WorldWideScience

Sample records for currents zb-tsc spectroscopy

  1. Current status of baryon spectroscopy

    International Nuclear Information System (INIS)

    Wali, K.C.

    1975-08-01

    In this review of baryon spectroscopy, the basic ideas of some of the current models and the experimental data for their claims to success are discussed including realistic or constituent quark models, experimental comparison, the experimental and theoretical basis for the assignments, algebraic quark models, and confinement schemes

  2. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  3. Current status of baryon spectroscopy

    International Nuclear Information System (INIS)

    Wali, K.C.

    1975-01-01

    The basic ideas of some of the current models and the experimental numerical comparisons are discussed briefly. Included are realistic or constituent quark models, experimental comparison, the experimental and theoretical basis for the assignments, algebraic quark models, and confinement schemes

  4. Scanning tunneling spectroscopy under large current flow through the sample.

    Science.gov (United States)

    Maldonado, A; Guillamón, I; Suderow, H; Vieira, S

    2011-07-01

    We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK. Perspective of applications of this local imaging method includes local vortex motion experiments, and Doppler shift local density of states studies.

  5. Current opinion about maximum entropy methods in Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Szymanski, K

    2009-01-01

    Current opinion about Maximum Entropy Methods in Moessbauer Spectroscopy is presented. The most important advantage offered by the method is the correct data processing under circumstances of incomplete information. Disadvantage is the sophisticated algorithm and its application to the specific problems.

  6. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  7. Raman spectroscopy in nanomedicine: current status and future perspective.

    Science.gov (United States)

    Keating, Mark E; Byrne, Hugh J

    2013-08-01

    Raman spectroscopy is a branch of vibration spectroscopy that is capable of probing the chemical composition of materials. Recent advances in Raman microscopy have significantly added to the range of applications, which now extend from medical diagnostics to exploring the interfaces between biological organisms and nanomaterials. In this review, Raman is introduced in a general context, highlighting some of the areas in which the technique has been successful in the past, as well as some of the potential benefits it offers over other analytical modalities. The subset of Raman techniques that specifically probe the nanoscale, namely surface- and tip-enhanced Raman spectroscopy, will be described and specific applications relevant to nanomedical applications will be reviewed. Progress in the use of traditional label-free Raman for investigation of nanoscale interactions will be described, and recent developments in coherent anti-Stokes Raman scattering will be explored, particularly its applications to biomedical and nanomedical fields.

  8. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  9. Magnetic resonance imaging and magnetic resonance spectroscopy in current medicine

    International Nuclear Information System (INIS)

    Ganssen, A.; Hartl, W.; Kaiser, W.; Margosian, P.; Weikl, A.

    1987-01-01

    The first MR scanning methods have been developed to a maturity allowing application for clinical MRI. Essentially reduced measuring periods are possible now in connection with three-dimensional and multi-layer methods, and this certainly will have a positive effect towards enhanced use of MRI. Still shorter measuring periods is the future goal with regard to so important examinations as chest studies. MR angiography without contrast agent is applicable now for clinical examination of larger vessels. For small vessels, size-adjusted surface coils are required. A number of specially tailored surface coils is available now for achieving high spatial resolution in the regions of interest. This trend will continue. In-vivo MR spectroscopy now offers methods of selection of the volume of interest that encourage clinical trial application. Due to the rapidly growing experience obtained by in-vivo animal experiments, correlations can now be revealed between MRS data and pathologic conditions. Despite the still unresolved sensitivity problems, clinical applicability can be expected in a not too far future. (orig./SHA) [de

  10. Current status of quantitative rotational spectroscopy for atmospheric research

    Science.gov (United States)

    Drouin, Brian J.; Wlodarczak, Georges; Colmont, Jean-Marcel; Rohart, Francois

    2004-01-01

    Remote sensing of rotational transitions in the Earth's atmosphere has become an important method for the retrieval of geophysical temperatures, pressures and chemical composition profiles that requires accurate spectral information. This paper highlights the current status of rotational data that are useful for atmospheric measurements, with a discussion of the types the rotational lineshape measurements that are not generally available in either online repository.

  11. Current research relevant to the improvement of γ-ray spectroscopy as an analytical tool

    International Nuclear Information System (INIS)

    Meyer, R.A.; Tirsell, K.G.; Armantrout, G.A.

    1976-01-01

    Four areas of research that will have significant impact on the further development of γ-ray spectroscopy as an accurate analytical tool are considered. The areas considered are: (1) automation; (2) accurate multigamma ray sources; (3) accuracy of the current and future γ-ray energy scale, and (4) new solid state X and γ-ray detectors

  12. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    Science.gov (United States)

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  13. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  14. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  15. Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Howland D. T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayer, Andrew R. [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Caprihan, Arvind [Mind Research Network, Albuquerque, NM (United States); Gasparovic, Charles [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Blagoev, Krastan B. [Mind Research Network, Albuquerque, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haaland, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.

  16. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects

    Science.gov (United States)

    Zarafshani, Ali; Bach, Thomas; Chatwin, Chris; Xiang, Liangzhong; Zheng, Bin

    2017-03-01

    Electrical Impedance Spectroscopy (EIS) has emerged as a non-invasive imaging modality to detect and quantify functional or electrical properties related to the suspicious tumors in cancer screening, diagnosis and prognosis assessment. A constraint on EIS systems is that the current excitation system suffers from the effects of stray capacitance having a major impact on the hardware subsystem as the EIS is an ill-posed inverse problem which depends on the noise level in EIS measured data and regularization parameter in the reconstruction algorithm. There is high complexity in the design of stable current sources, with stray capacitance reducing the output impedance and bandwidth of the system. To confront this, we have designed an EIS current source which eliminates the effect of stray capacitance and other impacts of the capacitance via a variable inductance. In this paper, we present a combination of operational CCII based on a generalized impedance converter (OCCII-GIC) with a current source. The aim of this study is to use the EIS system as a biomedical imaging technique, which is effective in the early detection of breast cancer. This article begins with the theoretical description of the EIS structure, current source topologies and proposes a current conveyor in application of a Gyrator to eliminate the current source limitations and its development followed by simulation and experimental results. We demonstrated that the new design could achieve a high output impedance over a 3MHz frequency bandwidth when compared to other types of GIC circuits combined with an improved Howland topology.

  17. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  18. Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source

    International Nuclear Information System (INIS)

    Mohamadou, Youssoufa; Oh, Tong In; Wi, Hun; Sohal, Harsh; Farooq, Adnan; Woo, Eung Je; McEwan, Alistair Lee

    2012-01-01

    Current sources are widely used in bio-impedance spectroscopy (BIS) measurement systems to maximize current injection for increased signal to noise while keeping within medical safety specifications. High-performance current sources based on the Howland current pump with optimized impedance converters are able to minimize stray capacitance of the cables and setup. This approach is limited at high frequencies primarily due to the deteriorated output impedance of the constant current source when situated in a real measurement system. For this reason, voltage sources have been suggested, but they require a current sensing resistor, and the SNR reduces at low impedance loads due to the lower current required to maintain constant voltage. In this paper, we compare the performance of a current source-based BIS and a voltage source-based BIS, which use common components. The current source BIS is based on a Howland current pump and generalized impedance converters to maintain a high output impedance of more than 1 MΩ at 2 MHz. The voltage source BIS is based on voltage division between an internal current sensing resistor (R s ) and an external sample. To maintain high SNR, R s is varied so that the source voltage is divided more or less equally. In order to calibrate the systems, we measured the transfer function of the BIS systems with several known resistor and capacitor loads. From this we may estimate the resistance and capacitance of biological tissues using the least-squares method to minimize error between the measured transimpedance excluding the system transfer function and that from an impedance model. When tested on realistic loads including discrete resistors and capacitors, and saline and agar phantoms, the voltage source-based BIS system had a wider bandwidth of 10 Hz to 2.2 MHz with less than 1% deviation from the expected spectra compared to more than 10% with the current source. The voltage source also showed an SNR of at least 60 dB up to 2.2 MHz

  19. Photoionization spectroscopy of deep defects responsible for current collapse in nitride-based field effect transistors

    International Nuclear Information System (INIS)

    Klein, P B; Binari, S C

    2003-01-01

    This review is concerned with the characterization and identification of the deep centres that cause current collapse in nitride-based field effect transistors. Photoionization spectroscopy is an optical technique that has been developed to probe the characteristics of these defects. Measured spectral dependences provide information on trap depth, lattice coupling and on the location of the defects in the device structure. The spectrum of an individual trap may also be regarded as a 'fingerprint' of the defect, allowing the trap to be followed in response to the variation of external parameters. The basis for these measurements is derived through a modelling procedure that accounts quantitatively for the light-induced drain current increase in the collapsed device. Applying the model to fit the measured variation of drain current increase with light illumination provides an estimate of the concentrations and photoionization cross-sections of the deep defects. The results of photoionization studies of GaN metal-semiconductor field effect transistors and AlGaN/GaN high electron mobility transistors (HEMTs) grown by metal-organic chemical vapour deposition (MOCVD) are presented and the conclusions regarding the nature of the deep traps responsible are discussed. Finally, recent photoionization studies of current collapse induced by short-term (several hours) bias stress in AlGaN/GaN HEMTs are described and analysed for devices grown by both MOCVD and molecular beam epitaxy. (topical review)

  20. Deconvolution of the density of states of tip and sample through constant-current tunneling spectroscopy

    Directory of Open Access Journals (Sweden)

    Holger Pfeifer

    2011-09-01

    Full Text Available We introduce a scheme to obtain the deconvolved density of states (DOS of the tip and sample, from scanning tunneling spectra determined in the constant-current mode (z–V spectroscopy. The scheme is based on the validity of the Wentzel–Kramers–Brillouin (WKB approximation and the trapezoidal approximation of the electron potential within the tunneling barrier. In a numerical treatment of z–V spectroscopy, we first analyze how the position and amplitude of characteristic DOS features change depending on parameters such as the energy position, width, barrier height, and the tip–sample separation. Then it is shown that the deconvolution scheme is capable of recovering the original DOS of tip and sample with an accuracy of better than 97% within the one-dimensional WKB approximation. Application of the deconvolution scheme to experimental data obtained on Nb(110 reveals a convergent behavior, providing separately the DOS of both sample and tip. In detail, however, there are systematic quantitative deviations between the DOS results based on z–V data and those based on I–V data. This points to an inconsistency between the assumed and the actual transmission probability function. Indeed, the experimentally determined differential barrier height still clearly deviates from that derived from the deconvolved DOS. Thus, the present progress in developing a reliable deconvolution scheme shifts the focus towards how to access the actual transmission probability function.

  1. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  2. Photo-induced current transient spectroscopy for high-resistivity neutron-transmutation-doped silicon

    International Nuclear Information System (INIS)

    Tokuda, Yutaka; Inoue, Yajiro; Usami, Akira

    1987-01-01

    Defects in high-resistivity neutron-transmutation-doped (NTD) silicon prior to annealing were studied by photo-induced current transient spectroscopy (PICTS). The thermal-neutron fluence was 9.5 x 10 17 cm -2 to give a resistivity of about 30 Ω after annealing, and the fast-neutron fluence was 9.5 x 10 16 cm -2 . Four traps with thermal emission activation energies of 0.15, 0.41. 0.47 and 0.50 eV were observed in NTD silicon. A trap with the thermal emission activation energy of 0.15 eV was considered to correspond to the divacancy. Although the clustered nature of the defects was observed, PICTS measurements suggest that the material state of high-resistivity NTD silicon is still crystalline and not amorphous. (author)

  3. On the interpretation of total current spectroscopy (TCS) spectra from MoS2 crystals

    International Nuclear Information System (INIS)

    Mohamed, M.H.; Moeller, P.J.

    1981-01-01

    Total Current Spectroscopy (TCS) spectra from MoS 2 (0001) face for three different angles of incidence of the primary beam with respect to the c-axis as well as TCS spectrum from an edge surface cut perpendicularly to the (001) face of a molybdenite crystal are given. Energy positions of the TCS structure are found to be independent of the variations in the angle of incidence of the primary beam and also of the change of crystal face. From this it is concluded that the fine structure in the TCS spectra from molybdenite crystal for the primary energies studied is due to electron-electron scattering and not to Bragg interference effects. (author)

  4. Investigation of photoelectronic processes in CdIn2S4 by photoinduced current transient spectroscopy

    International Nuclear Information System (INIS)

    Serpi, A.

    1986-01-01

    Photoelectronic processes in CdIn 2 S 4 are investigated by four-gate photoinduced current transient spectroscopy. In general the photocurrent decay transients are non-exponential because of a nonlinear multichannel recombination mechanism. Nevertheless suitable extrinsic excitation allows to open one recombination channel only and so to evidence a purely exponential relaxation. The detailed analysis of this process leads to the interpretation that the defects associated with the energy levels continuously distributed below the conduction band act as relay centres for radiative recombination of photoelectrons rather than as thermal emitting traps. An electron trapping level located at about 0.6 eV from the bottom of the conduction band is also evidenced. (author)

  5. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    high frequency eddy current spectroscopy, (iv) the development of custom-made spiral coils to allow eddy current conductivity characterization over the whole frequency range of interest with reduced coil sensitivity to lift off, (v) the benefits of implementing a semi-quadratic system calibration in reducing the coil sensitivity to lift-off, and (vi) the feasibility of adapting high-frequency eddy current residual stress characterization for shot-peened titanium alloys.

  6. Ni/YSZ electrode degradation studied by impedance spectroscopy: Effects of gas cleaning and current density

    DEFF Research Database (Denmark)

    Hauch, Anne; Mogensen, Mogens Bjerg

    2010-01-01

    Anode supported (Ni/YSZ–YSZ–LSM/YSZ) solid oxide fuel cells were tested and the degradation over time was monitored and analyzed by impedance spectroscopy. Test conditions were chosen to focus on the anode degradation and all tests were operated at 750 °C. O2 was supplied to the cathode...... and the anode inlet gas mixture had a high p(H2O)/p(H2) ratio of 0.4/0.6. Commercially available gasses were applied. Cells were tested over a few hundred hours applying varying current densities (OCV, 0.75 A/cm2 and 1 A/cm2). To investigate the effects of possible impurities in the inlet gas stream...... on the anode degradation, tests were set-up both with and without gas cleaning. Gas cleaning was done by passing the H2 over porous nickel at room temperature. It was found that cleaning of the inlet H2 gas more than halved the anode degradation under current load. For tests at OCV the increase in the Ni...

  7. Overview of the current spectroscopy effort on the Livermore electron beam ion traps

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Brown, G.

    1995-01-01

    An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr 34+ and the 2s-2p intrashell transitions in lithiumlike Th 87+ and U 89+ , which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti 20+ through CO 25+ . A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT

  8. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  9. Study of a Particle Based Films Cure Process by High-Frequency Eddy Current Spectroscopy

    Directory of Open Access Journals (Sweden)

    Iryna Patsora

    2016-12-01

    Full Text Available Particle-based films are today an important part of various designs and they are implemented in structures as conductive parts, i.e., conductive paste printing in the manufacture of Li-ion batteries, solar cells or resistive paste printing in IC. Recently, particle based films were also implemented in the 3D printing technique, and are particularly important for use in aircraft, wind power, and the automotive industry when incorporated onto the surface of composite structures for protection against damages caused by a lightning strike. A crucial issue for the lightning protection area is to realize films with high homogeneity of electrical resistance where an in-situ noninvasive method has to be elaborated for quality monitoring to avoid undesirable financial and time costs. In this work the drying process of particle based films was investigated by high-frequency eddy current (HFEC spectroscopy in order to work out an automated in-situ quality monitoring method with a focus on the electrical resistance of the films. Different types of particle based films deposited on dielectric and carbon fiber reinforced plastic substrates were investigated in the present study and results show that the HFEC method offers a good opportunity to monitor the overall drying process of particle based films. Based on that, an algorithm was developed, allowing prediction of the final electrical resistance of the particle based films throughout the drying process, and was successfully implemented in a prototype system based on the EddyCus® HFEC device platform presented in this work. This prototype is the first solution for a portable system allowing HFEC measurement on huge and uneven surfaces.

  10. Terahertz spectroscopy of shift currents resulting from asymmetric (110)-oriented GaAs/AlGaAs quantum wells

    International Nuclear Information System (INIS)

    Priyadarshi, Shekhar; Leidinger, Markus; Pierz, Klaus; Racu, Ana M.; Siegner, Uwe; Bieler, Mark; Dawson, Philip

    2009-01-01

    We report the observation and the study of an additional shift current tensor element in (110)-oriented GaAs quantum wells, which arises from an out-of-plane asymmetry of the quantum well structure. The current resulting from this tensor element is optically induced with 150 fs laser pulses and detected by measuring the simultaneously emitted terahertz radiation. This terahertz spectroscopy of shift currents is a powerful technique for symmetry investigations, which shows, for example, that our nominally symmetric (110)-oriented GaAs/AlGaAs quantum wells grown by molecular beam epitaxy are in reality asymmetric structures with different right and left interfaces.

  11. Germanium detectors for nuclear spectroscopy: Current research and development activity at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, D. R., E-mail: daniel.r.napoli@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Maggioni, G., E-mail: maggioni@lnl.infn.it; Carturan, S.; Gelain, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, 35121 Padova (Italy); Eberth, J. [Institut für Kernphysik, Universität zu Köln, Zülpicher Straße 77, D-50937 Köln (Germany); Grimaldi, M. G.; Tatí, S. [Department of Physics and Astronomy, University of Catania (Italy); Riccetto, S. [University of Camerino and INFN of Perugia (Italy); Mea, G. Della [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell’Università 2, 35020 Legnaro, Padova (Italy); University of Trento (Italy)

    2016-07-07

    High-purity Germanium (HPGe) detectors have reached an unprecedented level of sophistication and are still the best solution for high-resolution gamma spectroscopy. In the present work, we will show the results of the characterization of new surface treatments for the production of these detectors, studied in the framework of our multidisciplinary research program in HPGe detector technologies.

  12. Optical spectroscopy: current advances and future applications in cancer diagnostics and therapy

    NARCIS (Netherlands)

    Evers, Daniel; Evers, D.J.; Hendriks, B.; Lucassen, G.W.; Lucassen, Gerald; Ruers, Theo J.M.

    2012-01-01

    Optical spectroscopy (OS) is a tissue-sensing technique that could enhance cancer diagnosis and treatment in the near future. With OS, tissue is illuminated with a selected light spectrum. Different tissue types can be distinguished from each other based on specific changes in the reflected light

  13. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    Science.gov (United States)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  14. [Current progress in food geographical origin traceability by near infrared spectroscopy technology].

    Science.gov (United States)

    Ma, Dong-Hong; Wang, Xi-Chang; Liu, Li-Ping; Liu, Yuan

    2011-04-01

    The geographical origin traceability of food, an important part of traceability system, is effective in protecting the quality and safety of foodstuffs. Near-infrared spectroscopy (NIR), which is a powerful technique for geographical origin traceability, has attracted extensive attention by scientists due to its speediness, non-pollution and simple operation. This paper presents the advantages and disadvantages of techniques that have been used for food geographical origin traceability. The basic principles of NIR and its applications in different food geographical origin traceability are presented too. Furthermore, problems in applications are analyzed and the future development trends are discussed.

  15. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.

    Science.gov (United States)

    Fukuda, M; Mishima, T; Nakayama, N; Masuda, T

    2010-08-01

    The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.

  16. Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2010-01-01

    the primary current distribution to the DC current distribution restricted to the Three-Phase-Boundary (TPB) zone introduces an error in the determination of the reaction resistance, Rreac = Z(freq. → 0) − Z(freq. → ∞). The error is estimated for different width of the effective TPB zone and a rule of thumb...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...

  17. Test of the electronic structure of Fe(100) by absorbed current spectroscopy

    International Nuclear Information System (INIS)

    Kisker, E.; Kirby, R.E.; Garwin, E.L.; King, F.K.

    1984-10-01

    The absorbed electron current for a clean Fe(100) surface as a function of energy rises step-like at the vacuum-energy cutoff with an absorption close to 1. The smooth decrease of absorbed current at higher electron energy due to secondary electron emission is superimposed by a considerable amount of fine structure, the amplitude of which decreases with increasing energy. These features are found in good agreement with the results of a calculation of the elastic part of the electron reflection coefficient. Further, they are compared with the ferromagnetic electronic bulk bandstructure calculated above the vacuum energy. From the comparison with the experimental data, the energy dependence of the real and imaginary parts of the inner potential is determined

  18. Characterization of deep level defects in Tl6I4S single crystals by photo-induced current transient spectroscopy

    International Nuclear Information System (INIS)

    Peters, J A; Liu, Z; Sebastian, M; Wessels, B W; Im, J; Freeman, A J; Nguyen, S; Kanatzidis, M G

    2015-01-01

    Defect levels in semi-insulating Tl 6 I 4 S single crystals grown by the horizontal Bridgman technique have been characterized using photo-induced current transient spectroscopy (PICTS). These measurements revealed six electron traps located at (0.059  ±  0.007), (0.13  ±  0.012), (0.31  ±  0.074), (0.39  ±  0.019), (0.62  ±  0.110), and (0.597  ±  0.105). These defect levels are attributed to vacancies (V I , V S ) and antisite defects (I S , Tl S , Tl I ) upon comparison to calculations of native defect energy levels using density functional theory and defects recently reported from photoluminescence and photoconductivity measurements. (paper)

  19. CVD Diamond Detectors for Current Mode Neutron Time-of-Flight Spectroscopy at OMEGA/NIF

    International Nuclear Information System (INIS)

    G. J. Schmid; V. Yu. Glebov; A. V. Friensehner; D. R. Hargrove; S. P. Hatchett; N. Izumi; R. A. Lerche; T. W. Phillips; T. C. Sangster; C. Silbernagel; C. Stoecki

    2001-01-01

    We have performed pulsed neutron and pulsed laser tests of a CVD diamond detector manufactured from DIAFILM, a commercial grade of CVD diamond. The laser tests were performed at the short pulse UV laser at Bechtel Nevada in Livermore, CA. The pulsed neutrons were provided by DT capsule implosions at the OMEGA laser fusion facility in Rochester, NY. From these tests, we have determined the impulse response to be 250 ps fwhm for an applied E-field of 500 V/mm. Additionally, we have determined the sensitivity to be 2.4 mA/W at 500 V/mm and 4.0 mA/W at 1000 V/mm. These values are approximately 2 to 5x times higher than those reported for natural Type IIa diamond at similar E-field and thickness (1mm). These characteristics allow us to conceive of a neutron time-of-flight current mode spectrometer based on CVD diamond. Such an instrument would sit inside the laser fusion target chamber close to target chamber center (TCC), and would record neutron spectra fast enough such that backscattered neutrons and x-rays from the target chamber wall would not be a concern. The acquired neutron spectra could then be used to extract DD fuel areal density from the downscattered secondary to secondary ratio

  20. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    International Nuclear Information System (INIS)

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials

  1. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  2. Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

    International Nuclear Information System (INIS)

    Belloir, Jean-Marc

    2016-01-01

    CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such as space imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramatically increased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors have substantial advantages over CCDs which make them great candidates to replace CCDs in future space missions. However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidly degrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or the fusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure. These displacement damage effects lead to the formation of stable defects and to the introduction of states in the forbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, non ionizing radiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the image sensor sensitivity and dynamic range. The aim of the present work is to extend the understanding of the effect of displacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on the shape of the dark current distribution depending on the particle type, energy and fluence but also on the image sensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the dark current distribution induced by displacement damage in nuclear or space environments is experimentally validated and physically justified. Another central part of this work consists in using the dark current spectroscopy technique for the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects. Many types of defects are detected and two of them are identified

  3. Use of functional near-infrared spectroscopy to monitor cortical plasticity induced by transcranial direct current stimulation

    Science.gov (United States)

    Khan, Bilal; Hervey, Nathan; Stowe, Ann; Hodics, Timea; Alexandrakis, George

    2013-03-01

    Electrical stimulation of the human cortex in conjunction with physical rehabilitation has been a valuable approach in facilitating the plasticity of the injured brain. One such method is transcranial direct current stimulation (tDCS) which is a non-invasive method to elicit neural stimulation by delivering current through electrodes placed on the scalp. In order to better understand the effects tDCS has on cortical plasticity, neuroimaging techniques have been used pre and post tDCS stimulation. Recently, neuroimaging methods have discovered changes in resting state cortical hemodynamics after the application of tDCS on human subjects. However, analysis of the cortical hemodynamic activity for a physical task during and post tDCS stimulation has not been studied to our knowledge. A viable and sensitive neuroimaging method to map changes in cortical hemodynamics during activation is functional near-infrared spectroscopy (fNIRS). In this study, the cortical activity during an event-related, left wrist curl task was mapped with fNIRS before, during, and after tDCS stimulation on eight healthy adults. Along with the fNIRS optodes, two electrodes were placed over the sensorimotor hand areas of both brain hemispheres to apply tDCS. Changes were found in both resting state cortical connectivity and cortical activation patterns that occurred during and after tDCS. Additionally, changes to surface electromyography (sEMG) measurements of the wrist flexor and extensor of both arms during the wrist curl movement, acquired concurrently with fNIRS, were analyzed and related to the transient cortical plastic changes induced by tDCS.

