WorldWideScience

Sample records for current solar cycle

  1. Sun in the Epoch ``LOWERED'' Solar Activity: the Comparative Analysis of the Current 24 Solar Cycle and Past Authentic Low Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    A reliable series of the relative numbers of sunspots (14 solar cycles ‒ 165 years) it leads to the only scenario of solar activity cycles - to the alternation of epochs of “increased” (18 ‒ 22 cycles of solar activity) and “lowered” (12 ‒ 16 and 24 ‒ ...) solar activity with the periods of solar magnetic field reconstruction in solar zone of the sunspots formation (11, 12, 23) from one epoch to another. The regime of the produce of magnetic field significantly changes in these periods, providing to the subsequent 5 cycles the stable conditions of solar activity. Space solar research made it possible to sufficiently fully investigate characteristics and parameters of the solar cycles for the epoch of “increased” (20 ‒ 22 cycles) solar activity and period of the reconstruction (22 ‒ 23 cycles) to the epoch of “lowered” solar activity (24 ‒ ... cycles). In this scenario 24 solar cycle is the first solar cycle of the second epoch of “lowered” solar activity. Therefore his development and characteristics roughly must be described in the context of the low solar cycles development (12, 14, and 16). In the current solar cycle the sunspot-forming activity is lowered, the average areas of the sunspot groups correspond to values for epoch of “lowered “solar activity, average magnetic field in the umbra of sunspots was reduced approximately to 700 gauss, and for this time was observed only 4 very large sunspot groups (≥1500 mvh). Flare activity substantially was lowered: for the time of the current solar cycle development it was occurrence of M-class flares M - 368, class X - 32, from which only 2 solar flares of class X> 5. Solar proton events are observed predominantly small intensity; but only 5 from them were the intensity of ≥100 pfu (S2) and 4 - ≥1000 pfu (S3). The first five years of the 24 cycle evolution confirm this assumption and the possibility to give the qualitative forecast of his evolution and development of the

  2. Field aligned current study during the solar declining- extreme minimum of 23 solar cycle

    Science.gov (United States)

    Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam

    Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.

  3. Solar Proton Events in Six Solar Cycles

    Science.gov (United States)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  4. Deciphering Solar Magnetic Activity: Spotting Solar Cycle 25

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Leamon, Robert J., E-mail: mscott@ucar.edu [Department of Astronomy, University of Maryland, College Park, MD (United States)

    2017-06-26

    We present observational signatures of solar cycle 25 onset. Those signatures are visibly following a migratory path from high to low latitudes. They had starting points that are asymmetrically offset in each hemisphere at times that are 21–22 years after the corresponding, same polarity, activity bands of solar cycle 23 started their migration. Those bands define the so-called “extended solar cycle.” The four magnetic bands currently present in the system are approaching a mutually cancelling configuration, and solar minimum conditions are imminent. Further, using a tuned analysis of the daily band latitude-time diagnostics, we are able to utilize the longitudinal wave number (m = 1) variation in the data to more clearly reveal the presence of the solar cycle 25 bands. This clarification illustrates that prevalently active longitudes (different in each hemisphere) exist at mid-latitudes presently, lasting many solar rotations, that can be used for detailed study over the next several years with instruments like the Spectrograph on IRIS, the Spectropolarimeter on Hinode, and, when they come online, similar instruments on the Daniel K. Inouye Solar Telescope (DKIST) as we watch those bands evolve following the cancellation of the solar cycle 24 activity bands at the equator late in 2019.

  5. Solar cycle in current reanalyses: (non)linear attribution study

    Science.gov (United States)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2014-12-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.

  6. THREE-DIMENSIONAL EVOLUTION OF SOLAR WIND DURING SOLAR CYCLES 22–24

    International Nuclear Information System (INIS)

    Manoharan, P. K.

    2012-01-01

    This paper presents an analysis of three-dimensional evolution of solar wind density turbulence and speed at various levels of solar activity between solar cycles 22 and 24. The solar wind data used in this study have been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, operating at 327 MHz. Results show that (1) on average, there was a downward trend in density turbulence from the maximum of cycle 22 to the deep minimum phase of cycle 23; (2) the scattering diameter of the corona around the Sun shrunk steadily toward the Sun, starting from 2003 to the smallest size at the deepest minimum, and it corresponded to a reduction of ∼50% in the density turbulence between the maximum and minimum phases of cycle 23; (3) the latitudinal distribution of the solar wind speed was significantly different between the minima of cycles 22 and 23. At the minimum phase of solar cycle 22, when the underlying solar magnetic field was simple and nearly dipole in nature, the high-speed streams were observed from the poles to ∼30° latitudes in both hemispheres. In contrast, in the long-decay phase of cycle 23, the sources of the high-speed wind at both poles, in accordance with the weak polar fields, occupied narrow latitude belts from poles to ∼60° latitudes. Moreover, in agreement with the large amplitude of the heliospheric current sheet, the low-speed wind prevailed in the low- and mid-latitude regions of the heliosphere. (4) At the transition phase between cycles 23 and 24, the high levels of density and density turbulence were observed close to the heliospheric equator and the low-speed solar wind extended from the equatorial-to-mid-latitude regions. The above results in comparison with Ulysses and other in situ measurements suggest that the source of the solar wind has changed globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has been significantly reduced

  7. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    Science.gov (United States)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  8. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  9. Predictions of Solar Cycle 24: How are We Doing?

    Science.gov (United States)

    Pesnell, William D.

    2016-01-01

    Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.

  10. A Two Dimensional Prediction of Solar Cycle 25

    Science.gov (United States)

    Munoz-Jaramillo, A.; Martens, P. C.

    2017-12-01

    To this date solar cycle most cycle predictions have focused on the forecast of solar cycle amplitude and cycle bell-curve shape. However, recent intriguing observational results suggest that all solar cycles follow the same longitudinal path regardless of their amplitude, and have a very similar decay once they reach a sufficient level of maturity. Cast in the light of our current understanding, these results suggest that the toroidal fields inside the Sun are subject to a very high turbulent diffusivity (of the order of magnitude of mixing-length estimates), and their equatorward propagation is driven by a steady meridional flow. Assuming this is the case, we will revisit the relationship between the polar fields at minimum and the amplitude of the next cycle and deliver a new generation of polar-field based predictions that include the depth of the minimum, as well as the latitude and time of the first active regions of solar cycle 25.

  11. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov [NASA Ames Research Center, Moffett Field, Mountain View, CA 94035 (United States)

    2016-11-01

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relatively new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.

  12. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  13. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  14. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    tribpo

    solar dynamo mechanism that generates electric current and magnetic field by plasma flows ... rotating body in the Universe. We also mention a list ... verifications of any solar cycle dynamo theories of short and long term behaviors of the Sun, ...

  15. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  16. Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles

    International Nuclear Information System (INIS)

    Bernardos, Eva; López, Ignacio; Rodríguez, Javier; Abánades, Alberto

    2013-01-01

    This paper proposes a first study in-depth of solar–fossil hybridization from a general perspective. It develops a set of useful parameters for analyzing and comparing hybrid plants, it studies the case of hybridizing Brayton cycles with current solar technologies and shows a tentative extrapolation of the results to integrated combined cycle systems (ISCSS). In particular, three points have been analyzed: the technical requirements for solar technologies to be hybridized with Brayton cycles, the temperatures and pressures at which hybridization would produce maximum power per unit of fossil fuel, and their mapping to current solar technologies and Brayton cycles. Major conclusions are that a hybrid plant works in optimum conditions which are not equal to those of the solar or power blocks considered independently, and that hybridizing at the Brayton cycle of a combined cycle could be energetically advantageous. -- Highlights: •We model a generic solar–fossil hybrid Brayton cycle. •We calculate the operating conditions for maximum ratio power/fuel consumption. •Best hybrid plant conditions are not the same as solar or power blocks separately. •We study potential for hybridization with current solar technologies. •Hybridization at the Brayton in a combined cycle may achieve high power/fuel ratio

  17. HEMISPHERIC HELICITY TREND FOR SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Hao Juan; Zhang Mei

    2011-01-01

    Using vector magnetograms obtained with the Spectro-polarimeter (SP) on board Hinode satellite, we studied two helicity parameters (local twist and current helicity) of 64 active regions that occurred in the descending phase of solar cycle 23 and the ascending phase of solar cycle 24. Our analysis gives the following results. (1) The 34 active regions of the solar cycle 24 follow the so-called hemispheric helicity rule, whereas the 30 active regions of the solar cycle 23 do not. (2) When combining all 64 active regions as one sample, they follow the hemispheric helicity sign rule as in most other observations. (3) Despite the so-far most accurate measurement of vector magnetic field given by SP/Hinode, the rule is still weak with large scatters. (4) The data show evidence of different helicity signs between strong and weak fields, confirming previous result from a large sample of ground-based observations. (5) With two example sunspots we show that the helicity parameters change sign from the inner umbra to the outer penumbra, where the sign of penumbra agrees with the sign of the active region as a whole. From these results, we speculate that both the Σ-effect (turbulent convection) and the dynamo have contributed in the generation of helicity, whereas in both cases turbulence in the convection zone has played a significant role.

  18. Solar cycles and climate variations

    International Nuclear Information System (INIS)

    Chistyakov, V.F.

    1990-01-01

    Climate oscillations with 100-, 200- and 300-year periods are positively correlated with solar activity oscillations: the higher is solar activity the warmer is climate. According to geological data (varved clays) it is determined, that length of cycles has decreased from 23.4 up to 11 years during latter 2.5 billion years. 12-year cycles occurred during the great glaciation periods, while 10-year cycles occurred during interglaciation periods. It is suggested, that these oscillations are related with variations of the solar activity and luminescence

  19. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena

    Science.gov (United States)

    Le, Guiming; Yang, Xingxing; Ding, Liuguang; Liu, Yonghua; Lu, Yangping; Chen, Minhao

    2014-08-01

    We investigated the solar cycle distribution of strong solar proton events (SPEs, peak flux ≥1000 pfu) and the solar-terrestrial phenomena associated with the strong SPEs during solar cycles 21-23. The results show that 37 strong SPEs were registered over this period of time, where 20 strong SPEs were originated from the super active regions (SARs) and 28 strong SPEs were accompanied by the X-class flares. Most strong SPEs were not associated with the ground level enhancement (GLE) event. Most strong SPEs occurred in the descending phases of the solar cycles. The weaker the solar cycle, the higher the proportion of strong SPES occurred in the descending phase of the cycle. The number of the strong SPEs that occurred within a solar cycle is poorly associated with the solar cycle size. The intensity of the SPEs is highly dependent of the location of their source regions, with the super SPEs (≥20000 pfu) distributed around solar disk center. A super SPE was always accompanied by a fast shock driven by the associated coronal mass ejection and a great geomagnetic storm. The source location of strongest GLE event is distributed in the well-connected region. The SPEs associated with super GLE events (peak increase rate ≥100%) which have their peak flux much lower than 10000 pfu were not accompanied by an intense geomagnetic storm.

  20. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  1. INTERNAL-CYCLE VARIATION OF SOLAR DIFFERENTIAL ROTATION

    International Nuclear Information System (INIS)

    Li, K. J.; Xie, J. L.; Shi, X. J.

    2013-01-01

    The latitudinal distributions of the yearly mean rotation rates measured by Suzuki in 1998 and 2012 and Pulkkinen and Tuominen in 1998 are utilized to investigate internal-cycle variation of solar differential rotation. The rotation rate at the solar equator seems to have decreased since cycle 10 onward. The coefficient B of solar differential rotation, which represents the latitudinal gradient of rotation, is found to be smaller in the several years after the minimum of a solar cycle than in the several years after the maximum time of the cycle, and it peaks several years after the maximum time of the solar cycle. The internal-cycle variation of the solar rotation rates looks similar in profile to that of the coefficient B. A new explanation is proposed to address such a solar-cycle-related variation of the solar rotation rates. Weak magnetic fields may more effectively reflect differentiation at low latitudes with high rotation rates than at high latitudes with low rotation rates, and strong magnetic fields may more effectively repress differentiation at relatively low latitudes than at high latitudes. The internal-cycle variation is inferred as the result of both the latitudinal migration of the surface torsional pattern and the repression of strong magnetic activity in differentiation.

  2. What's So Peculiar about the Cycle 23/24 Solar Minimum?

    Science.gov (United States)

    Sheeley, N. R., Jr.

    2010-06-01

    Traditionally, solar physicists become anxious around solar minimum, as they await the high-latitude sunspot groups of the new cycle. Now, we are in an extended sunspot minimum with conditions not seen in recent memory, and interest in the sunspot cycle has increased again. In this paper, I will describe some of the characteristics of the current solar minimum, including its great depth, its extended duration, its weak polar magnetic fields, and its small amount of open flux. Flux transport simulations suggest that these characteristics are a consequence of temporal variations of the Sun's large-scale meridional circulation.

  3. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production. These co...

  4. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  6. Polar coronal holes and solar cycles

    International Nuclear Information System (INIS)

    Simon, P.A.

    1979-01-01

    The relationship between the geomagnetic activity of the three years preceding a sunspot minimum and the peak of the next sunspot maximum confirms the polar origin of the solar wind during one part of the solar cycle. Pointing out that the polar holes have a very small size or disappear at the time of the polar field reversal, a low latitude origin of the solar-wind at sunspot maximum is suggested and the cycle variation of solar wind and geomagnetic activity is described. In addition a close relationship is noted between the maximum level of the geomagnetic activity reached a few years before a solar minimum and its level at the next sunspot maximum. Studying separately the effects of both the low latitude holes and the solar activity, the possibility of predicting both the level of geomagnetic activity and the sunspot number at the next sunspot maximum is pointed out. As a conclusion the different categories of phenomena contributing to a solar cycle are specified. (Auth.)

  7. Annual reconstruction of the solar cycle from atmospheric 14C variations

    International Nuclear Information System (INIS)

    Murphy, J.O.

    1990-01-01

    Initially, the rise and fall components of the 11-year solar sunspot cycle are approximated by separate least-squares polynomials for four cycle classifications, which are determined by the magnitude of the average of the annual sunspot numbers per cycle. Following a method is formulated to generate detailed reconstruction of the annual variation of a solar cycle based on this cycle average, and the results obtained for cycles -4 through to 21 are compared with the annual Zurich values. This procedure is then employed to establish annual sunspot numbers using published average cycle values obtained from atmospheric carbon 14 variations, which have been derived from the chemical analysis of tree ring sections. The reconstructed sequences are correlated with the observed cycle values and with tree ring width index chronologies which exhibit a significant 11-year periodicity. It is anticipated that the long carbon 14 records and parallel dendrochronological data could be employed to obtain a more detailed portrayal of previous periods of strong solar activity than that given by current estimates based on historical records. 17 refs., 2 tabs., 9 figs

  8. Prediction of solar cycle 24 using fourier series analysis

    International Nuclear Information System (INIS)

    Khalid, M.; Sultana, M.; Zaidi, F.

    2014-01-01

    Predicting the behavior of solar activity has become very significant. It is due to its influence on Earth and the surrounding environment. Apt predictions of the amplitude and timing of the next solar cycle will aid in the estimation of the several results of Space Weather. In the past, many prediction procedures have been used and have been successful to various degrees in the field of solar activity forecast. In this study, Solar cycle 24 is forecasted by the Fourier series method. Comparative analysis has been made by auto regressive integrated moving averages method. From sources, January 2008 was the minimum preceding solar cycle 24, the amplitude and shape of solar cycle 24 is approximate on monthly number of sunspots. This forecast framework approximates a mean solar cycle 24, with the maximum appearing during May 2014 (+- 8 months), with most sunspot of 98 +- 10. Solar cycle 24 will be ending in June 2020 (+- 7 months). The difference between two consecutive peak values of solar cycles (i.e. solar cycle 23 and 24 ) is 165 months(+- 6 months). (author)

  9. Forecast of the key parameters of the 24-th solar cycle

    International Nuclear Information System (INIS)

    Chumak, Oleg Vasilievich; Matveychuk, Tatiana Viktorovna

    2010-01-01

    To predict the key parameters of the solar cycle, a new method is proposed based on the empirical law describing the correlation between the maximum height of the preceding solar cycle and the entropy of the forthcoming one. The entropy of the forthcoming cycle may be estimated using this empirical law, if the maximum height of the current cycle is known. The cycle entropy is shown to correlate well with the cycle's maximum height and, as a consequence, the height of the forthcoming maximum can be estimated. In turn, the correlation found between the height of the maximum and the duration of the ascending branch (the Waldmeier rule) allows the epoch of the maximum, Tmax, to be estimated, if the date of the minimum is known. Moreover, using the law discovered, one can find out the analogous cycles which are similar to the cycle being forecasted, and hence, obtain the synoptic forecast of all main features of the forthcoming cycle. The estimates have shown the accuracy level of this technique to be 86%. The new regularities discovered are also interesting because they are fundamental in the theory of solar cycles and may provide new empirical data. The main parameters of the future solar cycle 24 are as follows: the height of the maximum is Wmax = 95 ± 20, the duration of the ascending branch is Ta = 4.5 ± 0.5yr, the total cycle duration according to the synoptic forecast is 11.3 yr. (research papers)

  10. Plasma physical aspects of the solar cycle

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1982-08-01

    Mass motions below the photosphere drive the solar cycle which is association with variations in the magnetic field structure and accompanying phenomena. In addition to semi-empirical models, dynamo theories have been used to explain the solar cycle. The emergence of magnetic field generated by these mechanisms and its expansions into the corona involves many plasma physical processes. Magnetic buoyancy aids the expulsion of magnetic flux. The corona may respond dynamically or by continually adjusting to a quasi-static force-free or pressure-balanced equilibrium. The formation and disruption of current sheets is significant for the overall structure of the coronal magnetic field and the physics of quiescent prominences. The corona has a fine structure consisting of magnetic loops. The structure and stability of these are important as they are one of the underlying elements which make up the corona. (Author)

  11. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  12. NONLINEAR PREDICTION OF SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Kilcik, A.; Anderson, C. N. K.; Ye, H.; Sugihara, G.; Rozelot, J. P.; Ozguc, A.

