WorldWideScience

Sample records for current tank contents

  1. Supporting document for the historical tank content estimate for S tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  2. Supporting document for the historical tank content estimate for A Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  3. Supporting document for the historical tank content estimate for S tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  4. Supporting document for the historical tank content estimate for A Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the A Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

  5. Supporting document for the historical tank content estimate for B Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200-East Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to the SSTs in the B Tank Farm of the northeast quadrant of the 200 East Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs

  6. Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Consort, S.D.

    1995-01-01

    Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report

  7. Supporting document for the historical tank content estimate for SY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1997-08-12

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

  8. Supporting document for the historical tank content estimate for SY-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy's Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank's inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act CRA and state law (Washington Administrative Code AC 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes

  9. Supporting document for the historical tank content estimate for AN-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  10. Supporting document for the historical tank content estimate for AY-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C H; Stroup, J L; Funk, J. W.

    1997-03-12

    This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  11. Supporting document for the historical tank content estimate for AW-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  12. Supporting document for the historical tank content estimate for the S-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  13. Supporting document for the historical tank content estimate for AP-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

    1997-03-06

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

  14. Supporting document for the historical tank content estimate for the SX-tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H., Fluor Daniel Hanford

    1997-02-25

    This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

  15. Supporting document for the historical tank content estimate for BY-Tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.

    1996-06-28

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

  16. Supporting document for the SW Quadrant Historical Tank Content Estimate for U-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  17. Supporting Document for the SW Quadrant Historical Tank Content Estimate for SX-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Johnson, E.D.

    1994-06-01

    This Supporting Document provides historical characterization information gathered on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate of the SW Quadrant at the Hanford 200 West Area

  18. Supporting document for the historical tank content estimate for BY-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  19. Supporting document for the historical tank content estimate for AP-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  20. Supporting document for the historical tank content estimate for BX-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  1. Supporting document for the historical tank content estimate for A-Tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Newell, R.L.; Funk, J.W.

    1996-01-01

    This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area

  2. Supporting document for the historical tank content estimate for AW-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas

  3. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents.

  4. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    International Nuclear Information System (INIS)

    1995-06-01

    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents

  5. Historical Tank Content Estimate for the Northwest Quandrant of the Hanford 200 East Area

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Pickett, W.W.

    1994-06-01

    Historical Tank Content Estimate of the Northeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground single-shell tanks of the Hanford 200 East area. This report summaries historical information such at waste history, temperature, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance, along with the components of the data management effort, such as waste status and Transaction Record Summary, Tank Layering Model, Defined Waste Types, and Inventory Estimates to generate these tank content estimates are also given in this report

  6. Historical Tank Content Estimate for the Northwest Quandrant of the Hanford 200 East Area

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, C.H.; Gaddis, L.A.; Pickett, W.W.

    1994-06-01

    Historical Tank Content Estimate of the Northeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground single-shell tanks of the Hanford 200 East area. This report summaries historical information such at waste history, temperature, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance, along with the components of the data management effort, such as waste status and Transaction Record Summary, Tank Layering Model, Defined Waste Types, and Inventory Estimates to generate these tank content estimates are also given in this report.

  7. Historical tank content estimate for the northwest quadrant of the Hanford 200 west area

    International Nuclear Information System (INIS)

    Brevick, C.H.; Stroup, J.L.; Funk, J.W.

    1997-01-01

    The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by-tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 West Area. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tank-by-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report

  8. Supporting document for the north east quadrant historical tank content estimate report for AX-tank farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered in AX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas

  9. Supporting document for the north east quadrant historical tank content estimate report for C-Tank Farm

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

    1994-06-01

    This Supporting Document provides historical in-depth characterization information gathered on C-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature data, sampling data, and drywell and liquid observation well data for Historical Tank Content Estimate Report of the NE Quadrant and the Hanford 200 East Areas

  10. Sampling the contents of High-Level Waste tanks

    International Nuclear Information System (INIS)

    Gray, P.L.; Skidmore, V.L.; Bragg, T.K.; Kerrigan, T.

    1993-01-01

    Samples were recently retrieved from a HLW storage tank at the DOE Savannah River Site using simple tools developed for this task. The tools are inexpensive and manually operated, require brief tank open times, and minimize radiation doses

  11. Organic Tank Safety Project: Effect of water partial pressure on the equilibrium water content of waste samples from Hanford Tank 241-U-105

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-09-01

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the U.S. Department of Energy''s Hanford Site. Because of water''s importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory to investigate the effect of water partial pressure (P H2O ) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, P H2O is the most susceptible to being controlled by the and Hanford Site''s environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. Webb et al. identified Tank U-105 as a Conditionally Safe saltcake tank. A Conditionally Safe waste is one that is currently safe based on waste classification criteria but could, if dried, be classified as open-quotes Unsafe.close quotes To provide information on the behavior of organic-bearing wastes, the Westinghouse Hanford Company provided us with four waste samples taken from Tank 241-U-105 (U-105) to determine the effect of P H2O on their equilibrium water content

  12. WAIS Searching of the Current Contents Database

    Science.gov (United States)

    Banholzer, P.; Grabenstein, M. E.

    The Homer E. Newell Memorial Library of NASA's Goddard Space Flight Center is developing capabilities to permit Goddard personnel to access electronic resources of the Library via the Internet. The Library's support services contractor, Maxima Corporation, and their subcontractor, SANAD Support Technologies have recently developed a World Wide Web Home Page (http://www-library.gsfc.nasa.gov) to provide the primary means of access. The first searchable database to be made available through the HomePage to Goddard employees is Current Contents, from the Institute for Scientific Information (ISI). The initial implementation includes coverage of articles from the last few months of 1992 to present. These records are augmented with abstracts and references, and often are more robust than equivalent records in bibliographic databases that currently serve the astronomical community. Maxima/SANAD selected Wais Incorporated's WAIS product with which to build the interface to Current Contents. This system allows access from Macintosh, IBM PC, and Unix hosts, which is an important feature for Goddard's multiplatform environment. The forms interface is structured to allow both fielded (author, article title, journal name, id number, keyword, subject term, and citation) and unfielded WAIS searches. The system allows a user to: Retrieve individual journal article records. Retrieve Table of Contents of specific issues of journals. Connect to articles with similar subject terms or keywords. Connect to other issues of the same journal in the same year. Browse journal issues from an alphabetical list of indexed journal names.

  13. Techniques for sampling nuclear waste tank contents and in situ measurement of activity

    International Nuclear Information System (INIS)

    Lawrence, R.C.

    1978-04-01

    A study was conducted to develop suitable sampling equipment and techniques for characterizing the mechanical properties of nuclear wastes; identifying effective means of measuring radiation levels, temperatures, and neutron fluxes in situ in wastes; and developing a waste core sampler. A portable, stainless steel probe was developed which is placed in the tank through a riser. This probe is built for the insertion of instrumentation that can measure the contents of the tank at any level and take temperature, radiation, and neutron activation readings with reliable accuracy. A simple and reliable instrument for the in situ extraction of waste materials ranging from liquid to concrete-like substances was also developed. This portable, stainless steel waste core sampler can remove up to one liter of radioactive waste from tanks for transportation to hot cell laboratories for analysis of hardness, chemical form, and isotopic content. A cask for transporting the waste samples from the tanks to the laboratory under radiation-protected conditions was also fabricated. This cask was designed with a ''boot'' or inner-seal liner to contain any radioactive wastes that might remain on the outside of the waste core sampling device

  14. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  15. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  16. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford's underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford's organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes' future storage. This work focused on the equilibrium water content and did not investigate the various factors such as at sign ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures

  17. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  18. Preliminary engineering report waste area grouping 5, Old Hydrofracture Facility Tanks content removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-06-01

    The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facilities Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy (DOE) Oak Ridge Operations Office, the U.S. Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One objective of the FFA is to ensure that liquid low-level waste (LLLW) tanks that are removed from service are evaluated and remediated through the CERCLA process. Five inactive LLLW tanks, designated T-1, T-2, T-3, T-4, and T-9, located at the Old Hydrofracture (OHF) Facility in the Melton Valley area of Oak Ridge National Laboratory (ORNL) have been evaluated and are now entering the remediation phase. As a precursor to final remediation, this project will remove the current liquid and sludge contents of each of the five tanks (System Requirements Document, Appendix A). It was concluded in the Engineering Evaluation/Cost Analysis [EE/CA] for the Old Hydrofracture Facility Tanks (DOE 1996) that sluicing and pumping the contaminated liquid and sludge from the five OHF tanks was the preferred removal action. Evaluation indicated that this alternative meets the removal action objective and can be effective, implementable, and cost-effective. Sluicing and removing the tank contents was selected because this action uses (1) applicable experience, (2) the latest information about technologies and techniques for removing the wastes from the tanks, and (3) activities that are currently acceptable for storage of transuranic (TRU) mixed waste

  19. Tank 241-C-103 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank

  20. Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1997-02-01

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy's Hanford Site. Because of water's importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (P H2O ) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, P H2O is the most susceptible to being controlled by the and Hanford Site's environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes

  1. Assessment of Current Practice for Tank Testing of Small Marine Energy Devices

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Discussion Report. Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact. The report is a contribution by Aalborg University (AAU) to the deliverable on Assessment of current practice for tank testing of small marine energy...

  2. Tank-connected food waste disposer systems--current status and potential improvements.

    Science.gov (United States)

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Tank 241-A-104 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-A-104. This Tank Characterization Plan will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in addition to reporting the current contents and status of the tank as projected from historical information

  4. Tank 241-AZ-102 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, a revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process ... Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for tank 241-AZ-102 (AZ-102) sampling activities. Tank AZ-102 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The current contents of Tank AZ-102, as of October 31, 1994, consisted of 3,600 kL (950 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-102 is expected to have two primary layers. The bottom layer is composed of 360 kL of sludge, and the top layer is composed of 3,240 kL of supernatant, with a total tank waste depth of approximately 8.9 meters

  5. Calculation of steam content in a draught section of a tank-type boiling water cooled reactor

    International Nuclear Information System (INIS)

    Panajotov, D.P.; Gorburov, V.I.

    1989-01-01

    Structural and hydrodynamic features of a two-phase flow in a draught section of a tank-type boiling water cooled reactor are considered. A calculated model of the steady flow and methods for determining steam content and phase rate profiles under the maximum steam content at the section axis and at some distance from it are proposed. Steam content distribution by height quantitatively agrees with experimental data for the VK-50 reactor. Calculation technique allows one to obtain steam content and phase rate profiles at the section outlet

  6. Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-11-01

    This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site

  7. Tank 241-AZ-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information''. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters

  8. Results of sampling the contents of the liquid low-level waste evaporator feed tank W-22 at ORNL

    International Nuclear Information System (INIS)

    Sears, M.B.

    1996-09-01

    This report summarizes the results of the fall 1994 sampling of the contents of the liquid low- level waste (LLLW) tank W-22 at the Oak Ridge National Laboratory (ORNL). Tank W-22 is the central collection and holding tank for LLLW at ORNL before the waste is transferred to the evaporators. Samples of the tank liquid and sludge were analyzed to determine (1) the major chemical constituents, (2) the principal radionuclides, (3) the metals listed on the U.S. Environmental Protection Agency (EPA) Contract Laboratory Program Inorganic Target Analyte List, (4) organic compounds, and (5) some physical properties. The organic chemical characterization consisted of the determinations of the EPA Contract Laboratory Program Target Compound List semivolatile compounds, pesticides, and polychlorinated biphenyls (PCBs). Water-soluble volatile organic compounds were also determined. Information provided in this report forms part of the technical basis in support of (1) waste management for the active LLLW system and (2) planning for the treatment and disposal of the waste

  9. Tank design

    International Nuclear Information System (INIS)

    Earle, F.A.

    1992-01-01

    This paper reports that aboveground tanks can be designed with innovative changes to complement the environment. Tanks can be constructed to eliminate the vapor and odor emanating from their contents. Aboveground tanks are sometimes considered eyesores, and in some areas the landscaping has to be improved before they are tolerated. A more universal concern, however, is the vapor or odor that emanates from the tanks as a result of the materials being sorted. The assertive posture some segments of the public now take may eventually force legislatures to classify certain vapors as hazardous pollutants or simply health risks. In any case, responsibility will be leveled at the corporation and subsequent remedy could increase cost beyond preventive measures. The new approach to design and construction of aboveground tanks will forestall any panic which might be induced or perceived by environmentalists. Recently, actions by local authorities and complaining residents were sufficient to cause a corporation to curtail odorous emissions through a change in tank design. The tank design change eliminated the odor from fuel oil vapor thus removing the threat to the environment that the residents perceived. The design includes reinforcement to the tank structure and the addition of an adsorption section. This section allows the tanks to function without any limitation and their contents do not foul the environment. The vapor and odor control was completed successfully on 6,000,000 gallon capacity tanks

  10. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks content removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-07-01

    The purpose of the Old Hydrofracture Facility (OHF) tanks content removal project is to transfer inventory from the five OHF tanks located in Waste Area Grouping (WAG) 5 at Oak Ridge National Laboratory (ORNL) to the Melton Valley Storage Tanks (MVST) liquid low-level (radioactive) waste (LLLW) storage facility, and remediate the remaining OHF tank shells. The major activities involved are identified in this document along with the organizations that will perform the required actions and their roles and responsibilities for managing the project

  11. Current Practices in the Delivery of Undergraduate Exercise Physiology Content

    Science.gov (United States)

    Fisher, Michele M.

    2013-01-01

    The purpose of this study was to identify current practices for the delivery of exercise physiology content at the undergraduate level. An anonymous 22-item survey was sent to instructors of exercise physiology to collect information concerning the structure of course offerings and instructional practices. One hundred ten instructors responded to…

  12. Tank waste treatment science

    International Nuclear Information System (INIS)

    LaFemina, J.P.; Blanchard, D.L.; Bunker, B.C.; Colton, N.G.; Felmy, A.R.; Franz, J.A.; Liu, J.; Virden, J.W.

    1994-01-01

    Remediation efforts at the U.S. Department of Energy's Hanford Site require that many technical and scientific principles be combined for effectively managing and disposing the variety of wastes currently stored in underground tanks. Based on these principles, pretreatment technologies are being studied and developed to separate waste components and enable the most suitable treatment methods to be selected for final disposal of these wastes. The Tank Waste Treatment Science Task at Pacific Northwest Laboratory is addressing pretreatment technology development by investigating several aspects related to understanding and processing the tank contents. The experimental work includes evaluating the chemical and physical properties of the alkaline wastes, modeling sludge dissolution, and evaluating and designing ion exchange materials. This paper gives some examples of results of this work and shows how these results fit into the overall Hanford waste remediation activities. This work is part of series of projects being conducted for the Tank Waste Remediation System

  13. Risks from Past, Current, and Potential Hanford Single Shell Tank Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, Mark B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watson, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-05-01

    Due to significant delays in constructing and operating the Waste Treatment Plant, which is needed to support retrieval of waste from Hanford’s single shell tanks (SSTs), SSTs may now be required to store tank waste for two to three more decades into the future. Many SSTs were built almost 70 years ago, and all SSTs are well beyond their design lives. Recent examination of monitoring data suggests several of the tanks, which underwent interim stabilization a decade or more ago, may be leaking small amounts (perhaps 150–300 gallons per year) to the subsurface environment. A potential leak from tank T-111 is estimated to have released approximately 2,000 gallons into the subsurface. Observations of past leak events, recently published simulation results, and new simulations all suggest that recent leaks are unlikely to affect underlying groundwater above regulatory limits. However, these recent observations remind us that much larger source terms are still contained in the tanks and are also present in the vadose zone from historical intentional and unintentional releases. Recently there have been significant improvements in methods for detecting and characterizing soil moisture and contaminant releases, understanding and controlling mass-flux, and remediating deep vadose zone and groundwater plumes. To ensure extended safe storage of tank waste in SSTs, the following actions are recommended: 1) Improve capabilities for intrusion and leak detection. 2) Develop defensible conceptual models of intrusion and leak mechanisms. 3) Apply enhanced subsurface characterization methods to improve detection and quantification of moisture changes beneath tanks. 4) Maintain a flux-based assessment of past, present, and potential tank leaks to assess risks and to maintain priorities for applying mitigation actions. 5) Implement and maintain effective mitigation and remediation actions to protect groundwater resources. These actions will enable limited resources to be applied to

  14. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text

    International Nuclear Information System (INIS)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring

  15. ALARA plan for the Old Hydrofracture Facility tanks contents removal project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-04-01

    The purpose of the Old Hydrofracture Facility (OHF) Tanks Contents Removal Project is to remove the liquid low-level waste from the five underground storage tanks located at OHF and transfer the resulting slurry to the Melton Valley Storage Tanks facility for treatment and disposal. Among the technical objectives for the OHF Project, there is a specific provision to maintain personnel exposures as low as reasonably achievable (ALARA) during each activity of the project and to protect human health and the environment. The estimated doses and anticipated conditions for accomplishing this project are such that an ALARA Plan is necessary to facilitate formal radiological review of the campaign. This ALARA Plan describes the operational steps necessary for accomplishing the job together with the associated radiological impacts and planned controls. Individual and collective dose estimates are also provided for the various tasks. Any significant changes to this plan (i.e., planned exposures that are greater than 10% of original dose estimates) will require formal revision and concurrence from all parties listed on the approval page. Deviations from this plan (i.e., work outside the scope covered by this plan) also require the preparation of a task-specific ALARA Review that will be amended to this plan with concurrence from all parties listed on the approval page

  16. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  17. Fluidic Sampler. Tanks Focus Area. OST Reference No. 2007

    International Nuclear Information System (INIS)

    1999-01-01

    Problem Definition; Millions of gallons of radioactive and hazardous wastes are stored in underground tanks across the U.S. Department of Energy (DOE) complex. To manage this waste, tank operators need safe, cost-effective methods for mixing tank material, transferring tank waste between tanks, and collecting samples. Samples must be collected at different depths within storage tanks containing various kinds of waste including salt, sludge, and supernatant. With current or baseline methods, a grab sampler or a core sampler is inserted into the tank, waste is maneuvered into the sample chamber, and the sample is withdrawn from the tank. The mixing pumps in the tank, which are required to keep the contents homogeneous, must be shut down before and during sampling to prevent airborne releases. These methods are expensive, require substantial hands-on labor, increase the risk of worker exposure to radiation, and often produce nonrepresentative and unreproducible samples. How It Works: The Fluidic Sampler manufactured by AEA Technology Engineering Services, Inc., enables tank sampling to be done remotely with the mixing pumps in operation. Remote operation minimizes the risk of exposure to personnel and the possibility of spills, reducing associated costs. Sampling while the tank contents are being agitated yields consistently homogeneous, representative samples and facilitates more efficient feed preparation and evaluation of the tank contents. The above-tank portion of the Fluidic Sampler and the replacement plug and pipework that insert through the tank top are shown.

  18. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-02-01

    This revision (Rev. 1) updates the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. Ongoing and planned future activities include: cold testing of the sluicing and pumping system; readiness assessment; equipment relocation and assembly; isotopic dilution of fissile radionuclides; sluicing and transfer of the tanks contents; and preparation of the Removal Action Completion Report. The most significant change is that the sluicing and pumping system has been configured by and will be operated by CDM Federal Programs Corporation. In addition, a new technical lead and a new project analyst have been designated within Lockheed Martin Energy Systems, Inc. and Lockheed Martin Energy Research Corp. The schedule for tanks contents removal has been accelerated, with transfer of the final batch of tank slurry now scheduled for March 31, 1998 (instead of November 10, 1998). The OHF sluicing and pumping project is proceeding as a non-time-critical removal action under the Comprehensive Environmental Response, Compensation, and Liability Act. The purpose of the project is to remove the contents from five inactive underground storage tanks, designated T-1, T-2, T-3, T-4, and T-9. The tanks contain an estimated 52,700 gal of liquid and sludge, together comprising a radioactive inventory of approximately 30,000 Ci

  19. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  20. Preliminary tank characterization report for single-shell tank 241-TY-102: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TY-102. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  1. Preliminary tank characterization report for single-shell tank 241-TX-113: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-113. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  2. THE INVESTIGATION OF DENSITY CURRENTS AND RATE OF OUTFLOW FROM A SEPTIC TANK

    Directory of Open Access Journals (Sweden)

    Maciej Pawlak

    2015-09-01

    Full Text Available The aim of the study was to verify the possibility of the existence of preferential flow paths in a septic tank and the effect of using various types of inlet and outlet in this context. Two of the most unfavourable variants of favoured flow paths for different types of inlet and outlet were analysed. The first variant was related to the occurrence of the privileged flow path below the water surface level directly to the outlet and the second variant – to the so-called boiling phenomenon in a septic tank. During the study, the intensity of outflow from the septic tank was measured. The time between successive doses also was measured. These studies were carried out using several inlet and outlet structures combinations. It was observed that by introducing a suitable outlet it is possible to limit and in the case of the particular type of filtering basket – to eliminate the unwanted phenomenon of preferential flow paths after hot water introduction. The phenomenon of boiling in the septic tank may occur due to the introduction of wastewater of higher density containing a higher concentration of the suspension. The effect of cooler water introduction on this phenomenon was not observed. The limitation of the maximum intensity of outflow from the septic tank can be achieved by filtering basket using at the outlet, which increases the flow resistance thanks to the low porosity.

  3. Evaluation of current operating standards for chlorine dioxide in disinfection of dump tank and flume for fresh tomatoes.

    Science.gov (United States)

    Tomás-Callejas, Alejandro; López-Velasco, Gabriela; Valadez, Angela M; Sbodio, Adrian; Artés-Hernández, Francisco; Danyluk, Michelle D; Suslow, Trevor V

    2012-02-01

    Standard postharvest unit operations that rely on copious water contact, such as fruit unloading and washing, approach the criteria for a true critical control point in fresh tomato production. Performance data for approved sanitizers that reflect commercial systems are needed to set standards for audit compliance. This study was conducted to evaluate the efficacy of chlorine dioxide (ClO(2)) for water disinfection as an objective assessment of recent industry-adopted standards for dump tank and flume management in fresh tomato packing operations. On-site assessments were conducted during eight temporally distinct shifts in two Florida packinghouses and one California packinghouse. Microbiological analyses of incoming and washed fruit and dump and flume system water were evaluated. Water temperature, pH, turbidity, conductivity, and oxidation-reduction potential (ORP) were monitored. Reduction in populations of mesophilic and coliform bacteria on fruit was not significant, and populations were significantly higher (P Turbidity and conductivity increased with loads of incoming tomatoes. Water temperature varied during daily operations, but pH and ORP mostly remained constant. The industry standard positive temperature differential of 5.5°C between water and fruit pulp was not maintained in tanks during the full daily operation. ORP values were significantly higher in the flume than in the dump tank. A positive correlation was found between ORP and temperature, and negative correlations were found between ORP and turbidity, total mesophilic bacteria, and coliforms. This study provides in-plant data indicating that ClO(2) can be an effective sanitizer in flume and spray-wash systems, but current operational limitations restrict its performance in dump tanks. Under current conditions, ClO(2) alone is unlikely to allow the fresh tomato industry to meet its microbiological quality goals under typical commercial conditions.

  4. Characterization and decant of Tank 42H sludge sample ESP-200

    International Nuclear Information System (INIS)

    Hay, M.S.

    2000-01-01

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H

  5. Characterization and decant of Tank 42H sludge sample ESP-200

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.S.

    2000-04-25

    DWPF Engineering requested that the Savannah River Technology Center (SRTC) provide a demonstration of the DWPF flowsheet on sludge from Tank 42H in the Shielded Cell facility. A 5 liter sample of the Tank 42H sludge (ESP-200), obtained with the tank contents fully mixed, arrived at SRTC on January 20, 1998. This report details receipt of the 5 liter sample at SRTC, the decant of the sample, and the characterization of the pre- and post-decant Tank 42H sludge. Evaluation of the measured composition of the supernate indicates Sample ESP-200 became diluted approximately 20 percent by volume prior to receipt. This dilution complicates the relationship of the characterization of Post-Decant ESP-200 to the current contents of Tank 42H. For the purposes of modeling the current tank contents of Tank 42H, this report provides an estimated composition based on analytical data of recent samples from Tank 42H.

  6. Contents and readability of currently used surgical/ procedure ...

    African Journals Online (AJOL)

    Conclusion: The content of majority of the informed consent forms used in Nigerian tertiary health institutions are poor and their readability scores are not better than those used in developed parts of the world. Health Institutions in Nigeria should revise their informed consent forms to improve their contents and do a usability ...

  7. Project management plan for Waste Area Grouping 5 Old Hydrofracture Facility tanks contents removal at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-06-01

    On January 1, 1992, the US Department of Energy (DOE), the US Environmental Protection Agency (EPA) Region IV, and the Tennessee Department of Environment and Conservation (TDEC) signed a Federal Facility Agreement (FFA) concerning the Oak Ridge Reservation. The FFA requires that inactive liquid low-level (radioactive) waste (LLLW) tanks at Oak Ridge National Laboratory (ORNL) be remediated in accordance with requirements of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This revision is to update the schedule and designation of responsibilities for the Old Hydrofracture Facility (OHF) tanks contents removal project. The scope of this project is to transfer inventory from the five inactive LLLW tanks at the OHF into the active LLLW system

  8. Tank 4 Characterization, Settling, And Washing Studies

    International Nuclear Information System (INIS)

    Bannochie, C.; Pareizs, J.; Click, D.; Zamecnik, J.

    2009-01-01

    A sample of PUREX sludge from Tank 4 was characterized, and subsequently combined with a Tank 51 sample (Tank 51-E1) received following Al dissolution, but prior to a supernate decant by the Tank Farm, to perform a settling and washing study to support Sludge Batch 6 preparation. The sludge source for the majority of the Tank 51-E1 sample is Tank 12 HM sludge. The Tank 51-E1 sample was decanted by SRNL prior to use in the settling and washing study. The Tank 4 sample was analyzed for chemical composition including noble metals. The characterization of the Tank 51-E1 sample, used here in combination with the Tank 4 sample, was reported previously. SRNL analyses on Tank 4 were requested by Liquid Waste Engineering (LWE) via Technical Task Request (TTR) HLE-TTR-2009-103. The sample preparation work is governed by Task Technical and Quality Assurance Plan (TTQAP), and analyses were controlled by an Analytical Study Plan and modifications received via customer communications. Additional scope included a request for a settling study of decanted Tank 51-E1 and a blend of decanted Tank 51-E1 and Tank 4, as well as a washing study to look into the fate of undissolved sulfur observed during the Tank 4 characterization. The chemistry of the Tank 4 sample was modeled with OLI Systems, Inc. StreamAnalyzer to determine the likelihood that sulfate could exist in this sample as insoluble Burkeite (2Na 2 SO 4 · Na 2 CO 3 ). The OLI model was also used to predict the composition of the blended tank materials for the washing study. The following conclusions were drawn from the Tank 4 analytical results reported here: (1) Any projected blend of Tank 4 and the current Tank 51 contents will produce a SB6 composition that is lower in Ca and U than the current SB5 composition being processed by DWPF. (2) Unwashed Tank 4 has a relatively large initial S concentration of 3.68 wt% on a total solids basis, and approximately 10% of the total S is present as an insoluble or undissolved form

  9. Ferrocyanide Safety Program: Safety criteria for ferrocyanide watch list tanks

    International Nuclear Information System (INIS)

    Postma, A.K.; Meacham, J.E.; Barney, G.S.