  4. Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Egginger

    2012-12-01

    Full Text Available Polyvinylalcohol (PVA is a water soluble polymer frequently applied in the field of organic electronics for insulating thin film layers. By-products of PVA synthesis are sodium acetate ions which contaminate the polymer material and can impinge on the electronic performance when applied as interlayer dielectrics in thin film transistors. Uncontrollable voltage instabilities and unwanted hysteresis effects are regularly reported with PVA devices. An understanding of these effects require knowledge about the electronic dynamics of the ionic impurities and their influence on the dielectric properties of PVA. Respective data, which are largely unknown, are being presented in this work. Experimental investigations were performed from room temperature to 125°C on drop-cast PVA films of three different quality grades. Data from thermal discharge current (TDC measurements, polarization experiments, and dielectric impedance spectroscopy concurrently show evidence of mobile ionic carriers. Results from TDC measurements indicate the existence of an intrinsic, build-in electric field of pristine PVA films. The field is caused by asymmetric ionic double layer formation at the two different film-interfaces (substrate/PVA and PVA/air. The mobile ions cause strong electrode polarization effects which dominate dielectric impedance spectra. From a quantitative electrode polarization analysis of isothermal impedance spectra temperature dependent values for the concentration, the mobility and conductivity together with characteristic relaxation times of the mobile carriers are given. Also shown are temperature dependent results for the dc-permittivity and the electronic resistivity. The obtained results demonstrate the feasibility to partly remove contaminants from a PVA solution by dialysis cleaning. Such a cleaning procedure reduces the values of ion concentration, conductivity and relaxation frequency.

  5. Detection of defect states responsible for leakage current in ultrathin tantalum pentoxide (Ta2O5) films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Zhong, L.; Lee, A.; See, C.H.; Han, T.; Sandler, N.P.; Chong, T.C.

    1997-01-01

    Defect states responsible for leakage current in ultrathin (physical thickness 2 O 5 ) films were measured with a novel zero-bias thermally stimulated current technique. It was found that defect states A, whose activation energy was estimated to be about 0.2 eV, can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing. The leakage current was also smaller for samples with N 2 O RTA than those with O 2 RTA for postdeposition annealing. Hence, defect states A are quite likely to be important in causing leakage current. copyright 1997 American Institute of Physics

  6. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy

    Science.gov (United States)

    Cotte, Marine; Dumas, Paul; Taniguchi, Yoko; Checroun, Emilie; Walter, Philippe; Susini, Jean

    2009-09-01

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size). This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples. Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).

  7. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flores, O.; Castillo, F.; Martinez, H. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Villa, M.; Reyes, P. G. [Facultad de Ciencias, Universidad Autónoma del Estado de México, Estado de México (Mexico); Villalobos, S. [Laboratorio de Espectroscopia, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Facultad de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico)

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0 Torr, power of 10 W, and flow rate of 16.5 l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100 nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}Σ{sup +}{sub u}→X{sup 2}Σ{sup +}{sub g}), N{sub 2} (C{sup 3}Π{sub u}→B{sup 3}Π{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93 eV, and the electron concentration is of the order of 10{sup 10} cm{sup −3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  8. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    Science.gov (United States)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  9. Persistent photocurrent and deep level traps in PLD-grown In-Ga-Zn-O thin films studied by thermally stimulated current spectroscopy

    Science.gov (United States)

    Wang, Buguo; Anders, Jason; Leedy, Kevin; Schuette, Michael; Look, David

    2018-02-01

    InGaZnO (IGZO) is a promising semiconductor material for thin-film transistors (TFTs) used in DC and RF switching applications, especially since it can be grown at low temperatures on a wide variety of substrates. Enhancement-mode TFTs based on IGZO thin films grown by pulsed laser deposition (PLD) have been recently fabricated and these transistors show excellent performance; however, compositional variations and defects can adversely affect film quality, especially in regard to electrical properties. In this study, we use thermally stimulated current (TSC) spectroscopy to characterize the electrical properties and the deep traps in PLD-grown IGZO thin films. It was found that the as-grown sample has a DC activation energy of 0.62 eV, and two major traps with activation energies at 0.16-0.26 eV and at 0.90 eV. However, a strong persistent photocurrent (PPC) sometimes exists in the as-grown sample, so we carry out post-growth annealing in an attempt to mitigate the effect. It was found that annealing in argon increases the conduction, produces more PPC and also makes more traps observable. Annealing in air makes the film more resistive, and removes PPC and all traps but one. This work demonstrates that current-based trap emission, such as that associated with the TSC, can effectively reveal electronic defects in highlyresistive semiconductor materials, especially those are not amenable to capacitance-based techniques, such as deeplevel transient spectroscopy (DLTS).

  10. Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy

    International Nuclear Information System (INIS)

    Lau, W.S.; Leong, L.L.; Han, Taejoon; Sandler, Nathan P.

    2003-01-01

    Defect state D (0.8 eV) was experimentally detected in Ta 2 O 5 capacitors with ultrathin (physical thickness 2 O 5 films using zero-bias thermally stimulated current spectroscopy and correlated with leakage current. Defect state D can be more efficiently suppressed by using N 2 O rapid thermal annealing (RTA) instead of using O 2 RTA for postdeposition annealing and by using TiN instead of Al for top electrode. We believe that defect D is probably the first ionization level of the oxygen vacancy deep double donor. Other important defects are Si/O-vacancy complex single donors and C/O-vacancy complex single donors

  11. Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height.

    Science.gov (United States)

    Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian

    2011-11-30

    We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.

  12. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  13. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    Science.gov (United States)

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  14. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  15. Water-induced charge transport in tablets of microcrystalline cellulose of varying density: dielectric spectroscopy and transient current measurements

    International Nuclear Information System (INIS)

    Nilsson, Martin; Alderborn, Goeran; Stroemme, Maria

    2003-01-01

    Room temperature dielectric frequency response data taken over 13 decades in frequency on microcrystalline cellulose (MCC) tablets of varying density are presented. The frequency response shows on three different processes: the first one is a high-frequency relaxation process whose magnitude increases and reaches a plateau as the tablet density increases. This process is associated with orientational motions of local chain segments via glycosidic bonds. The second relaxation process, related to the presence of water in the MCC matrix, is insensitive to changes in tablet density. At lower frequencies, dc-like imperfect charge transport dominates the dielectric spectrum. The dc conductivity was found to decrease with increasing tablet density and increase exponentially with increasing humidity. Transient current measurements indicated that two different ionic species, protons and OH - ions, lied behind the observed conductivity. At ambient humidity of 22%, only one in a billion of the water molecules present in the tablet matrix participated in long range dc conduction. The diffusion coefficient of the protons and OH - ions were found to be of the order of 10 -9 cm 2 /s, which is the same as for small salt building ions in MCC. This shows that ionic drugs leaving a tablet matrix may diffuse in the same manner as the constituent ions of water and, thus, elucidates the necessity to understand the water transport properties of excipient materials to be able to tailor the drug release process from pharmaceutical tablets

  16. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  17. Wearable functional Near Infrared Spectroscopy (fNIRS and transcranial Direct Current Stimulation (tDCS: Expanding Vistas for Neurocognitive Augmentation

    Directory of Open Access Journals (Sweden)

    Ryan eMcKendrick

    2015-03-01

    Full Text Available Contemporary studies with transcranial direct current stimulation (tDCS provide a growing base of evidence for enhancing cognition through the non-invasive delivery of weak electric currents to the brain. The main effect of tDCS is to modulate cortical excitability depending on the polarity of the applied current. However, the underlying mechanism of neuromodulation is not well understood. A new generation of functional near infrared spectroscopy (fNIRS systems is described that are miniaturized, portable, and include wearable sensors. These developments provide an opportunity to couple fNIRS with tDCS, consistent with a neuroergonomics approach for joint neuroimaging and neurostimulation investigations of cognition in complex tasks and in naturalistic conditions. The effects of tDCS on complex task performance and the use of fNIRS for monitoring cognitive workload during task performance are described. Also explained is how fNIRS + tDCS can be used simultaneously for assessing spatial working memory. Mobile optical brain imaging is a promising neuroimaging tool that has the potential to complement tDCS for realistic applications in natural settings.

  18. Defect States in InP/InGaAs/InP Heterostructures by Current-Voltage Characteristics and Deep Level Transient Spectroscopy.

    Science.gov (United States)

    Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu

    2018-09-01

    We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.

  19. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    International Nuclear Information System (INIS)

    James, Ralph B.

    2000-01-01

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of ∼ 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement

  20. Analytical applications of spectroscopy

    International Nuclear Information System (INIS)

    Creaser, C.S.

    1988-01-01

    This book provides an up to date overview of recent developments in analytical spectroscopy, with a particular emphasis on the common themes of chromatography - spectroscopy combinations, Fourier transform methods, and data handling techniques, which have played an increasingly important part in the development of all spectroscopic techniques. The book contains papers originally presented at a conference entitled 'Spectroscopy Across The Spectrum' held jointly with the first 'International Near Infrared Spectroscopy Conference' at the University of East Anglia, Norwich, UK, in July 1987, which have been edited and rearranged with some additional material. Each section includes reviews of key areas of current research as well as short reports of new developments. The fields covered are: Near Infrared Spectroscopy; Infrared Spectroscopy; Mass Spectroscopy; NMR Spectroscopy; Atomic and UV/Visible Spectroscopy; Chemometrics and Data Analysis. (author)

  1. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  2. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    Science.gov (United States)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  3. Characterization of semi-insulating materials by photoinduced current transient spectroscopy: Fe doped INP for micro-optoelectronics and CdZnTe for nuclear detection

    International Nuclear Information System (INIS)

    Cherkaoui, K.

    1998-01-01

    The need of semi-insulating materials, of great quality, concerns various application domains. For instance, the very resistive substrates InP and CdZnTe are respectively adapted to the micro-optoelectronic circuits and to nuclear detectors. These two materials have been characterized by the thermal photoinduced current transient spectroscopy. The first part of this thesis is the defects analysis of annealing InP substrates, to understand the compensation process of this material. Two activation energy levels around 0,2 to 0,4 eV resulting from the thermal treatment have been detected. The iron omnipresence in the substrates, even undoped, has been noticed. It is then necessary to take into account the iron presence to understand the compensation process in these InP annealing substrates. the second part presents the study of the CdZnTe material, elaborated by the Bridgman method, to emphasize the defects leading to the decrease of the detector performances. The presence of three deep levels, near the forbidden band middle, is in relation with the detectors performances. (A.L.B.)

  4. On the annealing behaviour of dysprosium ion implanted nickel: a combined study using Rutherford backscattering, transmission electron microscopy, and total current spectroscopy

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.

    1977-01-01

    Despite continuing improvements in applications of the analytical method of Rutherford backscattering (RBS) to solid state physics it is recognized that more complete information can be obtained if other techniques - for example transmission electron microscopy (TEM) - are employed simultaneously. Experiments are described in which a combined RBS and TEM study of the annealing of nickel, rendered amorphous by implantation of 20 keV dysprosium ions is supplemented with a completely new technique - total current spectroscopy (TCS). In TCS low energy electrons (0-15 eV) are used to probe the damaged nickel. Observations have been made during annealing of both the reappearance of the bulk band structure of the metal and of a 'surface peak' which is highly sensitive to the recovery process. Changes in the height of the surface peak reveal three sharp annealing stages, the first two being preceded by reverse annealing which correlates well with RBS and TEM results. The first annealing stage - following the amorphous to crystalline transition - may be associated with electronic effects in the vicinity of the Curie point. Changes in the position of the surface peak allow one to trace the diffusion of dysprosium to the surface. Quantum mechanical resonances at the damage/crystal interface have also been followed throughout annealing. The initially amorphous layer (approximately 2.2nm) increases in thickness slightly during recovery. (Auth.)

  5. Total absorption gamma-ray spectroscopy (TAGS): Current status of measurement programmes for decay heat calculations and other applications. Summary report of consultants' meeting

    International Nuclear Information System (INIS)

    Nichols, A.L.; Nordborg, C.

    2009-02-01

    A Consultants' Meeting on 'Total Absorption Gamma-ray Spectroscopy (TAGS)' was held on 27-28 January 2009 at the IAEA Headquarters, Vienna, Austria. All presentations, discussions and recommendations of this meeting are contained within this report. The purpose of the meeting was to report and discuss progress and plans to measure total gamma-ray spectra in order to derive mean beta and gamma decay data for decay heat calculations and other applications. This form of review had been recommended by contributors to Subgroup 25 of the OECD-NEA Working Party on International Evaluation Cooperation of the Nuclear Science Committee, for implementation in 2008/09. Hence, relevant specialists were invited to discuss their recently performed and planned TAGS studies, along with experimentalists proposing to assemble and operate such dedicated facilities. Knowledge and quantification of antineutrino spectra is believed to be a significant asset in the non-invasive monitoring of reactor operations and possible application in safeguards, as well as fundamental in the study of neutrino oscillations - these data needs were also debated in terms of appropriate TAGS measurements. A re-assessment of the current request list for TAGS studies is merited and was undertaken in the context of decay heat calculations, and agreement was reached to extend these requirements to the derivation of antineutrino spectra. (author)

  6. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  7. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  8. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  9. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  10. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  11. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  12. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  13. Investigation of disorder and its effect on electrical transport in electrochemically doped polymer devices by current-voltage and impedance spectroscopy

    Science.gov (United States)

    Rahman Khan, Motiur; Anjaneyulu, P.; Koteswara Rao, K. S. R.; Menon, R.

    2017-03-01

    We report on the analysis of temperature-dependent current-voltage characteristics and impedance measurements of electrochemically doped poly(3-methylthiophene) devices at different doping levels. The extent of doping is carefully tailored such that only the bulk-limited transport mechanism prevails. A transition from exponentially distributed trap-limited transport to trap-free space-charge-limited current is observed in current-voltage conduction upon increasing the doping. The obtained trap densities (3.2  ×  1016 cm-3 and 8.6  ×  1015 cm-3) and trap energies (31.7 meV and 16.6 meV) for different devices signify the variation in disorder with doping, which is later supported by impedance measurements. Impedance-frequency data for various devices can not be explained using the parallel resistance-capacitance (RC) model in the equivalent circuit. However, this was established by incorporating a constant phase element Q (CPE) instead of the capacitance parameter. It should be emphasized that low doping devices in particular are best simulated with two CPE elements, while the data related to other devices are fitted well with a single CPE element. It is also observed from evaluated circuit parameters that the spatial inhomogeneity and disorder are the cause of variability in different samples, which has an excellent correlation with the temperature-dependent current-voltage characteristics.

  14. Assessing the Driver's Current Level of Working Memory Load with High Density Functional Near-infrared Spectroscopy: A Realistic Driving Simulator Study.

    Science.gov (United States)

    Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W

    2017-01-01

    Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver's cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous 'n' speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing.

  15. Assessing the Driver’s Current Level of Working Memory Load with High Density Functional Near-infrared Spectroscopy: A Realistic Driving Simulator Study

    Science.gov (United States)

    Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W.

    2017-01-01

    Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing. PMID

  16. Assessing the Driver’s Current Level of Working Memory Load with High Density Functional Near-infrared Spectroscopy: A Realistic Driving Simulator Study

    Directory of Open Access Journals (Sweden)

    Anirudh Unni

    2017-04-01

    Full Text Available Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04, indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1. Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload

  17. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  18. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  19. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  20. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  1. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Gonser, U.

    1975-01-01

    This book is addressed to persons interested in learning about what has been done and what can be done with Moessbauer spectroscopy. In an introductory chapter the basic principle is explained and the general parameters governing Moessbauer spectroscopy are tabulated. For the following chapters various disciplines are chosen and the wide applicability of this measuring technique is demonstrated. The second chapter discusses a few representative examples of chemical interesting information being reflected by isomer shifts and quadrupole splittings, particularly with respect to bonding and structural properties. The third chapter deals with some applications of Moessbauer spectroscopy for characterizing magnetic compounds and its use for magnetic structure investigations, particularly by making use of polarized radiation. The fourth chapter describes the use of the Moessbauer spectroscopy for studying iron in biological molecules. As an example of recent applications to mineralogy and geology the results of the studies of lunar samples are reviewed in the fifth chapter. Finally, in the last chapter, work is described on the use of Moessbauer spectroscopy in physical metallurgy, particularly quantitative analyses which have enabled metallurgists to solve many old problems. (orig./FW) [de

  2. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  3. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  4. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  5. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  6. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  7. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  8. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  9. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  10. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  11. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    2008-01-01

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  12. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  13. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Igi, K.

    1979-01-01

    This paper is related to mini-rapporteur talk on baryonium spectroscopy. First of all, the models of baryonium, namely the diquark model, the string picture, the linear baryonium and the bag model, are described. All of these models so far discussed are highly suggestive. In this paper, discussions are confined to the spectroscopy of the string and the bag models. Because of the color degree of freedom, the bag model has mock diquonium and mock mesonium besides true baryonium. It might be possible that the string model takes into account only a part of them. The constraints among baryonium, baryon and boson trajectories using duality and unitarity were proposed as a guide for classifying various spectra. Inequalities were derived as the modest and reliable constraints on baryonium intercepts from baryon and boson intercepts by imposing unitarity and Regge behaviors on scattering amplitudes. As a consequence of residue factorization and duality, the baryonium slopes were derived. The spin of S (1936) was also obtained. The baryonium containing s or c quarks can also be studied. Topics such as the EXD patterns of baryons, linear baryons, linear Regge trajectories for all Q-anti Q families, and the Al and two Q mesons, are presented in this paper. Comments on di-baryon are described. (Kato, T.)

  14. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  15. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  16. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Zemcik, T.

    1984-01-01

    The emission and absorption of photons taking place without changes in the frequency spectrum of the crystal lattice are known as the Moessbauer effect. It takes place in the low energy levels of heavy nuclei in solid lattices at low temperatures. On the basis of the hyperfine structure of Moessbauer spectra the notions are explained of isomer shift, quadrupole splitting and magnetic splitting. The principle and function are explained of Moessbauer spectrometers and the methods of graphical processing of spectra, also the use of the least square fit. Moessbauer spectroscopy is nondestructive, highly sensitive and selective and makes structural resolution possible. It is used for quantitative and qualitative analysis of compounds. Examples are given of the use of this method for mineralogical and crystallo-chemical analysis of lunar minerals and rocks, for analysis of corrosion products of iron and for phase analysis of alloys. (M.D.)

  17. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  18. SIMP spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, Yonit [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kuflik, Eric [Department of Physics, LEPP, Cornell University,Ithaca NY 14853 (United States); Murayama, Hitoshi [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Center for Japanese Studies, University of California,Berkeley, CA 94720 (United States)

    2016-05-16

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e{sup +}e{sup −} colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  19. SIMP spectroscopy

    International Nuclear Information System (INIS)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2016-01-01

    We study the interactions between strongly interacting massive particle dark matter and the Standard Model via a massive vector boson that is kinetically mixed with the hypercharge gauge boson. The relic abundance is set by 3→2 self-interactions of the dark matter, while the interactions with the vector mediator enable kinetic equilibrium between the dark and visible sectors. We show that a wide range of parameters is phenomenologically viable and can be probed in various ways. Astrophysical and cosmological constraints are evaded due to the p-wave nature of dark matter annihilation into visible particles, while direct detection methods using electron recoils can be sensitive to parts of the parameter space. In addition, we propose performing spectroscopy of the strongly coupled dark sector at e + e − colliders, where the energy of a mono-photon can track the resonance structure of the dark sector. Alternatively, some resonances may decay back into Standard Model leptons or jets, realizing ‘hidden valley’ phenomenology at the LHC and ILC in a concrete fashion.

  20. Planetary spectroscopy

    International Nuclear Information System (INIS)

    Fink, U.