    2009-01-01

    Sunspot activity is highly variable and challenging to forecast. Yet forecasts are important, since peak activity has profound effects on major geophysical phenomena including space weather (satellite drag, telecommunications outages) and has even been correlated speculatively with changes in global weather patterns. This paper investigates trends in sunspot activity, using new techniques for decadal-scale prediction of the present solar cycle (cycle 24). First, Hurst exponent H analysis is used to investigate the autocorrelation structure of the putative dynamics; then the Sugihara-May algorithm is used to predict the ascension time and the maximum intensity of the current sunspot cycle. Here we report H = 0.86 for the complete sunspot number data set (1700-2007) and H = 0.88 for the reliable sunspot data set (1848-2007). Using the Sugihara-May algorithm analysis, we forecast that cycle 24 will reach its maximum in 2012 December at approximately 87 sunspot units.

  13. Solar cycle modulation of ENSO variability

    Science.gov (United States)

    Kodera, Kunihiko; Thiéblemont, Rémi

    2016-04-01

    Inspired by the work of Labitzke and van Loon on solar/QBO modulation in the stratosphere, Barnett (1989) conducted an investigation on the relationship between the the biannual component of the sea surface temperature (SST) in the equatorial eastern Pacific and the solar activity. He found that the amplitude of biannual component of the SST (BO) is modulated by the 11-year solar cycle: the amplitude of the BO is large during a period of low solar activity, but small during high solar activity. More than 25-years or two solar cycle has passed since his finding, but the relationship still holds. In order to get an insight into the mechanism of the solar modulation of the El Niño Southern Oscillation (ENSO), here we have revisited this problem. Solar cycle modulation of the BO in the tropical SST is discernible since the end of the 19th centuries, but the amplitude modulation is particularly clear after 1960's. The composite analysis of the SST based on the amplitude of the BO during 1958-2012, indicates that the amplitude of BO is larger when the equatorial Pacific temperature anomalies are high in the central Pacific, but low in the eastern Pacific. Central Pacific anomalies extend to the northern hemisphere, while those in the central Pacific spread toward the southern hemisphere. In short, this anomalous SST pattern is similar to the El Niño modoki. In this connection, it should be noted that the solar signal in the tropical SST also exhibits a similar pattern. This suggests that the modulation of the ENSO variability by the solar cycle originates through a modulation of the El Niño Modoki rather than the canonical El Nino.

  14. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  15. The 11-year solar cycle in current reanalyses: a (non)linear attribution study of the middle atmosphere

    Science.gov (United States)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2015-06-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.

  16. Ten cycles of solar and geomagnetic activity

    International Nuclear Information System (INIS)

    Legrand, J.P.

    1981-01-01

    Series of 110 years of sunspot numbers and indices of geomagnetic activity are used with 17 years of solar wind data in order to study through solar cycles both stream and shock event solar activity. According to their patterns on Bartels diagrams of geomagnetic indices, stable wind streams and transient solar activities are separated from each other. Two classes of stable streams are identified: equatorial streams occurring sporadically, for several months, during the main phase of sunspot cycles and both polar streams established, for several years, at each cycle, before sunspot minimum. Polar streams are the first activity of solar cycles. For study of the relationship between transient geomagnetic phenomena and sunspot activity, we raise the importance of the contribution, at high spot number, of severe storms and, at low spot number, of short lived and unstable streams. Solar wind data are used to check and complete the above results. As a conclusion, we suggest a unified scheme of solar activity evolution with a starting point every eleventh year, a total duration of 17 years and an overlapping of 6 years between the first and the last phase of both successive series of phenomena: first, from polar field reversal to sunspot minimum, a phase of polar wind activity of the beginning cycle is superimposed on the weak contribution of shock events of the ending cycle; secondly, an equatorial phase mostly of shock events is superimposed on a variable contribution of short lived and sporadic stable equatorial stream activities; and thirdly a phase of low latitude shock events is superimposed on the polar stream interval of the following cycle. (orig.)

  17. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  18. Analysis of geomagnetically induced currents at a low-latitude region over the solar cycles 23 and 24: comparison between measurements and calculations

    Directory of Open Access Journals (Sweden)

    Barbosa Cleiton

    2015-01-01

    Full Text Available Geomagnetically Induced Currents (GIC are a space weather effect, which affects ground-based technological structures at all latitudes on the Earth’s surface. GIC occurrence and amplitudes have been monitored in power grids located at high and middle latitudes since 1970s and 1980s, respectively. This monitoring provides information about the GIC intensity and the frequency of occurrence during geomagnetic storms. In this paper, we investigate GIC occurrence in a power network at low latitudes (in the central Brazilian region during the solar cycles 23 and 24. Calculated and measured GIC data are compared for the most intense geomagnetic storms (i.e. −50 < Dst < −50 nT of the solar cycle 24. The results obtained from this comparison show a good agreement. The success of the model employed for the calculation of GIC leads to the possibility of determining GIC for events during the solar cycle 23 as well. Calculated GIC in one transformer reached ca. 30 A during the “Halloween storm” in 2003 whilst most frequent intensities lie below 10 A. The normalized inverse cumulative frequency for GIC data was calculated for the solar cycle 23 in order to perform a statistical analysis. It was found that a q-exponential Tsallis distribution fits the calculated GIC frequency distribution for more than 99% of the data. This analysis provides an overview of the long-term GIC monitoring at low latitudes and suggests new insight into critical phenomena involved in the GIC generation.

  19. Nonlinear solar cycle forecasting: theory and perspectives

    Science.gov (United States)

    Baranovski, A. L.; Clette, F.; Nollau, V.

    2008-02-01

    In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters - the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  20. The use of solar faculae in studies of the sunspot cycle

    International Nuclear Information System (INIS)

    Brown, G.M.; Evans, R.

    1980-01-01

    Comparison of the long-term variation of photospheric faculae areas with that of sunspots shows that studies of faculae provide both complementary and supplementary information on the behaviour of the solar cycle. Detailed studies of the development of sunspots with respect to faculae show that there is a high degree of order over much of a given cycle, but marked differences from cycle to cycle. Within a cycle the relationship between spot and faculae areas appears to be similar for the N and S solar hemispheres, and over the early stages of a cycle it is directly related to the magnitude of the maximum sunspot number subsequently attained in that cycle. This result may well have predictive applications, and formulae are given relating the peak sunspot number to simple parameters derived from this early developmental stage. Full application to the current cycle 21 is denied due to the cessation of the Greenwich daily photoheliographic measurements, but use of the cruder weekly data suggests a maximum smoothed sunspot number of 150 +- 22. The effects of the incompatibility of the spot and faculae data, in that faculae are unobservable over a large fraction of the solar disc and also do not always develop associated spots, have been examined in a detailed study of two cycles and shown not to vitiate the results. (orig.)

  1. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  2. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  3. Solar cycle variations of geocoronal balmer α emission

    International Nuclear Information System (INIS)

    Nossal, S.; Reynolds, R.J.; Roesler, F.L.; Scherb, F.

    1993-01-01

    Observations of the geocoronal Balmer in nightglow have been made from Wisconsin for more than a solar cycle with an internally consistent intensity reference to standard astronomical nebulae. These measurements were made with a double etalon, pressure-scanned, 15-cm aperture Fabry-Perot interferometer. The resulting long time data provides an opportunity to examine solar cycle influence on the mid-latitude exosphere and to address accompanying questions concerning the degree to which the exosphere is locally static or changing. The exospheric Balmer α absolute intensity measurements reported here show no statistically significant variations throughout the solar cycle when the variation with viewing geometry is removed by normalizing the data to reference exospheric model predictions by Anderson et al. However, the relative intensity dependence on solar depression angle does show a solar cycle variation. This variation suggests a possible related variation in the exospheric hydrogen density profile, although other interpretations are also possible. The results suggest that additional well-calibrated data taken over a longer time span could probe low-amplitude variations over the solar cycle and test predictions of a slow monotonic increase in exospheric hydrogen arising from greenhouse gases. 21 refs., 9 figs., 2 tabs

  4. Nonlinear solar cycle forecasting: theory and perspectives

    Directory of Open Access Journals (Sweden)

    A. L. Baranovski

    2008-02-01

    Full Text Available In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  5. SOLAR CYCLE 24: CURIOUS CHANGES IN THE RELATIVE NUMBERS OF SUNSPOT GROUP TYPES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Ozguc, A.; Rozelot, J. P.

    2014-01-01

    Here, we analyze different sunspot group (SG) behaviors from the points of view of both the sunspot counts (SSCs) and the number of SGs, in four categories, for the time period of 1982 January-2014 May. These categories include data from simple (A and B), medium (C), large (D, E, and F), and decaying (H) SGs. We investigate temporal variations of all data sets used in this study and find the following results. (1) There is a very significant decrease in the large groups' SSCs and the number of SGs in solar cycle 24 (cycle 24) compared to cycles 21-23. (2) There is no strong variation in the decaying groups' data sets for the entire investigated time interval. (3) Medium group data show a gradual decrease for the last three cycles. (4) A significant decrease occurred in the small groups during solar cycle 23, while no strong changes show in the current cycle (cycle 24) compared to the previous ones. We confirm that the temporal behavior of all categories is quite different from cycle to cycle and it is especially flagrant in solar cycle 24. Thus, we argue that the reduced absolute number of the large SGs is largely, if not solely, responsible for the weak cycle 24. These results might be important for long-term space weather predictions to understand the rate of formation of different groups of sunspots during a solar cycle and the possible consequences for the long-term geomagnetic activity

  6. Fractal Dimension and Maximum Sunspot Number in Solar Cycle

    Directory of Open Access Journals (Sweden)

    R.-S. Kim

    2006-09-01

    Full Text Available The fractal dimension is a quantitative parameter describing the characteristics of irregular time series. In this study, we use this parameter to analyze the irregular aspects of solar activity and to predict the maximum sunspot number in the following solar cycle by examining time series of the sunspot number. For this, we considered the daily sunspot number since 1850 from SIDC (Solar Influences Data analysis Center and then estimated cycle variation of the fractal dimension by using Higuchi's method. We examined the relationship between this fractal dimension and the maximum monthly sunspot number in each solar cycle. As a result, we found that there is a strong inverse relationship between the fractal dimension and the maximum monthly sunspot number. By using this relation we predicted the maximum sunspot number in the solar cycle from the fractal dimension of the sunspot numbers during the solar activity increasing phase. The successful prediction is proven by a good correlation (r=0.89 between the observed and predicted maximum sunspot numbers in the solar cycles.

  7. Solar UV Variations During the Decline of Cycle 23

    Science.gov (United States)

    DeLand, Matthew, T.; Cebula, Richard P.

    2011-01-01

    Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements

  8. Solar cycle variation of cosmic ray intensity along with interplanetary and solar wind plasma parameters

    International Nuclear Information System (INIS)

    Mishra, R.K.; Tiwari, S.; Agarwal, R.

    2008-01-01

    Galactic cosmic rays are modulated at their propagation in the heliosphere by the effect of the large-scale structure of the interplanetary medium. A comparison of the variations in the cosmic ray intensity data obtained by neutron monitoring stations with those in geomagnetic disturbance, solar wind velocity (V), interplanetary magnetic field (B), and their product (V , B) near the Earth for the period 1964-2004 has been presented so as to establish a possible correlation between them. We used the hourly averaged cosmic ray counts observed with the neutron monitor in Moscow. It is noteworthy that a significant negative correlation has been observed between the interplanetary magnetic field, product (V , B) and cosmic ray intensity during the solar cycles 21 and 22. The solar wind velocity has a good positive correlation with cosmic ray intensity during solar cycle 21, whereas it shows a weak correlation during cycles 20, 22 and 23. The interplanetary magnetic field shows a weak negative correlation with cosmic rays for solar cycle 20, and a good anti-correlation for solar cycles 21-23 with the cosmic ray intensity, which, in turn, shows a good positive correlation with disturbance time index (Dst) during solar cycles 21 and 22, and a weak correlation for cycles 20 and 23. (Authors)

  9. Solar cycle 22 control on daily geomagnetic variation at Terra Nova Bay (Antarctica

    Directory of Open Access Journals (Sweden)

    P. Palangio

    1998-06-01

    Full Text Available Nine summer geomagnetic observatory data (1986-1995 from Terra Nova Bay Base, Antarctica (Lat.74.690S, Long. 164.120E, 80.040S magnetic latitude are used to investigate the behaviour of the daily variation of the geomagnetic field at polar latitude. The instrumentation includes a proton precession magnetometer for total intensity |F| digital recordings; DI magnetometers for absolute measuring of the angular elements D and I and a three axis flux-gate system for acquiring H,D Z time variation data. We find that the magnetic time variation amplitude follows the solar cycle evolution and that the ratio between minimum solar median and maximum solar median is between 2-3 for intensive elements (H and Z and 1.7 for declination(D. The solar cycle effect on geomagnetic daily variation elements amplitude in Antarctica, in comparison with previous studies, is then probably larger than expected. As a consequence, the electric current system that causes the daily magnetic field variation reveals a quite large solar cycle effect at Terra Nova Bay.

  10. Trends and solar cycle effects in mesospheric ice clouds

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  11. An integrated solar thermal power system using intercooled gas turbine and Kalina cycle

    International Nuclear Information System (INIS)

    Peng, Shuo; Hong, Hui; Jin, Hongguang; Wang, Zhifeng

    2012-01-01

    A new solar tower thermal power system integrating the intercooled gas turbine top cycle and the Kalina bottoming cycle is proposed in the present paper. The thermodynamic performance of the proposed system is investigated, and the irreversibility of energy conversion is disclosed using the energy–utilization diagram method. On the top cycle of the proposed system, the compressed air after being intercooled is heated at 1000 °C or higher at the solar tower receiver and is used to drive the gas turbine to generate power. The ammonia–water mixture as the working substance of the bottom cycle recovers the waste heat from the gas turbine to generate power. A concise analytical formula of solar-to-electric efficiency of the proposed system is developed. As a result, the peak solar-to-electric efficiency of the proposed system is 27.5% at a gas turbine inlet temperature of 1000 °C under the designed solar direct normal irradiance of 800 W/m 2 . Compared with a conventional solar power tower plant, the proposed integrated system conserves approximately 69% of consumed water. The results obtained in the current study provide an approach to improve solar-to-electric efficiency and offer a potential to conserve water for solar thermal power plants in arid area. -- Highlights: ► An Integrated Solar Thermal Power System is modeled. ► A formula forecasting the thermodynamic performance is proposed. ► The irreversibility of energy conversion is disclosed using an energy utilization method. ► The effect of key operational parameters on thermal performance is examined.

  12. Characteristic studies on solar x-ray flares and solar radio bursts during descending phases of solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Bhattacharya, J.; De, B.K.; Guha, A.

    2014-01-01

    In this paper, a comparative study between the solar X-ray flares and solar radio bursts in terms of their duration and energy has been done. This has been done by analyzing the data in a statistical way covering the descending phase of the 22nd and 23rd solar cycles. It has been observed that the most probable value of duration of both solar X-ray flares and solar radio bursts remain same for a particular cycle. There is a slight variation in the most probable value of duration in going from 22nd cycle to 23rd cycle in the case of both kinds of events. This small variation may be due to the variation of polar field. A low correlation has been observed between energy fluxes in solar X-ray flares and in solar radio bursts. This has been attributed to the non symmetric contribution of energy to the solar radio and X-ray band controlled by solar magnetic field

  13. Prediction of solar activity from solar background magnetic field variations in cycles 21-23

    International Nuclear Information System (INIS)

    Shepherd, Simon J.; Zharkov, Sergei I.; Zharkova, Valentina V.

    2014-01-01

    A comprehensive spectral analysis of both the solar background magnetic field (SBMF) in cycles 21-23 and the sunspot magnetic field in cycle 23 reported in our recent paper showed the presence of two principal components (PCs) of SBMF having opposite polarity, e.g., originating in the northern and southern hemispheres, respectively. Over a duration of one solar cycle, both waves are found to travel with an increasing phase shift toward the northern hemisphere in odd cycles 21 and 23 and to the southern hemisphere in even cycle 22. These waves were linked to solar dynamo waves assumed to form in different layers of the solar interior. In this paper, for the first time, the PCs of SBMF in cycles 21-23 are analyzed with the symbolic regression technique using Hamiltonian principles, allowing us to uncover the underlying mathematical laws governing these complex waves in the SBMF presented by PCs and to extrapolate these PCs to cycles 24-26. The PCs predicted for cycle 24 very closely fit (with an accuracy better than 98%) the PCs derived from the SBMF observations in this cycle. This approach also predicts a strong reduction of the SBMF in cycles 25 and 26 and, thus, a reduction of the resulting solar activity. This decrease is accompanied by an increasing phase shift between the two predicted PCs (magnetic waves) in cycle 25 leading to their full separation into the opposite hemispheres in cycle 26. The variations of the modulus summary of the two PCs in SBMF reveals a remarkable resemblance to the average number of sunspots in cycles 21-24 and to predictions of reduced sunspot numbers compared to cycle 24: 80% in cycle 25 and 40% in cycle 26.

  14. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  15. The Solar Wind Source Cycle: Relationship to Dynamo Behavior

    Science.gov (United States)

    Luhmann, J. G.; Li, Y.; Lee, C. O.; Jian, L. K.; Petrie, G. J. D.; Arge, C. N.

    2017-12-01

    Solar cycle trends of interest include the evolving properties of the solar wind, the heliospheric medium through which the Sun's plasmas and fields interact with Earth and the planets -including the evolution of CME/ICMEs enroute. Solar wind sources include the coronal holes-the open field regions that constantly evolve with solar magnetic fields as the cycle progresses, and the streamers between them. The recent cycle has been notably important in demonstrating that not all solar cycles are alike when it comes to contributions from these sources, including in the case of ecliptic solar wind. In particular, it has modified our appreciation of the low latitude coronal hole and streamer sources because of their relative prevalence. One way to understand the basic relationship between these source differences and what is happening inside the Sun and on its surface is to use observation-based models like the PFSS model to evaluate the evolution of the coronal field geometry. Although the accuracy of these models is compromised around solar maximum by lack of global surface field information and the sometimes non-potential evolution of the field related to more frequent and widespread emergence of active regions, they still approximate the character of the coronal field state. We use these models to compare the inferred recent cycle coronal holes and streamer belt sources of solar wind with past cycle counterparts. The results illustrate how (still) hemispherically asymmetric weak polar fields maintain a complex mix of low-to-mid latitude solar wind sources throughout the latest cycle, with a related marked asymmetry in the hemispheric distribution of the ecliptic wind sources. This is likely to be repeated until the polar field strength significantly increases relative to the fields at low latitudes, and the latter symmetrize.