    1994-01-01

    This report provides a technical basis for closing the ferrocyanide Unreviewed Safety Question (USQ) at the Hanford Site. Three work efforts were performed in developing this technical basis. The efforts described herein are: 1. The formulation of criteria for ranking the relative safety of waste in each ferrocyanide tank. 2. The current classification of tanks into safety categories by comparing available information on tank contents with the safety criteria; 3. The identification of additional information required to resolve the ferrocyanide safety issue

  10. Tank 241-Z-361 process and characterization history

    International Nuclear Information System (INIS)

    Jones, S.A.

    1997-01-01

    This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people's recollections of 20 plus years ago. Records of transfers into the tank, past characterization efforts, and speculation will be used to estimate the current condition of Tank 241-Z-361 and its contents

  11. ALARA plan for the Old Hydrofracture Facility tanks contents removal project at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Amendment 1 for Appendix B: Install flex-pipe on tank riser spools

    International Nuclear Information System (INIS)

    1998-01-01

    This amendment to Appendix B contains the specific ALARA evaluations for installing flex-pipe on riser spools to accommodate ventilation duct connections to the north risers of each tank. The work will be a routine task that is part of the Equipment Installation and Mobilization phase of the project. The dose rates were estimated using the recent Radiological Surveillance Section radiological survey: SAAS-97-063S. Task B-6 has been added to the OHF Project ALARA review process to address a field decision to modify an approach to installing the tank ventilation system. The revised approach will incorporate 12-in. diameter, 36-in. long, stainless steel flex-pipe connected to each north riser spool to address the problem of pipe fitting multiple bends and turns expected with the 12-in. PVC duct. This improved approach will reduce the time necessary to install the duct system between the tanks and the ventilation skid. However, the task includes opening the 12-in. riser spool connections to replace the currently installed blind gaskets. Since a riser spool for each tank will be opened, there is a potential for significant personnel exposure and spread of contamination that will addressed through this ALARA review process

  12. Characterization of the first core sample of neutralized current acid waste from double-shell tank 101-AZ

    International Nuclear Information System (INIS)

    Peterson, M.E.; Scheele, R.D.; Tingey, J.M.

    1989-09-01

    In FY 1989, Westinghouse Hanford Company (WHC) successfully obtained four core samples (totaling seven segments) of neutralized current acid waste (NCAW) from double-shell tanks (DSTs) 101-AZ and 102-AZ. A segment was a 19-in.-long and 1-in.-diameter cylindrical sample of waste. A core sample consisted of enough 19-in.-long segments to obtain the waste of interest. Three core samples were obtained from DST 101-AZ and one core sample from DST 102-AZ. Two DST 101-AZ core samples consisted of two segments per core, and the third core sample consisted of only one segment. The third core consisted of the solids from the bottom of the tank and was used to determine the relative abrasiveness of this NCAW. The DST 102-AZ core sample consisted of two segments. The core samples were transported to the Pacific Northwest Laboratory (PNL), where the waste was extruded from its sampler and extensively characterized. A characterization plan was followed that simulated the processing of the NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical and radiochemical properties were measured throughout the process steps. The characterization of the first core sample from DST 101-AZ was completed, and the results are provided in this report. The results for the other core characterizations will be reported in future reports. 3 refs., 13 figs., 10 tabs

  13. Cartography and Geographic Information Science in Current Contents

    Directory of Open Access Journals (Sweden)

    Nedjeljko Frančula

    2009-12-01

    Full Text Available The Cartography and Geographic Information Science (CaGIS journal was published as The American Cartographer from 1974 to 1989, after that as Cartography and Geographic Information System, and since then has been published with its current name. It is published by the Cartography and Geographic Information Society, a member of the American Congress on Surveying and Mapping.

  14. Vandose Zone Characterization Project at the Hanford Tank Farms: SX Tank Farm Report

    International Nuclear Information System (INIS)

    Brodeur, J.R.; Koizumi, C.J.; Bertsch, J.F.

    1996-09-01

    The SX Tank Farm is located in the southwest portion of the 200 West Area of the Hanford Site. This tank farm consists of 15 single-shell tanks (SSTs), each with an individual capacity of 1 million gallons (gal). These tanks currently store high-level nuclear waste that was primarily generated from what was called the oxidation-reduction or open-quotes REDOXclose quotes process at the S-Plant facility. Ten of the 15 tanks are listed in Hanlon as open-quotes assumed leakersclose quotes and are known to have leaked various amounts of high-level radioactive liquid to the vadose zone sediment. The current liquid content of each tank varies, but the liquid from known leaking tanks has been removed to the extent possible. In 1994, the U.S. Department of Energy Richland Office (DOE-RL) requested the DOE Grand Junction Projects Office (GJPO), Grand Junction, Colorado, to perform a baseline characterization of contamination in the vadose zone at all the SST farms with spectral gamma-ray logging of boreholes surrounding the tanks. The SX Tank Farm geophysical logging was completed, and the results of this baseline characterization are presented in this report

  15. Biologic Treatments for Sports Injuries II Think Tank-Current Concepts, Future Research, and Barriers to Advancement, Part 1: Biologics Overview, Ligament Injury, Tendinopathy.

    Science.gov (United States)

    LaPrade, Robert F; Geeslin, Andrew G; Murray, Iain R; Musahl, Volker; Zlotnicki, Jason P; Petrigliano, Frank; Mann, Barton J

    2016-12-01

    Biologic therapies, including stem cells, platelet-rich plasma, growth factors, and other biologically active adjuncts, have recently received increased attention in the basic science and clinical literature. At the 2015 AOSSM Biologics II Think Tank held in Colorado Springs, Colorado, a group of orthopaedic surgeons, basic scientists, veterinarians, and other investigators gathered to review the state of the science for biologics and barriers to implementation of biologics for the treatment of sports medicine injuries. This series of current concepts reviews reports the summary of the scientific presentations, roundtable discussions, and recommendations from this think tank. © 2016 The Author(s).

  16. Tank 241-Z-361 process and characterization history

    International Nuclear Information System (INIS)

    Jones, S.A.

    1998-01-01

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people's recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  17. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  18. Assessment Guide for Educators: A Content Comparison--2002 Series Test and the Current GED® Test

    Science.gov (United States)

    GED Testing Service, 2017

    2017-01-01

    This report provides a content comparison for the 2002 Series GED® test and the current GED® for the following test topic areas: (1) Mathematical Reasoning; (2) Reasoning through Language Arts; (3) Science; and (4) Social Studies.

  19. Tank 241-B-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985

  20. Energy content of stormtime ring current from phase space mapping simulations

    International Nuclear Information System (INIS)

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-01-01

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm

  1. Sludge Batch 7B Qualification Activities With SRS Tank Farm Sludge

    International Nuclear Information System (INIS)

    Pareizs, J.; Click, D.; Lambert, D.; Reboul, S.

    2011-01-01

    Waste Solidification Engineering (WSE) has requested that characterization and a radioactive demonstration of the next batch of sludge slurry - Sludge Batch 7b (SB7b) - be completed in the Shielded Cells Facility of the Savannah River National Laboratory (SRNL) via a Technical Task Request (TTR). This characterization and demonstration, or sludge batch qualification process, is required prior to transfer of the sludge from Tank 51 to the Defense Waste Processing Facility (DWPF) feed tank (Tank 40). The current WSE practice is to prepare sludge batches in Tank 51 by transferring sludge from other tanks. Discharges of nuclear materials from H Canyon are often added to Tank 51 during sludge batch preparation. The sludge is washed and transferred to Tank 40, the current DWPF feed tank. Prior to transfer of Tank 51 to Tank 40, SRNL typically simulates the Tank Farm and DWPF processes with a Tank 51 sample (referred to as the qualification sample). With the tight schedule constraints for SB7b and the potential need for caustic addition to allow for an acceptable glass processing window, the qualification for SB7b was approached differently than past batches. For SB7b, SRNL prepared a Tank 51 and a Tank 40 sample for qualification. SRNL did not receive the qualification sample from Tank 51 nor did it simulate all of the Tank Farm washing and decanting operations. Instead, SRNL prepared a Tank 51 SB7b sample from samples of Tank 7 and Tank 51, along with a wash solution to adjust the supernatant composition to the final SB7b Tank 51 Tank Farm projections. SRNL then prepared a sample to represent SB7b in Tank 40 by combining portions of the SRNL-prepared Tank 51 SB7b sample and a Tank 40 Sludge Batch 7a (SB7a) sample. The blended sample was 71% Tank 40 (SB7a) and 29% Tank 7/Tank 51 on an insoluble solids basis. This sample is referred to as the SB7b Qualification Sample. The blend represented the highest projected Tank 40 heel (as of May 25, 2011), and thus, the highest

  2. Tank characterization reference guide

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J.; Simpson, B.C.

    1994-09-01

    Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research

  3. Engineering task plan for tank farm ventilation strategy document preparation and maintenance

    International Nuclear Information System (INIS)

    VanderZanden, M.D.

    1994-01-01

    Active and passive systems provide ventilation for single shell tanks (SST), double shell tanks (DST), and doubly contained receiver tanks (DCRT). The systems perform or contribute to one or more of the following functions: maintain structural integrity (prevent overpressurization), confinement, cooling, vapor and gas removal, and leak detection. For certain tanks, ventilation also removes particles, in addition to vapors, to permit visual observation of the tank inner walls and waste surface. The function(s) performed are dependent on tank construction, watchlist classification, and tank contents. The function(s) should be maintained to support the TWRS mission. The tank farm mission is expected to extend to 2028, based on Tri-Party Agreement (TPA) milestone, M-50-00, for completion of waste pretreatment. Many systems are currently beyond service life expectations and continued operation will result in decreased reliability and increased maintenance. Therefore, the systems must be replaced or upgraded to ensure adequate reliability. Ventilation system upgrades are included in a capital Project W-314, Tank Farm Restoration and Safe Operations. The ventilation upgrades are expected to be completed by June 2002. The new ventilation systems will satisfy the required function(s) of the tanks and/or tank farms. However, interim component upgrades may be required to guarantee reliability of systems until the capital project is completed. Some upgrades originally identified in the project might more suitably be provided with non-project resources

  4. Tank 241-C-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ''A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.'' This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste

  5. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  6. Tank farm nuclear criticality review

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1996-01-01

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site

  7. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido

    2014-07-04

    The results of an investigation on the Er doping of porous silicon are presented. Electrochemical impedance spectroscopy, optical reflectivity, and spatially resolved energy dispersive spectroscopy (EDS) coupled to scanning electron microscopy measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes. The measurements show that, for equal transferred charge and identical porous silicon (PSi) layers, the applied current intensity also influences the final Er content. An interpretative model is proposed in order to describe the two distinct chemical processes. The results can be useful for a better control over the doping process.

  8. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  9. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  10. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    Energy Technology Data Exchange (ETDEWEB)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  11. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  12. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    International Nuclear Information System (INIS)

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions

  13. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  14. Content

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    secondary levels. In subject matter didactics, the question of content is more developed, but it is still mostly confined to teaching on lower levels. As for higher education didactics, discussions on selection of content are almost non-existent on the programmatic level. Nevertheless, teachers are forced...... curriculum, in higher education, and to generate analytical categories and criteria for selection of content, which can be used for systematic didactical reflection. The larger project also concerns reflection on and clarification of the concept of content, including the relation between content at the level......Aim, content and methods are fundamental categories of both theoretical and practical general didactics. A quick glance in recent pedagogical literature on higher education, however, reveals a strong preoccupation with methods, i.e. how teaching should be organized socially (Biggs & Tang, 2007...

  15. Identification of single-shell tank in-tank hardware obstructions to retrieval at Hanford Site Tank Farms

    International Nuclear Information System (INIS)

    Ballou, R.A.

    1994-10-01

    Two retrieval technologies, one of which uses robot-deployed end effectors, will be demonstrated on the first single-shell tank (SST) waste to be retrieved at the Hanford Site. A significant impediment to the success of this technology in completing the Hanford retrieval mission is the presence of unique tank contents called in-tank hardware (ITH). In-tank hardware includes installed and discarded equipment and various other materials introduced into the tank. This paper identifies those items of ITH that will most influence retrieval operations in the arm-based demonstration project and in follow-on tank operations within the SST farms

  16. Decay tank

    International Nuclear Information System (INIS)

    Matsumura, Seiichi; Tagishi, Akinori; Sakata, Yuji; Kontani, Koji; Sudo, Yukio; Kaminaga, Masanori; Kameyama, Iwao; Ando, Koei; Ishiki, Masahiko.

    1990-01-01

    The present invention concerns an decay tank for decaying a radioactivity concentration of a fluid containing radioactive material. The inside of an decay tank body is partitioned by partitioning plates to form a flow channel. A porous plate is attached at the portion above the end of the partitioning plate, that is, a portion where the flow is just turned. A part of the porous plate has a slit-like opening on the side close to the partitioning plate, that is, the inner side of the flow at the turning portion thereof. Accordingly, the primary coolants passed through the pool type nuclear reactor and flown into the decay tank are flow caused to uniformly over the entire part of the tank without causing swirling. Since a distribution in a staying time is thus decreased, the effect of decaying 16 N as radioactive nuclides in the primary coolants is increased even in a limited volume of the tank. (I.N.)

  17. Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eller, Virginia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Earles, Jennifer E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowe, Kenneth Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehlhorn, Tonia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phillips, Debra H. [Queen' s Univ., Belfast (United Kingdom); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hg and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.

  18. Run-up on a structure due to second-order waves and current in a numerical wave tank

    DEFF Research Database (Denmark)

    Buchmann, Bjarne; Skourup, Jesper; Cheung, Kwok Fai

    1998-01-01

    order in current speed. The boundary-value problem is separated into a known incident wave field and an unknown scattered wave field, the latter being absorbed at the radiation boundaries using active wave absorption. The present paper focuses on the wave run-up on a structure in waves and current...

  19. Laboratory testing in-tank sludge washing, summary letter report

    International Nuclear Information System (INIS)

    Norton, M.V.; Torres-Ayala, F.

    1994-09-01

    In-tank washing is being considered as a means of pretreating high-level radioactive waste sludges, such as neutralized current acid waste (NCAW) sludge. For this process, the contents of the tank will be allowed to settle, and the supernatant solution will be decanted and removed. A dilute sodium hydroxide/sodium nitrite wash solution will be added to the settled sludge and the tank contents will be mixed with a mixer pump system to facilitate washing of the sludge. After thorough mixing, the mixer pumps will be shut off and the solids will be allowed to re-settle. After settling, the supernatant solution will be withdrawn from the tank, and the wash cycle will be repeated several times with fresh wash solution. Core sample data of double shell tank 241-AZ-101 indicate that settling of NCAW solids may be very slow. A complicating factor is that strong thermal currents are expected to be generated from heat produced by radionuclides in the sludge layer at the bottom of the tank. Additionally, there are concerns that during the settling period (i.e., while mixing pumps and air-lift re-circulators are shut off), the radionuclides may heat the residual interstitial water in the sludge to the extent that violent steam discharges (steam bumping) could occur. Finally, there are concerns that during the washing steps sludge settling may be hindered as a result of the reduced ionic strength of the wash solution. To overcome the postulated reduced settling rates during the second and third washing steps, the use of flocculants is being considered. To address the above concerns and uncertainties associated with in-tank washing, PNL has conducted laboratory testing with simulant tank waste to investigate settling rates, steam bump potential, and the need for and use of flocculating agents

  20. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  1. The Retrieval Knowledge Center Evaluation Of Low Tank Level Mixing Technologies For DOE High Level Waste Tank Retrieval 10516

    International Nuclear Information System (INIS)

    Fellinger, A.

    2009-01-01

    The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation and Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation and Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same

  2. Tank characterization data report: Tank 241-C-112

    International Nuclear Information System (INIS)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable

  3. Tank characterization data report: Tank 241-C-112

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-09-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

  4. Linking submarine channel–levee facies and architecture to flow structure of turbidity currents: : insights from flume tank experiments

    NARCIS (Netherlands)

    de Leeuw, J.|info:eu-repo/dai/nl/380590913; Eggenhuisen, J.T.|info:eu-repo/dai/nl/322850274; Cartigny, M.J.B.|info:eu-repo/dai/nl/304823716

    Submarine leveed channels are sculpted by turbidity currents that are commonly highly stratified. Both the concentration and the grain size decrease upward in the flow, and this is a fundamental factor that affects the location and grain size of deposits around a channel. This study presents

  5. Design of an Experimental PCM Solar Tank

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Istvan Peter

    2010-09-15

    The one of the most important part of a solar collector system is the solar tank. The relevant type and capacity of the solar tank is a requirement of the good operation of the system. According the current architectural tendencies the boiler rooms are smaller, so the putting of the currently available solar tanks is very difficult. It is necessary to store the energy in a little space. The solution of the problem is the solar tank particularly filled with phase change material.

  6. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  7. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Ha, B.C.

    1993-01-01

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  8. Ferrocyanide tank waste stability

    International Nuclear Information System (INIS)

    Fowler, K.D.

    1993-01-01

    Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove 137 CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes

  9. Development of a towing tank PIV system and a wake survey of a marine current turbine under steady conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2015-11-01

    A submersible particle image velocimetry (PIV) system was designed and built at the U.S. Naval Academy. The system was used to study the wake of a scale-independent horizontal axis marine current turbine. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross-section. The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed by registering the resultant vector fields together into a single field of investigation. Results include the field of investigation from a representative case, for the mean velocity field averaged over approximately 1,000 realizations, and turbulent statistics including turbulence intensities, Reynolds shear stresses, and turbulent kinetic energy. This research was funded by the Office of Naval Research.

  10. Sampling and analysis of the inactive waste tanks TH-2, WC-1, and WC-15

    International Nuclear Information System (INIS)

    Autrey, J.W.; Keller, J.M.; Griest, W.H.; Botts, J.L.; Schenley, R.L.; Sipe, M.A.

    1992-02-01

    Thirty-eight inactive liquid low-level radioactive waste tanks are currently managed by the Environmental Restoration Program of Oak Ridge National Laboratory. The contents of these tanks are to be characterized in preparation for future corrective actions and remediation activities as part of compliance with the pending Federal Facility Agreement for the Oak Ridge Reservation. Twenty-nine of these tanks were sampled and analyzed in 1989. Three of the tanks (TH-2, WC-1, and WC-15) were not accessible from the surface and thus were not sampled until 1990. This report presents the sampling and analytical results of that campaign. All three tanks in this report had negligible regulatory organic compounds in the samples that were collected. There were no US Environmental Protection Agency (EPA) Target Compound List (TCL) constituents for volatile organics detected in any of the aqueous samples. The only semivolatile organics detected were 2-chlorophenol (52 μg/L) in tank TH-2 and dichloroethane (14--15 μg/L) and diethyl either (15--17 μg/L) in tank WC-15. A thin oil layer was discovered floating on top of the aqueous contents in tank WC-15. The analysis of the oil layer detected no volatile organics and showed only one EPA TCL constituent, di-n-butylphthalate, at 1900 μg/L. Low levels of Resource Conservation and Recovery Act (RCRA) metals were observed in the samples from tank TH-2, but only the mercury level exceeded the RCRA limit. Samples from tank WC-1 had elevated levels of the RCRA metals barium, chromium, and lead. There were also finely suspended particles in one of the samples from tank WC-1, which was filtered and analyzed separately. This solid fines have levels of transuranium elements 238 Pu and 241 Am high enough to classified as transuranic waste

  11. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  12. Underground Storage Tanks - Storage Tank Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  13. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  14. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  15. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  16. Process control plan for Single Shell Tank (SST) Saltcake Dissolution Proof of Concept

    International Nuclear Information System (INIS)

    ESTEY, S.D.

    2001-01-01

    This document describes the process controls for the tank 241-U-107 (U-107) saltcake dissolution proof-of-concept operations. Saltcake dissolution is defined as a method by which water-soluble salts will be retrieved from the Hanford Site radioactive waste tanks utilizing dissolution as the mobilizing mechanism. The proof-of-concept operations will monitor the retrieval process and transfer at least 100 kgal of fluid from tank U-107 to the double-shell tank (DST) system during the performance period. Tank U-107 has been identified as posing the highest long-term risk to the Columbia River of all single shell tanks (SSTs). This is because of the high content of mobile, long-lived radionuclides mostly in the saltcake waste in the tank. To meet current contractual and consent decree commitments, tank U-107 is being prepared for interim stabilization in August 2001. It is currently scheduled for saltcake retrieval in 2023, near the end of the SST retrieval campaign because of a lack of infrastructure in U-Farm. The proof-of-concept test will install a system to dissolve and retrieve a portion of the saltcake as part of, and operating in parallel with, the standard interim stabilization system to be installed on tank U-107. This proof-of-concept should provide key information on spray nozzle selection and effective spray patterns, leak detection, monitoring, and mitigation (LDMM) and in-tank saltcake solubility data that will help in the design of a full-tank retrieval demonstration system

  17. Contents

    Directory of Open Access Journals (Sweden)

    Editor IJRED

    2012-11-01

    Full Text Available International Journal of Renewable Energy Development www.ijred.com Volume 1             Number 3            October 2012                ISSN 2252- 4940   CONTENTS OF ARTICLES page Design and Economic Analysis of a Photovoltaic System: A Case Study 65-73 C.O.C. Oko , E.O. Diemuodeke, N.F. Omunakwe, and E. Nnamdi     Development of Formaldehyde Adsorption using Modified Activated Carbon – A Review 75-80 W.D.P Rengga , M. Sudibandriyo and M. Nasikin     Process Optimization for Ethyl Ester Production in Fixed Bed Reactor Using Calcium Oxide Impregnated Palm Shell Activated Carbon (CaO/PSAC 81-86 A. Buasri , B. Ksapabutr, M. Panapoy and N. Chaiyut     Wind Resource Assessment in Abadan Airport in Iran 87-97 Mojtaba Nedaei       The Energy Processing by Power Electronics and its Impact on Power Quality 99-105 J. E. Rocha and B. W. D. C. Sanchez       First Aspect of Conventional Power System Assessment for High Wind Power Plants Penetration 107-113 A. Merzic , M. Music, and M. Rascic   Experimental Study on the Production of Karanja Oil Methyl Ester and Its Effect on Diesel Engine 115-122 N. Shrivastava,  , S.N. Varma and M. Pandey  

  18. Protein, casein and micellar salts in milk: Current content and historical perspectives

    NARCIS (Netherlands)

    Bijl, E.; Valenberg, van H.J.F.; Huppertz, T.; Hooijdonk, van A.C.M.

    2013-01-01

    The protein and fat content of Dutch bulk milk has been monitored since the 1950s and has increased considerably, by 11 and 20%, respectively, whereas milk yield has more than doubled. The change in protein and fat content of milk is advantageous for the dairy industry, as these are the 2 most

  19. The Context of Current Content Analysis of Gender Roles: An Introduction to a Special Issue

    Science.gov (United States)

    Popova, Lucy; Linz, Daniel G.

    2010-01-01

    The aim of this paper is to provide context for the quantitative content analyses of gender roles that are to be included in both parts of this special issue. First, a timeline of historical uses of the content analysis methodology is presented. Second, research objectives that frequently drive content analysis of gender roles are described; these include: to support feminist claims, to compare media with real life, to predict effects on audiences, and to detect effects of media producers on content. Third, previous content analyses published in Sex Roles and other gender-focused journals are reviewed and categorized in terms of medium, genre, time span, gender, and nationality. Finally, contributions of each of the articles in this special issue are outlined. PMID:20694031

  20. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  1. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  2. Computer modeling of ORNL storage tank sludge mobilization and mixing

    International Nuclear Information System (INIS)

    Terrones, G.; Eyler, L.L.

    1993-09-01

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  3. Online media coverage of air pollution risks and current policies in India: A content analysis.

    Science.gov (United States)

    Murukutla, Nandita; Negi, Nalin S; Puri, Pallavi; Mullin, Sandra; Onyon, Lesley

    2017-09-01

    Background Air pollution is of particular concern in India, which contains 11 of the 20 most polluted cities in the world. Media coverage of air pollution issues plays an important role in influencing public opinion and increasing citizen demand for action on clean air policy. Hence, this study was designed to assess news coverage of air pollution in India and its implications for policy advancement. Methods Articles published online between 1 January 2014 and 31 October 2015 that discussed air pollution in India were systematically content analysed. From 6435 articles in the national media and 271 articles in the international media, a random selection of 500 articles (400 from national and 100 from international media) were analysed and coded by two independent coders, after high inter-rater reliability (kappa statistic above 0.8) was established. Results There was an increase in the number of news stories on air pollution in India in the national media over the study period; 317 (63%) stories described the risk to health from air pollution as moderately to extremely severe, and 393 (79%) stories described the situation as needing urgent action. Limited information was provided on the kinds of illnesses that can result from exposure. Less than 30% of stories in either media specifically mentioned the common illnesses resulting from air pollution. Very few articles in either media mentioned the population groups most at risk from air pollution, such as children or older people. Vehicles were presented most often as the cause of air pollution in India (in over 50% of articles in both national and international media). Some of the most important sources of air pollution were mentioned less often: 6% of national and 18% of international media articles mentioned unclean sources of household energy; 3% of national and 9% of international media articles mentioned agricultural field burning. Finally, the majority of articles (405; 81%) did not mention any specific

  4. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  5. Effect of temperature increments in septic tank efficiency

    International Nuclear Information System (INIS)

    Chi-Tec, M.; Caballero-Arzapalo, N.; Giacoman Vallejo, G.; Mendez-Novelo, R.; Quintal-Franco, C.