    1988-01-01

    The main goal of the research is charge coupled device (CCD) spectroscopic and imaging studies of the solar system in support of spacecraft investigations. Studies include the physical behavior of comets, the atmosphere of the gaseous planets, and the solid surfaces of satellites and asteroids. The major observing program consisted of approximately 50 nights of photometry of Comet Halley in order to resolve the controversy over this comet's rotation period. This data is presently being analyzed. Additional observing projects included the spectroscopic occultation of Charon by Pluto, reflection spectroscopy of Mercury, and a spectrum of the satellite Oberon. Mercury data does not corroborate the Fe(++) absorption feature reported by McCord and Clark at 8800 A but instead potentially shows a weaker feature at longer wavelengths. This position is in much closer accord with expectations for Mercury since a band center near 8800 A implies too little Fe(++) on Mercury, especially if band shifts with temperature are considered. The Pluto project proved that the deep methane absorptions visible in their combined specta are due soley to Pluto with Charon showing a flat and featureless spectrum. It appears that if Charon ever contained a substantial methane component, the satellite's low surface gravity could not hold it and the methane evaporated and escaped

  1. Intermolecular spectroscopy

    International Nuclear Information System (INIS)

    Gelbart, W.M.

    1980-01-01

    In this article some of the theoretical background is presented for the following papers on 'Intermolecular Spectroscopy and Dynamical Properties of Dense Systems'. In Section 1 we outline a simple semi-classical description of the interaction between optical radiation and matter. The motion of a many-body polarizability is introduced; limiting forms of this complicated quantity lead to the familiar cases of light scattering spectra. In Section 2 we consider the linear response approximation, and the equation of motion for the many-body density matrix is solved to first order in the matter-radiation interaction. The often quoted fluctuation-dissipation theorem and the time-dependent, equilibrium correlation functions are discussed. Section 3 treats the problem of the local field. In Section 4 we consider the special case of collision-induced light scattering by atomic fluids in the low-density limit. This allows us to focus on determining the interaction polarizability for simple gases. Finally, in Section 5 we distinguish between collision-induced and multiple light scattering, and discuss the double-light-scattering analyses which provide new information about critical and thermodynamically unstable fluids. (KBE)

  2. Perspectives of shaped pulses for EPR spectroscopy

    Science.gov (United States)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  3. XXII Conference on spectroscopy. Summaries of reports

    International Nuclear Information System (INIS)

    2001-01-01

    XXII Conference on spectroscopy took place 8-12 October 2001 in Zvenigorod, Moscow region. The recent advantages in the field of atomic and molecular spectroscopy were discussed. The current methods for elemental spectra analysis were considered. They are based on both traditional atomic emission, adsorption and Raman spectroscopic techniques and on introduction of the mass spectroscopy with the high-temperature plasma atomizer. The particular attention was given the application of spectroscopic methods for plasma diagnostics and air pollution control [ru

  4. Current neurology

    International Nuclear Information System (INIS)

    Appel, S.H.

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases

  5. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  6. Battery impedance spectroscopy using bidirectional grid connected

    Indian Academy of Sciences (India)

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring ... The converter is grid connected and controlled to operate at unity power factor. Additional ... Sadhana. Current Issue : Vol. 43, Issue 6.

  7. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  8. Transit spectroscopy with GTC

    Directory of Open Access Journals (Sweden)

    Osorio M.R. Zapatero

    2013-04-01

    Full Text Available Thanks to different ground-based surveys and space missions, nowadays we have a fairly large sample of discovered extra-solar planets to study and, without a doubt, this number will increase in the future. One of the most succesful techniques that allows us to prove the physical properties and atmospheric composition of these exoplanets is transmission spectroscopy. The level of precision that is require to measure these effects provides a technical challenge that is solved by using big telescopes and stable instruments to reach low noise levels. In this article, we will discuss the use of the 10m class telescope GTC to observed planetary transits in spectroscopic mode and some of the results that we are currently obtaining.

  9. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  10. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  11. The Performance of ICDAS-II Using Low-Powered Magnification with Light-Emitting Diode Headlight and Alternating Current Impedance Spectroscopy Device for Detection of Occlusal Caries on Primary Molars.

    Science.gov (United States)

    Ari, Timucin; Ari, Nilgun

    2013-01-01

    Early detection of occlusal caries in children is challenging for the dentists, because of the morphology of pit and fissures. The aim of this study was to compare in vitro the diagnostic performance of low-powered magnification with light-emitting diode headlight (LPMLED) using ICDAS-II criteria and AC Impedance Spectroscopy (ACIS) device, on occlusal surfaces of primary molars. The occlusal surfaces of 18 extracted primary molars were examined blindly by two examiners. The teeth were sectioned and examined under light microscopy using Downer's histological criteria as gold standard. Good to excellent inter- and intraexaminer reproducibility, higher sensitivity, specificity, and AUC values were achieved by LPMLED at D1 threshold. Also the relationship between histology and LPMLED was statistically significant. In conclusion visual aids have the potential to improve the performance of early caries detection and clinical diagnostics in children. Despite its potential, ACIS device should be considered as an adjunct method in detecting caries on primary teeth.

  12. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  13. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  14. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  15. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2000-01-01

    Spectroscopy in Catalysis describes the most important modern analytical techniques used to investigate catalytic surfaces. These include electron spectroscopy (XPS, UPS, AES, EELS), ion spectroscopy (SIMS, SNMS, RBS, LEIS), vibrational spectroscopy (infrared, Raman, EELS), temperature-programmed

  16. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  17. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  18. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  19. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  20. New Hadronic Spectroscopy

    International Nuclear Information System (INIS)

    Faccini, R.

    2010-01-01

    In the past few years the field of hadron spectroscopy has seen renewed interest due to the publication, initially mostly from B-Factories, of evidences of states that do not match regular spectroscopy, but are rather candidates for bound states with additional quarks or gluons (four quarks for tetraquarks and molecules and two quarks and gluons for hybrids). A huge effort in understanding the nature of this new states and in building a new spectroscopy is ongoing. This paper reviews the experimental and theoretical state of the art on heavy quarkonium exotic spectroscopy, with particular attention on the steps towards a global picture.

  1. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  2. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  3. Moessbauer spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, G [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Held, P [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Teucher, R [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Schlichting, F [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Foh, J [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Kankeleit, E [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1995-03-01

    Nearly 40 years after the discovery of the Moessbauer effect for the first time a Moessbauer spectrometer will leave our planet to explore in situ the surface of another solar system body: the red planet Mars [1]. We are currently developing a miniaturized Moessbauer spectrometer (MIMOS) which is part of the scientific payload of the Russian Mars96 mission, to be launched within the next 2-4 years [2,3]. To fulfill the requirements for a space mission to the planet Mars, all parts of the spectrometer had to be extremely miniaturized and ruggedized to withstand the space flight and Mars environmental conditions. The relevant parts (e.g. drive, detector system, electronics etc.) will be described in more detail and its characteristics compared to standard systems. Because of this new development there now is a growing interest to include a Moessbauer (MB) instrument in future space missions to other solar system bodies as for instance Venus, the terrestrial Moon, and a comet nucleus. Because of extremely different environmental conditions (e.g. nearly zero gravity on the surface of a comet nucleus, high pressure and temperature on the surface of Venus, etc.) different instrument designs and concepts are required for different missions. We will present some ideas for various types of missions, as well as the motivation for using Moessbauer spectroscopy in these cases. (orig.)

  4. Meson Spectroscopy at COMPASS

    CERN Document Server

    Grube, Boris

    2015-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, t...

  5. Meson Spectroscopy at COMPASS

    CERN Document Server

    Grube, Boris

    2016-11-29

    The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between 0.1 and 1.0 $(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^-\\pi^+$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. Novel analysis techniques have been...

  6. Critical Metadata for Spectroscopy Field Campaigns

    Directory of Open Access Journals (Sweden)

    Barbara A. Rasaiah

    2014-04-01

    Full Text Available A field spectroscopy metadata standard is defined as those data elements that explicitly document the spectroscopy dataset and field protocols, sampling strategies, instrument properties and environmental and logistical variables. Standards for field spectroscopy metadata affect the quality, completeness, reliability, and usability of datasets created in situ. Currently there is no standardized methodology for documentation of in situ spectroscopy data or metadata. This paper presents results of an international experiment comprising a web-based survey and expert panel evaluation that investigated critical metadata in field spectroscopy. The survey participants were a diverse group of scientists experienced in gathering spectroscopy data across a wide range of disciplines. Overall, respondents were in agreement about a core metadataset for generic campaign metadata, allowing for a prioritization of critical metadata elements to be proposed including those relating to viewing geometry, location, general target and sampling properties, illumination, instrument properties, reference standards, calibration, hyperspectral signal properties, atmospheric conditions, and general project details. Consensus was greatest among individual expert groups in specific application domains. The results allow the identification of a core set of metadata fields that enforce long term data storage and serve as a foundation for a metadata standard. This paper is part one in a series about the core elements of a robust and flexible field spectroscopy metadata standard.

  7. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  8. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  9. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  10. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  11. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  12. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  13. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  14. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  15. Baryon spectroscopy at KAON

    Energy Technology Data Exchange (ETDEWEB)

    Comyn, Martin

    1992-07-01

    The unique opportunities for the study of baryon spectroscopy at the TRIUMF KAON Factory are outlined. Related issues in other areas of hadron spectroscopy are discussed. The complex of accelerators that comprise the TRIUMF KAON Factory, and the properties of the separated beams that will be available to experimenters, are described. Initial design considerations for detectors to be used in the study of hadron spectroscopy are presented, along with a proposed detector configuration. The progress towards realization of the TRIUMF KAON Factory is examined, and the timetable for the determination of the initial experimental programme and facilities is explained. 23 refs., 4 figs., 5 tabs.

  16. IR Spectroscopy. An introduction

    International Nuclear Information System (INIS)

    Guenzler, H.; Gremlich, H.U.

    2002-01-01

    The following topics are dealt with: absorption and molecular design, spectrometers, sample preparation, qualitative spectral interpretation and assertions, near-infrared and far-infrared spectroscopy, reference spectra and expert systems

  17. Charmonium spectroscopy, 1987

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1987-01-01

    The state of charmonium spectroscopy is reviewed. All analyses proceed from a spin-dependent, non-relativistic Schroedinger equation. Many of the possible branching ratios for charm like states are investigated. 17 refs

  18. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  19. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  20. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig

    2005-01-01

    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  1. Surface vibrational spectroscopy (EELS)

    International Nuclear Information System (INIS)

    Okuyama, Hiroshi

    2006-01-01

    Adsorbed states of hydrogen on metal surfaces have been studied by means of electron energy loss spectroscopy (EELS). In this article, typical spectra and analysis as well as recent development are introduced. (author)

  2. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  3. Reflectance spectroscopy and asteroid surface mineralogy

    International Nuclear Information System (INIS)

    Gaffey, M.J.; Bell, J.F.; Cruikshank, D.P.

    1989-01-01

    Information available from reflectance spectroscopy on the surface mineralogy of asteroids is discussed. Current spectral interpretive procedures used in the investigations of asteroid mineralogy are described. Present understanding of the nature and history of asteroids is discussed together with some still unresolved issues such as the source of ordinary chondrites. 100 refs

  4. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  5. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  6. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  7. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  8. Fast antihydrogen beam spectroscopy

    International Nuclear Information System (INIS)

    Neumann, R.

    1989-01-01

    The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydrogen beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described. (orig.)

  9. Magnetic Resonance Spectroscopy in evaluation of central nervous system

    International Nuclear Information System (INIS)

    Krolicki, L.; Bak, M.; Grieb, P.

    1996-01-01

    The article presents the current results of MR spectroscopy in evaluation of central nervous system. This method is useful in examination of brain ischemia, brain tumors, epilepsy; white matter disorders and degeneration diseases. MR spectroscopy is unique technique for in vivo examination of the brain in physiological and pathophysiological states. (author)

  10. Nonlinear spectroscopy of trapped ions

    Science.gov (United States)

    Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas

    2014-08-01

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  11. Current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, D.H. [Sandia National Labs., Albuquerque, NM (United States). Systems Surety Assessment Dept.; Noren, K. [Univ. of Idaho, Moscow, ID (United States). Dept. of Electrical Engineering

    1996-09-01

    The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.

  12. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2017-01-01

    Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.

  13. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  14. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  15. In vivo spectroscopy

    International Nuclear Information System (INIS)

    Williams, S.R.; Cady, E.B.

    1987-01-01

    The technique which the authors describe in this chapter provides alternative information to imaging, although based upon the same physical principles. The experiments are carried out differently and have instrumental requirements which are not met by a standard imaging system. Furthermore, although the clinical efficacy of NMR imaging has been proven, clinical spectroscopy is very much in its infancy. With the exception of some specific /sup 31/P applications not is not even clear how spectroscopic investigations will be performed. This is particularly true with regard to localization techniques for investigating other than superficial organs and and in the use of /sup 1/H spectroscopy. They attempt to show what information spectroscopy can provide in principle and point out some of the problems associated with such investigations. NMR has come to the notice of the clinical community mainly through its use as an imaging technique, and many may consider spectroscopy as a secondary discipline. NMR spectroscopy, however, has a longer history than imaging and has been a standard technique in chemistry laboratories for more than two decades. It is a technique without peer for structural analysis of molecules and no new chemical compound is discovered or synthesized without an NMR spectrum being taken. The influence of molecular structure on resonant frequency has been termed the chemical shift

  16. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  17. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  18. Neutral currents

    International Nuclear Information System (INIS)

    Aubert, B.

    1994-11-01

    The evidence for the existence of weak neutral current has been a very controverted topics in the early 1970's, as well as the muon did in the 1930's. The history is very rich considering the evolution of the experimental techniques in high energy particle physics. The history of the discovery and the study of weak neutral current is reviewed. Later the quest of the intermediate vector boson continues with the decision of the community to build a large proton antiproton collider. (K.A.). 14 refs., 1 fig

  19. Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  20. Evaluating minerals of environmental concern using spectroscopy

    Science.gov (United States)

    Swayze, G.A.; Clark, R.N.; Higgins, C.T.; Kokaly, R.F.; Livo, K. Eric; Hoefen, T.M.; Ong, C.; Kruse, F.A.

    2006-01-01

    Imaging spectroscopy has been successfully used to aid researchers in characterizing potential environmental impacts posed by acid-rock drainage, ore-processing dust on mangroves, and asbestos in serpentine mineral deposits and urban dust. Many of these applications synergistically combine field spectroscopy with remote sensing data, thus allowing more-precise data calibration, spectral analysis of the data, and verification of mapping. The increased accuracy makes these environmental evaluation tools efficient because they can be used to focus field work on those areas most critical to the research effort. The use of spectroscopy to evaluate minerals of environmental concern pushes current imaging spectrometer technology to its limits; we present laboratory results that indicate the direction for future designs of imaging spectrometers.

  1. Current algebra

    International Nuclear Information System (INIS)

    Jacob, M.

    1967-01-01

    The first three chapters of these lecture notes are devoted to generalities concerning current algebra. The weak currents are defined, and their main properties given (V-A hypothesis, conserved vector current, selection rules, partially conserved axial current,...). The SU (3) x SU (3) algebra of Gell-Mann is introduced, and the general properties of the non-leptonic weak Hamiltonian are discussed. Chapters 4 to 9 are devoted to some important applications of the algebra. First one proves the Adler- Weisberger formula, in two different ways, by either the infinite momentum frame, or the near-by singularities method. In the others chapters, the latter method is the only one used. The following topics are successively dealt with: semi leptonic decays of K mesons and hyperons, Kroll- Ruderman theorem, non leptonic decays of K mesons and hyperons ( ΔI = 1/2 rule), low energy theorems concerning processes with emission (or absorption) of a pion or a photon, super-convergence sum rules, and finally, neutrino reactions. (author) [fr

  2. Current Titles

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  3. Current scenario

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Current scenario. India , like other parts of the world, is also facing the problem of increase in the incidence of drug resistance in tuberculosis. Multi-drug resistance (MDR, resistance to RIF & INH) and extensively drug resistant strains (X-DR, resistance to RIF, INH, FQs ...

  4. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  5. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Photoacoustic and photothermal spectroscopies

    International Nuclear Information System (INIS)

    Sawada, Tsuguo; Kitamori, Takehiko; Nakamura, Masato

    1995-01-01

    Photoacoustic and photothermal spectroscopy methods can be effectively applied to the analysis of microparticles in condensed matter. A more violent photothermal conversion phenomenon of a particle, laser breakdown and accompanying plasma and acoustic emission, was applied to individual detection and analysis of ultrafine particles in ultrapure water. Laser-like nonlinear emission from the plasma was observed. (author)

  7. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Perspectives in hadron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richard, J.M. [Universite Joseph Fourier-IN2P3-CNRS, Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (France)

    2005-07-01

    A brief survey is presented of selected recent results on hadron spectroscopy and related theoretical studies. Among the new hadron states, some of them are good candidates for exotic structures: chiral partners of ground-states, hybrid mesons (quark, antiquark and constituent gluon), four-quark states, or meson-meson molecules.

  9. Outlook for baryon spectroscopy

    International Nuclear Information System (INIS)

    Tripp, R.D.

    1976-09-01

    The review of baryon spectroscopy includes a number of new generation experiments with greatly improved statistics which have emerged and are enhancing experimental knowledge of baryon resonances. The future research directions are pointed out, and some problems and deficiencies which can be resolved with contemporary techniques are mentioned

  10. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  11. Astronomical Spectroscopy -24 ...

    Indian Academy of Sciences (India)

    growth of spectroscopy and its application to the study of .... Cesium was discovered ten years earlier, in 1859; it is the ... Kirchhoff and Bunsen's discovery; he was spared the pain of seeing ... We will have to go back about twenty years.

  12. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  13. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  14. Spectroscopy of new particles

    International Nuclear Information System (INIS)

    Goldhaber, G.

    1977-08-01

    A review of the spectroscopy of the ''psions'' with hidden charm or charm quantum number ch = o is followed by a discussion of charmed mesons and baryons. The anomalous C-μ events and the heavy lepton hypothesis are briefly considered

  15. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  16. Molecular Force Spectroscopy on Cells

    Science.gov (United States)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  17. On Impedance Spectroscopy of Supercapacitors

    Science.gov (United States)

    Uchaikin, V. V.; Sibatov, R. T.; Ambrozevich, A. S.

    2016-10-01

    Supercapacitors are often characterized by responses measured by methods of impedance spectroscopy. In the frequency domain these responses have the form of power-law functions or their linear combinations. The inverse Fourier transform leads to relaxation equations with integro-differential operators of fractional order under assumption that the frequency response is independent of the working voltage. To compare long-term relaxation kinetics predicted by these equations with the observed one, charging-discharging of supercapacitors (with nominal capacitances of 0.22, 0.47, and 1.0 F) have been studied by means of registration of the current response to a step voltage signal. It is established that the reaction of devices under study to variations of the charging regime disagrees with the model of a homogeneous linear response. It is demonstrated that relaxation is well described by a fractional stretched exponent.

  18. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  19. Current awareness.

    Science.gov (United States)

    Compagno, C; Brambilla, L; Capitanio, D; Boschi, F; Ranzi, B M; Porro, D

    2001-05-01

    In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (4 weeks journals - search completed 7th Mar. 2001)

  20. Current titles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Gretchen Hermes at (510) 486-5006 or address below for a User`s Guide. Copies of available papers can be ordered from: Theda Crawford National Center for Electron Microscopy, Lawrence Berkeley Laboratory, One Cyclotron Rd., MS72, Berkeley, California, USA 94720.

  1. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  2. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  3. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...

  4. Current ornithology

    CERN Document Server

    1983-01-01

    The appearance of the first volume of a projected series is the occasion for comment on scope, aims, and genesis of the work. The scope of Current Ornithology is all of the biology of birds. Ornithology, as a whole-organism science, is concerned with birds at every level of bi­ ological organization, from the molecular to the community, at least from the Jurassic to the present time, and over every scholarly discipline in which bird biology is done; to say this is merely to expand a dic­ tionary definition of "ornithology. " The aim of the work, to be realized over several volumes, is to present reviews or position statements con­ cerning the active fields of ornithological research. The reviews will be relatively short, and often will be done from the viewpoint of a readily­ identified group or school. Such a work could have come into being at any time within the past fifty years, but that Current Ornithology appears now is a result of events that are only seven to eight years old. One important event wa...

  5. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  6. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  7. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  8. Visible spectroscopy on ASDEX

    International Nuclear Information System (INIS)

    Hofmann, J.V.

    1991-12-01

    In this report visible spectroscopy and impurity investigations on ASDEX are reviewed and several sets of visible spectra are presented. As a basis for identification of metallic impurity lines during plasma discharges spectra from a stainless steel - Cu arc have been recorded. In a next step a spectrum overview of ASDEX discharges is shown which reveals the dominating role of lines from light impurities like carbon and oxygen throughout the UV and visible range (2000 A ≤ λ ≤ 8000 A). Metallic impurity lines of neutrals or single ionized atoms are observed near localized surfaces. The dramatic effect of impurity reduction by boronization of the vessel walls is demonstrated in a few examples. In extension to some ivesti-gations already published, further diagnostic applications of visible spectroscopy are presented. Finally, the hardware and software system used on ASDEX are described in detail. (orig.)

  9. Hadron spectroscopy in LHCb

    CERN Document Server

    Palano, Antimo

    2018-01-01

    The LHCb experiment is designed to study the properties and decays of heavy flavored hadrons produced in pp collisions at the LHC. The data collected in the LHC Run I enables precision spectroscopy studies of beauty and charm hadrons. The latest results on spectroscopy of conventional and exotic hadrons are reviewed. In particular the discovery of the first charmonium pentaquark states in the $J/\\psi p$ system, the possible existence of four-quark states decaying to $J/\\psi \\phi$ and the confirmation of resonant nature of the $Z_c(4430)^−$ mesonic state are discussed. In the sector of charmed baryons, the observation of five new $\\Omega_c$ states, the observation of the $\\Xi^+_{cc}$ and the study of charmed baryons decaying to $D^0 p$ are presented.

  10. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  11. Precision muonium spectroscopy

    International Nuclear Information System (INIS)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s–2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium–antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter. (author)

  12. Basic Principles of Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy deals with the production, measurement, and interpretation of spectra arising from the interaction of electromagnetic radiation with matter. There are many different spectroscopic methods available for solving a wide range of analytical problems. The methods differ with respect to the species to be analyzed (such as molecular or atomic spectroscopy), the type of radiation-matter interaction to be monitored (such as absorption, emission, or diffraction), and the region of the electromagnetic spectrum used in the analysis. Spectroscopic methods are very informative and widely used for both quantitative and qualitative analyses. Spectroscopic methods based on the absorption or emission of radiation in the ultraviolet (UV), visible (Vis), infrared (IR), and radio (nuclear magnetic resonance, NMR) frequency ranges are most commonly encountered in traditional food analysis laboratories. Each of these methods is distinct in that it monitors different types of molecular or atomic transitions. The basis of these transitions is explained in the following sections.