  16. Weakest solar wind of the space age and the current 'MINI' solar maximum

    International Nuclear Information System (INIS)

    McComas, D. J.; Angold, N.; Elliott, H. A.; Livadiotis, G.; Schwadron, N. A.; Smith, C. W.; Skoug, R. M.

    2013-01-01

    The last solar minimum, which extended into 2009, was especially deep and prolonged. Since then, sunspot activity has gone through a very small peak while the heliospheric current sheet achieved large tilt angles similar to prior solar maxima. The solar wind fluid properties and interplanetary magnetic field (IMF) have declined through the prolonged solar minimum and continued to be low through the current mini solar maximum. Compared to values typically observed from the mid-1970s through the mid-1990s, the following proton parameters are lower on average from 2009 through day 79 of 2013: solar wind speed and beta (∼11%), temperature (∼40%), thermal pressure (∼55%), mass flux (∼34%), momentum flux or dynamic pressure (∼41%), energy flux (∼48%), IMF magnitude (∼31%), and radial component of the IMF (∼38%). These results have important implications for the solar wind's interaction with planetary magnetospheres and the heliosphere's interaction with the local interstellar medium, with the proton dynamic pressure remaining near the lowest values observed in the space age: ∼1.4 nPa, compared to ∼2.4 nPa typically observed from the mid-1970s through the mid-1990s. The combination of lower magnetic flux emergence from the Sun (carried out in the solar wind as the IMF) and associated low power in the solar wind points to the causal relationship between them. Our results indicate that the low solar wind output is driven by an internal trend in the Sun that is longer than the ∼11 yr solar cycle, and they suggest that this current weak solar maximum is driven by the same trend.

  17. Contrasting the solar rotation rate of cycles 23 and 24

    International Nuclear Information System (INIS)

    Antia, H M; Basu, Sarbani

    2013-01-01

    The minimum between solar cycles 23 and 24 was quite unusual compared with other minima for which detailed data are available and this pointed to the possibility that cycle 24 will be unusual. Cycle 24 is almost at its maximum now and we take this opportunity to compare and contrast the solar rotation rate and zonal flows between the two cycles. We find that the rotation rate during cycle 24 is slightly lower than that during cycle 23. Additionally we find that the poleward branch of the zonal flow that is believed to be the harbinger of the next solar cycle is very week in cycle 24.

  18. Solar cycle variations in IMF intensity

    International Nuclear Information System (INIS)

    King, J.H.

    1979-01-01

    Annual averages of logarithms of hourly interplanetary magnetic field (IMF) intensities, obtained from geocentric spacecraft between November 1963 and December 1977, reveal the following solar cycle variation. For 2--3 years at each solar minimum period, the IMF intensity is depressed by 10--15% relative to its mean value realized during a broad 9-year period contered at solar maximum. No systematic variations occur during this 9-year period. The solar minimum decrease, although small in relation to variations in some other solar wind parameters, is both statistically and physically significant

  19. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  20. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  1. Solar Cycle Variation of Interplanetary Coronal Mass Ejection ...

    Indian Academy of Sciences (India)

    2010-08-25

    Aug 25, 2010 ... 3Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences ... ICME-associated CME latitudes during solar cycle 23 using Song et al.'s method. ..... latitudes during the three phases of cycle 23 separately for the northern (left panel) and southern. (right panel) ...

  2. The Solar Cycle and, How Do We Know What We Know?

    Science.gov (United States)

    Adams, Mitzi

    2013-01-01

    Through the use of observations, mathematics, mathematical tools (such as graphs), inference, testing, and prediction we have gathered evidence that there are sunspots, a solar cycle, and have begun to understand more about our star, the Sun. We are making progress in understanding the cause of the solar cycle. We expect solar cycle 24 to peak soon. Cycle 24 will be the smallest cycle in 100 years.

  3. Empirical solar/stellar cycle simulations

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2015-01-01

    Full Text Available As a result of the magnetic cycle, the properties of the solar oscillations vary periodically. With the recent discovery of manifestations of activity cycles in the seismic data of other stars, the understanding of the different contributions to such variations becomes even more important. With this in mind, we built an empirical parameterised model able to reproduce the properties of the sunspot cycle. The resulting simulations can be used to estimate the magnetic-induced frequency shifts.

  4. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  5. SOLAR SOURCES OF 3He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    International Nuclear Information System (INIS)

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 3 He-rich solar energetic particle events at ≲1 MeV nucleon −1 that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of 3 He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, 3 He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the 3 He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed

  6. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  7. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  8. Solar-cycle variation of zonal and meridional flow

    International Nuclear Information System (INIS)

    Komm, R; Howe, R; Hill, F; Hernandez, I Gonzalez; Haber, D

    2011-01-01

    We study the variation with the solar cycle of the zonal and meridional flows in the near-surface layers of the solar convection zone. We have analyzed MDI Dynamics-Program data with ring-diagram analysis covering the rising phase of cycle 23, while the analyzed GONG high-resolution data cover the maximum and declining phase of cycle 23. For the zonal flow, the migration with latitude of the flow pattern is apparent in the deeper layers, while for the meridional flow, a migration with latitude is apparent only in the layers close to the surface. The faster-than-average bands of the zonal flow associated with the new cycle are clearly visible. Similarly, a pattern related to the new cycle appears in the residual meridional flow. We also study the flow differences between the hemispheres during the course of the solar cycle. The difference pattern of the meridional flow is slanted in latitude straddling the faster-than-average band of the torsional oscillation pattern in the zonal flow. The difference pattern of the zonal flow, on the other hand, resembles the cycle variation of the meridional flow. In addition, the meridional flow during the minimum of cycle 23/24 appears to be slightly stronger than during the previous minimum of cycle 22/23.

  9. Thermoeconomic optimization of a combined-cycle solar tower power plant

    International Nuclear Information System (INIS)

    Spelling, James; Favrat, Daniel; Martin, Andrew; Augsburger, Germain

    2012-01-01

    A dynamic model of a pure-solar combined-cycle power plant has been developed in order to allow determination of the thermodynamic and economic performance of the plant for a variety of operating conditions and superstructure layouts. The model was then used for multi-objective thermoeconomic optimization of both the power plant performance and cost, using a population-based evolutionary algorithm. In order to examine the trade-offs that must be made, two conflicting objectives will be considered, namely minimal investment costs and minimal levelized electricity costs. It was shown that efficiencies in the region of 18–24% can be achieved, and this for levelized electricity costs in the region of 12–24 UScts/kWh e , depending on the magnitude of the initial investment, making the system competitive with current solar thermal technology. -- Highlights: ► Pure-solar combined-cycle studied using thermoeconomic tools. ► Multi-objective optimization conducted to determine Pareto-optimal power plant designs. ► Levelised costs between 12 and 24 UScts/kWhe predicted. ► Efficiencies between 18 and 24% predicted.

  10. On the Reduced Geoeffectiveness of Solar Cycle 24: A Moderate Storm Perspective

    Science.gov (United States)

    Selvakumaran, R.; Veenadhari, B.; Akiyama, S.; Pandya, Megha; Gopalswamy, N,; Yashiro, S.; Kumar, Sandeep; Makela, P.; Xie, H.

    2016-01-01

    The moderate and intense geomagnetic storms are identified for the first 77 months of solar cycles 23 and 24. The solar sources responsible for the moderate geomagnetic storms are indentified during the same epoch for both the cycles. Solar cycle 24 has shown nearly 80% reduction in the occurrence of intense storms whereas it is only 40% in case of moderate storms when compared to previous cycle. The solar and interplanetary characteristics of the moderate storms driven by coronal mass ejection (CME) are compared for solar cycles 23 and 24 in order to see reduction in geoeffectiveness has anything to do with the occurrence of moderate storm. Though there is reduction in the occurrence of moderate storms, the Dst distribution does not show much difference. Similarly, the solar source parameters like CME speed, mass, and width did not show any significant variation in the average values as well as the distribution. The correlation between VBz and Dst is determined, and it is found to be moderate with value of 0.68 for cycle 23 and 0.61 for cycle 24. The magnetospheric energy flux parameter epsilon (epsilon) is estimated during the main phase of all moderate storms during solar cycles 23 and 24. The energy transfer decreased in solar cycle 24 when compared to cycle 23. These results are significantly different when all geomagnetic storms are taken into consideration for both the solar cycles.

  11. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  12. A combined cycle utilizing LNG and low-temperature solar energy

    International Nuclear Information System (INIS)

    Rao, Wen-Ji; Zhao, Liang-Ju; Liu, Chao; Zhang, Mo-Geng

    2013-01-01

    This paper has proposed a combined cycle, in which low-temperature solar energy and cold energy of liquefied natural gas (LNG) can be effectively utilized together. Comparative analysis based on a same net work output between the proposed combined cycle and separated solar ORC and LNG vapor system has been done. The results show that, for the combined cycle, a decrease of nearly 82.2% on the area of solar collector is obtained and the area of heat exchanger decreases by 31.7%. Moreover, exergy efficiency is higher than both two separated systems. This work has also dealt with the thermodynamic analyses for the proposed cycle. The results show that R143a followed by propane and propene emerges as most suitable fluid. Moreover, with a regenerator added in the cycle, performance improvement is obtained for the reduction on area of solar collector and increase on system efficiency and exergy efficiency. -- Highlights: • A combined cycle utilizing low-temperature solar energy and LNG together is proposed. • Five objection functions are used to decide the best working fluids. • Cycle with a regenerator has good performance

  13. Update on a Solar Magnetic Catalog Spanning Four Solar Cycles

    Science.gov (United States)

    Vargas-Acosta, Juan Pablo; Munoz-Jaramillo, Andres; Vargas Dominguez, Santiago; Werginz, Zachary; DeLuca, Michael D.; Longcope, Dana; Harvey, J. W.; Windmueller, John; Zhang, Jie; Martens, Petrus C.

    2017-08-01

    Bipolar magnetic regions (BMRs) are the cornerstone of solar cycle propagation, the building blocks that give structure to the solar atmosphere, and the origin of the majority of space weather events. However, in spite of their importance, there is no homogeneous BMR catalog spanning the era of systematic solar magnetic field measurements. Here we present the results of an ongoing project to address this deficiency applying the Bipolar Active Region Detection (BARD) code to magnetograms from the 512 Channel of the Kitt Peak Vaccum Telescope, SOHO/MDI, and SDO/HMI.The BARD code automatically identifies BMRs and tracks them as they are rotated by differential rotation. The output of the automatic detection is supervised by a human observer to correct possible mistakes made by the automatic algorithm (like incorrect pairings and tracking mislabels). Extra passes are made to integrate fragmented regions as well as to balance the flux between BMR polarities. At the moment, our BMR database includes nearly 10,000 unique objects (detected and tracked) belonging to four separate solar cycles (21-24).

  14. Solar wind structure out of the ecliptic plane over solar cycles

    Science.gov (United States)

    Sokol, J. M.; Bzowski, M.; Tokumaru, M.

    2017-12-01

    Sun constantly emits a stream of plasma known as solar wind. Ground-based observations of the solar wind speed through the interplanetary scintillations (IPS) of radio flux from distant point sources and in-situ measurements by Ulysses mission revealed that the solar wind flow has different characteristics depending on the latitude. This latitudinal structure evolves with the cycle of solar activity. The knowledge on the evolution of solar wind structure is important for understanding the interaction between the interstellar medium surrounding the Sun and the solar wind, which is responsible for creation of the heliosphere. The solar wind structure must be taken into account in interpretation of most of the observations of heliospheric energetic neutral atoms, interstellar neutral atoms, pickup ions, and heliospheric backscatter glow. The information on the solar wind structure is not any longer available from direct measurements after the termination of Ulysses mission and the only source of the solar wind out of the ecliptic plane is the IPS observations. However, the solar wind structure obtained from this method contains inevitable gaps in the time- and heliolatitude coverage. Sokół et al 2015 used the solar wind speed data out of the ecliptic plane retrieved from the IPS observations performed by Institute for Space-Earth Environmental Research (Nagoya University, Japan) and developed a methodology to construct a model of evolution of solar wind speed and density from 1985 to 2013 that fills the data gaps. In this paper we will present a refined model of the solar wind speed and density structure as a function of heliographic latitude updated by the most recent data from IPS observations. And we will discuss methods of extrapolation of the solar wind structure out of the ecliptic plane for the past solar cycles, when the data were not available, as well as forecasting for few years upward.

  15. Forecasting the peak of the present solar activity cycle 24

    Science.gov (United States)

    Hamid, R. H.; Marzouk, B. A.

    2018-06-01

    Solar forecasting of the level of sun Activity is very important subject for all space programs. Most predictions are based on the physical conditions prevailing at or before the solar cycle minimum preceding the maximum in question. Our aim is to predict the maximum peak of cycle 24 using precursor techniques in particular those using spotless event, geomagnetic aamin. index and solar flux F10.7. Also prediction of exact date of the maximum (Tr) is taken in consideration. A study of variation over previous spotless event for cycles 7-23 and that for even cycles (8-22) are carried out for the prediction. Linear correlation between maximum of solar cycles (RM) and spotless event around the preceding minimum gives R24t = 88.4 with rise time Tr = 4.6 years. For the even cycles R24E = 77.9 with rise time Tr = 4.5 y's. Based on the average aamin. index for cycles (12-23), we estimate the expected amplitude for cycle 24 to be Raamin = 99.4 and 98.1 with time rise of Traamin = 4.04 & 4.3 years for both the total and even cycles in consecutive. The application of the data of solar flux F10.7 which cover only cycles (19-23) was taken in consideration and gives predicted maximum amplitude R24 10.7 = 126 with rise time Tr107 = 3.7 years, which are over estimation. Our result indicating to somewhat weaker of cycle 24 as compared to cycles 21-23.

  16. UNUSUAL TRENDS IN SOLAR P-MODE FREQUENCIES DURING THE CURRENT EXTENDED MINIMUM

    International Nuclear Information System (INIS)

    Tripathy, S. C.; Jain, K.; Hill, F.; Leibacher, J. W.

    2010-01-01

    We investigate the behavior of the intermediate-degree mode frequencies of the Sun during the current extended minimum phase to explore the time-varying conditions in the solar interior. Using contemporaneous helioseismic data from the Global Oscillation Network Group (GONG) and the Michelson Doppler Imager (MDI), we find that the changes in resonant mode frequencies during the activity minimum period are significantly greater than the changes in solar activity as measured by different proxies. We detect a seismic minimum in MDI p-mode frequency shifts during 2008 July-August but no such signature is seen in mean shifts computed from GONG frequencies. We also analyze the frequencies of individual oscillation modes from GONG data as a function of latitude and observe a signature of the onset of the solar cycle 24 in early 2009. Thus, the intermediate-degree modes do not confirm the onset of the cycle 24 during late 2007 as reported from the analysis of the low-degree Global Oscillations at Low Frequency frequencies. Further, both the GONG and MDI frequencies show a surprising anti-correlation between frequencies and activity proxies during the current minimum, in contrast to the behavior during the minimum between cycles 22 and 23.

  17. Statistics of the largest sunspot and facular areas per solar cycle

    International Nuclear Information System (INIS)

    Willis, D.M.; Kabasakal Tulunay, Y.

    1979-01-01

    The statistics of extreme values is used to investigate the statistical properties of the largest areas sunspots and photospheric faculae per solar cycle. The largest values of the synodic-solar-rotation mean areas of umbrae, whole spots and faculae, which have been recorded for nine solar cycles, are each shown to comply with the general form of the extreme value probability function. Empirical expressions are derived for the three extreme value populations from which the characteristic statistical parameters, namely the mode, median, mean and standard deviation, can be calculated for each population. These three extreme value populations are also used to find the expected ranges of the extreme areas in a group of solar cycles as a function of the number of cycles in the group. The extreme areas of umbrae and whole spots have a dispersion comparable to that found by Siscoe for the extreme values of sunspot number, whereas the extreme areas of faculae have a smaller dispersion which is comparable to that found by Siscoe for the largest geomagnetic storm per solar cycle. The expected range of the largest sunspot area per solar cycle for a group of one hundred cycles appears to be inconsistent with the existence of the prolonged periods of sunspot minima that have been inferred from the historical information on solar variability. This inconsistency supports the contention that there are temporal changes of solar-cycle statistics during protracted periods of sunspot minima (or maxima). Indeed, without such temporal changes, photospheric faculae should have been continually observable throughout the lifetime of the Sun. (orig.)

  18. Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration

    Directory of Open Access Journals (Sweden)

    Antonio Rovira

    2018-04-01

    Full Text Available This paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs using different solar concentration technologies: parabolic trough collectors (PTC, linear Fresnel reflectors (LFR and central tower receiver (CT. Each solar technology (i.e. PTC, LFR and CT is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG, increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.

  19. Solar cycle variations of magnetopause locations

    Czech Academy of Sciences Publication Activity Database

    Němeček, Z.; Šafránková, J.; Lopez, R. E.; Dušík, Š.; Nouzák, L.; Přech, J.; Šimůnek, Jiří; Shue, J.-H.

    2016-01-01

    Roč. 58, č. 2 (2016), s. 240-248 ISSN 0273-1177 R&D Projects: GA ČR(CZ) GA14-19376S Institutional support: RVO:68378289 Keywords : magnetopause location * F-10.7 flux * solar cycle * solar wind velocity Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.401, year: 2016 http://www.sciencedirect.com/science/article/pii/S0273117715007115

  20. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants

    International Nuclear Information System (INIS)

    Zare, V.; Hasanzadeh, M.