    2009-01-01

    Septic tanks are the main sewage disposal system used in Yucatan, Mexico. Septic tank content is stabilized under anaerobic conditions and is considered the temperature has a significant effect on the efficiency. This work was developed in order asses the feasibility to improve communal septic tanks efficiency by increasing content temperature. Temperatures inside the tank were increased using a hybrid heater system (solar and electricity). (Author)

  6. Controlling the Er content of porous silicon using the doping current intensity

    KAUST Repository

    Mula, Guido; Loddo, Lucy; Pinna, Elisa; Tiddia, Maria V; Mascia, Michele; Palmas, Simonetta; Ruffilli, Roberta; Falqui, Andrea

    2014-01-01

    measurements were used to investigate on the transient during the first stages of constant current Er doping. Depending on the applied current intensity, the voltage transient displays two very different behaviors, signature of two different chemical processes

  7. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented

  8. Feed tank transfer requirements

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  9. Tank characterization report for single-shell tanks 241-T-201, 241-T-202, 241-T-203, and 241-T-204

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, in addition to other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for the single-shell tank series consisting of 241-T-201, -T-202, -T-203, and -T-204. The objectives of this report are: (1) to use characterization data in response to technical issues associated with T-200 series tank waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. Appendix A contains historical information for 241-T-201 to T-204, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge-based computer program. Appendix B summarizes sampling events, sample data obtained before 1989, and the most current sampling results. Appendix C reports the statistical analysis and numerical manipulation of data used in issue resolution. Appendix D contains the evaluation to establish the best-basis for the inventory estimate and the statistical analysis performed for this evaluation. Appendix E is a bibliography that resulted from an in-depth literature search of all known information sources applicable to tanks 241-T-201, -T-202, -T-203, and -T-204. The reports listed in Appendix E are available in the Tank Characterization and Safety Resource Center

  10. Content knowledge development in a chemistry teacher preparation program: A current potentials and challenges

    Science.gov (United States)

    Widhiyanti, Tuszie; Treagust, David F.; Mocerino, Mauro; Vishnumolakala, Venkat

    2017-08-01

    One of the essential facets in teacher education program is the development of the teachers' content knowledge and it has been suggested by many scholars that the study to analyse the process of content knowledge development in teacher education program is necessary. Regarding this, the aim of this research is to evaluate the existing program of developing pre-service chemistry teachers' content knowledge, especially in the topic about the particulate nature of matter. The curriculum of content knowledge development was analysed using the forms of the curriculum evaluation (Akker, 1998; Goodlad, Klein, and Tye (1979); Treagust, 1987). Within this framework, the curriculum was evaluated in several aspects including the vision and intention of the curriculum as mentioned in the curriculum documents (intended curriculum), the users' interpretation and perception about the curriculum (perceived curriculum), the actual process of curriculum implementation (implemented curriculum), and the outcomes of the curriculum (achieved curriculum). According to the framework used for this study, the research combined qualitative and quantitative methods of data collection and the interpretation including document analysis, classroom observation, interviews, and two-tier diagnostic test. Through this research we examined the coherence among those aspects. The results reveal that although the content knowledge development is explicitly intended in a curriculum, its implementation and lecturers' perceptions give influence in the results as appear in pre-service teachers' achievements. In general, this research provides basic information about the effectiveness of the program including the challenges and the potentials for a reconsideration of the program in the future.

  11. Tanks focus area. Annual report 1997

    International Nuclear Information System (INIS)

    Frey, J.

    1997-01-01

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM's technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE's four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program

  12. Speciation of organic carbon in Hanford waste storage tanks: Part 1

    International Nuclear Information System (INIS)

    Carlson, C.D.

    1997-02-01

    This report is the first in a series to report on speciation of organic carbon in Hanford waste storage tanks. The comparison of the existing total organic carbon with oxalate and limited analyses of other organic species (acetate, formate, and normal paraffin hydrocarbons [NPH]) are reported. All of the data have been previously reported by the Grout and Characterization programs; the information includes all of the publicly available data through October 1996. Oxalate data were reported for 33 tanks, TOC data were reported for 82 tanks, and both oxalate and TOC data were available for 27 tanks. Of these 27 tanks, seven were found to have greater than 80% of the TOC identified as oxalate: 241-BY-104, 241-BY-105, 241-BY-106, 241-BY-110, 241-S-109, and 241-SX-108. Eighty percent accountability has been tentatively established as a minimum goal of the Organic Safety Program for speciation of TOC. Accountability of TOC through speciation will allow more accurate estimate of the potential energy content of the wastes as currently stored. Of the remaining 19 tanks, seven had between 40 and 80% of the TOC identified as oxalate, and eleven had less than 35% of the TOC identified. Of these, only five tanks had segment results that were greater than 1% TOC, and none was above 2%. Since the cur-rent safety criterion outlined in the Safety Analysis is 4.5% TOC, it may be determined that the further analyses of these tank wastes are not necessary. If additional analyses are deemed necessary, minimal work may be required, possibly limited to ion chromatography (IC), ion pair chromatography and capillary zone electrophoresis (CZE). Additional speciation work is planned for this fiscal year in both the Organic Tanks Safety and Characterization programs. The Characterization program reports acetate and formate data in addition to the oxalate data for all the tank cores it processes

  13. Suspending Zeolite Particles In Tanks

    International Nuclear Information System (INIS)

    Poirier, M.R.

    1999-01-01

    The Savannah River Site (SRS) is in the process of removing waste (sludge and salt cake) from million gallon waste tanks. The current practice for removing waste from the tanks is adding water, agitating the tanks with long shaft vertical centrifugal pumps, and pumping the sludge/salt solution from the tank to downstream treatment processes. This practice has left sludge heels (tilde 30,000 gallons) in the bottom of the tanks. SRS is evaluating shrouded axial impeller mixers for removing the sludge heels in the waste tanks. The authors conducted a test program to determine mixer requirements for suspending sludge heels using the shrouded axial impeller mixers. The tests were performed with zeolite in scaled tanks which have diameters of 1.5, 6.0, and 18.75 feet. The mixer speeds required to suspend zeolite particles were measured at each scale. The data were analyzed with various scaling methods to compare their ability to describe the suspension of insoluble solids with the mixers and to apply the data to a full-scale waste tank. The impact of changes in particle properties and operating parameters was also evaluated. The conclusions of the work are: Scaling of the suspension of fast settling zeolite particles was best described by the constant power per unit volume method. Increasing the zeolite particle concentration increased the required mixer power needed to suspend the particles. Decreasing the zeolite particle size from 0.7 mm 0.3 mm decreased the required mixer power needed to suspend the particles. Increasing the number of mixers in the tank decreased the required mixer power needed to suspend the particles. A velocity of 1.6 ft/sec two inches above the tank bottom is needed to suspend zeolite particles

  14. ICPP Tank Farm planning through 2012

    International Nuclear Information System (INIS)

    Palmer, W.B.; Millet, C.B.; Staiger, M.D.; Ward, F.S.

    1998-01-01

    Historically, liquid high-level waste (HLW) generated at the Idaho Chemical Processing Plant has been stored in the Tank Farm after which it is calcined with the calcine being stored in stainless steel bins. Following the curtailment of spent nuclear fuel reprocessing in 1992, the HLW treatment methods were re-evaluated to establish a path forward for producing a final waste form from the liquid sodium bearing wastes (SBW) and the HLW calcine. Projections for significant improvements in waste generation, waste blending and evaporation, and calcination were incorporated into the Tank Farm modeling. This optimized modeling shows that all of the SBW can be calcined by the end of 2012 as required by the Idaho Settlement Agreement. This Tank Farm plan discusses the use of each of the eleven HLW tanks and shows that two tanks can be emptied, allowing them to be Resource Conservation and Recovery Act closed by 2006. In addition, it describes the construction of each tank and vault, gives the chemical concentrations of the contents of each tank, based on historical input and some sampling, and discusses the regulatory drivers important to Tank Farm operation. It also discusses new waste generation, the computer model used for the Tank Farm planning, the operating schedule for each tank, and the schedule for when each tank will be empty and closed

  15. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  16. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-04-01

    This report investigates the nature of the waste in tank U-110 using historical and current information. When characterizing tank waste, several important properties are considered. First, the physical characteristics of the waste are presented, including waste appearance, density, and size of waste particles. The existence of any exotherms in the tank that may present a safety concern is investigated. Finally, the radiological and chemical composition of the tank are presented

  17. Level trend analysis summary report for Oak Ridge National Laboratory inactive liquid low-level waste tanks

    International Nuclear Information System (INIS)

    1994-09-01

    Oak Ridge National Laboratory facilities have produced liquid low-level waste (LLLW) that is radioactive and/or hazardous. Storage tanks have been used to collect and store these wastes. Most of the collection system, including the tanks, is located below the ground surface. Many of the systems have been removed from service (i.e., are not inactive) but contain residual amounts of waste liquid and sludges. A plan of action has been developed by DOE to ensure that environmental impacts from the waste remaining in the inactive tanks system are minimized. The Federal Facility Agreement (FFA) does not require any type of testing or monitoring for the inactive LLLW tanks that are removed from service but does require waste characterization of tanks contents, risk characterization of tanks removed from service, and remediation of the inactive tanks and their contents. This report is form information only and is not required by the FFA. It includes a description of the methodology and results of level trend analyses for the Category D tanks listed in the FFA that currently belong to the Environmental Restoration Program

  18. Loyalty program: current content, types and methods of realization at B2C market

    Directory of Open Access Journals (Sweden)

    Nehaenko Ekaterina

    2015-11-01

    Full Text Available The article is devoted to researching the content of the key concepts for partnership relations marketing – customer loyalty. It presents the results of scientific-theoretical substantiation of the typical structure and methods of implementation of loyalty programs in retail.

  19. The information content of KOF indicators on Swiss current account data revisions

    OpenAIRE

    Sturm, Jan-Egbert; Jacobs, Jan P.A.M.

    2008-01-01

    This paper analyses revisions of Swiss current account data, taking into account the actual data revision process and the implied types of revisions. In addition we investigate whether the first release of current account data can be improved upon by the use of survey results as gathered by the KOF Swiss Economic Institute, ETH Zurich. An answer in the affirmative indicates that it is possible to improve first releases and thereby enhance the current assessment of the Swiss economy.

  20. CRITICAL ASSUMPTIONS IN THE F-TANK FARM CLOSURE OPERATIONAL DOCUMENTATION REGARDING WASTE TANK INTERNAL CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hommel, S.; Fountain, D.

    2012-03-28

    The intent of this document is to provide clarification of critical assumptions regarding the internal configurations of liquid waste tanks at operational closure, with respect to F-Tank Farm (FTF) closure documentation. For the purposes of this document, FTF closure documentation includes: (1) Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the FTF PA) (SRS-REG-2007-00002), (2) Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site (DOE/SRS-WD-2012-001), (3) Tier 1 Closure Plan for the F-Area Waste Tank Systems at the Savannah River Site (SRR-CWDA-2010-00147), (4) F-Tank Farm Tanks 18 and 19 DOE Manual 435.1-1 Tier 2 Closure Plan Savannah River Site (SRR-CWDA-2011-00015), (5) Industrial Wastewater Closure Module for the Liquid Waste Tanks 18 and 19 (SRRCWDA-2010-00003), and (6) Tank 18/Tank 19 Special Analysis for the Performance Assessment for the F-Tank Farm at the Savannah River Site (hereafter referred to as the Tank 18/Tank 19 Special Analysis) (SRR-CWDA-2010-00124). Note that the first three FTF closure documents listed apply to the entire FTF, whereas the last three FTF closure documents listed are specific to Tanks 18 and 19. These two waste tanks are expected to be the first two tanks to be grouted and operationally closed under the current suite of FTF closure documents and many of the assumptions and approaches that apply to these two tanks are also applicable to the other FTF waste tanks and operational closure processes.

  1. Sample preparation for semivolatile organics analysis of Hanford single-shell tank waste with high nitrate/nitrite and water content

    International Nuclear Information System (INIS)

    Stromatt, R.W.; Hoppe, E.W.; Steele, M.J.

    1993-11-01

    This report describes research work carried out to solve sample preparation problems associated with applying gas chromatography with mass spectrometric detection (GC/MS) to the analysis of single shell tank (SST) samples from Hanford for semivolatile organic compounds. Poor performance was found when applying the procedures based on the U.S. Environmental Protection Agency (EPA), Contract Laboratory Program, Statement of Work (CLP SOW). Analysis work was carried out on simulated drainable liquid modeled after the SST core samples which had evidenced analysis problems. Some work was also conducted on true SST samples. It was found that the pH range was too broad in the original procedure. It was also found that by decreasing the amount of methanol used in the extraction process, problems associated with the formation of an azeotrope phase could be avoided. The authors suggest a new procedure, whose eventual application to a wide array of SST samples will lend itself to better quality control limits

  2. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  3. A Content Analysis of Television Ads: Does Current Practice Maximize Cognitive Processing?

    Science.gov (United States)

    2008-12-11

    such as beef, lamb , pork, and chicken. Sweet foods were operationalized as sugary foods such as cakes, cookies, ice cream, pies, donuts, and...ad shows foods that are fatty such as beef, lamb , pork, or chicken, or foods that are sweet such as cakes, cookies, ice cream, pies, donuts, or...5. Canned meats - Meat chili - Meat spread - Corned beef - Sausage - Ham - Pig feet - Meat stew A Content Analysis of

  4. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roared tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  5. Sloshing impact in roofed tanks

    International Nuclear Information System (INIS)

    Uras, R.A.

    1995-01-01

    A large number of high-level waste (HLW) storage tanks exists in various tank farms. Seismic activities at those locations may cause significant sloshing in HLW tanks. These tanks are covered to avoid any spilling during large amplitude earthquakes. However, large amplitude sloshing may result in impact on the cover or the roof of the tank. Hence, a better understanding of the impact phenomenon is necessary to assess the safety of the tanks currently in existence, and to establish design guidelines for future designs. A pressure based formulation is derived to model sloshing impact in roofed tanks. It is incorporated into Argonne's in-house finite element code FLUSTR-ANL. A numerical test case with a harmonic input excitation is studied. The simulation results indicate that linear behavior is preserved beyond the first impact, and some mesh distortion is observed following a stronger second impact. During the impact, the displacement of the contacting surface nodes remains constant, and the velocities are reduced to zero. An identification of impacting nodes is possible from the dynamic pressures induced in surface elements

  6. Jet mixing long horizontal storage tanks

    International Nuclear Information System (INIS)

    Perona, J.J.; Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-12-01

    Large storage tanks may require mixing to achieve homogeneity of contents for several reasons: prior to sampling for mass balance purposes, for blending in reagents, for suspending settled solids for removal, or for use as a feed tank to a process. At ORNL, mixed waste evaporator concentrates are stored in 50,000-gal tanks, about 12 ft in diameter and 60 ft long. This tank configuration has the advantage of permitting transport by truck and therefore fabrication in the shop rather than in the field. Jet mixing experiments were carried out on two model tanks: a 230-gal (1/6-linear-scale) Plexiglas tank and a 25,000-gal tank (about 2/3 linear scale). Mixing times were measured using sodium chloride tracer and several conductivity probes distributed through the tanks. Several jet sizes and configurations were tested. One-directional and two-directional jets were tested in both tanks. Mixing times for each tank were correlated with the jet Reynolds number. Mixing times were correlated for the two tank sizes using the recirculation time for the developed jet. When the recirculation times were calculated using the distance from the nozzle to the end of the tank as the length of the developed jet, the correlation was only marginally successful. Data for the two tank sizes were correlated empirically using a modified effective jet length expressed as a function of the Reynolds number raised to the 1/3 power. Mixing experiments were simulated using the TEMTEST computer program. The simulations predicted trends correctly and were within the scatter of the experimental data with the lower jet Reynolds numbers. Agreement was not as good at high Reynolds numbers except for single nozzles in the 25,000-gal tank, where agreement was excellent over the entire range

  7. AX Tank Farm tank removal study

    Energy Technology Data Exchange (ETDEWEB)

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  8. Doctors currently in jobs with academic content and their future intentions to pursue clinical academic careers: questionnaire surveys.

    Science.gov (United States)

    Lambert, Trevor W; Smith, Fay; Goldacre, Michael J

    2015-02-01

    Our aim was to report on doctors' descriptions of their current post at about 12 years after qualification, in respect of academic content, and to compare this with their long-term intentions. By academic content, we mean posts that are designated as clinical academic posts or clinical service posts that include research and/or teaching commitments. Questionnaire survey. All UK medical graduates of 1996 contacted in 2007, graduates of 1999 in 2012, and graduates of 2000 in 2012. UK. Responses about current posts and future intentions. Postal and email questionnaires. The response rate was 61.9% (6713/10844). Twenty eight per cent were working in posts with academic content (3.3% as clinical academics, 25% in clinical posts with some academic content). Seventeen per cent of women were working in clinical posts with some teaching and research, compared with 29% of men. A higher percentage of men than women intended to be clinical academics as their eventual career choice (3.9% overall, 5.4% of men, 2.7% of women). More doctors wished to move to a job with an academic component than away from one (N = 824 compared with 236). This was true for both men (433 compared with 118) and women (391 compared with 118). Women are under-represented both in holding posts with academic content and in aspirations to do so. It is noteworthy that many more doctors hoped to move into an academic role than to move out of one. Policy should facilitate this wish in order to address current shortfalls in clinical academic medicine.

  9. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  10. Project Management Plan for Initial Tank Retrieval Systems, Project W-211

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    1999-01-01

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  11. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  12. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  13. Tank 241-U-203: Tank Characterization Plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1995-01-01

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities

  14. To What Extent Does Current Scientific Research and Textbook Content Align? A Methodology and Case Study

    Science.gov (United States)

    Bierema, Andrea M.-K.; Schwartz, Renee S.; Gill, Sharon A.

    2017-01-01

    Recent calls for reform in education recommend science curricula to be based on central ideas instead of a larger number of topics and for alignment between current scientific research and curricula. Because alignment is rarely studied, especially for central ideas, we developed a methodology to discover the extent of alignment between primary…

  15. Planning for Development in the Arab Gulf States: A content Analysis of Current Development Plans

    DEFF Research Database (Denmark)

    Hvidt, Martin

    2012-01-01

    Abstract: This paper analyses current development plans published by the GCC states (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates) in order to explore the region’s future growth trajectory: what barriers to growth are foreseen and how can they be anticipated; what...

  16. Effects of oxygen content on the pinning energy and critical current in the granular (Hg, Re)-1223 superconductors

    International Nuclear Information System (INIS)

    Passos, C.A.C.; Orlando, M.T.D.; Fernandes, A.A.R.; Oliveira, F.D.C.; Simonetti, D.S.L.; Fardin, J.F.; Belich, H.; Ferreira, M.M.

    2005-01-01

    Hg 0.82 Re 0.18 Ba 2 Ca 2 Cu 3 O 8+d polycrystalline samples, with different oxygen content, were investigated by ac resistance measurements under different applied magnetic field (up to 3 A/m) and critical current measurements. The intergrain and intragrain regions have shown an improvement in the pinning energy and critical current density, as considering the precursor preparation with 10% of O 2 and 90% of Ar (optimal doped). In addition, the samples presented S-I-S junctions type as considering Ambegaokar-Baratoff theory

  17. Growth and biomass production with enhanced {beta}-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Papaspyridi, Lefki-Maria; Christakopoulos, Paul [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Katapodis, Petros [BIOtechMASS Unit, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens (Greece); Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina (Greece); Gonou-Zagou, Zacharoula; Kapsanaki-Gotsi, Evangelia [Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Athens (Greece)

    2011-02-15

    In this study we maximized biomass production by the basidiomycete Ganoderma australe ATHUM 4345, a species of pharmaceutical interest as it is a valuable source of nutraceuticals, including dietary fibers and glucans. We used the Biolog FF MicroPlate to screen 95 different carbon sources for growth monitoring. The pattern of substrate catabolism forms a substrate assimilation fingerprint, which is useful in selecting components for media optimization of maximum biomass production. Response surface methodology, based on the central composite design was applied to explore the optimum concentrations of carbon and nitrogen sources of culture medium in shake flask cultures. When the improved culture medium was tested in a 20-L stirred tank bioreactor, using 13.7 g/L glucose and 30.0 g/L yeast extract, high biomass yields (10.1{+-}0.4 g/L) and productivity of 0.09 g L{sup -1} h{sup -1} were obtained. The yield coefficients for total glucan and dietary fibers on biomass formed were 94.82{+-}6 and 341.15{+-}12.3 mg/g mycelium dry weight, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Science.gov (United States)

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method.

  19. Tank characterization report for single-shell tank 241-T-102

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  20. Tank characterization report for single-shell tank 241-T-102

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-06-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  1. Bone mineral content measurement in small infants by single-photon absorptiometry: current methodologic issues

    International Nuclear Information System (INIS)

    Steichen, J.J.; Asch, P.A.; Tsang, R.C.

    1988-01-01

    Single-photon absorptiometry (SPA), developed in 1963 and adapted for infants by Steichen et al. in 1976, is an important tool to quantitate bone mineralization in infants. Studies of infants in which SPA was used include studies of fetal bone mineralization and postnatal bone mineralization in very low birth weight infants. The SPA technique has also been used as a research tool to investigate longitudinal bone mineralization and to study the effect of nutrition and disease processes such as rickets or osteopenia of prematurity. At present, it has little direct clinical application for diagnosing bone disease in single patients. The bones most often used to measure bone mineral content (BMC) are the radius, the ulna, and, less often, the humerus. The radius appears to be preferred as a suitable bone to measure BMC in infants. It is easily accessible; anatomic reference points are easily palpated and have a constant relationship to the radial mid-shaft site; soft tissue does not affect either palpation of anatomic reference points or BMC quantitation in vivo. The peripheral location of the radius minimizes body radiation exposure. Trabecular and cortical bone can be measured separately. Extensive background studies exist on radial BMC in small infants. Most important, the radius has a relatively long zone of constant BMC. Finally, SPA for BMC in the radius has a high degree of precision and accuracy. 61 references

  2. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  3. Strange quark content in the nucleon and the strange quark vector current form factors

    International Nuclear Information System (INIS)

    Dubnicka, S.; Dubnickova, A.Z.

    1996-12-01

    A behaviour of the form factors of the nucleon matrix element of the strange quark vector current in the momentum range of the planned measurements in MIT/Bates and CEBAF is predicted theoretically without using any of the experimental information on the nucleon electromagnetic structure. The corresponding leading nonvanishing moments of the nucleon vector strangeness distribution are comparable with the values obtained by other authors in the framework of the method based on the vector meson pole fit of the isoscalar electromagnetic form factors of the nucleon. (author). 16 refs, 2 figs

  4. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.

    2011-06-15

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron

  5. Tank type reactor

    International Nuclear Information System (INIS)

    Otsuka, Fumio.

    1989-01-01

    The present invention concerns a tank type reactor capable of securing reactor core integrity by preventing incorporation of gases to an intermediate heat exchanger, thgereby improving the reliability. In a conventional tank type reactor, since vortex flows are easily caused near the inlet of an intermediate heat exchanger, there is a fear that cover gases are involved into the coolant main streams to induce fetal accidents. In the present invention, a reactor core is suspended by way of a suspending body to the inside of a reactor vessel and an intermediate heat exchanger and a pump are disposed between the suspending body and the reactor vessel, in which a vortex current preventive plate is attached at the outside near the coolant inlet on the primary circuit of the intermediate heat exchanger. In this way vortex or turbulence near the inlet of the intermediate heata exchanger or near the surface of coolants can be prevented. Accordingly, the cover gases are no more involved, to insure the reactor core integrity and obtain a tank type nuclear reactor of high reliability. (I.S.)

  6. AX Tank Farm tank removal study

    International Nuclear Information System (INIS)

    SKELLY, W.A.

    1998-01-01

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft 3 of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms

  7. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  8. Neutralized current acid waste consolidation management plan

    International Nuclear Information System (INIS)

    Powell, W.J.; Brown, R.G.; Galbraith, J.; Jensen, C.; Place, D.E.; Reddick, G.W.; Zuroff, W.; Brothers, A.J.

    1996-01-01

    The scope of this evaluation is to recommend a management plan for the high-heat tank waste, including neutralized current acid waste (NCAW) in AY and AZ Tank Farms, and tank C-106 waste. The movement of solids, liquids and salt cake in the designated tank farms is included. Decision analysis techniques were used to determine a recommended alternative. The recommended course of action was replacement of a 75-hp mixer pump in tank AY-102 and in-tank concentration of tank AZ-102 supernate. The alternative includes transfer fo tank C-106 sludge to tank AY-102, then transfer to tank AY-102 and tank C-106 sludge to tank AZ-101 using the new 75-hp mixer pump installed in tank AY-102. Tank AZ-101 becomes a storage tank for high-level waste (HLW) sludge, with the capacity to mix and transfer sludge as desired

  9. The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

    International Nuclear Information System (INIS)

    Zhao, H.; University of Colorado, Boulder, CO; Li, X.; University of Colorado, Boulder, CO; Baker, D. N.

    2015-01-01

    Enabled by the comprehensive measurements from the Magnetic Electron Ion Spectrometer (MagEIS), Helium Oxygen Proton Electron mass spectrometer (HOPE), and Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher-energy protons. During the storm main phase, ions with energies <50 keV contribute more significantly to the ring current than those with higher energies; while the higher-energy protons dominate during the recovery phase and quiet times. The enhancements of higher-energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the 29 March 2013 storm we investigated in detail that the contribution from O + is ~25% of the ring current energy content during the main phase and the majority of that comes from <50 keV O + . This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. In conclusion, the results show that the measured ring current ions contribute about half of the Dst depression.

  10. Nuclear safety of extended sludge processing on tank 42 and 51 sludge (DWPF sludge feed batch one)

    International Nuclear Information System (INIS)

    Clemons, J.S.

    1993-01-01

    The sludge in tanks 42 and 51 is to be washed with inhibited water to remove soluble salts and combined in tank 51 in preparation for feed to DWPF. Since these tanks contain uranium and plutonium, the process of washing must be evaluated to ensure subcriticality is maintained. When the sludge is washed, inhibited water is added, the tank contents are slurried and allowed to settle. The sludge wash water is then decanted to the evaporator feed tank where it is fed to the evaporator to reduce the volume. The resulting evaporator concentrate is sent to a salt tank where it cools and forms crystallized salt cake. This salt cake will later be dissolved, processed in ITP and sent to Z-Area. This report evaluates the supernate and sludge during washing, the impact on the evaporator during concentration of decanted wash water, and the salt tank where the concentrated supernate is deposited. The conclusions generated in this report are specific to the sludge currently contained in tanks 42 and 51

  11. Lead content of dried films of domestic paints currently sold in Nigeria

    International Nuclear Information System (INIS)

    Adebamowo, Eugenious O.; Scott Clark, C.; Roda, Sandy; Agbede, Oluwole A.; Sridhar, Mynepalli K.C.; Adebamowo, Clement A.