  13. Mössbauer spectroscopy.

    Science.gov (United States)

    Huynh, Boi Hanh

    2011-01-01

    Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

  14. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  15. Theory and spectroscopy

    Science.gov (United States)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  16. NEUROFEEDBACK USING FUNCTIONAL SPECTROSCOPY

    OpenAIRE

    Hinds, Oliver; Wighton, Paul; Tisdall, M. Dylan; Hess, Aaron; Breiter, Hans; van der Kouwe, André

    2014-01-01

    Neurofeedback based on real-time measurement of the blood oxygenation level-dependent (BOLD) signal has potential for treatment of neurological disorders and behavioral enhancement. Commonly employed methods are based on functional magnetic resonance imaging (fMRI) sequences that sacrifice speed and accuracy for whole-brain coverage, which is unnecessary in most applications. We present multi-voxel functional spectroscopy (MVFS): a system for computing the BOLD signal from multiple volumes of...

  17. Total Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Rubio, B.; Gelletly, W.

    2007-01-01

    The problem of determining the distribution of beta decay strength (B(GT)) as a function of excitation energy in the daughter nucleus is discussed. Total Absorption Spectroscopy is shown to provide a way of determining the B(GT) precisely. A brief history of such measurements and a discussion of the advantages and disadvantages of this technique, is followed by examples of two recent studies using the technique. (authors)

  18. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  19. Optical imaging and spectroscopy

    CERN Document Server

    Brady, David J

    2009-01-01

    An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statis

  20. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  1. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  2. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  3. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  4. Raman spectroscopy peer review report

    International Nuclear Information System (INIS)

    Winkelman, W.D.; Eberlein, S.J.

    1994-09-01

    The Hanford Site in eastern Washington includes 177 underground storage tanks (UST), which contain waste materials produced during the production of nuclear fuels. The materials in the tanks must be characterized to support the retrieval, processing, and final disposition of the waste. Characterization is currently performed by removing waste samples for analyses in a hot cell or laboratory. A review of the Hanford Raman Spectroscopy Program was held in Richland on March 23 and 24, 1994. A team of principal investigators and researchers made presentations that covered both technical and programmatic aspects of the Hanford Site Raman work. After these presentations and discussions, the review panel met in a closed session to formalize a list of findings. The reviewers agreed that Raman spectroscopy is an excellent method to attack the tank waste characterization and screening problems that were presented. They agreed that there was a good chance that the method would be successful as presently envisioned. The reviewers provided the following primary recommendations: evaluation a laser with wavelength in the near infrared; provide optical filters at or near the sampling end of the fiber-optic probe; develop and implement a strategy for frequent calibration of the system; do not try to further increase Raman resolution at the expense of wavelength range; clearly identify and differentiate between requirements for providing a short-term operational system and requirements for optimizing a system for long-term field use; and determine the best optical configuration, which may include reduced fiber-optic diameter and/or short focal length and low F-number spectrographs

  5. Superconductive junctions for x-ray spectroscopy

    International Nuclear Information System (INIS)

    Grand, J.B. le; Bruijn, M.P.; Frericks, M.; Korte, P.A.J. de; Houwman, E.P.; Flokstra, J.

    1992-01-01

    Biasing of SIS-junctions for the purpose of high energy resolution x-ray detection is complicated by the presence of a DC Josephson current and AC Josephson current resonances, so that a large magnetic field is normally used for the suppression of these Josephson features. A transimpedance amplifier is proposed for biasing and signal amplification at low magnetic field. X-ray spectroscopy detectors for astronomy require a high detection efficiency in the 0.5-10 keV energy band and a reasonable (∼1 cm 2 ) detector area. Calculations on absorber-junctions combinations which might meet these requirements are presented. (author) 9 refs.; 10 figs

  6. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  7. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  8. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  9. Nanosecond fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Leskovar, B.

    1985-03-01

    This article is a summary of a short course lecture given in conjunction with the 1984 Nuclear Science Symposium. Measuring systems for nanosecond fluorescence spectroscopy using single-photon counting techniques are presented. These involve systems based on relaxation-type spark gap light pulser and synchronously pumped mode-locked dye lasers. Furthermore, typical characteristics and optimization of operating conditions of the critical components responsible for the system time resolution are discussed. A short comparison of the most important deconvolution methods for numerical analysis of experimental data is given particularly with respect to the signal-to-noise ratio of the fluorescence signal. 22 refs., 8 figs

  10. Theory overview on spectroscopy

    International Nuclear Information System (INIS)

    Ali, Ahmed

    2011-08-01

    A theoretical overview of the exotic spectroscopy in the charm and beauty quark sector is presented. These states are unexpected harvest from the e + e - and hadron colliders and a permanent abode for the majority of them has yet to be found. We argue that some of these states, in particular the Y b (10890) and the recently discovered states Z b (10610) and Z b (10650), discovered by the Belle collaboration are excellent candidates for tetraquark states [bq][ anti b anti q], with q=u,d light quarks. Theoretical analyses of the Belle data carried out in the tetraquark context is reviewed. (orig.)

  11. Hadron spectroscopy 1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk

  12. Hadron spectroscopy 1987

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk.

  13. Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Gopalaraman, C.P.

    1975-01-01

    General features of electron excited Auger electron spectroscopy (AES) which is a nondestructive technique for the analysis of surfaces upto about 15 Adeg depth with a detection limit of about 0.1% of a monolayer. Methods of measuring the Auger electron energies and recent improvements in the instrumentation are reviewed. Typical energy resolution is found to be about 0.5% which is specially suited for the detection of light elements. It is widely used in metallurgy, surface chemistry and thin film studies. (K.B.)

  14. Spectroscopy of 212Rn

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Byrne, A.P.; Poletti, A.R.

    1988-01-01

    Excited states of 212 Rn have been studied using γ-ray and electron spectroscopy following the reactions 208 Pb( 9 Be, 5n) and 204 Hg( 13 C,5n). With the exception of the energy of the yrast 8 + → 6 + transition, the previously proposed level scheme has been verified. New transitions have been placed in the level scheme and new lifetime and g-factor results obtained. The level scheme and electromagnetic properties of selected isomeric states are compared with the results of shell model and semi-empirical shell-model calculations, including coupling to octupole vibrations. (orig.)

  15. Spectroscopy of 212Rn

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Dracoulis, G.D.; Byrne, A.P.; Poletti, A.R.

    1988-06-01

    Excited states of 212 Rn have been studied using γ-ray and electron spectroscopy following the reactions 208 Pb ( 9 Be,5n) and 204 Hg( 13 C,5n). With the exception of the energy of the yrast 8 + → 6 + transition, the previously proposed level scheme has been verified. New transitions have been placed in the level scheme and new lifetime and g-factor results obtained. The level scheme and electromagnetic properties of selected isomeric states are compared with the results of shell model and semi-empirical shell-model calculations, including coupling to octupole vibrations

  16. MR spectroscopy in dementia

    International Nuclear Information System (INIS)

    Hauser, T.; Gerigk, L.; Giesel, F.; Schuster, L.; Essig, M.

    2010-01-01

    With an increasingly aging population we are faced with the problem of an increasing number of dementia patients. In addition to clinical, neuropsychological and laboratory procedures, MRI plays an important role in the early diagnosis of dementia. In addition to various morphological changes functional changes can also help in the diagnosis and differential diagnosis of dementia. Overall the diagnosis of dementia can be improved by using parameters from MR spectroscopy. This article focuses on MR spectroscopic changes in the physiological aging process as well as on changes in mild cognitive impairment a precursor of Alzheimer's dementia, in Alzheimer's dementia, frontotemporal dementia, vascular dementia and Lewy body dementia. (orig.) [de

  17. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  18. Statistical nuclear spectroscopy

    International Nuclear Information System (INIS)

    Parikh, J.C.

    1985-01-01

    The aim of nuclear spectroscopy is to study properties of nuclear energy levels and transitions (electromagnetic, particle transfer, etc.) between these levels. Traditionally, the properties that involve a single level or a few levels have theoretically been investigated using models e.g. shell model, self-consistent field approximation, collective model (RPA, Generator Coordinate) and so on. Basically from these models, one obtains eigenvalues and eigenfunctions (or expectation values and transfer strengths) which can be compared with data. The choice of the model depends upon the properties that one wants to examine and the usefulness of the model depends upon its ability to explain observations and make predictions

  19. Resonance ionization spectroscopy 1990

    International Nuclear Information System (INIS)

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  20. Charmonium(like) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhiqing [Johannes Gutenberg University Mainz, Mainz (Germany)

    2016-07-01

    Since its discovery in 1974, charmonium spectroscopy has always been an important probe to study strong interactions and the structure of hadronic matter. Below open-charm threshold, the charmonium spectrum is well established now. Also our understanding of charmonium states above the open-charm threshold has seen a big progress during recent years. However, the most surprising was the discovery of charmonium-like states, which have a similar mass scale as charmonium states but can not be classified as conventional states easily. Indeed, charmonium-like states are good candidates for the so-called exotic hadron states, i.e. particles with a quark content different from normal mesons and baryons, such as multi-quark states, hybrid states or molecule states. Although neutral charmonium-like states are more difficult to be identified, the observation of charged states provide us a convincing evidence. In this talk, I review the recent progress on charmonium and charmonium-like spectroscopy from BESIII, Belle, BABAR, CLEO-c and LHCb and the prospect for future experiments at Belle II and PANDA.

  1. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  2. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  3. Photothermal spectroscopy of aerosols

    International Nuclear Information System (INIS)

    Campillo, A.J.; Lin, H.B.

    1981-04-01

    In situ aerosol absorption spectroscopy was performed using two novel photothermal detection schemes. The first, based on a photorefractive effect and coherent detection, called phase fluctuation optical heterodyne (PFLOH) spectroscopy, could, depending on the geometry employed, yield particle specific or particle and gas absorption data. Single particles of graphite as small as 1 μm were detected in the particle specific mode. In another geometrical configuration, the total absorption (both gas and particle) of submicron sized aerosols of ammonium sulfate particles in equilibrium with gaseous ammonia and water vapor were measured at varying CO 2 laser frequencies. The specific absorption coefficient for the sulfate ion was measured to be 0.5 m 2 /g at 1087 cm -1 . The absorption coefficient sensitivity of this scheme was less than or equal to 10 -8 cm -1 . The second scheme is a hybrid visible Mie scattering scheme incorporating photothermal modulation. Particle specific data on ammonium sulfate droplets were obtained. For chemically identical species, the relative absorption spectrum versus laser frequency can be obtained for polydisperse aerosol distributions directly from the data without the need for complex inverse scattering calculations

  4. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  5. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions

  6. A New Optical Design for Imaging Spectroscopy

    Science.gov (United States)

    Thompson, K. L.

    2002-05-01

    We present an optical design concept for imaging spectroscopy, with some advantages over current systems. The system projects monochromatic images onto the 2-D array detector(s). Faint object and crowded field spectroscopy can be reduced first using image processing techniques, then building the spectrum, unlike integral field units where one must first extract the spectra, build data cubes from these, then reconstruct the target's integrated spectral flux. Like integral field units, all photons are detected simultaneously, unlike tunable filters which must be scanned through the wavelength range of interest and therefore pay a sensitivity pentalty. Several sample designs are presented, including an instrument optimized for measuring intermediate redshift galaxy cluster velocity dispersions, one designed for near-infrared ground-based adaptive optics, and one intended for space-based rapid follow-up of transient point sources such as supernovae and gamma ray bursts.

  7. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  8. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  9. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  10. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  11. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  12. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  13. Astronomical Spectroscopy for Amateurs

    CERN Document Server

    Harrison, Ken M

    2011-01-01

    Astronomical Spectroscopy for Amateurs is a complete guide for amateur astronomers who are looking for a new challenge beyond astrophotography. The book provides a brief overview of the history and development of the spectroscope, then a short introduction to the theory of stellar spectra, including details on the necessary reference spectra required for instrument testing and spectral comparison. The various types of spectroscopes available to the amateur are then described. Later sections cover all aspects of setting up and using various types of commercially available and home-built spectroscopes, starting with basic transmission gratings and going through more complex models, all the way to the sophisticated Littrow design. The final part of the text is about practical spectroscope design and construction. This book uniquely brings together a collection of observing, analyzing, and processing hints and tips that will allow the amateur to build skills in preparing scientifically acceptable spectra data. It...

  14. Introduction to NSE spectroscopy

    International Nuclear Information System (INIS)

    Pappas, C.

    2001-01-01

    Neutron Spin Echo (NSE) spectroscopy allows for reaching the highest energy resolution in inelastic neutron scattering while keeping the high intensity advantage of a beam which is only 10-20% monochromatic. Most spectroscopic methods determine separately the energies of the incident (ω 0 ) and scattered beams (ω) in order to deduce the energy transfer (Δω = ω-ω 0 ), which is the relevant parameter in inelastic neutron scattering. The accuracy in the determination of ω 0 and ω also determines the lowest limit for Δω, which can reach 10 -3 , but with the cost of a high incident beam monocromatisation. In NSE the precession of neutron spins in a magnetic field is used as a stop-watch, which is carried by each neutron individually and measures directly, with an accuracy of 10 -5 to 10 -3 , the difference in energy before and after the scattering process at the sample. (R.P.)

  15. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  16. Baryon spectroscopy in COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Austregesilo, Alexander; Chung, Suh-Urk; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan [Technische Universitaet Muenchen, Physik Department E18, D-85748 Garching (Germany)

    2010-07-01

    COMPASS is a fixed-target experiment at CERN SPS which investigates the structure and spectroscopy of hadrons. During in total 9 weeks in 2008 and 2009, a 190 GeV/c proton beam impinging on a liquid hydrogen target has been used primarily to study the production of exotic mesons and glueball candidates at central rapidities. As no bias on the rapidity was introduced by the trigger system, the data also yield the unique possibility to study diffractive dissociation of the beam proton while an inert target is assumed. To this end exclusive events with three charged particles including one proton in the final state have been extracted. We report on the status of the event selection studies and discuss the prospect of using partial wave analysis techniques, which have been successfully applied for diffractive dissociation reactions of pions in COMPASS.

  17. Bragg Curve Spectroscopy

    International Nuclear Information System (INIS)

    Gruhn, C.R.

    1981-05-01

    An alternative utilization is presented for the gaseous ionization chamber in the detection of energetic heavy ions, which is called Bragg Curve Spectroscopy (BCS). Conceptually, BCS involves using the maximum data available from the Bragg curve of the stopping heavy ion (HI) for purposes of identifying the particle and measuring its energy. A detector has been designed that measures the Bragg curve with high precision. From the Bragg curve the range from the length of the track, the total energy from the integral of the specific ionization over the track, the dE/dx from the specific ionization at the beginning of the track, and the Bragg peak from the maximum of the specific ionization of the HI are determined. This last signal measures the atomic number, Z, of the HI unambiguously

  18. Laboratory molecular spectroscopy

    International Nuclear Information System (INIS)

    Margolis, J.

    1982-04-01

    The precision required in making spectroscopic measurements is discussed. Remarks are directed specifically to vibration-rotation spectra rather than continuum absorptions. The ultimate precision that is required for line positions is related to the width of the lines which may be no narrower than the Doppler width. The spectroscopic methods considered are those which are of the most general value to the astronomers, those which acquire and can handle large volumes of spectra in digital form, or in a form which is compatible with computer analysis, and in a form which is at least internally consistent. The use of dye laser, grating instruments, and the most versatile instrument for laboratory spectroscopy, the Fourier transform spectrometer is discussed

  19. EXAFS spectroscopy of quasicrystals

    International Nuclear Information System (INIS)

    Menushenkov, A. P.; Rakshun, Ya. V.

    2007-01-01

    The results of the investigation of the features of the local structure of quasicrystalline materials by extended X-ray absorption fine structure (EXAFS) spectroscopy with the use of synchrotron radiation are analyzed. The advantages of this method from the point of view of deriving information about the local shifts of the atoms forming an icosahedral structure are demonstrated. The rearrangement of the local environment of copper and iron in Al-Fe-Cu ternary alloys at a transition from the crystalline to the quasicrystalline phase has been investigated. It is established that the nearest copper coordination retains the symmetry characteristic of the crystal; however, rotation and small displacements of copper matrix atoms lead to significant rearrangement of aluminum atoms around iron atoms. As a result, icosahedral clusters with pentagonal symmetry are formed around iron atoms and violation of the translational symmetry is accompanied by the transition of Al-Fe-Cu to the quasicrystalline state

  20. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  1. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  2. Intermediate valence spectroscopy

    International Nuclear Information System (INIS)

    Gunnarsson, O.; Schoenhammer, K.

    1987-01-01

    Spectroscopic properties of intermediate valence compounds are studied using the Anderson model. Due to the large orbital and spin degeneracy N/sub f/ of the 4f-level, 1/N/sub f/ can be treated as a small parameter. This approach provides exact T = 0 results for the Anderson impurity model in the limit N/sub f/ → ∞, and by adding 1/N/sub f/ corrections some properties can be calculated accurately even for N/sub f/ = 1 or 2. In particular valence photoemission and resonance photoemission spectroscopies are studied. A comparison of theoretical and experimental spectra provides an estimate of the parameters in the model. Core level photoemission spectra provide estimates of the coupling between the f-level and the conduction states and of the f-level occupancy. With these parameters the model gives a fair description of other electron spectroscopies. For typical parameters the model predicts two structures in the f-spectrum, namely one structure at the f-level and one at the Fermi energy. The resonance photoemission calculation gives a photon energy dependence for these two peaks in fair agreement with experiment. The peak at the Fermi energy is partly due to a narrow Kondo resonance, resulting from many-body effects and the presence of a continuous, partly filled conduction band. This resonance is related to a large density of low-lying excitations, which explains the large susceptibility and specific heat observed for these systems at low temperatures. 38 references, 11 figures, 2 tables

  3. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  4. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  5. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  6. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  7. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  8. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  9. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  10. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  11. Heavy quark spectroscopy

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-10-01

    New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs

  12. Optogalvanic photoionization spectroscopy

    International Nuclear Information System (INIS)

    Levesque, S.; Gagne, J.-M.; Babin, F.

    1997-01-01

    This paper presents, for the first time, a systematic study of an optogalvanic method for photoionization spectroscopy. The method is particularly attractive for refractory and complex atoms, such as lanthanides and actinides. The relevant characteristics of the hollow cathode discharges used for this study are discussed in detail, along with the experimental protocol for this spectroscopic method. The rapid optogalvanic effect, which results solely from photoionization, is also described. Finally, we present as an example of the application of this method, a table containing some of the recorded uranium photoionization lines in the 16 300-20 500 cm -1 range, along with typical samples of the uranium single-colour photoionization spectrum recorded using the rapid optogalvanic technique. A brief discussion of the sensitivity of the rapid optogalvanic effect is also presented. It appears that the rapid optogalvanic effect is very effective in the detection of highly excited levels. This technique permitted the observation of many new single-colour resonant ionization uranium lines. (Author)

  13. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  14. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-09-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. Interest in this field may be provisionally divided into two general classes: Hidden flavor states, i.e. c bar c and b bar b onium states; open flavor states: The D, D s , B, B s , and B c meson systems; and charm and beauty flavored baryons. In this brief note we emphasize that there are many missing states in both categories -- states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to us would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular states. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner bar B decay remains to be seen. We suggest however that the richness of the excited B-system may undermine the efficacy of self-tagging schemes

  15. Heavy flavor spectroscopy

    International Nuclear Information System (INIS)

    Rosen, J.; Marques, J.; Spiegel, L.

    1993-01-01

    As a useful by-product of the unfolding searches for mixing and CP-violation effects in the beauty sector there will accrue very large data samples for the study of heavy flavor spectroscopy. (I) Hidden flavor states, i.e. c bar c and b bar b onium states. (II) Open flavor states (a) the D, D s , B, B s , and B c meson systems; (b) Charm and beauty flavored baryons. In this brief note the authors emphasize that there are many missing (undiscovered) states in both categories - states which are not readily produced exclusively due to quantum number preferences or states which are not readily observed inclusively due to experimentally difficult decay channels. As recorded luminosities increase it may be possible to fill in some of the holes in the present listings of heavy flavor states. Of particular interest to the authors would be the identification of heavy flavor mesons which are not easily explained in terms of a q bar q paradigm but rather may be evidence for hadro-molecular status. At Snowmass 1993 the topic of self-tagging schemes in B meson production was very much in vogue. Whether or not excited B-meson flavor-tagging will prove to be competitive with traditional methods based on the partner B decay remains to be seen. The authors suggest however that the richness of the excited B-system may undetermine the efficacy of self-tagging schemes

  16. (e,2e) Spectroscopy

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Weigold, E.

    1976-01-01

    We present a detailed treatment of the theoretical and experimental aspects of the symmetric (e,2e) reaction in atoms, molecules and solids. Two experimental arrangements are described for measuring angular correlations and separation energy spectra, the one arrangement employing coplanar and the other noncoplanar symmetric kinematics. The latter arrangement is shown to be particularly suitable for extracting structure information. The basic approximation, the factorized distorted-wave off-shell impulse approximation with fully distorted waves, is shown to correctly describe the reaction in some test cases, as does the phase distortion approximation. At energies of the order of 1200 eV the simple eikonal and plane wave approximations adequately describe the valence shell cross sections for light atoms and molecules containing first row elements. Energy independent structure information is obtained on: (a) shapes and magnitudes of the square of the momentum space wave functions for individual electron orbitals; (b) separation energies for individual ion eigenstates; (c) the characteristic orbital of each state; and (d) spectroscopic factors describing the probability that an eigenstate contains the principal configuration of a hole in the characteristic orbital for each eigenstate. Comparison is made with photoelectron spectroscopy and Compton scattering, since they separately yield some of the information obtained by the (e,2e) method. A brief summary is given of other electron-electron coincidence experiments. (author)

  17. Recon Spectroscopy with TRES

    Science.gov (United States)

    Latham, David W.; TRES Team

    2018-01-01

    The Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory on Mount Hopkins has been a workhorse for reconnaissance spectroscopy of transiting-planet candidates identified by a variety of ground- and space-based photometric surveys, including Vulcan, TrES, HATNet, KELT, QES, Kepler, and K2. In support of NASA missions, quick-look classifications of effective temperature, surface gravity, metallicity, line broadening due to rotation, and absolute radial velocity have been uploaded to ExoFOP at NExScI on a timely schedule. More careful results derived using the Stellar Parameter Classification (SPC) tool can be provided in support of publications. For example, SPC results for effective temperature and metallicity have been used extensively to help constrain asteroseismic analyses of Kepler and K2 targets. TRES has also been used effectively for orbital solutions, Rossiter-McLaughlin observations, and Doppler tomography of large planets orbiting brighter. We look forward to continuing this work on TESS Objects of Interest.