    2016-01-01

    Highlights: • A novel combined cycle is proposed for solar power tower plants. • The effects of solar subsystem and power cycle parameters are examined. • The proposed combined cycle yields exergy efficiencies of higher than 70%. • For the overall power plant exergy efficiencies of higher than 30% is achievable. - Abstract: Concentrating Solar Power (CSP) technology offers an interesting potential for future power generation and research on CSP systems of all types, particularly those with central receiver system (CRS) has been attracting a lot of attention recently. Today, these power plants cannot compete with the conventional power generation systems in terms of Levelized Cost of Electricity (LCOE) and if a competitive LCOE is to be reached, employing an efficient thermodynamic power cycle is deemed essential. In the present work, a novel combined cycle is proposed for power generation from solar power towers. The proposed system consists of a closed Brayton cycle, which uses helium as the working fluid, and two organic Rankine cycles which are employed to recover the waste heat of the Brayton cycle. The system is thermodynamically assessed from both the first and second law viewpoints. A parametric study is conducted to examine the effects of key operating parameters (including solar subsystem and power cycle parameters) on the overall power plant performance. The results indicate that exergy efficiencies of higher than 30% are achieved for the overall power plant. Also, according to the results, the power cycle proposed in this work has a better performance than the other investigated Rankine and supercritical CO_2 systems operating under similar conditions, for these types of solar power plants.

  1. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  2. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  3. TWO NOVEL PARAMETERS TO EVALUATE THE GLOBAL COMPLEXITY OF THE SUN'S MAGNETIC FIELD AND TRACK THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.; Landi, E. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48105 (United States); Gibson, S. E., E-mail: lzh@umich.edu [NCAR/HAO, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2013-08-20

    Since the unusually prolonged and weak solar minimum between solar cycles 23 and 24 (2008-2010), the sunspot number is smaller and the overall morphology of the Sun's magnetic field is more complicated (i.e., less of a dipole component and more of a tilted current sheet) compared with the same minimum and ascending phases of the previous cycle. Nearly 13 yr after the last solar maximum ({approx}2000), the monthly sunspot number is currently only at half the highest value of the past cycle's maximum, whereas the polar magnetic field of the Sun is reversing (north pole first). These circumstances make it timely to consider alternatives to the sunspot number for tracking the Sun's magnetic cycle and measuring its complexity. In this study, we introduce two novel parameters, the standard deviation (SD) of the latitude of the heliospheric current sheet (HCS) and the integrated slope (SL) of the HCS, to evaluate the complexity of the Sun's magnetic field and track the solar cycle. SD and SL are obtained from the magnetic synoptic maps calculated by a potential field source surface model. We find that SD and SL are sensitive to the complexity of the HCS: (1) they have low values when the HCS is flat at solar minimum, and high values when the HCS is highly tilted at solar maximum; (2) they respond to the topology of the HCS differently, as a higher SD value indicates that a larger part of the HCS extends to higher latitude, while a higher SL value implies that the HCS is wavier; (3) they are good indicators of magnetically anomalous cycles. Based on the comparison between SD and SL with the normalized sunspot number in the most recent four solar cycles, we find that in 2011 the solar magnetic field had attained a similar complexity as compared to the previous maxima. In addition, in the ascending phase of cycle 24, SD and SL in the northern hemisphere were on the average much greater than in the southern hemisphere, indicating a more tilted and wavier

  4. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, Desikan; Bohn, Mark S.; Williams, Thomas A.

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  5. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  6. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  7. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    International Nuclear Information System (INIS)

    Jang, Minhwan; Choe, G. S.; Woods, T. N.; Hong, Sunhak

    2016-01-01

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  8. Solar flares, CMEs and solar energetic particle events during solar cycle 24

    Science.gov (United States)

    Pande, Bimal; Pande, Seema; Chandra, Ramesh; Chandra Mathpal, Mahesh

    2018-01-01

    We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010-2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity ≤ 1 pfu), minor (1 pfu pfu) and major (proton intensity ≥ 10 pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.

  9. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.

    Key words. Solar physics, astrophysics and astronomy

  10. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  11. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    Science.gov (United States)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  12. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  13. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  14. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    OpenAIRE

    Suresh Baral; Kyung Chun Kim

    2015-01-01

    The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC) water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal ef...

  15. The solar activity cycle physical causes and consequences

    CERN Document Server

    Hudson, Hugh; Petrovay, Kristóf; Steiger, Rudolf

    2015-01-01

    A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun.  This phenomenon is the generation and evolution of magnetic fields in the Sun’s convection zone, the photosphere.  It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences.   The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers.  This book deals with this topic, together with several others that present related phenomena that all indicate the physical pr...

  16. CONTROLLING INFLUENCE OF MAGNETIC FIELD ON SOLAR WIND OUTFLOW: AN INVESTIGATION USING CURRENT SHEET SOURCE SURFACE MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Poduval, B., E-mail: bpoduval@spacescience.org [Space Science Institute, Boulder, CO 80303 (United States)

    2016-08-10

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  17. Solar and interplanetary particles at 2 to 4 MEV during solar cycles 21, solar cycle variations of event sizes, and compositions

    International Nuclear Information System (INIS)

    Armstrong, T.P.; Shields, J.C.; Briggs, P.R.; Eckes, S.

    1985-01-01

    In this paper 2 to 4 MeV/nucleon protons, alpha particles, and medium (CNO) nuclei in the near-Earth interplanetary medium during the years 1974 to 1981 are studied. This period contains both the solar activity minimum in 1976 and the very active onset phase of Solar Cycle 21. Characteristic compositional differences between the solar minimum and solar maximum ion populations have been investigated. Previous studies of interplanetary composition at these energies have concentrated on well-defined samples of the heliospheric medium. During flare particle events, the ambient plasma is dominated by ions accelerated in specific regions of the solar atmosphere; observation of the proton/alpha and alpha/medium ratios for flare events shows that there is marked compositional variability both during an event and from event to event suggesting the complicated nature of flare particle production and transport

  18. The statistical analysis of the Geomagnetically Induced Current events occurred in Guangdong, China during the declining phase of solar cycle 23 (2003–2006)

    Science.gov (United States)

    Ni, Y. Y.

    2018-03-01

    We study the interplanetary causes of intense geomagnetic storms (Dst ≤ -100 nT) and the corresponding Geomagnetically Induced Current (GIC) events occurred in Ling’ao nuclear power station, Guangdong during the declining phase of solar cycle 23 (2003–2006). The result shows that sMC (a magnetic cloud with a shock), SH (sheath) and SH+MC (a sheath followed by a magnetic cloud) are the three most common interplanetary structures responsible for the storms which will cause GIC events in this period. As an interplanetary structure, CIR (corotating interaction regions) also plays an important role, however, the CIR-driven storms have a relatively minor effect to the GIC. Among the interplanetary parameters, the solar wind velocity and the southward component of the IMF (interplanetary magnetic field) are more important than solar wind density and the temperature to a geomagnetic storm and GIC.

  19. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    International Nuclear Information System (INIS)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.; Goode, P. R.; Cao, W.; Ozguc, A.; Rozelot, J. P.

    2011-01-01

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.

  20. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  1. The north-south asymmetry of solar filaments separately at low and high latitudes in solar cycle 23

    International Nuclear Information System (INIS)

    Kong De-Fang; Qu Zhi-Ning; Guo Qiao-Ling

    2015-01-01

    We present the results of a study on the north-south asymmetry of solar filaments at low (<50°) and high (>60°) latitudes using daily filament numbers from January 1998 to November 2008 (solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes. (research papers)

  2. SIMULATION STUDY OF HEMISPHERIC PHASE-ASYMMETRY IN THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Shukuya, D.; Kusano, K., E-mail: kusano@nagoya-u.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 4648601 (Japan)

    2017-01-20

    Observations of the Sun suggest that solar activities systematically create north–south hemispheric asymmetries. For instance, the hemisphere in which sunspot activity is more active tends to switch after the early half of each solar cycle. Svalgaard and Kamide recently pointed out that the time gaps of polar field reversal between the northern and southern hemispheres are simply consequences of the asymmetry of sunspot activity. However, the mechanism underlying the asymmetric feature in solar cycle activity is not yet well understood. In this paper, in order to explain the cause of the asymmetry from the theoretical point of view, we investigate the relationship between the dipole- and quadrupole-type components of the magnetic field in the solar cycle using the mean-field theory based on the flux transport dynamo model. As a result, we found that there are two different attractors of the solar cycle, in which either the north or the south polar field is first reversed, and that the flux transport dynamo model explains well the phase-asymmetry of sunspot activity and the polar field reversal without any ad hoc source of asymmetry.

  3. Observations of recurrent cosmic ray decreases during solar cycles 22 and 23

    International Nuclear Information System (INIS)

    Dunzlaff, P.; Heber, B.; Kopp, A.; Rother, O.; Mueller-Mellin, R.; Klassen, A.; Gomez-Herrero, R.; Wimmer-Schweingruber, R.

    2008-01-01

    During solar cycle 22, the modulation of several hundred MeV galactic cosmic rays (GCRs) by recurrent and transient cosmic ray decreases was observed by the Ulysses spacecraft on its descent towards the solar south pole. In solar cycle 23, Ulysses repeated this trajectory segment during a similar phase of the solar cycle, but with opposite heliospheric magnetic field polarity. Since cosmic ray propagation in the heliosphere should depend on drift effects, we determine in this study the latitudinal distribution of the amplitude of recurrent cosmic ray decreases in solar cycles 22 and 23. As long as we measure the recurrent plasma structures in situ, we find that these decreases behave nearly the same in both cycles. Measurements in the fast solar wind, however, show differences: in cycle 22 (A>0) the recurrent cosmic ray decreases show a clear maximum near 25 and are still present beyond 40 , whereas we see in cycle 23 (A<0) neither such a pronounced maximum nor significant decreases above 40 . In other words: the periodicity in the cosmic ray intensity, which can be clearly seen in the slow solar wind, appears to vanish there. Theoretical models for drift effects, however, predict quite the opposite behaviour for the two solar cycles. To closer investigate this apparent contradiction, we first put the visual inspection of the data onto a more solid basis by performing a detailed Lomb (spectral) analysis. The next step consists of an analysis of the resulting periodicities at 1 AU in order to distinguish between spatial and temporal variations, so that we can obtain statements about the question in how far there is a correlation between the in-situ data at 1 AU and those measured by Ulysses at larger latitudes. We find a good correlation being present during cycle 22, but not for cycle 23. As one potential explanation for this behaviour, we suggest the difference in the coronal hole structures between the cycles 22 and 23 due to a large, stable coronal hole

  4. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  5. On the statistics of the largest geomagnetic storms per solar cycle

    International Nuclear Information System (INIS)

    Siscoe, G.L.

    1976-01-01

    The theory of extreme value statistics is applied to the first, second, and third largest geomagnetic storms in nine solar cycles measured by the average half-daily aa indices compiled by Mayaud. Analytic expressions giving the probability of the extremes per solar cycle as a contour function of storm magnitude are obtained by least squares fitting of the observations to the appropriate theoretical extreme value probability functions. The results are used to obtain the statistical characteristics (mode, median, mean, and standard deviation) for the extreme values. The results are applied to find the expected range of extreme values in a set as a function of the number of solar cycles in the set. We find that the expected range of the largest storm is quite narrow and is larger for the second and third largest storms. The observed range of the extreme half-daily aa index for the nine solar cycles is 354--546 γ. In a set of 100 cycles the range is expanded esentially to 311--680γ, an increase of only 39% in the range. The result supports the argument for a change in solar cycle statistics in the latter part of the Seventeenth Century (the Maunder minimum)

  6. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...... with other PV technologies. It is shown that on a m2 basis the environmental characteristics of polymer-OPV are highly beneficial, while on a watt-peak and on a kWh basis, these benefits are - at the current level of the development - still (over-)compensated by low module efficiency and limited lifetime...

  7. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  8. Direct transformation of solar energy into three-phase current for technical uses

    Energy Technology Data Exchange (ETDEWEB)

    von Hacht, G [Ingenieurbuero Opto-Sensor-Technik, Frankfurt am Main (Germany, F.R.)

    1977-08-01

    The author proposes a method which may increase the 15% efficiency of present solar plants. In principle, the device consists of an optical waveguide tube containing a chain of solar elements. The tube serves as conductive wire for the primary coil of an a.c. or three-phase current transformer. The 50 Hz cycle of the a.c. or three-phase current is generated by rotor or cylindrical diaphragms and/or electronic pilot/thyristor control. The solar energy is focussed axially and/or vertically to the axis of the optical waveguide tube. The light going through the optical waveguide tube makes it possible for solar elements to be equipped with light-sensitive layers on both sides instead of just on one side, as until now. This means a higher efficiency than for conventional solar elements exposed to light only on one side. In addition, the optical waveguide tube is designed in its length as Fabry-Perot resonator. This way, it may also be used as a gas laser. The light generated in this gas laser would multiply the luminous intensity which again acts on the two light-sensitive sides of the solar elements, thus again increasing their efficiency.

  9. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  10. Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant

    International Nuclear Information System (INIS)

    Reyes-Belmonte, M.A.; Sebastián, A.; Romero, M.; González-Aguilar, J.

    2016-01-01

    Peculiar thermodynamic properties of carbon dioxide (CO 2 ) when it is held at or above its critical condition (stated as supercritical CO 2 or sCO 2 ) have attracted the attention of many researchers. Its excellent thermophysical properties at medium-to-moderate temperature range have made it to be considered as the alternative working fluid for next power plant generation. Among those applications, future nuclear reactors, solar concentrated thermal energy or waste energy recovery have been shown as the most promising ones. In this paper, a recompression sCO 2 cycle for a solar central particles receiver application has been optimized, observing net cycle efficiency close to 50%. However, small changes on cycle parameters such as working temperatures, recuperators efficiencies or mass flow distribution between low and high temperature recuperators were found to drastically modify system overall efficiency. In order to mitigate these uncertainties, an optimization analysis based on recuperators effectiveness definition was performed observing that cycle efficiency could lie among 40%–50% for medium-to-moderate temperature range of the studied application (630 °C–680 °C). Due to the lack of maturity of current sCO 2 technologies and no power production scale demonstrators, cycle boundary conditions based on the solar application and a detailed literature review were chosen. - Highlights: • Mathematical modelling description for recompression sCO 2 cycle. • Split fraction and recuperators effectiveness effect into sCO 2 cycle performance. • Optimization methodology of sCO 2 cycle for an innovative solar central receiver. • Power generation using particles central receiver.

  11. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration.

  12. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  13. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  14. On proton events of different solar activity cycles

    International Nuclear Information System (INIS)

    Sattarov, I.; Sherdanov, Ch.; Sattarov, B.

    1997-01-01

    In solar activity cycle N21 and N22 the latitude distribution of the proton large flares and sunspot groups is being studied. It was found that higher proton activity of cycle N22 is connected with its higher latitude sunspot activity (author)

  15. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  16. Stereo and Solar Cycle 24

    Science.gov (United States)

    Kaise,r Michael L.

    2008-01-01

    The twin STEREO spacecrafi, launched in October 2006, are in heliocentric orbits near 4 AU with one spacecraft (Ahead) leading Earth in its orbit around the Sun and the other (Behind) trailing Earth. As viewed from the Sun, the STEREO spacecraft are continually separating from one another at about 45 degrees per year with Earth biseding the angle. At present, th@spaser=raft are a bit more than 45 degrees apart, thus they are able to each 'vie@ ground the limb's of the Sun by about 23 degrees, corresponding to about 1.75 days of solar rotation. Both spameraft contain an identical set of instruments including an extreme ultraviolet imager, two white light coronagraphs, tws all-sky imagers, a wide selection of energetic particle detectors, a magnetometer and a radio burst tracker. A snapshot of the real time data is continually broadcast to NOW-managed ground stations and this small stream of data is immediately sent to the STEREO Science Center and converted into useful space weather data within 5 minutes of ground receipt. The resulting images, particle, magnetometer and radio astronomy plots are available at j g i t , : gAs timqe conting ues ijnto . g solar cycle 24, the separation angle becomes 90 degrees in early 2009 and 180 degrees in early 201 1 as the activity heads toward maximum. By the time of solar maximum, STEREO will provide for the first time a view of the entire Sun with the mronagraphs and e*reme ultraviolet instruments. This view wilt allow us to follow the evolution of active regions continuously and also detect new active regions long before they pose a space weather threat to Earth. The in situ instruments will be able to provide about 7 days advanced notice of co-rotating structures in the solar wind. During this same intewal near solar maximum, the wide-angle imagers on STEREB will both be ;able to view EarlCP-dirsted CMEs in their plane-oPsky. When combined with Eat-lhorbiting assets available at that time, it seems solar cycle 24 will mark a

  17. Geometry of the solar wind transition region during the 11-year solar cycle

    International Nuclear Information System (INIS)

    Lotova, N.A.; Blums, D.F.

    1986-01-01

    Geometry of the solar wind transition region and its dynamics during the 11-year solar cycle is investigated. It is shown that the space geometry of the transition region suffers considerable changes. In the years of minimum of solar activity (1975-1977) the transition region has a form close to elliptical, shifts nearer to the Sun, while its width decreases. During the years of maximum of Solar activity (1979-1981) the form of the transition region becomes close to spherically symmetric, is located further from the Sun and its width is increased

  18. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J. [Southwest Research Institute, P.O. Drawer 28510, San Antonio, TX 78228 (United States); Pogorelov, N. V. [Physics Department, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2013-05-10

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably {approx}15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between {approx}36 Degree-Sign S-60 Degree-Sign S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  19. HEMISPHERIC ASYMMETRIES IN THE POLAR SOLAR WIND OBSERVED BY ULYSSES NEAR THE MINIMA OF SOLAR CYCLES 22 AND 23

    International Nuclear Information System (INIS)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I.; McComas, D. J.; Pogorelov, N. V.