    2007-01-01

    Children are at higher risk from lead exposure because their developing neural system is susceptible to its neurotoxic effects. We studied lead levels of paints manufactured in Nigeria in 2006. Lead levels in 5 colors of paints, each from different manufacturers were measured using flame-atomic absorption spectroscopy. We found that 96% of the paints had higher than recommended levels of lead. The mean lead level of paints ranged from 84.8 to 50,000 ppm, with mean of 14,500 ppm and median of 15,800 ppm. The main determinant of lead levels was color of the paint. As lead levels in paint sold in the past years in Nigeria are likely to be at least as high as that currently sold, it is likely that many existing houses contain dangerously high levels of lead. Efforts need to be undertaken to assess the presence of high lead levels in existing housing and if detected, intervention programs for eliminating risk of exposure should be developed in addition to measures to increase awareness and enforce regulations leading to the elimination of lead based domestic paint

  12. Tank characterization report for single-shell tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1996-01-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents

  13. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  14. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  15. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  16. Qualification of Raman analysis on Hanford tank waste

    International Nuclear Information System (INIS)

    Crawford, B.A.

    1997-01-01

    Chemical characterization is often required for the Hanford tanks in order to support safety assessments, compatibility between tank contents and operations activities such as sluicing and material transfer. Safety drivers include monitoring of organic chemical and oxidizer levels to better assess indicators that may point to problems from such factors as reactivity of tank contents and flammability from gas generation. Monitoring is also being recognized as a useful in support of operations in tank contents retrieval and storage of material before treatment. Important operations aspects which benefit from additional monitoring and characterization include formation of gels, foaming and fouling of transfer lines during material transfer

  17. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  18. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  19. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  20. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  1. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  2. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX SOLIDS WITH LIQUIDS IN TANK 50H

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.

    2011-11-11

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). In the summer of 2011, Tank 50H contained two standard slurry pumps and two quad volute slurry pumps. Current requirements for mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste moved both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that were failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National Laboratory (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to mix solids with liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Small Column Ion Exchange Process (SCIX), SRNL computational fluid dynamics (CFD) modeling, Tank 50H operating experience, and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters of pumps needed to mix the solid particles with the liquid in Tank 50H. The analysis determined pump requirements to suspend the solids with no 'dead zones', but did not determine the pump requirements to produce a homogeneous suspension. In addition, the analysis determined the pump requirements to prevent the accumulation of a large amount of solid particles under the telescoping transfer pump. The conclusions from this analysis follow: (1) The analysis shows that three Quad Volute pumps should be able to suspend the solid particles expected ({approx}0.6 g/L insoluble solids, {approx}5 micron) in Tank 50H. (2) Three standard slurry pumps may not be able to suspend the solid particles in Tank 50H; (3) The ability of two Quad Volute pumps to fully suspend all of the solid particles in Tank 50H is marginal; and (4) One standard slurry pump should be able to

  3. Characterization of Hanford tank wastes containing ferrocyanides

    International Nuclear Information System (INIS)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  4. Tanks Focus Area annual report FY2000

    International Nuclear Information System (INIS)

    2000-01-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area

  5. Tanks Focus Area annual report FY2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  6. Tank 241-U-111 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-111

  7. Tank 241-T-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111

  8. Tank 241-U-103 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103

  9. Tank 241-TX-118 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-118

  10. Tank 241-BX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-BX-104

  11. Tank 241-TY-101 Tank Characterization Plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TY-101

  12. Tank 241-T-107 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-107

  13. Tank 241-TX-105 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105

  14. Numerical Modelling of Flow and Settling in Secondary Settling Tanks

    DEFF Research Database (Denmark)

    Dahl, Claus Poulsen

    This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....

  15. In-Tank Peroxide Oxidation Process for the Decomposition of Tetraphenylborate in Tank 48H

    International Nuclear Information System (INIS)

    DANIEL, LAMBERT

    2005-01-01

    Tank 48H return to service is critical to the processing of high level waste (HLW) at the Savannah River Site (SRS). Tank 48H currently holds legacy material containing organic tetraphenylborate (TPB) compounds from the operation of the In-Tank Precipitation process. The TPB was added during an in-tank precipitation process to removed soluble cesium, but excessive benzene generation curtailed this treatment method. This material is not compatible with the waste treatment facilities at SRS and must be removed or undergo treatment to destroy the organic compounds before the tank can be returned to routine Tank Farm service. Tank 48H currently contains approximately 240,000 gallons of alkaline slurry with approximately 19,000 kg (42,000 lb) of potassium and cesium tetraphenylborate (KTPB and CsTPB). Out of Tank processing of the Tank 48H has some distinct advantages as aggressive processing conditions (e.g., high temperature, low pH) are required for fast destruction of the tetraphenylborate. Also, a new facility can be designed with the optimum materials of construction and other design features to allow the safe processing of the Tank 48H waste. However, it is very expensive to build a new facility. As a result, an in-tank process primarily using existing equipment and facilities is desirable. Development of an in-tank process would be economically attractive. Based on success with Fentons Chemistry (i.e., hydrogen peroxide with an iron or copper catalyst to produce hydroxyl radicals, strong oxidation agents), testing was initiated to develop a higher pH oxidation process that could be completed in-tank

  16. Tank car leaks gasoline

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  17. Waste mixing and diluent selection for the planned retrieval of Hanford Tank 241-SY-102: A preliminary assessment

    International Nuclear Information System (INIS)

    Onishi, Y.; Hudson, J.D.

    1996-01-01

    This preliminary assessment documents a set of analyses that were performed to determine the potential for Hanford waste Tank 241-SY-102 waste properties to be adversely affected by mixing the current tank contents or by injecting additional diluent into the tank during sludge mobilization. As a part of this effort, the effects of waste heating that will occur as a result of mixer pump operations are also examined. Finally, the predicted transport behavior of the resulting slurries is compared with the waste acceptance criteria for the Cross-Site Transfer System (CSTS). This work is being performed by Pacific Northwest National Laboratory in support of Westinghouse Hanford Company's W-211 Retrieval Project. We applied the equilibrium chemical code, GMIN, to predict potential chemical reactions. We examined the potential effects of mixing the current tank contents (sludge and supernatant liquid) at a range of temperatures and, separately, of adding pure water at a volume ratio of 1:2:2 (sludge:supernatant liquid:water) as an example of further diluting the current tank contents. The main conclusion of the chemical modeling is that mixing the sludge and the supernate (with or without additional water) in Tank 241-SY-102 dissolves all sodium-containing solids (i.e., NaNO 3 (s), thenardite, NaF(s), and halite), but does not significantly affect the amorphous Cr(OH) 3 and calcite phase distribution. A very small amount of gibbsite [Al(OH) 3 (s)] might precipitate at 25 degrees C, but a somewhat larger amount of gibbsite is predicted to dissolve at the higher temperatures. In concurrence with the reported tank data, the model affirmed that the interstitial solution within the sludge is saturated with respect to many of the solids species in the sludge, but that the supernatant liquid is not in saturation with many of major solids species in sludge. This indicates that a further evaluation of the sludge mixing could prove beneficial

  18. History of waste tank 16, 1959 through 1974

    International Nuclear Information System (INIS)

    Davis, T.L.; Tharin, D.W.; Jones, D.W.; Lohr, D.R.

    1977-07-01

    Tank 16 was placed in service as a receiver of fresh high heat waste (HW) on May 9, 1959, and was filled to capacity in May 1960. Approximately half the tank contents were transferred to tanks 14 and 15 during September and October 1960 because of leakage into the annulus. Use of tank 16 was resumed in October 1967 when authorization (TA 2-603) was obtained to receive LW, and the tank was filled to capacity by June 1968. Subsequently, supernate was removed from the tank, and a blend of fresh LW and evaporator bottoms was added. In March 1972, the supernate was transferred to tank 13 because leakage had resumed. The sludge was left in the tank bottom and the use of tank 16 for any additional waste storage was discontinued. In September 1960 liquid waste overflowed the annulus pan. Leakage essentially stopped after the tank liquid level was lowered below the middle horizontal weld. After exhaustive study, tank cracking and resultant leakage was concluded to have been caused by stress corrosion due to the action of NaOH or NaNO 3 on areas of high local stress in the steel plate such as welds. Samples of sludge, supernate, tank vapors, and leaked material in the annulus were analyzed, and tank temperature and radiation profiles were taken. Two disk samples were cut from the primary tank wall for metallurgical examination. Test coupons of various metals were exposed to tank 16 waste to aid new tank design and to study stress corrosion and hydrogen embrittlement. In addition, samples of SRP bedrock were placed in tank 16 to study reactions between bedrock and HW. 18 figures, 2 tables

  19. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  20. Chemical and chemically-related considerations associated with sluicing tank C-106 waste to tank AY-102

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1997-01-01

    New data on tank 241-C-106 were obtained from grab sampling and from compatibility testing of tank C-106 and tank AY-102 wastes. All chemistry-associated and other compatibility Information compiled in this report strongly suggests that the sluicing of the contents of tank C-106, in accord with appropriate controls, will pose no unacceptable risk to workers, public safety, or the environment. In addition, it is expected that the sluicing operation will successfully resolve the High-Heat Safety Issue for tank C-106

  1. Chemical compatibility of tank wastes in tanks 241-C-106, 241-AY-101, and 241-AY-102

    International Nuclear Information System (INIS)

    Sederburg, J.P.

    1994-01-01

    This report documents the chemical compatibility of waste types within tanks 241-C-106, 241-AY-101, and 241-AY-102. This information was compiled to facilitate the transfer of tank 241-C-106 waste to tank 241-AY-102 utilizing supernatant from tank 241-AY-101 as the sluicing medium. This document justifies that no chemical compatibility safety issues currently understood, or theorized from thermodynamic modeling, will result from the intended sluice transfer operation

  2. Test plan for evaluating the performance of the in-tank fluidic sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from double-shell feed tanks, 241-AP-102 and 241-AP-104, Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a conceptual sampling system that would be deployed in a feed tank riser, This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. This test plan identifies ''proof-of-principle'' cold tests for the conceptual sampling system using simulant materials. The need for additional testing was identified as a result of completing tests described in the revision test plan document, Revision 1 outlines tests that will evaluate the performance and ability to provide samples that are representative of a tanks' content within a 95 percent confidence interval, to recovery from plugging, to sample supernatant wastes with over 25 wt% solids content, and to evaluate the impact of sampling at different heights within the feed tank. The test plan also identifies operating parameters that will optimize the performance of the sampling system

  3. Think Tanks in Europe

    DEFF Research Database (Denmark)

    Kelstrup, Jesper Dahl

    in their national contexts. Questions regarding patterns and differences in think tank organisations and functions across countries have largely been left unanswered. This paper advances a definition and research design that uses different expert roles to categorise think tanks. A sample of 34 think tanks from...

  4. Feed tank transfer requirements

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1998-01-01

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B

  5. Underground storage tanks

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Environmental contamination from leaking underground storage tanks poses a significant threat to human health and the environment. An estimated five to six million underground storage tanks containing hazardous substances or petroleum products are in use in the US. Originally placed underground as a fire prevention measure, these tanks have substantially reduced the damages from stored flammable liquids. However, an estimated 400,000 underground tanks are thought to be leaking now, and many more will begin to leak in the near future. Products released from these leaking tanks can threaten groundwater supplies, damage sewer lines and buried cables, poison crops, and lead to fires and explosions. As required by the Hazardous and Solid Waste Amendments (HSWA), the EPA has been developing a comprehensive regulatory program for underground storage tanks. The EPA proposed three sets of regulations pertaining to underground tanks. The first addressed technical requirements for petroleum and hazardous substance tanks, including new tank performance standards, release detection, release reporting and investigation, corrective action, and tank closure. The second proposed regulation addresses financial responsibility requirements for underground petroleum tanks. The third addressed standards for approval of state tank programs

  6. RECOMMENDATIONS FOR SAMPLING OF TANK 19 IN F TANK FARM

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.; Shine, G.

    2009-12-14

    concentration as a function of the number of samples, and the final number of samples is determined when the reduction in the uncertainty from an additional sample no longer has a practical impact on results. The characterization of the full suite of analytes in the North and South hemispheres is currently supported by a single Mantis rover sample in each hemisphere. A floor scrape sample was obtained from a compact region near the center riser slightly in the South hemisphere and has been analyzed for a shortened list of key analytes. There is not enough additional material from the floor scrape sample material for completing the full suite of constituents. No floor scrape samples have been previously taken from the North hemisphere. The criterion to determine the number of additional samples was based on the practical reduction in the uncertainty when a new sample is added. This was achieved when five additional samples are obtained. In addition, two archived samples will be used if a contingency such as failing to demonstrate the comparability of the Mantis samples to the floor scrape samples occurs. To complete sampling of the Tank 19 residual floor material, four additional samples should be taken from the North hemisphere and four additional samples should be taken from the South hemisphere. One of the samples from each hemisphere will be archived in case of need. Three of the four additional samples from each hemisphere will be analyzed. Once the results are available, differences between the Mantis and three floor scrape sample results will be evaluated. If there are no statistically significant analyte concentration differences between the Mantis and floor scrape samples, those results will be combined and then UCL95%s will be calculated. If the analyte concentration differences between the Mantis and floor scrape samples are statistically significant, the UCL95%s will be calculated without the Mantis sample results. If further reduction in the upper confidence limits

  7. Fuel storage tank

    International Nuclear Information System (INIS)

    Peehs, M.; Stehle, H.; Weidinger, H.

    1979-01-01

    The stationary fuel storage tank is immersed below the water level in the spent fuel storage pool. In it there is placed a fuel assembly within a cage. Moreover, the storage tank has got a water filling and a gas buffer. The water in the storage tank is connected with the pool water by means of a filter, a surge tank and a water purification facility, temperature and pressure monitoring being performed. In the buffer compartment there are arranged catalysts a glow plugs for recombination of radiolysis products into water. The supply of water into the storage tank is performed through the gas buffer compartment. (DG) [de

  8. Screening the Hanford tanks for trapped gas

    International Nuclear Information System (INIS)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford's nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list

  9. Tank characterization report for single-shell Tank 241-B-110

    International Nuclear Information System (INIS)

    Amato, L.C.; De Lorenzo, D.S.; DiCenso, A.T.; Rutherford, J.H.; Stephens, R.H.; Heasler, P.G.; Brown, T.M.; Simpson, B.C.

    1994-08-01

    Single-shell Tank 241-B-110 is an underground storage tank containing radioactive waste. The tank was sampled at various times between August and November of 1989 and later in April of 1990. The analytical data gathered from these sampling efforts were used to generate this Tank Characterization Report. Tank 241-B-110, located in the 200 East Area B Tank Farm, was constructed in 1943 and 1944, and went into service in 1945 by receiving second cycle decontamination waste from the B and T Plants. During the service life of the tank, other wastes were added including B Plant flush waste, B Plant fission product waste, B Plant ion exchange waste, PUREX Plant coating waste, and waste from Tank 241-B-105. The tank currently contains 246,000 gallons of non-complexed waste, existing primarily as sludge. Approximately 22,000 gallons of drainable interstitial liquid and 1,000 gallons of supernate remain. The solid phase of the waste is heterogeneous, for the top layer and subsequent layers have significantly different chemical compositions and are visually distinct. A complete analysis of the top layer has not been done, and auger sampling of the top layer is recommended to fully characterize the waste in Tank 241-B-110. The tank is not classified as a Watch List tank; however, it is a Confirmed Leaker, having lost nearly 10,000 gallons of waste. The waste in Tank 241-B-110 is primarily precipitated salts, some of which are composed of radioactive isotopes. The most prevalent analytes include water, bismuth, iron, nitrate, nitrite, phosphate, silicon, sodium, and sulfate. The major radionuclide constituents are 137 Cs and 90 Sr

  10. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  11. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  12. Tank characterization report for single-shell tank 241-B-104

    International Nuclear Information System (INIS)

    Field, J.G.

    1996-01-01

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results

  13. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  14. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  15. Tank 241-AP-104 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-11-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Double-Shell Tank (DST) 241-AP-104

  16. Preliminary tank characterization report for single-shell tank 241-TX-103: Best-basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  17. Preliminary tank characterization report for single-shell tank 241-TX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task. The best-basis inventory is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes (Kupfer et al. 1997) describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  18. Inactive tanks remediation program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-03-01

    This report presents plans and strategies for remediation of the liquid low-level waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. These plans and strategies will be carried out by the Environmental Restoration Program's Inactive LLLW Tank Program at ORNL. These tanks are defined as Category D tanks because they are existing tank systems without secondary containment that are removed from service. The approach to remediation of each tank or tank farm must be adapted in response to the specific circumstances of individual tank sites. The approach will be tailored to accommodate feedback on lessons learned from previous tank remediation activities and will not be a rigid step-by-step approach that must be conducted identically for every tank system. However, the approach will follow a multistep decision process. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the FFA requirements. The Inactive Tank Program will focus on the remediation of the tank residues (i.e., contents after tank has been emptied) and tank shell. This strategy is discussed in detail in this report

  19. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and... liquid tank car tanks. ...

  20. Tank 21 and Tank 24 Blend and Feed Study: Blending Times, Settling Times, and Transfers

    International Nuclear Information System (INIS)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 (micro)m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

  1. Extended tank use analysis

    International Nuclear Information System (INIS)

    DeFigh-Price, C.; Green, D.J.

    1991-01-01

    The single-shell tanks at the Hanford Site were originally designed for open-quotes temporaryclose quotes use. The newer double-shell tanks were designed for 50 years of use. A number of single-shell tanks failed their original design criteria to contain liquid waste soon after they were constructed. These single-shell and double-shell tanks now will be required to contain semi-solid high-activity waste well beyond their design lives. It must be determined that the waste contained in these tanks will remain stable for up to an additional 30 years of storage. This paper describes the challenge of demonstrating that the tanks that have exceeded or will exceed their design lifetime can safely store high-level waste until planned disposal actions are taken. Considerations will include structural and chemical analyses

  2. Think tanks in Denmark

    DEFF Research Database (Denmark)

    Blach-Ørsten, Mark; Kristensen, Nete Nørgaard

    2016-01-01

    outside the media. The study shows that the two largest and oldest think tanks in Denmark, the liberal think tank CEPOS and the social democratic think tank ECLM, are very active and observable in the media; that the media’s distribution of attention to these think tanks, to some extent, confirms a re......-politicization of Danish newspapers; but also that the news media as an arena of influence is only one part of the equation, since some of the corporatist political networks are still intact and working outside the media...... half of the 2010s, because in this national setting think tanks are still a relatively new phenomenon. Based on theories of mediatization and de-corporatization, we present 1) an analysis of the visibility of selected Danish think tanks in the media and 2) an analysis of their political networks...

  3. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  4. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In July and August 1992, Single-Shell Tank 241-S-104 was sampled as part of the overall characterization effort directed by the Hanford Federal Facility Agreement and Consent Order. Sampling was also performed to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also presents expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background historical and surveillance tank information. Finally, this report makes recommendations and conclusions regarding operational safety. The purpose of this report is to describe the characteristics the waste in Single-Shell Tank 241-S-104 (hereafter, Tank 241-S-104) based on information obtained from a variety of sources. This report summarizes the available information regarding the chemical and physical properties of the waste in Tank 241-S-104, and using the historical information to place the analytical data in context, arranges this information in a format useful for making management and technical decisions concerning waste tank safety and disposal issues. In addition, conclusions and recommendations are presented based on safety issues and further characterization needs

  5. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  6. Tank farms hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ''Interim Safety Basis Document, WHC-SD-WM-ISB-001'' as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process

  7. EVOLUTION IN THE H I GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Kelley M. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Rondebosch 7701 (South Africa); Wilcots, Eric M., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-11-01

    We present an analysis of the neutral hydrogen (H I) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey α.40 data release allows us, for the first time, to study the H I properties of over 740 galaxy groups in the volume of sky common to the Sloan Digital Sky Survey (SDSS) and ALFALFA surveys. We assigned ALFALFA H I detections a group membership based on an existing magnitude/volume-limited SDSS Data Release 7 group/cluster catalog. Additionally, we assigned group ''proximity' membership to H I detected objects whose optical counterpart falls below the limiting optical magnitude—thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group H I mass. We find that only 25% of the H I detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and H I detections in groups as a function of parent dark matter halo mass to reveal strong evidence that H I is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of H I rich galaxies at their center and the H I distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest H I mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the H I selected halo occupation distribution for both low and high mass halos.

  8. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  9. 27 CFR 24.168 - Identification of tanks.

    Science.gov (United States)

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS WINE Construction and Equipment § 24.168 Identification of tanks. (a) General. Each tank, barrel, puncheon, or similar bulk container, used to ferment wine or used to process or store wine, spirits, or wine making materials will have the contents marked and will be marked as...

  10. COOLING COIL EFFECTS ON BLENDING IN A PILOT SCALE TANK

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.; Steeper, T.

    2010-01-01

    Blending, or mixing, processes in 1.3 million gallon nuclear waste tanks are complicated by the fact that miles of serpentine, vertical, cooling coils are installed in the tanks. As a step toward investigating blending interference due to coils in this type of tank, a 1/10.85 scale tank and pump model were constructed for pilot scale testing. A series of tests were performed in this scaled tank by adding blue dye to visualize blending, and by adding acid or base tracers to solution to quantify the time required to effectively blend the tank contents. The acid and base tests were monitored with pH probes, which were located in the pilot scale tank to ensure that representative samples were obtained. Using the probes, the hydronium ion concentration [H + ] was measured to ensure that a uniform concentration was obtained throughout the tank. As a result of pilot scale testing, a significantly improved understanding of mixing, or blending, in nuclear waste tanks has been achieved. Evaluation of test data showed that cooling coils in the waste tank model increased pilot scale blending times by 200% in the recommended operating range, compared to previous theoretical estimates of a 10-50% increase. Below the planned operating range, pilot scale blending times were increased by as much as 700% in a tank with coils installed. One pump, rather than two or more, was shown to effectively blend the tank contents, and dual pump nozzles installed parallel to the tank wall were shown to provide optimal blending. In short, experimental results varied significantly from expectations.

  11. Hanford tanks initiative alternatives generation and analysis plan for AX tank farm closure basis

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    The purpose of this document is: (1) to review the HTI Mission Analysis and related documents to determine their suitability for use in developing performance measures for AX Tank Farm closure, (2) to determine the completeness and representativeness of selected alternative closure scenarios, (3) to determine the completeness of current plans for development of tank end-state criteria, and (4) to analyze the activities that are necessary and sufficient to recommend the end-state criteria and performance measures for the AX Tank Farm and recommend activities not currently planned to support establishment of its end-state criteria

  12. Seismic performance of spherical liquid storage tanks: a case study

    Science.gov (United States)

    Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo

    2018-02-01

    Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.

  13. Stabilization of in-tank residual wastes and external tank soil contamination for the Hanford tank closure program: application to the AX tank farm

    Energy Technology Data Exchange (ETDEWEB)

    SONNICHSEN, J.C.

    1998-10-12

    Mixed high-level waste is currently stored in underground tanks at the US Department of Energy's (DOE's) Hanford Site. The plan is to retrieve the waste, process the water, and dispose of the waste in a manner that will provide less long-term health risk. The AX Tank Farm has been identified for purposes of demonstration. Not all the waste can be retrieved from the tanks and some waste has leaked from these tanks into the underlying soil. Retrieval of this waste could result in additional leakage. During FY1998, the Sandia National Laboratory was under contract to evaluate concepts for immobilizing the residual waste remaining in tanks and mitigating the migration of contaminants that exist in the soil column. Specifically, the scope of this evaluation included: development of a layered tank fill design for reducing water infiltration; development of in-tank getter technology; mitigation of soil contamination through grouting; sequestering of specific radionuclides in soil; and geochemical and hydrologic modeling of waste-water-soil interactions. A copy of the final report prepared by Sandia National Laboratory is attached.

  14. Mitigation of the most hazardous tank at the Hanford Site

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1994-09-01

    Various tanks at the Hanford Site have been declared to be unresolved safety problems. This means that the tank has the potential to be beyond the limits covered by the current safety documentation. Tank 241-SY-101 poses the greatest hazard. The waste stored in this tank has periodically released hydrogen gas which exceeds the lower flammable limits. A mixer pump was installed in this tank to stir the waste. Stirring the waste would allow the hydrogen to be released slowly in a controlled manner and mitigate the hazard associated with this tank. The testing of this mixer pump is reported in this document. The mixer pump has been successful in controlling the hydrogen concentration in the tank dome to below the flammable limit which has mitigated the hazardous gas releases

  15. Heated Aluminum Tanks Resist Corrosion

    Science.gov (United States)

    Johnson, L. E.

    1983-01-01

    Simple expedient of heating foam-insulated aluminum alloy tanks prevents corrosion by salt-laden moisture. Relatively-small temperature difference between such tank and surrounding air will ensure life of tank is extended by many years.

  16. The effect of influent temperature variations in a sedimentation tank for potable water treatment--a computational fluid dynamics study.

    Science.gov (United States)

    Goula, Athanasia M; Kostoglou, Margaritis; Karapantsios, Thodoris D; Zouboulis, Anastasios I

    2008-07-01

    A computational fluid dynamics (CFD) model is used to assess the effect of influent temperature variation on solids settling in a sedimentation tank for potable water treatment. The model is based on the CFD code Fluent and exploits several specific aspects of the potable water application to derive a computational tool much more efficient than the corresponding tools employed to simulate primary and secondary wastewater settling tanks. The linearity of the particle conservation equations allows separate calculations for each particle size class, leading to the uncoupling of the CFD problem from a particular inlet particle size distribution. The usually unknown and difficult to be measured particle density is determined by matching the theoretical to the easily measured experimental total settling efficiency. The present model is adjusted against data from a real sedimentation tank and then it is used to assess the significance of influent temperature variation. It is found that a temperature difference of only 1 degrees C between influent and tank content is enough to induce a density current. When the influent temperature rises, the tank exhibits a rising buoyant plume that changes the direction of the main circular current. This process keeps the particles in suspension and leads to a higher effluent suspended solids concentration, thus, worse settling. As the warmer water keeps coming in, the temperature differential decreases, the current starts going back to its original position, and, thus, the suspended solids concentration decreases.

