. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    This project contributes to more accurate design guidelines for high-performance building envelopes by analysis of hygrothermal performance of ventilated wooden cladding. Hygrothermal performance is defined by cladding temperature and moisture conditions, and subsequently by risk of degradation. Wood cladding is the most common facade material used in rural and residential areas in Norway. Historically, wooden cladding design varied in different regions in Norway. This was due to both climatic variations and the logistical distance to materials and craftspeople. The rebuilding of Norwegian houses in the 1950s followed central guidelines where local climate adaptation was often not evaluated. Nowadays we find some technical solutions that do not withstand all climate exposures. The demand for thermal comfort and also energy savings has changed hygrothermal condition of the building envelopes. In well-insulated wall assemblies, the cladding temperature is lower compared to traditional walls. Thus the drying out potential is smaller, and the risk of decay may be higher. The climate change scenario indicates a warmer and wetter future in Norway. Future buildings should be designed to endure harsher climate exposure than at present. Is there a need for refined climate differentiated design guidelines for building enclosures? As part of the Norwegian research programme 'Climate 2000', varieties of wooden claddings have been investigated on a test house in Trondheim. The aim of this investigation was to increase our understanding of the relation between microclimatic conditions and the responding hygrothermal performance of wooden cladding, according to orientation, design of ventilation gap, wood material quality and surface treatment. The two test facades, facing east and west have different climate exposure. Hourly measurements of in total 250 sensors provide meteorological data; temperature, radiation, wind properties, relative humidity, and test house data

  9. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  10. Effect of Air-Curtain Discharge Speed on the Effectiveness of Vortex-like Air-Curtain Approach for Severe Accident Management

    International Nuclear Information System (INIS)

    Ullah, Sana; Yim, Man Sung

    2017-01-01

    The purpose of air-curtain installation is to isolate reactor containment from outside environment, confine the leaking radioactive material in a localized area, and minimize the impact of outside wind. The wind could blow away airborne radioactive material immediately after discharge leaving little room for effective capturing. Therefore, vortex-like air-curtain plays an important role in this process, and its effectiveness could severely influence the performance of overall system. An approach based on vortex-like air-curtain was proposed earlier for preventing spread of radioactive material to the environment and mitigate subsequent radiological consequences. Effect of air-curtain discharge speed, and discharge angle was studied, and a quantitative account of air curtain in terms of effectiveness parameter was performed in this work. It was found that for given wind speed, air-curtain effectiveness would improve with increase in air-curtain discharge speed to an extent, after which any increase in discharge velicity could deteriorate the performance, due to imbalance between discharge and wind speed. Keeping air-curtain discharge at an angle of 15° opposite to the predominant flow direction is devised.

  11. Cladding tube manufacturing technology

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report A lloy Development for High Burnup Cladding . Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs

  12. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  13. Cladding tube of fuel rod for a BWR type reactor

    International Nuclear Information System (INIS)

    Nakayama, Hitoshi; Fujie, Kunio; Kuwahara, Heikichi; Hirai, Tadamasa; Kakizaki, Kimio.

    1976-01-01

    Object: To form a cladding tube wall with tunnels in communication with the exterior through a number of small-diameter openings to rapidly disperse a large quantity of heat thereby providing high density of the fuel rod. Structure: Tunnels adjacent to each other are provided under the skin in contact with cooling liquid of a cladding tube, and a number of openings through which said tunnels and the periphery of the cladding tube are placed in communication are formed, said openings each having its section smaller than that of said tunnel. With this arrangement, the cooling water entered the tunnel through some of small diameter openings absorbs heat of the fuel rod to be vaporized, which is flown out into the cooling water through the other small diameter openings and formed into vapor bubbles which move up for release of heat. (Taniai, N.)

  14. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1991-01-01

    A methodology for determining the probability spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B ampersand W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  15. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  16. Probabilistic assessment of spent-fuel cladding breach

    International Nuclear Information System (INIS)

    Foadian, H.; Rashid, Y.R.; Seager, K.D.

    1992-01-01

    In this paper a methodology for determining the probability of spent-fuel cladding breach due to normal and accident class B cask transport conditions is introduced. This technique uses deterministic stress analysis results as well as probabilistic cladding material properties, initial flaws, and breach criteria. Best estimates are presented for the probability distributions of irradiated Zircaloy properties such as ductility and fracture toughness, and for fuel rod initial conditions such as manufacturing flaws and PCI part-wall cracks. Example analyses are used to illustrate the implementation of this methodology for a BWR (GE 7 x 7) and a PWR (B and W 15 x 15) assembly. The cladding breach probabilities for each assembly are tabulated for regulatory normal and accident transport conditions including fire

  17. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  18. Iodine induced stress corrosion cracking of zircaloy cladding tubes

    International Nuclear Information System (INIS)

    Brunisholz, L.; Lemaignan, C.

    1984-01-01

    Iodine is considered as one of the major fission products responsible for PCI failure of Zry cladding by stress corrosion cracking (SCC). Usual analysis of SCC involves both initiation and growth as sequential processes. In order to analyse initiation and growth independently and to be able to apply the procedures of fracture mechanics to the design of cladding, with respect to SCC, stress corrosion tests of Zry cladding tubes were undertaken with a small fatigue crack (approx. 200 μm) induced in the inner wall of each tube before pressurization. Details are given on the techniques used to induce the fatigue crack, the pressurization test procedure and the results obtained on stress releaved or recrystallized Zry 4 tubings. It is shown that the Ksub(ISCC) values obtained during these experiments are in good agreement with those obtained from large DCB fracture mechanics samples. Conclusions will be drawn on the applicability of linear elastic fracture mechanics (LEFM) to cladding design and related safety analysis. The work now underway is aimed at obtaining better understanding of the initiation step. It includes the irradiation of Zry samples with heavy ions to simulate the effect of recoil fragments implanted in the inner surface of the cladding, that could create a brittle layer of about 10 μm

  19. Stone cladding engineering

    CERN Document Server

    Sousa Camposinhos, Rui de

    2014-01-01

    This volume presents new methodologies for the design of dimension stone based on the concepts of structural design while preserving the excellence of stonemasonry practice in façade engineering. Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements. Based on the Load and Resistance Factor Design Format (LRDF), minimum slab thickness formulae are presented that take into consideration stress concentrations analysis based on the Finite Element Method (FEM) for the most commonly used modern anchorage systems. Calculation examples allow designers to solve several anchorage engineering problems in a detailed and objective manner, underlining the key parameters. The design of the anchorage metal parts, either in stainless steel or aluminum, is also presented.

  20. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  1. The influence of ventilation on moisture conditions in facades with wooden cladding

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2009-01-01

    A ventilated cavity behind the cladding of timber frame walls is often considered good building practice that facilitates the removal of moisture from the construction. However, moisture will only be removed from the construction by ventilating it with dry air, whereas ventilating with humid air...... might add moisture to the construction. Full-size wall elements with wooden cladding placed in a test building were exposed to natural climate on the outside and to a humid indoor climate on the inside. Temperature and moisture conditions inside the wall elements and climate parameters were monitored...

  2. An internal conical mandrel technique for fracture toughness measurements on nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sainte Catherine, C.; Le Boulch, D.; Carassou, S. [CEA Saclay, DEN/DMN, Bldg 625 P, Gif-Sur-Yvette, F-91191 (France); Lemaignan, C. [CEA Grenoble, 17 rue des Martyrs, Grenoble, F-38054 (France); Ramasubramanian, N. [ECCATEC Inc., 92 Deburn Drive, Toronto, Ontario (Canada)

    2006-07-01

    An understanding of the limiting stress level for crack initiation and propagation in a fuel cladding material is a fundamental requirement for the development of water reactor clad materials. Conventional tests, in use to evaluate fracture properties, are of limited help, because they are adapted from ASTM standards designed for thick materials, which differ significantly from fuel cladding geometry (small diameter thin-walled tubing). The Internal Conical Mandrel (ICM) test described here is designed to simulate the effect of fuel pellet diametrical increase on a cladding with an existing axial through-wall crack. It consists in forcing a cone, having a tapered increase in diameter, inside the Zircaloy cladding with an initial axial crack. The aim of this work is to quantify the crack initiation and propagation criteria for fuel cladding material. The crack propagation is monitored by a video system for obtaining crack extension {delta}a. A finite-element (FE) simulation of the ICM test is performed in order to derive J integrals. A node release technique is applied during the FE simulation for crack propagation and the J-resistance curves (J-{delta}a) are generated. This paper presents the test methodology, the J computation validation, and results for cold-worked stress relieved Zircaloy-4 cladding at 20 deg. and 300 deg. C and also for Al 7050-T7651 aluminum alloy tubing at 20 deg. C. (authors)

  3. Design optimization of multi-layer Silicon Carbide cladding for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@unm.edu [Department of Nuclear Engineering, University of New Mexico, MSC01 1120 1 University of New Mexico, Albuquerque, NM 87131 (United States); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2017-01-15

    Highlights: • SiC cladding designs are optimized with a multi-layer structural analysis code. • Layer radial thickness fraction that minimizes cladding fracture probability exists. • The demonstrated procedure is applicable for multi-layer SiC cladding design. • Duplex SiC with the inner composite fraction ∼0.4 is optimal in a reference case. • Increasing composite thermal conductivity markedly decreases SiC cladding stress. - Abstract: A parametric study that demonstrates a methodology for determining the optimum bilayer composition in a duplex SiC cladding is discussed. The structural performance of multi-layer SiC cladding design is significantly affected by radial thickness fraction of each layer. This study shows that there exists an optimal composite/monolith radial thickness fraction that minimizes failure probability for a duplex SiC cladding in steady-state operation. An exemplary reference case study shows that the duplex cladding with the inner composite fraction ∼0.4 and the outer CVD-SiC fraction ∼0.6 is found to be the optimal SiC cladding design for the current PWRs with the reference material choice for CVD-SiC and fiber reinforced composite. A marginal increase in the composite fraction from the presented optimal designs may lead to increase structural integrity by introducing some unquantified merits such as increasing damage tolerance. The major factors that affect the optimum cladding designs are temperature gradients and internal gas pressure. Clad wall thickness, thermal conductivity, and Weibull modulus are among the key design parameters/material properties.

  4. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  5. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  6. Development of austenitic stainless steel tubes for nuclear reactor cladding

    International Nuclear Information System (INIS)

    Padilha, A.F.; Ferreira, P.I.; Andrade, P.I.; Andrade, A.H.P. de; Meyerhof, S.; Mauricio, J.

    1984-01-01

    In the development of thin wall tubes for nuclear reactor fuel cladding applications, a great number of activities, related to the fabrication process as the qualification are involved. A test program was envisaged to verify the quality of seam welded stainless steel tubes (AISI 304), obtained as a result of an effort by the IPEN-CNEN/SP and the brazilian industry. The relevant aspects involved in the preparation of the tubes and some preliminary test results are presented. (Author) [pt

  7. Improving the performance of infrared reflective night curtains for warming field plots

    DEFF Research Database (Denmark)

    Bruhn, Dan; Larsen, Klaus S.; de Dato, Giovanbattista D.

    2013-01-01

    Infrared reflective (IR) curtains have been widely used to obtain passive nighttime warming in field ecosystem experiments in order to simulate and study climate warming effects on ecosystems. For any field installation with IR-reflective curtains in an ecosystem the achieved heating effect depen...

  8. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...

  9. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use...

  10. 40 CFR 62.15375 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15375 Section 62.15375 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15375 What are the emission limits for air curtain incinerators that burn 100 percent yard...

  11. 40 CFR 60.2973 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Qualification Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2973 What are the recordkeeping and reporting requirements for air curtain incinerators that burn only wood...

  12. 40 CFR 62.15380 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 62.15380 Section 62.15380 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 62.15380 How must I monitor opacity for air curtain incinerators that burn 100 percent yard...

  13. 40 CFR 60.1455 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1455 Section 60... Reconstruction is Commenced After June 6, 2001 Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1455 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

  14. 40 CFR 60.1920 - What are the emission limits for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1920 Section 60.1920 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1920 What are the emission limits for air curtain incinerators that burn 100 percent yard waste? If...

  15. 40 CFR 62.14825 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood... reporting requirements for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or... for air curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? (a...

  16. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  17. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  18. Clad Treatment in KARMA Code and Library

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-yeup; Lee, Hae-chan; Woo, Hae-seuk [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-05-15

    Zirconium is the main components in clad materials. The subgroup parameters of zirconium were generated with effective cross section which obtained by using flux distribution in clad region. It decreases absorption reaction rate differences with reference MCNP results. Use of composite nuclide is acceptable to increase efficiency but should be limited to specific target composition. Therefore, the use of the composite nuclide of Zircaloy-2 should be limited when HANA clad material is used for clad. Either using explicit components or generating composite nuclide for HANA is suggested. This paper investigates the clad analysis model for KARMA whether current method is applicable to HANA clad material.

  19. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  20. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  1. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  2. Curtain eruptions from Enceladus' south-polar terrain

    Science.gov (United States)

    Spitale, Joseph N.; Hurford, Terry A.; Rhoden, Alyssa R.; Berkson, Emily E.; Platts, Symeon S.

    2015-05-01

    Observations of the south pole of the Saturnian moon Enceladus revealed large rifts in the south-polar terrain, informally called `tiger stripes', named Alexandria, Baghdad, Cairo and Damascus Sulci. These fractures have been shown to be the sources of the observed jets of water vapour and icy particles and to exhibit higher temperatures than the surrounding terrain. Subsequent observations have focused on obtaining close-up imaging of this region to better characterize these emissions. Recent work examined those newer data sets and used triangulation of discrete jets to produce maps of jetting activity at various times. Here we show that much of the eruptive activity can be explained by broad, curtain-like eruptions. Optical illusions in the curtain eruptions resulting from a combination of viewing direction and local fracture geometry produce image features that were probably misinterpreted previously as discrete jets. We present maps of the total emission along the fractures, rather than just the jet-like component, for five times during an approximately one-year period in 2009 and 2010. An accurate picture of the style, timing and spatial distribution of the south-polar eruptions is crucial to evaluating theories for the mechanism controlling the eruptions.

  3. Investigating Wind-Driven Rain Intrusion in Walls with the CARWASh

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2013-01-01

    Wind-driven rain provides the primary external moisture load for exterior walls.Water absorption by the cladding, runoff, and penetration through the cladding or at details determine how a wall system performs. In this paper we describe a new laboratory facility that can create controlled outdoor and indoor conditions and use it to investigate the water...

  4. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  5. Stability of an unsupported multi-layer surfactant laden liquid curtain under gravity

    KAUST Repository

    Henry, D.

    2015-11-07

    The industrial process of curtain coating has long been an important method in coating applications, by which a thin liquid curtain is formed to impinge upon a moving substrate, due to its highly lucrative advantage of being able to coat multiple layers simultaneously. We investigate the linear stability of an unsupported two-layer liquid curtain, which has insoluble surfactants in both liquids, which are widely used in industry to increase the stability of the curtain. We formulate the governing equations, simplified by making a thin film approximation, from which we obtain equations describing the steady-state profiles. We then examine the response of the curtain to small perturbations about this steady state to identify conditions under which the curtain is unstable, finding the addition of surfactants stabilizes the curtain. Our results are then compared to experimental data, showing a favourable trend and thereby extending the works of Brown (J Fluid Mech 10:297–305, 1960) and Dyson et al. (J Eng Math 64:237–250, 2009).

  6. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain

    Science.gov (United States)

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.

    2015-12-01

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

  7. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  8. Experimental investigation of hysteresis in the break-up of liquid curtains

    KAUST Repository

    Marston, Jeremy

    2014-09-01

    Findings from an experimental investigation of the break-up of liquid curtains are reported, with the overall aim of examining stability windows for multi-layer liquid curtains composed of Newtonian fluids, where the properties of each layer can be kept constant or varied. For a single-layer curtain it is known that the minimum flow rate required for initial stability can be violated by carefully reducing the flow rate below this point, which defines a hysteresis region. However, when two or three layers are used to form a composite curtain, the hysteresis window can be considerably reduced depending on the experimental procedure used. Extensive quantitative measurements of this hysteresis region are provided alongside an examination of the influence of physical properties such as viscosity and surface tension. The origins of curtain break-up for two different geometries are analysed; first where the curtain width remains constant, pinned by straight edge guides; and second where the curtain is tapered by angled edge guides. For both cases, the rupture speed is measured, which appears to be consistent with the Taylor-Culick velocity. Observations of the typical linearly spaced jets which form after the break-up has transpired and the periodicity of these jets are compared to the Rayleigh-Taylor wavelength and previous experimental measurements. Furthermore, the curtain stability criterion originally developed by Brown (1961), summarised in terms of a Weber number, has recently been extended to multi-layer curtains by Dyson et al. (2009); thus this report provides the first experimental measurements which puts this to the test. Ultimately, it is found that only the most viscous and polymer-based liquids violate this criterion. © 2014 Elsevier Ltd.

  9. FeCrAl/Zr dual layer fuel cladding for improved safety margin under accident scenario

    International Nuclear Information System (INIS)

    Park, D.J.; Park, J.H.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H.

    2014-01-01

    For application of advanced steel as a cladding material in light water reactor (LWR), FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. To optimize HIP condition for joining both FeCrAl and Zr alloys, HIP was carried out under various temperature conditions. Tensile test and 3-point bend test performed for measuring mechanical properties of HIPed sample. To better understand microstructural characteristics in interface region between two alloys, SEM and TEM study were conducted by using HIPed sample with different process conditions. Based on this optimization study and analyzed results, optimized HIP condition was determined and FeCrAl/Zr dual layer fuel cladding having same wall thickness with current LWR fuel cladding was manufactured. Simulated loss-of-coolant accident test was carried out using FeCrAl/Zr dual layer cladding sample and fuel integrity was measured by mechanical test. (authors)

  10. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  11. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  12. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    Iglesias, F.C.; Lewis, B.J.; Desgranges, C.; Toffolon, C.

    2015-01-01

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  13. Development of high performance cladding

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi

    2003-01-01

    The developments of superior next-generation light water reactor are requested on the basis of general view points, such as improvement of safety, economics, reduction of radiation waste and effective utilization of plutonium, until 2030 year in which conventional reactor plants should be renovate. Improvements of stainless steel cladding for conventional high burn-up reactor to more than 100 GWd/t, developments of manufacturing technology for reduced moderation-light water reactor (RMWR) of breeding ratio beyond 1.0 and researches of water-materials interaction on super critical pressure-water cooled reactor are carried out in Japan Atomic Energy Research Institute. Stable austenite stainless steel has been selected for fuel element cladding of advanced boiling water reactor (ABWR). The austenite stain less has the superiority for anti-irradiation properties, corrosion resistance and mechanical strength. A hard spectrum of neutron energy up above 0.1 MeV takes place in core of the reduced moderation-light water reactor, as liquid metal-fast breeding reactor (LMFBR). High performance cladding for the RMWR fuel elements is required to get anti-irradiation properties, corrosion resistance and mechanical strength also. Slow strain rate test (SSRT) of SUS 304 and SUS 316 are carried out for studying stress corrosion cracking (SCC). Irradiation tests in LMFBR are intended to obtain irradiation data for damaged quantity of the cladding materials. (M. Suetake)

  14. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  15. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  16. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  17. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  18. Utilizing adequate intake line curtain air quantities to maintain respirable dust compliance

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, M.J.; Tomko, D.M.; Rumbaugh, V.E. [United States Dept. of Labor, Mine Safety and Health Administration, Pittsburgh, PA (United States). Safety and Health Technical Center

    2010-07-01

    Mine operators are obligated to ensure the effectiveness of their dust controls and implement practices to minimize the generation of dust in their mines. The 2 main types of face ventilation are blowing and exhaust ventilation. With blowing face ventilation, intake air is directed behind a line curtain or through ventilation tubing and then discharged from the end of the line curtain toward the working face. This paper presented specific information for mine operators regarding where and when exhausting or blowing ventilation will be used. Mine operators should establish the line curtain for directing the face ventilating air as a specific distance from the point of deepest penetration of the face. The location of curtains where roof bolting is being performed should also be specified. The distance from the face is important to the effectiveness of ventilation. 4 refs., 3 tabs., 2 figs.

  19. Microbiological contamination of cubicle curtains in an out-patient podiatry clinic

    Directory of Open Access Journals (Sweden)

    O'Neil Bill

    2010-11-01

    Full Text Available Abstract Background Exposure to potential pathogens on contaminated healthcare garments and curtains can occur through direct or indirect contact. This study aimed to identify the microorganisms present on podiatry clinic curtains and measure the contamination pre and post a standard hospital laundry process. Method Baseline swabs were taken to determine colony counts present on cubical curtains before laundering. Curtains were swabbed again immediately after, one and three weeks post laundering. Total colony counts were calculated and compared to baseline, with identification of micro-organisms. Results Total colony counts increased very slightly by 3% immediately after laundry, which was not statistically significant, and declined significantly (p = 0.0002 by 56% one-week post laundry. Three weeks post laundry colony counts had increased by 16%; although clinically relevant, this was not statistically significant. The two most frequent microorganisms present throughout were Coagulase Negative Staphylococcus and Micrococcus species. Laundering was not completely effective, as both species demonstrated no significant change following laundry. Conclusion This work suggests current laundry procedures may not be 100% effective in killing all microorganisms found on curtains, although a delayed decrease in total colony counts was evident. Cubicle curtains may act as a reservoir for microorganisms creating potential for cross contamination. This highlights the need for additional cleaning methods to decrease the risk of cross infection and the importance of maintaining good hand hygiene.

  20. Design, construction and performance of the Oldman River Dam grout curtain

    Energy Technology Data Exchange (ETDEWEB)

    Hartmaier, H.; Davachi, M. [Acres International Ltd., Calgary, AB (Canada); Dharmawardene, W. [Alberta Environment, Edmonton, AB (Canada); Sinclair, B. [Acres International Ltd., Niagara Falls, ON (Canada)

    2002-07-01

    The 76 m high Oldman River Dam was constructed between 1986 and 1991 near Pincher Creek, Alberta to provide flow regulation and on-stream storage of water for multi-purpose use and irrigation services as well as hydroelectric development. The dam's main structure includes an earth- and rockfill dam, a low earthfill dyke 1500 m long, twin diversion/low level outlet tunnels, a gated spillways structure, and 2 drainage tunnels. A 1.3 km long, three-line grout curtain up to 100 m deep extends below the foundation of the dam and spillway. The grout curtain was built in undeformed Paleocene sedimentary rocks affected by stress relief due to river valley erosion. 80 per cent of the grout consumption was from bedrock structural features. Piezometers, slope indicators and flow measurement weirs were installed in the dam and abutment areas both during and after construction to monitor the performance of the grout curtain. Instrument readings indicate that the grout curtain is successfully preventing the transmission of reservoir pressures to the foundation beneath the downstream shell of the dam. The piezometric pressures downstream of the grout curtain are the same as they were in the foundation before impounding. A small amount of seepage has appeared at the end of the grout curtain at the eastern end of the abutment of the spillway but it is not considered to be significant. 3 refs., 4 figs.