  18. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  19. Photoacoustic spectroscopy of β-hematin

    International Nuclear Information System (INIS)

    Samson, Edward B; Goldschmidt, Benjamin S; Whiteside, Paul J D; Sudduth, Amanda S M; Custer, John R; Viator, John A; Beerntsen, Brenda

    2012-01-01

    Malaria affects over 200 million individuals annually, resulting in 800 000 fatalities. Current tests use blood smears and can only detect the disease when 0.1–1% of blood cells are infected. We are investigating the use of photoacoustic flowmetry to sense as few as one infected cell among 10 million or more normal blood cells, thus diagnosing infection before patients become symptomatic. Photoacoustic flowmetry is similar to conventional flow cytometry, except that rare cells are targeted by nanosecond laser pulses to induce ultrasonic responses. This system has been used to detect single melanoma cells in 10 ml of blood. Our objective is to apply photoacoustic flowmetry to detection of the malaria pigment hemozoin, which is a byproduct of parasite-digested hemoglobin in the blood. However, hemozoin is difficult to purify in quantities greater than a milligram, so a synthetic analog, known as β-hematin was derived from porcine hemin. The specific purpose of this study is to establish the efficacy of using β-hematin, rather than hemozoin, for photoacoustic measurements. We characterized β-hematin using UV–vis spectroscopy, TEM, and FTIR, then tested the effects of laser irradiation on the synthetic product. We finally determined its absorption spectrum using photoacoustic excitation. UV–vis spectroscopy verified that β-hematin was distinctly different from its precursor. TEM analysis confirmed its previously established nanorod shape, and comparison of the FTIR results with published spectroscopy data showed that our product had the distinctive absorbance peaks at 1661 and 1206 cm −1 . Also, our research indicated that prolonged irradiation dramatically alters the physical and optical properties of the β-hematin, resulting in increased absorption at shorter wavelengths. Nevertheless, the photoacoustic absorption spectrum mimicked that generated by UV–vis spectroscopy, which confirms the accuracy of the photoacoustic method and strongly suggests

  20. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  1. VMEbus interface for spectroscopy ADCs

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, M.

    1987-01-01

    A high performance VMEbus interface for spectroscopy ADCs and other similar devices used in nuclear spectroscopy coincidence experiments has been developed. This new module can be used to interface existing spectroscopy ADCs with fast parallel data transfer into the industry standard multiprocessor VMEbus. The unit provides a fast direct readout of the ADC data into the VMEbus memory. The interface also has built-in capabilities that enable it to be used in coincidence experiments for slow data timing and ADC pattern recognition. (orig.)

  2. Problems in baryon spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Capstick, S. [Florida State Univ., Tallahassee, FL (United States)

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  3. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  4. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  5. Lecture II. Charmed particle spectroscopy

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The discussion of charmed particle spectroscopy covers the particle properties and interrelations from a charmed quark composition point of view including SU(4)-symmetry generalities, mesons, baryons, charmed particle masses, and decays of charmed particles. 6 references

  6. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  7. Moessbauer Spectroscopy in Materials Science

    International Nuclear Information System (INIS)

    2006-01-01

    The publication in electronic form has been set up as proceedings of the conference dealing with applications of the Moessbauer spectroscopy in material science. Twenty-three abstracts and twenty-two presentations are included.

  8. New results from old spectroscopy

    International Nuclear Information System (INIS)

    Hemingway, R.J.

    1977-01-01

    A report is presented of some of the major experimental results during the last year in the field of old spectroscopy. Included are properties, quark model, multiplets, particle interactions, and cross sections. 34 references

  9. High-resolution reflection spectroscopy

    International Nuclear Information System (INIS)

    Ducloy, Martial

    1997-01-01

    In this article some recent developments in selective reflection spectroscopy is reviewed and the various ways to extend Doppler free techniques to this spectroscopic field is discussed. Its main feature is to probe atomic gas close to the cell boundaries

  10. Scanning-tunneling spectroscopy on conjugated polymer films

    NARCIS (Netherlands)

    Kemerink, M.; Alvarado, S.F.; Koenraad, P.M.; Janssen, R.A.J.; Salemink, H.W.M.; Wolter, J.H.; Blom, P.W.M.

    2003-01-01

    Scanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current,

  11. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  12. Quantifying transition voltage spectroscopy of molecular junctions: Ab initio calculations

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Markussen, Troels; Thygesen, Kristian Sommer

    2010-01-01

    Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab initio calculations of the nonlinear current...

  13. Detailed characterization of anode-supported SOFCs by impedance spectroscopy

    DEFF Research Database (Denmark)

    Barfod, R.; Mogensen, Mogens Bjerg; Klemensø, Trine

    2007-01-01

    Anode-supported thin electrolyte cells are studied by electrochemical impedance spectroscopy (EIS). The aim is to describe how the losses of this type of cells are distributed at low current density (around open-circuit voltage) as a function of temperature. An equivalent circuit consisting...

  14. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  15. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  16. Intermultiplet transitions using neutron spectroscopy

    International Nuclear Information System (INIS)

    Osborn, R.; Lovesey, S.W.; Taylor, A.D.; Balcar, E.

    1989-12-01

    Neutron inelastic scattering is used here to attempt to obtain optical spectra for lanthanide metals and compounds. Intermultiplet spectroscopy provides information about transitions from different electronic configurations and hybridisation of the 4f shell. This report discusses the relatively limited contribution that neutron scattering has played in intermultiplet spectroscopy, and covers spin-orbit transitions and coulomb transitions Racah algebra is developed in calculating the scattering cross sections. (author)

  17. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  18. Studies of ultrathin magnetic films and particle-surface interactions with spin-sensitive electron spectroscopies

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1991-06-01

    Research during the current grant year has focused on: Investigation of probing depth in electron scattering from epitaxially grown paramagnetic films by means of Spin-Polarized Electron Energy Loss Spectroscopy; and studies of the dynamics of metastable He(2 3 S) deexcitation at surfaces utilizing Spin-Polarized Metastable Deexcitation Spectroscopy . This report discussed this research

  19. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  20. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  1. Heavy mesons spectroscopy and new quarks

    International Nuclear Information System (INIS)

    Carvalho, H.F. de.

    1977-12-01

    The spectroscopy of new heavy mesons with masses above 2.8 GeV in the context of the asymptoticallty free gauge theories is analysed. To this end a power -law confinement potential is chosen. It is shown that the charmonium spectroscopy is best described by a potential where the exponent is around 0.5. It is observed that the spin-spin interaction is problematic. A possible interpretation of the γ resonances in the neighbourhood of 10 GeV is also discussed. The possible consequences of the existence of heavy quarks beyond charm with special reference to the processes initiated by neutral currents is also discussed. The present results on processes initiated by neutral current effects does not require introduction of right-handed heavy quarks beyond charm. Inclusion of the sea-quark contribution improves the agreements of the results of the Salam-Weinberg model with the recently observed results from CERN where 'ν anomaly' was not seen. The recently discovered γ resonances probably indicate the existence of heavy quarks probably with left handed coupling. Some preliminary study of this possibility was also carried out. (Author) [pt

  2. Spectroscopy of fractional Josephson vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Goldobin, Edward; Gaber, Tobias; Buckenmaier, Kai; Kienzle, Uta; Sickinger, Hanna; Koelle, Dieter; Kleiner, Reinhold [Physikalisches Institut - Experimentalphysik II, Center for Collective Quantum Phenomena, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-07-01

    Using tiny current injectors we create {kappa} discontinuities of the Josephson phase in a long Josephson junction. The junction reacts at the discontinuities by creating fractional Josephson vortices of size {lambda}{sub J} pinned at them. Such vortices carry the flux {phi}, which is a fraction of the magnetic flux quantum {phi}{sub 0}{approx}2.07 x 10{sup -15} Wb. Being pinned, a fractional vortex has an eigenfrequency (localized mode), which depends on {kappa} and applied bias current, and which lays within the plasma gap. If one considers a molecule consisting of several coupled fractional vortices, the eigenfrequency will split into several modes. We report on spectroscopy of a fractional vortex molecule performed in the thermal regime.

  3. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  4. Unquenched lattice upsilon spectroscopy

    International Nuclear Information System (INIS)

    Marcantonio, L.M.

    2001-03-01

    A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the

  5. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  6. Microwave quantum logic spectroscopy and control of molecular ions

    DEFF Research Database (Denmark)

    Shi, M.; F. Herskind, P.; Drewsen, M.

    2013-01-01

    the rotational state of a molecular ion and the electronic state of an atomic ion. In this setting, the atomic ion is used for read-out of the molecular ion state, in a manner analogous to quantum logic spectroscopy based on Raman transitions. In addition to high-precision spectroscopy, this setting allows...... for rotational ground state cooling, and can be considered as a candidate for the quantum information processing with polar molecular ions. All elements of our proposal can be realized with currently available technology....

  7. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  8. Energy dispersive X-ray spectroscopy with microcalorimeters

    International Nuclear Information System (INIS)

    Hollerith, C.; Wernicke, D.; Buehler, M.; Feilitzsch, F. von; Huber, M.; Hoehne, J.; Hertrich, T.; Jochum, J.; Phelan, K.; Stark, M.; Simmnacher, B.; Weiland, W.; Westphal, W.

    2004-01-01

    Shrinking feature sizes in semiconductor device production as well as the use of new materials demand innovation in device technology and material analysis. X-ray spectrometers based on superconducting sensor technology are currently closing the gap between fast energy dispersive spectroscopy (EDS) and high-resolution wavelength dispersive spectroscopy (WDS). This work reports on the successful integration of iridium/gold transition edge sensors in the first industrially used microcalorimeter EDS. The POLARIS microcalorimeter system is installed at the failure analysis lab FA5 at Infineon Technologies AG in Neuperlach (Munich) and is used in routine analysis

  9. Spectroscopy and coherent manipulation of single and coupled flux qubits

    International Nuclear Information System (INIS)

    Wu Yu-Lin; Deng Hui; Huang Ke-Qiang; Tian Ye; Yu Hai-Feng; Xue Guang-Ming; Jin Yi-Rong; Li Jie; Zhao Shi-Ping; Zheng Dong-Ning

    2013-01-01

    Measurements of three-junction flux qubits, both single flux qubits and coupled flux qubits, using a coupled direct current superconducting quantum interference device (dc-SQUID) for readout are reported. The measurement procedure is described in detail. We performed spectroscopy measurements and coherent manipulations of the qubit states on a single flux qubit, demonstrating quantum energy levels and Rabi oscillations, with Rabi oscillation decay time T Rabi = 78 ns and energy relaxation time T 1 = 315 ns. We found that the value of T Rabi depends strongly on the mutual inductance between the qubit and the magnetic coil. We also performed spectroscopy measurements on inductively coupled flux qubits. (general)

  10. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  11. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  12. Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates

    KAUST Repository

    Almuhammadi, Khaled; Bera, Tushar Kanti; Lubineau, Gilles

    2017-01-01

    impedance spectroscopy response at various frequencies of laminates chosen to be representative of classical layups employed in composite structures. We clarify the relationship between the frequency of the electrical current, the conductivity of the surface

  13. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  14. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  15. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  16. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  17. Photon resonance spectroscopy

    International Nuclear Information System (INIS)

    Shriner, J.F. Jr.

    1990-11-01

    This report summarizes the progress on Grant No. FG05-87ER40353 during the period February 1, 1990 to November 30, 1990. The primary focus of the research during this period has been on fluctuations of nuclear levels and possible connections with fundamental symmetries. In this paper the analysis of low-lying nuclear levels for a large collection of nuclides is discussed, and the analysis of just the levels in 116 Sn is presented. The current status experiments to study fluctuation properties in 30 P is summarized, while the development of hardware and software for the next phase of these measurements in outlined. We discuss the early stages of a project to search for a particular type of detailed-balance violation

  18. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  19. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  20. Advances in Molecular Rotational Spectroscopy for Applied Science

    Science.gov (United States)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  1. Recent progress of laser spectroscopy experiments on antiprotonic helium

    Science.gov (United States)

    Hori, Masaki

    2018-03-01

    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) collaboration is currently carrying out laser spectroscopy experiments on antiprotonic helium ? atoms at CERN's Antiproton Decelerator facility. Two-photon spectroscopic techniques have been employed to reduce the Doppler width of the measured ? resonance lines, and determine the atomic transition frequencies to a fractional precision of 2.3-5 parts in 109. More recently, single-photon spectroscopy of buffer-gas cooled ? has reached a similar precision. By comparing the results with three-body quantum electrodynamics calculations, the antiproton-to-electron mass ratio was determined as ?, which agrees with the known proton-to-electron mass ratio with a precision of 8×10-10. The high-quality antiproton beam provided by the future Extra Low Energy Antiproton Ring (ELENA) facility should enable further improvements in the experimental precision. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  2. Effective approach to spectroscopy and spectral analysis techniques using Matlab

    Science.gov (United States)

    Li, Xiang; Lv, Yong

    2017-08-01

    With the development of electronic information, computer and network, modern education technology has entered new era, which would give a great impact on teaching process. Spectroscopy and spectral analysis is an elective course for Optoelectronic Information Science and engineering. The teaching objective of this course is to master the basic concepts and principles of spectroscopy, spectral analysis and testing of basic technical means. Then, let the students learn the principle and technology of the spectrum to study the structure and state of the material and the developing process of the technology. MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and fourth-generation programming language. A proprietary programming language developed by MathWorks, MATLAB allows matrix manipulations, plotting of functions and data, Based on the teaching practice, this paper summarizes the new situation of applying Matlab to the teaching of spectroscopy. This would be suitable for most of the current school multimedia assisted teaching

  3. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  4. Raman Spectroscopy of Microbial Pigments

    Science.gov (United States)

    Edwards, Howell G. M.; Oren, Aharon

    2014-01-01

    Raman spectroscopy is a rapid nondestructive technique providing spectroscopic and structural information on both organic and inorganic molecular compounds. Extensive applications for the method in the characterization of pigments have been found. Due to the high sensitivity of Raman spectroscopy for the detection of chlorophylls, carotenoids, scytonemin, and a range of other pigments found in the microbial world, it is an excellent technique to monitor the presence of such pigments, both in pure cultures and in environmental samples. Miniaturized portable handheld instruments are available; these instruments can be used to detect pigments in microbiological samples of different types and origins under field conditions. PMID:24682303

  5. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  6. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  7. Laser Spectroscopy : XII International Conference

    CERN Document Server

    Allegrini, Maria; Sasso, Antonio

    1996-01-01

    This text includes all the recent advances in the field of laser spectroscopy. Major results span from the control of matter by electromagnetic fields (trapping and coding) to high precision measurements on simple atomic systems and to quantum optics with single atoms. It includes a report of the Bose-Einstein condensation achieved by laser-cooling of rubidium atoms. Achievements in the technology of tunable sources, in particular of miniaturized solid state devices, are also reported. Most recent advances in molecular spectroscopy are illustrated with emphasis on "cooled" spectra, clusters and high accuracy frequency references. Topics such as atomic interferometry and microcavity quantum optics are also covered.

  8. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  9. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  10. In vivo NMR spectroscopy of the liver. Spectroscopie RMN du foie in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jehenson, P.; Cuenod, C.A.; Syrota, A. (CEA, 91 - Orsay (FR). Service Hospitalier Frederic Joliot)

    1989-01-01

    The application of in vivo MR spectroscopy to the study of the liver is currently an expanding field of research. Owing to technical difficulties, the results obtained thus far were mainly those of animal observations. Several nuclei have been considered: hydrogen, phosphorus, carbon or fluorine. This non-traumatic method allows following and quantifying the various metabolic pathways, especially during hepatic diseases. The major metabolic pathways, i.e. neoglycogenesis, glycogenolysis, Krebs' cycle, etc., are studied, as well as their alterations during diseases such as ischemia, diabetes or alcoholism. The development of this promising technique requires the cooperation of various clinical and fundamental disciplines.

  11. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  12. Holographic heat current as Noether current

    Science.gov (United States)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-09-01

    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.

  13. Applications of Positron Annihilation Spectroscopy

    OpenAIRE

    Asoka-Kumar , P.; Lynn , K.

    1995-01-01

    We describe the application of Positron Annihilation Spectroscopy (PAS) to some selected technologically important systems. The method involves a nondestructive probe to detect low levels of open-volume defects. The discussion shows the application of PAS to a wide range of advanced material systems.

  14. Astronomical Spectroscopy A Short History

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Astronomical Spectroscopy A Short History. J C Bhattacharyya. General Article Volume 3 Issue 5 May 1998 pp 24-29. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/003/05/0024-0029 ...

  15. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  16. Gluonic excitations in hadronic spectroscopy

    International Nuclear Information System (INIS)

    Close, F.E.

    1983-09-01

    Theoretical expectations are described for new forms of hadronic matter containing gluons as excitable degrees of freedom. Particular attention is paid to hybrid states containing both quarks and gluons. Recent work on the spectroscopy of hybrid mesons and hybrid baryons is reviewed. Comparisons of bag model, lattice QCD and QCD sum rule predictions are made and some confrontation with data attempted. (author)

  17. Superconducting microphone for photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, P.C.; Labrunie, M.; Weid, J.P. von der; Symko, O.G.

    1982-07-01

    A superconducting microphone has been developed for photoacoustic spectroscopy at low temperatures. The microphone consists of a thin mylar membrane coated with a film of lead whose motion is detected by a SQUID magnetometer. For the simple set-up presented here, the limiting pressure sensitivity is 7.5x10 -14 atmospheres/√Hz. (Author) [pt

  18. Evanescent spectroscopy - theory and experiment

    OpenAIRE

    Karabchevsky, Alina

    2014-01-01

    Outline1 Introduction2 Literature Overview3 Photonic-Plasmonic WaveguideStructureModellingTheory4 ResultsOptical TransmittanceLoss of Fundamental Mode in a Gold RegionOptical Surface Intensity5 NIR Spectroscopy - Experiment6 Conclusions7 Acknowledgements

  19. Trends in resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig

  20. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  1. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  2. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  3. Principles of electron tunneling spectroscopy

    CERN Document Server

    Wolf, E L

    2012-01-01

    Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.

  4. Ultrafast spectroscopy of biological photoreceptors

    NARCIS (Netherlands)

    Kennis, J.T.M.; Groot, M.L.

    2007-01-01

    We review recent new insights on reaction dynamics of photoreceptors proteins gained from ultrafast spectroscopy. In Blue Light sensing Using FAD (BLUF) domains, a hydrogen-bond rearrangement around the flavin chromophore proceeds through a radical-pair mechanism, by which light-induced electron and

  5. Towards laser spectroscopy of antihydrogen

    NARCIS (Netherlands)

    Walz, J.; Pahl, A.; Eikema, K.S.E.; Hansch, T.W.

    2000-01-01

    The development of the first continuous coherent source at 121.56 nm is described. Radiation at this wavelength of Lyman-alpha can be used for laser-cooling of antihydrogen on the strong 1S-2P transition. It also opens up a possibility for precision spectroscopy that requires just a few antihydrogen

  6. More seminars on muonium spectroscopy

    International Nuclear Information System (INIS)

    Cox, S.F.J.

    1984-12-01

    The paper concerns topics which illustrate the use of muonium spectroscopy in four major areas. The experimental method -muon spin rotation (muSR) is employed in the four topics, which include: muSR studies in magnetism, muons in metals and metal hydrides, muonium in semiconductors and muSR studies in chemistry. (U.K.)

  7. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2007-01-01

    Spectroscopy in Catalysis is an introduction to the most important analytical techniques that are nowadays used in catalysis and in catalytic surface chemistry. The aim of the book is to give the reader a feeling for the type of information that characterization techniques provide about questions

  8. MR spectroscopy in clinical research

    DEFF Research Database (Denmark)

    Henriksen, O

    1994-01-01

    MR spectroscopy (MRS) offers unique possibilities for non-invasive evaluation of biochemistry in vivo. During recent years there has been a growing body of evidence from clinical research studies on human beings using 31P and 1H MRS. The results indicate that it is possible to evaluate phosphorous...

  9. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  10. Laser spectroscopy of neutron deficient Sn isotopes

    CERN Multimedia

    We propose to study the ground state properties of neutron-deficient Sn isotopes towards the doubly-magic nucleus $^{100}$Sn. Nuclear spins, changes in the rms charge radii and electromagnetic moments of $^{101-121}$Sn will be measured by laser spectroscopy using the CRIS experimental beam line. These ground-state properties will help to clarify the evolution of nuclear structure properties approaching the $\\textit{N = Z =}$ 50 shell closures. The Sn isotopic chain is currently the frontier for the application of state-of-the-art ab-initio calculations. Our knowledge of the nuclear structure of the Sn isotopes will set a benchmark for the advances of many-body methods, and will provide an important test for modern descriptions of the nuclear force.

  11. Spectroscopy on localized and cooled ions

    International Nuclear Information System (INIS)

    Toschek, P.E.

    1981-01-01

    This article examines the use of localization and storage of a small number of atomic particles in an electric or magnetic field configuration as a means of distinguishing it from other methods of sample preparation. Current experiments on the storage of isolated cold ions have opened a new experimental approach for studies in atomic physics. In contrast to one dimensional atomic beams, trapped particles are quasi-non-dimensional ensembles. They lend themselves to interaction with light (their spectroscopy) and various other research techniques such as: cooperative effects in the interaction with radiation by comparison of two particle clouds with a single particle; single-particle scattering on background gas particles; single-particle chemical reactions

  12. Current lead thermal analysis code 'CURRENT'

    International Nuclear Information System (INIS)

    Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.

    1985-08-01

    Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)

  13. Alfven Spectroscopy for Advanced Scenarios on JET

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, S. E.

    2007-07-01

    Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients {nabla} T{sub i}{approx_equal} 150 keV/m (with T{sub i}(0){approx_equal} 40 keV), and with q(r)-profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a {<=} 0.4 by {delta} T{sub e}/T{sub e}{approx} 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q{sub min} (t) passes values q{sub min} integer (majority of the cases), q{sub min}= half-integer, and when q(r=0)--infinity (current hole is triggered). This experimental data is compared to the density of rational surfaces transport theory. (Author)

  14. Alfven Spectroscopy for Advanced Scenarios on JET

    International Nuclear Information System (INIS)

    Sharapov, S. E.