  17. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  18. PSA results for Hanford high level waste Tank 101-SY

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1993-10-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (``burps``) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections.

  19. PSA results for Hanford high level waste Tank 101-SY

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1993-01-01

    Los Alamos National Laboratory has performed a comprehensive probabilistic safety assessment (PSA) that includes consideration of external events for the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (''burps'') a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is underway in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. This PSA for Tank 101-SY, which did not consider the pump experiment or future tank-remediation activities, involved three distinct tasks. First, the accident sequence analysis identified and quantified those potential accidents whose consequences result in tank material release. Second, characteristics and release paths for the airborne and liquid radioactive source terms were determined. Finally, the consequences, primarily onsite and offsite potential health effects resulting from radionuclide release, were estimated, and overall risk curves were constructed. An overview of each of these tasks and a summary of the overall results of the analysis are presented in the following sections

  20. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds

  1. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  2. Waste characterization data manual for the inactive liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This Waste Characterization Data Manual contains the results of an analysis of the contents of liquid low-level waste (LLLW) tanks that have been removed from service in accordance with the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA), Sect. IX.G.1. This manual contains the results of sampling activities that were conducted at the Oak Ridge National Laboratory in 1988. Thirty-three tanks were sampled and analyzed at that time. Sampling of the remaining inactive tanks is currently underway, and data from these tanks will be added to this manual as they become available. Data are presented from analysis of volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, radiochemical compounds, and inorganic compounds.

  3. Mobilization and mixing of settled solids in horizontal storage tanks

    International Nuclear Information System (INIS)

    Cummins, R.L.

    1995-01-01

    Studies were conducted using submerged jets for the mobilization and mixing of settled solids to form a suspension that can easily be removed from storage tanks. These studies focus on the specific problems relating to horizontal, cylindrical storage tanks. Of primary consideration are the storage tanks located at the Oak Ridge National Laboratory which are used for the collection of remote-handled, radioactive liquid wastes. These wastes are in two phases. A layer of undissolved, settled solids varying from 2 to 4 feet in depth under a layer of supernate. Using a surrogate of the tank contents and an approximate 2/3 dimensional scale tank, tests were performed to determine the optimum design and location of suction and discharge nozzles as well as the minimum discharge velocity required to achieve complete mobilization of the solids in the tank

  4. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  5. Tanks focus area multiyear program plan FY97-FY99

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE's national tank system. The TFA is responsible for technology development to support DOE's four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure

  6. Enhanced sludge reduction in septic tanks by increasing temperature.

    Science.gov (United States)

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  7. Large Steel Tank Fails and Rockets to Height of 30 meters - Rupture Disc Installed Incorrectly

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess; Selig, Robert Simon; Kragh, Eva K.

    2016-01-01

    At a brewery, the base plate-to-shell weld seam of a 90-m3 vertical cylindrical steel tank failed catastrophically. The 4 ton tank “took off” like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure...

  8. Tank 241-C-105 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-105

  9. Tank 241-BY-106 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1995-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, PNL 325 Analytical Chemistry Laboratory, and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-106

  10. Tank 241-AX-104 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-104

  11. Tank 241-AX-102 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of auger samples from tank 241-AX-102

  12. Tank 241-C-101 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-C-101

  13. Tank 241-AP-107 tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, and PNL 325 Analytical Chemistry Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples from tank 241-AP-107

  14. 200 Area plateau inactive miscellaneous underground storage tanks locations

    International Nuclear Information System (INIS)

    Brevick, C.H.

    1997-01-01

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  15. Technology Successes in Hanford Tank Waste Storage and Retrieval

    International Nuclear Information System (INIS)

    Cruz, E. J.

    2002-01-01

    The U. S. Department of Energy (DOE), Office of River Protection (ORP) is leading the River Protection Project (RPP), which is responsible for dispositioning approximately 204,000 cubic meters (54 million gallons) of high-level radioactive waste that has accumulated in 177 large underground tanks at the Hanford Site since 1944. The RPP is comprised of five major elements: storage of the waste, retrieval of the waste from the tanks, treatment of the waste, disposal of treated waste, and closure of the tank facilities. Approximately 3785 cubic meters (1 million gallons) of waste have leaked from the older ''single-shell tanks.'' Sixty-seven of the 147 single shell tanks are known or assumed ''leakers.'' These leaks have resulted in contaminant plumes that extend from the tank to the groundwater in a number of tank farms. Retrieval and closure of the leaking tanks complicates the ORP technical challenge because cleanup decisions must consider the impacts of past leaks along with a strategy for retrieving the waste in the tanks. Completing the RPP mission as currently planned and with currently available technologies will take several decades and tens of billions of dollars. RPP continue to pursue the benefits from deploying technologies that reduce risk to human health and the environment, as well as, the cost of cleanup. This paper discusses some of the recent technology partnering activities with the DOE Office of Science and Technology activities in tank waste retrieval and storage

  16. Estimating retained gas volumes in the Hanford tanks using waste level measurements

    International Nuclear Information System (INIS)

    Whitney, P.D.; Chen, G.; Gauglitz, P.A.; Meyer, P.A.; Miller, N.E.

    1997-09-01

    The Hanford site is home to 177 large, underground nuclear waste storage tanks. Safety and environmental concerns surround these tanks and their contents. One such concern is the propensity for the waste in these tanks to generate and trap flammable gases. This report focuses on understanding and improving the quality of retained gas volume estimates derived from tank waste level measurements. While direct measurements of gas volume are available for a small number of the Hanford tanks, the increasingly wide availability of tank waste level measurements provides an opportunity for less expensive (than direct gas volume measurement) assessment of gas hazard for the Hanford tanks. Retained gas in the tank waste is inferred from level measurements -- either long-term increase in the tank waste level, or fluctuations in tank waste level with atmospheric pressure changes. This report concentrates on the latter phenomena. As atmospheric pressure increases, the pressure on the gas in the tank waste increases, resulting in a level decrease (as long as the tank waste is open-quotes softclose quotes enough). Tanks with waste levels exhibiting fluctuations inversely correlated with atmospheric pressure fluctuations were catalogued in an earlier study. Additionally, models incorporating ideal-gas law behavior and waste material properties have been proposed. These models explicitly relate the retained gas volume in the tank with the magnitude of the waste level fluctuations, dL/dP. This report describes how these models compare with the tank waste level measurements

  17. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes... car tanks. ...

  18. The Advance Experience of Foreign Top-level Think Tanks and its Enlightment to the Construction of Chinese University Think-Tank

    Directory of Open Access Journals (Sweden)

    Tao Yong

    2016-01-01

    Full Text Available This paper expounds the development course and current situation of foreign top-level Think Tank, and analyzes the important effects of foreign colleges and universities Think Tank in supporting national scientific decision-making and rapid development. It analyzes the development course and advanced experience of top-level Think Tank in America and other countries. The paper summaries the advance experiences, combines with the background and features of Think Tank construction of colleges and universities in China. It puts forward that Chinese colleges and universities Think Tank should aim at the national strategic needs, play the advantages of talents gathering and main innovation force, insist on opening, and set constructing professional colleges and universities Think Tank as the breakthrough point. The think tanks produce strategic consulting research results with high quality. The paper proposes the reference effect of foreign Think Tank on characteristic Think Tank construction of colleges and universities in China and the development strategy recommendations.

  19. TANK FARM ENVIRONMENTAL REQUIREMENTS

    International Nuclear Information System (INIS)

    TIFFT, S.R.

    2003-01-01

    Through regulations, permitting or binding negotiations, Regulators establish requirements, limits, permit conditions and Notice of Construction (NOC) conditions with which the Office of River Protection (ORP) and the Tank Farm Contractor (TFC) must comply. Operating Specifications are technical limits which are set on a process to prevent injury to personnel, or damage to the facility or environment, The main purpose of this document is to provide specification limits and recovery actions for the TFC Environmental Surveillance Program at the Hanford Site. Specification limits are given for monitoring frequencies and permissible variation of readings from an established baseline or previous reading. The requirements in this document are driven by environmental considerations and data analysis issues, rather than facility design or personnel safety issues. This document is applicable to all single-shell tank (SST) and double-shell tank (DST) waste tanks, and the associated catch tanks and receiver tanks, and transfer systems. This Tank Farm Environmental Specifications Document (ESD) implements environmental-regulatory limits on the configuration and operation of the Hanford Tank Farms facility that have been established by Regulators. This ESD contains specific field operational limits and recovery actions for compliance with airborne effluent regulations and agreements, liquid effluents regulations and agreements, and environmental tank system requirements. The scope of this ESD is limited to conditions that have direct impact on Operations/Projects or that Operations Projects have direct impact upon. This document does not supercede or replace any Department of Energy (DOE) Orders, regulatory permits, notices of construction, or Regulatory agency agreements binding on the ORP or the TFC. Refer to the appropriate regulation, permit, or Notice of Construction for an inclusive listing of requirements

  20. Tank 241-A-105 evaporation estimate, 1970 through 1978

    International Nuclear Information System (INIS)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs

  1. AX Tank farm closure settlement estimates and soil testing; TOPICAL

    International Nuclear Information System (INIS)

    BECKER, D.L.

    1999-01-01

    This study provides a conservative three-dimensional settlement study of the AX Tank Farm closure with fill materials and a surface barrier. The finite element settlement model constructed included the interaction of four tanks and the surface barrier with the site soil and bedrock. Also addressed are current soil testing techniques suitable for the site soil with recommendations applicable to the AX Tank Farm and the planned cone penetration testing

  2. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  3. Reactor pressure tank

    International Nuclear Information System (INIS)

    Dorner, H.; Scholz, M.; Jungmann, A.

    1975-01-01

    In a reactor pressure tank for a nuclear reactor, self-locking hooks engage a steel ring disposed over the removable cover of the steel vessel. The hooks exert force upon the cover to maintain the cover in a closed position during operation of the reactor pressure tank. The force upon the removal cover is partly the result of the increasing temperature and thermal expansion of the steel vessel during operation. The steel vessel is surrounded by a reinforced-concrete tank. (U.S.)

  4. HYDRAULICS AND MIXING EVALUATIONS FOR NT-21/41 TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Barnes, O.

    2014-11-17

    The hydraulic results demonstrate that pump head pressure of 20 psi recirculates about 5.6 liters/min flowrate through the existing 0.131-inch orifice when a valve connected to NT-41 is closed. In case of the valve open to NT-41, the solution flowrates to HB-Line tanks, NT-21 and NT-41, are found to be about 0.5 lpm and 5.2 lpm, respectively. The modeling calculations for the mixing operations of miscible fluids contained in the HB-Line tank NT-21 were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed for the nominal case by using the validated model to quantify the mixing time for the HB-Line tank. The results demonstrate that when a pump recirculates a solution volume of 5.7 liters every minute out of the 72-liter tank contents containing two acid solutions of 2.7 M and 0 M concentrations (i.e., water), a minimum mixing time of 1.5 hours is adequate for the tank contents to get the tank contents adequately mixed. In addition, the sensitivity results for the tank contents of 8 M existing solution and 1.5 M incoming species show that the mixing time takes about 2 hours to get the solutions mixed.

  5. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  6. HIV/AIDS Course Content in CSWE-Accredited Social Work Programs: A Survey of Current Curricular Practices

    Science.gov (United States)

    Rowan, Diana; Shears, Jeffrey

    2011-01-01

    The authors surveyed program directors at all bachelor of social work and master of social work programs accredited by the Council on Social Work Education using an online tool that assessed whether and how their respective social work programs are covering content related to HIV/AIDS. Of the 650 program directors, 153 (24%) participated in the…

  7. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  8. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    International Nuclear Information System (INIS)

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-01

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m 3 to 4921 m 3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and product lubricated canned

  9. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Mike [Savannah River Remediation, LLC., Aiken, SC (United States); Herbert, James E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scheele, Patrick W. [Savannah River Remediation, LLC., Aiken, SC (United States)

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  10. Tank farm potential ignition sources

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1996-01-01

    This document identifies equipment, instrumentation, and sensors that are located in-tank as well as ex-tank in areas that may have communication paths with the tank vapor space. For each item, and attempt is made to identify the potential for ignition of flammable vapors using a graded approach. The scope includes all 177 underground storage tanks

  11. Improving the Tank Scout

    National Research Council Canada - National Science Library

    Burton, R. L

    2006-01-01

    .... While the tank battalions recognize the importance and value of the scout platoon, they are restricted from employing scouts to their full potential due to the platoon's inflexible structure and limited capabilities...

  12. Ocean Technology Development Tank

    Data.gov (United States)

    Federal Laboratory Consortium — The new SWFSC laboratory in La Jolla incorporates a large sea- and fresh-water Ocean Technology Development Tank. This world-class facility expands NOAA's ability to...

  13. Sonar Tank Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Sonar Tank Facility permits low cost initial 'wet' testing and check out prior to full scale deployment at sea. It can manage controlled conditions calibration...

  14. Improving the Tank Scout

    National Research Council Canada - National Science Library

    Burton, R. L

    2006-01-01

    Within the Marine Corps' tank battalions is a unique asset that is often improperly employed and not well known within the other components of the Marine Air Ground Task Force (MAGTF): the scout platoon...

  15. Modeling Propellant Tank Dynamics

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  16. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered

  17. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  18. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, Crystal [URS- Safety Management Solutions, Richland, Washington 99352 (United States); Harlow, Don [ELR Consulting Richland, Washington 99352 (United States); Venetz, Theodore; Washenfelder, Dennis [Washington River Protection Solutions, LLC Richland, Washington 99352 (United States); Johnson, Jeremy [U.S. Department of Energy, Office of River Protection Richland, Washington 99352 (United States)

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  19. TANK 40 FINAL SB4 CHEMICAL CHARACTERIZATION RESULTS

    International Nuclear Information System (INIS)

    Best, J.

    2008-01-01

    A sample of Sludge Batch 4 (SB4) was pulled from Tank 40 in order to obtain radionuclide inventory analyses necessary for compliance with the Waste Acceptance Product Specifications (WAPS). This sample was also analyzed for elemental and chemical composition including noble metals. These analyses along with the WAPS analyses will help define the composition of the sludge currently in Tank 40 which is currently being fed to DWPF and will become part of Sludge Batch 5 (SB5). At SRNL the 3-L Tank 40 SB4 sample was transferred from the shipping container into a 4-L vessel and solids allowed to settle overnight. Supernate was then siphoned off and circulated through the shipping container to complete the transfer of the sample. Following thorough mixing of the 3-L sample, a 280 g sub-sample was removed. This sub-sample was then utilized for all subsequent analytical samples. Eight separate aliquots of the slurry were digested, four with HNO 3 /HCl in sealed Teflon(reg s ign) vessels and four in Na 2 O 2 using Zr crucibles. Due to the use of Zr crucibles and Na in the peroxide fusions, Na and Zr cannot be determined from this preparation. Three glass standards were digested along with a blank for each preparation. Each aqua regia digestion and blank was diluted and submitted to Analytical Development (AD) for inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and cold vapor atomic absorption (CV-AA) analysis. Equivalent dilutions of the peroxide fusion digestions and blank were submitted to AD for ICP-AES analysis. Tank 40 SB4 supernate was collected from a mixed slurry sample in the SRNL Shielded Cells and submitted to AD for ICP-AES and ICP-MS. Weighted dilutions of slurry were submitted for ion chromatography (IC), total inorganic carbon/total organic carbon (TIC/TOC), and total base analyses. A sample of Tank 40 SB4 decant was collected by carefully removing the supernate phase

  20. Tank SY-102 remediation project: Flowsheet and conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank`s contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates.

  1. High organic containing tanks: Assessing the hazard potential

    International Nuclear Information System (INIS)

    Hill, R.C.P.; Babad, H.

    1991-09-01

    Eight Hanford Site tanks contain organic chemicals at concentrations believed to be greater than 10 mole percent sodium acetate equivalent mixed with the oxidizing salts sodium nitrate/sodium nitrite. Also, three of the hydrogen and ferrocyanide tanks appear on the organic tank list. Concentrations of organics that may be present in some tanks could cause an exothermic reaction given a sufficient driving force, such as high temperatures. However, the difference between ignition temperatures and actual tank temperatures measured is so large that the probability of such a reaction is considered very low. The consequences of the postulated reaction are about the same as the scenarios for an explosion in a ''burping'' hydrogen tank. Although work on this issue is just beginning, consideration of hazards associated with heating nitrate-nitrite mixtures containing organic materials is an integral part of both the hydrogen and ferrocyanide tank efforts. High concentrations of organic compounds have been inferred (from tank transfer, flow sheet records, and limited analytical data) in eight single-shell tanks. Many organic chemicals, if present in concentrations above 10 dry weight percent (sodium acetate equivalent), have the potential to react with nitrate-nitrites constituents at temperatures above 200 degree C (392 degree F) in an exothermic manner. The concentrations of organic materials in the listed single-shell tanks, and their chemical identity, is not accurately known at present. A tank sampling program has been planned to provide more information on the contents of these tanks and to serve as a basis for laboratory testing and safety evaluations. 2 refs., 1 fig., 2 tabs

  2. Tank characterization report for double-shell tank 241-AW-105

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses

  3. Progress in evaluating the hazard of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, Harry; Cash, Robert J.; Postma, Arlin

    1992-01-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 suggested that ferrocyanide tank accident scenarios exceed the bounds of the Hanford Environmental Impact Statement. Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic wastes and characterization of actual tank samples. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks. (author)

  4. Progress in evaluating the hazards of ferrocyanide waste storage tanks

    International Nuclear Information System (INIS)

    Babad, H.; Cash, R.; Postma, A.

    1992-03-01

    There are 177 high-level waste tanks on the Hanford site. Twenty-four single-shell tanks are identified as potential safety issues. These tanks contain quantities of ferrocyanide, nitrate, and nitrite salts that potentially could explode under certain conditions. Efforts were initiated in September 1990 to determine the reactive properties of the ferrocyanide waste and to define the criteria necessary to ensure tank safety until mitigation or remediation actions, if required, could be implemented. This paper describes the results of recent chemical and physical studies on synthetic ferrocyanide waste mixtures. Data obtained from monitoring, tank behavior modeling, and research studies on waste have provided sufficient understanding of the tank behavior. The Waste Tank Safety Program is exploring to determine whether the waste in many of the ferrocyanide tanks actually represents an unreviewed safety question. The General Accounting Office (GAO) in October 1990 (1) suggested that ferrocyanide-tanks accident scenarios exceed the bounds of the Hanford Environmental Impact Statement (2). Using the same assumptions Westinghouse Hanford Company (WHC) staff confirmed the consistency of the GAO report calculations. The hypothetical accident scenario in the GAO report, and in the EIS, are based on several assumptions that may, or may not reflect actual tank conditions. The Ferrocyanide Stabilization Program at Westinghouse Hanford (summarized in this paper) will provide updated and new data using scientific research with synthetic and actual waste tank characterization. This new information will replace the assumptions on tank waste chemical and physical properties allowing an improved recalculation of current safety and future risk associated with these tanks

  5. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 2: Data standardization for tank calibration

    International Nuclear Information System (INIS)

    2007-01-01

    Measurements of the volume and height of liquid in a process accountancy tank are often made in order to estimate or verify the tank's calibration or volume measurement equation. The calibration equation relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. In this part of ISO 18213, it is assumed that the primary measurement-system response variable is liquid height and that the primary measure of liquid content is volume. This part of ISO 18213 presents procedures for standardizing a set of calibration data to a fixed set of reference conditions so as to minimize the effect of variations in ambient conditions that occur during the measurement process. The procedures presented herein apply generally to measurements of liquid height and volume obtained for the purpose of calibrating a tank (i.e. calibrating a tank's measurement system). When used in connection with other parts of ISO 18213, these procedures apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. The standardization algorithms presented herein can be profitably applied when only estimates of ambient conditions, such as temperature, are available. However, the most reliable results are obtained when relevant ambient conditions are measured for each measurement of volume and liquid height in a set of calibration data. Information is provided on scope, physical principles, data required, calibration data, dimensional changes in the tank, multiple calibration runs and results on standardized calibration data. Four annexes inform about density of water, buoyancy corrections for mass determination, determination of tank heel volume and statistical method for aligning data from several calibration runs. A bibliography is

  6. Hanford Waste Tank Bump Accident and Consequence Analysis

    International Nuclear Information System (INIS)

    BRATZEL, D.R.

    2000-01-01

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks

  7. The effect of the fast neutron current on the amino acid contents and nucleic acid synthesis in maize plants

    International Nuclear Information System (INIS)

    Akhundova, N.I.

    2001-01-01

    At the present time the effects of external influences on the genetic structures of the plant cells and the transmission of the accepted signals to other cellular structures and then to the whole organism have actively been studied. According to the opinion of a number of authors the gene expression and repression are immediate responses to the environment changes. To affect the plant genetic apparatus it is quite enough to expose it to some factors such as gamma rays, X- rays, neutron currents, saline-, temperature- or osmotic stresses. At the current stage of the research of the molecular mechanisms of the plant adaptation to the environment changes the priority goal is to ascertain the nature of the influence of the above mentioned factors on the processes of DNA replication and transcription, as the nucleic acids are the targets for external effects. The fast neutron current is one of the factors that influence the plant growth and development. Unlike gamma rays, the mechanism of the neutron irradiation on the plant genetic apparatus is very poorly studied. The objective of our research was the study of the fast neutron current effects on the DNA replication and transcription processes and amino acid synthesis in the irradiated maize plants

  8. In-Tank Elutriation Test Report And Independent Assessment

    International Nuclear Information System (INIS)

    Burns, H. H.; Adamson, D. J.; Qureshi, Z. H.; Steeper, T. J.

    2011-01-01

    a period of decades. 2. The radionuclides were apparently either in the form of soluble compounds, like cesium, or micrometer sized particles of actinide oxides or hydroxides. 3. After the initial tank retrieval the tank contained cobble which is not conducive to elutriation. Only after the tank contents were treated with thousands of gallons of 50 wt% caustic, were the solids converted to sand which is compatible with elutriation. Discussions between SRNL and PNNL resulted in plans to test elutriation in two phases; in Phase 1 particles would be separated by differences in settling velocity in an existing scaled tank with its associated hardware and in Phase 2 additional hardware, such as a hydrocyclone, would be added downstream to separate slow settling partciels from liquid. Phase 1 of in-tank elutriation was tested for Proof of Principle in theEngineering Development Laboratory of SRNL in a 41' diameter, 87 gallon tank. The tank had been previously used as a 1/22 scale model of Hanford Waste Tank AY-102. The objective of the testing was to determine which tank operating parameters achieved the best separation between fast- and slow-settling particles. For Phase 1 testing a simulated waste tank supernatant, slow-settling particles and fast-settling particles were loaded to the scaled tank. Because this was a Proof of Principle test, readily available solids particles were used that represented fast-settling and slow-settling particles. The tank contents were agitated using rotating mixer jet pumps (MJP) which suspended solids while liquids and solids were drawn out of the tank with a suction tube. The goal was to determine the optimum hydraulic operating conditions to achieve clean separation in which the residual solids in the tank were nearly all fast-settling particles and the solids transferred out of the tank were nearly all slow-settling particles. Tests were conducted at different pump jet velocities, suction tube diameters and suction tube elevations

  9. Analysis Bounding Double Shell Tank (DST) Performance for the Hanford Tank Waste Operation Simulator Case 2

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    The purpose of this analysis is to compare the latest Tank Farm Contractor Operation and Utilization Plan (HNF-SD-WM-SP-012, Rev. 3) ''Case 2'' operating scenarios with a previous bounding analysis for the Double-Shell Tank (DST) System in order to provide a technical assessment against the current set of DST System performance requirements. A later update to HNF-SD-WM-SP-012 (i.e., Rev. 3A), released in late December 2001, did not impact the results of this analysis. This analysis provides technical support for revising the Performance Requirements for the Double-Shell Tank System, HNF-2168, Rev. 3, used as the basis for defining performance requirements noted in System Specification for the Double-Shell Tank System, HNF-SD-WM-TRD-007. Rev. 1

  10. Fuel tank tourism; Tanktourismus

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.; Banfi, S.; Haan, P. de

    2000-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made of the extent of so-called 'tank tourism' in Switzerland. The report attempts to how much motor fuel is purchased in border-near filling stations by persons from the other side of the border as a result of price differences in the different countries. The two methods used to estimate the extent of tank tourism, an ex-post analysis and the analysis of filling station turnover, are explained. Only road-traffic is considered; tank tourism in the aviation area is not looked at in this study. The extent of tank tourism is estimated for petrol and diesel fuels. The individual figures produced by the two methods are compared and the difference between them discussed. The report also investigates the effect of changing prices on tank tourism and discusses the problem of estimating the figures for 'off-road' consumers such as tractors and construction machines.

  11. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  12. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  13. A Value of Information approach to data quality objectives for the Hanford high-level waste tanks

    International Nuclear Information System (INIS)

    Wood, T.W.; Hunter, V.L.; Ulvila, J.W.

    1995-02-01

    This report summarizes a Pacific Northwest Laboratory review of the organic-nitrate reaction safety issue in the Hanford single-shell tanks. This study employed a decision analytic method known as Value of Information (VOI). VOI analysis is a special form of decision analysis that has an information collection alternative as one of the initial decision choices. This type of decision analysis, therefore results in the ability to specify the preferred information collection alternative, taking into account all information gathering and other relevant alternatives. For example, the risk reduction benefit associated with further sampling to quantify total organic carbon inventory or to improve information on energetics can be compared to the risk reduction benefit of better temperature monitoring, operational restrictions, or mitigation by moisture control. This approach allows freedom from built-in assumptions, e.g., that all tanks must be sampled to some degree or that all tanks must be deemed intrinsically safe by some means or another. It allows for each tank management decision to be judged in terms of risk reduction from the current state of affairs, and for that state of affairs to be continuously updated to incorporate new information on tank contents, the phenomenology of safety issues, or the effectiveness of mitigation schemes

  14. An assessment of the dilution required to mitigate Hanford tank 241-SY-101

    International Nuclear Information System (INIS)

    Hudson, J.D.; Bredt, P.R.; Felmy, A.R.; Stewart, C.W.; Tingey, J.M.; Trent, D.S.; Barney, G.S.; Herting, D.L.; Larrick, A.P.; Reynolds, D.A.