  1. Design of automatic curtain controlled by wireless based on single chip 51 microcomputer

    Science.gov (United States)

    Han, Dafeng; Chen, Xiaoning

    2017-08-01

    In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.

  2. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  3. CLAD DEGRADATION - FEPS SCREENING ARGUMENTS

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the screening of the clad degradation features, events, and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment-License Application (TSPA-LA). This report also addresses the effect of certain FEPs on both the cladding and the commercial spent nuclear fuel (CSNF), DOE-owned spent nuclear fuel (DSNF), and defense high-level waste (DHLW) waste forms, as appropriate to address the effects on multiple materials and both components (FEPs 2.1.09.09.0A, 2.1.09.11.0A, 2.1.11.05.0A, 2.1.12.02.0A, and 2.1.12.03.0A). These FEPs are expected to affect the repository performance during the postclosure regulatory period of 10,000 years after permanent closure. Table 1-1 provides the list of cladding FEPs, including their screening decisions (include or exclude). The primary purpose of this report is to identify and document the analysis, screening decision, and TSPA-LA disposition (for included FEPs) or screening argument (for excluded FEPs) for these FEPs related to clad degradation. In some cases, where a FEP covers multiple technical areas and is shared with other FEP reports, this report may provide only a partial technical basis for the screening of the FEP. The full technical basis for shared FEPs is addressed collectively by the sharing FEP reports. The screening decisions and associated TSPA-LA dispositions or screening arguments from all of the FEP reports are cataloged in a project-specific FEPs database

  4. Deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail.

  5. The deformation, oxidation and embrittlement of PWB fuel cladding in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Parsons, P.D.; Hindle, E.D.; Mann, C.A.

    1986-09-01

    The scope of this report is limited to the oxidation, embrittlement and deformation of PWB fuel in a loss of coolant accident in which the emergency core coolant systems operate in accordance with the design, ie accidents within the design basis of the plant. A brief description is given of the thermal hydraulic events during large and small breaks of the primary circuit, followed by the correct functioning and remedial action of the emergency core cooling systems. The possible damage to the fuel cladding during these events is also described. The basic process of oxidation of zircaloy-4 fuel cladding by steam, and the reaction kinetics of the oxidation are reviewed in detail. Variables having a possible influence on the oxidation kinetics are also considered. The embrittlement of zircaloy-4 cladding by oxidation is also reviewed in detail. It is related to fracture during the thermal shock of rewetting or by the ambient impact forces as a result of post-accident fuel handling. Criteria based both on total oxidation and on the detailed distribution of oxygen through the oxidised cladding wall are considered. The published computer codes for the calculation of oxygen concentration are reviewed in terms of the model employed and the limitations apparent in these models when calculating oxygen distribution in cladding in the actual conditions of a loss of coolant accident. The factors controlling the deformation and rupture of cladding in a loss of coolant accident are reviewed in detail. (author)

  6. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  7. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  8. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  9. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  10. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  11. Laser surface cladding:a literature survey

    OpenAIRE

    Gedda, Hans

    2000-01-01

    This work consists of a literature survey of a laser surface cladding in order to investigate techniques to improve the cladding rate for the process. The high local heat input caused by the high power density of the laser generates stresses and the process is consider as slow when large areas are processed. To avoid these disadvantages the laser cladding process velocity can be increased three or four times by use of preheated wire instead of the powder delivery system. If laser cladding is ...

  12. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  13. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  14. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  15. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  16. A Cost–Benefit Analysis to Assess the Effectiveness of Frontal Center Curtain Airbag

    Directory of Open Access Journals (Sweden)

    Bo Kyeong Lee

    2017-09-01

    Full Text Available Several new varieties of airbags are under consideration for development. However, their commercialization decision must be backed by a positive Cost–Benefit Analysis (CBA outcome. In this study, we propose a CBA framework for the frontal center curtain airbag, a newly designed safety system intended to reduce the injury risk of rear-seat passengers. The proposed CBA covers not only economic benefits of the producer but also the effectiveness in sustainable reduction of the fatal and injury rate. In this context, with accumulated field data on road traffic accidents, a forecasting method reflecting the reduced casualties and the market share of vehicle sales associated with frontal center curtain airbag is utilized. Our results suggest that the use of frontal center curtain airbags helps to reduce the number of casualties with a Maximum Abbreviated Injury Scale (MAIS of 3 or above by 87.4%. Furthermore, both the initial market penetration rate and price of the frontal center curtain airbag significantly influence its socioeconomic benefits. By evaluating the effectiveness of the frontal center curtain airbag, our study can contribute to the decision making for its commercialization.

  17. The cost of routine Aedes aegypti control and of insecticide-treated curtain implementation.

    Science.gov (United States)

    Baly, Alberto; Flessa, Steffen; Cote, Marilys; Thiramanus, Thirapong; Vanlerberghe, Veerle; Villegas, Elci; Jirarojwatana, Somchai; Van der Stuyft, Patrick

    2011-05-01

    Insecticide-treated curtains (ITCs) are promoted for controlling the Dengue vector Aedes aegypti. We assessed the cost of the routine Aedes control program (RACP) and the cost of ITC implementation through the RACP and health committees in Venezuela and through health volunteers in Thailand. The yearly cost of the RACP per household amounted to US$2.14 and $1.89, respectively. The ITC implementation cost over three times more, depending on the channel used. In Venezuela the RACP was the most efficient implementation-channel. It spent US$1.90 (95% confidence interval [CI]: 1.83; 1.97) per curtain distributed, of which 76.9% for the curtain itself. Implementation by health committees cost significantly (P = 0.02) more: US$2.32 (95% CI: 1.93; 2.61) of which 63% for the curtain. For ITC implementation to be at least as cost-effective as the RACP, at equal effectiveness and actual ITC prices, the attained curtain coverage and the adulticiding effect should last for 3 years.

  18. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  19. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  20. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  1. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  2. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  3. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  4. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  5. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  6. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  7. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  8. 40 CFR 62.15385 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 62.15385 Section 62... Incinerators That Burn 100 Percent Yard Waste § 62.15385 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  9. 40 CFR 60.1930 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn 100 percent yard waste? 60.1930 Section 60... Incinerators That Burn 100 Percent Yard Waste § 60.1930 What are the recordkeeping and reporting requirements for air curtain incinerators that burn 100 percent yard waste? (a) Provide a notice of construction...

  10. Water Curtain System Pre-design for Crude Oil Storage URCs : A Numerical Modeling and Genetic Programming Approach

    NARCIS (Netherlands)

    Ghotbi Ravandi, Ebrahim; Rahmannejad, Reza; Karimi-Nasab, Saeed; Sarrafi, Amir; Raoof, Amir

    In this paper the main criteria of the water curtain system for unlined rock caverns (URCs) is described. By the application of numerical modeling and genetic programming (GP), a method for water curtain system pre-design for Iranian crude oil storage URCs (common dimension worldwide) is presented.

  11. New options for the cold storage air curtain in the food sector; Koelruimte-luchtgordijn biedt nieuwe mogelijkheden

    Energy Technology Data Exchange (ETDEWEB)

    Bruins, K. [Biddle, Kootstertille (Netherlands)

    1997-10-01

    Based on a newly developed so-called multi air jet technology air curtains in front of cold spaces prevent warm air from infiltrating the cold space. The principles and performance of the cold space air curtain are briefly outlined. 2 figs.

  12. 40 CFR 62.14815 - What are the emission limitations for air curtain incinerators that burn 100 percent wood wastes...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn 100 percent wood wastes, clean lumber and/or yard waste? 62.14815... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  13. 40 CFR 60.3066 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3066 Section 60... Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3066 What are the...

  14. 40 CFR 60.3068 - What are the recordkeeping and reporting requirements for air curtain incinerators that burn only...

    Science.gov (United States)

    2010-07-01

    ... reporting requirements for air curtain incinerators that burn only wood waste, clean lumber, and yard waste... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3068...

  15. 40 CFR 60.2971 - What are the emission limitations for air curtain incinerators that burn only wood waste, clean...

    Science.gov (United States)

    2010-07-01

    ... air curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2971 Section 60... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.2971 What are the emission limitations for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Within...

  16. SIFAIL: a subprogram to calculate cladding deformation and damage for fast reactor fuel pins

    International Nuclear Information System (INIS)

    Wilson, D.R.; Dutt, D.S.

    1979-05-01

    SIFAIL is a series of subroutines used in conjunction with the thermal performance models of SIEX to assist in the evaluation of mechanical performance of mixed uranium plutonium oxide fuel pins. Cladding deformations due to swelling and creep are calculated. These have been compared to post-irradiation data from fuel pin tests in EBR-II. Several fuel pin cladding failure criteria (cumulative damage, total strain, and thermal creep strain) are evaluated to provide the fuel pin designer with a basis to select design parameters. SIFAIL allows the user many property options for cladding material. Code input is limited to geometric and environmental parameters, with a consistent set of material properties provided by the code. The simplified, yet adequate, thin wall stress--strain calculations provide a reliable estimate of fuel pin mechanical performance, while requiring a small amount of core storage and computer running time

  17. Modification of OCA-I for application to a reactor pressure vessel with cladding on the inner surface

    International Nuclear Information System (INIS)

    Sauter, A.; Cheverton, R.D.; Iskander, S.K.

    1983-01-01

    The computer code OCA-I calculates the temperature distribution through the walls of a cylinder during a thermal transient and then performs a two-dimensional linear-elastic fracture-mechanics analysis to obtain stress-intensity factors for long surface flaws, considering both pressure and thermal loads. The code has been particularly useful in evaluating flaw behavior in reactor pressure vessels during overcooling accidents, but it has not previously treated the stainless steel cladding on the inner surface of the vessel as a discrete region. Although the cladding is quite thin compared with the base material, the large difference in thermal conductivity and coefficient of thermal expansion between the two materials results in a significant effect of the cladding on stress-intensity factors for surface cracks. Thus, the cladding was recently included as a discrete region in OCA-I

  18. Orthogonal design on range hood with air curtain and its effects on kitchen environment.

    Science.gov (United States)

    Liu, Xiaomin; Wang, Xing; Xi, Guang

    2014-01-01

    Conventional range hoods cannot effectively prevent the oil fumes containing cooking-induced harmful material from escaping into the kitchen Air curtains and guide plates have been used in range hoods to reduce the escape of airborne emissions and heat, thereby improving the kitchen environment and the cook's degree of comfort. In this article, numerical simulations are used to study the effects of the jet velocity of an air curtain, the jet angle of the air curtain, the width of the jet slot, the area of the guide plate, and the exhaust rate of the range hood on the perceived temperature, the perceived concentration of oil fumes, the release temperature of oil fumes, and the concentration of escaped oil fumes in a kitchen. The orthogonal experiment results show that the exhaust rate of the range hood is the main factor influencing the fumes concentration and the temperature distribution in the kitchen. For the range hood examined in the present study, the optimum values of the exhaust rate, the jet velocity of the air curtain, the jet angle of the air curtain, the width of the jet slot, and the area of the guide plate are 10.5 m(3)/min, 1.5 m/s, -5°, 4 mm, and 0.22 m(2), respectively, based on the results of the parametric study. In addition, the velocity field, temperature field, and oil fumes concentration field in the kitchen using the proposed range hood with the air curtain and guide plate are analyzed for those parameters. The study's results provide significant information needed for improving the kitchen environment.

  19. Bubble Curtains: Herbivore Exclusion Devices for Ecology and Restoration of Marine Ecosystems?

    Directory of Open Access Journals (Sweden)

    Scott Bennett

    2017-09-01

    Full Text Available Herbivorous fishes play a critical role in maintaining or disrupting the ecological resilience of many kelp forests, coral reefs and seagrass ecosystems, worldwide. The increasing rate and scale of benthic habitat loss under global change has magnified the importance of herbivores and highlights the need to study marine herbivory at ecologically relevant scales. Currently, underwater herbivore exclusions (or inclusions have been restricted to small scale experimental plots, in large part due to the challenges of designing structures that can withstand the physical forces of waves and currents, without drastically altering the physical environment inside the exclusion area. We tested the ability of bubble curtains to deter herbivorous fishes from feeding on seaweeds as an alternative to the use of rigid exclusion cages. Kelps (Ecklonia radiata were transplanted onto reefs with high browsing herbivore pressure into either unprotected plots, exclusion cages or plots protected by bubble curtains of 0.785 m2 and 3.14 m2. Remote underwater video was used to compare the behavioral response of fishes to kelps protected and unprotected by bubble curtains. Kelp biomass loss was significantly lower inside the bubble curtains compared to unprotected kelps and did not differ from kelp loss rates in traditional exclusion cages. Consistent with this finding, no herbivorous fishes were observed entering into the bubble curtain at any point during the experiment. In contrast, fish bite rates on unprotected kelps were 1,621 ± 702 bites h−1 (mean ± SE. Our study provides initial evidence that bubble curtains can exclude herbivorous fishes, paving the way for future studies to examine their application at larger spatial and temporal scales, beyond what has been previously feasible using traditional exclusion cages.

  20. The domestic veil: exploring the net curtain through the uncanny and the gothic

    OpenAIRE

    Quarini, Carol

    2015-01-01

    This research aims to develop original creative practice, using the net curtain to reconsider the domestic, through the lenses of the uncanny and the gothic. The net curtain, hanging in the liminal space between the public and the private, is used to embody Freud’s 1919 definition of the uncanny, as the point of slippage between the homely and the unhomely. Also central to this research are ideas about the gothic and gendered domesticity, in particular, the gothic fiction of the mid-nineteent...

  1. A new intelligent curtain control system based on 51 single chip microcomputer

    Science.gov (United States)

    Sun, Tuan; Wang, Yanhua; Wu, Mengmeng

    2017-04-01

    This paper uses 51 (single chip microcomputer) SCM as the operation and data processing center. According to the change of sunshine intensity and ambient temperature, a new type of intelligent curtain control system is designed by adopting photosensitive element and temperature sensor. In addition, the design also has a manual control mode. In the rain, when the light intensity is weak, the open position of the curtain can be set by the user. The system can maximize the user to provide user-friendly operation and comfortable living environment. The system can be applied to home or office environment, with a wide range of applications and simple operation and so on.

  2. Air curtain technology improves working conditions with open hall doors; Luftschleiertechnik verbessert Arbeitsbedingungen bei geoeffneten Hallentoren

    Energy Technology Data Exchange (ETDEWEB)

    Multhauf, R. [Biddle GmbH, Koeln (Germany)

    1998-11-01

    Hall doors are indispensable for short logistic distances of product or raw materials management. Air curtain systems make it possible to keep doors open independent of the weather and season. The heating energy requiremens of modern air curtain systems has been reduced significantly. (orig.) [Deutsch] Hallentore sind fuer moeglichst kurze Logistikwege der Waren oder Rohstoffe im industriellen Betrieb unvermeidlich. Luftschleieranlagen ermoeglichen offene Tore unabhaengig von der Witterung und der Jahreszeit. Die zur Betreibung der Luftschleieranlagen notwendige Heizenergie wurde durch neue Entwicklungen stark reduziert. (orig.)

  3. The use of water curtains to protect firemen in case of heavy gas dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Bara, A.; Dusserre, G. [Ecole Nationale Superieure des Techniques Industrielles et des Mines d`Ales (France). Lab. Genie de l`Environnement Industriel

    1997-05-01

    The aim of this paper is to study the effectiveness of the water curtains used by firemen in France to protect people fighting chemical spillage. The effectiveness of these barriers is a reduction in concentration behind it by a factor of 10 at a distance of approximately 13 m and a factor of 3 at a distance of approximately 20 m in the case of ammonia releases. The results of similar studies of a wide variety of toxic gases will provide a quick and reliable tool for firefighters, which will help to define at what distance to place the curtain and predict the concentrations behind it. (UK)

  4. Experimental investigations of an air curtain device subjected to external perturbations

    International Nuclear Information System (INIS)

    Havet, M.; Rouaud, O.; Solliec, C.

    2003-01-01

    Although plane air jets are often used as dynamic barriers to separate two environments, only a few works have explored their sensitivity to perturbations. We investigated the influence of sharp changes of pressure on the flow field of a device designed to avoid air-borne contamination. Laser tomography and tracer gas experiments clearly indicate that the air curtain is strongly sensitive to perturbations such as draughts. The results highlight that the control of air curtains used in open protection devices should be further investigated

  5. Fracture assessment of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1996-01-01

    Fracture analysis was applied to full-thickness clad beam specimens containing shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV) at beginning of life. The beam specimens were fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include gradients of material properties and residual stresses due to welding and cladding applications. Fracture toughness estimates were obtained from load vs load-line displacement and load vs crack-mouth-opening displacement data using finite-element methods and estimation schemes based on the η-factor method. One of the beams experienced a significant amount of precleavage stable ductile tearing. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models. Fracture toughness results from the clad beam specimens were compared with other deep- and shallow-crack single-edge notch bend (SENB) data generated previously from A533 Grade B plate material. Range of scatter for the clad beam data is consistent with that from the laboratory-scale SENB specimens tested at the same temperature

  6. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  7. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...

  8. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, H. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-06-01

    This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution that provides insulation to the interior of the wall assembly with the use of a double stud wall. The guide describes two approaches to retrofitting the existing the walls: one involving replacement of the existing cladding, and the other that leaves the existing cladding in place. It discusses the design principles related to the use of various insulation types, and provides strategies and procedures for implementing the double stud wall retrofit. It also evaluates important moisture-related and indoor air quality measures that need to be implemented to achieve a durable, high performance wall.

  9. Fuel cladding mechanical interaction during power ramps

    International Nuclear Information System (INIS)

    Guerin, Y.

    1985-01-01

    Mechanical interaction between fuel and cladding may occur as a consequence of two types of phenomenon: i) fuel swelling especially at levels of caesium accumulation, and ii) thermal differential expansion during power changes. Slow overpower ramps which may occur during incidental events are of course one of the circumstances responsible for this second type of fuel cladding mechanical interaction (FCMI). Experiments and analysis of this problem that have been done at C.E.A. allow to determine the main parameters which will fix the level of stress and the risk of damage induced by the fuel in the cladding during overpower transients

  10. Large-scale thermal-shock experiments with clad and unclad steel cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1992-01-01

    Flaw behavior trends associated with pressurized-thermal-shock (PTS) loading of pressurized-water-reactor pressure vessels have been under investigation at the Oak Ridge National Laboratory for nearly 20 years. During that time, twelve thermal-shock experiments with thick-walled (152 mm) steel cylinders were conducted as a part of the investigations. The first eight experiments were conducted with unclad cylinders initially containing shallow (8--19 mm) two-dimensional and semicircular inner-surface flaws. These experiments demonstrated, in good agreement with linear elastic fracture mechanics, crack initiation and arrest, a series of initiation/arrest events with deep penetration of the wall, long crack jumps, arrest with the stress intensity factor (K I ) increasing with crack depth, extensive surface extension of an initially short and shallow (semicircular) flaw, and warm prestressing with K I ≤ 0. The remaining four experiments were conducted with clad cylinders containing initially shallow (19--24 mm) semielliptical subclad and surface flaws at the inner surface. In the first of these experiments one of six equally spaced (60 degrees) open-quotes identicalclose quotes subclad flaws extended nearly the length of the cylinder (1,220 mm) beneath the cladding (no crack extension into the cladding) and nearly 50% of the wall, radially. For the final experiment, four of the semielliptical subclad flaws that had not propagated previously were converted to surface flaws, and they experienced extensive extension beneath the cladding with no cracking of the cladding. Information from this series of thermal-shock experiments is being used in the evaluation of the PTS issue

  11. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  12. 地铁深基坑工程抗突涌准幕灌浆技术研究%Study on Curtain Grouting Technology for Preventing Water Gushing in Works of Metro Deep Foundation Pit

    Institute of Scientific and Technical Information of China (English)

    郭宏宇

    2012-01-01

    杭州某地铁深基坑工程由于地连墙在圆砾层中成槽困难,使得地下连续墙(以下简称“地连墙”)插入深度减小,不能满足承压水抗突涌稳定性要求,基于此,依托该地铁深基坑实例,通过现场灌浆对比试验,确定帷幕灌浆参数,并按此参数设置帷幕灌浆,填充地连墙未隔断的圆砾层,与地连墙搭接形成封闭的阻水帷幕,解决承压水抗突涌问题。研究表明:圆砾层的孔隙度大、渗透性好,可进行灌浆处理;帷幕灌浆能够节省工期,节约造价,有效地解决圆砾层的承压水抗突涌问题。%Some difficulties occurred in trough work in the round gravel layer for metro deep foundation pit with floor- wall transition make the floor-wall insert depth reduced, therefore it can not meet the requirements on the stability under the pressure of water gushing. Based on these and by taking a metro deep fbundation pit as an instance, curtain grouting parameters are determined after the cornparison tests on the field grouting. The parameter is set to guide curtain grouting, fill the floor-wall no- separated gravel layer, and to form a closed water-blocking curtain of the floor-wall overlap to solve the problems occurred in pressure water to stop water gushing. The study shows that the satisfactory round gravel porosity and permeability help grouting treatment; and curtain grouting shortens construction duration with less cost, effectively providing gravel layers some solutions on pressure water preventing-gushing issues.

  13. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  14. MODELLING OF NUCLEAR FUEL CLADDING TUBES CORROSION

    Directory of Open Access Journals (Sweden)

    Miroslav Cech

    2016-12-01

    Full Text Available This paper describes materials made of zirconium-based alloys used for nuclear fuel cladding fabrication. It is focused on corrosion problems their theoretical description and modeling in nuclear engineering.

  15. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  16. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  17. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  18. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  19. CREEP STRAIN CORRELATION FOR IRRADIATED CLADDING

    International Nuclear Information System (INIS)

    P. Macheret

    2001-01-01

    In an attempt to predict the creep deformation of spent nuclear fuel cladding under the repository conditions, different correlations have been developed. One of them, which will be referred to as Murty's correlation in the following, and whose expression is given in Henningson (1998), was developed on the basis of experimental points related to unirradiated Zircaloy cladding (Henningson 1998, p. 56). The objective of this calculation is to adapt Murty's correlation to experimental points pertaining to irradiated Zircaloy cladding. The scope of the calculation is provided by the range of experimental parameters characterized by Zircaloy cladding temperature between 292 C and 420 C, hoop stress between 50 and 630 MPa, and test time extending to 8000 h. As for the burnup of the experimental samples, it ranges between 0.478 and 64 MWd/kgU (i.e., megawatt day per kilogram of uranium), but this is not a parameter of the adapted correlation

  20. Protection against head injuries should not be optional: a case for mandatory installation of side-curtain air bags.

    Science.gov (United States)

    Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid

    2010-10-01

    More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Numerical study on the effect of width of single curtain on the performance of Savonius wind turbine

    Directory of Open Access Journals (Sweden)

    Yuwono Triyogi

    2018-01-01

    Full Text Available This is a preliminary results of the flow around the Savonius wind turbine with installing curtain plate in front of the returning blade turbine. It was investigated numerically in a uniform flow at Reynolds number of 30,000 and 90,000. The velocity vector and pressure distribution around the turbine were simulate by varying the width of curtain plate relative to the diameter of rotor blade (S/D of = 1.00, 1.02, 1.03, 1.15, 1.41, and 2.00, using STAR CCM++ Software. The k-ɛ realizable as turbulence model was used to visualize the flow phenomena occurred around the turbine, and where in this simulation, the rotor turbine was set static. The results show that it seems the width of the curtain installed in front of the returning blade of the turbine plays an important role in the performance of the turbine. In general, the installing of the curtain in front of the returning blade of the turbine is more effective to improve the turbine performance. This is not necessarily, but depends on the width of the curtain and the number of Reynolds (Re. For the width of the large curtain of S/D = 2 at Re = 90,000, the performance of the turbine is estimated lower than when the turbine without the curtain.