    2007-01-01

    Advanced tokamak scenarios on JET exhibit outstanding quality fusion-grade plasmas, with internal transport barriers (ITBs) capable of supporting gradients ∇ T i ≅ 150 keV/m (with T i (0)≅ 40 keV), and with ) q(r) -profiles ranging from monotonic to deep shear reversal, including the limiting case of toroidal current holes. It was found experimentally, that in reversed shear JET discharges the ITB start from so-called ITB triggering events, which are seen as increases in electron temperature within, e.g. r/a ≤ 0.4 by Δ T e /T e ∼ 10-30%. If main heating power is applied at this time, an ITB is formed easily. Without an extra-heating power the improved confinement effect is lost in about 100 msec. Here, we investigate the magnetic field topology at the time of the ITB triggering events in JET plasmas. Alfven spectroscopy based on discrete spectrum of Alfven eigenmodes (AEs) excited by ICRH-accelerated and/or NBI-produced energetic ions is used for determining the evolution of the q(r)- profiles. Recently developed interferometry diagnostics of AEs significantly extended time resolution and sensitivity of Alfven spectroscopy on JET and made it possible to perform the ITB triggering event studies with a high accuracy. The ITB triggering events are found to occur when q m in (t) passes values q m ininteger (majority of the cases), q m in= half-integer, and when q(r=0)--∞ (current hole is triggered). This experimental data is compared to the idensity of rational surfaces transport theory. (Author)

  15. Erratum: Quantum corrections and black hole spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Han, Yan; Cai, Xu

    2012-06-01

    In my paper [Qing-Quan Jiang, Yan Han, Xu Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049], there was an error in deriving the black hole spectroscopy. In this erratum, we attempt to rectify them.

  16. Imaging spectroscopy for characterisation of grass swards

    NARCIS (Netherlands)

    Schut, A.G.T.

    2003-01-01

    Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, reflection, reflectance, grass sward, white clover, recognition, characterisation, ground cover, growth monitoring, stress detection, heterogeneity quantification

    The potential of imaging spectroscopy as a tool for

  17. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  18. Modification of the Current Profile in DIII-D by Off-Axis Electron Cyclotron Current Drive

    International Nuclear Information System (INIS)

    Luce, T.C.; Lin-Liu, Y.R.; Harvey, R.W.; Giruzzi, G.; Lohr, J.M.; Petty, C.C.; Politzer, P.A.; Prater; Rice, B.W.

    1999-01-01

    Localized non-inductive currents due to electron cyclotron wave absorption have been measured on the DIII-D tokamak. Clear evidence of the non-inductive currents is seen on the internal magnetic field measurements by motional Stark effect spectroscopy. The magnitude and location of the non-inductive current is evaluated by comparing the total and Ohmic current profiles of discharges with and without electron cyclotron wave power. The measured current agrees with Fokker-Planck calculations near the magnetic axis, but exceeds the predicted value as the location of the current drive is moved to the half radius

  19. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  20. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  1. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  2. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  3. Liquid identification by Hilbert spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lyatti, M; Divin, Y; Poppe, U; Urban, K, E-mail: M.Lyatti@fz-juelich.d, E-mail: Y.Divin@fz-juelich.d [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-11-15

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T{sub c} Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  4. Liquid identification by Hilbert spectroscopy

    Science.gov (United States)

    Lyatti, M.; Divin, Y.; Poppe, U.; Urban, K.

    2009-11-01

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- Tc Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  5. Liquid identification by Hilbert spectroscopy

    International Nuclear Information System (INIS)

    Lyatti, M; Divin, Y; Poppe, U; Urban, K

    2009-01-01

    Fast and reliable identification of liquids is of great importance in, for example, security, biology and the beverage industry. An unambiguous identification of liquids can be made by electromagnetic measurements of their dielectric functions in the frequency range of their main dispersions, but this frequency range, from a few GHz to a few THz, is not covered by any conventional spectroscopy. We have developed a concept of liquid identification based on our new Hilbert spectroscopy and high- T c Josephson junctions, which can operate at the intermediate range from microwaves to THz frequencies. A demonstration setup has been developed consisting of a polychromatic radiation source and a compact Hilbert spectrometer integrated in a Stirling cryocooler. Reflection polychromatic spectra of various bottled liquids have been measured at the spectral range of 15-300 GHz with total scanning time down to 0.2 s and identification of liquids has been demonstrated.

  6. Femtosecond Broadband Stimulated Raman Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Soo-Y; Yoon, Sagwoon; Mathies, Richard A

    2006-01-01

    Femtosecond broadband stimulated Raman spectroscopy (FSRS) is a new technique where a narrow bandwidth picosecond Raman pump pulse and a red-shifted broadband femtosecond Stokes probe pulse (with or without time delay between the pulses) act on a sample to produce a high resolution Raman gain spectrum with high efficiency and speed, free from fluorescence background interference. It can reveal vibrational structural information and dynamics of stationary or transient states. Here, the quantum picture for femtosecond broadband stimulated Raman spectroscopy (FSRS) is used to develop the semiclassical coupled wave theory of the phenomenon and to derive an expression for the measurable Raman gain in FSRS. The semiclassical theory is applied to study the dependence of lineshapes in FSRS on the pump-probe time delay and to deduce vibrational dephasing times in cyclohexane in the ground state

  7. Supercurrent Spectroscopy of Andreev States

    Directory of Open Access Journals (Sweden)

    L. Bretheau

    2013-12-01

    Full Text Available We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single-particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consist of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.

  8. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  9. Development of atomic spectroscopy technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Song, Kyu Seok; Yang, Ki Ho; Baik, Dae Hyun; Lee, Young Joo; Yi, Jong Hoon; Jeong, Do Young; Jeong, Eui Chang; Yoo, Byung Duk; Cha, Byung Heon; Kim, Seong Ho; Nam, Seong Mo; Kim, Sun Kuk; Lee, Byung Cheol; Choi, Hwa Lim; Ko, Dok Yung; Han, Jae Min; Rho, Si Pyo; Lim, Chang Hwan; Choi, An Seong

    1992-12-01

    This project is aimed for the 'Development of extraction and separation techniques for stable isotopes by atomic laser spectroscopy technique'. The project is devided by two sub-projects. One is the 'Development of the selective photoionization technology' and the other is 'Development of ultrasensitive spectroscopic analysis technololgy'. This year studies on Hg and Yb, both of which have 7 isotopes, have been performed and, as a result, it was proved that specific isotopes of these elements could be selectively extracted. In addition study on plasma extraction technique, development of atomizers, design of electron gun have been the result of the project in 1992. In second sub-project trace determination of Pb has been performed with laser resonance ionization spectroscopy. As a result 20 picogram of detection limit has been obtained. In addition to these results, design of high sensitive laser induced fluorescence detection system as well as remote sensing DIAL system have been done. (Author)

  10. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  11. Heavy quark spectroscopy and decay

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs

  12. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  13. Tunneling spectroscopy on semiconductors with a low surface state density

    OpenAIRE

    Sommerhalter, Christof; Matthes, Thomas W.; Boneberg, Johannes; Leiderer, Paul; Lux-Steiner, Martha Christina

    1997-01-01

    A detailed study of tunneling spectroscopy concerning semiconductors with a low surface state density is presented. For this purpose, I V curves under dark conditions and under illumination were measured on the (0001) van der Waals surface of a p-type WS2 single crystal, which is known to be free of intrinsic surface states. The measurements are interpreted by an analytical one-dimensional metal-insulator-semiconductor model, which shows that the presence of the finite tunneling current has ...

  14. Laser spectroscopy of radioactive beams

    International Nuclear Information System (INIS)

    Otten, E.W.

    1983-01-01

    The problem of using the laser spectroscopy in investigations radioactive beams is considered. The main attention is payed to the isotope shift of nuclear charge radii delta 2 >. The general trend of delta 2 > is discussed. Predictions for delta>r 2 < in the framework of the droplet model are given. It is noted that two parameter interpretation of the isotope shift based on the droplet model works the better, the further the distance spans and the clearer the nuclear structure is

  15. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  16. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  17. Liquid microjet for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Winter, Bernd

    2009-01-01

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  18. Liquid microjet for photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)], E-mail: bernd.winter@bessy.de

    2009-03-21

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  19. Heavy quark production and spectroscopy

    International Nuclear Information System (INIS)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation

  20. Spectroscopy, scattering, and KK molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J. [Univ. of Mississippi, University, MS (United States)

    1994-04-01

    The author presents a pedagogical description of a new theoretical technique, based on the multichannel Schroedinger equation, for simultaneously applying the quark model to both meson spectroscopy and meson-meson scattering. This is an extension of an earlier analysis which led to the prediction that the f{sub o}(975) and a{sub o}(980) scalar mesons are K{bar K} molecular states.

  1. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  2. Neutron spectroscopy for confinement studies

    International Nuclear Information System (INIS)

    Zorn, R.

    2010-01-01

    Neutron spectroscopy is an important method for the study of microscopic dynamics because it captures the spatial as well as the temporal aspects of the atomic or molecular motion. In this article techniques will be presented which are of special importance for the study of confined systems. Many of these are based on the fact that neutron scattering is isotope-dependent. Possible sources of systematic errors in measurements of confined systems will be pointed out. (author)

  3. Current interruption transients calculation

    CERN Document Server

    Peelo, David F

    2014-01-01

    Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,

  4. Laser spectroscopy probes the nucleus

    International Nuclear Information System (INIS)

    Griffith, J.; Billowes, J.

    1998-01-01

    Extremely sensitive optical measurements are shedding new light on the shape and size of nuclei, and the properties of nuclear matter far from stability. Of the 7000 or so isotopes known to nuclear physicists, less than 270 are stable. In general isotopes become more and more unstable as we move away from the so-called valley of stability, and therefore become more difficult to study in experiments. The tests of the theory also become more demanding. Laser spectroscopy is one of the techniques that is helping to explore the properties of these isotopes and improve our understanding of the forces inside the nucleus. High-resolution laser spectroscopy of short-lived radioactive atoms now makes it possible to measure the nuclear charge radius of many elements, including many isotopes far from stability. The method can reveal fine details of the sizes, shapes and structures of nuclei. In addition, laser spectroscopy is making significant contributions to our understanding of the nuclear force in unstable nuclei with unusual, or extreme, proton-neutron ratios. In this article the authors discuss the latest advances in studying heavy nuclei. (author)

  5. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... properties, API CHL50 kit are useful at genus-species level but ... After growing the isolates in the appropriate media, they were centrifuged at ... scanned 64 times at 4 cm-¹ resolution. The study ..... New York, 142 p. Sandine ...

  6. [Possibilities in the differential diagnosis of brain neoplasms using the long and short time sequences of proton magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Gajewicz, W.; Goraj, B.M.

    2004-01-01

    Currently to perform proton magnetic resonance spectroscopy (1H MRS) with single voxel spectroscopy (SVS) technique long and/or short echo time sequences are used in order to provide complementary information. PURPOSE: The aim of the study was to compare the usefulness of STEAM (time echo, TE, 20

  7. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  8. Proton MR spectroscopy of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Lisse, Ullrich G. [Dept. of Clinical Radiology, Klinikum der Universitaet Muenchen, Standorte Grosshadern und Innenstadt, Ziemssenstrasse 1, D-80336 Munich (Germany)], E-mail: ullrich.mueller-lisse@med.uni-muenchen.de; Scherr, Michael K. [Dept. of Clinical Radiology, Klinikum der Universitaet Muenchen, Standorte Grosshadern und Innenstadt, Ziemssenstrasse 1, D-80336 Munich (Germany)

    2007-09-15

    Purpose: To summarize current technical and biochemical aspects and clinical applications of proton magnetic resonance spectroscopy (MRS) of the human prostate in vivo. Material and methods: Pertinent radiological and biochemical literature was searched and retrieved via electronic media (medline, pubmed). Basic concepts of MRS of the prostate and its clinical applications were extracted. Results: Clinical MRS is usually based on point resolved spectroscopy (PRESS) or spin echo (SE) sequences, along with outer volume suppression of signals from outside of the prostate. MRS of the prostate detects indicator lines of citrate, choline, and creatine. While healthy prostate tissue demonstrates high levels of citrate and low levels of choline that marks cell wall turnover, prostate cancer utilizes citrate for energy metabolism and shows high levels of choline. The ratio of (choline + creatine)/citrate distinguishes between healthy tissue and prostate cancer. Particularly when combined with magnetic resonance (MR) imaging, three-dimensional MRS imaging (3D-CSI, or 3D-MRSI) detects and localizes prostate cancer in the entire prostate with high sensitivity and specificity. Combined MR imaging and 3D-MRSI exceed the sensitivity and specificity of sextant biopsy of the prostate. When MRS and MR imaging agree on prostate cancer presence, the positive predictive value is about 80-90%. Distinction between healthy tissue and prostate cancer principally is maintained after various therapeutic treatments, including hormone ablation therapy, radiation therapy, and cryotherapy of the prostate. Conclusions: Since it is non-invasive, reliable, radiation-free, and essentially repeatable, combined MR imaging and 3D-MRSI of the prostate lends itself to the planning of biopsy and therapy, and to post-therapeutic follow-up. For broad clinical acceptance, it will be necessary to facilitate MRS examinations and their evaluation and make MRS available to a wider range of institutions.

  9. Resolving The ISM Surrounding GRBs with Afterglow Spectroscopy

    International Nuclear Information System (INIS)

    Prochaska, J. X.; Chen, H.-W.; Dessauges-Zavadsky, M.; Bloom, J. S.

    2008-01-01

    We review current research related to spectroscopy of gamma-ray burst (GRB) after-glows with particular emphasis on the interstellar medium (ISM) of the galaxies hosting these high redshift events. These studies reveal the physical conditions of star-forming galaxies and yield clues to the nature of the GRB progenitor. We offer a pedagogical review of the experimental design and review current results. The majority of sightlines are characterized by large HI column densities, negligible molecular fraction, the ubiquitous detection of UV pumped fine-structure transitions, and metallicities ranging from 1/100 to nearly solar abundance

  10. Superconformal current multiplet

    International Nuclear Information System (INIS)

    Smailagic, A.

    1982-12-01

    We consider a derivation of a superconformal current multiplet based directly on superconformal algebra. This gives usual multiplet of currents without anomalies, directly in terms of ''improved'' quantities and without reference to a particular Lagrangian model. (author)

  11. Current Research Studies

    Science.gov (United States)

    ... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...

  12. [Hyperfine structure and isotope shift measurements of short lived elements by laser spectroscopy

    International Nuclear Information System (INIS)

    Schuessler, H.A.

    1986-01-01

    The aim of this research is to determine nuclear moments and charge distributions of short-lived isotopes produced both on-line and off-line to a nuclear facility. These measurements give detailed information on the nuclear force and are used to test current nuclear models. The small amounts of nuclei which can be produced off stability constitute the challenge in these experiments. Presently mainly neutron-rich isotopes are being studied by three ultrasensitive high-resolution laser techniques. These are collinear fast ion-beam laser spectroscopy, stored-ion laser spectroscopy and fluorescence spectroscopy. 5 figs

  13. Currents on Grassmann algebras

    International Nuclear Information System (INIS)

    Coquereaux, R.; Ragoucy, E.

    1993-09-01

    Currents are defined on a Grassmann algebra Gr(N) with N generators as distributions on its exterior algebra (using the symmetric wedge product). The currents are interpreted in terms of Z 2 -graded Hochschild cohomology and closed currents in terms of cyclic cocycles (they are particular multilinear forms on Gr(N)). An explicit construction of the vector space of closed currents of degree p on Gr(N) is given by using Berezin integration. (authors). 10 refs

  14. Eddy current seminar

    International Nuclear Information System (INIS)

    Emson, C.R.I.

    1988-11-01

    The paper presents the fifth symposium in the series of Eddy Current Seminars, held in Abingdon, 1988. The meeting included a discussion on three-dimensional eddy current formulations, as well as thirteen contributed papers on computational electromagnetics. Of the thirteen papers, two papers on eddy currents in tokamaks were selected for INIS and indexed separately. (U.K.)

  15. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  16. Photoelectron spectroscopy of molecular beams

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1974-01-01

    The history of physical science is replete with examples of phenomena initially discovered and investigated by physicists, which have subsequently become tools of the chemist. It is demonstrated in this paper that the field of photoelectron spectroscopy may develop in a reverse fashion. After a brief introduction to the subject, the properties characterized as physical ones, are discussed. These are intensities and angular distributions, from which one can infer transition probabilities and phase shifts. Three separate experiments are described which involve accurate intensity measurements and it is shown how an interpretation of the results by appropriate theory has given new insight into the photoionization process. (B.R.H.)

  17. Neutron molecular spectroscopy: future prospects

    International Nuclear Information System (INIS)

    Tomkinson, J.; Carlile, C.J.; Krishna, P.S.R.

    1994-07-01

    The recent revolution in Neutron Molecular Spectroscopy, caused by extending the spectral range, is briefly reviewed. The need to constantly improve the spectral resolution is underlined and the likely benefits are identified. Recent work on improving the energy resolution on TFXA is presented and three future options for TFXA are outlined. Some preliminary high resolution results, from a mock-up spectrometer, are reported. These clearly show that narrow bands are available in solids and improved resolutions can be achieved to observe them. (Author)

  18. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-06-01

    Conventional spectroscopy was reexamined, and the puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles are sought. It is noted that these may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, the Zweig rule mystery, new particles and old symmetries, f--A2 interference, and nonleptonic decay. (U.S.)

  19. Atomic spectroscopy with diode lasers

    International Nuclear Information System (INIS)

    Tino, G.M.

    1994-01-01

    Some applications of semiconductor diode lasers in atomic spectroscopy are discussed by describing different experiments performed with lasers emitting in the visible and in the near-infrared region. I illustrate the results obtained in the investigation of near-infrared transitions of atomic oxygen and of the visible intercombination line of strontium. I also describe how two offset-frequency-locked diode lasers can be used to excite velocity selective Raman transitions in Cs. I discuss the spectral resolution, the accuracy of frequency measurements, and the detection sensitivity achievable with diode lasers. (orig.)

  20. Laser excitation spectroscopy of uranium

    International Nuclear Information System (INIS)

    Solarz, R.W.

    1976-01-01

    Laser excitation spectroscopy, recently applied to uranium enrichment research at LLL, has produced a wealth of new and vitally needed information about the uranium atom and its excited states. Among the data amassed were a large number of cross sections, almost a hundred radiative lifetimes, and many level assignments. Rydberg states, never before observed in uranium or any of the actinides, have been measured and cataloged. This work puts a firm experimental base under laser isotope separation, and permits a choice of the laser frequencies most appropriate for practical uranium enrichment

  1. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  2. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  3. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  4. Supraconductor magnet for optical spectroscopy

    International Nuclear Information System (INIS)

    Levy, G.; Buhler, S.

    1985-01-01

    A superconductive magnet system for optic spectroscopy has been built. It includes an elaborate support structure, a LN2/LHe cryostat with its supplies and controls and a superconductive magnet of the split pole type equipped with a superconductive switch. A vertically introduced sample in the LHe bath, on request subcooled down to 2.2K is observed through two optical passages. Magnet characteristics are as follows : - clear bore 35mm - clear split 20mm - central field 6.33 Teslas - homogeneity over 10mm D.S.V.: 1% [fr

  5. [Meson spectroscopy and particle astrophysics

    International Nuclear Information System (INIS)

    LoSecco, J.M.

    1993-07-01

    Progress in the design and construction of a light meson spectroscopy experiment is reported. The experiment will run in 1993. Some non- accelerator, activities and plans for the future are also discussed. Results of a Brookhaven beam test with a subset of the final detector are described. The test has been quite promising both in the speed with which results have been obtained and in the quality of the data itself. The status of the CsI veto is reported The target region, in particular the CsI veto experiment is Notre Dame's primary hardware responsibility on this experiment

  6. Development of MEMS photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  7. electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. 6 figs

  8. Electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Egerton, R.

    1997-01-01

    As part of the commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article discusses electron energy-loss spectroscopy. The physical and chemical properties of materials can be studied by considering the energy that electrons use as they travel through a solid, often in conjunction with other analytical techniques. The technique is often combined with electron diffraction and high-resolution imaging and can be used to provide elemental identification down to the atomic scale. (UK)

  9. Process spectroscopy in microemulsions—Raman spectroscopy for online monitoring of a homogeneous hydroformylation process

    International Nuclear Information System (INIS)

    Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Maiwald, Michael; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank

    2017-01-01

    A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions. (paper)

  10. Fast wave current drive

    International Nuclear Information System (INIS)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities

  11. Current and Current Fluctuations in Quantum Shuttles

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Flindt, Christian; Novotny, Tomas

    2005-01-01

    theoretical tools needed for the analysis, e.g., generalized master equations and Wigner functions, and we outline the methods how the resulting large numerical problems can be handled. Illustrative results are given for current, noise, and full counting statistics for a number of model systems. Throughout...... the review we focus on the physics behind the various approximations, and some simple examples are given to illustrate the theoretical concepts. We also comment on the experimental situation. ©2005 American Institute of Physics...

  12. Current trends in ion implantation

    International Nuclear Information System (INIS)

    Gwilliam, R.M.

    2001-01-01

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  13. Impedance of thin film cathodes: thickness and current collector dependence

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Hildenbrand, N.; Bouwmeester, Henricus J.M.; Blank, David H.A.

    2015-01-01

    The influence of the layer thickness of mixed ionic–electronic conducting (MIEC) cathodes and the type of noble metal current collector on the apparent surface exchange resistance is studied with impedance spectroscopy. The impedance data is analyzed with the ‘General Finite Length Diffusion’

  14. Photoacoustic spectroscopy for analytical measurements

    International Nuclear Information System (INIS)

    Haisch, Christoph

    2012-01-01

    Many different techniques, such as UV/vis absorption, IR spectroscopy, fluorescence and Raman spectroscopy are routinely applied in chemical (micro-)analysis and chemical imaging, and a large variety of instruments is commercially available. Up to now, opto- or photoacoustic (PA) and other optothermal (OT) methods are less common and only a limited number of instruments reached a level of application beyond prototypes in research laboratories. The underlying principle of all these techniques is the detection of local heating due to the conversion of light into heat by optical absorption. Considering the versatility, robustness and instrumental simplicity of many PA techniques, it is surprising that the number of commercial instruments based on such approaches is so sparse. The impetus of this review is to summarize basic principles and possible applications described in the literature, in order to foster routine application of these techniques in industry, process analysis and environmental screening. While the terms OT and PA methods cover a very wide range of methods and physical phenomena, this review will concentrate on techniques with applications for analytical measurements. (topical review)

  15. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2000-01-01

    Full text: The contributions given hereafter to this Annual Report cover a broad activity of the Department in 1999 both in the pure nuclear spectroscopy and in the applied spectroscopy investigations. That activity is then assembled in the two main groups: the nuclear structure studies with the application of the multidetector systems such as GASP, GAMMASPHERE, EUROBALL and the RFD - as its ancillary device, and investigations of condensed matter properties with the use of nuclear methods. In addition, non-nuclear methods such as the atomic force microscopy provided several new encouraging results. The nice data obtained are due to the great skill and hard work of all members of the staff, and a vast cooperation both with international and national institutes and institutions. When anticipated for calling the attractive results of the past year, I would rather admit that all data given here pretend to be those. To meet with, I refer directly to the short presentations given in the next pages. (author)

  16. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...... in the methodology and quality of the MRS migraine studies over time, some results were consistent and reproducible. 31P-MRS studies suggested reduced availability of neuronal energy and implied a mitochondrial dysfunction in the migraine brain. 1H-MRS studies reported interictal abnormalities in the excitatory...... and inhibitory neurotransmitters, glutamate and g-aminobutyric acid (GABA), suggesting persistent altered excitability in migraine patients. N-Acetylaspartate levels were decreased in migraine, probably due to a mitochondrial dysfunction and abnormal energy metabolism. The reported abnormalities may increase...