    1995-02-01

    A group of experts from PNL and WHC convened November 2 and 3, 1994, to screen the current state of knowledge about dilution and reach a consensus on the minimum dilution ratio that will achieve passive mitigation of Tank 241-SY-101 wastes and the dilution ratio that would satisfy the given cross-site transfer criteria with reasonable assurance. The panel evaluated the effects of dilution on the parameters important in gas generation, retention, and release and reached the following conclusions, which are deduced from the existing body of data, experience, and analyses: (1) Dissolution of solids is the single most important aspect of mitigation by dilution. We are confident that diluting until nitrates, nitrites, and aluminum salts are dissolved will mitigate Hanford flammable gas tanks; (2) Sufficient solids dissolution can be achieved in Tank 241-SY-101 at a dilution ratio of 1:1, which will result in a average specific gravity of approximately 1.35. It is likely that a 0.5:1 dilution will also mitigate 241-SY-101, but the current uncertainty is too high to recommend this dilution ratio; (3) The recommended dilution requires a diluent with at least 2 molar free hydroxide, because aluminum probably precipitates at lower hydroxide concentrations. The transfer criteria for Tank 241-SY-101 waste were also evaluated. These criteria have been specified as solids content ≤30% (volume), viscosity ≤30% cP and density <1.5 g/mL. (1) Solids content is the limiting criterion if it is defined as volume fraction of settled solids. A 1:1 dilution will satisfy this criterion at nominal premixing conditions in Tank 241-SY-101; however, analysis of Window E core samples suggests that up to 1.5:1 might be required. If the solids content is interpreted simply as solids volume fraction no further dilution is necessary, because Tank 241-SY-101 waste (excluding the crust) is already below 30%; (2) Bulk density is the next limiting criterion and is met at 0.4:1 dilution

  15. Low-level tank waste simulant data base

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  16. Inerting ballast tanks

    Energy Technology Data Exchange (ETDEWEB)

    Baes, Gabriel L.; Bronneberg, Jos [SBM Offshore, AA Schiedam (Netherlands); Barros, Maria A.S.D. de [Universidade Estadual de Maringa (UEM), PR (Brazil)

    2012-07-01

    This report expands upon the work conducted by SBM Offshore to develop a tank preservation treatment, which is intended to achieve a service life of 30 years. This work focuses on the corrosion problems, in the ballast tanks, based on new built hulls, both for the Gas Exploration Market, the FLNG - Floating Liquefied Natural Gas, and for the Oil Exploration market - FPSO's - Floating Production Storage and offloading Units. Herein, the corrosion rate input comes from the various references related to the process of nitrogen injection, which is expected to extend the vessel's time life. The essential elements of this solution comprise the deoxygenation process, corrosion models, coating effects, tests from laboratory, shipboard tests, corrosion institutes and regulations applicable to the operation. The best corrosion protection system for ballast tanks area combines a coating system and an inert gas system. The condition of the tanks will be dependent upon the level of protection applied to the steel structure, including, but not limited to coating, cathodic protection, etc. There is a need for products which extend the life time. It is not sufficient, only have good theoretical base for the corrosion and an excellent treatment system. In addition, the design of the ships structure must also eliminate the presence of local stress concentrations which can result in fatigue cracking and rupture of the protective coating barrier starting the corrosion. As a direct result of this, more problems in corrosion can be mitigated, vessels can have a better corrosion performance with less maintenance and repairs to coating systems in ballast tanks. Furthermore ships will be positively impacted operationally due to less frequent dry docking. There is a huge potential in the application of inert gas to combat the corrosion rate inside the ballast tanks, one of the most corrosive environments on earth. This application can have a direct impact on vessel structure

  17. The study of the stress - strain state of the tank with bottom water drainage during operation

    Science.gov (United States)

    Shchipkova, Yu V.; Tokarev, V. V.

    2018-04-01

    Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.

  18. Multi-Function Waste Tank Facility phase out basis. Revision 2

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space

  19. Multi-Function Waste Tank Facility phase out basis. Revision 1

    International Nuclear Information System (INIS)

    Awadalla, N.G.

    1995-01-01

    Additional double-shell tank storage capacity is not needed until FY 2004 or later. The waste volume in the current baseline program can be managed within the existing tank capacity. However, this requires implementation of some risk management actions and significant investment in software and hardware to accomplish the actions necessary to maximize use of existing storage tank space.''

  20. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  1. Failure analysis of buried tanks

    International Nuclear Information System (INIS)

    Watkins, R.K.

    1994-01-01

    Failure of a buried tank can be hazardous. Failure may be a leak through which product is lost from the tank; but also through which contamination can occur. Failures are epidemic -- because buried tanks are out of sight, but also because designers of buried tanks have adopted analyses developed for pressure tanks. So why do pressure tanks fail when they are buried? Most failures of buried tanks are really soil failures. Soil compresses, or slips, or liquefies. Soil is not only a load, it is a support without which the tank deforms. A high water table adds to the load on the tank. It also reduces the strength of the soil. Based on tests, structural analyses are proposed for empty tanks buried in soils of various quality, with the water table at various levels, and with internal vacuum. Failure may be collapse tank. Such collapse is a sudden, audible inversion of the cylinder when the sidefill soil slips. Failure may be flotation. Failure may be a leak. Most leaks are fractures in the welds in overlap seams at flat spots. Flat spots are caused by a hard bedding or a heavy surface wheel load. Because the tank wall is double thick at the overlap, shearing stress in the weld is increased. Other weld failures occur when an end plate shears down past a cylinder; or when the tank is supported only at its ends like a beam. These, and other, failures can be analyzed with justifiable accuracy using basic principles of mechanics of materials. 10 figs

  2. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  4. Pitting corrosion in austenitic stainless steel water tanks of hotel trains

    International Nuclear Information System (INIS)

    Moreno, D. A.; Garcia, A. M.; Ranninger, C.; Molina, B.

    2011-01-01

    The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. (Author) 18 refs.

  5. Tank SY-102 remediation project: Flowsheet and conceptual design report

    International Nuclear Information System (INIS)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Dunn, S.L.; Jarvinen, G.D.; Marsh, S.F.; Pope, N.G.; Agnew, S.; Birnbaum, E.R.; Thomas, K.W.; Ortic, E.A.

    1994-01-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. A major program in TWRS is pretreatment which was established to process the waste prior to disposal. Pretreatment is needed to resolve tank safety issues and to separate wastes into high-level and low-level fractions for subsequent immobilization and disposal. There is a fixed inventory of actinides and fission products in the tank which must be prepared for disposal. By segregating the actinides and fission products from the bulk of the waste, the tank's contents can be effectively managed. Due to the high public visibility and environmental sensitivity of this problem, real progress and demonstrated efforts toward addressing it must begin as soon as possible. As a part of this program, personnel at the Los Alamos National Laboratory (LANL) have developed and demonstrated a flowsheet to remediate tank SY-102 which is located in the 200 West Area and contains high-level radioactive waste. This report documents the results of the flowsheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. The tank waste was characterized using both a tank history approach and an exhaustive evaluation of the available core sample analyses. This report also presents a conceptual design complete with a working material flow model, a major equipment list, and cost estimates

  6. Salt removal from tanks containing high-level radioactive waste

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    At the Savannah River Plant (SRP), there are 23 waste storage tanks containing high-level radioactive wastes that are to be retired. These tanks contain about 23 million liters of salt and about 10 million liters of sludge, that are to be relocated to new Type III, fully stress-relieved tanks with complete secondary containment. About 19 million liters of salt cake are to be dissolved. Steam jet circulators were originally proposed for the salt dissolution program. However, use of steam jet circulators raised the temperature of the tank contents and caused operating problems. These included increased corrosion risk and required long cooldown periods prior to transfer. Alternative dissolution concepts were investigated. Examination of mechanisms affecting salt dissolution showed that the ability of fresh water to contact the cake surface was the most significant factor influencing dissolution rate. Density driven and mechanical agitation techniques were developed on a bench scale and then were demonstrated in an actual waste tank. Actual waste tank demonstrations were in good agreement with bench-scale experiments at 1/85 scale. The density driven method utilizes simple equipment, but leaves a cake heel in the tank and is hindered by the presence of sludge or Zeolite in the salt cake. Mechanical agitation overcomes the problems found with both steam jet circulators and the density driven technique and is the best method for future waste tank salt removal

  7. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  8. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  9. Fuel tank crashworthiness : loading scenarios

    Science.gov (United States)

    2011-03-16

    The Federal Railroad Administrations Office of Research and Development is conducting research into fuel tank crashworthiness. The breaching of fuel tanks during passenger : rail collisions and derailments increases the potential of serious injury...

  10. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  11. Underground storage tank program

    International Nuclear Information System (INIS)

    Lewis, M.W.

    1994-01-01

    Underground storage tanks, UST'S, have become a major component of the Louisville District's Environmental Support Program. The District's Geotechnical and Environmental Engineering Branch has spear-headed an innovative effort to streamline the time, effort and expense for removal, replacement, upgrade and associated cleanup of USTs at military and civil work installations. This program, called Yank-A-Tank, creates generic state-wide contracts for removal, remediation, installation and upgrade of storage tanks for which individual delivery orders are written under the basic contract. The idea is to create a ''JOC type'' contract containing all the components of work necessary to remove, reinstall or upgrade an underground or above ground tank. The contract documents contain a set of generic specifications and unit price books in addition to the standard ''boiler plate'' information. Each contract requires conformance to the specific regulations for the state in which it is issued. The contractor's bid consists of a bid factor which in the multiplier used with the prices in the unit price book. The solicitation is issued as a Request for Proposal (RPP) which allows the government to select a contractor based on technical qualification an well as bid factor. Once the basic contract is awarded individual delivery orders addressing specific areas of work are scoped, negotiated and awarded an modifications to the original contract. The delivery orders utilize the prepriced components and the contractor's factor to determine the value of the work

  12. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    Science.gov (United States)

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (ppotential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Task 7c: Worm tank

    International Nuclear Information System (INIS)

    1999-01-01

    Worm tank has a unique shape. In the seismic design of a worm tank, it is desirable to clear the behavior of the worm tank under the seismic loading. We assumed that there are two phenomena in the seismic behavior of the worm tank same as the behavior of the cylindrical and rectangular tanks. One is a sloshing behavior of the water and another is the dynamic response of the worm tank. In this study, we investigate the dynamic characteristics of the worm tank during the strong earthquakes. We conducted the vibration tests to clarify the seismic behaviors of the worm tanks and obtained the valuable data to verify the analytical method. It was found that the natural frequency can be calculated using the eigenvalue formula of the cylindrical and rectangular tanks. Lower modes of the worm tank are identical with that of the rectangular tank. We can estimate the surface behavior and the impact mode using the data of the rectangular tank. (author)

  14. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  15. influence of tanks liner material on water quality and growth

    African Journals Online (AJOL)

    DR A O AKINWOLE

    light of current government efforts to accelerate the growth of aquaculture, there ... plywood, cement blocks, epoxy coated steel, rubber, plastic sheeting or any ... The rectangular shaped wooden frames for the tanks were constructed each with.

  16. 77 FR 62224 - Hanford Tank Farms Flammable Gas Safety Strategy

    Science.gov (United States)

    2012-10-12

    ... (Board) believes that current operations at the Hanford Tank Farms require safety- significant active... administrative control in lieu of an engineered feature is also contrary to DOE's established hierarchy of...

  17. Demonstration of the TRUEX process for the treatment of actual high activity tank waste at the INEEL using centrifugal contactors

    International Nuclear Information System (INIS)

    Law, J.D.; Brewer, K.N.; Todd, T.A.; Olson, L.G.

    1997-01-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), formerly reprocessed spent nuclear fuel to recover fissionable uranium. The radioactive raffinates from the solvent extraction uranium recovery processes were converted to granular solids (calcine) in a high temperature fluidized bed. A secondary liquid waste stream was generated during the course of reprocessing, primarily from equipment decontamination between campaigns and solvent wash activities. This acidic tank waste cannot be directly calcined due to the high sodium content and has historically been blended with reprocessing raffinates or non-radioactive aluminum nitrate prior to calcination. Fuel reprocessing activities are no longer being performed at the ICPP, thereby eliminating the option of waste blending to deplete the waste inventory. Currently, approximately 5.7 million liters of high-activity waste are temporarily stored at the ICPP in large underground stainless-steel tanks. The United States Environmental Protection Agency and the Idaho Department of Health and Welfare filed a Notice of Noncompliance in 1992 contending some of the underground waste storage tanks do not meet secondary containment. As part of a 1995 agreement between the State of Idaho, the Department of Energy, and the Department of Navy, the waste must be removed from the tanks by 2012. Treatment of the tank waste inventories by partitioning the radionuclides and immobilizing the resulting high-activity and low-activity waste streams is currently under evaluation. A recent peer review identified the most promising radionuclide separation technologies for evaluation. The Transuranic Extraction-(TRUEX) process was identified as a primary candidate for separation of the actinides from ICPP tank waste

  18. Seismic behavior of a low-rise horizontal cylindrical tank

    Science.gov (United States)

    Fiore, Alessandra; Rago, Carlo; Vanzi, Ivo; Greco, Rita; Briseghella, Bruno

    2018-05-01

    Cylindrical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. The study herein presented deals with the dynamic analysis of a ground-based horizontal cylindrical tank containing butane and with its safety verification. The analyses are based on a detailed finite element (FE) model; a simplified one-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to sloshing and asynchronous seismic input effects. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. The effects of asynchronous ground motion are studied by suitable pseudo-static analyses. Comparison between seismic action effects, obtained with and without consideration of sloshing and asynchronous seismic input, shows a rather important influence of these conditions on the final results.

  19. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    International Nuclear Information System (INIS)

    Himes, D.A.

    1998-01-01

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  20. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  1. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    International Nuclear Information System (INIS)

    Shatla, M.N; El Hady, M.

    2004-01-01

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  2. Tank drive : ZCL takes its composite tank technology worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-06-15

    Edmonton-based ZCL Composites Inc. is North America's largest manufacturer and supplier of fibreglass reinforced plastic (FRP) underground storage tanks. The company has aggressively pursued new markets in the oil sands, shale gas gas, and other upstream petroleum industries. The manufacturer also targets water and sewage applications, and provides customized corrosion solutions for a variety of industries. The company developed its double-walled FRP tanks in response to Canadian Environmental Protection Act rules requiring cathodic protection for steel tanks, leak detection, and secondary containment. ZCL supplies approximately 90 per cent of the new tanks installed by gasoline retailers in Canada. Future growth is expected to be strong, as many old tanks will soon need to be replaced. The company has also developed a method of transforming underground single wall tanks into secondarily contained systems without digging them out. The company has also recently signed licence agreements with tank manufacturers in China. 3 figs.

  3. Material selection for Multi-Function Waste Tank Facility tanks

    International Nuclear Information System (INIS)

    Carlos, W.C.

    1994-01-01

    This report briefly summarizes the history of the materials selection for the US Department of Energy's high-level waste carbon steel storage tanks. It also provide an evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements; assessed each requirement; and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of normalized ASME SA 516, Grade 70, carbon steel

  4. In situ stabilization of mixed radioactive waste storage tanks and contaminated soil areas

    International Nuclear Information System (INIS)

    Matthern, G.E.; Meservey, R.H.

    1997-01-01

    Within the Department of Energy (DOE) Complex, there are a number of small (<50,000 gallons) underground Storage tanks containing mixed waste materials. The radioactive content of wastes eliminates the feasibility for hazardous waste treatment in accordance with previously prescribed Resource Conservation and Recovery Act (RCRA) technologies. As a result, DOE is funding in situ stabilization technology development for these tanks, Some of this development work has been done at the Idaho National Engineering and Environmental Laboratory (INEEL) and the initial efforts there were concentrated on the stabilization of the contents of the Test Area North (TAN) V-9 Tank. This is a 400 gallon underground tank filled with about 320 gallons of liquids and silty sediments. Sampling data indicates that approximately 50 wt% of the tank contents is aqueous-phase liquids. The vertically oriented cylindrical tank has a conical bottom and a chordal baffle that separates the tank inlet from its outlet. Access to the tank is through a six inch diameter access pipe on top of the tank. Because of the high volume, and the high concentration of aqueous-phase materials, Tank V-9 stabilization efforts have focussed on applying in situ agitation with dry feed addition to stabilize its contents. Materials selected for dry feed addition to this tank include a mixture of Aquaset IIH, and Type I/II Portland cement. This paper describes the results of proof-of-concept tests performed on full scale mockups of the Tank V-9. This proof-of-concept test were used to set operating parameters for in situ mixing, as well as evaluate how variations in Aquaset IIH/Portland cement ratio and sediment to liquid volume affected mixing of the tank

  5. Tank characterization report for Single-Shell Tank 241-BX-107

    International Nuclear Information System (INIS)

    Raphael, G.F.

    1994-09-01

    This study examined and assessed the status, safety issues, composition, and distribution of the wastes contained in the tank 241-BX-107. Historical and most recent information, ranging from engineering structural assessment experiments, process history, monitoring and remediation activities, to analytical core sample data, were compiled and interpreted in an effort to develop a realistic, contemporary profile for the tank BX-107 contents. The results of this is study revealed that tank BX-107, a 2,006,050 L (530,000 gal) cylindrical single-shell, dished-bottom carbon-steel tank in the 200 East Area of the Hanford Site, was classified as sound. It has been interim stabilized and thus contains less than 189,250 L (50,000 gal) of interstitial liquid, and less than 18,925 L (5,000 gal) of supernatant. It has also been partially interim isolated, whereby all inlets to the tank are sealed to prevent inadvertent addition of liquid. At a residual waste level of ∼3.07 m (120.7 ± 2 in. from sidewall bottom or ∼132.9 in. from center bottom), it is estimated that the tank BX-107 contents are equivalent to 1,305,825 L (345,000 gal). The vapor space pressure is at atmospheric. The latest temperature readings, which were taken in July 1994, show a moderate temperature value of 19 degrees C (66 degrees F). Two supernatant samples were collected in 1974 and 1990, prior to interim stabilization. Sludge core samples were obtained in 1979 and 1992

  6. Underground storage tank 291-D1U1: Closure plan

    Energy Technology Data Exchange (ETDEWEB)

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  7. Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

    1997-02-01

    The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank

  8. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-19

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank`s highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format.

  9. Uncertainty and sampling issues in tank characterization

    International Nuclear Information System (INIS)

    Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M.

    1997-06-01

    A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible

  10. Position paper -- Waste storage tank heat removal

    International Nuclear Information System (INIS)

    Stine, M.D.

    1995-01-01

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  11. Do Fish Enhance Tank Mixing?

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Laursen, Jesper; Craig, Steven R.

    2005-01-01

    The design of fish rearing tanks represents a critical stage in the development of optimal aquaculture systems, especially in the context of recirculating systems. Poor hydrodynamics can compromise water quality, waste management and the physiology and behaviour of fish, and thence, production...... potential and operational profitability. The hydrodynamic performance of tanks, therefore, represents an important parameter during the tank design process. Because there are significant complexities in combining the rigid principles of hydrodynamics with the stochastic behaviour of fish, however, most data...... upon tank hydrokinetics has been derived using tanks void of fish. Clearly, the presence of randomly moving objects, such as fish, in a water column will influence not only tank volumes by displacing water, but due to their activity, water dynamics and associated in-tank processes. In order...

  12. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  13. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT... tank car tanks. Editorial Note: At 66 FR 45186, Aug. 28, 2001, an amendment published amending a table...

  14. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... MATERIALS REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In...

  15. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks. ...

  16. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    International Nuclear Information System (INIS)

    Shultz, M.V.

    1999-01-01

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  17. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    International Nuclear Information System (INIS)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-01-01

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable 'lessons-learned' information about expected difficulties as well as construction practices and techniques that are likely to be successful

  18. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  19. Cross flow filtration of aqueous radioactive tank wastes

    International Nuclear Information System (INIS)

    McCabe, D.J.; Reynolds, B.A.; Todd, T.A.; Wilson, J.H.

    1997-01-01

    The Tank Focus Area (TFA) of the Department of Energy (DOE) Office of Science and Technology addresses remediation of radioactive waste currently stored in underground tanks. Baseline technologies for treatment of tank waste can be categorized into three types of solid liquid separation: (a) removal of radioactive species that have been absorbed or precipitated, (b) pretreatment, and (c) volume reduction of sludge and wash water. Solids formed from precipitation or absorption of radioactive ions require separation from the liquid phase to permit treatment of the liquid as Low Level Waste. This basic process is used for decontamination of tank waste at the Savannah River Site (SRS). Ion exchange of radioactive ions has been proposed for other tank wastes, requiring removal of insoluble solids to prevent bed fouling and downstream contamination. Additionally, volume reduction of washed sludge solids would reduce the tank space required for interim storage of High Level Wastes. The scope of this multi-site task is to evaluate the solid/liquid separations needed to permit treatment of tank wastes to accomplish these goals. Testing has emphasized cross now filtration with metal filters to pretreat tank wastes, due to tolerance of radiation and caustic

  20. A science think tank

    Energy Technology Data Exchange (ETDEWEB)

    Devine, F [The Australian, (Australia)

    1999-07-01

    A journalist views on public perceptions on nuclear issues in Australia and Japan is presented. It is also emphasised that by not offering an undergraduate course in nuclear engineering, Australia have closed the door to the nuclear energy development in Australia and costed the country some depth of specialized knowledges. A scientific think tank with active participation of the nuclear scientists is thought to benefit Australia and be in the position to influence private industrial and governmental planning.

  1. A science think tank

    International Nuclear Information System (INIS)

    Devine, F.

    1999-01-01

    A journalist views on public perceptions on nuclear issues in Australia and Japan is presented. It is also emphasised that by not offering an undergraduate course in nuclear engineering, Australia have closed the door to the nuclear energy development in Australia and costed the country some depth of specialized knowledges. A scientific think tank with active participation of the nuclear scientists is thought to benefit Australia and be in the position to influence private industrial and governmental planning

  2. Theoretical study of solar combisystems based on bikini tanks and tank-in-tank stores

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2012-01-01

    . Originality/value - Many different Solar Combisystem designs have been commercialized over the years. In the IEA-SHC Task 26, twenty one solar combisystems have been described and analyzed. Maybe the mantle tank approach also for solar combisystems can be used with advantage? This might be possible...... if the solar heating system is based on a so called bikini tank. Therefore the new developed solar combisystems based on bikini tanks is compared to the tank-in-tank solar combisystems to elucidate which one is suitable for three different houses with low energy heating demand, medium and high heating demand.......Purpose - Low flow bikini solar combisystems and high flow tank-in-tank solar combisystems have been studied theoretically. The aim of the paper is to study which of these two solar combisystem designs is suitable for different houses. The thermal performance of solar combisystems based on the two...

  3. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  4. HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY

    International Nuclear Information System (INIS)

    Quigley, K.D.; Wessman, D.

    2003-01-01

    The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and

  5. POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Eibling, R; Erich Hansen, E; Bradley Pickenheim, B

    2007-03-29

    sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.

  6. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  7. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  8. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  9. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  10. Tank characterization report for Single-Shell Tank B-111

    International Nuclear Information System (INIS)

    Remund, K.M.; Tingey, J.M.; Heasler, P.G.; Toth, J.J.; Ryan, F.M.; Hartley, S.A.; Simpson, D.B.; Simpson, B.C.

    1994-09-01

    Tank 241-B-111 (hereafter referred to as B-111) is a 2,006,300 liter (530,000 gallon) single-shell waste tank located in the 200 East B tank farm at Hanford. Two cores were taken from this tank in 1991 and analysis of the cores was conducted by Battelle's 325-A Laboratory in 1993. Characterization of the waste in this tank is being done to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05. Tank B-111 was constructed in 1943 and put into service in 1945; it is the second tank in a cascade system with Tanks B-110 and B-112. During its process history, B-111 received mostly second-decontamination-cycle waste and fission products waste via the cascade from Tank B-110. This tank was retired from service in 1976, and in 1978 the tank was assumed to have leaked 30,300 liters (8,000 gallons). The tank was interim stabilized and interim isolated in 1985. The tank presently contains approximately 893,400 liters (236,000 gallons) of sludge-like waste and approximately 3,800 liters (1,000 gallons) of supernate. Historically, there are no unreviewed safety issues associated with this tank and none were revealed after reviewing the data from the latest core sampling event in 1991. An extensive set of analytical measurements was performed on the core composites. The major constituents (> 0.5 wt%) measured in the waste are water, sodium, nitrate, phosphate, nitrite, bismuth, iron, sulfate and silicon, ordered from largest concentration to the smallest. The concentrations and inventories of these and other constituents are given. Since Tanks B-110 and B-111 have similar process histories, their sampling results were compared. The results of the chemical analyses have been compared to the dangerous waste codes in the Washington Dangerous Waste Regulations (WAC 173-303). This assessment was conducted by comparing tank analyses against dangerous waste characteristics 'D' waste codes; and against state waste codes

  11. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W. [Los Alamos National Lab., NM (United States); Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J. [PLG, Inc., Newport Beach, CA (United States)

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases ({open_quotes}burps{close_quotes}) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity.

  12. Probabilistic safety assessment for Hanford high-level waste tank 241-SY-101

    International Nuclear Information System (INIS)

    MacFarlane, D.R.; Bott, T.F.; Brown, L.F.; Stack, D.W.; Kindinger, J.; Deremer, R.K.; Medhekar, S.R.; Mikschl, T.J.

    1994-05-01

    Los Alamos National Laboratory (Los Alamos) is performing a comprehensive probabilistic safety assessment (PSA), which will include consideration of external events for the 18 tank farms at the Hanford Site. This effort is sponsored by the Department of Energy (DOE/EM, EM-36). Even though the methodology described herein will be applied to the entire tank farm, this report focuses only on the risk from the weapons-production wastes stored in tank number 241-SY-101, commonly known as Tank 101-SY, as configured in December 1992. This tank, which periodically releases (open-quotes burpsclose quotes) a gaseous mixture of hydrogen, nitrous oxide, ammonia, and nitrogen, was analyzed first because of public safety concerns associated with the potential for release of radioactive tank contents should this gas mixture be ignited during one of the burps. In an effort to mitigate the burping phenomenon, an experiment is being conducted in which a large pump has been inserted into the tank to determine if pump-induced circulation of the tank contents will promote a slow, controlled release of the gases. At the Hanford Site there are 177 underground tanks in 18 separate tank farms containing accumulated liquid/sludge/salt cake radioactive wastes from 50 yr of weapons materials production activities. The total waste volume is about 60 million gal., which contains approximately 120 million Ci of radioactivity

  13. PCB extraction from ORNL tank WC-14 using a unique solvent

    International Nuclear Information System (INIS)

    Bloom, G.A.; Lucero, A.J.; Koran, L.J.; Turner, E.N.