  2. Comparison of heat transfer and soil impacts of air curtain burner burning and slash pile burning

    Science.gov (United States)

    Woongsoon Jang; Deborah S. Page-Dumroese; Han-Sup Han

    2017-01-01

    We measured soil heating and subsequent changes in soil properties between two forest residue disposal methods: slash pile burning (SPB) and air curtain burner (ACB). The ACB consumes fuels more efficiently and safely via blowing air into a burning container. Five burning trials with different fuel sizes were implemented in northern California, USA. Soil temperature...

  3. Optimization of air-curtain sealing efficiency with respect to heat transfer in naturally ventilated buildings

    NARCIS (Netherlands)

    Khayrullina, A.; Hooff, van T.A.J.; Blocken, B.J.E.; van Heijst, G.J.F.; Sun, Y.; Pei, J.; Zhao, X

    This study presents results of coupled 3D steady Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations of an isolated naturally-ventilated building with the application of an air curtain to prevent heat transfer across a doorway. The considered parameters include air

  4. Boron concentration evolution in the temporary curtains of a BWR reactor. Burcur code

    International Nuclear Information System (INIS)

    Cano Aguado, M.; Perlado Martin, J.M.; Minguez Torres, E.

    1977-01-01

    The theoretical model and the user's guide of the code Burcur is included. This code analyzes the burnable poison concentration of the temporary curtains as a function of time, for BWR reactors of the 7 x 7 design. The computing time being reasonably short, the number of burnup steps is as high as necessary.(author) [es

  5. 40 CFR 60.3062 - What is an air curtain incinerator?

    Science.gov (United States)

    2010-07-01

    ... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3062 What is... this subpart. (1) 100 percent wood waste. (2) 100 percent clean lumber. (3) 100 percent yard waste. (4...

  6. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  7. Stress analysis and collapse time prediction of nuclear fuel cladding tube with wear scar

    International Nuclear Information System (INIS)

    Lee, J. S.; Kim, O. H.; Kim, H. K.; Hu, Y. H.; Kim, J. I.; Kim, K. T.

    2004-01-01

    In this analysis, the stress and collapse time analysis models for nuclear fuel rod with the fretting wear scar were developed in order to evaluate the effects of the wear depth on the integrity of nuclear fuel rod. The stress analysis result shows that the nuclear fuel rod with approximately 60% deep wear scar of the clad wall thickness, meets the allowable stress criteria and the collapse time analysis indicates that the fuel rod with less than roughly 56% deep wear scar of the clad wall thickness has longer collapse time than the expected fuel life-time. The both stress and collapse time results are evaluated to be very reasonable on considering the comparison with the outputs of existing design code for the simple model. However, the developed analysis models and the results will be confirmed by the tests

  8. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  9. Curtain color and lighting program in broiler production: I - general performance

    Directory of Open Access Journals (Sweden)

    Valéria Maria Nascimento Abreu

    2011-09-01

    Full Text Available The objective of the present study was to evaluate mortality and performance, darkling beetle population (Alphitobius diaperinus, light intensity, electrical energy consumption and economic efficiency of broilers reared under two lighting programs (nearly continuous or intermittent and two curtain colors (yellow or blue. The experiment was conducted between June, 2004 and May, 2005. Six flocks were sequentially housed in four 12 × 10 m broiler houses divided into 4 pens with 200 birds each. Litter was reused six times or until flock 6. Body weight and feed conversion were determined on days 21, 35, and 42 of each flock. Mortality was recorded daily. Electrical energy consumption was recorded at the end of the grow-out of each flock (every 42 days. A completely randomized design in a 6 × 2 × 2 factorial arrangement (flocks, lighting programs, curtains with four replicates per treatment was applied. Broilers reared in houses with yellow curtains and under nearly continuous lighting programs presented the best feed conversion ratio and the highest body weight. Nearly continuous lighting programs resulted in 1.48 times more sudden deaths and 1.34 times higher general mortality when compared with intermittent lighting programs. Electrical energy consumption was 2.12 times higher in nearly continuous lighting programs in relation to intermittent lighting programs. The presence of darkling beetles was higher in broiler houses with blue curtains and intermittent lighting program. The economic analysis showed the feasibility of using a mixed system, with intermittent light program in winter and spring and nearly continuous lighting program in the summer and autumn, both in broiler houses with yellow curtains.

  10. Treatment of cladding hulls by the HIPOW process

    International Nuclear Information System (INIS)

    Larker, H.T.; Tegman, R.

    1981-01-01

    The conditions for densifying and bonding Zircaloy cladding hulls from spent LWR fuel to blocks by the HIPOW (hot isostatic pressing of waste) process have been studied. Fully dense and mechanically strong blocks of Zircaloy can be made without additives at temperatures around 1000 0 C. A volume reduction of about seven times and surface area reduction of more than 300 times, compared to typical loose-filled cladding hulls remaining after the chop-leach operations in a reprocessing plant, can be obtained. A study of a possible process for industrial scale has been made. Handling under water can prevent any fire hazard in the preparation sequence. The use of a special hermetically sealed double-wall metal container encasing the hulls during the densification in the hot isostatic press virtually eliminates the problem of lasting contamination of this equipment, thus greatly simplifying service and maintenance. One hot isostatic press can serve a reprocessing line with an LWR fuel capacity of 800 tons/year. Fines (residues) from fuel dissolution and alpha-contaminated ashes from incinerated organic materials in the plant may also be incorporated in the Zircaloy blocks. Tritium can quantitatively be contained in these blocks

  11. Thermal-shock experiments with flawed clad cylinders

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Bryson, J.W.; Alexander, D.J.

    1989-01-01

    The life expectancy of LWR pressure vessels is influenced by a reduction in fracture toughness that is the result of radiation damage. As the fracture toughness decreases, the probability of propagation of preexisting flaws (sharp, crack-like defects) in the wall of the vessel increases. The probability of propagation is also influenced by the type of loading condition and the type of flaws that might exist. A loading condition of particular concern is referred to as pressurized thermal shock (PTS), and a flaw of particular concern for PTS loading conditions is a shallow surface flaw. A sudden cooling (thermal shock) of the inner surface of the vessel results in relatively high tensile stresses and relatively low fracture toughness at the inner surface. In addition, the attenuation of the fast-neutron fluence also results in relatively low fracture toughness at the inner surface. Under some circumstances, this combination of high stress and low toughness at the inner surface makes it possible for very shallow surface flaws to propagate. The PTS issue has been under investigation for quite some time, but thus far possible beneficial effects, other than thermal resistance, of the cladding on the inner surface of the vessel have not been included in the analysis of flaw behavior. This document discusses this effect of cladding on surface flaws and crack propagation

  12. Structural, mechanical and corrosion studies of Cr-rich inclusions in 152 cladding of dissimilar metal weld joint

    Science.gov (United States)

    Li, Yifeng; Wang, Jianqiu; Han, En-Hou; Yang, Chengdong

    2018-01-01

    Cr-rich inclusions were discovered in 152 cladding at the inner wall of domestic dissimilar metal weld joint, and their morphologies, microstructures, mechanical properties and corrosion behaviors were systematically characterized by SEM, TEM, nanoindentation and FIB. The results indicate that the Cr-rich inclusions originate from large-size Cr particles in 152 welding electrode flux, and they are 50-150 μm in size in most cases, and there is a continuous transition zone of 2-5 μm in width between the Cr inclusion core and 152 cladding matrix, and the transition zone consists of Ni & Fe-rich dendritic austenite and Cr23C6 and Cr matrix. The transition zone has the highest nanoindentation hardness (7.66 GPa), which is much harder than the inclusion core (5.14 GPa) and 152 cladding (3.71 GPa). In-situ microscopic tensile tests show that cracks initialize preferentially in transition zone, and then propagate into the inclusion core, and creep further into 152 cladding after penetrating the core area. The inclusion core and its transition zone both share similar oxide film structure with nickel-base 152 cladding matrix in simulated primary water, while those two parts present better general corrosion resistance than 152 cladding matrix due to higher Cr concentration.

  13. A finite element elastic-plastic analysis of residual stresses due to clad welding in reactor vessels

    International Nuclear Information System (INIS)

    Buchalet, C.; Riccardella, P.C.

    1972-01-01

    Residual stresses due to weld deposited cladding on the inside of a typical Westinghouse pressurized water reactor vessel are investigated using an axisymmetric finite element elastic-plastic analysis. At the beginning of the analysis, one head of the weld cladding is assumed to lie on the reactor vessel wall at melting temperature (2600degF), but in the solid phase, while the vessel remains at 300degF (preheat temperature). All material properties used in the calculations are taken as temperature-dependent. Temperature profiles are obtained in the cladding and base metal at several discrete time intervals. These temperatures profiles are used to obtain the stress distribution for the same time intervals. Residual hoop tensile stresses of approximately 25 ksi were found to exist in the cladding. Peak tensile stresses in the hoop direction occur in the base metal near the cladding interface and reach a value of 60 ksi at the end of the transient. The tensile stress decreases very rapidly through the thickness of the base metal and becomes insignificant at about two inches from the inside surface. In order to lower residual stresses, a post-weld heat treatment is performed by uniformly heating the vessel to 1100degF, holding at that temperature for a specified period of time and then cooling slowly. The analysis shows that after this treatment, the peak stresses in the base metal decrease from 60 ksi to 32 ksi, while the stress in the cladding does not change significantly. (author)

  14. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO 2 , which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO 2 . The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  15. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.G., E-mail: Joshua.Stone@ga.com; Schleicher, R.; Deck, C.P.; Jacobsen, G.M.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) fiber, SiC matrix composites (SiC/SiC) are being considered as a cladding material for light water reactors in order to improve safety performance. Engineered, multi-layer cladding designs consisting of both monolithic SiC (mSiC) and SiC/SiC have been examined as promising concepts to meet both strength and impermeability requirements. A new model has been developed to calculate stresses and failure probabilities for multi-layer cladding consisting of SiC-based materials in reactor operating conditions. The results show that stresses in SiC-based cladding are dominated by temperature-dependent irradiation-induced swelling, with the largest stresses occurring during the cold shutdown conditions. Failure probabilities are driven by the resulting tensile stresses at the cladding inner wall, while the outer wall is subject to compressive stresses. This indicates that the inner SiC/SiC, outer mSiC concept has the lowest failure probability, as the pseudo-plastic deformation of the composite reduces tensile loading and the compressed monolith provides a reliable, impermeable barrier to fission product release.

  16. Preliminary assessment of the fracture behavior of weld material in full-thickness clad beams

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.; Iskander, S.K.

    1994-10-01

    This report describes a testing program that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results form three specimens. The yield strength of the weld material was determined to be 36% higher than the yield strength of the base material. An irradiation-induced increase in yield strength of the weld material could result in a yield stress that exceeds the upper limit where code curves are valid. The high yield strength for prototypic weld material may have implications for RPV structural integrity assessments. Analyses of the test data are discussed, including comparisons of measured displacements with finite-element analysis results, applications of toughness estimation techniques, and interpretations of constraint conditions implied by stress-based constraint methodologies. Metallurgical conditions in the region of the cladding heat-affected zone are proposed as a possible explanation for the lower-bound fracture toughness measured with one of the shallow-crack clad beam specimens. Fracture toughness data from the three clad beam specimens are compared with other shallow- and deep-crack uniaxial beam and cruciform data generated previously from A 533 Grade B plate material

  17. Solution to a fuel-and-cladding rewetting model

    International Nuclear Information System (INIS)

    Olek, S.

    1989-06-01

    A solution by the Wiener-Hopf technique is derived for a model for the rewetting of a nuclear fuel rod. The gap between the fuel and the cladding is modelled by an imperfect contact between the two. A constant heat transfer coefficient is assumed on the wet side, whereas the dry side is assumed to be adiabatic. The solution for the rewetting temperature is in the form of an integral whose integrand contains the model parameters, including the rewetting velocity. Numerical results are presented for a large number of these parameters. It is shown that there are such large values of the rewetting temperature and the gap resistance, or such low values of the initial wall temperature, for which the rewetting velocity is unaffected by the fuel properties. (author) l fig., 7 tabs., 17 refs

  18. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  19. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  20. Logistic advantages of an air curtain in a cold store; Heiploeg ervaart logistieke voordelen van vrieshuis-luchtgordijn

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Fog and ice are problems in cold storage warehouses. A manufacturer of air conditioning equipment (Biddle in Kootstertille, Netherlands) claims to have found the solution in the so-called Multi Air stream Technology, an air curtain for cold stores.

  1. Measure Guideline: Deep Energy Enclosure Retrofit for Double-Stud Walls

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, H. [Building Science Corporation, Westford, MA (United States); Pettit, B. [Building Science Corporation, Westford, MA (United States)

    2015-06-22

    This Measure Guideline describes a deep energy enclosure retrofit solution that provides insulation to the interior of the wall assembly with the use of a double-stud wall. The guide describes two approaches to retrofitting the existing walls—one that involves replacing the existing cladding and the other that leaves the cladding in place. This guideline also covers the design principles related to the use of various insulation types and provides strategies and procedures for implementing the double-stud wall retrofit. It also includes an evaluation of important moisture-related and indoor air quality measures that need to be implemented to achieve a durable high-performance wall.

  2. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  3. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  4. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  5. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  6. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  7. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  8. Draught control by means of industrial air curtains. Background information on the design of industrial air curtains; Tochtbestrijding met industriele luchtgordijnen. Achtergronden bij ontwerp van industriele luchtgrodijnen

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, B. [Biddle, Kootstertille (Netherlands); Traversar, R. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    2008-02-15

    In industrial buildings a balanced ventilation is not common property. Due to increasing differences in pressure across the front much cold outside air enters the building, resulting in poor comfort near the door. A good air curtain can heat up large amounts of incoming cold outside air in such a way that energy saving is optimal and comfort remains high. (mk) [Dutch] Bij industriele gebouwen is gebalanceerde ventilatie geen gemeengoed. Door oplopende drukverschillen over de gevel komt veel koude buitenlucht naar binnen en is het comfort vlak achter de deur erg laag. Een goed luchtgordijn kan grote hoeveelheden binnenkomende koude buitenlucht zodanig opwarmen dat de energiebesparing optimaal is en het comfort hoog blijft.

  9. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  10. An overview of the HSST Full-Thickness Shallow-Crack Clad Beam Testing Program

    International Nuclear Information System (INIS)

    Keeney, J.A.; Theiss, T.J.; McAfee, W.J.; Bass, B.R.

    1994-01-01

    A testing program is described that will utilize full-thickness clad beam specimens to quantify fracture toughness for shallow flaws in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV wall that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow flaws in the beam specimen include material gradients due to welding and cladding applications, as well as material inhomogeneities in welded regions due to reheating in multiple weld passes. Fracture toughness tests focusing on shallow flaws in plate and weld material will also provide data for evaluating the relative influence of absolute and normalized crack depth on constraint conditions. Pretest finite-element analyses are described that provide near-tip stress and strain fields for characterization of constraint in the shallow-crack specimens in terms of the Q-stress. Analysis results predict a constraint loss in the shallow-crack clad beam specimen similar to that determined for a previously tested shallow-crack single-edge notch homogeneous bend specimen with the same normalized crack depth

  11. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding

    Science.gov (United States)

    Shi, Jianjun; Zhu, Ping; Fu, Geyan; Shi, Shihong

    2018-05-01

    Coaxial laser inside wire cladding method is very promising as it has a very high efficiency and a consistent interaction between the laser and wire. In this paper, the energy and mass conservation law, and the regression algorithm are used together for establishing the mathematical models to study the relationship between the layer geometry characteristics (width, height and cross section area) and process parameters (laser power, scanning velocity and wire feeding speed). At the selected parameter ranges, the predicted values from the models are compared with the experimental measured results, and there is minor error existing, but they reflect the same regularity. From the models, it is seen the width of the cladding layer is proportional to both the laser power and wire feeding speed, while it firstly increases and then decreases with the increasing of the scanning velocity. The height of the cladding layer is proportional to the scanning velocity and feeding speed and inversely proportional to the laser power. The cross section area increases with the increasing of feeding speed and decreasing of scanning velocity. By using the mathematical models, the geometry characteristics of the cladding layer can be predicted by the known process parameters. Conversely, the process parameters can be calculated by the targeted geometry characteristics. The models are also suitable for multi-layer forming process. By using the optimized process parameters calculated from the models, a 45 mm-high thin-wall part is formed with smooth side surfaces.

  12. Deformation and collapse of zircaloy fuel rod cladding into plenum axial gaps

    International Nuclear Information System (INIS)

    Pfennigwerth, P.L.; Gorscak, D.A.; Selsley, I.A.

    1983-01-01

    To minimize support structure, blanket and reflector fuel rods of the thoria urania-fueled Light Water Breeder Reactor (LWBR) were designed with non-freestanding Zircaloy-4 cladding. An analytical model was developed to predict deformation of unirradiated cladding into axial gaps of fuel rod plenum regions where it is unsupported. This model uses the ACCEPT finite element computer program to calculate elastic-plastic deformation of cladding due to external pressure. The finite element is 20-node, triquadratic, isoparametric, and 3-dimensional. Its curved surface permits accurate modeling of the tube geometry, including geometric nonuniformities such as circumferential wall thickness variation and initial tube out-of-roundness. Progressive increases in axial gap length due to cladding elongation and fuel stack shrinkage are modeled, as are deformations of fuel pellets and stainless steel support sleeves which bound plenum axial gaps in LWBR type blanket fuel rods. Zircaloy-4 primary and secondary thermal creep representations were developed from uniaxial creep testing of fuel rod tubing. Creep response to multi-axial loading is modeled with a variation of Hill's formulation for anisotropic materials. Coefficients accounting for anisotropic thermal creep in Zircaloy-4 tubes were developed from creep testing of externally pressurized tubes having fixed axial gaps in the range 2.5 cm to 5.7 cm and radial clearances over simulated fuel pellets ranging from zero to 0.089 mm. (orig./RW)

  13. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  14. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  15. Laser cladding to select new glassy alloys

    International Nuclear Information System (INIS)

    Medrano, L.L.O.; Afonso, C.R.M.; Kiminami, C.S.; Gargarella, P.; Ramasco, B.

    2016-01-01

    A new experimental technique used to analyze the effect of compositional variation and cooling rate in the phase formation in a multicomponent system is the laser cladding. This work have evaluated the use of laser cladding to discover a new bulk metallic glass (BMG) in the Al-Co-Zr system. Coatings with composition variation have made by laser cladding using Al-Co-Zr alloys powders and the samples produced have been characterized by X ray diffraction, microscopy and energy-dispersive X-ray spectroscopy. The results did not show the composition variation as expected, because of incomplete melting during laser process. It was measured a composition variation tendency that allowed the glass forming investigation by the glass formation criterion λ+Δh 1/2 . The results have showed no glass formation in the coating samples, which prove a limited capacity of Zr-Co-Al system to form glass (author)

  16. Potential effects of gallium on cladding materials

    International Nuclear Information System (INIS)

    Wilson, D.F.; Beahm, E.C.; Besmann, T.M.; DeVan, J.H.; DiStefano, J.R.; Gat, U.; Greene, S.R.; Rittenhouse, P.L.; Worley, B.A.

    1997-10-01

    This paper identifies and examines issues concerning the incorporation of gallium in weapons derived plutonium in light water reactor (LWR) MOX fuels. Particular attention is given to the more likely effects of the gallium on the behavior of the cladding material. The chemistry of weapons grade (WG) MOX, including possible consequences of gallium within plutonium agglomerates, was assessed. Based on the calculated oxidation potentials of MOX fuel, the effect that gallium may have on reactions involving fission products and possible impact on cladding performance were postulated. Gallium transport mechanisms are discussed. With an understanding of oxidation potentials and assumptions of mechanisms for gallium transport, possible effects of gallium on corrosion of cladding were evaluated. Potential and unresolved issues and suggested research and development (R and D) required to provide missing information are presented

  17. Stress corrosion testing of irradiated cladding tubes

    International Nuclear Information System (INIS)

    Lunde, L.; Olshausen, K.D.

    1980-01-01

    Samples from two fuel rods with different cladding have been stress corrosion tested by closed-end argon-iodine pressurization at 320 0 C. The fuel rods with stress relieved and recrystallized Zircaloy-2 had received burnups of 10.000 and 20.000 MWd/ton UO 2 , respectively. It was found that the SCC failure stress was unchanged or slightly higher for the irradiated than for the unirradiated control tubes. The tubes failed consistently in the end with the lowest irradiation dose. The diameter increase of the irradiated cladding during the test was 1.1% for the stress-relieved samples and 0.24% for the recrystallized samples. SEM examination revealed no major differences between irradiated and unirradiated cladding. A ''semi-ductile'' fracture zone in recrystallized material is described in some detail. (author)

  18. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  19. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  20. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  1. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  2. Management of cladding hulls and fuel hardware

    International Nuclear Information System (INIS)

    1985-01-01

    The reprocessing of spent fuel from power reactors based on chop-leach technology produces a solid waste product of cladding hulls and other metallic residues. This report describes the current situation in the management of fuel cladding hulls and hardware. Information is presented on the material composition of such waste together with the heating effects due to neutron-induced activation products and fuel contamination. As no country has established a final disposal route and the corresponding repository, this report also discusses possible disposal routes and various disposal options under consideration at present

  3. Inpile (in PWR) testing of cladding materials

    International Nuclear Information System (INIS)

    Hahn, R.; Jeong, Y. H.; Baek, B. J.; Kim, K. H.; Kim, S. J.; Choi, B. K.; Kim, J. M.

    1999-04-01

    As an introduction, the reasons to perform inpile tests are depicted. An overview over general inpile test procedure is given, and test details which are necessary for the development of new alloys for high burnup claddings, like sample geometries and measuring techniques for inpile corrosion testing, are described in detail. Tests for the creep and length change behavior of cladding tubes are described briefly. Finally, conclusions are drawn and literature citations for further test details are given. (author). 9 refs., 2 tabs., 17 figs

  4. Microstructure of laser cladded martensitic stainless steel

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2006-08-01

    Full Text Available and martensite with 10% ferrite for Material B. Table 7 - Proposed martensitic stainless steel alloys for laser cladding Material C* Cr Ni Mn Si Mo Co Ms (ºC)* Cr eq Ni eq Material A 0.4 13 - 1 0.5 2.5 5.5 120 16.5 12.5 Material B 0.2 15 2 1 0.7 2.5 5.5 117... dilution, low heat input, less distortion, increased mechanical and corrosion properties excellent repeatability and control of process parameters. Solidification of laser cladded martensitic stainless steel is primarily austenitic. Microstructures...