    2013-01-01

    We examined solar wind plasma and interplanetary magnetic field (IMF) observations from Ulysses' first and third orbits to study hemispheric differences in the properties of the solar wind and IMF originating from the Sun's large polar coronal holes (PCHs) during the declining and minimum phase of solar cycles 22 and 23. We identified hemispheric asymmetries in several parameters, most notably ∼15%-30% south-to-north differences in averages for the solar wind density, mass flux, dynamic pressure, and energy flux and the radial and total IMF magnitudes. These differences were driven by relatively larger, more variable solar wind density and radial IMF between ∼36°S-60°S during the declining phase of solar cycles 22 and 23. These observations indicate either a hemispheric asymmetry in the PCH output during the declining and minimum phase of solar cycles 22 and 23 with the southern hemisphere being more active than its northern counterpart, or a solar cycle effect where the PCH output in both hemispheres is enhanced during periods of higher solar activity. We also report a strong linear correlation between these solar wind and IMF parameters, including the periods of enhanced PCH output, that highlight the connection between the solar wind mass and energy output and the Sun's magnetic field. That these enhancements were not matched by similar sized variations in solar wind speed points to the mass and energy responsible for these increases being added to the solar wind while its flow was subsonic.

  20. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  1. SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

    International Nuclear Information System (INIS)

    Lepri, S. T.; Landi, E.; Zurbuchen, T. H.

    2013-01-01

    Solar wind plasma and compositional properties reflect the physical properties of the corona and its evolution over time. Studies comparing the previous solar minimum with the most recent, unusual solar minimum indicate that significant environmental changes are occurring globally on the Sun. For example, the magnetic field decreased 30% between the last two solar minima, and the ionic charge states of O have been reported to change toward lower values in the fast wind. In this work, we systematically and comprehensively analyze the compositional changes of the solar wind during cycle 23 from 2000 to 2010 while the Sun moved from solar maximum to solar minimum. We find a systematic change of C, O, Si, and Fe ionic charge states toward lower ionization distributions. We also discuss long-term changes in elemental abundances and show that there is a ∼50% decrease of heavy ion abundances (He, C, O, Si, and Fe) relative to H as the Sun went from solar maximum to solar minimum. During this time, the relative abundances in the slow wind remain organized by their first ionization potential. We discuss these results and their implications for models of the evolution of the solar atmosphere, and for the identification of the fast and slow wind themselves.

  2. Performance analysis of humid air turbine cycle with solar energy for methanol decomposition

    International Nuclear Information System (INIS)

    Zhao, Hongbin; Yue, Pengxiu

    2011-01-01

    According to the physical and chemical energy cascade utilization and concept of synthesis integration of variety cycle systems, a new humid air turbine (HAT) cycle with solar energy for methanol decomposition has been proposed in this paper. The solar energy is utilized for methanol decomposing as a heat source in the HAT cycle. The low energy level of solar energy is supposed to convert the high energy level of chemical energy through methanol absorption, realizing the combination of clean energy and normal chemical fuels as compared to the normal chemical recuperative cycle. As a result, the performance of normal chemical fuel thermal cycle can be improved to some extent. Though the energy level of decomposed syngas from methanol is decreased, the cascade utilization of methanol is upgraded. The energy level and exergy losses in the system are graphically displayed with the energy utilization diagrams (EUD). The results show that the cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points under the same operating conditions. In addition, the cycle's thermal efficiency, exergy efficiency and solar thermal efficiency respond to an optimal methanol conversion. -- Highlights: → This paper proposed and studied the humid air turbine (HAT) cycle with methanol through decomposition with solar energy. → The cycle's exergy efficiency is higher than that of the conventional HAT cycle by at least 5 percentage points. → It is estimated that the solar heat-work conversion efficiency is about 39%, higher than usual. → There is an optimal methanol conversation for the cycle's thermal efficiency and exergy efficiency at given π and TIT. → Using EUD, the exergy loss is decreased by 8 percentage points compared with the conventional HAT cycle.

  3. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  4. The Influence of Solar Activity on the Rainfall over India: Cycle-to ...

    Indian Academy of Sciences (India)

    The Influence of Solar Activity on the Rainfall over India: Cycle-to-Cycle Variations. K. M. Hiremath. Indian Institute of Astrophysics, Bangalore 560 034, India. e-mail: hiremath@iiap.res.in. Abstract. We use 130 years data for studying correlative effects due to solar cycle and activity phenomena on the occurrence of rainfall ...

  5. Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4

    Science.gov (United States)

    Peck, E. D.; Randall, C. E.; Harvey, V. L.; Marsh, D. R.

    2015-06-01

    The Whole Atmosphere Community Climate Model version 4 (WACCM4) is used to quantify solar cycle impacts, including both irradiance and particle precipitation, on the middle atmosphere. Results are compared to previous work using WACCM version 3 (WACCM3) to estimate the sensitivity of simulated solar cycle effects to model modifications. The residual circulation in WACCM4 is stronger than in WACCM3, leading to larger solar cycle effects from energetic particle precipitation; this impacts polar stratospheric odd nitrogen and ozone, as well as polar mesospheric temperatures. The cold pole problem, which is present in both versions, is exacerbated in WACCM4, leading to more ozone loss in the Antarctic stratosphere. Relative to WACCM3, a westerly shift in the WACCM4 zonal winds in the tropical stratosphere and mesosphere, and a strengthening and poleward shift of the Antarctic polar night jet, are attributed to inclusion of the QBO and changes in the gravity wave parameterization in WACCM4. Solar cycle effects in WACCM3 and WACCM4 are qualitatively similar. However, the EPP-induced increase from solar minimum to solar maximum in polar stratospheric NOy is about twice as large in WACCM4 as in WACCM3; correspondingly, maximum increases in polar O3 loss from solar min to solar max are more than twice as large in WACCM4. This does not cause large differences in the WACCM3 versus WACCM4 solar cycle responses in temperature and wind. Overall, these results provide a framework for future studies using WACCM to analyze the impacts of the solar cycle on the middle atmosphere.

  6. Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.

    1993-01-01

    Measurements from the Solar Mesosphere Explorer (SME) satellite have shown that low-latitude nitric oxide densities at 110 km decrease by about a factor of 8 from January 1982 to April 1985. This time period corresponds to the descending phase of the last solar cycle where the monthly smoothed sunspot number decreased from more than 150 to less than 25. In addition, nitric oxide was observed to vary by a factor of 2 over a solar rotation, during high solar activity. A one-dimensional, globally averaged model of the thermosphere and upper mesosphere has been used to study the height distribution of nitric oxide (NO) and its response to changes in the solar extreme ultraviolet radiation (EUV) through the solar cycle and over a solar rotation. The primary source of nitric oxide is the reaction of excited atomic nitrogen, N( 2 D), with molecular oxygen. The atomic nitrogen is created by a number of ion-neutral reactions and by direct dissociation of molecular nitrogen by photons and photoelectrons. The occurrence of the peak nitric oxide density at or below 115 km is a direct consequence of ionization and dissociation of molecular nitrogen by photoelectrons, which are produced by the solar flux below 30.0 nm (XUV). Nitric oxide is shown to vary over the solar cycle by a factor of 7 at low latitudes in the lower thermosphere E region, due to the estimated change in the solar EUV flux, in good agreement with the SME satellite observations. The NO density is shown to be strongly dependent on the temperature profile in the lower thermosphere and accounts for the difference between the current model and previous work. Wavelengths less than 1.8 nm have little impact on the NO profile. A factor of 3 change in solar flux below 5.0 nm at high solar activity produced a factor of 2 change in the peak NO density, consistent with SME observations over a solar rotation; this change also lowered the peak to 100 km, consistent with rocket data. 52 refs., 10 figs., 5 tabs

  7. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  8. Predicting the start and maximum amplitude of solar cycle 24 using similar phases and a cycle grouping

    International Nuclear Information System (INIS)

    Wang Jialong; Zong Weiguo; Le Guiming; Zhao Haijuan; Tang Yunqiu; Zhang Yang

    2009-01-01

    We find that the solar cycles 9, 11, and 20 are similar to cycle 23 in their respective descending phases. Using this similarity and the observed data of smoothed monthly mean sunspot numbers (SMSNs) available for the descending phase of cycle 23, we make a date calibration for the average time sequence made of the three descending phases of the three cycles, and predict the start of March or April 2008 for cycle 24. For the three cycles, we also find a linear correlation of the length of the descending phase of a cycle with the difference between the maximum epoch of this cycle and that of its next cycle. Using this relationship along with the known relationship between the rise-time and the maximum amplitude of a slowly rising solar cycle, we predict the maximum SMSN of cycle 24 of 100.2 ± 7.5 to appear during the period from May to October 2012. (letters)

  9. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    International Nuclear Information System (INIS)

    Muñoz-Jaramillo, Andrés; DeLuca, Edward E.; Dasi-Espuig, María; Balmaceda, Laura A.

    2013-01-01

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.

  10. SOLAR CYCLE PROPAGATION, MEMORY, AND PREDICTION: INSIGHTS FROM A CENTURY OF MAGNETIC PROXIES

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Jaramillo, Andres; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dasi-Espuig, Maria [Max-Planck-Institut fuer Sonnensystemforschung, D-37191 Katlenburg-Lindau (Germany); Balmaceda, Laura A., E-mail: amunoz@cfa.harvard.edu, E-mail: edeluca@cfa.harvard.edu, E-mail: dasi@mps.mpg.de, E-mail: lbalmaceda@icate-conicet.gob.ar [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina)

    2013-04-20

    The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth's upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock-Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.

  11. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    Fernandez Saavedra, R.

    2007-01-01

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  12. THE RISE AND FALL OF OPEN SOLAR FLUX DURING THE CURRENT GRAND SOLAR MAXIMUM

    International Nuclear Information System (INIS)

    Lockwood, M.; Rouillard, A. P.; Finch, I. D.

    2009-01-01

    We use geomagnetic activity data to study the rise and fall over the past century of the solar wind flow speed V SW , the interplanetary magnetic field strength B, and the open solar flux F S . Our estimates include allowance for the kinematic effect of longitudinal structure in the solar wind flow speed. As well as solar cycle variations, all three parameters show a long-term rise during the first half of the 20th century followed by peaks around 1955 and 1986 and then a recent decline. Cosmogenic isotope data reveal that this constitutes a grand maximum of solar activity which began in 1920, using the definition that such grand maxima are when 25-year averages of the heliospheric modulation potential exceeds 600 MV. Extrapolating the linear declines seen in all three parameters since 1985, yields predictions that the grand maximum will end in the years 2013, 2014, or 2027 using V SW , F S , or B, respectively. These estimates are consistent with predictions based on the probability distribution of the durations of past grand solar maxima seen in cosmogenic isotope data. The data contradict any suggestions of a floor to the open solar flux: we show that the solar minimum open solar flux, kinematically corrected to allow for the excess flux effect, has halved over the past two solar cycles.

  13. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  14. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    International Nuclear Information System (INIS)

    Telloni, Daniele; Antonucci, Ester; Carbone, Vincenzo; Lepreti, Fabio

    2016-01-01

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  15. Mid-term periodicities and heliospheric modulation of coronal index and solar flare index during solar cycles 22-23

    Science.gov (United States)

    Singh, Prithvi Raj; Saxena, A. K.; Tiwari, C. M.

    2018-04-01

    We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986-2008, in order to investigate the long- and mid-term periodicities including the Rieger ({˜ }130 to {˜ }190 days), quasi-period ({˜ }200 to {˜ }374 days), and quasi-biennial periodicities ({˜ }1.20 to {˜ }3.27 years) during the combined solar cycles 22-23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of {˜ }1.43 years and for solar flare index of {˜ }1.41 year, and galactic cosmic ray, {˜ }1.35 year, during combined solar cycles 22-23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22-23, we found that galactic cosmic ray modulation at mid cut-off rigidity (Rc = 2.43GV) is anti-correlated with time-lag of few months.

  16. Field-Aligned Current Response to Solar Indices

    DEFF Research Database (Denmark)

    R. Edwards, Thom; Weimer, D. R.; Tobiska, W. K.

    2017-01-01

    Magnetometer data from three satellite missions have been used to analyze and identify the effects of varying solar radiation on the magnitudes and locations of field-aligned currents in the Earth's upper atmosphere. Data from the CHAMP, Ørsted, and Swarm satellite missions have been bought...... together to provide a database spanning a 15 year period. The extensive time frame has been augmented by data from the ACE satellite, as well as a number of indices of solar radiation. This data set has been sorted by a number of solar wind, interplanetary magnetic field, and solar radiation indices...... to evaluate the effects of variations in four different solar indices on the total current in different regions of the polar cap. While the solar indices do not have major influence on the total current of the polar cap when compared to solar wind and interplanetary magnetic field parameters it does appear...

  17. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    International Nuclear Information System (INIS)

    Hongbin Zhao, H.; Yue, P.; Cao, L.

    2009-01-01

    A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT), and solar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  18. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  19. Solar Cycle Variability and Grand Minima Induced by Joy's Law Scatter

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark S.

    2017-08-01

    The strength of the solar cycle varies from one cycle to another in an irregular manner and the extreme example of this irregularity is the Maunder minimum when Sun produced only a few spots for several years. We explore the cause of these variabilities using a 3D Babcock--Leighton dynamo. In this model, based on the toroidal flux at the base of the convection zone, bipolar magnetic regions (BMRs) are produced with flux, tilt angle, and time of emergence all obtain from their observed distributions. The dynamo growth is limited by a tilt quenching.The randomnesses in the BMR emergences make the poloidal field unequal and eventually cause an unequal solar cycle. When observed fluctuations of BMR tilts around Joy's law, i.e., a standard deviation of 15 degrees, are considered, our model produces a variation in the solar cycle comparable to the observed solar cycle variability. Tilt scatter also causes occasional Maunder-like grand minima, although the observed scatter does not reproduce correct statistics of grand minima. However, when we double the tilt scatter, we find grand minima consistent with observations. Importantly, our dynamo model can operate even during grand minima with only a few BMRs, without requiring any additional alpha effect.

  20. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    Science.gov (United States)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  1. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  2. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  3. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  4. Proterozoic Milankovitch cycles and the history of the solar system.

    Science.gov (United States)

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  5. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  6. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  7. Sunspot variation and selected associated phenomena: a look at solar cycle 21 and beyond

    International Nuclear Information System (INIS)

    Wilson, R.M.

    1982-02-01

    Solar sunspot cycles 8 through 21 are reviewed. Mean time intervals are calculated for maximum to maximum, minimum to minimum, minimum to maximum, and maximum to minimum phases for cycles 8 through 20 and 8 through 21. Simple cosine functions with a period of 132 years are compared to, and found to be representative of, the variation of smoothed sunspot numbers at solar maximum and minimum. A comparison of cycles 20 and 21 is given, leading to a projection for activity levels during the Spacelab 2 era (tentatively, November 1984). A prediction is made for cycle 22. Major flares are observed to peak several months subsequent to the solar maximum during cycle 21 and to be at minimum level several months after the solar minimum. Additional remarks are given for flares, gradual rise and fall radio events and 2800 MHz radio emission. Certain solar activity parameters, especially as they relate to the near term Spacelab 2 time frame are estimated

  8. MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk [RAL Space, STFC Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX (United Kingdom)

    2015-01-20

    We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 December reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.

  9. The onset of the solar active cycle 22

    International Nuclear Information System (INIS)

    Ahluwalia, H.S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data

  10. The onset of the solar active cycle 22

    Science.gov (United States)

    Ahluwalia, H. S.

    1989-01-01

    There is a great deal of interest in being able to predict the main characteristics of a solar activity cycle (SAC). One would like to know, for instance, how large the amplitude (R sub m) of a cycle is likely to be, i.e., the annual mean of the sunspot numbers at the maximum of SAC. Also, how long a cycle is likely to last, i.e., its period. It would also be interesting to be able to predict the details, like how steep the ascending phase of a cycle is likely to be. Questions like these are of practical importance to NASA in planning the launch schedule for the low altitude, expensive spacecrafts like the Hubble Space Telescope, the Space Station, etc. Also, one has to choose a proper orbit, so that once launched the threat of an atmospheric drag on the spacecraft is properly taken into account. Cosmic ray data seem to indicate that solar activity cycle 22 will surpass SAC 21 in activity. The value of R sub m for SAC 22 may approach that of SAC 19. It would be interesting to see whether this prediction is borne out. Researchers are greatly encouraged to proceed with the development of a comprehensive prediction model which includes information provided by cosmic ray data.

  11. Life cycle cost analysis of solar heating and DHW systems in residential buildings

    International Nuclear Information System (INIS)

    Colombo, R.; Gilliaert, D.

    1992-01-01

    Economic Life Cycle Cost Analysis (ELCCA) is an easy and friendly computer program, IBM compatible for economic evaluation of solar energy system which involves comparison of the capital and operating costs of a conventional system. In this section we would like to suggest the ELCCA-PC program as a new tools using life cycle cost analysis for annual and cumulative cash flow methodology that take into account all future expenses. ELCCA-PC program considers fixed and changeable items that are involved in installing the equipment such as interest of money borrowed, property and income taxes, current energy cost for electricity operating system, maintenance, insurance and fuel costs and other economic operating expenses. Moreover fraction of annual heating load supplied from solar system is considered in this analysis. ECC-PC program determines the yearly outflow of money over the period of an economic analysis that can be converted to a series of equal payments in today's money

  12. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  13. DISTRIBUTION OF MAGNETIC BIPOLES ON THE SUN OVER THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Tlatov, Andrey G.; Vasil'eva, Valerya V.; Pevtsov, Alexei A.