  17. General Remarks about mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Mirzababayev, R.M.

    2001-01-01

    More than forty years have passed since the discovery of Mossbauer effect; one of the most brilliant findings in modern physics. This effect proved itself to be the powerful tool in almost all disciplines of the natural sciences and technology. Its unique feature is that it gives the possibility to get the results which cannot be obtained by any other physical methods. Mossbauer effect has been used as a key to unlock some basic physical, chemical and biological phenomena, as a guide for finding the new ways of solving applied scientific and technical problems of electronics, metallurgy, civil engineering, and even fine arts and archaeology. Very few scientific techniques can claim entry into as many countries as Mossbauer spectroscopy. Due to its wide application in an education and research processes the community of Mossbauer spectroscopists extends to almost 100 different countries. Laboratory equipment necessary for conducting gamma resonance spectroscopy, do not require large investments, premises, personnel. The spectrometer is rather small in size and could be installed on the ordinary laboratory table. That is why Mossbauer effect is widely used at numerous Universities all over the world as an universal instrument for tuition and research

  18. Spectroscopy of antiproton helium atoms

    International Nuclear Information System (INIS)

    Hayano, Ryugo

    2005-01-01

    Antiproton helium atom is three-body system consisting of an antiproton, electrons and a helium nucleus (denoted by the chemical symbol, p-bar H + ). The authors produced abundant atoms of p-bar 4 He + , and p-bar 3 He + in a cooled He gas target chamber stopping the p-bar beam decelerated to approximately 100 keV in the Antiproton Decelerator at CERN. A precision laser spectroscopy on the atomic transitions in the p-bar 4 He + , and in p-bar 3 He + was performed. Principle of laser spectroscopy and various modifications of the system to eliminate factors affecting the accuracy of the experiment were described. Deduced mass ratio of antiproton and proton, (|m p -bar - m p |)/m p reached to the accuracy of 10 ppb (10 -8 ) as of 2002, as adopted in the recent article of the Particle Data Group by P.J. Mohr and B.N. Taylor. This value is the highest precise data for the CPT invariance in baryon. In future, antihydrogen atoms will be produced in the same facility, and will provide far accurate value of antiproton mass thus enabling a better confirmation of CPT theorem in baryon. (T. Tamura)

  19. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  20. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  1. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  2. Purely leptonic currents

    International Nuclear Information System (INIS)

    Gourdin, M.

    1976-01-01

    In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de

  3. Modulated Current Drive Measurements

    International Nuclear Information System (INIS)

    Petty, C.C.; Lohr, J.; Luce, T.C.; Prater, R.; Cox, W.A.; Forest, C.B.; Jayakumar, R.J.; Makowski, M.A.

    2005-01-01

    A new measurement approach is presented which directly determines the noninductive current profile from the periodic response of the motional Stark effect (MSE) signals to the slow modulation of the external current drive source. A Fourier transform of the poloidal magnetic flux diffusion equation is used to analyze the MSE data. An example of this measurement technique is shown using modulated electron cyclotron current drive (ECCD) discharges from the DIII-D tokamak

  4. Highly sensitive high resolution Raman spectroscopy using resonant ionization methods

    International Nuclear Information System (INIS)

    Owyoung, A.; Esherick, P.

    1984-05-01

    In recent years, the introduction of stimulated Raman methods has offered orders of magnitude improvement in spectral resolving power for gas phase Raman studies. Nevertheless, the inherent weakness of the Raman process suggests the need for significantly more sensitive techniques in Raman spectroscopy. In this we describe a new approach to this problem. Our new technique, which we call ionization-detected stimulated Raman spectroscopy (IDSRS), combines high-resolution SRS with highly-sensitive resonant laser ionization to achieve an increase in sensitivity of over three orders of magnitude. The excitation/detection process involves three sequential steps: (1) population of a vibrationally excited state via stimulated Raman pumping; (2) selective ionization of the vibrationally excited molecule with a tunable uv source; and (3) collection of the ionized species at biased electrodes where they are detected as current in an external circuit

  5. Resolved spectroscopy of adolescent and infant galaxies (1 < z < 10)

    Science.gov (United States)

    Wright, Shelley; IRIS Science Team

    2014-07-01

    The combination of integral field spectroscopy (IFS) and adaptive optics (AO) on TMT will be revolutionary in studying the distant universe. The high angular resolution exploited by an AO system with this large aperture will be essential for studying high-redshift (1 < z < 5) galaxies' kinematics and chemical abundance histories. At even greater distances, TMT will be essential for conducting follow-up spectroscopy of Ly-alpha emission from first lights galaxies (6 < z < 10) and determining their kinematics and morphologies. I will present simulations and sensitivity calculations for high-z and first light galaxies using the diffraction-limited instrument IRIS coupled with NFIRAOS. I will put these simulations in context with current IFS+AO high-z observations and future capabilities with JWST.

  6. Shell model in large spaces and statistical spectroscopy

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  7. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  8. HOMES - Holographic Optical Method for Exoplanet Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — HOMES (Holographic Optical Method for Exoplanet Spectroscopy) is a space telescope that employs a double dispersion architecture, using a holographic optical element...

  9. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  10. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  11. Quantization of interface currents

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  12. Classification of exchange currents

    International Nuclear Information System (INIS)

    Friar, J.L.

    1983-01-01

    After expansion of the vector and axial vector currents in powers of (v/c), a heretofore unremarked regularity results. Meson exchange currents can be classified into types I and II, according to the way they satisfy the constraints of special relativity. The archetypes of these two categories are the impulse approximation to the vector and axial vector currents. After a brief discussion of these constraints, the (rhoπγ) and (ωsigmaγ) exchange currents are constructed and classified, and used to illustrate a number of important points which are often overlooked

  13. Current Energy Patents

    International Nuclear Information System (INIS)

    Kelly, R.C.

    1982-01-01

    Current Energy Patents (CEP) provides abstracting and indexing coverage of the international patent literature, including patent applications, that concerns any aspect of energy production, conservation, and utilization

  14. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  15. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A; Laird, J S; Bardos, R A; Legge, G J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T; Sekiguchi, H [Electrotechnical Laboratory, Tsukuba (Japan).

    1994-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  16. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  17. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  18. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  19. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    Science.gov (United States)

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  20. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  1. Moessbauer spectroscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Bergmann, U.

    1994-01-01

    The short pulse nature of synchrotron radiation makes it possible to perform Moessbauer spectroscopy in the time domain, i.e. instead of measuring the transmitted intensity time integrated as a function of source/absorber velocity, the intensity of the scattered radiation is measured time differential. The resulting time spectrum is essentially source independent and complications in the data analysis which are related to the radioactive source are completely removed. Furthermore, the large brightness and well defined polarization of the synchrotron radiation can, e.g., speed up the data collection and facilitate studies of polarization phenomena. To illustrate these new spectroscopic possibilities, measurements of the temperature dependence and polarization dependence of forward scattering from alpha - sup 5 sup 7 Fe nuclei are presented and discussed 26 refs., 5 figs. (author)

  2. Nuclear level mixing resonance spectroscopy

    International Nuclear Information System (INIS)

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  3. Laser spectroscopy and its applications

    International Nuclear Information System (INIS)

    Radziemski, L.J.; Solarz, R.W.; Paisner, J.A.

    1987-01-01

    Laser spectroscopy has applications in diverse fields ranging from combustion studies and trace-sample detection to biological research. At the same time, it has also contributed greatly to the discovery of hundreds of new lasers. This symbiotic relationship has promoted an especially rapid expansion of the field. This book provides a review of the subject. It includes, for example, chapters on laser isotope separation techniques, enabling scientists to compare their relative advantages and drawbacks. This volume also gives numerous tables that summarize important features of lasers, experiments, and parameters for quick reference. In addition, it presents diagrams for visualizing rotational molecular energy levels of high J in order to enhance our understanding of molecular motions and their relationship to molecular energy levels. Offering insights into how experts think this technology will improve, it considers research and development in each topic discussed

  4. Fission fragment spins and spectroscopy

    International Nuclear Information System (INIS)

    Durell, J.L.

    1988-01-01

    Prompt γ-ray coincidence experiments have been carried out on γ-rays emitted from post-neutron emission fission fragments produced by the aup 19F + 197 Au and 18 O + 232 Th reactions. Decay schemes have been established for even-even nuclei ranging from 78 Se to 148 Nd. Many new states with spin up to ∼ 12h have been observed. Apart from providing a wealth of new information on the spectroscopy of neutron-rich nuclei, the data have been analyzed to determine the average spin of primary fission fragments as a function of fragment mass. The results suggest that the fragment spins are determined by the temperature and shape of the primary fragments at or near to scission

  5. The COMPASS Hadron Spectroscopy Programme

    CERN Document Server

    Austregesilo, A

    2011-01-01

    COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

  6. Laser spectroscopy of antiprotonic helium

    CERN Document Server

    Hori, M

    2005-01-01

    When antiprotons (i.e. the antimatter counterpart of protons) are stopped in helium gas, 97% of them annihilate within picoseconds by reacting with the helium nuclei; a 3% fraction, however, survive with an anomalously long lifetime of several microseconds. This longevity is due to the formation of antiprotonic helium, which is a three-body Rydberg atom composed of an antiproton, electron, and helium nucleus. The ASACUSA experimental collaboration has recently synthesized large numbers of these atoms using CERN's Antiproton Decelerator facility, and measured the atom's transition frequencies to 60 parts per billion by laser spectroscopy. By comparing the experimental results with recent three-body QED calculations and the known antiproton cyclotron frequency, we were able to show that the antiproton mass and charge are the same as the corresponding proton values to a precision of 10 parts per billion. Ongoing and future series of experiments will further improve the experimental precision by using chirp-compe...

  7. High-resolution ultrasonic spectroscopy

    Directory of Open Access Journals (Sweden)

    V. Buckin

    2018-03-01

    Full Text Available High-resolution ultrasonic spectroscopy (HR-US is an analytical technique for direct and non-destructive monitoring of molecular and micro-structural transformations in liquids and semi-solid materials. It is based on precision measurements of ultrasonic velocity and attenuation in analysed samples. The application areas of HR-US in research, product development, and quality and process control include analysis of conformational transitions of polymers, ligand binding, molecular self-assembly and aggregation, crystallisation, gelation, characterisation of phase transitions and phase diagrams, and monitoring of chemical and biochemical reactions. The technique does not require optical markers or optical transparency. The HR-US measurements can be performed in small sample volumes (down to droplet size, over broad temperature range, at ambient and elevated pressures, and in various measuring regimes such as automatic temperature ramps, titrations and measurements in flow.

  8. Spectroscopy after the new particles

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1975-01-01

    Conventional spectroscopy is reexamined in a search for puzzles and paradoxes which have arisen in attempting to describe the properties of the known particles. These may offer clues to the missing elements necessary for the description of the new particles. The minimum number of elementary building blocks, charm and color, the colored quark model for saturation, spin splittings in the meson spectrum, three kinds of quarks, the Melosh transformation and the Jackson frame, beyond the single-quark transition--the Zweig rule mystery, new particles and old symmetries, the f--A2 interference, and tests of the Zweig rule by rho--ω and f--A2--f' interference are considered

  9. Wavelength modulation spectroscopy of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S.E.

    1977-10-01

    The use of modulation spectroscopy to study the electronic properties of solids has been very productive. The construction of a wide range Wavelength Modulation Spectrometer to study the optical properties of solids is described in detail. Extensions of the working range of the spectrometer into the vacuum ultraviolet are discussed. Measurements of the reflectivity and derivative reflectivity spectra of the lead chalcogenides, the chalcopyrite ZnGeP/sub 2/, the layer compounds GaSe and GaS and their alloys, the ferroelectric SbSI, layer compounds SnS/sub 2/ and SnSe/sub 2/, and HfS/sub 2/ were made. The results of these measurements are presented along with their interpretation in terms of band structure calculations.

  10. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  11. Laser spectroscopy on a ''shoestring''

    International Nuclear Information System (INIS)

    Camparo, J.C.; Klimcak, C.M.

    1983-01-01

    The advent of tunable lasers has had a profound influence on both experimental and theoretical physics. Unfortunately, since these laser systems are typically hazardous and expensive, the physics student at the undergraduate or first-year graduate level has no real familiarity with their application in modern physics; and thus cannot fully appreciate their significance. Tunable single mode laser diodes, however, may offer a remedy to this situation. To demonstrate their applicability, we have designed a relatively simple and inexpensive experiment of laser diode spectroscopy in an atomic beam which illustrates the effect of hyperfine structure and the isotope shift in the rubidium D 1 transition (5 2 S/sub 1/2/-5 2 P/sub 1/2/). Furthermore, this experiment demonstrates the possibility of investigating basic physics without major expenditures for laser systems and laboratory facilities

  12. Auger electron spectroscopy of alloys

    International Nuclear Information System (INIS)

    Kuijers, F.J.

    1978-01-01

    This thesis describes how the surface compositions of some alloys can be determined by Auger Electron Spectroscopy (AES). The motivation for this research and the reasons for the choice of alloy systems studied are formulated. The theoretical background of AES is briefly discussed and the apparatus used and the experimental procedures applied are described. Four alloy systems have been investigated in this thesis - Ni-Cu and Pd - Ag (consisting of a component active in most cataytic reactions - Ni and Pd; and a component which is almost inactive for a number of reactions - Cu and Ag) and Pt - Pd and Pt-Ir (consisting of two active components). Knowledge of the surface composition of the various alloy systems is shown to be essential for the interpretation of catalytic results. (Auth./C.F.)

  13. Turbidity Current Bedforms

    NARCIS (Netherlands)

    Cartigny, Matthieu; Postma, G.

    2017-01-01

    Turbidity currents in the submarine seascape are what river flows are in terrestrial landscapes. While rivers transport sediment from the mountains through valleys towards the sea, turbidity currents transport sediment from the shallow marine realms through canyons towards the deeper abyssal plains.

  14. Electric Current Solves Mazes

    Science.gov (United States)

    Ayrinhac, Simon

    2014-01-01

    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  15. Recent Results on Spectroscopy from COMPASS

    CERN Document Server

    Grube, Boris

    2016-01-01

    The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and is thus able to measure a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The light-meson spectrum is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 (GeV/$c$)$^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow for measuring the properties of known resonances with high precision, but also for searching for new states. Among these is a new resonance-like signal, t...

  16. After SDSS-IV: Pioneering Panoptic Spectroscopy

    Science.gov (United States)

    Kollmeier, Juna; AS4 Collaboration

    2018-01-01

    I will describe the current plans for a next generation sky survey that will begin After SDSS-IV --- AS4. AS4 will be an unprecedented all-sky spectroscopic survey of over six million objects. It is designed to decode the history of the Milky Way galaxy, trace the emergence of the chemical elements, reveal the inner workings of stars, the growth of black holes, and investigate the origin of planets. It will provide the most comprehensive all-sky spectroscopy to multiply the science from the Gaia, TESS and eROSITA missions. AS4 will also create a contiguous spectroscopic map of the interstellar gas in the Milky Way and nearby galaxies that is 1,000 times larger than the state of the art, uncovering the self-regulation mechanisms of Galactic ecosystems. It will pioneer systematic, spectroscopic monitoring across the whole sky, revealing changes on timescales from 20 minutes to 20 years. The project is now developing new hardware to build on the SDSS-IV infrastructure, designing the detailed survey strategy, and actively seeking to complete its consortium of institutional and individual members.

  17. Vibronic Spectroscopy of the Phenylcyanomethyl Radical

    Science.gov (United States)

    Mehta, Deepali N.; Kidwell, Nathanael M.; Zwier, Timothy S.

    2011-06-01

    Resonance stabilized radicals (RSRs) are thought to be key intermediates in the formation of larger molecules in planetary atmospheres. Given the nitrogen-rich atmosphere of Titan, and the prevalence of nitriles there, it is likely that nitrile and isonitrile RSRs could be especially important in pathways leading to the formation of more complex nitrogen-containing compounds and the aerosols ("tholins") that are ultimately produced. In this talk, the results of a gas phase, jet-cooled vibronic spectroscopy study of the phenylcyanomethyl radical (C_6H_5.{C}HCN), the nitrogen-containing analog of the 1-phenylpropargyl radical, will be presented. A resonant two color photon ionization spectrum over the range 21,350-22,200 Cm-1 (450.0-468.0 nm) has been recorded, and the D_0-D_1 origin band has been tentatively identified at 21,400 Cm-1. Studies identifying the ionization threshold, and characterizing the vibronic structure will also be presented. An analogous study of the phenylisocyanomethyl radical, C_6H_5.{C}HNC, is currently being pursued for comparison with that of phenylcyanomethyl radical.

  18. Light-Meson Spectroscopy at COMPASS

    CERN Document Server

    Krinner, Fabian

    2017-01-01

    The goal of the COMPASS experiment at CERN is to study the structure and spectroscopy of hadrons. The two-stage spectrometer has large acceptance and covers a wide kinematic range for charged as well as neutral particles allowing to access a wide range of reactions. Light mesons are studied with negative (mostly $\\pi^-$) and positive ($p$, $\\pi^+$) hadron beams with a momentum of $190\\,\\text{GeV}/c$. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer $t$ to the target between $0.1$ and $1.0\\,(\\text{GeV}/c)^2$. The flagship channel is the $\\pi^-\\pi^+\\pi^-$ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow us to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new axial-vector signal, the $a_1(1420)$, with unusual properties. The findings are confirmed by the analysis of the $\\pi^-\\pi^0\\pi^...

  19. Spatial localization in nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Keevil, Stephen F

    2006-01-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  20. UTI diagnosis and antibiogram using Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  1. Department of Nuclear Spectroscopy - Overview

    International Nuclear Information System (INIS)

    Styczen, J.

    2002-01-01

    Full text: The Nuclear Spectroscopy Department is the largest department of the Institute. It merges a variety of research groups having been performing investigations with a rich diversity of methods: from pure studies of the structure of nucleus and of nuclear properties through applied nuclear spectroscopy in condensed matter research, to the complex biophysical investigations of biological tissues. The nuclear structure experiments were performed mainly in European Large Scale Facilities (ALPIINFN-Legnaro, VIVITRON-IReS-Strasbourg, JYFL-K100-Cyclotron) with the use of the GASP, EUROBALL IV, RITU systems and with application of ancillary detectors - HECTOR+HELENA, RFD. Some data were obtained with the GAMMASPHERE in USA. Other research has been based on our own instrumentation - VdG, AFM, Dual-Beam-Implanter, PAC, Moessbauer spectrometers etc., in a strong co-operation with Polish and European institutions, of course. The atomic studies were done on the ESR at GSI in Darmastadt. In several pages which follow, some important results of the investigations in the Department are presented. In 2001, Dr hab. Jerzy Dryzek and Dr hab. Adam Maj were granted the Associated Professor positions, and Miss Agnieszka Kulinska and Mrs Maria Kmiecik - the Ph.D. degrees. Dr Kmiecik was also awarded the Henryk Niewodniczanski prize for studies of 147 Eu compound nucleus shape evolution. Some of us became (continued to be) members of International Committees - the PHINUFY (R. Broda), the Steering Committee of RISING at GSI (J. Styczen), the PAC of the VIVITRON at Strasbourg (J. Styczen). We organized an International Conference on Condensed Matter Studies (100 participants), which belonged to the well known series of Zakopane School of Physics. It's Proceedings appeared as a volume of the Acta Physica Polonica A journal. (author)

  2. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brus, Louis [Columbia Univ., New York, NY (United States)

    2017-01-31

    This project focused on the special electronic and optical properties of graphene and adsorbed molecular species. Graphene makes an excellent substrate for current collection in nanostructured photovoltaic designs. Graphene is almost transparent, and can be used as a solar cell window. It also has no surface states, and thus current is efficiently transported over long distances. Progress in graphene synthesis indicates that there will soon be practical methods for making large pieces of graphene for devices. We now need to understand exactly what happens to both ground state and electronically excited molecules and Qdots near graphene, if we are going to use them to absorb light in a nano-structured photovoltaic device using graphene to collect photocurrent. We also need to understand how to shift the graphene Fermi level, to optimize the kinetics of electron transfer to graphene. And we need to learn how to convert local graphene areas to semiconductor structure, to make useful spatially patterned graphenes. In this final report, we describe how we addressed these goals. We explored the question of possible Surface Enhanced Raman spectroscopy from molecular Charge Transfer onto Graphene substrates. We observed strong hole doping of graphene by adsorbed halogens as indicated by the shift of the graphene G Raman band. In the case of iodine adsorption, we also observed the anionic species made by hole doping. At low frequency in the Raman spectrum, we saw quite intense lines from I3- and I5- , suggesting possible SERS. We reported on Fresnel calculations on this thin film system, which did not show any net electromagnetic field enhancement.

  3. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    Wang Wen-Li; Xu Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  4. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  5. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  6. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  7. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  8. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  9. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction .... the load should be within the safe range of operation specified by the ... A split capacitor damping scheme is adopted here as shown in ...... spectroscopy testing on the Advanced Technology Devel-.

  10. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  11. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  12. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  13. Proceedings of the Third Symposium Optical Spectroscopy SOS-84

    International Nuclear Information System (INIS)

    Fassler, D.; Feller, K.H.; Wilhelmi, B.