  5. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  6. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  7. Analysis of coaxial laser micro cladding processing conditions

    OpenAIRE

    Tarasova, Tatiana Vasilievna; Gvozdeva, Galina Olegovna; Nowotny, Steffen; Ableyeva, Riana R.; Dolzhikova, Evgenia Yu

    2018-01-01

    The laser build-up cladding is a well-known technique for repair, coatings and additive manufacturing tasks. Modern equipment for the laser cladding enables material to be deposited with the lateral resolution of about 100 μm and to manufacture miniature precise parts. However, the micro cladding regimes are unknown. Determination of these regimes is an expensive task as a well-known relation between laser cladding parameters and melt pool dimensions are changing by technology micro-miniaturi...

  8. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  9. Generator of a dense atomic gas curtain (for use in Intersecting Storage Rings)

    CERN Document Server

    Zankel, K

    1975-01-01

    A supersonic beam source is described which continuously generates a gas curtain for the proton beam profile observation in the Intersecting Storage Rings at CERN. Its maximum intensity is 10/sup 20 / atoms/sr s. A commonly used theoretical model for the determination of the intensity downstream of the source is discussed. Some results about the condensation behaviour of sodium vapour on metallic substrate surfaces are reported. (8 refs).

  10. PERMEABILITY OF SAVCIBEY DAM (BİLECİK AXIS LOCATION AND DESIGN OF GROUT CURTAIN

    Directory of Open Access Journals (Sweden)

    Mustafa Can Canoğlu

    2016-12-01

    Full Text Available This study comprise the design of the planned grout curtain in Savcıbey Dam (Söğüt/Bilecik in order to provide impermeability along the dam axis. Within the context of field studies, engineering geology map was generated, ground investigation drilling was realized and permeability tests were performed. Within the field studies, the joint conditions of the geological units (Triassic aged Bozuyük Metamorphic schists under the dam axis and its effect on permeability was observed considering the positions of the discontinuities with regard to the dam axis location. Orientation of discontinuities generally have strikes changing between N – S and NNE – SSW. 5 boreholes on dam axis, 2 boreholes on cofferdam, 3 boreholes on diversion tunnel and 2 boreholes on spillway total 245 m ground investigation borehole were drilled. In order to determine the permeability profile of dam axis and design the grout curtain, Lugeon tests in Bozuyük Metamorphic units observed in dam axis, falling head permeability tests in alluviums observed in thalveg and slope debris observed in right abutment were performed. Lugeon tests realized in Bozuyük Metamorphic units show that the unit is generally permeable and partly low permeable. Alluvium and slope debris are highly permeable. In addition, drilling works realized in dam axis shows that the augmentation of the weathering degree cause an increase of permeability in Triassic aged Bozüyük Metamorphic schists. As a result of these studies information about the permeability of Savcıbey Dam was collected and the grout curtain hole was designed. Accordingly, it is predicted that approximately 40 m depth of grout curtain from the stripping excavation with the depth of 1.50 m would prevent the possible leakages.

  11. The use of an air curtain in a cold store; Vrieshuis toegankelijker en veiliger met luchtscherm

    Energy Technology Data Exchange (ETDEWEB)

    Bruins, K. [Biddle, Kootstertille (Netherlands)

    1998-04-01

    A food distribution centre of a German chain of supermarkets applies an air curtain in one of their distribution centres (Neudietendorf, Erfurt). The door of the distribution centre building can be left open constantly which improves internal transport of the goods (next to dry products also many frozen products). Even more important is that ice forming in the passage is reduced to a minimum and the safety for the workers has improved considerably

  12. On the use of infrared thermography in studies with air curtain devices

    OpenAIRE

    Neto, Luís P. C.; Silva, Manuel Gameiro da; Costa, José J.

    2006-01-01

    Among the different existing methods to characterise the aerodynamic sealing effect provided by an air curtain device placed over the opening between two contiguous compartments, infrared thermography has revealed to be a very useful tool. Besides allowing the capture, in an expedite way, of instantaneous images of the temperature field in the neighbourhood of the door, the technique hereon described has other advantages, in terms of quick and easy setup, low intrusive character and liability ...

  13. Automatic control of air curtains with CHIPS technology; Automatische regeling van luchtgordijnen met CHIPS-technologie

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, B.E. [Biddle, Kloostertille (Netherlands)

    2010-03-15

    In times of drastic automation air curtains cannot lag behind. Yet, how do you control a product whose operation depends not only on own settings but also on the conditions in which it is used. This article describes the latest development in the automation of the air curtain above an open door. The automated air curtain now has the highest separation efficiency, low energy use and optimal comfort under changing circumstances without any need for manual adjustment. CHIPS refers to Corrective Heating and Impulse Prediction System. [Dutch] In een tijd van verregaande automatisering kan een luchtgordijn niet achterblijven. Maar hoe regel je een product waarvan de werking niet alleen afhangt van de eigen instellingen, maar ook van de omstandigheden waarin het wordt gebruikt? Dit artikel beschrijft de nieuwste stap in de automatisering van een luchtgordijn boven een openstaande deur. Hiermee heeft het automatisch geregelde luchtgordijn het hoogste scheidingsrendement, laag energiegebruik en optimaal comfort onder wisselende omstandigheden zonder het luchtgordijn handmatig te hoeven bijstellen. CHIPS staat voor Corrective Heating and Impulse Prediction System.

  14. Parameters Optimization of Curtain Grouting Reinforcement Cycle in Yonglian Tunnel and Its Application

    Directory of Open Access Journals (Sweden)

    Qingsong Zhang

    2015-01-01

    Full Text Available For practical purposes, the curtain grouting method is an effective method to treat geological disasters and can be used to improve the strength and permeability resistance of surrounding rock. Selection of the optimal parameters of grouting reinforcement cycle especially reinforcement cycle thickness is one of the most interesting areas of research in curtain grouting designs. Based on the fluid-structure interaction theory and orthogonal analysis method, the influence of reinforcement cycle thickness, elastic modulus, and permeability on water inflow of tunnel after grouting and stability of surrounding rock was analyzed. As to the water inflow of tunnel after grouting used as performance evaluation index of grouting reinforcement cycle, it can be concluded that the permeability was the most important factor followed by reinforcement cycle thickness and elastic modulus. Furthermore, pore water pressure field, stress field, and plastic zone of surrounding rock were calculated by using COMSOL software under different conditions of reinforcement cycle thickness. It also can be concluded that the optimal thickness of reinforcement cycle and permeability can be adopted as 8 m and 1/100 of the surrounding rock permeability in the curtain grouting reinforcement cycle. The engineering case provides a reference for similar engineering.

  15. The Perforated Curtain: Configuring the Public and the Private in Calcutta’s Cabin Culture

    Directory of Open Access Journals (Sweden)

    Twisha Deb

    2017-04-01

    Full Text Available When I was very young, eating out was not a regular activity for our family. On one of such rare occasion we ended up in a restaurant where the waiter made us sit in a cubicle with a curtain on one side. You pull the curtain and it creates a weird sense of privacy. That idea of intimate space in the middle of a busy city intrigued me. Later I found many restaurants in Kolkata where they have this sort of cabin, a private eating area. Starting from pre-independence when they were there to provide some privacy to the ladies of the family who were not allowed to eat in public, the cabin witnessed many private affairs with time, from political discussions to lovers’ silence. With changing time and the emergence of posh cafes with quirky interiors, the shabby little cabins have lost their charm, but the almost empty cabins, some even without the curtains stand there to tell a story of a time gone by.

  16. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    Deng Baiquan; Huang Jinhua; Peng Lilin; Yan Jiancheng

    2003-01-01

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Z eff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s -1 . Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  17. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  18. Graphite curtain vacuum outgassing and heat transfer. Final report

    International Nuclear Information System (INIS)

    Fivel, H.J.; Lang, G.P.; Kipp, H.W.

    1976-12-01

    Thermal conductivity of a bundle of high conductivity graphite fibers (T-50) was measured as a function of temperature, density and fiber orientation at pressures of 10 -4 to 10 -5 torr. All 3 variables had a significant influence on thermal conductivity. The highest conductivity fiber bundle tested had a conductivity significantly less than dense, bulk nuclear grade graphite. The incorporation of heat pipes into a graphite spectral shaper will permit a 2-fold thicker shaper. Heat pipes not only increase the transport of heat within the spectral shaper but can increase heat transfer at the shaper-first wall interface and potentially serve as a means of attaching shaper modules to the first wall. A heat pipe using a liquid metal working fluid was fabricated and tested in magnetic fields of 1 and 2 Tesla. Liquid metal heat pipes can be used in a magnetic field of at least up to 2 Tesla. Much more work needs to be done to establish the capabilities for high performance heat pipes when used in magnetic fields. Four different types of graphite fibers were exposed in EBR-II to a neutron fluence of 3.5 x 10 21 cm -2 EFF at 470 0 C. Large axial shrinkages of 6.6 to 8.6% resulted

  19. Mechanical response of FFTF reference and P1 cladding tubes under transient heating

    International Nuclear Information System (INIS)

    Youngahl, C.A.; Ariman, T.; Lepacek, B.E.

    1977-01-01

    Burst tests of Type 316 stainless steel cladding tube samples subjected to increasing temperature and relatively constant internal pressure were conducted to assist in the pretest analysis of the P1 experiment performed in the Sodium Loop Safety Facility. This paper reports and analyzes the burst test results and those of subsequent transient heating work. The use of a modified extensometer in obtaining mechanical response data for stainless steel in the high temperature range is illustrated, some of such data is provided, and the potential of further experiments and analysis is indicated. Tubing of the same design as Fast Flux Test Facility (FFTF) cladding (20% cold worked, 0.230 in. OD, 15 mil wall) was tested as-received and after annealing or electrolytic thinning. P1 tubing (38% cold worked, 0.230 in. OD, 10 mil wall) was tested before and after aging under conditions anticipated in the P1 reactor experiment. The P1 cladding was designed to simulate FFTF tubing that had experienced irradiation embrittlement and attack by cesium oxide and sodium impurities

  20. Experimental assessment of fuel-cladding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-29

    A range of fuel concepts designed to better tolerate accident scenarios and reactor transients are currently undergoing fundamental development at national laboratories as well as university and industrial partners. Pellet-clad mechanical and chemical interaction can be expected to affect fuel failure rates experienced during steady state operation, as well as dramatically impact the response of the fuel form under loss of coolant and other accident scenarios. The importance of this aspect of fuel design prompted research initiated by AFC in FY14 to begin exploratory efforts to characterize this phenomenon for candidate fuelcladding systems of immediate interest. Continued efforts in FY15 and FY17 aimed to better understand and simulate initial pellet-clad interaction with little-to-no pressure on the pellet-clad interface. Reported here are the results from 1000 h heat treatments at 400, 500, and 600°C of diffusion couples pairing UN with a FeCrAl alloy, SiC, and Zr-based cladding candidate sealed in evacuated quartz ampoules. No gross reactions were observed, though trace elemental contaminants were identified.

  1. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  2. Cladding For Transversely-Pumped Laser Rod

    Science.gov (United States)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  3. Prevention of nuclear fuel cladding materials corrosion

    International Nuclear Information System (INIS)

    Yang, K.R.; Yang, J.C.; Lee, I.C.; Kang, H.D.; Cho, S.W.; Whang, C.K.

    1983-01-01

    The only way which could be performed by the operator of nuclear power plant to minimizing the degradation of nuclear fuel cladding material is to control the water quality of primary coolant as specified standard conditions which dose not attack the cladding material. If the water quality of reactor coolant does not meet far from the specification, the failure will occure not only cladding material itself but construction material of primary system which contact with the coolant. The corrosion product of system material are circulate through the whole primary system with the coolant and activated by the neutron near the reactor core. The activated corrosion products and fission products which released from fuel rod to the coolant, so called crud, will repeate deposition and redeposition continuously on the fuel rod and construction material surface. As a result we should consider heat transfer problem. In this study following activities were performed; 1. The crud sample was taken from the spent fuel rod surface of Kori unit one and analized for radioactive element and non radioactive chemical species. 2. The failure mode of nuclear fuel cladding material was estimated by the investigation of releasing type of fission products from the fuel rod to the reactor coolant using the iodine isotopes concentration of reactor coolants. 3. A study was carried out on the sipping test results of spent fuel and a discussion was made on the water quality control records through the past three cycle operation period of Kori unit one plant. (Author)

  4. Mechanism for iodine cracking of zirconium claddings

    International Nuclear Information System (INIS)

    Novikov, V.V.

    1991-01-01

    The mechanism of iodine cracking of zirconium cladding is analyzed taking into account the effect of stresses on diffusion. A decisive effect of the stress gradiemt on crack propagation in an agressive medium is shown. The experimental data are compared with the proposed model

  5. Thermodynamics of pellet-cladding interaction

    International Nuclear Information System (INIS)

    Kyoh, Bunkei; Fuji, Kensho

    1987-01-01

    Equilibrium thermodynamic calculations are performed on the U-Zr-Cs-I-O system that is assumed to exist in the fuel-cladding gap of light water reactor (LWR) fuel under pellet-cladding interaction (PCI) failure condition. For this purpose a computer program called SOLGASMIX-PV for the calculation of complex multi-component equilibria is used, and the results of postirradiation examination are interpreted. The analysis of the thermodynamics of the system U-Zr-Cs-I-O indicates that cesium and iodine are assumed to be released from fuel pellet into the fuel-cladding gap as CsI, therefore, the Cs/I ratio in fuel-cladding bonding zone is one. The important condensed phases in this region are UO 2 , U 3 O 8 , Cs 2 U 2 O 7 , Cs 2 U 15 O 46 , ZrO 2 and CsI, and the major gaseous species are CsI, I 2 and I. Under this situation where Cs/I ratio is one, cesium-zirconate is not present. If, however, cesium rich phase is partially present then cesium will be associated with zirconium, possibly as Cs 2 ZrO 3 . (author)

  6. Study and Behaviour of Prefabricated Composite Cladding

    Science.gov (United States)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  7. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  8. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  9. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  10. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  11. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  12. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  13. IFPE/IFA-508 and 515, PCMI Behaviour of Thin Cladding Rods, JAERI and HRP

    International Nuclear Information System (INIS)

    2007-01-01

    Description: To measure the integrated response of UO 2 and its cladding to conditions associated with PCI, the Japan Atomic Energy Research Institute carried out a series of experiments in the Halden BWR. The experiment involved two major objectives. The first was to study the influence of rod design parameters on PCI. Diametral gap, wall cladding thickness, SiO 2 additive, and pellet grain size were used as design parameters. The second objective was to study the influence of pre-irradiation (i.e. burnup) on PCI. The maximum burnup attained in the experiment was 23 MWd/kgU. These research results can be applied to current BWR-type fuel rods. The tests were performed between April 1977 and March 1981

  14. Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Lyngso, J. K.; Lægsgaard, Jesper

    2014-01-01

    We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation...... of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined...... with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties. (C) 2014 Optical Society of America...

  15. Evolution of transmission spectra of double cladding fiber during etching

    Science.gov (United States)

    Ivanov, Oleg V.; Tian, Fei; Du, Henry

    2017-11-01

    We investigate the evolution of optical transmission through a double cladding fiber-optic structure during etching. The structure is formed by a section of SM630 fiber with inner depressed cladding between standard SMF-28 fibers. Its transmission spectrum exhibits two resonance dips at wavelengths where two cladding modes have almost equal propagation constants. We measure transmission spectra with decreasing thickness of the cladding and show that the resonance dips shift to shorter wavelengths, while new dips of lower order modes appear from long wavelength side. We calculate propagation constants of cladding modes and resonance wavelengths, which we compare with the experiment.

  16. Method for automatic filling of nuclear fuel rod cladding tubes

    International Nuclear Information System (INIS)

    Bezold, H.

    1979-01-01

    Prior to welding the zirconium alloy cladding tubes with end caps, they are automatically filled with nuclear fuel tablets and ceramic insulating tablets. The tablets are introduced into magazine drums and led through a drying oven to a discharging station. The empty cladding tubes are removed from this discharging station and filled with tablets. A filling stamp pushes out the columns of tablets in the magazine tubes of the magazine drum into the cladding tube. Weight and measurement of length determine the filled state of the cladding tube. The cladding tubes are then led to the welding station via a conveyor belt. (DG) [de

  17. Influence of texture on fracture toughness of zircaloy cladding

    International Nuclear Information System (INIS)

    Grigoriev, V.; Andersson, Stefan

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill's theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture

  18. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  19. Curtain color and lighting program in broiler production: II. carcass and parts yield and abdominal fat deposition

    Directory of Open Access Journals (Sweden)

    Valéria Maria Nascimento Abreu

    2011-09-01

    Full Text Available The objective of the present study was to evaluate carcass and parts' yield, abdominal fat deposition and breast and foot pad blisters of broilers reared under two lighting programs (nearly continuous or intermittent in broilers houses with yellow and blue curtains. The experiment was conducted between June, 2004 and May, 2005. Six flocks were sequentially housed in four 12 × 10 m broiler houses divided into 4 pens with 200 birds each. The litter was reused six times or until flock 6. A completely randomized design in a 6 × 2 × 2 factorial arrangement (flocks, lighting programs, curtains with four replicates per treatment was applied. A total of 288 birds were evaluated for carcass yield. Curtain color did not affect carcass or parts' yield. The effect of lighting program and curtain color on carcass yield may depend on other factors related to flock. Intermittent lighting program promoted the highest drumstick and thigh yields. Lighting programs and curtain colors did not affect abdominal fat deposition or the presence of breast and foot pad blisters.

  20. The contribution of CASIEL infill walls to the shear resistance of steel frames

    NARCIS (Netherlands)

    Ng'Andu, B.M.; Martens, D.R.W; Vermeltfoort, A.T.

    2006-01-01

    In Europe, calcium silicate element (CASIEL) walls are increasingly employed as partitions and external claddings in buildings. The CASIEL infills and the frames mutually interact through frame-wall interfaces. This interaction has a significant influence on the load transmission paths of building

  1. 40 CFR 60.3069 - Am I required to apply for and obtain a title V operating permit for my air curtain incinerator...

    Science.gov (United States)

    2010-07-01

    ... title V operating permit for my air curtain incinerator that burns only wood waste, clean lumber, and... and Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard...

  2. 40 CFR 60.3063 - When must I comply if my air curtain incinerator burns only wood waste, clean lumber, and yard...

    Science.gov (United States)

    2010-07-01

    ... incinerator burns only wood waste, clean lumber, and yard waste? 60.3063 Section 60.3063 Protection of... Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3063 When must I comply if my air curtain...

  3. 40 CFR 60.3064 - What must I do if I close my air curtain incinerator that burns only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerator that burns only wood waste, clean lumber, and yard waste and then restart it? 60.3064... Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3064 What...

  4. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for...

  5. 40 CFR 60.3065 - What must I do if I plan to permanently close my air curtain incinerator that burns only wood...

    Science.gov (United States)

    2010-07-01

    ... close my air curtain incinerator that burns only wood waste, clean lumber, and yard waste and not... Compliance Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Model Rule-Air Curtain Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60...

  6. 40 CFR 62.14820 - How must I monitor opacity for air curtain incinerators that burn 100 percent wood wastes, clean...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent wood wastes, clean lumber, and/or yard waste? 62.14820 Section... Requirements for Commercial and Industrial Solid Waste Incineration Units That Commenced Construction On or Before November 30, 1999 Air Curtain Incinerators That Burn 100 Percent Wood Wastes, Clean Lumber And/or...

  7. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  8. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  9. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  10. Ambience control by air-curtains; Controle d'ambiance par rideaux d'air

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, F.X.; Gouriou, Y.; Gupta, S.; Pavageau, M.; Solliec, C. [Ecole des Mines de Nantes, UMR 6144 CNRS-EMN-Univ. de Nantes, Dept. Systemes Energetiques et Environnement, 44 (France); Cassin, C.; Maubert, P.; Rey, C. [Aix-Marseille-3 Univ. Paul Cezanne, IUT de Saint Jerome, Dept. GTE, 13 - Marseille (France)

    2005-08-01

    Air curtains are plane air jets blown across openings so as to isolate from each other two adjacent volumes. Such apparatus are commonly used in applications where it is sought to minimise heat or mass transfers between two areas while it is necessary to keep free the way for people or material from one area to the next one. Experimental facilities were designed to investigate various air-curtain arrangements with the aim to work out efficient solutions for energy saves or smoke confining in case of fire in a road tunnel. In the first stage, the emphasis was put on flow dynamics. The different configurations considered in this work include systems made of one or two curtains of single or double jets. They were specifically designed to perform measurements using Particle Image Velocimetry (PIV). (authors)

  11. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  12. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  13. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz , M.; Pelletier , J.; Vannes , A.; Bignonnet , A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  14. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-01-01

    The composite of metals and alloys used in the fabrication of 238 Pu cardiac pacemaker fuel capsules resists the effects of high temperatures, high mechanical forces, and chemical corrosives and provides more than adequate protection to the fuel pellet even from deliberate attempts to dissolve the cladding in inorganic acids. This does not imply that opening a pacemaker fuel capsule by inorganic acids is impossible but that it would not be a wise choice

  15. Degradation resistant fuel cladding materials and manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Marlowe, M.O. [GE Nuclear Energy, Wilmington, NC (United States); Montes, J. [ENUSA, Madrid (Spain)

    1995-12-31

    GE has been producing the degradation resistant cladding (zirconium liner and zircaloy-2 surface larger) described here with the cooperation of its primary zirconium vendors since the beginning of 1994. Approximately 24 fuel reloads, or in excess of 250,000 fuel rods, have been produced using this material by GE. GE has also produced tubing for one reload of fuel that is currently being produced by its technology affiliate ENUSA. (orig./HP)

  16. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  17. Plasma spheroidization and cladding of powders

    Energy Technology Data Exchange (ETDEWEB)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-02-01

    With reference to experimental results for nickel and chromium alloys, it is shown that complex alloy powders can be spheroidized in plasma discharges using an argon plasma with hydrogen. The spheroidizing process is accompanied by the reduction of surface oxides, with uniform element distribution within the particles; the granulometric composition of the particles is preserved. It is also shown that plasma technology can be used for producing metal-clad oxide and carbide powders, which improve the performance of cermets and coatings.