    2010-01-01

    We employ synoptic full disk longitudinal magnetograms to study latitudinal distribution and orientation (tilt) of magnetic bipoles in the course of sunspot activity during cycles 21, 22, and 23. The data set includes daily observations from the National Solar Observatory at Kitt Peak (1975-2002) and Michelson Doppler Imager on board the Solar and Heliospheric Observatory (MDI/SOHO, 1996-2009). Bipole pairs were selected on the basis of proximity and flux balance of two neighboring flux elements of opposite polarity. Using the area of the bipoles, we have separated them into small quiet-Sun bipoles (QSBs), ephemeral regions (ERs), and active regions (ARs). We find that in their orientation, ERs and ARs follow Hale-Nicholson polarity rule. As expected, AR tilts follow Joy's law. ERs, however, show significantly larger tilts of opposite sign for a given hemisphere. QSBs are randomly oriented. Unlike ARs, ERs also show a preference in their orientation depending on the polarity of the large-scale magnetic field. These orientation properties may indicate that some ERs may form at or near the photosphere via the random encounter of opposite polarity elements, while others may originate in the convection zone at about the same location as ARs. The combined latitudinal distribution of ERs and ARs exhibits a clear presence of Spoerer's butterfly diagram (equatorward drift in the course of a solar cycle). ERs extend the ARs' 'wing' of the butterfly diagram to higher latitudes. This high latitude extension of ERs suggests an extended solar cycle with the first magnetic elements of the next cycle developing shortly after the maximum of the previous cycle. The polarity orientation and tilt of ERs may suggest the presence of poloidal fields of two configurations (new cycle and old cycle) in the convection zone at the declining phase of the sunspot cycle.

  14. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    International Nuclear Information System (INIS)

    Egeland, Ricky; Metcalfe, Travis S.; Hall, Jeffrey C.; Henry, Gregory W.

    2015-01-01

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence

  15. Drought over Seoul and Its Association with Solar Cycles

    Directory of Open Access Journals (Sweden)

    Jong-Hyeok Park

    2013-12-01

    Full Text Available We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI. We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

  16. Thermodynamic analysis of a novel integrated solar combined cycle

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Yang, Yongping

    2014-01-01

    Highlights: • A novel ISCC scheme with two-stage DSG fields has been proposed and analyzed. • HRSG and steam turbine working parameters have been optimized to match the solar integration. • New scheme exhibits higher solar shares in the power output and solar-to-electricity efficiency. • Thermodynamic performances between new and reference systems have been investigated and compared. - Abstract: Integrated solar combined cycle (ISCC) systems have become more and more popular due to their high fuel and solar energy utilization efficiencies. Conventional ISCC systems with direct steam generation (DSG) have only one-stage solar input. A novel ISCC with DSG system has been proposed and analyzed in this paper. The new system consists two-stage solar input, which would significantly increase solar share in the total power output. Moreover, how and where solar energy is input into ISCC system would have impact on the solar and system overall efficiencies, which have been analyzed in the paper. It has been found that using solar heat to supply latent heat for vaporization of feedwater would be superior to that to be used for sensible heating purposes (e.g. Superheating steam). The study shows that: (1) producing both the high- and low-pressure saturated steam in the DSG trough collector could be an efficient way to improve process and system performance; (2) for a given live steam pressure, the optimum secondary and reheat steam conditions could be matched to reach the highest system thermal efficiency and net solar-to-electricity efficiency; (3) the net solar-to-electricity efficiency could reach up to 30% in the novel two-stage ISCC system, higher than that in the one-stage ISCC power plant; (4) compared with the conventional combined cycle gas turbine (CCGT) power system, lower stack temperature could be achieved, owing to the elimination of the approach-temperature-difference constraint, resulting in better thermal match in the heat recovery steam generator

  17. Flow downstream of the heliospheric terminal shock: Magnetic field line topology and solar cycle imprint

    Science.gov (United States)

    Nerney, Steven; Suess, S. T.; Schmahl, E. J.

    1995-01-01

    The topology of the magnetic field in the heliosheath is illustrated using plots of the field lines. It is shown that the Archimedean spiral inside the terminal shock is rotated back in the heliosheath into nested spirals that are advected in the direction of the interstellar wind. The 22-year solar magnetic cycle is imprinted onto these field lines in the form of unipolar magnetic envelopes surrounded by volumes of strongly mixed polarity. Each envelope is defined by the changing tilt of the heliospheric current sheet, which is in turn defined by the boundary of unipolar high-latitude regions on the Sun that shrink to the pole at solar maximum and expand to the equator at solar minimum. The detailed shape of the envelopes is regulated by the solar wind velocity structure in the heliosheath.

  18. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  19. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  20. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  1. The Ring Current Response to Solar and Interplanetary Storm Drivers

    Science.gov (United States)

    Mouikis, C.; Kistler, L. M.; Bingham, S.; Kronberg, E. A.; Gkioulidou, M.; Huang, C. L.; Farrugia, C. J.

    2014-12-01

    The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), corotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure, in turn, change the global magnetic field, controlling the transport of the radiation belts. To quantitatively determine the field changes during a storm throughout the magnetosphere, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. Because the measured ring current energy spectra depend not only on local processes, but also on the history of the ions along their entire drift path, measurements of ring current energy spectra at two or more locations can be used to strongly constrain the time dependent magnetic and electric fields. In this study we use data predominantly from the Cluster and the Van Allen Probes, covering more than a full solar cycle (from 2001 to 2014). For the period 2001-2012, the Cluster CODIF and RAPID measurements of the inner magnetosphere are the primary data set used to monitor the storm time ring current variability. After 2012, the Cluster data set complements the data from the Van Allen Probes HOPE and RBSPICE instruments, providing additional measurements from different MLT and L shells. Selected storms from this periods, allow us to study the ring current dynamics and pressure changes, as a function of L shell, magnetic local time, and the type of interplanetary disturbances.

  2. Estimate of the upper limit of amplitude of Solar Cycle No. 23

    Energy Technology Data Exchange (ETDEWEB)

    Silbergleit, V. M; Larocca, P. A [Departamento de Fisica, UBA (Argentina)

    2001-07-01

    AA* indices of values greater than 60 10{sup -9} Tesla are considered in order to characterize geomagnetic storms since the available series of these indices comprise the years from 1868 to 1998 (The longest existing interval of geomagnetic activity). By applying the precursor technique we have performed an analysis of the storm periods and the solar activity, obtaining a good correlation between the number of storms ({alpha})(characterized by the AA* indices) and the amplitudes of each solar cycle ({zeta}) and those of the next ({mu}). Using the multiple regression method applied to {alpha}=A+B{zeta} +C{mu}, the constants are calculated and the values found are: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. The present statistical method indicates that the current solar cycle (number 23) would have an upper limit of 202{+-}57 monthy mean sunspots. This value indicates that the solar activity would be high causing important effects on the Earth's environment. [Spanish] Se consideran los valores de los indices AA* de valor mayor que 60 10{sup -9} Tesla para caracterizar tormentas geomagneticas ya que las series disponibles de estos indices van desde 1868 hasta 1998 (el mas largo intervalo de la actividad geomagnetica existente). Aplicando la tecnica del precursor hemos realizado un analisis de los periodos de tormentas y la actividad solar obteniendo una buena correlacion entre el numero de tormentas ({alpha}) (caracterizado por los indices AA*) y las amplitudes de los ciclos solares corriente ({zeta}) y el proximo ({mu}). Usando el metodo de regresion multiple aplicado a {alpha}=A+B{zeta} +C{mu}, las consonantes resultaron: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. El metodo estadistico presentado indica que el ciclo actual (numero 23) tendria un pico de 202{+-} 57 manchas mensuales promedio. Este valor indica que la actividad solar seria alta produciendo importantes efectos en el medio ambiente terrestre.

  3. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  4. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Science.gov (United States)

    Herdiwijaya, Dhani; Arif, Johan; Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi

    2015-09-01

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth's climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth's global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  5. Solar Cycle Phase Dependence of Supergranular Fractal Dimension

    Indian Academy of Sciences (India)

    Solar Cycle Phase Dependence of Supergranular Fractal Dimension ... NIE Institute of Technology, Mysore, India. ... This means that each accepted article is being published immediately online with DOI and article citation ID with starting page ...

  6. Analysis of Humid Air Turbine Cycle with Low- or Medium-Temperature Solar Energy

    Directory of Open Access Journals (Sweden)

    Hongbin Zhao

    2009-01-01

    Full Text Available A new humid air turbine cycle that uses low- or medium-temperature solar energy as assistant heat source was proposed for increasing the mass flow rate of humid air. Based on the combination of the first and second laws of thermodynamics, this paper described and compared the performances of the conventional and the solar HAT cycles. The effects of some parameters such as pressure ratio, turbine inlet temperature (TIT, and sollar collector efficiency on humidity, specific work, cycle's exergy efficiency, and solar energy to electricity efficiency were discussed in detail. Compared with the conventional HAT cycle, because of the increased humid air mass flow rate in the new system, the humidity and the specific work of the new system were increased. Meanwhile, the solar energy to electricity efficiency was greatly improved. Additionally, the exergy losses of components in the system under the given conditions were also studied and analyzed.

  7. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S.

    2009-01-01

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C 8 H 9 NO (T m = 116 deg. C) and magnesium chloride hexahydrate MgCl 2 .6H 2 O (T m = 116.7 deg. C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during law intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl 2 .6H 2 O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl 2 .6H 2 O is not compatible with either aluminum or stainless steel.

  8. Predicting the La Niña of 2020-21: Termination of Solar Cycles and Correlated Variance in Solar and Atmospheric Variability

    Science.gov (United States)

    Leamon, R. J.; McIntosh, S. W.

    2017-12-01

    Establishing a solid physical connection between solar and tropospheric variability has posed a considerable challenge across the spectrum of Earth-system science. Over the past few years a new picture to describe solar variability has developed, based on observing, understanding and tracing the progression, interaction and intrinsic variability of the magnetized activity bands that belong to the Sun's 22-year magnetic activity cycle. The intra- and extra-hemispheric interaction of these magnetic bands appear to explain the occurrence of decadal scale variability that primarily manifests itself in the sunspot cycle. However, on timescales of ten months or so, those bands posses their own internal variability with an amplitude of the same order of magnitude as the decadal scale. The latter have been tied to the existence of magnetized Rossby waves in the solar convection zone that result in surges of magnetic flux emergence that correspondingly modulate our star's radiative and particulate output. One of the most important events in the progression of these bands is their (apparent) termination at the solar equator that signals a global increase in magnetic flux emergence that becomes the new solar cycle. We look at the particulate and radiative implications of these termination points, their temporal recurrence and signature, from the Sun to the Earth, and show the correlated signature of solar cycle termination events and major oceanic oscillations that extend back many decades. A combined one-two punch of reduced particulate forcing and increased radiative forcing that result from the termination of one solar cycle and rapid blossoming of another correlates strongly with a shift from El Niño to La Niña conditions in the Pacific Ocean. This shift does not occur at solar minima, nor solar maxima, but at a particular, non-periodic, time in between. The failure to identify these termination points, and their relative irregularity, have inhibited a correlation to be

  9. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23

    International Nuclear Information System (INIS)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Oliver, Ramon; Ballester, Jose Luis; Dikpati, Mausumi; McIntosh, Scott W.

    2017-01-01

    Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 days in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.

  10. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Dikpati, Mausumi; McIntosh, Scott W., E-mail: Eka.gurgenashvili.1@iliauni.edu.ge [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 days in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.

  11. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  12. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    Science.gov (United States)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR

  13. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  14. Helioseismic inferences of the solar cycles 23 and 24: GOLF and VIRGO observations

    Science.gov (United States)

    Salabert, D.; García, R. A.; Jiménez, A.

    2014-12-01

    The Sun-as-a star helioseismic spectrophotometer GOLF and photometer VIRGO instruments onboard the SoHO spacecraft are collecting high-quality, continuous data since April 1996. We analyze here these unique datasets in order to investigate the peculiar and weak on-going solar cycle 24. As this cycle 24 is reaching its maximum, we compare its rising phase with the rising phase of the previous solar cycle 23.

  15. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  16. Solar cycle length hypothesis appears to support the IPCC on global warming

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1999-01-01

    warming from the enhanced concentrations of greenhouse gases. The "solar hypothesis" claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier paper we have demonstrated that for data covering...... lengths with the "corrected" temperature anomalies is substantially better than with the historical anomalies. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.......Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of Northern Hemisphere land air temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global...

  17. Solar Energetic Particle Composition over Two Solar Cycles as Observed by the Ulysses/HISCALE and ACE/EPAM Pulse Height Analyzers.

    Science.gov (United States)

    Patterson, J. D.; Madanian, H.; Manweiler, J. W.; Lanzerotti, L. J.

    2017-12-01

    We present the compositional variation in the Solar Energetic Particle (SEP) population in the inner heliosphere over two solar cycles using data from the Ulysses Heliospheric Instrument for Spectra, Composition, and Anisotropy at Low Energies (HISCALE) and Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM). The Ulysses mission was active from late 1990 to mid-2009 in a heliopolar orbit inclined by 80° with a perihelion of 1.3 AU and an aphelion of 5.4 AU. The ACE mission has been active since its launch in late 1997 and is in a halo orbit about L1. These two missions provide a total of 27 years of continuous observation in the inner heliosphere with twelve years of simultaneous observation. HISCALE and EPAM data provide species-resolved differential flux and density of SEP between 0.5-5 MeV/nuc. Several ion species (He, C, O, Ne, Si, Fe) are identified using the Pulse Height Analyzer (PHA) system of the Composition Aperture for both instruments. The He density shows a noticeable increase at high solar activity followed by a moderate drop at the quiet time of the solar minimum between cycles 23 and 24. The density of heavier ions (i.e. O and Fe) change minimally with respect to the F10.7 index variations however, certain energy-specific count rates decrease during solar minimum. With Ulysses and ACE observing in different regions of the inner heliosphere, there are significant latitudinal differences in how the O/He ratios vary with the solar cycle. At solar minimum, there is reasonable agreement between the observations from both instruments. At solar max 23, the differences in composition over the course of the solar cycle, and as observed at different heliospheric locations can provide insight to the origins of and acceleration processes differentially affecting solar energetic ions.

  18. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  19. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  20. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from...... economics through design to functionality. An LCA study was performed to quantify the energy use and greenhouse gas (GHG) emissions from electricity use in the manufacture of a light-weight lamp based on a plastic foil, a lithium-polymer battery, a polymer solar cell, printed circuitry, blocking diode......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  1. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  2. Investigation of thermodynamic performances for two solar-biomass hybrid combined cycle power generation systems

    International Nuclear Information System (INIS)

    Liu, Qibin; Bai, Zhang; Wang, Xiaohe; Lei, Jing; Jin, Hongguang

    2016-01-01

    Highlights: • Two solar-biomass hybrid combined cycle power generation systems are proposed. • The characters of the two proposed systems are compared. • The on-design and off-design properties of the system are numerically investigated. • The favorable performances of thermochemical hybrid routine are validated. - Abstract: Two solar-biomass hybrid combined cycle power generation systems are proposed in this work. The first system employs the thermochemical hybrid routine, in which the biomass gasification is driven by the concentrated solar energy, and the gasified syngas as a solar fuel is utilized in a combined cycle for generating power. The second system adopts the thermal integration concept, and the solar energy is directly used to heat the compressed air in the topping Brayton cycle. The thermodynamic performances of the developed systems are investigated under the on-design and off-design conditions. The advantages of the hybrid utilization technical mode are demonstrated. The solar energy can be converted and stored into the chemical fuel by the solar-biomass gasification, with the net solar-to-fuel efficiency of 61.23% and the net solar share of 19.01% under the specific gasification temperature of 1150 K. Meanwhile, the proposed system with the solar thermochemical routine shows more favorable behaviors, the annual system overall energy efficiency and the solar-to-electric efficiency reach to 29.36% and 18.49%, while the with thermal integration concept of 28.03% and 15.13%, respectively. The comparison work introduces a promising approach for the efficient utilization of the abundant solar and biomass resources in the western China, and realizes the mitigation of CO_2 emission.

  3. UPDATED ANALYSIS OF THE UPWIND INTERPLANETARY HYDROGEN VELOCITY AS OBSERVED BY THE HUBBLE SPACE TELESCOPE DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Vincent, Frederic E.; Ben-Jaffel, Lotfi; Harris, Walter M.

    2011-01-01

    The interplanetary hydrogen (IPH), a population of neutrals that fill the space between planets inside the heliosphere, carries the signature of the interstellar medium (ISM) and the heliospheric interface. As the incoming ISM-ionized component deflects at the heliopause, charge exchange reactions decelerate the bulk motion of the neutrals that penetrate the heliosphere. Inside the heliosphere, the IPH bulk velocity is further affected by solar gravity, radiation pressure, and ionization processes, with the latter two processes dependent on solar activity. Solar cycle 23 provided the first partial temporal map of the IPH velocity, including measurements from the Hubble Space Telescope (HST) spectrometers (Goddard High Resolution Spectrograph (GHRS) and Space Telescope Imaging Spectrograph (STIS)) and the Solar and Heliospheric Observatory/Solar Wind ANisotropies (SWAN) instrument. We present an updated analysis of IPH velocity measurements from GHRS and STIS and compare these results with those of SWAN and two different time-dependent models. Our reanalysis of STIS data reveals a significant change in IPH velocity relative to earlier reports, because of the contamination by geocoronal oxygen that was not accounted for. While current models of the heliospheric interface predict the observed IPH velocity for solar maximum, they are not consistent with data covering solar minimum. With updates to the HST data points, we now find that all data can be fit by the existing models to within 1σ, with the exception of SWAN observations taken at solar minimum (1997/1998). We conclude that the current data lack the temporal coverage and/or precision necessary to determine the detailed characteristics of the solar cycle dependence. Hence, new observations are merited.

  4. Solar Cycle in the Heliosphere and Cosmic Rays

    Science.gov (United States)

    2014-10-23

    at the source surface at 2.5 solar radii around the Sun. OMF shows a great variability both in solar cycle and on the centennial scale (see Fig. 3...It is important to note that the centennial variability is great (Lockwood et al. 1999; Solanki et al. 2000) comparable with or even greater than the...be identified as spikes in production of cosmogenic isotope (10Be and 14C) records on the centennial -millennial time scale (e.g., Usoskin and

  5. Review of supercritical CO{sub 2} power cycle technology and current status of research and development

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Bae, Seong Jun; Kim, Min Seok; Cho, Seong Kuk; Baik, Seung Joon; Lee, Jeong Ik [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Cha, Jae Eun [Fast Reactor Technology Development Division, Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-CO-2 cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-CO-2 cycle. In this paper, the current development progress of the S-CO-2 cycle is introduced. Moreover, a quick comparison of various S-CO{sub 2} layouts is presented in terms of cycle performance.