    1985-01-01

    The main topics of the symposium were: 1) new developments and applications of laser spectroscopy including time resolved UV/VIS spectroscopy, time resolved fluorescence spectroscopy, and laser Raman spectroscopy, 2) dynamics and photokinetics of molecular systems, and 3) spectroscopy and photoprocesses in organized biological systems

  14. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bizimana, Laurie A.; Brazard, Johanna; Carbery, William P.; Gellen, Tobias; Turner, Daniel B., E-mail: dturner@nyu.edu [Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 (United States)

    2015-10-28

    Coherent multidimensional optical spectroscopy is an emerging technique for resolving structure and ultrafast dynamics of molecules, proteins, semiconductors, and other materials. A current challenge is the quality of kinetics that are examined as a function of waiting time. Inspired by noise-suppression methods of transient absorption, here we incorporate shot-by-shot acquisitions and balanced detection into coherent multidimensional optical spectroscopy. We demonstrate that implementing noise-suppression methods in two-dimensional electronic spectroscopy not only improves the quality of features in individual spectra but also increases the sensitivity to ultrafast time-dependent changes in the spectral features. Measurements on cresyl violet perchlorate are consistent with the vibronic pattern predicted by theoretical models of a highly displaced harmonic oscillator. The noise-suppression methods should benefit research into coherent electronic dynamics, and they can be adapted to multidimensional spectroscopies across the infrared and ultraviolet frequency ranges.

  15. OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB.

    Directory of Open Access Journals (Sweden)

    Lucian A B Purvis

    Full Text Available In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the MATLAB-based OXford Spectroscopy Analysis (OXSA toolbox to allow researchers to rapidly develop their own customised processing pipelines. The toolbox aims to simplify development by: being easy to install and use; seamlessly importing Siemens Digital Imaging and Communications in Medicine (DICOM standard data; allowing visualisation of spectroscopy data; offering a robust fitting routine; flexibly specifying prior knowledge when fitting; and allowing batch processing of spectra. This article demonstrates how each of these criteria have been fulfilled, and gives technical details about the implementation in MATLAB. The code is freely available to download from https://github.com/oxsatoolbox/oxsa.

  16. OXSA: An open-source magnetic resonance spectroscopy analysis toolbox in MATLAB.

    Science.gov (United States)

    Purvis, Lucian A B; Clarke, William T; Biasiolli, Luca; Valkovič, Ladislav; Robson, Matthew D; Rodgers, Christopher T

    2017-01-01

    In vivo magnetic resonance spectroscopy provides insight into metabolism in the human body. New acquisition protocols are often proposed to improve the quality or efficiency of data collection. Processing pipelines must also be developed to use these data optimally. Current fitting software is either targeted at general spectroscopy fitting, or for specific protocols. We therefore introduce the MATLAB-based OXford Spectroscopy Analysis (OXSA) toolbox to allow researchers to rapidly develop their own customised processing pipelines. The toolbox aims to simplify development by: being easy to install and use; seamlessly importing Siemens Digital Imaging and Communications in Medicine (DICOM) standard data; allowing visualisation of spectroscopy data; offering a robust fitting routine; flexibly specifying prior knowledge when fitting; and allowing batch processing of spectra. This article demonstrates how each of these criteria have been fulfilled, and gives technical details about the implementation in MATLAB. The code is freely available to download from https://github.com/oxsatoolbox/oxsa.

  17. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.

    2013-01-01

    in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...... and computer simulations to establish the correlation between spectra and physical dimensions. Instead of measuring on individual structures like CD-SEM and AFM, LSPR spectroscopy measures on an array of test structures with an arbitrary array size. This makes LSPR spectroscopy particularly interesting...... for dense device layers where the vacant space for test structures is limited.In this work, LSPR spectroscopy is used to evaluate a fabrication process including imprinting, etching and metallisation of gammadion test structures distributed on a 4” wafer....

  18. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  19. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  20. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.

    Science.gov (United States)

    Mikkonen, Jopi J W; Raittila, Jussi; Rieppo, Lassi; Lappalainen, Reijo; Kullaa, Arja M; Myllymaa, Sami

    2016-09-01

    Saliva provides a valuable tool for assessing oral and systemic diseases, but concentrations of salivary components are very small, calling the need for precise analysis methods. In this work, Fourier transform infrared (FT-IR) spectroscopy using transmission and photoacoustic (PA) modes were compared for quantitative analysis of saliva. The performance of these techniques was compared with a calibration series. The linearity of spectrum output was verified by using albumin-thiocyanate (SCN(-)) solution at different SCN(-) concentrations. Saliva samples used as a comparison were obtained from healthy subjects. Saliva droplets of 15 µL were applied on the silicon sample substrate, 6 drops for each specimen, and dried at 37 ℃ overnight. The measurements were carried out using an FT-IR spectrometer in conjunction with an accessory unit for PA measurements. The findings with both transmission and PA modes mirror each other. The major bands presented were 1500-1750 cm(-1) for proteins and 1050-1200 cm(-1) for carbohydrates. In addition, the distinct spectral band at 2050 cm(-1) derives from SCN(-) anions, which is converted by salivary peroxidases to hypothiocyanate (OSCN(-)). The correlation between the spectroscopic data with SCN(-) concentration (r > 0.990 for transmission and r = 0.967 for PA mode) was found to be significant (P < 0.01), thus promising to be utilized in future applications. © The Author(s) 2016.

  1. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  2. Opinions on Current Reading.

    Science.gov (United States)

    Journal of Blacks in Higher Education, 1997

    1997-01-01

    Presents eight reviews of current books, covering issues of particular interest to black educators and historians. Topics considered include slavery, college admissions and affirmative action, the marginalization of black scientists, black politics, bigotry, and higher education. (SLD)

  3. CURRENT TRANSFER SYSTEMS

    Science.gov (United States)

    Watt, D.A.

    1956-07-01

    A current transfer system is described for transferring current between a rotating member and a co-axial stationary member. The particular area of application for the invention is in connection with homopolar generators where a low voltage and high current are generated. The current tramsfer system of the invention comprises a rotor member and a co-axial stator member wherein one of the members is shaped to provide a circumferential surface concave in section and the other member is shaped to have a peripheral portion in close proximity to the surface, whereby a liquid metal can be stably supported between the two members when they are moving relative to one another to establish an electrical conducting path between the members.

  4. Current Resource Imagery Projects

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Map showing coverage of current Resource imagery projects. High resolution/large scale Resource imagery is typically acquired for the U.S. Forest Service and other...

  5. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  6. Medicare Current Beneficiary Survey

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Characteristics and Perceptions of the Medicare Population Data from the 2010 Medicare Current Beneficiary Survey is a series of source books based on the...

  7. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  8. Eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)

    2004-02-15

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.

  9. Eddy current testing

    International Nuclear Information System (INIS)

    Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan; Shin, Young Kil

    2004-02-01

    Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants

  10. Current Issues in Tourism

    OpenAIRE

    Xu, Shi; Martinez, Larry R.; Hubert, Van Hoof; Tews, Michael; Torres, Leonardo; Farfán, Karina

    2015-01-01

    Ram (2015 Ram, Y. (2015). Hostility or hospitality? A review on violence, bullying and sexual harassment in the tourism and hospitality industry. Current Issues in Tourism. doi:10.1080/13683500.2015.1064364 [Taylor & Francis Online], [Google Scholar] . Hostility or hospitality? A review on violence, bullying and sexual harassment in the tourism and hospitality industry. Current Issues in Tourism. doi:10.1080/13683500.2015.1064364) posits that violence and harassment are areas of concern...

  11. Simple WZW currents

    International Nuclear Information System (INIS)

    Fuchs, J.

    1990-08-01

    A complete classification of simple currents of WZW theory is obtained. The proof is based on an analysis of the quantum dimensions of the primary fields. Simple currents are precisely the primaries with unit quantum dimension; for WZW theories explicit formulae for the quantum dimensions can be derived so that an identification of the fields with unit quantum dimension is possible. (author). 19 refs.; 2 tabs

  12. Current level detector

    International Nuclear Information System (INIS)

    Kerns, C.R.

    1977-01-01

    A device is provided for detecting the current level of a dc signal. It includes an even harmonic modulator to which a reference ac signal is applied. The unknown dc signal acts on the reference ac signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown dc current. The device may be used to provide overcurrent protection for proportional wire chambers

  13. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  14. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  15. Raman Spectroscopy of Ocular Tissue

    Science.gov (United States)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  16. Strong overtones modes in inelastic electron tunneling spectroscopy with cross-conjugated molecules

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo; Gagliardi, Alessio; Pecchia, Alessandro

    2013-01-01

    . With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought...... and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current...

  17. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    Science.gov (United States)

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  18. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  19. Design of a visible-light spectroscopy clinical tissue oximeter.

    Science.gov (United States)

    Benaron, David A; Parachikov, Ilian H; Cheong, Wai-Fung; Friedland, Shai; Rubinsky, Boris E; Otten, David M; Liu, Frank W H; Levinson, Carl J; Murphy, Aileen L; Price, John W; Talmi, Yair; Weersing, James P; Duckworth, Joshua L; Hörchner, Uwe B; Kermit, Eben L

    2005-01-01

    We develop a clinical visible-light spectroscopy (VLS) tissue oximeter. Unlike currently approved near-infrared spectroscopy (NIRS) or pulse oximetry (SpO2%), VLS relies on locally absorbed, shallow-penetrating visible light (475 to 625 nm) for the monitoring of microvascular hemoglobin oxygen saturation (StO2%), allowing incorporation into therapeutic catheters and probes. A range of probes is developed, including noncontact wands, invasive catheters, and penetrating needles with injection ports. Data are collected from: 1. probes, standards, and reference solutions to optimize each component; 2. ex vivo hemoglobin solutions analyzed for StO2% and pO2 during deoxygenation; and 3. human subject skin and mucosal tissue surfaces. Results show that differential VLS allows extraction of features and minimization of scattering effects, in vitro VLS oximetry reproduces the expected sigmoid hemoglobin binding curve, and in vivo VLS spectroscopy of human tissue allows for real-time monitoring (e.g., gastrointestinal mucosal saturation 69+/-4%, n=804; gastrointestinal tumor saturation 45+/-23%, n=14; and p<0.0001), with reproducible values and small standard deviations (SDs) in normal tissues. FDA approved VLS systems began shipping earlier this year. We conclude that VLS is suitable for the real-time collection of spectroscopic and oximetric data from human tissues, and that a VLS oximeter has application to the monitoring of localized subsurface hemoglobin oxygen saturation in the microvascular tissue spaces of human subjects.

  20. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  1. Contact spectroscopy of high-temperature superconductors. Review

    International Nuclear Information System (INIS)

    Yanson, I.K.

    1991-01-01

    We have attempted to systematize the research of high temperature superconductors by means of tunneling and point-contact spectroscopy. The theoretical grounds of the methods are briefly described. The deviations of current-voltage characteristics from ordinary superconductors are considered. The properties of point contacts with direct energy gap measurfements and the fine structure of derivatives of i(v) curves at the overlap energies are reviewed for the high-T c La 2-x Sr x CuO 4 materials

  2. Deuterated scintillators and their application to neutron spectroscopy

    International Nuclear Information System (INIS)

    Febbraro, M.; Lawrence, C.C.; Zhu, H.; Pierson, B.; Torres-Isea, R.O; Becchetti, F.D.; Kolata, J.J.; Riggins, J.

    2015-01-01

    Deuterated scintillators have been used as a tool for neutron spectroscopy without Neutron Time-of-Flight (n-ToF) for more than 30 years. This article will provide a brief historical overview of the technique and current uses of deuterated scintillators in the UM-DSA and DESCANT arrays. Pulse-shape discrimination and spectrum unfolding with the maximum-likelihood expectation maximization algorithm will be discussed. Experimental unfolding and cross section results from measurements of (d,n), ( 3 He,n) and (α,n) reactions are shown

  3. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  4. Probing Spin Crossover in a Solution by Paramagnetic NMR Spectroscopy.

    Science.gov (United States)

    Pavlov, Alexander A; Denisov, Gleb L; Kiskin, Mikhail A; Nelyubina, Yulia V; Novikov, Valentin V

    2017-12-18

    Spin transitions in spin-crossover compounds are now routinely studied in the solid state by magnetometry; however, only a few methods exist for studies in solution. The currently used Evans method, which relies on NMR spectroscopy to measure the magnetic susceptibility, requires the availability of a very pure sample of the paramagnetic compound and its exact concentration. To overcome these limitations, we propose an alternative NMR-based technique for evaluating spin-state populations by only using the chemical shifts of a spin-crossover compound; those can be routinely obtained for a solution that contains unknown impurities and paramagnetic admixtures or is contaminated otherwise.

  5. Electrochemical Characterization of a PEMEC Using Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Elsøe, Katrine; Grahl-Madsen, L.; Hjelm, Johan

    2017-01-01

    In this study, electrochemical impedance spectroscopy (EIS) is applied in combination with cyclic voltammetry (CV) and current density – cell voltage curves (iV-curves) to investigate the processes contributing to the total impedance of a polymer electrolyte membrane electrolysis cell (PEMEC). i......V-curves were linear above 0.35 A cm−2 implying ohmic processes to be performance limiting, however the impedance spectra showed three arcs indicating three electrochemical reactions at these conditions not to be purely ohmic, but also to have capacitive properties. A hypothesis that the composite Ir...

  6. β-decay spectroscopy at RIBF: The EURICA project

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, G.; Nishimura, S.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Browne, F. [School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4JG (United Kingdom); Daido, R.; Yifan, F.; Nishibata, H.; Yagi, A. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka, 560-0043 Toyonaka (Japan); Gey, G. [LPSC, Université Joseph Fourier Grenoble 1, Institut Polytechnique de Grenoble, CNRS/IN2P3, 38026 Grenoble Cedex LPSC (France); Jung, H.-S. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Li, Z.; Wu, J. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Lubos, D. [Physik Department E12, Technische Universität München, D-85748 Garching (Germany); Moschner, K. [Institut für Kernphysik, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln (Germany); Patel, Z.; Rice, S. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Collaboration: EURICA Collaboration; and others

    2014-05-02

    EURICA is a project at the RIKEN Nishina Center aimed at studying a wide range of exotic nuclei through β-decay measurements and high-resolution γ-ray spectroscopy. During its first two years of operation, about 80 days of beam time have been dedicated to the project allowing the exploration of several very exotic regions of the nuclear chart, which include key nuclei such as {sup 78}Ni, {sup 100}Sn, {sup 110}Zr, {sup 128}Pd, and {sup 138}Sn. Data analysis of the EURICA experiments is currently ongoing.

  7. Online and Certifiable Spectroscopy Courses Using Information and Communication Tools. a Model for Classrooms and Beyond

    Science.gov (United States)

    Krishnan, Mangala Sunder

    2015-06-01

    Online education tools and flipped (reverse) class models for teaching and learning and pedagogic and andragogic approaches to self-learning have become quite mature in the last few years because of the revolution in video, interactive software and social learning tools. Open Educational resources of dependable quality and variety are also becoming available throughout the world making the current era truly a renaissance period for higher education using Internet. In my presentation, I shall highlight structured course content preparation online in several areas of spectroscopy and also the design and development of virtual lab tools and kits for studying optical spectroscopy. Both elementary and advanced courses on molecular spectroscopy are currently under development jointly with researchers in other institutions in India. I would like to explore participation from teachers throughout the world in the teaching-learning process using flipped class methods for topics such as experimental and theoretical microwave spectroscopy of semi-rigid and non-rigid molecules, molecular complexes and aggregates. In addition, courses in Raman, Infrared spectroscopy experimentation and advanced electronic spectroscopy courses are also envisaged for free, online access. The National Programme on Technology Enhanced Learning (NPTEL) and the National Mission on Education through Information and Communication Technology (NMEICT) are two large Government of India funded initiatives for producing certified and self-learning courses with financial support for moderated discussion forums. The learning tools and interactive presentations so developed can be used in classrooms throughout the world using flipped mode of teaching. They are very much sought after by learners and researchers who are in other areas of learning but want to contribute to research and development through inter-disciplinary learning. NPTEL is currently is experimenting with Massive Open Online Course (MOOC

  8. Fourier Spectroscopy: A Bayesian Way

    Directory of Open Access Journals (Sweden)

    Stefan Schmuck

    2017-01-01

    Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

  9. Issues in light hadron spectroscopy

    International Nuclear Information System (INIS)

    Morgan, D.

    1993-10-01

    A high priority in light spectroscopy is to seek out and characterize various types of non-(QQ-bar) meson. The large quantity of new data now appearing will present a great opportunity. To identify the non-(QQ-bar) intruders one needs to know the regular (QQ-bar) pattern well; whole meson families thus become a target for close investigation. A powerful discovery strategy is to observe the same meson in a variety of reactions. Because mesons appear as resonances, other dynamics can distort the signal in a particular decay channel. Unitarity is the master principle for co-ordinating various sightings of the same resonance. Much of the new spectroscopic information in prospect will come from inferring two-body dynamics from three-body final states. Conventional methods of analysis via the isobar model use approximations to unitarity that need validation. Of all the meson families, the scalars should be a prime hunting ground for non-(QQ-bar)s. Even before the advent of the new results, some revisions of the 'official' classifications are urged. In particular, it is argued that the lightest broad I = 0 scalar is a very broad f o (1000). One unfinished task is to decide whether f o (975) and a o (980) are alike or different; several non-(QQ-bar) scalar scenarios hinge on this. To settle this, much better data on KK-bar channels is needed. (author)

  10. PAC spectroscopy of electronic ceramics

    International Nuclear Information System (INIS)

    Gardner, J.A.; Wang, R.; Schwenker, R.; Sommers, J.A.

    1991-01-01

    Dilute indium dopants in cerium oxides and YBa 2 Cu 3 O x have been studied by 111 In/Cd Perturbed Angular Correlation (PAC) spectroscopy. By controlling oxygen vacancy concentration in the cerium oxides through doping or high-temperature vacuum annealing, we have found that indium always forms a defect complex unless the sample is doped to reduce greatly the oxygen vacancy concentration. Three different vacancy-associated complexes are found with concentrations that depend on doping and oxygen stoichiometry. Another defect complex occurs in samples having negligible vacancy concentration. At low temperatures, evidence is found of interaction with an electronic hole trapped by 111 Cd after the radioactive decay of the 111 In parent. In YBa 2 Cu 3 O x the indium substitutes preferentially at the Y site but has measurable probability of substitution in at least one of the two copper sites. A symmetry change near 650 C is consistent with the well-documented orthorhombic/tetragonal transition for samples in air or oxygen. (author). 23 refs, 10 figs

  11. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  12. PSYCHE Pure Shift NMR Spectroscopy.

    Science.gov (United States)

    Foroozandeh, Mohammadali; Morris, Gareth; Nilsson, Mathias

    2018-03-13

    Broadband homodecoupling techniques in NMR, also known as "pure shift" methods, aim to enhance spectral resolution by suppressing the effects of homonuclear coupling interactions to turn multiplet signals into singlets. Such techniques typically work by selecting a subset of "active" nuclear spins to observe, and selectively inverting the remaining, "passive", spins to reverse the effects of coupling. Pure Shift Yielded by Chirp Excitation (PSYCHE) is one such method; it is relatively recent, but has already been successfully implemented in a range of different NMR experiments. Paradoxically, PSYCHE is one of the trickiest of pure shift NMR techniques to understand but one of the easiest to use. Here we offer some insights into theoretical and practical aspects of the method, and into the effects and importance of the experimental parameters. Some recent improvements that enhance the spectral purity of PSYCHE spectra will be presented, and some experimental frameworks including examples in 1D and 2D NMR spectroscopy, for the implementation of PSYCHE will be introduced. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Acoustic resonance spectroscopy intrinsic seals

    International Nuclear Information System (INIS)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-01-01

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique's sensitivity to ''nuisance'' effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective

  14. Laser spectroscopy on organic molecules.

    Science.gov (United States)

    Imasaka, T

    1996-06-01

    Various laser spectrometric methods have been developed until now. Especially, laser fluorometry is most sensitive and is frequently combined with a separation technique such as capillary electrophoresis. For non-fluorescent compounds, photothermal spectrometry may be used instead. A diode laser is potentially useful for practical trace analysis, because of its low cost and long-term trouble-free operation. On the other hand, monochromaticity of the laser is essential in high-resolution spectrometry, e.g. in low temperature spectrometry providing a very sharp spectral feature. Closely-related compounds such as isomers can easily be differentiated, and information for assignment is obtained from the spectrum. Multiphoton ionization mass spectrometry is useful for soft ionization, providing additional information concerned with molecular weight and chemical structure. A short laser pulse with a sufficient energy is suitable for rapid heating of the solid surface. A matrix-assisted laser desorption/ion-ization technique is recently employed for introduction of a large biological molecule into a vacuum for mass analysis. In the future, laser spectrometry will be developed by a combination with state-of-the-art laser technology. In the 21st century, new laser spectrometry will be developed, which may be based on revolutionary ideas or unexpected discoveries. Such studies will open new frontiers in analytical laser spectroscopy.

  15. Active beam spectroscopy for ITER

    International Nuclear Information System (INIS)

    Von Hellermann, M.; Giroud, C.; Jaspers, R.; Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D.; Krasilnikov, A.; Tugarinov, S.; Lotte, P.; Malaquias, A.; Rachlew, E.

    2003-01-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV

  16. Flash spectroscopy of purple membrane.

    Science.gov (United States)

    Xie, A H; Nagle, J F; Lozier, R H

    1987-04-01

    Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise ratios are as high as 500. Systematic errors involving beam geometries, light scattering, absorption flattening, photoselection, temperature fluctuations, partial dark adaptation of the sample, unwanted actinic effects, and cooperativity were eliminated, compensated for, or are shown to be irrelevant for the conclusions. Using nonlinear least squares techniques, all data at one temperature and one pH were fitted to sums of exponential decays, which is the form required if the system obeys conventional first-order kinetics. The rate constants obtained have well behaved Arrhenius plots. Analysis of the residual errors of the fitting shows that seven exponentials are required to fit the data to the accuracy of the noise level.

  17. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  18. Spectroscopy Division: progress report for 1990

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1991-01-01

    This report summarises the work done by members of the Spectroscopy Division both within BARC as well as in scientific institutions elsewhere during the calendar year 1990. Main areas of research activity include atomic spectroscopy for hyperfine structure and isotope shift determination, theoretical and experimental studies of diatomic molecules, infrared and Raman spectroscopy of polyatomic molecules, design and fabrication of beam line optics for INDUS-I synchrotron radiation source, beam foil spectroscopy and laser spectroscopy of various atomic and molecular systems. Major experimental facilities that have been utilised include a fourier transform spectrometer, an excimer laser pumped dye-laser and a continous wave argon-ion laser. The report also includes the spectroscopic analytical service rendered for various DAE units and describes briefly some new analytical facilities like laser enhanced ionization in flames and resonance ionization mass spectroscopy using pulsed lasers which are being set up. The above activites were reported by members of the Spectroscopy Division via invited lectures, papers presented in various national and international conferences and publication in scientific journals. Details of these are given at the end of the report. (author). figs., tabs

  19. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  20. Collisionless current sheet equilibria

    Science.gov (United States)

    Neukirch, T.; Wilson, F.; Allanson, O.

    2018-01-01

    Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.