  18. The Effects of Curtain Airbag on Occupant Kinematics and Injury Index in Rollover Crash

    Directory of Open Access Journals (Sweden)

    Hongyun Li

    2018-01-01

    Full Text Available Background. Occupant injuries in rollover crashes are associated with vehicle structural performance, as well as the restraint system design. For a better understanding of the occupant kinematics and injury index in certain rollover crash, it is essential to carry out dynamic vehicle rollover simulation with dummy included. Objective. This study focused on effects of curtain airbag (CAB parameters on occupant kinematics and injury indexes in a rollover crash. Besides, optimized parameters of the CAB were proposed for the purpose of decreasing the occupant injuries in such rollover scenario. Method and Material. The vehicle motion from the physical test was introduced as the input for the numerical simulation, and the 50% Hybrid III dummy model from the MADYMO database was imported into a simulation model. The restraint system, including a validated CAB module, was introduced for occupant kinematics simulation and injury evaluation. TTF setting, maximum inflator pressure, and protection area of the CAB were analysed. Results. After introducing the curtain airbag, the maximum head acceleration was reduced from 91.60 g to 49.52 g, and the neck Mx and neck Fz were reduced significantly. Among these CAB parameters, the TTF setting had the largest effect on the head acceleration which could reduce 8.6 g furthermore after optimization. The neck Fz was decreased from 3766.48 N to 2571.77 N after optimization of CAB protection area. Conclusions. Avoiding hard contact is critical for the occupant protection in the rollover crashes. The simulation results indicated that occupant kinematics and certain injury indexes were improved with the help of CAB in such rollover scenario. Appropriate TTF setting and inflator selection could benefit occupant kinematics and injury indexes. Besides, it was advised to optimize the curtain airbag thickness around the head contact area to improve head and neck injury indexes.

  19. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  20. Advanced LWR Nuclear Fuel Cladding Development

    International Nuclear Information System (INIS)

    Bragg-Sitton, S.; Griffith, G.

    2012-01-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R and D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental enhancements are required in the areas of nuclear fuel composition, cladding integrity, and fuel/cladding interaction to allow improved fuel economy via power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an 'accident tolerant' fuel system that would offer improved coping time under accident scenarios. In a staged development approach, the LWRS program will engage stakeholders throughout the development process to ensure commercial viability of the investigated technologies. Applying minimum performance criteria, several of the top-ranked materials and fabrication concepts will undergo a rigorous series of mechanical, thermal and chemical characterization tests to better define their properties and operating potential in a relatively low-cost, nonnuclear test series. A reduced number of options will be recommended for test rodlet fabrication and in-pile nuclear testing under steady-state, transient and accident conditions. (author)

  1. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  2. Simultaneous density-field visualization and PIV of a shock-accelerated gas curtain

    Energy Technology Data Exchange (ETDEWEB)

    Prestridge, K.; Rightley, P.M.; Vorobieff, P. [Los Alamos Nat. Lab., NM (United States). Dynamic Exp. Div.; Benjamin, R.F.; Kurnit, N.A.

    2000-10-01

    We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability (the impulsively driven Rayleigh-Taylor instability) (Meshkov 1969; Richtmyer 1960). In our experiment, a vertical curtain of heavy gas (SF{sub 6}) flows into the test section of an air-filled, horizontal shock tube. The instability evolves after a Mach 1.2 shock passes through the curtain. For visualization, we pre-mix the SF{sub 6} with a small ({proportional_to}10{sup -5}) volume fraction of sub-micron-sized glycol/water droplets. A horizontal section of the flow is illuminated by a light sheet produced by a combination of a customized, burst-mode Nd:YAG laser and a commercial pulsed laser. Three CCD cameras are employed in visualization. The ''dynamic imaging camera'' images the entire test section, but does not detect the individual droplets. It produces a sequence of instantaneous images of local droplet concentration, which in the post-shock flow is proportional to density. The gas curtain is convected out of the test section about 1 ms after the shock passes through the curtain. A second camera images the initial conditions with high resolution, since the initial conditions vary from test to test. The third camera, ''PIV camera,'' has a spatial resolution sufficient to detect the individual droplets in the light sheet. Images from this camera are interrogated using particle image velocimetry (PIV) to recover instantaneous snapshots of the velocity field in a small (19 x 14 mm) field of view. The fidelity of the flow-seeding technique for density-field acquisition and the reliability of the PIV technique are both quantified in this paper. In combination with wide-field density data, PIV measurements give us additional physical insight into the evolution of the Richtmyer-Meshkov instability in a problem which serves as an excellent test case for general transition-to-turbulence studies. (orig.)

  3. Physical modeling of steel flow in a tun dish equipped with a turbulence inhibitor and a gas curtain

    International Nuclear Information System (INIS)

    Perez-Labra, M.; Diaz-Cruz, M.; Palafox-Ramos, J.; Avila-Davila, E. O.; Patino-Cardona, F.

    2005-01-01

    A 2/5 scale model with a transparent plastic sheet was built based on Froude criterion in which eight cases were studied by PIV technique, maintaining a constant gas flow rate of 596 ml/min and only varying the gas curtain position. The results permitted to get Residence Time Distribution (RTD) curves, and from the data processing it was found that combining Turbulence Inhibitor (TI) with the adequate gas curtain position it is enhanced the plug volume. The case VII presented the best results increasing the plug volume in 131.85% in comparison with the case IV which was taken as the reference one. (Author) 10 refs

  4. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  5. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  6. Experimental determination of the local temperature distribution in the cladding tubes of a sodium-cooled pin bundle caused by grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The cladding tubes of reactor core elements are highly stressed structural elements. Their careful design includes the following: (a) the mathematical determination of the maximum cladding tube temperatures; (b) the determination of the maximum permissible fatigue strengths and creep strains of the materials; and (c) the safety distance between the nominal cladding tube hot spots and the permissible extreme cladding tube temperature. The maximum cladding tube temperatures occur on the top edge of the core and, due to radial power gradients, in the wrapper-wall region of a pin bundle. If grid spacers are now used for fixing the pins as in the SNR fuel elements, a careful check must be made of whether and to what degree temperature peaks in the region of the supports have an influence on the cladding tube design. Initial experimental investigations on a sodium-cooled pin bundle model of the SNR-300 fuel element were carried out to throw light on these special problems. This is reported in the following together with the results so far obtained. (U.K.)

  7. Crack resistance curve determination of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Bertsch, J.; Alam, A.; Zubler, R.

    2009-03-01

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 o C and 350 o C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could be

  8. Crack resistance curve determination of zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J.; Alam, A.; Zubler, R

    2009-03-15

    Fracture mechanics properties of fuel claddings are of relevance with respect to fuel rod integrity. The integrity of a fuel rod, in turn, is important for the fuel performance, for the safe handling of fuel rods, for the prevention of leakages and subsequent dissemination of fuel, for the avoidance of unnecessary dose rates, and for safe operation. Different factors can strongly deteriorate the mechanical fuel rod properties: irradiation damage, thermo-mechanical impact, corrosion or hydrogen uptake. To investigate the mechanical properties of fuel rod claddings which are used in Swiss nuclear power plants, PSI has initiated a program for mechanical testing. A major issue was the interaction between specific loading devices and the tested cladding tube, e.g. in the form of bending or friction. Particular for Zircaloy is the hexagonal closed packed structure of the zirconium crystallographic lattice. This structure implies plastic deformation mechanisms with specific, preferred orientations. Further, the manufacturing procedure of Zircaloy claddings induces a specific texture which plays a salient role with respect to the embrittlement by irradiation or integration of hydrogen in the form of hydrides. Both, the induced microstructure as well as the plastic deformation behaviour play a role for the mechanical properties. At PSI, in a first step inactive thin walled Zircaloy tubes and, for comparison reasons, plates were tested. The validity of the mechanical testing of the non standard tube and plate geometries had to be verified. The used Zircaloy-4 cladding tube sections and small plates of the same wall thickness have been notched, fatigue pre-cracked and tensile tested to evaluate the fracture toughness properties at room temperature, 300 {sup o}C and 350 {sup o}C. The crack propagation has been determined optically. The test results of the plates have been further used to validate FEM calculations. For each sample a complete crack resistance (J-R) curve could

  9. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  10. COVE-1: a finite difference creep collapse code for oval fuel pin cladding material

    International Nuclear Information System (INIS)

    Mohr, C.L.

    1975-03-01

    COVE-1 is a time-dependent incremental creep collapse code that estimates the change in ovality of a fuel pin cladding tube. It uses a finite difference method of solving the differential equations which describe the deflection of the tube walls as a function of time. The physical problem is nonlinear, both with respect to geometry and material properties, which requires the use of an incremental, analytical, path-dependent solution. The application of this code is intended primarily for tubes manufactured from Zircaloy. Therefore, provision has been made to include some of the effects of anisotropy in the flow equations for inelastic incremental deformations. 10 references. (U.S.)

  11. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  12. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  13. Research Progress on Laser Cladding Amorphous Coatings on Metallic Substrates

    Directory of Open Access Journals (Sweden)

    CHEN Ming-hui

    2017-01-01

    Full Text Available The microstructure and property of amorphous alloy as well as the limitations of the traditional manufacturing methods for the bulk amorphous alloy were briefly introduced in this paper.Combined with characteristics of the laser cladding technique,the research status of the laser cladding Fe-based,Zr-based,Ni-based,Cu-based and Al-based amorphous coatings on the metal substrates were mainly summarized.The effects of factors such as laser processing parameter,micro-alloying element type and content and reinforcing phase on the laser cladding amorphous coatings were also involved.Finally,the main problems and the future research directions of the composition design and control of the laser-cladded amorphous coating,the design and optimization of the laser cladding process,and the basic theory of the laser cladding amorphous coatings were also put forward finally.

  14. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  15. Cladding failure margins for metallic fuel in the integral fast reactor

    International Nuclear Information System (INIS)

    Bauer, T.H.; Fenske, G.R.; Kramer, J.M.

    1987-01-01

    The Integral Fast Reactor (IFR) concept being developed at Argonne National Laboratory has prompted a renewed interest in uranium-based metal alloys as a fuel for sodium-cooled fast reactors. In this paper we will present recent measurements of cladding eutectic penetration rates for the ternary IFR alloy and will compare these results with earlier eutectic penetration data for other fuel and cladding materials. A method for calculating failure of metallic fuel pins is developed by combining cladding deformation equations with a large strain analysis where the hoop stress is calculated using the instantaneous wall thickness as determined from correlations of the eutectic penetration-rate data. This method is applied to analyze the results of in-reactor and out-of-reactor fuel pin failure tests on uranium-fissium alloy EBR-II Mark-II driver fuel. In the final section of this paper we extend the calculations to consider the failure of IFR ternary fuel under reactor accident conditions. (orig./GL)

  16. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  17. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  18. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  19. Clad fiber capacitor and method of making same

    Science.gov (United States)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  20. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  1. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  2. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  3. Computer analysis of elongation of the WWER fuel rod claddings

    International Nuclear Information System (INIS)

    Scheglov, A.; Proselkov, V.

    2008-01-01

    In this paper description of mechanisms influencing changes of the WWER fuel cladding length and axial forces influencing fuel and cladding are presented. It is shown that shortening of the fuel claddings in case of high burnup can be explained by the change of the fuel and cladding reference state caused by reduction of the fuel rod power level - during reactor outages. It is noted that the presented calculated data are to be reviewed and interpreted as the preliminary results; further work is needed for their confirmation. (authors)

  4. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  5. Rectangular-cladding silicon slot waveguide with improved nonlinear performance

    Science.gov (United States)

    Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong

    2018-04-01

    Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.

  6. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Rivera, J.E.; Meyer, J.E.

    1980-07-01

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  7. Determination of plastic anisotropy of zirconium alloys cladding

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Shestak, V.E.

    1991-01-01

    Method for determining plastic anisotropy of zurconium alloy cladding is described. It is based on consideration of material as a combination of transversal crystallites with known distribution over orientations. Such approach enables to describe cladding resistance to plastic deformation at arbitrary stressed state, using the results of texture investigations and uniaxial tests of samples, cut out of claddings along three directions. Plastic anisotropy of fuel element claddings 9.15 and 13.6 mm in diameter up to several percents of plastic deformation is shown

  8. Curtain color and lighting program in broiler production: III - thermal comfort

    Directory of Open Access Journals (Sweden)

    Paulo Giovanni de Abreu

    2011-09-01

    Full Text Available The objective of this study was to evaluate the thermal comfort of broilers reared under two lighting programs (almost continuous and intermittent in broiler houses with yellow or blue lateral curtains. The experiment was carried out from June 24, 2004 until May 12, 2005. Six consecutive flocks were housed in four 12 × 10 m broilers houses internally divided into four pens of 200 birds each. Six flocks were raised on the same litter. The registration of data was accomplished at 3-hour intervals, for 24 hours twice a week. In the center of each pen and outside the house, dry and wet bulb temperatures, black globe temperature, and air velocity were collected. Based on the data collected at each time, air temperature (AT (ºC, black globe humidity temperature index (BGHTI, radiant thermal load (RTL (W/m², and relative air humidity (RH were determined. Harmonic analysis was used to estimate m, R, and f parameters. In general, the best results in terms of thermal comfort for the birds were found when near-continuous lighting program and yellow curtain were used.

  9. On radiative transfer in water spray curtains using the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)

    2005-04-15

    Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.

  10. On the use of infrared thermography in studies with air curtain devices

    Energy Technology Data Exchange (ETDEWEB)

    Neto, L. P. C. [Departamento de Engenharia Industrial, Escola Superior de Tecnologia, Instituto Politecnico de Castelo Branco, Castelo Branco (Portugal); Silva, M. C. G.; Costa, J. J. [Departamento de Engenharia Mecanica, Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Polo II, Coimbra (Portugal)

    2006-07-01

    Among the different existing methods to characterise the aerodynamic sealing effect provided by an air curtain device placed over the opening between two contiguous compartments, infrared thermography has revealed to be a very useful tool. Besides allowing the capture, in an expedite way, of instantaneous images of the temperature field in the neighbourhood of the door, the technique hereon described has other advantages, in terms of quick and easy setup, low intrusive character and liability of obtained results. To apply this method, a large sheet of paper was stretched in the direction perpendicular to the opening where the air curtain device has placed to allow the registration of pictures or video sequences with an infrared camera setup in its maximum sensitivity. Good concordance between the thermographs obtained with this technique and the temperature fields measured for the same plane with a rack of 16 low velocity omni-directional thermal anemometer probes allowed its validation. Various elucidative examples of the use of this technique as a complementary tool for analysis and visualization of the complex physical phenomena occurring for the studied flow are presented in this article. (author)

  11. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2013-08-01

    compressive stresses were induced by clad bending deformation due to a clad bulging effect (or the barreling effect). The barreling effect caused very large localized shear stress in the clad and left testing material at a high risk of shear failure. The above combined effects will result in highly non-conservative predictions both in strength and ductility of the tested clad, and the associated mechanical properties as well. To overcome/mitigate the mentioned deficiencies associated with the current expansion plug test, systematic studies have been conducted. Through detailed parameter investigation on specific geometry designs, careful filtering of material for the expansion plug, as well as adding newly designed parts to the testing system, a method to reconcile the potential non-conservatism embedded in the expansion plug test system has been discovered. A modified expansion plug testing protocol has been developed based on the method. In order to closely resemble thin-wall theory, a general procedure was also developed to determine the hoop stress in the tested ring specimen. A scaling factor called -factor is defined to correlate the ring load P into hoop stress . , = . The generated stress-strain curve agrees very well with tensile test data in both the elastic and plastic regions.

  12. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  13. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  14. Characteristics and properties of cladding tubes for VVER-1000 higher Uranium content fuel rods

    International Nuclear Information System (INIS)

    Peregud, M.; Markelov, A.; Novikov, V.; Gusev, A.; Konkov, V.; Pimenov, Y.; Agapitov, V.; Shtutsa, M.

    2009-01-01

    To improve the fuel cycle economics and to further increase the VVER fuel usability the work programme is under way to design novel improved fuel, fuel rods and fuel assemblies. Longer FA operation time that is needed to increase the fuel burnup and the related design developments of novel fuel assemblies resulted not only in changing types and sizes of Zirconium items and fuel assembly components but also altered the requirements placed on their technical characteristics. To use fuel rods having a larger charge of fuel, to improve their behaviour in LOCA, to reduce fuel rod damage ability during assembling the work was carried out to perfect the characteristics of both the cladding (reduced wall thickness and more rigid tolerances for geometry) and its material. To meet the more rigid requirements for the geometry dimensions of cladding tubes an improved process flow sheet has been designed and employed for their fabrication and also the finishing treatment of tube surfaces has been improved. The higher and stable properties of the cladding materials were managed through using the special purity in terms of Hafnium Zirconium (not higher than 100 ppm Hf) as a base of the E110 alloy and maintaining within the valid specifications for the alloy the optimized contents of Oxygen and Iron at the levels of (600 - 990) ppm and (250 - 700) ppm, respectively. The work was under way in 2004 - 2008 years; during this period the technology and materials science solutions were mastered that were phased-in introduced into the production of the cladding tubes for the fuels loaded into the of the Kalinin NPP Unit 1

  15. Advanced in-situ characterisation of corrosion properties of LWR fuel cladding materials

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Beverskog, B.

    1999-01-01

    The trend towards higher fuel burnups imposes a demand for better corrosion and hydriding resistance of cladding materials. Development of new and improved cladding materials is a long process. There is a lack of fast and reliable in-situ techniques to investigate zirconium alloys in simulated or in-core LWR coolant conditions. This paper describes a Thin Layer Electrode (TLE) arrangement suitable for in-situ characterization of oxide films formed on fuel cladding materials. This arrangement enables us to carry out: Versatile Thin Layer Electrochemical measurements, including: (i) Thin Layer Electrochemical impedance Spectroscopic (TLEIS) measurements to characterize the oxidation kinetics and mechanisms of metals and the properties of their oxide films in aqueous environments. These measurements can also be performed in low conductivity electrolytes. (ii) Thin-Layer Wall-Jet (TLWJ) measurements, which give the possibility to detect soluble reaction products and to evaluate the influence of novel water chemistry additions on their release. Solid Contact measurements: (i) Contact Electric Resistance (CER) measurements to investigate the electronic properties of surface films on the basis of d.c. resistance measurements. (i) Contact Electric impedance (CEI) measurements to study the electronic properties of surface films using a.c. perturbation. All the above listed measurements can be performed using one single measurement device developed at VTT. This device can be conveniently inserted into an autoclave. Its geometry is currently being optimized in cooperation with the OECD Halden Reactor Project. In addition, the applicability of the device for in-core measurements has been investigated in a joint feasibility study performed by VTT and JRC Petten. Results of some autoclave studies of the effect of LiOH concentration on the stability of fuel cladding oxide films are presented in this paper. (author)

  16. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  17. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  18. Investigation of Y2O3 distribution in the welded joints of the fast reactor fuel claddings made of oxide dispersion strengthened steel

    International Nuclear Information System (INIS)

    Tabakin, E.M.; Kuz'min, S.V.; Ivanovich, Yu.V.; Ukai, Sh.; Kaito, T.; Seki, M.

    2007-01-01

    The study results of Y 2 O 3 distribution in welded joints of claddings from oxide dispersion strengthened steel produced by the technique of powder metallurgy are given in this paper. Change of content and distribution uniformity of yttrium oxide in welds in comparison with metal shell is the result of using flash welding of thin-walled fuel claddings. It is shown that concentration and yttrium oxide distribution uniformity in the cross section of weld, made by pulse laser welding is more high as compared with argon-arc welding [ru

  19. Rheological evaluation of pretreated cladding removal waste

    International Nuclear Information System (INIS)

    McCarthy, D.; Chan, M.K.C.; Lokken, R.O.

    1986-01-01

    Cladding removal waste (CRW) contains concentrations of transuranic (TRU) elements in the 80 to 350 nCi/g range. This waste will require pretreatment before it can be disposed of as glass or grout at Hanford. The CRW will be pretreated with a rare earth strike and solids removal by centrifugation to segregate the TRU fraction from the non-TRU fraction of the waste. The centrifuge centrate will be neutralized with sodium hydroxide. This neutralized cladding removal waste (NCRW) is expected to be suitable for grouting. The TRU solids removed by centrifugation will be vitrified. The goal of the Rheological Evaluation of Pretreated Cladding Removal Waste Program was to evaluate those rheological and transport properties critical to assuring successful handling of the NCRW and TRU solids streams and to demonstrate transfers in a semi-prototypic pumping environment. This goal was achieved by a combination of laboratory and pilot-scale evaluations. The results obtained during these evaluations were correlated with classical rheological models and scaled-up to predict the performance that is likely to occur in the full-scale system. The Program used simulated NCRW and TRU solid slurries. Rockwell Hanford Operations (Rockwell) provided 150 gallons of simulated CRW and 5 gallons of simulated TRU solid slurry. The simulated CRW was neutralized by Pacific Northwest Laboratory (PNL). The physical and rheological properties of the NCRW and TRU solid slurries were evaluated in the laboratory. The properties displayed by NCRW allowed it to be classified as a pseudoplastic or yield-pseudoplastic non-Newtonian fluid. The TRU solids slurry contained very few solids. This slurry exhibited the properties associated with a pseudoplastic non-Newtonian fluid

  20. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  1. PHITS simulations of the Protective curtain experiment onboard the Service module of ISS: Comparison with absorbed doses measured with TLDs

    Czech Academy of Sciences Publication Activity Database

    Ploc, Ondřej; Sihver, L.; Kartashov, D.; Shurshakov, V.; Tolochek, R. V.

    2013-01-01

    Roč. 52, č. 11 (2013), s. 1911-1918 ISSN 0273-1177 Institutional support: RVO:61389005 Keywords : protective curtain experiment * shielding of cosmic radiation * PHITS simulations * ISS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.238, year: 2013

  2. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  3. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  4. Method and device for weld deposit cladding

    International Nuclear Information System (INIS)

    Barger, J.J.

    1977-01-01

    In order to get weld beads of good quality, uniform thickness and faultless transition regions between neighboring beads in weld deposit cladding of metallic workpoeces, it is proposed to use a device in which the electromagnets are arranged adjacent to th zone of molten welding powder and molten metal besides having got suitable supplies for applying the welding powder, the polarity of the magnets being chosen in such a way that the lines of flux between the poles are counteracting the lines of flux surrounding the electrode band because of the welding current. Several variants of arranging the electrodes are presented in detail. (UWI) [de

  5. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  6. Termination of plastic-clad fiber

    International Nuclear Information System (INIS)

    Nance, W.R.

    1982-03-01

    Optical waveguides are ideal in a nuclear weapon environment because of their resistance to electromagnetic interference. Of the fibers on today's market, plastic-clad silica (PCS) is the most radiation resistant and therfore the best choice. Because terminating PCS is complex, this paper attemps to address the major problems associated with these terminations including selecting the proper connector and optimizing the terminating procedures. The sources of losses in the connectors are summarized and typical loss values are given for four connectors which were tested

  7. CO2 laser cladding of VERSAlloyTM on carbon steel with powder feeding

    International Nuclear Information System (INIS)

    Kim, Jae-Do; Kweon, Jin-Wook

    2007-01-01

    Laser cladding processing with metal powder feeding has been experimented on carbon steel with VERSAlloy TM . A special device for the metal powder feeding was designed and manufactured. By adopting proper cladding parameters, good clad layers and sound metallurgical bonding with the base metal were obtained. Analysis indicates that the micro hardness of clad layer and the heat-affected zone increased with increasing of cladding speed. The experimental results showed that VERSAlloy TM cladded well with carbon steel

  8. VELOCITY OF VISCID FLOW LANDSLIDES IN THE EVENT OF A PILE CURTAIN AND A CONTINUOUS RETAINING WALL

    Directory of Open Access Journals (Sweden)

    Buslov Anatoliy Semenovich

    2012-10-01

    The third section, which can be compared with the flow of viscid fluid in a canal, is typical for buttresses that have a significant length in the direction of the landslide flow. The papers hows that the common parameter applicable both to solid and dispersed barriers is the controlled volume of the fluid flow at the point of entry to the pre-boundary area. As a result of application of the proposed methodology, equations were obtained that made it possible to calculate the speed of the viscid slide depending on different types of piles. The paper describes the conditions that make the viscid mass climb over the constructed barrier.