    1995-09-01

    This report summarizes the development work of the Engineering Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) for an organic extraction method for removing polychlorinated biphenyls (PCBs) from tank WC-14. Tank WC-14 is part of the ORNL liquid low-level radioactive tank waste system and does not meet new secondary containment and leak detection regulations. These regulations require the tank to be taken out of service, and remediated before tank removal. To remediate the tank, the PCBs must be removed; the tank contents can then be transferred to the Melton Valley Storage Tanks before final disposal. The solvent being used for the PCB extraction experiments is triethylamine, an aliphatic amine that is soluble in water below 60 degrees F but insoluble in water above 90 degrees F. This property will allow the extraction to be carried out under fully miscible conditions within the tank; then, after tank conditions have been changed, the solvent will not be miscible with water and phase separation will occur. Phase separation between sludge, water, and solvent will allow solvent (loaded with PCBs) to be removed from the tank for disposal. After removing the PCBs from the sludge and removing the sludge from the tank, administrative control of the tank can be transferred to ORNL's Environmental Restoration Program, where priorities will be set for tank removal. Experiments with WC-14 sludge show that greater than 90% extraction efficiencies can be achieved with one extraction stage and that PCB concentration in the sludge can be reduced to below 2 ppm in three extractions. It is anticipated that three extractions will be necessary to reduce the PCB concentration to below 2 ppm during field applications. The experiments conducted with tank WC-14 sludge transferred less than 0.03% of the original alpha contamination and less than 0.002% of the original beta contamination

  14. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    Science.gov (United States)

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Underground storage tanks containing hazardous chemicals

    International Nuclear Information System (INIS)

    Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.; Hillger, R.W.; Tafuri, A.N.

    1991-01-01

    The regulations issued by the United States Environmental Protection Agency in 1988 require, with several exceptions, that underground storage tank systems containing petroleum fuels and hazardous chemicals be routinely tested for releases. This paper summarizes the release detection regulations for tank systems containing chemicals and gives a preliminary assessment of the approaches to release detection currently being used. To make this assessment, detailed discussions were conducted with providers and manufacturers of leak detection equipment and testing services, owners or operators of different types of chemical storage tank systems, and state and local regulators. While these discussions were limited to a small percentage of each type of organization, certain observations are sufficiently distinctive and important that they are reported for further investigation and evaluation. To make it clearer why certain approaches are being used, this paper also summarizes the types of chemicals being stored, the effectiveness of several leak detection testing systems, and the number and characteristics of the tank systems being used to store these products

  16. The emergence of think tanks and mediator intellectuals in Turkey

    OpenAIRE

    Fındıklı, Burhan

    2015-01-01

    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir. This study examines the rise and development of think tanks in Turkey over the past five decades from a field-analytical perspective. In spite of the rapid growth and increasing effects of think tanks, few case studies have been conducted on the historical and current influences of these institutions in Turkey. Based on fourteen in-depth interviews with staff members of various think tanks, first hand observations, secondary re...

  17. Upgrading a 1950s tank farm to meet the environmental standards of the 1990S

    International Nuclear Information System (INIS)

    Butler, C.F.; Peterson, S.W.

    1995-01-01

    The Texaco Inc. Research and Development (Texaco) facility in Beacon, New York includes an above ground storage tank (AST) farm, known as Tank Farm No. 1, which consists of eighteen tanks with capacities ranging from 10,000 to 21,000 gallons. A second tank farm, at the Texaco, Beacon facility, designated as the Boiler House Tank Farm, includes three additional tanks with capacities from 10,000 to 44,900 gallons. The Tank Farm No. 1 AST systems are all vertical, carbon steel tanks which were initially installed in several phases in the 1950s. The Boiler House Tank Farm ASTs are also vertical, carbon steel tanks, including one riveted construction tank that was installed in 1931. Each of the Texaco ASTs are used to store a variety of petroleum products, including diesel fuel, stoddard solvent, used oil, and various grades of gasoline and gasoline components. The New York State Department of Environmental Conservation (NYSDEC) has established regulations for petroleum bulk storage in 6 NYCRR Parts 612 through 614. These regulations include requirements for monitoring and inspecting AST systems, including a rigorous ''out of service'' inspection, to be completed at least once every ten years. Although several revisions had been completed at Tank Farm No. 1 in recent years, including installation of a reinforced concrete secondary containment dike system and new above ground piping, the tank shells and most appurtenances (e.g. water drawoff valves), were unmodified since they were initially installed. On this basis, Texaco decided to upgrade the AST systems in conjunction with the NYSDEC ten-year inspections, by installing reinforced fiberglass liners in the tank floors, and by removing and/or replacing tank appurtenances to meet current industry standards and fire code requirements. This paper presents a summary of the program implemented to upgrade the Texaco, Beacon tank farm AST systems

  18. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    International Nuclear Information System (INIS)

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required

  19. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    International Nuclear Information System (INIS)

    1994-01-01

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  20. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  1. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  2. APPLICATION OF COMPUTATIONAL FLUID DYNAMICS MODELLING TO A HORIZONTAL SEDIMENTATION TANK IN IRAQ

    OpenAIRE

    Ali Hadi GHAWI

    2017-01-01

    Computational Fluid Dynamics modeling has been applied to examine the hydrodynamic behavior of water treatment sedimentation tanks at Baghdad Water Works, operated by Alkurech Water in Baghdad in Iraq. The existing tanks perform poorly at current flows and flow is unevenly split among online tanks, Therefore, CFD was used to investigate velocity profiles at current and projected loadings for the existing basins. Results from the CFD analysis were used to develop retrofit strategies to improve...

  3. Tank farm waste characterization Technology Program Plan

    International Nuclear Information System (INIS)

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved

  4. Laboratory septic tank performance response to electrolytic stimulation.

    Science.gov (United States)

    Zaveri, Rahul M; Flora, Joseph R V

    2002-11-01

    This research investigated the effects of electrolytic stimulation on the performance of two laboratory-scale septic tanks. The tanks were fed a synthetic solution that included cellulose, peptone trypticase, beef extract, and urea. After a baseline period with no passed current, currents ranging from 100 to 500 mA were passed through the electrodes. The chemical oxygen demand (COD) removal efficiency from the tanks improved when a current was passed, with higher removal efficiencies observed at higher levels of passed current. Hydrolytic reactions resulted in ammonia and phosphate levels in the tanks that were higher than the influent. At currents > 300 mA, these hydrolytic reactions were suppressed, resulting in phosphate levels similar to the influent and ammonia levels lower than the influent because of the settling of ammonia-containing components of the feed solution. A slight increase in nitrate levels was observed when a current was passed, indicating minimal stimulation of nitrification activity. Abiotic studies confirmed that the COD can be removed via electrolysis and the removal was proportional to the passed current. Under the conditions of this study, the primary benefit of electrolytic stimulation of the septic tank is enhanced COD removal.

  5. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Crook, N. [HydroGEOPHYSICS, Inc., Tuscon, AZ (United States); McNeill, M. [HydroGEOPHYSICS, Inc., Tuscon, AZ (United States); Dunham, Ralph [Columbia Energy and Environmental Services, Inc., Richland, WA (United States); Glaser, Danney R. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2014-02-26

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the GeotectionTM-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation/Corrective Measures work plan RPP-PLAN-39114.

  6. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    International Nuclear Information System (INIS)

    Crook, N.; McNeill, M.; Dunham, Ralph; Glaser, Danney R.

    2014-01-01

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114

  7. 27 CFR 24.229 - Tank car and tank truck requirements.

    Science.gov (United States)

    2010-04-01

    ... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.229 Tank car and tank truck requirements. Railroad tank cars and tank trucks used to transport spirits for use in wine production will be constructed...

  8. Tank Characterization Report for Double-Shell Tank (DST) 241-AN-107

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    This report interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  9. Tank Characterization Report for Single-Shell Tank 241-C-104

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    2000-01-01

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank

  10. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  11. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling standards...

  12. 46 CFR 154.439 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.439 Section 154.439 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type A § 154.439 Tank design. An independent tank type A must meet the deep tank standard of the...

  13. 49 CFR 238.423 - Fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tanks. 238.423 Section 238.423 Transportation....423 Fuel tanks. (a) External fuel tanks. Each type of external fuel tank must be approved by FRA's Associate Administrator for Safety upon a showing that the fuel tank provides a level of safety at least...

  14. 49 CFR 229.217 - Fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fuel tank. 229.217 Section 229.217 Transportation... tank. (a) External fuel tanks. Locomotives equipped with external fuel tanks shall, at a minimum... to the fuel tank safety requirements of § 238.223 or § 238.423 of this chapter. The Director of the...

  15. Tal en tanke

    DEFF Research Database (Denmark)

    Stjernfelt, Frederik; Hendricks, Vincent

    Den svenske biskop og poet Esais Tegnèr har engang sagt: "Menneskers ord og tanker fødes sammen, at tale uklart er at tænke uklart." Denne lærebog er et lynkursus i at tænke og tale klart - og i at være på vagt over for uklar tænkning og tale, hvor den end optræder.Tal en tanke er hurtigt læst og...

  16. Tank closure reducing grout

    International Nuclear Information System (INIS)

    Caldwell, T.B.

    1997-01-01

    A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr 90 , the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel

  17. Regulated underground storage tanks

    International Nuclear Information System (INIS)

    1992-06-01

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  18. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Strickland, Christopher E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  19. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    International Nuclear Information System (INIS)

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  20. Soil contamination adjacent to waste tank 8

    International Nuclear Information System (INIS)

    Odum, J.V.

    1976-11-01

    In March and April 1961, miscalibrated liquid level instrumentation resulted in an overfilling of tank 8 to about 5 in. above the fill-line entrance. The resultant liquid head caused waste to seep through an asbestos-packed sleeve to the fill-line encasement and from there into the main encasement. Most of this waste returned to primary containment (i.e., the catch tank) through a separately encased drain line. However, approximately 1500 gal of high heat waste leaked from the fill-line encasement into the ground, probably through the joint at the juncture of the fill-line encasement and the concrete encasement of the waste tank. The contamination is contained in a 1000- to 1500-ft 3 zone of soil 12 to 26 ft below grade, 18 ft above the maximum elevation of the water table, and distributed roughly symmetrically around the fill-line encasement. Estimates from a continuing monitoring program indicate that less than 5000 Ci of 137 Cs, less than 0.005 Ci of 238 239 Pu, and less than 0.5 Ci of 89 90 Sr are in the soil. Analysis indicates that the contamination presents no current or future hazard to the environment; consequently, there is no technical reason for excavation of this soil. The high cost of excavation and exposure of personnel make excavation undesirable. The contaminated soil will remain under surveillance and undisturbed at tank 8 until the tank is removed from service, at which time its disposition will be re-evaluated

  1. 49 CFR 179.100 - General specifications applicable to pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.100 Section 179.100 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.100 General specifications applicable to pressure tank car tanks. ...

  2. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.102 Special commodity requirements for pressure tank car tanks. (a) In addition to...

  3. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Special requirements for class 114A * * * tank car... SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.103 Special requirements for class 114A * * * tank car tanks. (a) In addition to the applicable...

  4. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  5. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  6. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  7. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  8. The Effect of Sloshing on a Tank Pressure Build-up Unit

    OpenAIRE

    Banne, Håvard Bolstad

    2017-01-01

    This thesis work has aimed to identify how sloshing will affect a liquefied natural gas (LNG) fuel tank. The physical nature of LNG means it needs to be kept cooled and pressurized in order to remain in a liquid state. By implementing a pressure build-up unit (PBU) it is possible to pressurize the tank vaporizing the tank’s contents, for the vapour then to return to tank in a loop, building pressure in the process. A tank pressure build-up unit has been built in the laboratory ...

  9. Large Steel Tank Fails and Rockets to Height of 30 meters − Rupture Disc Installed Incorrectly

    OpenAIRE

    Hedlund, Frank H.; Selig, Robert S.; Kragh, Eva K.

    2016-01-01

    At a brewery, the base plate-to-shell weld seam of a 90-m3 vertical cylindrical steel tank failed catastrophically. The 4 ton tank “took off” like a rocket leaving its contents behind, and landed on a van, crushing it. The top of the tank reached a height of 30 m. The internal overpressure responsible for the failure was an estimated 60 kPa. A rupture disc rated at <50 kPa provided overpressure protection and thus prevented the tank from being covered by the European Pressure Equipment Dir...

  10. Criticality safety analysis of Hanford Waste Tank 241-101-SY

    International Nuclear Information System (INIS)

    Perry, R.T.; Sapir, J.L.; Krohn, B.J.

    1993-01-01

    As part of a safety assessment for proposed pump mixing operations to mitigate episodic gas releases in Tank 241-101-SY at the Hanford Site, Richland, Washington, a criticality safety analysis was made using the Sn transport code ONEDANT. The tank contains approximately one million gallons of waste and an estimated 910 G of plutonium. the criticality analysis considers reconfiguration and underestimation of plutonium content. The results indicate that Tank SY-101 does not present a criticality hazard. These methods are also used in criticality analyses of other Hanford tanks

  11. Engineering study - installation of new risers in Single-Shell Tanks

    International Nuclear Information System (INIS)

    Magruder, W.J.

    1994-08-01

    A sampling program is being developed to characterize the 149 underground SSTs on the Hanford Site. The sampling effort will require access to the tank interior in a minimum of two locations per tank. Some of the risers suitable for sampling are either unavailable or are not in locations for proper characterization of the tank contents. Additional risers will be required in the SSTs to support the tank characterization sampling program. The purpose of this engineering study is to review alternatives for installation of new riser in the SSTs

  12. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  13. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H.; Lahtinen, M. [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1996-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  14. Solitons in a wave tank

    International Nuclear Information System (INIS)

    Olsen, M.; Smith, H.; Scott, A.C.

    1984-01-01

    A wave tank experiment (first described by the nineteenth-century engineer and naval architect John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank experiment is intended for lecture demonstrations. 19 references, 6 figures

  15. Modelling of baffled stirred tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstedt, H; Lahtinen, M [Tampere Univ. of Technology (Finland). Energy and Process Engineering

    1997-12-31

    The three-dimensional flow field of a baffled stirred tank has been calculated using four different turbulence models. The tank is driven by a Rushton-type impeller. The boundary condition for the impeller region has been given as a source term or by calculating the impeller using the sliding mesh technique. Calculated values have been compared with measured data. (author)

  16. 1990 waste tank inspection program

    International Nuclear Information System (INIS)

    McNatt, F.G.

    1990-01-01

    Aqueous radioactive wastes from Savannah River Site separations processes are contained in large underground carbon steel tanks. Tank conditions are evaluated by inspection using periscopes, still photography, and video systems for visual imagery. Inspections made in 1990 are the subject of this report

  17. Enhanced Waste Tank Level Model

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M.R.

    1999-06-24

    'With the increased sensitivity of waste-level measurements in the H-Area Tanks and with periods of isolation, when no mass transfer occurred for certain tanks, waste-level changes have been recorded with are unexplained.'

  18. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  19. Structural analysis of Hanford's single-shell 241-C-106 tank: A first step toward waste-tank remediation

    International Nuclear Information System (INIS)

    Harris, J.P.; Julyk, L.J.; Marlow, R.S.; Moore, C.J.; Day, J.P.; Dyrness, A.D.; Jagadish, P.; Shulman, J.S.

    1993-10-01

    The buried single-shell waste tank 241-C-106, located at the US Department of Energy's Hanford Site, has been a repository for various liquid radioactive waste materials since its construction in 1943. A first step toward waste tank remediation is demonstrating that remediation activities can be performed safely. Determination of the current structural capacity of this high-heat tank is an important element in this assessment. A structural finite-element model of tank 241-C-106 has been developed to assess the tank's structural integrity with respect to in situ conditions and additional remediation surface loads. To predict structural integrity realistically, the model appropriately addresses two complex issues: (1) surrounding soil-tank interaction associated with thermal expansion cycling and surcharge load distribution and (2) concrete-property degradation and creep resulting from exposure to high temperatures generated by the waste. This paper describes the development of the 241-C-106 structural model, analysis methodology, and tank-specific structural acceptance criteria

  20. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275

  1. Mathematical model of the Savannah River Site waste tank farm

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1991-01-01

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers

  2. Evaluation of tank thermal expansion data in CALDEX

    International Nuclear Information System (INIS)

    Suda, S.; Weh, R.

    1991-01-01

    A thermal expansion test involving a large annular input reprocessing tank was carried out as a part of the CALDEX Project at the TEKO test facility in Karlsruhe, FRG. The objective of this test was to investigate thermal expansion properties of the tank and effects on various pressure and level measurement instruments used in the determination of liquid volume. In the thermal expansion test, a weak nitric acid solution was heated internally to a temperature of 60 degrees C by means of steam injection through the sparge ring. After heating, the annular tank took about one hour to thermally equilibrate, and it took another hour for the sparge ring and pulsator pipes to fill before thermal effects could be followed. The temperature at the end of the test, after tank and its contents had cooled undisturbed for fifty hours, was 29.9 degrees C. Thirteen instrument readings were obtained during each measurement cycle of roughly 70 seconds for a total of over 2800 readings per instrument. Thermal expansion effects for the CALDEX annular tank were consistent with that reported for cylindrical tanks. Temperature variations effect each type of probe in a way that depends on the properties of the probe and the characteristics of the measurement system. 3 refs., 4 figs., 3 tabs

  3. A risk-based approach to prioritize underground storage tanks

    International Nuclear Information System (INIS)

    Chidambariah, V.; Travis, C.C.; Trabalka, J.R.; Thomas, J.K.

    1992-01-01

    The purpose of this paper is to present a risk-based approach for rapid prioritization of low level liquid radioactive waste underground storage tanks (LLLW USTs) for possible interim corrective measures and/or ultimate closure. The ranking of LLLW USTs is needed to ensure that tanks with the greatest potential for adverse impact on the environment and human health receive top priority for further evaluation and remediation. Wastes from the LLLW USTs at the Oak Ridge National Laboratory (ORNL) were pumped out at the time the tanks were removed from service. The residual liquids and sludge contain a mixture of radionuclides and chemicals. Contaminants of concern that were identified in the liquid phase of the inactive LLLW USTs include, the radionuclides, 9O Sr, 137 Cs and 233 U and the chemicals, carbon tetrachloride, trichloroethene, tetrachloroethene, methyl ethyl ketone, mercury, lead and chromium. The risk-based approach for prioritization of the LLLW USTs is based upon three major criteria: (1) leaking characteristics of the tank; (2) location of the tanks; and (3) toxic potential of the tank contents

  4. In-tank photo analysis

    International Nuclear Information System (INIS)

    Vorvick, C.A.; Baird, D.B.; Heasler, P.G.

    1995-09-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) of photographs showing the interior of a single shell tank (SST) at the Hanford site. This report shows that in-tank photos can be used to create a plan-view map of the waste surface inside a tank, and that measuring the elevation of the waste surface from the photos is possible, but not accurate enough to be useful at this time. In-tank photos were acquired for Tanks BX111 and T111. The BX111 photos were used to create the waste surface map and to measure the waste surface elevation. T111 photos were used to measure the waste surface elevation. Uncertainty analyses of the mapping and surface elevation are included to show the accuracy of the calculations for both methods

  5. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  6. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  7. Tools for Inspecting and Sampling Waste in Underground Radioactive Storage Tanks with Small Access Riser Openings

    International Nuclear Information System (INIS)

    Nance, T.A.

    1998-01-01

    Underground storage tanks with 2 inches to 3 inches diameter access ports at the Department of Energy's Savannah River Site have been used to store radioactive solvents and sludge. In order to close these tanks, the contents of the tanks need to first be quantified in terms of volume and chemical and radioactive characteristics. To provide information on the volume of waste contained within the tanks, a small remote inspection system was needed. This inspection system was designed to provide lighting and provide pan and tilt capabilities in an inexpensive package with zoom abilities and color video. This system also needed to be utilized inside of a plastic tent built over the access port to contain any contamination exiting from the port. This system had to be build to travel into the small port opening, through the riser pipe, into the tank evacuated space, and out of the riser pipe and access port with no possibility of being caught and blocking the access riser. Long thin plates were found in many access riser pipes that blocked the inspection system from penetrating into the tank interiors. Retrieval tools to clear the plates from the tanks using developed sampling devices while providing safe containment for the samples. This paper will discuss the inspection systems, tools for clearing access pipes, and solvent sampling tools developed to evaluate the tank contents of the underground solvent storage tanks

  8. Organic Tanks Safety Program: Waste aging studies

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

    1994-11-01

    The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year's findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to γ radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H 2 . Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs

  9. Granulometric data 241-TY Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 200 sediment samples collected during the drilling of wells in the 241-TY Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment class of each of the 200 sediment samples are documented in this paper

  10. Granulometric data 241-S Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 580 sediment samples collected during the drilling of wells in the 241-S Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment glass of each of the 580 sediment samples are documented in this report

  11. Granulometric data 241-C Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 500 sediment samples collected during the drilling of wells in the 241-C Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment class of each of the 500 sediment samples are documented in this report

  12. Granulometric data 241-T Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 850 sediment samples collected during the drilling of wells in the 241-T Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment class of each of the 850 sediment samples are documented in this report

  13. Granulometric data 241-B Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 400 sediment samples collected during the drilling of wells in the 241-B Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment class of each of the 400 sediment samples are documented in this report

  14. Granulometric data 241-T Tank Farm monitoring well sediments

    International Nuclear Information System (INIS)

    Fecht, K.R.; Price, W.H.

    1977-12-01

    Approximately 650 sediment samples collected during the drilling of wells in the 241-BY Tank Farm have been analyzed for grain size and calcium carbonate content. The grain size data were used to categorize the sediment samples into sediment classes. The granulometric data, the calcium carbonate data, and the sediment class of each of the 650 sediment samples are documented in this report

  15. Analysis of floating organic samples from waste Tanks 26F and 33F - Fall 1999

    International Nuclear Information System (INIS)

    Swingle, R.F. II

    2000-01-01

    Organics analyses of floating material taken from Tanks 26F and 33F indicate that the concentration of organic materials is extremely low. With the exception of small amounts of some organosilicon compounds, no quantifiable organics were found in the either the Tank 26F or Tank 33F floating organic samples. These organosilicon compounds may actually be present in the tanks (e.g., from organosilicon-based lubricants or antifoaming agents) or may be artifacts of the solid phase extraction (SPE) disks used in sampling. The SPE disks are comprised in large part of organosilicon compounds. Though quantification of the concentrations of the compounds in the tanks is not possible because of the sampling method, the results indicate that the concentrations are low. These results are consistent with other tank organic analyses and continue to confirm very low organic content of High Level Waste supernate

  16. In situ rheology and gas volume in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the 'hazard signature' of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior

  17. Performance requirements for the single-shell tank

    International Nuclear Information System (INIS)

    GRENARD, C.E.

    1999-01-01

    This document provides performance requirements for the waste storage and waste feed delivery functions of the Single-Shell Tank (SST) System. The requirements presented here in will be used as a basis for evaluating the ability of the system to complete the single-shell tank waste feed delivery mission. They will also be used to select the technology or technologies for retrieving waste from the tanks selected for the single-shell tank waste feed delivery mission, assumed to be 241-C-102 and 241-C-104. This revision of the Performance Requirements for the SST is based on the findings of the SST Functional Analysis, and are reflected in the current System Specification for the SST System

  18. Waste Tank Corrosion Program at Savannah River Site

    International Nuclear Information System (INIS)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-01-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives

  19. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  20. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  1. Flammable gas tank waste level reconciliation tank 241-SX-105

    International Nuclear Information System (INIS)

    Brevick, C.H.; Gaddie, L.A.

    1997-01-01

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980

  2. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  3. Utilization of the MPI Process for in-tank solidification of heel material in large-diameter cylindrical tanks

    Energy Technology Data Exchange (ETDEWEB)

    Kauschinger, J.L.; Lewis, B.E.

    2000-01-01

    A major problem faced by the US Department of Energy is remediation of sludge and supernatant waste in underground storage tanks. Exhumation of the waste is currently the preferred remediation method. However, exhumation cannot completely remove all of the contaminated materials from the tanks. For large-diameter tanks, amounts of highly contaminated ``heel'' material approaching 20,000 gal can remain. Often sludge containing zeolite particles leaves ``sand bars'' of locally contaminated material across the floor of the tank. The best management practices for in-tank treatment (stabilization and immobilization) of wastes require an integrated approach to develop appropriate treatment agents that can be safely delivered and mixed uniformly with sludge. Ground Environmental Services has developed and demonstrated a remotely controlled, high-velocity jet delivery system termed, Multi-Point-Injection (MPI). This robust jet delivery system has been field-deployed to create homogeneous monoliths containing shallow buried miscellaneous waste in trenches [fiscal year (FY) 1995] and surrogate sludge in cylindrical (FY 1998) and long, horizontal tanks (FY 1999). During the FY 1998 demonstration, the MPI process successfully formed a 32-ton uniform monolith of grout and waste surrogates in about 8 min. Analytical data indicated that 10 tons of zeolite-type physical surrogate were uniformly mixed within a 40-in.-thick monolith without lifting the MPI jetting tools off the tank floor. Over 1,000 lb of cohesive surrogates, with consistencies similar to Gunite and Associated Tank (GAAT) TH-4 and Hanford tank sludges, were easily intermixed into the monolith without exceeding a core temperature of 100 F during curing.

  4. Advanced Design Mixer Pump Tank 18 Design Modifications Summary Report

    International Nuclear Information System (INIS)

    Adkins, B.J.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) is preparing to retrieve high level waste (HLW) from Tank 18 in early FY03 to provide feed for the Defense Waste Processing Facility (DWPF) and to support tank closure in FY04. As part of the Tank 18 project, WSRC will install a single Advanced Design Mixer Pump (ADMP) in the center riser of Tank 18 to mobilize, suspend, and mix radioactive sludge in preparation for transfer to Tank 7. The use of a single ADMP is a change to the current baseline of four (4) standard slurry pumps used during previous waste retrieval campaigns. The ADMP was originally conceived by Hanford and supported by SRS to provide a more reliable and maintainable mixer pump for use throughout the DOE complex. The ADMP underwent an extensive test program at SRS between 1998 and 2002 to assess reliability and hydraulic performance. The ADMP ran for approximately 4,200 hours over the four-year period. A detailed tear down and inspection of the pump following the 4,2 00-hour run revealed that the gas mechanical seals and anti-friction bearings would need to be refurbished/replaced prior to deployment in Tank 18. Design modifications were also needed to meet current Authorization Basis safety requirements. This report documents the modifications made to the ADMP in support of Tank 18 deployment. This report meets the requirements of Tanks Focus Area (TFA) Milestone 3591.4-1, ''Issue Report on Modifications Made to the ADMP,'' contained in Technical Task Plan (TTP) SR16WT51, ''WSRC Retrieval and Closure.''