  6. Geometry of solar corona expansion and solar wind parameters

    International Nuclear Information System (INIS)

    Krajnev, M.B.

    1980-01-01

    The character of the parameter chanqe of solar wind plasma in the region of the Earth orbit is studied. The main regularities in the parametep behaviour of solar wind (plasma velocity and density) are qualitatively explained in the framework of a model according to which solar corona expansion stronqly differs from radial expansion, that is: the solar wind current lines are focused towards helioequator during the period of low solar activity with gradual transfer to radial expansion during the years of high solar activity. It is shown that the geometry of the solar wind current tubes and its change with the solar activity cycle can not serve an explanation of the observed change of the solar wind parameters

  7. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...

  8. North–South Distribution of Solar Flares during Cycle 23 Bhuwan ...

    Indian Academy of Sciences (India)

    in the SGD (Solar Geophysical Data) during the time span of 01 May 1996 to 31. December 2003, covering almost 8 years of solar cycle 23. During this period, the occurrence of 20235 Hα flares is reported. In Hα, flares are classified according to their importance and brightness classes. The important class (S = subflare, ...

  9. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S. [Physics Dept., Faculty of Science, King Abdul Aziz Univ., P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2009-12-15

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C{sub 8}H{sub 9}NO (T{sub m} = 116 C) and magnesium chloride hexahydrate MgCl{sub 2}.6H{sub 2}O (T{sub m} = 116.7 C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during low intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl{sub 2}.6H{sub 2}O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl{sub 2}.6H{sub 2}O is not compatible with either aluminum or stainless steel. (author)

  10. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  11. Solar photospheric network properties and their cycle variation

    Energy Technology Data Exchange (ETDEWEB)

    Thibault, K.; Charbonneau, P.; Béland, M., E-mail: kim@astro.umontreal.ca-a, E-mail: paulchar@astro.umontreal.ca-b, E-mail: michel.beland@calculquebec.ca-c [Département de Physique et Calcul Québec, Université de Montréal, 2900 Édouard-Montpetit, Montréal, QC H3T 1J4 (Canada)

    2014-11-20

    We present a numerical simulation of the formation and evolution of the solar photospheric magnetic network over a full solar cycle. The model exhibits realistic behavior as it produces large, unipolar concentrations of flux in the polar caps, a power-law flux distribution with index –1.69, a flux replacement timescale of 19.3 hr, and supergranule diameters of 20 Mm. The polar behavior is especially telling of model accuracy, as it results from lower-latitude activity, and accumulates the residues of any potential modeling inaccuracy and oversimplification. In this case, the main oversimplification is the absence of a polar sink for the flux, causing an amount of polar cap unsigned flux larger than expected by almost one order of magnitude. Nonetheless, our simulated polar caps carry the proper signed flux and dipole moment, and also show a spatial distribution of flux in good qualitative agreement with recent high-latitude magnetographic observations by Hinode. After the last cycle emergence, the simulation is extended until the network has recovered its quiet Sun initial condition. This permits an estimate of the network relaxation time toward the baseline state characterizing extended periods of suppressed activity, such as the Maunder Grand Minimum. Our simulation results indicate a network relaxation time of 2.9 yr, setting 2011 October as the soonest the time after which the last solar activity minimum could have qualified as a Maunder-type Minimum. This suggests that photospheric magnetism did not reach its baseline state during the recent extended minimum between cycles 23 and 24.

  12. Evidence of Suess solar-cycle bursts in Holocene speleothem d18O records

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Jacobsen, B. H.; Riisager, Peter

    2012-01-01

    Several studies indicate that changes in solar activity may have driven Holocene subtropical monsoon variability on decadal and centennial timescales, but the strength and nature of this link remains debated. In this study, we combine a recent mapping of the Holocene solar-cycle activity with four...... in driving centennial-scale changes in the hydrological cycle in the subtropics during the Holocene....

  13. SOLAR CYCLE VARIATIONS OF THE RADIO BRIGHTNESS OF THE SOLAR POLAR REGIONS AS OBSERVED BY THE NOBEYAMA RADIOHELIOGRAPH

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V.; DeRosa, Marc L. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Sun, Xudong; Hoeksema, J. Todd [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-01-10

    We have analyzed daily microwave images of the Sun at 17 GHz obtained with the Nobeyama Radioheliograph (NoRH) in order to study the solar cycle variations of the enhanced brightness in the polar regions. Unlike in previous works, the averaged brightness of the polar regions is obtained from individual images rather than from synoptic maps. We confirm that the brightness is anti-correlated with the solar cycle and that it has generally declined since solar cycle 22. Including images up to 2013 October, we find that the 17 GHz brightness temperature of the south polar region has decreased noticeably since 2012. This coincides with a significant decrease in the average magnetic field strength around the south pole, signaling the arrival of solar maximum conditions in the southern hemisphere more than a year after the northern hemisphere. We do not attribute the enhanced brightness of the polar regions at 17 GHz to the bright compact sources that occasionally appear in synthesized NoRH images. This is because they have no correspondence with small-scale bright regions in images from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory with a broad temperature coverage. Higher-quality radio images are needed to understand the relationship between microwave brightness and magnetic field strength in the polar regions.

  14. A study of north-south asymmetry of interplanetary magnetic field plasma and some solar indices throughout four solar cycles

    International Nuclear Information System (INIS)

    El-Borie, M A; Bishara, A A; Abdel-halim, A A; El-Monier, S Y

    2017-01-01

    We provide a long epoch study of a set of solar and plasma parameters (sunspot number Rz, total solar irradiance TSI, solar radio flux SF, solar wind speed V , ion density n, dynamic pressure n V 2 , and ion temperature T) covering a temporal range of several decades corresponding to almost four solar cycles. Such data have been organized accordingly with the interplanetary magnetic field (IMF) polarity, i.e. away (A) if the azimuthal component of the IMF points away from the Sun and T if it points towards, to examine the N-S asymmetries between the northern and southern hemispheres. Our results displayed the sign of the N-S asymmetry in solar activity depends on the solar magnetic polarity state (qA>0 or qA<0). The solar flux component of toward field vector was larger in magnitude than those of away field vector during the negative polarity epochs (1986-88 and 2001-08). In addition, the solar wind speeds (SWS) are faster by about 22.11±4.5 km/s for away polarity days than for toward polarity days during the qA<0 epoch (2001-08), where the IMF points away from the Sun. Moreover, during solar cycles 21 st and 24 th the solar plasma is more dense, hotter, and faster south of the HCS. (paper)

  15. Unusual Polar Conditions in Solar Cycle 24 and Their Implications for Cycle 25

    Science.gov (United States)

    Gopalswamy, Nat; Yashiro, Seiji; Akiyama, Sachiko

    2016-01-01

    We report on the prolonged solar-maximum conditions until late 2015 at the north-polar region of the Sun indicated by the occurrence of high-latitude prominence eruptions (PEs) and microwave brightness temperature close to the quiet-Sun level. These two aspects of solar activity indicate that the polarity reversal was completed by mid-2014 in the south and late 2015 in the north. The microwave brightness in the south-polar region has increased to a level exceeding the level of the Cycle 23/24 minimum, but just started to increase in the north. The northsouth asymmetry in the polarity reversal has switched from that in Cycle 23. These observations lead us to the hypothesis that the onset of Cycle 25 in the northern hemisphere is likely to be delayed with respect to that in the southern hemisphere. We find that the unusual condition in the north is a direct consequence of the arrival of poleward surges of opposite polarity from the active region belt. We also find that multiple rush-to-the-pole episodes were indicated by the PE locations that lined up at the boundary between opposite-polarity surges. The high-latitude PEs occurred in the boundary between the incumbent polar flux and the insurgent flux of opposite polarity.

  16. Exergy analysis of parabolic trough solar collectors integrated with combined steam and organic Rankine cycles

    International Nuclear Information System (INIS)

    Al-Sulaiman, Fahad A.

    2014-01-01

    Highlights: • As the solar irradiation increases, the exergetic efficiency increases. • The R134a combined cycle has best exergetic performance, 26%. • The R600a combined cycle has the lowest exergetic efficiency, 20%. • The main source of exergy destruction is the solar collector. • There is an exergetic improvement potential of 75% in the systems considered. - Abstract: In this paper, detailed exergy analysis of selected thermal power systems driven by parabolic trough solar collectors (PTSCs) is presented. The power is produced using either a steam Rankine cycle (SRC) or a combined cycle, in which the SRC is the topping cycle and an organic Rankine cycle (ORC) is the bottoming cycle. Seven refrigerants for the ORC were examined: R134a, R152a, R290, R407c, R600, R600a, and ammonia. Key exergetic parameters were examined: exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential. For all the cases considered it was revealed that as the solar irradiation increases, the exergetic efficiency increases. Among the combined cycles examined, the R134a combined cycle demonstrates the best exergetic performance with a maximum exergetic efficiency of 26% followed by the R152a combined cycle with an exergetic efficiency of 25%. Alternatively, the R600a combined cycle has the lowest exergetic efficiency, 20–21%. This study reveals that the main source of exergy destruction is the solar collector where more than 50% of inlet exergy is destructed, or in other words more than 70% of the total destructed exergy. In addition, more than 13% of the inlet exergy is destructed in the evaporator which is equivalent to around 19% of the destructed exergy. Finally, this study reveals that there is an exergetic improvement potential of 75% in the systems considered

  17. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  18. Solar energetic particle events during the rise phases of solar cycles 23 and 24

    Science.gov (United States)

    Chandra, R.; Gopalswamy, N.; Mäkelä, P.; Xie, H.; Yashiro, S.; Akiyama, S.; Uddin, W.; Srivastava, A. K.; Joshi, N. C.; Jain, R.; Awasthi, A. K.; Manoharan, P. K.; Mahalakshmi, K.; Dwivedi, V. C.; Choudhary, D. P.; Nitta, N. V.

    2013-12-01

    We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996-1998) (22 events) and 24 (2009-2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity pfu), minor (1 pfu pfu) and major (intensity ⩾ 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north-south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.

  19. Annual energy and environment analysis of solarized steam injection gas turbine (STIG) cycle for Indian regions

    International Nuclear Information System (INIS)

    Selwynraj, A. Immanuel; Iniyan, S.; Suganthi, L.; Livshits, Maya; Polonsky, Guy; Kribus, Abraham

    2016-01-01

    Highlights: • Study on the influence of local climatic conditions on solar STIG cycle is presented. • The annual solar to electricity efficiency ranges between 11.2 and 17.1% and the solar fraction ranges 9.3–41.7%. • The range of annual specific CO_2 emission is 312–408 kg/MWh and incremental CO_2 avoidance is 4.2–104 kg/MWh. • The levelized tariff (LT) is 0.2–0.23 $/kWh, and the solar levelized tariff (SLT) ranges from 0.11 to 0.27 $/kWh. - Abstract: The solarized steam injection gas turbine (STIG) cycle uses both the fuel and solar heat simultaneously for power generation. The annual thermodynamic performances of the cycle for sites in India with local climatic conditions such as ambient temperature, relative humidity and availability of direct normal irradiance (DNI) to the solar concentrators under two modes of constant and variable power are presented in this paper. The results reveal that the solar to electricity efficiency of solar hybrid STIG plant with a simple parabolic trough collector (PTC) is similar to existing solar thermal technologies, and also higher solar share is obtained. The study also reveals that the annual CO_2 emission is similar to combined cycle plants and lower than gas turbine technologies. The incremental CO_2 avoidance is also computed due to solar participation. The annual values of exergetic solar fraction and exergetic efficiency at Indore are higher than Jaipur. Results of an improved economic assessment show that the levelized tariff (LT) of solar hybrid STIG plant is 0.2–0.23 $/kWh and the levelized tariff (solar only) or solar levelized tariff (SLT) of solar STIG plant ranges from 0.11 to 0.27 $/kWh for both constant and variable power scenarios.

  20. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  1. A STATISTICAL STUDY OF SOLAR ELECTRON EVENTS OVER ONE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Wang Linghua; Lin, R. P.; Krucker, Säm; Mason, Glenn M.

    2012-01-01

    We survey the statistical properties of 1191 solar electron events observed by the WIND 3DP instrument from 300 keV for a solar cycle (1995 through 2005). After taking into account times of high background, the corrected occurrence frequency of solar electron events versus peak flux exhibits a power-law distribution over three orders of magnitude with exponents between –1.0 and –1.6 for different years, comparable to the frequency distribution of solar proton events, microflares, and coronal mass ejections (CMEs), but significantly flatter than that of soft X-ray (SXR) flares. At 40 keV (2.8 keV), the integrated occurrence rate above ∼0.29 (∼330) cm –2 s –1 sr –1 keV –1 near 1 AU is ∼1000 year –1 (∼600 year –1 ) at solar maximum and ∼35 year –1 (∼25 year –1 ) at solar minimum, about an order of magnitude larger than the observed occurrence rate. We find these events typically extend over ∼45° in longitude, implying the occurrence rate over the whole Sun is ∼10 4 year –1 near solar maximum. The observed solar electron events have a 98.75% association with type III radio bursts, suggesting all type III bursts may be associated with a solar electron event. They have a close (∼76%) association with the presence of low-energy (∼0.02-2 MeV nucleon –1 ), 3 He-rich ( 3 He/ 4 He ≥ 0.01) ion emissions measured by the ACE ULEIS instrument. For these electron events, only ∼35% are associated with a reported GOES SXR flare, but ∼60% appear to be associated with a CME, with ∼50% of these CMEs being narrow. These electrons are often detected down to below 1 keV, indicating a source high in the corona.

  2. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Science.gov (United States)

    Pham Thi Thu, H.; Amory-Mazaudier, C.; Le Huy, M.

    2011-01-01

    Quiet days variations in the Earth's magnetic field (the Sq current system) are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq), during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E). Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74). This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79) and San Juan in the American sector (~0.03, geographic latitude ~18.38). At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: - The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. - In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger than the afternoon

  3. Sq field characteristics at Phu Thuy, Vietnam, during solar cycle 23: comparisons with Sq field in other longitude sectors

    Directory of Open Access Journals (Sweden)

    H. Pham Thi Thu

    2011-01-01

    Full Text Available Quiet days variations in the Earth's magnetic field (the Sq current system are compared and contrasted for the Asian, African and American sectors using a new dataset from Vietnam. This is the first presentation of the variation of the Earth's magnetic field (Sq, during the solar cycle 23, at Phu Thuy, Vietnam (geographic latitudes 21.03° N and longitude: 105.95° E. Phu Thuy observatory is located below the crest of the equatorial fountain in the Asian longitude sector of the Northern Hemisphere. The morphology of the Sq daily variation is presented as a function of solar cycle and seasons. The diurnal variation of Phu Thuy is compared to those obtained in different magnetic observatories over the world to highlight the characteristics of the Phu Thuy observations. In other longitude sectors we find different patterns. At Phu Thuy the solar cycle variation of the amplitude of the daily variation of the X component is correlated to the F.10.7 cm solar radiation (~0.74. This correlation factor is greater than the correlation factor obtained in two observatories located at the same magnetic latitudes in other longitude sectors: at Tamanrasset in the African sector (~0.42, geographic latitude ~22.79 and San Juan in the American sector (~0.03, geographic latitude ~18.38. At Phu Thuy, the Sq field exhibits an equinoctial and a diurnal asymmetry: – The seasonal variation of the monthly mean of X component exhibits the well known semiannual pattern with 2 equinox maxima, but the X component is larger in spring than in autumn. Depending of the phase of the sunspot cycle, the maximum amplitude of the X component varies in spring from 30 nT to 75 nT and in autumn from 20 nT to 60 nT. The maximum amplitude of the X component exhibits roughly the same variation in both solstices, varying from about ~20 nT to 50 nT, depending on the position into the solar cycle. – In all seasons, the mean equinoctial diurnal Y component has a morning maximum Larger

  4. The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2014-01-01

    Highlights: • Results show efficiencies of a low-cost stainless steel tubular cavity receiver. • Optimum ratio of 0.0035 is found for receiver aperture area to concentrator area. • Smaller receiver tube and higher mass flow rate increase receiver efficiency. • Larger tube and smaller mass flow rate increase second law efficiency. • Large-tube receiver performs better in the small-scale solar thermal Brayton cycle. - Abstract: The first law and second law efficiencies are determined for a stainless steel closed-tube open rectangular cavity solar receiver. It is to be used in a small-scale solar thermal Brayton cycle using a micro-turbine with low compressor pressure ratios. There are many different variables at play to model the air temperature increase of the air running through such a receiver. These variables include concentrator shape, concentrator diameter, concentrator rim angle, concentrator reflectivity, concentrator optical error, solar tracking error, receiver aperture area, receiver material, effect of wind, receiver tube diameter, inlet temperature and mass flow rate through the receiver. All these variables are considered in this paper. The Brayton cycle requires very high receiver surface temperatures in order to be successful. These high temperatures, however, have many disadvantages in terms of heat loss from the receiver, especially radiation heat loss. With the help of ray-tracing software, SolTrace, and receiver modelling techniques, an optimum receiver-to-concentrator-area ratio of A′ ≈ 0.0035 was found for a concentrator with 45° rim angle, 10 mrad optical error and 1° tracking error. A method to determine the temperature profile and net heat transfer rate along the length of the receiver tube is presented. Receiver efficiencies are shown in terms of mass flow rate, receiver tube diameter, pressure drop, maximum receiver surface temperature and inlet temperature of the working fluid. For a 4.8 m diameter parabolic dish, the

  5. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    suitable control strategy and both the overall annual production and the average solar to electrical efficiency are estimated with an annual simulation. The results suggest that the introduction of binary working fluids enables to increase the solar system performance both in design and part-load operation....... cycle. The purpose of this paper is to optimize a low temperature organic Rankine cycle tailored for solar applications. The objective of the optimization is the maximization of the solar to electrical efficiency and the optimization parameters are the working fluid and the turbine inlet temperature...... and pressure. Both pure fluids and binary mixtures are considered as possible working fluids and thus one of the primary aims of the study is to evaluate whether the use of multi-component working fluids might lead to increased solar to electrical efficiencies. The considered configuration includes a solar...