  9. Evaluation of the effectiveness of grouting curtain on the basis of the analysis of groundwater temperature fluctuations behind the dam

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-04-01

    Full Text Available In the article the authors considered the technique of evaluating the performance of a grouting curtain basing on the analysis of mathematical forecasting and regular measurements of water temperature in the reservoir and in the rock mass behind the dam. The initial data for the solution of heat transfer problem are the rate of filtration, obtained from the solution of the stationary problem of filtration, and the experimental factor, generalizing thermophysical properties of rocks. For calculating the period of time from to the change of the water temperature in the reservoir till the change of water temperature at the reference point of the rock mass a computer program was designed, which allows defining the path and time of filtration from the reservoir to the reference point in the rock mass with the help of the reverse conversion on flow lines. The calculation was carried out from the point in question in the rock mass till the crossing paths of filtration with the bottom boundary of the reservoir. As an example, we present the results of computational studies of filtration and temperature regimes in the rock foundation of a concrete dam at the design work of the grouting curtain and in case of the presence of pervious area. The calculations were performed with a time step dt = 2 days. At each time step, with account of water motion along the lines of the current through the rock mass, the previous position of the reference points in space has been determined, for which the value of the velocity vector of filtration field was corrected. In the first case, the motion of water from the reservoir was carried out in the circumvention of the grouting curtain. In the second case, the motion of water took place from the reservoir through the permeable portion of the grouting curtain. The change of the water temperature during its seepage from the water reservoir through permeable area of grouting curtain because of conductive heat transmission in

  10. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns

    Directory of Open Access Journals (Sweden)

    Zhongkui Li

    2016-10-01

    Full Text Available The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years' experiences obtained from the first large-scale (millions of cubic meters underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles

  11. Long-range plasmonic waveguides with hyperbolic cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly...

  12. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    International Nuclear Information System (INIS)

    Besch, O.A.; Yagnik, S.K.; Eucken, C.M.; Bradley, E.R.

    1996-01-01

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked

  13. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko; van den Boogaard, Antonius H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler

  14. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  15. Material Selection for Accident Tolerant Fuel Cladding

    International Nuclear Information System (INIS)

    Pint, Bruce A.; Terrani, Kurt A.; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H 2 environments at ≥1473 K (1200°C) for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti 2 AlC form a protective alumina scale in steam. However, commercial Ti 2 AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO 2 , and therefore Ti 2 AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α' formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  16. Chemical interaction of fuel and cladding tubes

    International Nuclear Information System (INIS)

    Kirihara, Tomoo; Yamawaki, Michio; Obata, Naomi; Handa, Muneo.

    1983-01-01

    It was attempted to take up the behavior of nuclear fuel in cores and summarize it by the expert committee on the irradiation behavior of nuclear fuel from fiscal 1978 to fiscal 1980 from the following viewpoints. The behavior of nuclear fuel in cores has been treated separately according to each reactor type, accordingly this point is reconsidered. The clearly understood points and the uncertain points are discriminated. It is made more easily understandable for people in other fields of atomic energy. This report is that of the group on the chemical interaction, and the first report of this committee. The chemical interaction as the behavior of fuel in cores is in the unseparable relation to the mechanical interaction, but this relation is not included in this report. The chemical interaction of fuel and cladding tubes under irradiation shows different phenomena in LWRs and FBRs, and is called SCC and FCC, respectively. But this point of causing the difference must be understood to grasp the behavior of fuel. The mutual comparison of oxide fuels for FBRs and LWRs, the stress corrosion cracking of zircaloy tubes, and fuel-cladding chemical interaction in FBRs are reported. (Kako, I.)

  17. Material Selection for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    Alternative cladding materials to Zr-based alloys are being investigated for accident tolerance, which can be defined as > 100X improvement (compared to Zr-based alloys) in oxidation resistance to steam or steam-H2 environments at ≥ 1200°C for short times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that was not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore Ti2AlC may be challenging to form as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation-assisted α´ formation. The composition effects and critical limits to retaining protective scale formation at > 1400°C are still being evaluated.

  18. Fuel cladding tube leak detection device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1992-01-01

    The device of the present invention can detect even a minute leakage or a continuous leakage during reactor operation. That is, the device of the present invention comprises a detector for analyzing nuclides of gases incorporated in a gas waste processing system, and a calculation device connected to the detector and detecting leakage from a fuel cladding tube by calculation for variation coefficient of long-life nuclides. By using theses devices, radioactivity contained in gases incorporated in the gas waste processing system is analyzed for the nuclides. Among the analized nuclides, if the amount of the long-life nuclides exceeds a predetermined value, it is judged as leakage of the fuel cladding tube. For example, the long-life nuclides include Xe-133. The device of the present invention can certainly detect occurrence of leakage even when it is minute or continues leakage. Accordingly, countermeasures can be taken in an early stage, thereby enabling to contribute improvement for the safety of a nuclear power plant. (I.S.)

  19. Preliminary study on detection technology of the cladding weld of spent fuel storage pool

    Science.gov (United States)

    Qi, Pan; Cui, Hongyan; Feng, Meiming; Shao, Wenbin; Liao, Shusheng; Li, Wei

    2018-04-01

    As the first barrier of the Spent fuel storage pool, the steel cladding using different sizes (length×width) of 304L stainless steel with 3˜6mm thickness plate argon arc welded together which is direct contacted with boric acid water. Environmental humidity between the back of steel cladding and concrete, makes phosphate, chloride ion overflowed from the concrete that corroded on the weld zone with different mechanism. Part of the corrosion defects can penetrate leaded to leakage of boric acid water in penetration position accelerated crack propagation. In view of the above situation and combined with the actual needs of the power plant, the development of effective underwater nondestructive testing means of the weld area for periodic inspection and monitoring is necessary. A single method may lead to the missing of defects detection due to weld reinforcement unpolished. In this paper, eddy current array (ARRAY) and Alternating Current Field Measurement (ACFM) are adapted to test the limit sensitivity and resolution through by the specimens with artificial defects which make their detection abilities close to satisfy engineering requirements. The preliminary study found that Φ0.5mm through-wall hole and with 2mm length and 0.3mm width through-wall crack in the weld can be good inspected.

  20. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  1. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  2. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current US innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery

  3. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength......We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...

  4. Study on process of laser cladded nuclear valve parts

    International Nuclear Information System (INIS)

    Zhang Chunliang

    2000-01-01

    The microstructure and performances of the Co-base alloy coatings that are formed by laser cladding, plasma spurt welding and arc surfacing on the nuclear valve-sealing surface have been studied and compared. The combination costs of laser cladding, plasma spurt welding and arc, surfacing have been analyzed and compared. The results showed that the laser cladding processing has the advantages of high efficiency, low energy cost, a little machining allowance, high rate of finished products and low combination cost, compared with plasma spurt welding processing and arc surfacing processing. The laser cladding technology can improve the qualities of nuclear valve parts and increase their service life. Therefore, the laser cladding processing is a new technology with developing potential

  5. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current U.S. innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery. (orig.)

  6. Test system to simulate transient overpower LMFBR cladding failure

    International Nuclear Information System (INIS)

    Barrus, H.G.; Feigenbutz, L.V.

    1981-01-01

    One of the HEDL programs has the objective to experimentally characterize fuel pin cladding failure due to cladding rupture or ripping. A new test system has been developed which simulates a transient mechanically-loaded fuel pin failure. In this new system the mechanical load is prototypic of a fuel pellet rapidly expanding against the cladding due to various causes such as fuel thermal expansion, fuel melting, and fuel swelling. This new test system is called the Fuel Cladding Mechanical Interaction Mandrel Loading Test (FCMI/MLT). The FCMI/MLT test system and the method used to rupture cladding specimens very rapidly to simulate a transient event are described. Also described is the automatic data acquisition and control system which is required to control the startup, operation and shutdown of the very fast tests, and needed to acquire and store large quantities of data in a short time

  7. Polarization characteristics of double-clad elliptical fibers.

    Science.gov (United States)

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  8. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  9. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  10. New method to calculate the mechanical properties of unirradiated fuel cladding from ring tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rengel, M.A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain); Consejo de Seguridad Nuclear (CSN), Justo Dorado 11, E-28040 Madrid (Spain); Gomez, F.J.; Ruiz-Hervias, J.; Caballero, L.; Valiente, A. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, E-28040 Madrid (Spain)

    2009-06-15

    displacement of the loading piece and another one between the equivalent stress in the same point and the nominal applied stress. In the first iteration a calculation is performed with an approximate plastic stress-strain law, and the two above-mentioned relationships are used to determine a new law from the experimental results. In the second iteration the calculation takes into account the new plastic stress-strain law and determines two new relationships. After a few iterations an excellent fit is obtained. This method is an improvement of the original method by Arsene and Bai [3] and allows obtaining the plastic stress-strain curve in the hoop direction in a consistent way. The experimental data used in this work to check the validity of the procedure have been obtained on unirradiated Zirlo cladding, with the standard alloy composition and geometry (outer diameter of the cladding 9.5 mm and a wall thickness of 0.56 mm). References: [1]. Arsene, S.; Bai, J.B. A new approach to measuring transverse properties of structural tubing by a ring test, Journal of Testing and Evaluation, 24: 386-391 (1996) [2]. Arsene, S.; Bai, J. 'A new approach to measuring transverse properties of structural tubing by a ring test-experimental investigation', Journal of Testing and Evaluation, 26: 26-30 (1998) [3]. Arsene, S.; Bai, J.B.; 'Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 deg. C and 300 deg. C', Metallurgical and materials and transactions A, 34A: 553-566 (2003) [4]. Chang-Sun Seok, Bong-Kook, K.Linga, 'The properties of the ring and burst creep of zirlo claddings', Engineering Failure Analysis, 13: 389-397 (2006). (authors)

  11. Concept and construction process of the ceramic curtain of Vila-real Library

    Directory of Open Access Journals (Sweden)

    A. Peñín Llobell

    2016-12-01

    Full Text Available The construction of the Library of Vila-real, selected in 2012 in the VIII Latin American Biennial of Architecture and Urbanism, highlights the importance of collaboration with industry for the development and application of its outer membrane. The analysis of the construction process of the ceramic cylindrical curtain that defines it, performed by white glazed ceramic, 5 cm diameter and 7.5 m height, reveals this fact. The system builds an interstitial space, essential for its use and environmental integration. At the same time it links the building to both local industrial fabric, which aims to establish itself as one of its exponents, and to the Mediterranean culture of filters. The procedure followed is ascribed to the postartesanal and pragmatic perspective that beyond the modern heroes, introduced characters like Jean Prouvé and that today, we state, should find natural and legal channels for its development, on behalf of the progress of the construction sector.

  12. Determination of the stresses and displacements in the cut off curtain body executed by the > method

    International Nuclear Information System (INIS)

    Snisarenko, V.I.; Mel'nikov, A.I.

    1994-01-01

    Construction of the cut-off-curtain (COC) is analyzed as a possible variant to reduce the rate of radioactive horizontal migration. Such constructions can be executed by the > method. The theoretical analysis of the stress-strained state of the carried out using the methods of the theory of elasticity and of the limit equilibrium of the strewing medium. Theoretical dependences are obtained and formulas for practical calculations of the COC-body stress-strained state in the depth intervals which are of practical interest are suggested. The dependences obtained may be used to calculate the consolidation parameters and filtration coefficients, to choose materials for the COC body, geometrical size and film elements included

  13. Blow capacity of an air curtain; Hoe hard denkt u dat een luchtgrodijn moet blazen?

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, B.E. [Biddle, Kootstertille (Netherlands)

    2003-03-01

    In winter, the heat capacity of a conventional air curtain can often be increased by adjusting the speed of its outlet velocity. This article demonstrates that for various reasons, it is better to adjust the width of the outlet if you need to boost the heat level rather than the outlet velocity. It also describes the benefits of this CA (Constant Air Velocity) Technology in the interests of energy conservation and comfort. [Dutch] In de winter wordt de warmtecapaciteit van een conventioneel luchtgordijn vaak verhoogd door de uitblaassnelheid aan te passen. Dit artikel toont aan dat het om meerdere redenen beter is om bij een hogere warmtebehoefte de uitblaasbreedte aan te passen in plaats van de uitblaassnelheid. Daarnaast beschrijft het de voordelen van deze CA-technologie (Constant Air velocity) wat betreft energieverbruik en comfort.

  14. Between East and West: polio vaccination across the Iron Curtain in Cold War Hungary.

    Science.gov (United States)

    Vargha, Dora

    2014-01-01

    In 1950s Hungary, with an economy and infrastructure still devastated from World War II and facing further hardships, thousands of children became permanently disabled and many died in the severe polio epidemic that shook the globe. The relatively new communist regime invested significantly in solving the public health crisis, initially importing a vaccine from the West and later turning to the East for a new solution. Through the history of polio vaccination in Hungary, this article shows how Cold War politics shaped vaccine evaluation and implementation in the 1950s. On the one hand, the threat of polio created a safe place for hitherto unprecedented, open cooperation among governments and scientific communities on the two sides of the Iron Curtain. On the other hand, Cold War rhetoric influenced scientific evaluation of vaccines, choices of disease prevention, and ultimately the eradication of polio.

  15. Assessment of the use of selected chemical and microbiological constituents as indicators of wastewater in curtain drains from home sewage-treatment systems in Medina County, Ohio

    Science.gov (United States)

    Dumouchelle, Denise H.

    2006-01-01

    Many home sewage-treatment systems (HSTS) in Ohio use curtain or perimeter drains to depress the level of the subsurface water in and around the systems. These drains could possibly intercept partially untreated wastewater and release potential pathogens to ground-water and surface-water bodies. The quality of water in curtain drains from two different HSTS designs in Medina County, Ohio, was investigated using several methods. Six evaporation-transpiration-absorption (ETA) and five leach-line (LL) systems were investigated by determining nutrient concentrations, chloride/bromide ratios (Cl/Br), Escherichia coli (E. coli ) concentrations, coliphage genotyping, and genetic fingerprinting of E. coli. Water samples were collected at 11 sites and included samples from curtain drains, septic tanks, and residential water wells. Nitrate concentrations in the curtain drains ranged from 0.03 to 3.53 mg/L (milligrams per liter), as N. Concentrations of chloride in 10 of the 11 curtain drains ranged from 5.5 to 21 mg/L; the chloride concentration in the eleventh curtain drain was 340 mg/L. Bromide concentrations in 11 curtain drains ranged from 0.01 to 0.22 mg/L. Cl/Br ratios ranged from 86 to 2,000. F-specific coliphage were not found in any curtain-drain samples. Concentrations of E. coli in the curtain drains ranged from 1 to 760 colonies per 100 milliliters. The curtain-drain water-quality data were evaluated to determine whether HSTS-derived water was present in the curtain drains. Nutrient concentrations were too low to be of use in the determination. The Cl/Br ratios appear promising. Coliphage was not detected in the curtain drains, so genotyping could not be attempted. E. coli concentrations in the curtain drains were all less than those from the corresponding HSTS; only one sample exceeded the Ohio secondary-contact water-quality standard. The genetic fingerprinting data were inconclusive because multiple links between unrelated sites were found. Although the

  16. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  17. Bragg grating induced cladding mode coupling due to asymmetrical index modulation in depressed cladding fibers

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Grüne-Nielsen, Lars; Soccolich, C.F.

    1998-01-01

    to reduce this problem. None of these designs seems to give complete solutions. In particular, the otherwise promising depressed cladding design gives a pronounced coupling to one LP01 mode, this has been referred to as a Ghost grating. To find the modes of the fiber we have established a numerical mode......UV-written Bragg gratings find wide spread use as wavelength selective components. In reflection high extinction ratios are routinely obtained. However, coupling to cladding modes gives excess loss on the short wavelength side of the main reflection. Different fiber-designs have been proposed......-solver based on the staircase-approximation method. The Bragg grating causes coupling between the fundamental LP01 mode and higher order LP1p modes that satisfy phase-matching. The coupling strength is determined by the overlap integral of the LP01, the LP1p mode, and the UV-induced index perturbation. For LP0...

  18. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production

    Science.gov (United States)

    Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter

    2016-01-01

    Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission

  19. Influence of texture on fracture toughness of zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V. [Studsvik Material AB, Nykoeping (Sweden); Andersson, Stefan [Royal Inst. of Tech., Stockholm (Sweden)

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill`s theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture. With a 2 page summary in Swedish. 32 refs, 18 figs.

  20. Experimental approach for adhesion strength of ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Kim, Hyochan; Yang, Yongsik; In, Wangkee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Haksung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The quality of a coating depends on the quality of its adhesion bond strength between the coating and the underlying substrate. Therefore, it is essential to evaluate the adhesion properties of the coating. There are many available test methods for the evaluation of coatings adhesion bond strength. Considering these restrictions of the coated cladding, the scratch test is useful for evaluation of adhesion properties compared to other methods. The purpose of the present study is to analyze the possibility of adhesion bond strength evaluation of ATF coated cladding by scratch testing on coatings cross sections. Experimental approach for adhesion strength of ATF coated cladding was investigated in the present study. The scratch testing was chosen as a testing method. Uncoated zircaloy-4 tube was employed as a reference and plasma spray and arc ion coating were selected as a ATF coated claddings for comparison. As a result, adhesion strengths of specimens affect the measured normal and tangential forces. For the future, the test will be conducted for CrAl coated cladding by laser coating, which is the most promising ATF cladding. Computational analysis with finite element method will also be conducted to analyze a stress distribution in the cladding tube.

  1. Investigations on dry sliding of laser cladded aluminum bronze

    Directory of Open Access Journals (Sweden)

    Freiße Hannes

    2016-01-01

    Full Text Available The aim of this study was to investigate the tribological behaviour of laser cladded aluminum bronze tool surfaces for dry metal forming. In a first part of this work a process window for cladding aluminum bronze on steel substrate was investigated to ensure a low dilution. Therefore, the cladding speed, the powder feed rate, the laser power and the distance between the process head and the substrate were varied. The target of the second part was to investigate the influence of different process parameters on the tribological behaviour of the cladded tracks. The laser claddings were carried out on both aluminum bronze and cold work tool steel as substrate materials. Two different particle sizes of the cladding powder material were used. The cladding speed was varied and a post-processing laser remelting treatment was applied. It is shown that the tribological behaviour of the surface in a dry oscillating ball-on-plate test is highly dependent on the substrate material. In the third part a deep drawing tool was additively manufactured by direct laser deposition. Furthermore, the tool was applied to form circular cups with and without lubrication.

  2. The prediction problems of VVER fuel element cladding failure theory

    International Nuclear Information System (INIS)

    Pelykh, S.N.; Maksimov, M.V.; Ryabchikov, S.D.

    2016-01-01

    Highlights: • Fuel cladding failure forecasting is based on the fuel load history and the damage distribution. • The limit damage parameter is exceeded, though limit stresses are not reached. • The damage parameter plays a significant role in predicting the cladding failure. • The proposed failure probability criterion can be used to control the cladding tightness. - Abstract: A method for forecasting of VVER fuel element (FE) cladding failure due to accumulation of deformation damage parameter, taking into account the fuel assembly (FA) loading history and the damage parameter distribution among FEs included in the FA, has been developed. Using the concept of conservative FE groups, it is shown that the safety limit for damage parameter is exceeded for some FA rearrangement, though the limits for circumferential and equivalent stresses are not reached. This new result contradicts the wide-spread idea that the damage parameter value plays a minor role when estimating the limiting state of cladding. The necessary condition of rearrangement algorithm admissibility and the criterion for minimization of the probability of cladding failure due to damage parameter accumulation have been derived, for using in automated systems controlling the cladding tightness.

  3. Bending of pipes with inconel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nachpitz, Leonardo; Menezes, Carlos Eduardo B; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)

    2009-07-01

    The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)

  4. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Solution treatment of fast reactor claddings

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro

    1974-01-01

    The fuel cladding tubes for Joyo (experimental FBR) are required to be a material corresponding to AISI Type 316 and cold-rolled after solution treatment. It is necessary to have no precipitation of carbide and to make the grain size smaller than ASTM No.6. It is very difficult to obtain the fine grains without the precipitation, however. In this connection, the behavior of carbide solution at high temperature and the annealing behavior of the material cold-worked and solution-treated were studied. The following matters are described: the solid solubility line of AISI Type 316; the behavior of carbide at solution treatment temperature; and the annealing behavior of the cold-worked material. (Mori, K.)

  6. Plasma spheroidizing and cladding of powders

    International Nuclear Information System (INIS)

    Petrunichev, V.A.; Averin, V.V.; Sorokin, L.M.; Koroleva, E.B.

    1987-01-01

    Arc and high-frequency plasmatrons are used for spheroidizing nickel and chromium-base alloy particles. Different plasma-forming medium compositions are used in the arc variant and the effect of these media on the plasma treatment product is demonstrated. For a high-frequency plasmatron, a long time of plasma contact with the powder leads to the transfer of the part of the material from the treated particles into vaporous state with subsequent condensation at the outlet from the discharge zone. Results of investigations into the formation of metal coatings on oxide and carbide particles during plasma-arc action are also presented. Representative data on the output of particles with coating are obtained and factors, providing for the optimal particle cladding conditions, are indicated

  7. Estimation of penetration depth of fission products in cladding Hull

    International Nuclear Information System (INIS)

    Kim, Hee Moon; Jung, Yang Hong; Yoo, Byong Ok; Choo, Yong Sun; Hong, Kwon Pyo

    2005-01-01

    A disposal and a reprocessing for spent fuel rod with high burnup need de-cladding procedure. Pellet in this rod has been separated from a cladding hull to reduce a radioactivity of hull by chemical and mechanical methods. But fission products and actinides(U,Pu) still remain inside of cladding hull by chemical bonding and fission spike, which is called as 'contamination'. More specific removal of this contamination would have been considered. In this study, the sorts of fission products and penetration depth in hull were observed by EPMA test. To analyze this behavior, SRIM 2000 code was also used as energies of fission products and an oxide thickness of hull

  8. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  9. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  10. Fabrication of oxide dispersion strengthened ferritic clad fuel pins

    International Nuclear Information System (INIS)

    Zirker, L.R.; Bottcher, J.H.; Shikakura, S.; Tsai, C.L.