  5. Nuclear fuel technology - Tank calibration and volume determination for nuclear materials accountancy - Part 1: Procedural overview

    International Nuclear Information System (INIS)

    2007-01-01

    Accurate determinations of volume are a fundamental component of any measurement-based system of control and accountability in a facility that processes or stores nuclear materials in liquid form. Volume determinations are typically made with the aid of a calibration or volume measurement equation that relates the response of the tank's measurement system to some independent measure of tank volume. The ultimate purpose of the calibration exercise is to estimate the tank's volume measurement equation (the inverse of the calibration equation), which relates tank volume to measurement system response. The steps carried out to acquire data for estimating the tank's calibration or volume measurement equation are collectively described as the process of tank calibration. This part of ISO 18213 describes procedures for tank calibration and volume determination for nuclear process tanks equipped with pressure-measurement systems for determining liquid content. Specifically, overall guidance is provided for planning a calibration exercise undertaken to obtain the data required for the measurement equation to estimate a tank's volume. The key steps in the procedure are also presented for subsequently using the estimated volume-measurement equation to determine tank liquid volumes. The procedures presented apply specifically to tanks equipped with bubbler probe systems for measuring liquid content. Moreover, these procedures produce reliable results only for clear (i.e. without suspended solids), homogeneous liquids that are at both thermal and static equilibrium. The paper elaborates on scope, physical principles involved, the calibration model, equipment required, a typical tank calibration procedure, calibration planning and pre-calibration activities, and volume determination. A bibliography is provided

  6. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Freeman-Pollard, J.R.

    1994-01-01

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handling and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970's and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D ampersand RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program

  7. Foam-machining tool with eddy-current transducer

    Science.gov (United States)

    Copper, W. P.

    1975-01-01

    Three-cutter machining system for foam-covered tanks incorporates eddy-current sensor. Sensor feeds signal to numerical controller which programs rotational and vertical axes of sensor travel, enabling cutterhead to profile around tank protrusions.

  8. Tank bromeliads capture Saharan dust in El Yunque National Forest, Puerto Rico

    Science.gov (United States)

    Royer, Dana L.; Moynihan, Kylen M.; Ariori, Carolyn; Bodkin, Gavin; Doria, Gabriela; Enright, Katherine; Hatfield-Gardner, Rémy; Kravet, Emma; Nuttle, C. Miller; Shepard, Lisa; Ku, Timothy C. W.; O'Connell, Suzanne; Resor, Phillip G.

    2018-01-01

    Dust from Saharan Africa commonly blows across the Atlantic Ocean and into the Caribbean. Most methods for measuring this dust either are expensive if collected directly from the atmosphere, or depend on very small concentrations that may be chemically altered if collected from soil. Tank bromeliads in the dwarf forest of El Yunque National Forest, Puerto Rico, have a structure of overlapping leaves used to capture rainwater and other atmospheric inputs. Therefore, it is likely that these bromeliads are collecting in their tanks Saharan dust along with local inputs. Here we analyze the elemental chemistry, including rare earth elements (REEs), of tank contents in order to match their chemical fingerprint to a provenance of the Earth's crust. We find that the tank contents differ from the local soils and bedrock and are more similar to published values of Saharan dust. Our study confirms the feasibility of using bromeliad tanks to trace Saharan dust in the Caribbean.

  9. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  10. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  11. Waste tank characterization sampling limits

    International Nuclear Information System (INIS)

    Tusler, L.A.

    1994-01-01

    This document is a result of the Plant Implementation Team Investigation into delayed reporting of the exotherm in Tank 241-T-111 waste samples. The corrective actions identified are to have immediate notification of appropriate Tank Farm Operations Shift Management if analyses with potential safety impact exceed established levels. A procedure, WHC-IP-0842 Section 12.18, ''TWRS Approved Sampling and Data Analysis by Designated Laboratories'' (WHC 1994), has been established to require all tank waste sampling (including core, auger and supernate) and tank vapor samples be performed using this document. This document establishes levels for specified analysis that require notification of the appropriate shift manager. The following categories provide numerical values for analysis that may indicate that a tank is either outside the operating specification or should be evaluated for inclusion on a Watch List. The information given is intended to translate an operating limit such as heat load, expressed in Btu/hour, to an analysis related limit, in this case cesium-137 and strontium-90 concentrations. By using the values provided as safety flags, the analytical laboratory personnel can notify a shift manager that a tank is in potential violation of an operating limit or that a tank should be considered for inclusion on a Watch List. The shift manager can then take appropriate interim measures until a final determination is made by engineering personnel

  12. TFA Tank Focus Area - multiyear program plan FY98-FY00

    International Nuclear Information System (INIS)

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE's Office of Environmental Management's (EM's) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50)

  13. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    International Nuclear Information System (INIS)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-01-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30

  14. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    Energy Technology Data Exchange (ETDEWEB)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste

  15. TFA Tank Focus Area - multiyear program plan FY98-FY00

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  16. TANK VIBRATION LIMIT STUDY IN SUPPORT OF THE VADOSE ZONE DRILLING OPERATION [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    STURGES, M.H.

    2005-01-18

    The analysis contained herein supports the 0.1 g vibration limit that is currently established for the tanks. The natural frequency distributions and mode shapes for several different tank-soil models are presented. These frequencies can be compared to the natural frequencies from the measured test data. The best tank-soil model can then be selected for further study. This document is provided for historical information and has not been reviewed and checked beyond originator.

  17. Chemical compatibility of tank wastes in 241-C-106, 241-AY-101, and 241-AY-102

    International Nuclear Information System (INIS)

    Sederburg, J.P.

    1994-01-01

    This report documents the chemical compatibility of waste types within tanks 241-C-106, 241-AY-101, and 241-AY-102. This information was compiled to facilitate the transfer of tank C-106 waste to tank AY-102 utilizing supernatant from AY-101 as the sluicing medium. This document justifies that no chemical compatibility safety issues currently understood, or theorized from thermodynamic modeling, will result from the intended sluice transfer operation

  18. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PORJECT -9225

    International Nuclear Information System (INIS)

    Jolly, R.

    2009-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed ∼ 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of ∼ 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical

  19. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  20. Tank 241-BY-110 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-BY-110

  1. Tank characterization report for single shell tank 241-SX-108

    Energy Technology Data Exchange (ETDEWEB)

    Eggers, R.F., Westinghouse Hanford

    1996-07-11

    This document summarizes the information on the historical uses, present status, and the sampling and analysis results of waste stored in tank 241-SX-108. This report supports the requirements of Tri-Party Agreement Milestone M-44-09.

  2. Tank 241-S-107 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-S-107

  3. Tank vapor mitigation requirements for Hanford Tank Farms

    International Nuclear Information System (INIS)

    Rakestraw, L.D.

    1994-01-01

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks

  4. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  5. Tank 241-AN-102 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-AN-102

  6. Tank 241-U-111 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-U-111

  7. Tank 241-B-106 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-B-106

  8. Tank 241-SY-103 tank characterization plan. Revision 1

    International Nuclear Information System (INIS)

    Homi, C.S.

    1995-01-01

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term safe storage and long-term management of Single-Shell Tank (SST) 241-SY-103

  9. Tank characterization report for single-shell Tank B-201

    International Nuclear Information System (INIS)

    Heasler, P.G.; Remund, K.M.; Tingey, J.M.; Baird, D.B.; Ryan, F.M.

    1994-09-01

    The purpose of this report is to characterize the waste in single shell Tank B-201. Characterization includes the determination of the physical, chemical (e.g., concentrations of elements and organic species), and radiological properties of the waste. These determinations are made using analytical results from B-201 core samples as well as historical information about the tank. The main objective is to determine average waste properties: but in some cases, concentrations of analytes as a function of depth were also determined. This report also consolidates the available historical information regarding Tank B-201, arranges the analytical information from the recent core sampling in a useful format, and provides an interpretation of the data within the context of what is known about the tank

  10. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs

  11. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  12. Ecodesign of Liquid Fuel Tanks

    Science.gov (United States)

    Gicevska, Jana; Bazbauers, Gatis; Repele, Mara

    2011-01-01

    The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.

  13. Physical mechanisms contributing to the episodic gas release from Hanford tank 241-SY-101

    International Nuclear Information System (INIS)

    Allemann, R.T.

    1992-04-01

    Volume growth of contents in a waste storage tank at Hanford is accompanied by episodic releases of gas and a rise in the level of tank contents. A theory is presented to describe how the gas is retained in the waste and how it is released. The theory postulates that somewhat cohesive gobs of sludge rise from the lower regions of the tank and buoyancy overcomes the cohesive strength of the slurry; this quantitatively explains several of the measured phenomena and qualitatively explains other observations

  14. Underground storage tank management plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  15. Underground storage tank management plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  16. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford tank initiative: Applications to the AX Tank Farm

    International Nuclear Information System (INIS)

    Balsley, S.D.; Krumhansl, J.L.; Borns, D.J.; McKeen, R.G.

    1998-07-01

    A combined engineering and geochemistry approach is recommended for the stabilization of waste in decommissioned tanks and contaminated soils at the AX Tank Farm, Hanford, WA. A two-part strategy of desiccation and gettering is proposed for treatment of the in-tank residual wastes. Dry portland cement and/or fly ash are suggested as an effective and low-cost desiccant for wicking excess moisture from the upper waste layer. Getters work by either ion exchange or phase precipitation to reduce radionuclide concentrations in solution. The authors recommend the use of specific natural and man-made compounds, appropriately proportioned to the unique inventory of each tank. A filler design consisting of multilayered cementitous grout with interlayered sealant horizons should serve to maintain tank integrity and minimize fluid transport to the residual waste form. External tank soil contamination is best mitigated by placement of grouted skirts under and around each tank, together with installation of a cone-shaped permeable reactive barrier beneath the entire tank farm. Actinide release rates are calculated from four tank closure scenarios ranging from no action to a comprehensive stabilization treatment plan (desiccant/getters/grouting/RCRA cap). Although preliminary, these calculations indicate significant reductions in the potential for actinide transport as compared to the no-treatment option

  17. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    International Nuclear Information System (INIS)

    Jolly, R; Bruce Martin, B

    2008-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea

  18. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R; Bruce Martin, B

    2008-01-15

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple

  19. HANFORD DOUBLE-SHELL TANK (DST) THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2007-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to

  20. 46 CFR 154.446 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Independent Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under § 154...

  1. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  2. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  3. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  4. Light Duty Utility Arm deployment in Tank WM-188

    International Nuclear Information System (INIS)

    Patterson, M.

    1999-01-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of Non-Compliance (NON) Consent Order requirements and several other ongoing initiatives

  5. Think tank (1) - Its definition and the overseas situation

    Science.gov (United States)

    Obara, Michio

    The definition as organization is that 1) the think tank should be policy oriented and propose the current issues, 2) it should be interdisciplinary and future oriented, and 3) it should be independent without any outside interference upon it. It is divided into three types in terms of business activity; 1) policy proposing, 2) R&D undertaking and 3) business consulting think tanks. Historically the U.S. has been leading the world because the first think tank was born in this country, and three types of think tanks have brought out the mature business undertakings there. Most of the countries other than the U.S. has held policy proposing type think tanks. The notable think tanks are Brookings Research Institute, Rand Research Institute, Battelle Memorial Institute, Arthur D. Little Co. Ltd. SRI International in the U.S.A., IFO Economic Research Institute, German Economic Research Institute in Germany, France International Relations Research Institute in France, Royal International Relations Research institute, International Strategic Matters Research Institute in the U.K., and Korean Development Research Institute, Korean industrial Research Institute in Korea. All of these have been active in the areas of politics, economics, industry and technology.

  6. Light Duty Utility Arm deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W.

    1999-12-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of Non-Compliance (NON) Consent Order requirements and several other ongoing initiatives.

  7. Light Duty Utility Arm Deployment in Tank WM-188

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Michael W

    2000-01-01

    The Light Duty Utility Arm (LDUA) was successfully deployed in Tank WM-188 during February and March of 1999 at the Idaho Nuclear Technology and Engineering Center (INTEC) tank farm at the Idaho National Engineering and Environmental Laboratory. Some equipment problems were identified, but most were indicative of any first time activity. Deployment during cold weather imposed additional equipment risks, but in general, equipment response to the winter conditions was better than expected. Three end effectors were demonstrated during the deployment. All performed as expected, although the limited resolution of the Alternating Current Field Measurement end effector cannot absolutely confirm tank integrity, which is necessary for future tank inspections. Four heel samples were taken with the sampler end effector and a broad spectrum of analyses were performed. A detailed inspection of the tank interior was performed with the High Resolution Stereo Video System end effector. The sample information is proving invaluable to the development of new treatment flowsheets and waste forms. It is expected that the LDUA will be deployed for tank inspections through the next several years to support other Notice of NonCompliance (NON) Consent Order requirements and several other ongoing initiatives.

  8. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  9. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  10. High-heat tank safety issue resolution program plan

    International Nuclear Information System (INIS)

    Wang, O.S.

    1993-12-01

    The purpose of this program plan is to provide a guide for selecting corrective actions that will mitigate and/or remediate the high-heat waste tank safety issue for single-shell tank (SST) 241-C-106. This program plan also outlines the logic for selecting approaches and tasks to mitigate and resolve the high-heat safety issue. The identified safety issue for high-heat tank 241-C-106 involves the potential release of nuclear waste to the environment as the result of heat-induced structural damage to the tank's concrete, if forced cooling is interrupted for extended periods. Currently, forced ventilation with added water to promote thermal conductivity and evaporation cooling is used to cool the waste. At this time, the only viable solution identified to resolve this safety issue is the removal of heat generating waste in the tank. This solution is being aggressively pursued as the permanent solution to this safety issue and also to support the present waste retrieval plan. Tank 241-C-106 has been selected as the first SST for retrieval. The program plan has three parts. The first part establishes program objectives and defines safety issues, drivers, and resolution criteria and strategy. The second part evaluates the high-heat safety issue and its mitigation and remediation methods and alternatives according to resolution logic. The third part identifies major tasks and alternatives for mitigation and resolution of the safety issue. Selected tasks and best-estimate schedules are also summarized in the program plan

  11. continuous stirred tank reactor (CSTR)

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... stirred tank reactor (CSTR) and the small and large intestines as plug flow reactor (PFR) ... from the two equations are used for the reactor sizing of the modeled reactors.

  12. Underground Storage Tanks in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  13. Storage Tank Legionella and Community

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage Tank Legionella and Community. This dataset is associated with the following publication: Qin, K., I. Struewing, J. Santodomingo, D. Lytle, and J. Lu....

  14. Research Award: Think Tank Iniave

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corey Piccioni

    2013-08-07

    Aug 7, 2013 ... be learned from these examples to help strengthen think tanks more widely? ... What is the nature of the applied research market in (some) ... A Master's in economics, development studies, public policy, or polical sciences;.

  15. 27 CFR 24.230 - Examination of tank car or tank truck.

    Science.gov (United States)

    2010-04-01

    ... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Spirits § 24.230 Examination of tank car or tank truck. Upon arrival of a tank car or tank truck at the bonded wine premises, the proprietor shall... calibration chart is available at the bonded wine premises, the spirits may be gauged by volume in the tank...

  16. Low temperature hydrothermal destruction of organics in Hanford tank wastes

    International Nuclear Information System (INIS)

    Orth, R.J.; Elmore, M.R.; Zacher, A.H.; Neuenschwander, G.G.; Schmidt, A.J.; Jones, E.O.; Hart, T.R.; Poshusta, J.C.

    1994-08-01

    The objective of this work is to evaluate and develop a low temperature hydrothermal process (HTP) for the destruction of organics that are present wastes temporarily stored in underground tanks at the Hanford Site. Organic compounds contribute to tank waste safety issues, such as hydrogen generation. Some organic compounds act as complexants, promoting the solubility of radioactive constituents such as 90 Sr and 241 Am, which is undesirable for waste pretreatment processing. HTP is thermal-chemical autogenous processing method that is typically operated between 250 degrees C and 375 degrees C and approximately 200 atm. Testing with simulated tank waste, containing a variety of organics has been performed. The distribution of strontium, cesium and bulk metals between the supernatant and solid phases as a function of the total organic content of the waste simulant will be presented. Test results using simulant will be compared with similar tests conducted using actual radioactive waste

  17. The joint PNC-ORNL tank calibration experiment of 1991

    International Nuclear Information System (INIS)

    Smith, D.H.; Bostick, D.A.; McBay, E.H.; Carter, J.A.; Ehinger, M.H.

    1991-11-01

    A tank calibration experiment was carried out using the lutetium double spike technique as part of the joint PNC-DOE effort to establish nuclear safeguards at reprocessing plants. The experiment used a 3000 liter tank containing about 100g/L depleted uranium. Results were less than ideal, but the reasons for this are understood. The discussions between the two organizations were highly beneficial. The experiment served to identify two problems in the procedure that must be solved before anything else is tried: 1. Quantitative mixing of tracer of tank contents has not been achieved at PNC. This must be corrected. 2. A chemical procedure to isolate lutetium in a form compatible with good mass spectrometric analysis must be developed. It must be amenable to use in a hot cell. 6 refs., 6 figs., 2 tabs

  18. Petroleum storage tank cleaning using commercial microbial culture products

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  19. Grout and glass performance in support of stabilization/solidification of ORNL tank sludges

    International Nuclear Information System (INIS)

    Spence, R.D.; Mattus, C.H.; Mattus, A.J.

    1998-09-01

    Wastewater at Oak Ridge National Laboratory (ORNL) is collected, evaporated, and stored in the Melton Valley Storage Tanks (MVST) and Bethel Valley Evaporator Storage Tanks (BVEST) pending treatment for disposal. In addition, some sludges and supernatants also requiring treatment remain in two inactive tank systems: the gunite and associated tanks (GAAT) and the old hydrofracture (OHF) tank. The waste consists of two phases: sludge and supernatant. The sludges contain a high amount of radioactivity, and some are classified as TRU sludges. Some Resource Conservation and Recovery Act (RCRA) metal concentrations are high enough to be defined as RCRA hazardous; therefore, these sludges are presumed to be mixed TRU waste. Grouting and vitrification are currently two likely stabilization/solidification alternatives for mixed wastes. Grouting has been used to stabilize/solidify hazardous and low-level radioactive waste for decades. Vitrification has been developed as a high-level radioactive alternative for decades and has been under development recently as an alternative disposal technology for mixed waste. The objective of this project is to define an envelope, or operating window, for grout and glass formulations for ORNL tank sludges. Formulations will be defined for the average composition of each of the major tank farms (BVEST/MVST, GAAT, and OHF) and for an overall average composition of all tank farms. This objective is to be accomplished using surrogates of the tank sludges with hot testing of actual tank sludges to check the efficacy of the surrogates

  20. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Actual Waste Testing with SRS Tank 5F Sludge

    Energy Technology Data Exchange (ETDEWEB)

    King, William D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, Michael S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had been pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.

  1. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton; Czajkowski, Carl J; Divine, James R; Posakony, Gerald J; Johnson, A B; Elmore, Monte R; Reynolds, D A; Anantatmula, Ramamohan P; Sindelar, Robert L; Zapp, Philip E

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  2. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  3. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  4. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  5. Test plan for measuring ventilation rates and combustible gas levels in TWRS active catch tanks

    Energy Technology Data Exchange (ETDEWEB)

    NGUYEN, D.M.

    1999-05-20

    The purpose of this test is to provide an initial screening of combustible gas concentrations in catch tanks that currently are operated by Tank Waste Remediation System (TWRS). The data will be used to determine whether or not additional data will be needed for closure of the flammable gas unreviewed safety question for these facilities. This test will involve field measurements of ammonia, organic vapor, and total combustible gas levels in the headspace of the catch tanks. If combustible gas level in a tank exceeds an established threshold, gas samples will be collected in SUMMA canisters for more extensive laboratory analysis. In addition, ventilation rates of some catch tanks will be measured to evaluate removal of flammable gas by air flow through the tanks.

  6. The effect of nozzle location on the concentration profiles in chemical addition tank

    International Nuclear Information System (INIS)

    Park, B. H.; Kim, E. K.; Ro, T. S.; Lee, C. H.

    2001-01-01

    A numerical analysis of the flow and injection characteristics is performed for the flow field created by water injected into a cylindrical tank with an initially stationary fluid. The flow is relevant to the operation of the chemical addition system in the chemical and volume control system( CVCS) of nuclear power plants. This study is performed to improve the current design which has a disk block inside tank. The numerical analysis for the flow and injection characteristics in chemical addition tank are carried out using CFD code FLUENT 5. Results show that the inlet nozzle installed in tangential direction at the uppermost region of the tank cylinder and the outlet nozzle located at the center of the tank bottom is very effective in enhancing the injection in the tank

  7. The effect of dilution on the gas-retention behavior of Tank 241-SY-101 waste

    International Nuclear Information System (INIS)

    Bredt, P.R.; Tingey, S.M.; Shade, E.H.

    1995-09-01

    The effect of dilution on gas retention in waste from Tank 241-SY-101 was investigated. A composite sample was prepared from material collected during the Window ''C'' and Window ''E'' sampling events. The composite contained material from both the convective and nonconvective layer in the proportions existing in the tank. Operation of the mixer pump in Tank 241-SY-101 has homogenized the tank material, and dilution of the current waste would require additional mixing; therefore, no attempt was made to use unhomogenized tank waste to prepare the composite. The composite was diluted with 2 M NaOH at ratios of 0.5:1, 0.75: 1, 1:1, and 3:1 per volume (2 M NaOH:tank waste)

  8. Prediction of parameters affecting the safety of tank farms in case of emergency

    Directory of Open Access Journals (Sweden)

    Gorev Vyacheslav

    2016-01-01

    Full Text Available The current article demonstrates that the physical nature of blow-out of oil products burning in the tank is connected with overheating and fast vaporization of bottom water accumulated in the tank or on a surface of internal floating roof. It is shown that the period of time, during which the homothermal layer of oil, heated up to the boiling point while burning in the tank, reaches the level of bottom water or the water added in the tank in the process of extinguishing depends on the heat losses into environment through the side surface of the tank. It is determined that blow-out time depends on the water cooled surface area of the tank. It is shown that intensive water cooling extremely decreases the rate of formation of homothermal layer with increasing of its thickness.

  9. Waste gas combustion in a Hanford radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion

  10. Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves

    Science.gov (United States)

    Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.

    2018-04-01

    Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple

  11. A summary of available information on ferrocyanide tank wastes

    International Nuclear Information System (INIS)

    Burger, L.L.; Strachan, D.M.; Reynolds, D.A.; Schulz, W.W.

    1991-10-01

    Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing 137 Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO 3 and/or NaNO 2 exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240 degrees C, but may occur well below 200 degrees C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs

  12. Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm

    International Nuclear Information System (INIS)

    Becker, D.L.

    1997-01-01

    This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding

  13. Methodology for completing Hanford 200 Area tank waste physical/chemical profile estimations

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1996-01-01

    The purpose of the Methodology for Completing Hanford 200 Area Tank Waste Physical/Chemical Profile Estimations is to capture the logic inherent to completing 200 Area waste tank physical and chemical profile estimates. Since there has been good correlation between the estimate profiles and actual conditions during sampling and sub-segment analysis, it is worthwhile to document the current estimate methodology

  14. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  15. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    International Nuclear Information System (INIS)

    Washenfelder, Dennis J.

    2015-01-01

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  16. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  17. Evaluation of tank waste transfers at 241-AW tank farm

    International Nuclear Information System (INIS)

    Willis, W.L.

    1998-01-01

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required

  18. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  19. Nonradioactive air emissions notice of construction, Project W-320, 241-C-106 tank sluicing

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1998-01-28

    This document serves as a Notice of Construction for the Phase 2 activities of Project W-320, 241-C-106 Tank Sluicing, pursuant to the requirements of Washington Administrative Codes (WAC) 173-400 and 173-460. Phased permitting for Project W-320 was discussed with the Washington State Department of Ecology (Ecology) on November 2, 1993. In April 1994, it was deemed unnecessary because the Phase 1 activities did not constitute a new source of emissions and therefore did not require approval from Ecology. The 241-C-106 tank is a 2-million liter capacity, single-shell tank (SST) used for radioactive waste storage since 1947. Between mid-1963 and mid-1969, 241-C-106 tank received high-heat waste, PUREX (plutonium-uranium extraction) Facility high-level waste, and strontium-bearing solids from the strontium and cesium recovery activities. In 1971, temperatures exceeding 99 C were observed in the tank, and therefore, a ventilation system was installed to cool the tank. In addition, approximately 22,712 liters of cooling water are added to the tank each month to prevent the sludge from drying out and overheating. Excessive drying of the sludge could result in possible structural damage. The current radiolytic heat generation rate has been calculated at 32 kilowatts (kW) plus or minus 6 kW. The 241-C-106 tank was withdrawn from service in 1979 and currently is categorized as not leaking. The heat generation in 241-C-106 tank has been identified as a key safety issue on the Hanford Site. The evaporative cooling provided by the added water during operation and/or sluicing maintains the 241-C-106 tank within its specified operating temperature limits. Project W-320, 241-C-106 Tank Sluicing, will mobilize and remove the heat-generating sludge, allowing the water additions to cease. Following sludge removal, the 241-C-106 tank could be placed in a safe, interim stabilized condition. Tank-to-tank sluicing, an existing, proven technology, will provide the earliest possible

  20. Leveraging Digital Asset Management (DAM) in a Finnish retail corporation : A case study on the current state and future vision of Kesko Corporations’ marketing and content production.

    OpenAIRE

    Leppänen, Sandra

    2017-01-01

    This case study analyses how rich media content (digital assets) is created, stored, shared and managed at a Finnish retail company – Kesko Corporation. The study aims to identify the benefits and possible disadvantages of centralizing management and production of these digital assets into a Digital Asset Management (DAM) system. My main research question is: Are there achievable content enhancements that the introduction of a centralized DAM system might bring to Kesko Corporation's marketin...