    1991-01-01

    A resistance butt welding procedure was developed and qualified for joining ferritic fuel pin cladding to end caps. The cladding are INCO MA957 and PNC ODS lots 63DSA and 1DK1, ferritic stainless steels strengthened by oxide dispersion, while the end caps are HT9 a martensitic stainless steel. With adequate parameter control the weld is formed without a residual melt phase and its strength approaches that of the cladding. This welding process required a new design for fuel pin end cap and weld joint. Summaries of the development, characterization, and fabrication processes are given for these fuel pins. 13 refs., 6 figs., 1 tab

  11. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  12. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  13. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes

    International Nuclear Information System (INIS)

    Xu Guojian; Kutsuna, Muneharu; Liu Zhongjie; Zhang Hong

    2006-01-01

    The clad layers of Ni-based alloy were deposited on the SUS316L stainless plates by CO 2 laser and plasma cladding processes. The smooth clad bead was obtained by CO 2 laser cladding process. The phases of clad layer were investigated by an optical microscope, scanning electron microscopy (SEM), X-ray diffractometer (XRD), electron probe microanalysis (EPMA) and energy-dispersive spectrometer (EDS). The microstructures of clad layers belonged to a hypereutectic structure. Primary phases consist of boride CrB and carbide Cr 7 C 3 . The eutectic structure consists of Ni + CrB or Ni + Cr 7 C 3 . Compared with the plasma cladding, the fine microstructures, low dilutions, high Vickers hardness and excellent wear resistance were obtained by CO 2 laser cladding. All that show the laser cladding process has a higher efficiency and good cladding quality

  14. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  15. Nuclear fuel clad clothed with burnable poison and obtainment process

    International Nuclear Information System (INIS)

    Diez, P.; Netter, P.

    1994-01-01

    This clad has preferentially on its inner surface a boron compound such boron carbide or boron nitrogen deposited by Chemical Vapor Deposition or by Physical Vapor Deposition without any temperature elevation injurious to its mechanical properties. 3 figs

  16. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  17. A Multi-Scale Modeling of Laser Cladding Process (Preprint)

    National Research Council Canada - National Science Library

    Cao, J; Choi, J

    2006-01-01

    Laser cladding is an additive manufacturing process that a laser generates a melt-pool on the substrate material while a second material, as a powder or a wire form, is injected into that melt-pool...

  18. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  19. Composite polymer: Glass edge cladding for laser disks

    Science.gov (United States)

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  20. Composite polymer-glass edge cladding for laser disks

    Science.gov (United States)

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  1. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  2. Siemens advance PWR fuel assemblies (HTP) and cladding

    International Nuclear Information System (INIS)

    Stout, R. B.; Woods, K. N.

    1997-01-01

    This paper describes the key features of the Siemens HTP (High Thermal Performance) fuel design, the current in-reactor performance of this advanced fuel assembly design, and the advanced cladding types available

  3. Cladding axial elongation models for FRAP-T6

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.; Berna, G.A.

    1983-01-01

    This paper presents a description of the cladding axial elongation models developed at the Idaho National Engineering Laboratory (INEL) for use by the FRAP-T6 computer code in analyzing the response of fuel rods during reactor transients in light water reactors (LWR). The FRAP-T6 code contains models (FRACAS-II subcode) that analyze the structural response of a fuel rod including pellet-cladding-mechanical-interaction (PCMI). Recently, four models were incorporated into FRACAS-II to calculate cladding axial deformation: (a) axial PCMI, (b) trapped fuel stack, (c) fuel relocation, and (d) effective fuel thermal expansion. Comparisons of cladding axial elongation measurements from two experiments with the corresponding FRAP-T6 calculations are presented

  4. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  5. Second phase precipitation in irradiated Type 316 stainless steel cladding

    International Nuclear Information System (INIS)

    Hales, J.W.

    1978-05-01

    Differences in the phase composition of FFTF fuel cans following irradiation in the General Electric Test Reactor compared to HEDL fuel cans prompted laboratory studies to be conducted using cladding from the same lots of material used to fabricate the fuel pins and on cladding sections removed from the plenum area of the irradiated fuel pins to help establish the cause of the observed differences

  6. Cladding for transverse-pumped solid-state laser

    Science.gov (United States)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  7. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...

  8. Interim report on the creepdown of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.; Dodd, C.V.

    1977-01-01

    This report describes the creepdown phenomenon in Zircaloy fuel cladding and the methods by which it will be measured and analyzed. Instrumentation for monitoring radial deformation in the cladding is described in detail--in terms of theory, design, and stability. The programs that control the microcomputer are listed, both to document the level of sophistication of the instrumentation and to indicate the flexibility of the test equipment

  9. First results on the effect of fuel-cladding eccentricity

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2009-01-01

    In the traditional fuel-behaviour or hot channel calculations it is assumed that the fuel pellet is centered within the clad. However, in the real life the pellet could be positioned asymmetrically within the clad, which leads to asymmetric gap conductance and therefore it is worthwhile to investigate the magnitude of the effect on maximal fuel temperature and surface heat flux. In this paper our first experiences are presented on this topic. (Authors)

  10. Facility for in-reactor creep testing of fuel cladding

    International Nuclear Information System (INIS)

    Kohn, E.; Wright, M.G.

    1976-11-01

    A biaxial stress creep test facility has been designed and developed for operation in the WR-1 reactor. This report outlines the rationale for its design and describes its construction and the operating experience with it. The equipment is optimized for the determination of creep data on CANDU fuel cladding. Typical results from Zr-2.5 wt% Nb fuel cladding are used to illustrate the accuracy and reliability obtained. (author)

  11. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  12. Laser cladding: repairing and manufacturing metal parts and tools

    Science.gov (United States)

    Sexton, Leo

    2003-03-01

    Laser cladding is presently used to repair high volume aerospace, automotive, marine, rail or general engineering components where excessive wear has occurred. It can also be used if a one-off high value component is either required or has been accidentally over-machined. The ultimate application of laser cladding is to build components up from nothing, using a laser cladding system and a 3D CAD drawing of the component. It is thus emerging that laser cladding can be classified as a special case of Rapid Prototyping (RP). Up to this point in time RP was seen, and is still seen, as in intermediately step between the design stage of a component and a finished working product. This can now be extended so that laser cladding makes RP a one-stop shop and the finished component is made from tool-steel or some alloy-base material. The marriage of laser cladding with RP is an interesting one and offers an alternative to traditional tool builders, re-manufacturers and injection mould design/repair industries. The aim of this paper is to discuss the emergence of this new technology, along with the transference of the process out of the laboratory and into the industrial workplace and show it is finding its rightful place in the manufacturing/repair sector. It will be shown that it can be used as a cost cutting, strategic material saver and consequently a green technology.

  13. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  14. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  15. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  16. YAG laser cladding to heat exchanger flange in actual plant

    International Nuclear Information System (INIS)

    Toshio, Kojima

    2001-01-01

    This paper is a sequel to ''Development of YAG Laser Cladding Technology to Heat Exchanger Flange'' presented in ICONE-8. A YAG Laser cladding technology is a permanent repairing and preventive maintenance method for heat exchanger's flange (channel side) seating surface which is degraded by the corrosion in long term operation. The material of this flange is carbon steel, and that of cladding wire is type 316 stainless steel so as to have high corrosion resistance. In former paper above, the soundness of cladding layers were presented to be verified. This channel side flange is bolted with tube sheet (shell side) through metal gasket. As the tube sheet side is already cladded a corrosion resistant material, it needs to apply the repairing and preventive maintenance method to only channel side. In 2000 this technology had been performed to the actual heat exchanger (Residual Heat Removal Heat Exchanger; RHR Hx) flange in domestic nuclear power plant. This paper described the outline, special equipment, and our total evaluation for this actual laser cladding work. And also several technical subjects which we should solve and/or improve for the next project was presented. (author)

  17. Application of YAG laser cladding to the flange seating surface

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Ninomiya, Kazuyuki; Nezaki, Koji

    1999-01-01

    Stainless cladding on carbon steel is usually conducted by shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). YAG ( Yttrium-Aluminum-Garnet) laser welding is superior to these methods of welding in the following respects : (1) The heat affected zone (HAZ) is narrower and there is less distortion. (2) YAG laser cladding has the required chemical compositions, even with possibly fewer welding layers under controlled dilution. (3) Greater welding speed. YAG laser cladding application to vessel flange seating surfaces was examined in this study and the results are discussed. The following objectives were carried out : (1) Determination of welding conditions for satisfactory cladding layers and (2) whether cladding would be adequately possible at a cornered section of a stair-like plate, assuming actual flange shape. (3) Measurement of welding distortion and heat affected zone in carbon steel. The welding conditions for producing no-crack deposit with low dilution in carbon steel were clarified and welding by which cladding at cornered section would be possible was achieved. welding distortion by YAG laser was found less than with GTAW and HAZ made by first layer welding could be tempered appropriately by second layer welding. (author)

  18. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    International Nuclear Information System (INIS)

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-01

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  19. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  20. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  1. A model for hydrogen pickup for BWR cladding materials

    International Nuclear Information System (INIS)

    Hede, G.; Kaiser, U.

    2001-01-01

    It has been observed that rod elongation is driven by the hydrogen pickup but not by corrosion as such. Based on this a non-destructive method to determine clad hydrogen concentration has been developed. The method is based on the observation that there are three different mechanisms behind the rod growth: the effect of neutron irradiation on the Zircaloy microstructure, the volume increase of the cladding as an effect of hydride precipitation and axial pellet-cladding-mechanical-interaction (PCMI). The derived correlation is based on the experience of older cladding materials, inspected at hot-cell laboratories, that obtained high hydrogen levels (above 500 ppm) at lower burnup (assembly burnup below 50 MWd/kgU). Now this experience can be applied, by interpolation, on more modern cladding materials with a burnup beyond 50 MWd/kgU by analysis of the rod growth database of the respective cladding materials. Hence, the method enables an interpolation rather than an extrapolation of present day hydrogen pickup database, which improves the reliability and accuracy. Further, one can get a good estimate of the hydrogen pickup during an ongoing outage based on a non-destructive method. Finally, rod growth measurements are normally performed for a large population of rods, hence giving a good statistics compared to examination of a few rods at a hot cell. (author)

  2. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  3. Evolutionary developments of advanced PWR nuclear fuels and cladding materials

    International Nuclear Information System (INIS)

    Kim, Kyu-Tae

    2013-01-01

    Highlights: • PWR fuel and cladding materials development processes are provided. • Evolution of PWR advanced fuel in U.S.A. and in Korea is described. • Cutting-edge design features against grid-to-rod fretting and debris are explained. • High performance data of advanced grids, debris filters and claddings are given. -- Abstract: The evolutionary developments of advanced PWR fuels and cladding materials are explained with outstanding design features of nuclear fuel assembly components and zirconium-base cladding materials. The advanced PWR fuel and cladding materials development processes are also provided along with verification tests, which can be used as guidelines for newcomers planning to develop an advanced fuel for the first time. The up-to-date advanced fuels with the advanced cladding materials may provide a high level of economic utilization and reliable performance even under current and upcoming aggressive operating conditions. To be specific, nuclear fuel vendors may achieve high fuel burnup capability of between 45,000 and 65,000 MWD/MTU batch average, overpower thermal margin of as much as 15% and longer cycle length up to 24 months on the one hand and fuel failure rates of around 10 −6 on the other hand. However, there is still a need for better understanding of grid-to-rod fretting wear mechanisms leading to major PWR fuel defects in the world and subsequently a driving force for developing innovative spacer grid designs with zero fretting wear-induced fuel failure

  4. The shear resistance of steel frames infilled with CASIEL wall panels

    NARCIS (Netherlands)

    Ng'Andu, B.M.; Vermeltfoort, A.T.

    2007-01-01

    In Europe, calcium silicate element (CASIEL) walls are increasingly employed as partitions and intemal claddings in buildings. When surrounded by frames, the interaction between the CASIEL infills and the frames has a significant influence on the load transmission paths of building structures. In

  5. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Peter [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension on previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  6. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    Science.gov (United States)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  7. Comparison of fiber lasers based on distributed side-coupled cladding-pumped fibers and double-cladding fibers.

    Science.gov (United States)

    Huang, Zhihe; Cao, Jianqiu; Guo, Shaofeng; Chen, Jinbao; Xu, Xiaojun

    2014-04-01

    We compare both analytically and numerically the distributed side-coupled cladding-pumped (DSCCP) fiber lasers and double cladding fiber (DCF) lasers. We show that, through optimization of the coupling and absorbing coefficients, the optical-to-optical efficiency of DSCCP fiber lasers can be made as high as that of DCF lasers. At the same time, DSCCP fiber lasers are better than the DCF lasers in terms of thermal management.

  8. Alloy development for cladding and duct applications

    International Nuclear Information System (INIS)

    Straalsund, J.L.; Johnson, G.D.

    1981-01-01

    Three general classes of materials under development for cladding and ducts are listed. Solid solution strengthened, or austenitic, alloys are Type 316 stainless steel and D9. Precipitation hardened (also austenitic) alloys consist of D21, D66 and D68. These alloys are similar to such commercial alloys as M-813, Inconel 706, Inconel 718 and Nimonic PE-16. The third general class of alloys is composed of ferritic alloys, with current emphasis being placed on HT-9, a tempered martensitic alloy, and D67, a delta-ferritic steel. The program is comprised of three parallel paths. The current reference, or first generation alloy, is 20% cold worked Type 316 stainless steel. Second generation alloys for near-term applications include D9 and HT-9. Third generation materials consist of the precipitation strengthened steels and ferritic alloys, and are being considered for implementation at a later time than the first and second generation alloys. The development of second and third generation materials was initiated in 1974 with the selection of 35 alloys. This program has proceeded to today where there are six advanced alloys being evaluated. These alloys are the developmental alloys D9, D21, D57, D66 and D68, together with the commerical alloy, HT-9. The status of development of these alloys is summarized

  9. The M5 Fuel Rod Cladding

    International Nuclear Information System (INIS)

    Mardon, J.P.; Charquet, D.; Senevat, J.

    1998-01-01

    The large-scale program for the development and irradiation of new Zr alloys started by FRAMATOME and its industrial partners CEZUS and ZIRCOTUBE more than 10 years ago is now enabling FRAGEMA to offer the ternary M5 (ZrNbO) as the cladding material for PWR advanced fuel rods. Compared with the former product (low-tin-Zircaloy-4), this alloy exhibits impressive gains under irradiation at extended burnup (55 GWd/t) relatively to corrosion (factor 3 to 4), hydriding (factor 5 to 6), growth and creep (factor 2 to 3). In this paper, we shall successively address: - the industrial development and manufacturing experience - the corrosion, hydriding, creep and growth performances obtained over a wide range of PWR normal irradiation conditions (France and other countries) up to burnups of 55 GWd/t - The interpretation of these results by means of analytical experiments conducted in test reactors (free growth, creep) and microstructural observations on the irradiated material - and the behaviour under accident (LOCA) and severe environment and irradiation (Li, boiling) conditions. (Author)

  10. Weld overlay cladding with iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.M. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    The author has established a range of compositions for these alloys within which hot cracking resistance is very good, and within which cold cracking can be avoided in many instances by careful control of welding conditions, particularly preheat and postweld heat treatment. For example, crack-free butt welds have been produced for the first time in 12-mm thick wrought Fe{sub 3}Al plate. Cold cracking, however, still remains an issue in many cases. The author has developed a commercial source for composite weld filler metals spanning a wide range of achievable aluminum levels, and are pursuing the application of these filler metals in a variety of industrial environments. Welding techniques have been developed for both the gas tungsten arc and gas metal arc processes, and preliminary work has been done to utilize the wire arc process for coating of boiler tubes. Clad specimens have been prepared for environmental testing in-house, and a number of components have been modified and placed in service in operating kraft recovery boilers. In collaboration with a commercial producer of spiral weld overlay tubing, the author is attempting to utilize the new filler metals for this novel application.

  11. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  12. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  13. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  14. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    Science.gov (United States)

    Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie

    2018-05-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.

  15. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  16. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  17. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Plummer, L.K. [University of Oregon, Eugene, OR 97403 (United States)

    2015-05-15

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  18. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Science.gov (United States)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  19. Evaluation of cladding residual stresses in clad blocks by measurements and numerical simulations

    International Nuclear Information System (INIS)

    Dupas, P.; Moinereau, D.

    1996-01-01

    Reactor pressure vessels are internally clad with austenitic stainless steel. This welding operation generates residual stresses which can have an important role in integrity assessments. In order to evaluate these stresses, an experimental and numerical programme has been conducted. The experiments includes cladding operations, macrographic analyses, temperature and residual stresses measurements with different methods. According to these measurements, transversal stresses (perpendicular to the welding direction) and longitudinal stresses (parallel to the welding direction) are highly tensile in stainless steel and they are compressive in the HAZ. Finite element calculations were used to simulate both welding operations and post weld heat treatment. These calculations coupled the thermal, metallurgical and mechanical aspects in a 2D representation. Different models were studied including effect of generalised plane strain, transformation plasticity, creep and tempering. The transversal stresses calculated are similar to the measured ones, but the longitudinal stresses showed to be very sensitive to the model used. As expected because of the two-dimension model, the longitudinal stresses can't be well estimated. More work is needed to improve measurements of stresses in depth (important differences appeared between the different methods). A predictive model would be also very useful to determine the thermal loading which is at present dependant on measurements. A 3D calculation appears to be necessary to evaluate longitudinal stresses. (orig.)

  20. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wei-Yang; Yang, Yong, E-mail: yongyang@ufl.edu

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V{sub 2}C. Diffusion couple tests at 660 °C for 100 h demonstrate that V{sub 2}C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  1. Strength of interface in stainless clad steels

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Nakai, Yoshikazu; Hashimoto, Shinji

    1990-01-01

    Mechanical tests were conducted on four kinds of stainless clad steels to establish test methods for determining crack growth resistance of bimaterial interface. In tension tests, smooth specimens and shallow notched specimens were employed. In these tests, all of the smooth specimens were broken in carbon steel, not along the bimaterial interface. On the other hand, most of the shallow notched specimens were broken along the interface, when the notch root was located at the interface. Therefore, the shallow notched specimens were suitable for estimating the strength of the interface in tension tests. For fracture toughness tests, chevron notched specimens are recommended, since pre-fatigue cracks were susceptible to initiate and grow in carbon steel for conventional straight notched specimens. In fatigue crack growth tests, side-grooved and non-side-grooved specimens were employed. Although the side-grooves were machined so that the minimum cross-sectional plane of the specimens coincided with the plane of the bimaterial interface, cracks did not always propagate along the interface. Therefore, the side-grooves were judged not to be effective for cracks to propagate along the bimaterial interface. Both in fracture toughness tests and fatigue tests, the crack growth resistance along bimaterial interface was much lower than the resistance of matrix steels. In all of the mechanical tests conducted, the crack growth resistance along the interface was higher for the normalized material than that for the as-rolled material. The nickel foil inserted between carbon steel and stainless steel improved the growth resistance of interfacial cracks. (author)

  2. Development of advanced LWR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H. [and others

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out.

  3. Development of advanced LWR fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan; Park, S. Y.; Lee, M. H.

    2000-04-01

    This report describes the results from evaluating the preliminary Zr-based alloys to develop the advanced Zr-based alloys for the nuclear fuel claddings, which should have good corrosion resistance and mechanical properties at high burn-up over 70,000MWD/MTU. It also includes the results from the basic studies for optimizing the processes which are involved in the development of the advanced Zr-based alloys. Ten(10) kinds of candidates for the alloys of which performance is over that of the existing Zircaloy-4 or ZIRLO alloy were selected out of the preliminary alloys of 150 kinds which were newly designed and repeatedly manufactured and evaluated to find out the promising alloys. First of all, the corrosion tests on the preliminary alloys were carried out to evaluate their performance in both pure water and LiOH solution at 360 deg C and in steam at 400 deg C. The tensile tests were performed on the alloys which proved to be good in the corrosion resistance. The creep behaviors were tested at 400 deg C for 10 days with the application of constant load on the samples which showed good performance in the corrosion resistance and tensile properties. The effect of the final heat treatment and A-parameters as well as Sn or Nb on the corrosion resistance, tensile properties, hardness, microstructures of the alloys was evaluated for some alloys interested. The other basic researches on the oxides, electrochemical properties, corrosion mechanism, and the establishment of the phase diagrams of some alloys were also carried out

  4. Fuel cladding tube and fuel rod for BWR type reactor

    International Nuclear Information System (INIS)

    Urata, Megumu; Mitani, Shinji.

    1995-01-01

    A fuel cladding tube has grooves fabricated, on the surface thereof, with a predetermined difference between crest and bottom (depth of the groove) in the circumferential direction. The cross sectional shape thereof is sinusoidal. The distribution of the grain size of iron crud particles in coolants is within a range about from 2μm to 12μm. If the surface roughness of the fuel cladding tube (depth of the groove) is determined greater than 1.6μm and less than 12.5, iron cruds in coolants can be positively deposited on the surface of the fuel cladding tube. In addition, once deposited iron cruds can be prevented from peeling from the surface of the fuel cladding tube. With such procedures, iron cruds deposited and radioactivated on the fuel cladding tube can be prevented from peeling, to prevent and reduce the increase of radiation dose on the surface of the pipelines without providing any additional device. (I.N.)

  5. The quest for safe and reliable fuel cladding materials

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Abe, Alfredo Y.; Giovedi, Claudia

    2015-01-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  6. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  7. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  8. The characteristics of anodic coating of Al-alloy claddings

    International Nuclear Information System (INIS)

    Yang Yong; Zou Benhui; Guo Hong; Du Yanhua; Bai Zhiyong; Cai Zhenfang

    2014-01-01

    Aluminum alloy claddings of research reactor fuel elements should be corroded by sodium hydroxide solution and anodized in sulfuric acid solution, but there are often some uneven color phenomena on surfaces, and sometimes regions of 'black and white stripes' appear. In order to study the relationship of colorful stripes on coatings and the surface morphology of aluminum alloy claddings corroded by sodium hydroxide solution, surface microstructures and second phase particles of the aluminum alloy claddings, which were corroded by sodium hydroxide solution, are investigated metallographically and via SEM analysis; Meanwhile, thickness, microstructure, chemical composition and construction of anodic oxidation coatings on aluminum coatings are analyzed. It is shown that: 1) the darker the surface color of corroded aluminum alloy claddings is, the darker of anodic oxidation coating; 2) there are many micro-pores on anodized oxidation coatings, which is much similar to that of corroded aluminum alloy claddings according to the morphology and distribution. So, it can be deduced that the surface morphology of anodic coatings is inherited from the corroded surfaces. (authors)

  9. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  10. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  11. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  12. The quest for safe and reliable fuel cladding materials

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Abe, Alfredo Y., E-mail: eddypino132@hotmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (POLI/USP), Sao Paulo, SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    The tragic Fukushima Daiichi Nuclear Plant accident of March, 2011, has brought great unrest and challenge to the nuclear industry, which, in collaboration with universities and nuclear research institutes, is making great efforts to improve the safety in nuclear reactors developing accident tolerant fuels (ATF). This involves the study of different materials to be applied as cladding and, also, the improvement in the fuel properties in order to enhance the fuel performance and safety, specifically under accident conditions. Related to the cladding, iron based alloys and silicon carbide (SiC) materials have been studied as a good alternative. In the case of austenitic stainless steel, there is the advantage that the austenitic stainless steel 304 was used as cladding material in the first PWR (Pressurized Water Reactor) registering a good performance. Then, alternated cladding materials such as iron based alloys (304, 310, 316, 347) should be used to replace the zirconium-based alloys in order to improve safety. In this paper, these cladding materials are evaluated in terms of their physical and chemical properties; among them, strength and creep resistance, thermal conductivity, thermal stability and corrosion resistance. Additionally, these properties are compared with those of conventional zirconium-based alloys, the most used material in actual PWR, to assess the advantages and disadvantages of each material concerning to fuel performance and safety contribution. (author)

  13. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    International Nuclear Information System (INIS)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T.; Rodrigues, Juliano S.

    2017-01-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  14. Eddy current examination of the nuclear fuel elements with aluminum 1100-F cladding of IPR-R1 research reactor: An initial study

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Roger F. da; Silva Júnior, Silvério F. da; Frade, Rangel T. [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rodrigues, Juliano S., E-mail: rfs@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: rtf@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Tubes of aluminum 1100-F as well as tubes of AISI 304 stainless steel are used as cladding of the fuel elements of TRIGA IPR-R1 nuclear research reactor. Usually, these tubes are inspected by means of visual test and sipping test. The visual test allows the detection of changes occurred at the external fuel elements surface, such as those promoted by corrosion processes. However, this test method cannot be used for detection of internal discontinuities at the tube walls. Sipping test allows the detection of fuel elements whose cladding has failed, but it is not able to determine the place where the discontinuity is located. On the other hand, eddy current testing, an electromagnetic nondestructive test method, allows the detection of discontinuities and monitoring their growth. In previous works, the application of eddy current testing to evaluate the AISI 304 cladding fuel elements of TRIGA IPR-R1 was studied. In this paper, it is proposed an initial study about the use of eddy current testing for detection and characterization of discontinuities in the aluminum 1100-F fuel elements cladding. The study includes the development of probes and the design and manufacture of reference standards. (author)

  15. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  16. In situ synthesis of hydroxyapatite coating by laser cladding.

    Science.gov (United States)

    Wang, D G; Chen, C Z; Ma, J; Zhang, G

    2008-10-15

    HA bioceramic coatings were synthesized on titanium substrate by laser cladding using cheap calcium carbonate and calcium hydrogen phosphate. The thermodynamic condition for synthesizing HA was calculated by software Matlab 5.0, the microstructure and phase analysis of laser clad HA bioceramic coatings were studied by electron probe microanalyser (EPMA), X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The theoretical results show that the Gibbs free enthalpy for the synthesis of HA phase is satisfied, and the presence of HA phase in the clad coatings was then further verified by XRD and the selected area diffraction patterns. When the laser power is 600W and the scanning speed is 3.5mm/s, the compact HA bioceramic coatings were obtained, which have cellular dendritic structure and consist of the phases of HA, alpha-Ca(2)P(2)O(7), CaO and CaTiO(3).

  17. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    Science.gov (United States)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  18. Performance of refractory alloy-clad fuel pins

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Millhollen, M.K.

    1984-12-01

    This paper discusses objectives and basic design of two fuel-cladding tests being conducted in support of SP-100 technology development. Two of the current space nuclear power concepts use conventional pin type designs, where a coolant removes the heat from the core and transports it to an out-of-core energy conversion system. An extensive irradiation testing program was conducted in the 1950's and 1960's to develop fuel pins for space nuclear reactors. The program emphasized refractory metal clad uranium nitride (UN), uranium carbide (UC), uranium oxide (UO 2 ), and metal matrix fuels (UCZr and BeO-UO 2 ). Based on this earlier work, studies presented here show that UN and UO 2 fuels in conjunction with several refractory metal cladding materials demonstrated high potential for meeting space reactor requirements and that UC could serve as an alternative but higher risk fuel

  19. Interdiffusion between U-Zr-Mo and stainless steel cladding

    International Nuclear Information System (INIS)

    Hwang, J. Y.; Lee, B. S.; Lee, J. T.; Kang, Y. H.

    1998-01-01

    Interdiffusion investigations were carried out at 700 deg C for 200 hours for the diffusion couples assembled with the U-Zr-Mo ternary fuel versus austenitic stainless steel D9 and the U-Zr-Mo ternary fuel versus martensitic stainless steel HT9 respectively to investigate the fuel-cladding compatibility. SEM-EDS analysis was utilized to determine the composition and the penetration depths of the reaction layers. In the case of Fuel/D9 couple, (Fe, Cr, Ni) of the cladding elements formed the precipitates with the Zr, Mo and diminished the U concentration upto 800μ length from the fuel side. Composition of the precipitates was varied with the penetrated elements. In Fuel/HT9 couple, reaction layer was smaller than that of D9 couples and was less affected by cladding elements. The eutectic reaction appeared partially in the Fuel/HT9 diffusion couple

  20. Chemical Dissolution of Simulant FCA Cladding and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-08

    The Savannah River Site (SRS) has received some fast critical assembly (FCA) fuel from the Japan Atomic Energy Agency (JAEA) for disposition. Among the JAEA FCA fuel are approximately 7090 rectangular Stainless Steel clad fuel elements. Each element has an internal Pu-10.6Al alloy metal wafer. The thickness of each element is either 1/16 inch or 1/32 inch. The dimensions of each element ranges from 2 inches x 1 inch to 2 inches x 4 inches. This report discusses the potential chemical dissolution of the FCA clad material or stainless steel. This technology uses nitric acid-potassium fluoride (HNO3-KF) flowsheets of H-Canyon to dissolve the FCA elements from a rack of materials. Historically, dissolution flowsheets have aimed to maximize Pu dissolution rates while minimizing stainless steel dissolution (corrosion) rates. Because the FCA cladding is made of stainless steel, this work sought to accelerate stainless steel dissolution.

  1. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  2. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  3. General considerations on the oxide fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Pascard, R.

    1977-01-01

    Since the very first experimental irradiations in thermal reactors, performed in view of the future Rapsodie fuel general study, corrosion cladding anomalies were observed. After 10 years of Rapsodie and more than two years of Phenix, performance brought definite confirmation of the chemical reactions between the irradiated fuel and cladding. That is the reason for which the fuel designers express an urgent need for determining the corrosion rates. Semi-empirical laws and mechanisms describing corrosion processes are proposed. Erratic conditions for appearance of the oxide-cladding corrosion are stressed upon. Obviously such a problem can be fully appreciated only by a statistical approach based on a large number of observations on the true LMFBR fuel pins

  4. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  5. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  6. Emissions from the burning of vegetative debris in air curtain destructors.

    Science.gov (United States)

    Miller, C Andrew; Lemieux, Paul M

    2007-08-01

    Although air curtain destructors (ACDs) have been used for quite some time to dispose of vegetative debris, relatively little in-depth testing has been conducted to quantify emissions of pollutants other than CO and particulate matter. As part of an effort to prepare for possible use of ACDs to dispose of the enormous volumes of debris generated by Hurricanes Katrina and Rita, the literature on ACD emissions was reviewed to identify potential environmental issues associated with ACD disposal of construction and demolition (C&D) debris. Although no data have been published on emissions from C&D debris combustion in an ACD, a few studies provided information on emissions from the combustion of vegetative debris. These studies are reviewed, and the results compared with studies of open burning of biomass. Combustion of vegetative debris in ACD units results in significantly lower emissions of particulate matter and CO per unit of mass of debris compared with open pile burning. The available data are not sufficient to make general estimates regarding emissions of organic or metal compounds. The highly transient nature of the ACD combustion process, a minimal degree of operational control, and significant variability in debris properties make accurate prediction of ACD emissions impossible in general. Results of scoping tests conducted in preparation for possible in-depth emissions tests demonstrate the challenges associated with sampling ACD emissions and highlight the transient nature of the process. The environmental impacts of widespread use of ACDs for disposal of vegetative debris and their potential use to reduce the volume of C&D debris in future disaster response scenarios remain a considerable gap in understanding the risks associated with debris disposal options.

  7. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  8. Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and its Applications

    DEFF Research Database (Denmark)

    2010-01-01

    An optical fibre is provided having a fibre cladding around a longitudinally extending optical propagation core. The cladding has a reflection region of a varying refractive index in the longitudinal direction....

  9. Influence Of The Laser Cladding Strategies On The Mechanical Properties Of Inconel 718

    International Nuclear Information System (INIS)

    Lamikiz, A.; Tabernero, I.; Ukar, E.; Lopez de Lacalle, L. N.; Delgado, J.

    2011-01-01

    This work presents different experimental results of the mechanical properties of Inconel registered 718 test parts built-up by laser cladding. Recently, turbine manufacturers for aeronautical sector have presented high interest on laser cladding processes. This process allows building fully functional structures on superalloys, such as Inconel registered 718, with high flexibility on complex shapes. However, there is limited data on mechanical properties of the laser cladding structures. Moreover, the available data do not include the influence of process parameters and laser cladding strategies. Therefore, a complete study of the influence of the laser cladding parameters and mainly, the variation of the tensile strength with the laser cladding strategy is presented. The results show that there is a high directionality of mechanical properties, depending on the strategies of laser cladding process. In other words, the test parts show a fiber -like structure that should be considered on the laser cladding strategy selection.

  10. Potential for cladding thermal failure in LWRs during high temperature transients

    International Nuclear Information System (INIS)

    El Genk, M.S.

    1979-01-01

    The temperature increase in the fuel and the cladding during a PCM accident produces film boiling at the cladding surface which may induce zircaloy cladding failure, due to embrittlement, and fuel melting at the centerline of the fuel pellets. Molten fuel may extrude through radial cracks in the fuel and relocate in the fuel-cladding gap. Contact of extruded molten fuel with the cladding, which is at high temperature during film boiling, may induce cladding thermal failure due to melting. An assessment of central fuel melting and molten fuel extrusion into the fuel-cladding gap during a PCM accident is presented. The potential for thermal failure of the zircaloy cladding upon being contacted by molten fuel during such an accident is also analyzed and compared with the applicable experimental evidence

  11. Gap conductance in Zircaloy-clad LWR fuel rods

    International Nuclear Information System (INIS)

    Ainscough, J.B.

    1982-04-01

    This report describes the procedures currently used to calculate fuel-cladding gap conductance in light water reactor fuel rods containing pelleted UO 2 in Zircaloy cladding, under both steady-state and transient conditions. The relevant theory is discussed together with some of the approximations usually made in performance modelling codes. The state of the physical property data which are needed for heat transfer calculations is examined and some of the relevant in- and out-of-reactor experimental work on fuel rod conductance is reviewed

  12. Comparison of models discribing cladding deformations during LOCA

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Zipper, R.

    1981-05-01

    This report compares the important models for the determination of cladding deformations during LOCA. In addition to the comparisons of underlying assumptions of different models the same is done for the coefficients applied for the models. In order to assess the predictive capability of the models the calculated results are compared with the experimental results of the individual claddings. It was found out that the results of temperature ramp tests could be calculated better than that of the pressure ramp tests. The calculations revealed that even with the simplified assumption of the model used in TESPA the agreement of the calculated results with those of model NORA was relatively good. (orig.) [de

  13. Synthesis of clad motion experiments interpretation: codes and validation

    International Nuclear Information System (INIS)

    Papin, J.; Fortunato, M.; Seiler, J.M.

    1983-04-01

    This communication deals with clad melting and relocation phenomena related to LMFBR safety analysis of loss of flow accidents. We present: - the physical models developed at DSN/CEN Cadarache in single channel and bundle geometry. The interpretation with these models of experiments performed by the STT (CEN Grenoble). It comes out that we have now obtained a good understanding of the involved phenomena in single channel geometry. On the other hand, further studies are necessary for a better knowledge of clad motion phenomena in bundle cases with conditions close to reactor ones

  14. Technical committee meeting on fuel and cladding interaction. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases.

  15. Evaluation of cost reduction method for manufacturing ODS ferritic claddings

    International Nuclear Information System (INIS)

    Fujiwara, Masayuki; Mizuta, Shunji; Ukai, Shigeharu

    2000-04-01

    For evaluating the fast reactor system technology, it is important to evaluate the practical feasibility of ODS ferritic claddings, which is the most promising materials to attain the goal of high coolant temperature and more than 150 GWd/t. Based on the results of their technology development, mass production process with highly economically benefit as well as manufacturing cost estimation of ODS ferritic claddings were preliminarily conducted. From the view point of future utility scale, the cost for manufacturing mother tubes has a dominant factor in the total manufacturing cost. The method to reduce the cost of mother tube manufacturing was also preliminarily investigated. (author)

  16. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  17. Method and system for edge cladding of laser gain media

    Science.gov (United States)

    Bayramian, Andrew James; Caird, John Allyn; Schaffers, Kathleen Irene

    2014-03-25

    A gain medium operable to amplify light at a gain wavelength and having reduced transverse ASE includes an input surface and an output surface opposing the input surface. The gain medium also includes a central region including gain material and extending between the input surface and the output surface along a longitudinal optical axis of the gain medium. The gain medium further includes an edge cladding region surrounding the central region and extending between the input surface and the output surface along the longitudinal optical axis of the gain medium. The edge cladding region includes the gain material and a dopant operable to absorb light at the gain wavelength.

  18. Modelling of pellet-cladding interaction in PWR's

    International Nuclear Information System (INIS)

    Esteves, A.M.; Silva, A.T. e.

    1992-01-01

    The pellet-cladding interaction that can occur in a PWR fuel rod design is modelled with the computer codes FRAPCON-1 and ANSYS. The fuel performance code FRAPCON-1 analyses the fuel rod irradiation behavior and generates the initial conditions for the localized fuel rod thermal and mechanical modelling in two and three-dimensional finite elements with ANSYS. In the mechanical modelling, a pellet fragment is placed in the fuel rod gap. Two types of fuel rod cladding materials are considered: Zircaloy and austenitic stainless steel. (author)

  19. Pie technique of LWR fuel cladding fracture toughness test

    International Nuclear Information System (INIS)

    Endo, Shinya; Usami, Koji; Nakata, Masahito; Fukuda, Takuji; Numata, Masami; Kizaki, Minoru; Nishino, Yasuharu

    2006-01-01

    Remote-handling techniques were developed by cooperative research between the Department of Hot Laboratories in the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Industries Ltd. (NFI) for evaluating the fracture toughness on irradiated LWR fuel cladding. The developed techniques, sample machining by using the electrical discharge machine (EDM), pre-cracking by fatigue tester, sample assembling to the compact tension (CT) shaped test fixture gave a satisfied result for a fracture toughness test developed by NFL. And post-irradiation examination (PIE) using the remote-handling techniques were carried out to evaluate the fracture toughness on BWR spent fuel cladding in the Waste Safety Testing Facility (WASTEF). (author)

  20. Irradiation experience with HT9-clad metallic fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Tsai, H.; Billone, M.C.

    1991-01-01

    The safe and reliable performance of metallic fuel is currently under study and demonstration in the Integral Fast Reactor program. In-reactor tests of HT9-clad metallic fuel have now reached maturity and have all shown good performance characteristics to burnups exceeding 17.5 at. % in the lead assembly. Because this low-swelling tempered martensitic alloy is the cladding of choice for high fluence applications, the experimental observations and performance modelling efforts reported in this paper play an important role in demonstrating reliability

  1. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  2. Report on Reactor Physics Assessment of Candidate Accident Tolerant Fuel Cladding Materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan [Univ. of Tennessee, Knoxville, TN (United States); Maldonado, G. Ivan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-28

    This work focuses on ATF concepts being researched at Oak Ridge National Laboratory (ORNL), expanding on previous studies of using alternate cladding materials in pressurized water reactors (PWRs). The neutronic performance of two leading alternate cladding materials were assessed in boiling water reactors (BWRs): iron-chromium-aluminum (FeCrAl) cladding, and silicon carbide (SiC)-based composite cladding. This report fulfills ORNL Milestone M3FT-15OR0202332 within the fiscal year 2015 (FY15)

  3. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  4. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  5. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  6. Effects of the inner mould material on the aluminium–316L stainless steel explosive clad pipe

    International Nuclear Information System (INIS)

    Guo, Xunzhong; Tao, Jie; Wang, Wentao; Li, Huaguan; Wang, Chen

    2013-01-01

    Highlights: ► Different mould materials were adopted to evaluate the effect of the constraint on the clad quality. ► The interface characteristics of clad pipe were analyzed for the different clad pipe. ► The clad pipes possess excellent bonding quality. - Abstract: The clad pipe played an important part in the pipeline system of the nuclear power industry. To prepare the clad pipe with even macrosize and excellent bonding quality, in this work, different mould materials were adopted to evaluate the effect of the constraint on the clad quality of the bimetal pipe prepared by explosive cladding. The experiment results indicated that, the dimension uniformity and bonding interface of clad pipe were poor by using low melting point alloy as mould material; the local bulge or the cracking of the clad pipe existed when the SiC powder was utilized. When the steel mould was adopted, the outer diameter of the clad pipe was uniform from head to tail. In addition, the metallurgical bonding was formed. Furthermore, the results of shear test, bending test and flattening test showed that the bonding quality was excellent. Therefore, the Al–316L SS clad pipe could endure the second plastic forming

  7. Sunlight-driven eco-friendly smart curtain based on infrared responsive graphene oxide-polymer photoactuators.

    Science.gov (United States)

    Leeladhar; Raturi, Parul; Singh, J P

    2018-02-27

    Photomechanical actuation is the conversion of light energy into mechanical energy through some smart materials. Infrared-responsive smart materials have become an emerging field of research due to easy availability and eco-friendly nature of their stimulus in the form of sunlight, which contains about 50% of near-infrared(nIR) making these materials useful at macro-scale photoactuator applications. Here, we demonstrate fabrication of highly versatile nIR triggered photoactuators based on graphene oxide/polycarbonate bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation and wavelength-selective response. The photoactuators are realized by vacuum filtration of graphene oxide/water dispersion through polycarbonate membrane resulting graphene oxide/polymer bilayer structure. The photoactuation response was measured in the form of deflection from equilibrium position as a result of infrared-irradiation. The deflection is caused by the generated thermal stress at the interface of bilayers due to mismatch of thermal expansion coefficient as a results of nIR absorption by graphene oxide and subsequent temperature rise. A maximum deflection of 12 mm (circular-shaped structure with diameter 28 mm) with corresponding bending curvature of 0.33 cm -1 was shown by this photoactuator for illumination intensity of 106 mW/cm 2 . Few applications of these photoactuators such as sunlight-driven smart curtain, infrared actuated curtain and self-folding box are also demonstrated.

  8. Influence of PVA and CMC on the Properties of Pigment Coating Colors and their Effects on Curtain Stability

    Directory of Open Access Journals (Sweden)

    Eun Heui Choi

    2015-09-01

    Full Text Available The influence of polyvinyl alcohol (PVA and carboxymethyl cellulose (CMC on the properties of ground calcium carbonate (GCC and clay coating colors, as well as its effect on curtain stability during the coating process was investigated. Based on the experimental results of the zeta potential, sediment porosity, rheological measurements, the floc formation mechanisms of the cobinders were proposed. The zeta potential decreased with an increase in the amount of added PVA, while it barely changed when CMC was added. This was attributed to the adsorption of PVA onto the pigment surface, while the adsorption of CMC was hindered by electrostatic repulsion. CMC cobinder increased the low-shear viscosity, but it resulted in relatively low viscosity under high-shear conditions, indicating the disruption of the formed flocs under high shear. The destabilization mechanism of the curtain coating differed depending on the type of cobinder. The PVA cobinder flocculates the coating color via a gelling mechanism, while the CMC cobinder flocculates the colors via a depletion flocculation mechanism.

  9. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  10. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  11. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    International Nuclear Information System (INIS)

    Chung, H. M.

    2000-01-01

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10 21 n cm -2 to 5.9 x 10 21 n cm -2 (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest cladding were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed

  12. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    Pei, Y. T.; Ocelik, V.; De Hosson, J. T. M.

    2003-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission

  13. Interfacial adhesion of laser clad functionally graded materials

    NARCIS (Netherlands)

    De Hosson, JTM; Pei, YT; Ocelik, [No Value; Sudarshan, TS; Stiglich, JJ; Jeandin, M

    2002-01-01

    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-sitit microstructural observations during straining in an FEG-ESEM

  14. Pellet clad interaction analysis of AFA 3G fuel rod

    International Nuclear Information System (INIS)

    Liu Tong; Shen Caifen; Jiao Yongjun; Lu Huaquan; Zhou Zhou

    2002-01-01

    The author described Pellet Clad Interaction (PCI) analysis of AFA 3G fuel rod during condition II transients for GNPS 18-months alternating equilibrium cycles. It provided PCI technical limit, analytical methods and computer code used in the analyses of condition II transients and thermal-mechanical. Finally, given main calculation results and the conclusion for GNPS 18-months cycles

  15. Cladding and Duct Materials for Advanced Nuclear Recycle Reactors

    International Nuclear Information System (INIS)

    Allen, Todd R.; Busby, J. T.; Klueh, R. L.; Maloy, Stuart A.; Toloczko, Mychailo B.

    2008-01-01

    This is a review article that provides an overview of the reactor core structural materials and clad and duct needs for the GNEP advanced burner reactor design. A short history of previous research on structural materials for irradiation environments is provided. There is also a section describing some advanced materials that may be candidate materials for various reactor core structures

  16. FFTF criteria for run to cladding breach experiments

    International Nuclear Information System (INIS)

    Van Keuren, J.C.; Heard, F.J.; Stepnewski, D.D.

    1985-12-01

    The review of experiments proposed for irradiation in FFTF resulted in the development of new criteria for run-to-cladding breach experiments. These criteria have allowed irradiation of aggressive experiments without compromising the safety bases for FFTF. This paper consisting of a set of narrated slides, discusses these criteria and related bases

  17. Cooper coatings on stainless steel by laser cladding

    International Nuclear Information System (INIS)

    Reis, M.; Estanislau, S.; Cabral, A.; Pecas, P.; Gouveia, H.

    1998-01-01

    Copper laser cladding was performed on AISI 304L stainless steel. Some process parameters like process speed and focal point were analysed and it was established its influence on the quality of the coating. Simple track coating were achieved with good aspect, good adherence and good surface finishing. Therefore a reference basis for further developments related to industrial application, was created. (Author) 14 refs

  18. Underwater laser cladding and seal welding for INCONEL 52

    International Nuclear Information System (INIS)

    Tamura, Masataka; Kouno, Wataru; Makino, Yoshinobu; Kawano, Shohei; Yoda, Masaki

    2007-01-01

    Recently, stress corrosion cracking (SCC) has been observed at aged components of nuclear power plants under water environment and high exposure of radiation. Toshiba has been developing both an underwater laser welding directly onto surface of the aged components as maintenance and repair techniques. This paper reports underwater laser cladding and seal welding for INCONEL 52. (author)

  19. Elimination of Start/Stop defects in laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Eekma, M.; Hemmati, I.; De Hosson, J. Th. M.

    2012-01-01

    Laser cladding represents an advanced hard facing technology for the deposition of hard, corrosion and wear resistant layers of controlled thickness onto a selected area of metallic substrate. When a circular geometry is required, the beginning and the end of the laser track coincide in the same

  20. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)