  6. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    International Nuclear Information System (INIS)

    Kilpua, E. K. J.; Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J.; Miyahara, H.; Kataoka, R.; Liu, Y. D.

    2015-01-01

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field

  7. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpua, E. K. J. [Department of Physics, University Helsinki (Finland); Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J. [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto Univeristy (Finland); Miyahara, H. [Musashino Art University, 1-736 Ogawa-cho, Kodaira-shi, Tokyo 187-8505 (Japan); Kataoka, R. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-20

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

  8. The Recalibrated Sunspot Number: Impact on Solar Cycle Predictions

    Science.gov (United States)

    Clette, F.; Lefevre, L.

    2017-12-01

    Recently and for the first time since their creation, the sunspot number and group number series were entirely revisited and a first fully recalibrated version was officially released in July 2015 by the World Data Center SILSO (Brussels). Those reference long-term series are widely used as input data or as a calibration reference by various solar cycle prediction methods. Therefore, past predictions may now need to be redone using the new sunspot series, and methods already used for predicting cycle 24 will require adaptations before attempting predictions of the next cycles.In order to clarify the nature of the applied changes, we describe the different corrections applied to the sunspot and group number series, which affect extended time periods and can reach up to 40%. While some changes simply involve constant scale factors, other corrections vary with time or follow the solar cycle modulation. Depending on the prediction method and on the selected time interval, this can lead to different responses and biases. Moreover, together with the new series, standard error estimates are also progressively added to the new sunspot numbers, which may help deriving more accurate uncertainties for predicted activity indices. We conclude on the new round of recalibration that is now undertaken in the framework of a broad multi-team collaboration articulated around upcoming ISSI workshops. We outline the future corrections that can still be expected in the future, as part of a permanent upgrading process and quality control. From now on, future sunspot-based predictive models should thus be made more adaptable, and regular updates of predictions should become common practice in order to track periodic upgrades of the sunspot number series, just like it is done when using other modern solar observational series.

  9. An investigation of the solar cycle response of odd-nitrogen in the thermosphere

    Science.gov (United States)

    Rusch, David W.; Solomon, Stanley C.

    1992-01-01

    This annual report covers the first year of funding for the study of the solar cycle variations of odd-nitrogen (N((sup 2)D), N((sup 4)S), NO) in the Earth's thermosphere. The study uses the extensive data base generated by the Atmosphere Explorer (AE) satellites, and the Solar Mesosphere Explorer Satellite. The AE data are being used, for the first time, to define the solar variability effect on the odd-nitrogen species through analysis of the emissions at 520 nano-m from N((sup 2)D) and the emission from O(+)((sup 2)P). Additional AE neutral and ion density data are used to help define and quantify the physical processes controlling the variations. The results from the airglow study will be used in the next two years of this study to explain the solar cycle changes in NO measured by the Solar Mesosphere Explorer.

  10. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  11. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton

  12. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shangbin; Zhang Hongqi, E-mail: yangshb@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, 100012 Beijing (China)

    2012-10-10

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  13. LARGE-SCALE MAGNETIC HELICITY FLUXES ESTIMATED FROM MDI MAGNETIC SYNOPTIC CHARTS OVER THE SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Yang Shangbin; Zhang Hongqi

    2012-01-01

    To investigate the characteristics of large-scale and long-term evolution of magnetic helicity with solar cycles, we use the method of Local Correlation Tracking to estimate the magnetic helicity evolution over solar cycle 23 from 1996 to 2009 using 795 MDI magnetic synoptic charts. The main results are as follows: the hemispheric helicity rule still holds in general, i.e., the large-scale negative (positive) magnetic helicity dominates the northern (southern) hemisphere. However, the large-scale magnetic helicity fluxes show the same sign in both hemispheres around 2001 and 2005. The global, large-scale magnetic helicity flux over the solar disk changes from a negative value at the beginning of solar cycle 23 to a positive value at the end of the cycle, while the net accumulated magnetic helicity is negative in the period between 1996 and 2009.

  14. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  15. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Soumitra; Nandy, Dibyendu [Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata (India)

    2016-11-20

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  16. A PROPOSED PARADIGM FOR SOLAR CYCLE DYNAMICS MEDIATED VIA TURBULENT PUMPING OF MAGNETIC FLUX IN BABCOCK–LEIGHTON-TYPE SOLAR DYNAMOS

    International Nuclear Information System (INIS)

    Hazra, Soumitra; Nandy, Dibyendu

    2016-01-01

    At present, the Babcock–Leighton flux transport solar dynamo models appear to be the most promising models for explaining diverse observational aspects of the sunspot cycle. The success of these flux transport dynamo models is largely dependent upon a single-cell meridional circulation with a deep equatorward component at the base of the Sun’s convection zone. However, recent observations suggest that the meridional flow may in fact be very shallow (confined to the top 10% of the Sun) and more complex than previously thought. Taken together, these observations raise serious concerns on the validity of the flux transport paradigm. By accounting for the turbulent pumping of magnetic flux, as evidenced in magnetohydrodynamic simulations of solar convection, we demonstrate that flux transport dynamo models can generate solar-like magnetic cycles even if the meridional flow is shallow. Solar-like periodic reversals are recovered even when meridional circulation is altogether absent. However, in this case, the solar surface magnetic field dynamics does not extend all the way to the polar regions. Very importantly, our results demonstrate that the Parker–Yoshimura sign rule for dynamo wave propagation can be circumvented in Babcock–Leighton dynamo models by the latitudinal component of turbulent pumping, which can generate equatorward propagating sunspot belts in the absence of a deep, equatorward meridional flow. We also show that variations in turbulent pumping coefficients can modulate the solar cycle amplitude and periodicity. Our results suggest the viability of an alternate magnetic flux transport paradigm—mediated via turbulent pumping—for sustaining solar-stellar dynamo action.

  17. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  18. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  19. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion. An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage

    International Nuclear Information System (INIS)

    Dominique, Katheen

    2010-01-01

    International collaboration can be leveraged to accelerate the innovation and diffusion of low carbon technologies required to realize the shift to a low carbon trajectory. A collaborative approach to innovation has the potential to capture several benefits, including: pooling risks and achieving scale; knowledge sharing that accommodates competition and cooperation; the creation of a global market; facilitation of policy learning and exchange; and the alignment of technology, finance and policy. International Collaboration: the Virtuous Cycle of Low Carbon Innovation and Diffusion An Analysis of Solar Photovoltaic, Concentrating Solar Power and Carbon Capture and Storage A range of obstacles to the diffusion of low carbon technologies provides ample opportunity for international collaboration in global market creation and capacity building, expanding beyond conventional modes of technology transfer. Current collaborative efforts for carbon capture and storage, solar photovoltaic and concentrating solar power technologies are active in all stages of innovation and diffusion and involve a wide range of actors. Yet, current efforts are not sufficient to achieve the necessary level of emission mitigation at the pace required to avoid catastrophic levels of atmospheric destabilization. This analysis sets forth recommendation to scale up current endeavors and create new ones. The analysis begins by describing the fundamental characteristics of innovation and diffusion processes that create opportunities for international collaboration. It then illustrates a broad array of on-going collaborative activities, depicting how these efforts contribute to innovation and diffusion. Finally, highlighting the gap between the current level of collaborative activities and technology targets deemed critical for emission mitigation, the report sets forth several recommendations to build on current efforts and construct new endeavors

  20. Solar power satellite life-cycle energy recovery consideration

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  1. Solar power satellite—Life-cycle energy recovery considerations

    Science.gov (United States)

    Weingartner, S.; Blumenberg, J.

    1995-05-01

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for a cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead of monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power plant components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on Earth (rectenna) requires in the order of 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production, installation and operation, is in the order of two years.

  2. Solar flares through electric current interaction

    International Nuclear Information System (INIS)

    De Jager, C.

    1988-01-01

    The fundamental hypothesis by Alfven and Carlqvist (1967) that solar flares are related to electrical currents in the solar chromosphere and low corona is investigated in the light of modern observations. The authors confirm the important role of currents in solar flares. There must be tens of such current loops (flux threads) in any flare, and this explains the hierarchy of bursts in flares. The authors summarize quantitative data on energies, numbers of particles involved and characteristic times. A special case is the high-energy flare: this one may originate in the same way as less energetic ones, but it occurs in regions with higher magnetic field strength. Because of the high particle energies involved their emission seats live only very briefly; hence the area of emission coincides virtually with the seat of the instability. These flares are therefore the best examples for studying the primary instability leading to the flare. Finally, the authors compare the merits of the original Alfven-Carlqvist idea (that flares originate by current interruption) with the one that they are due to interaction (reconnection) between two or more fluxthreads. The authors conclude that a final decision cannot yet by made, although the observed extremely short time constants of flare bursts seem to demand a reconnection-type instability rather than interruption of a circuit

  3. Ionospheric data for two solar cycles available online

    International Nuclear Information System (INIS)

    Bilitza, D.; Papitashvili, N.; Grebowsky, J.; Schar, W.

    2002-01-01

    We report about a project that has as its goal to make a large volume of ionospheric satellite insitu data from the sixties, seventies and early eighties easily accessible for public use The original data exist in various machine-specific, highly compressed, binary encoding on 7- or 9-track magnetic tapes. The intent is to decode the data format and convert all data sets to a common ASCII data format and add solar and magnetic indices for user convenience. The original intent of producing CD-ROMs with these data has meanwhile been overtaken by the rapid development of the internet. Most users now prefer to obtain the data directly online and greatly value web-interfaces to browse, plot and subset the data. Accordingly, the focus has shifted to making the data available online on the anonymous ftp site of NASA's National Space Science Data Center (NSSDC) at ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/ and on the development of a web-interface (ATMOWeb, http://nssdc.gsfc.nasa.gov/ atmoweb/) to help users study the data and select interesting time periods. The data considered by this project include data sets from the Alouette I, BE-B (Explorer 22), Alouette 2, DME-A (Explorer 31) , AE-B (Explorer 32), AE-C, -D, -E, OGO-6, ESRO-4, ISIS-I, -2, AEROS-I, -2 Taiyo, ISS-b, Hinotori and DE-2 satellites. The data are primarily electron and ion densities and temperatures measured by Langmuir Probes (LP), Retarding Potential Analyzers (RPA), and Ion Mass Spectrometers (IMS) flown on these satellites. The time resolution of the measurements is typically seconds to minutes. This data base covering almost two solar cycles is a unique asset for studies of the variation and variability of ionospheric parameters. It will be an important element in the quest for a better understanding of ionospheric plasma processes and for improved predictions of ionospheric Space Weather. Current models are still very limited in their predictive capabilities especially at equatorial and auroral

  4. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application

    International Nuclear Information System (INIS)

    Božnar, Marija Zlata; Grašič, Boštjan; Mlakar, Primož; Soares, Jacyra; Pereira de Oliveira, Amauri; Costa, Tássio Santos

    2015-01-01

    Graphical abstract: A new type of graphical presentation showing diurnal cycle of solar energy forecast. The application is possible for other parameters related to weather and green energy production. - Highlights: • The diurnal cycle of solar energy is important for the management of the electrical grid. • A solar plant’s average production depends on the statistical features of solar radiation. • The new tool – the “sunflower”, is proposed for solar energy availability representation. • The sunflower identifies and quantifies information with a clear diurnal cycle. • The sunflower diagram has been developed from the “wind rose” diagram. - Abstract: Many meteorological parameters present a natural diurnal cycle because they are directly or indirectly dependent on sunshine exposure. The solar radiation diurnal pattern is important to energy production, agriculture, prognostic models, health and general climatology. This article aims at introducing a new type of radial frequency diagram – hereafter called sunflower – for the analysis of solar radiation data in connection with energy production and also for climatological studies. The diagram is based on two-dimensional data sorting. Firstly data are sorted into classes representing hours in a day. Then the data in each hourly class is sorted into classes of the observed variable values. The relative frequencies of the value classes are shown as sections on each hour’s segment in a radial diagram. The radial diagram forms a unique pattern for each analysed dataset. Therefore it enables the quick detection of features and the comparison of several such patterns belonging to the different datasets being analysed. The sunflower diagram enables a quick and comprehensive understanding of the information about diurnal cycle of the solar radiation data. It enables in a graphical form, quick screening and long-term statistics of huge data quantities when searching for their diurnal features and

  5. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Espinosa Martinez, Nieves; Krebs, Frederik C

    2017-01-01

    OPV panel, enabling the possibility to be charged from the sun, and not only from the grid. In this paper, two well-established power bank products using amorphous silicon solar panels (a-Si PV) and a regular power bank without any portable solar panel is compared to HeLi-on. The environmental impact...... of the products is quantified with the aim of indicate where eco-design improvements would make a difference and to point out performance of a portable solar panel depending on the context of use (Denmark and China), realistic disposal scenarios and the recycling relevance particularly concerning metals content.......Organic photovoltaics (OPV) applied in a commercial product comprising a solar charged power bank is subjected to a life cycle assessment (LCA) study. Regular power banks harvest electricity from the grid only. The solar power bank (called HeLi-on) is however, a power bank that includes a portable...

  6. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  7. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  8. Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles

    Science.gov (United States)

    Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2017-01-01

    Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.

  9. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  10. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  11. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  12. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  13. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Science.gov (United States)

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  14. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Science.gov (United States)

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  15. COMPARING CORONAL AND HELIOSPHERIC MAGNETIC FIELDS OVER SEVERAL SOLAR CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Koskela, J. S.; Virtanen, I. I.; Mursula, K., E-mail: jennimari.koskela@oulu.fi [University of Oulu, P.O. Box 3000, FI-90014 Oulu (Finland)

    2017-01-20

    Here we use the PFSS model and photospheric data from Wilcox Solar Observatory, SOHO /MDI, SDO/HMI, and SOLIS to compare the coronal field with heliospheric magnetic field measured at 1 au, compiled in the NASA/NSSDC OMNI 2 data set. We calculate their mutual polarity match and the power of the radial decay, p , of the radial field using different source surface distances and different number of harmonic multipoles. We find the average polarity match of 82% for the declining phase, 78%–79% for maxima, 76%–78% for the ascending phase, and 74%–76% for minima. On an average, the source surface of 3.25 R{sub S} gives the best polarity match. We also find strong evidence for solar cycle variation of the optimal source surface distance, with highest values (3.3 R{sub S}) during solar minima and lowest values (2.6 R{sub S}–2.7 R{sub S}) during the other three solar cycle phases. Raising the number of harmonic terms beyond 2 rarely improves the polarity match, showing that the structure of the HMF at 1 au is most of the time rather simple. All four data sets yield fairly similar polarity matches. Thus, polarity comparison is not affected by photospheric field scaling, unlike comparisons of the field intensity.

  16. Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods

    International Nuclear Information System (INIS)

    Lin, Meng; Haussener, Sophia

    2015-01-01

    Solar-driven non-stoichiometric thermochemical redox cycling of ceria for the conversion of solar energy into fuels shows promise in achieving high solar-to-fuel efficiency. This efficiency is significantly affected by the operating conditions, e.g. redox temperatures, reduction and oxidation pressures, solar irradiation concentration, or heat recovery effectiveness. We present a thermodynamic analysis of five redox cycle designs to investigate the effects of working conditions on the fuel production. We focused on the influence of approaches to reduce the partial pressure of oxygen in the reduction step, namely by mechanical approaches (sweep gassing or vacuum pumping), chemical approaches (chemical scavenger), and combinations thereof. The results indicated that the sweep gas schemes work more efficient at non-isothermal than isothermal conditions, and efficient gas phase heat recovery and sweep gas recycling was important to ensure efficient fuel processing. The vacuum pump scheme achieved best efficiencies at isothermal conditions, and at non-isothermal conditions heat recovery was less essential. The use of oxygen scavengers combined with sweep gas and vacuum pump schemes further increased the system efficiency. The present work can be used to predict the performance of solar-driven non-stoichiometric redox cycles and further offers quantifiable guidelines for system design and operation. - Highlights: • A thermodynamic analysis was conducted for ceria-based thermochemical cycles. • Five novel cycle designs and various operating conditions were proposed and investigated. • Pressure reduction method affects optimal operating conditions for maximized efficiency. • Chemical oxygen scavenger proves to be promising in further increasing efficiency. • Formulation of quantifiable design guidelines for economical competitive solar fuel processing

  17. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  18. Quantifying uncertainties of climate signals related to the 11-year solar cycle

    Science.gov (United States)

    Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.

    2017-12-01

    Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the

  19. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  20. Fluid selection for a low-temperature solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Tchanche, Bertrand Fankam; Papadakis, George; Lambrinos, Gregory; Frangoudakis, Antonios

    2009-01-01

    Theoretical performances as well as thermodynamic and environmental properties of few fluids have been comparatively assessed for use in low-temperature solar organic Rankine cycle systems. Efficiencies, volume flow rate, mass flow rate, pressure ratio, toxicity, flammability, ODP and GWP were used for comparison. Of 20 fluids investigated, R134a appears as the most suitable for small scale solar applications. R152a, R600a, R600 and R290 offer attractive performances but need safety precautions, owing to their flammability.

  1. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  2. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  3. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.

    2009-05-17

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  4. Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water

    KAUST Repository

    Ng, K. C.; Thu, K.; Chakraborty, A.; Saha, B. B.; Chun, W. G.

    2009-01-01

    This paper investigates the performance of a solar-assisted adsorption (AD) cycle which produces two useful effects, namely cooling and desalination, with only a low-temperature heat input such as thermal energy from solar collectors. Heat sources varying from 65 to 80°C can be obtained from 215-m2 flat plate-type solar collectors to regenerate the proposed silica gel-water-based AD cycle. In this paper, both mathematical modelling and experimental results from the AD cycle operation are discussed, in terms of two key parameters, namely specific daily water production (SDWP) and specific cooling capacity (SCC). The experimental results show that the AD cycle is capable of producing chilled water at 7 to 10°C with varying SCC range of 25-35 Rton/tonne of silica gel. Simultaneously, the AD cycle produces a SDWP of 3-5 m3 per tonne of silica gel per day, rendering it as a dual-effect machine that has an overall conversion or performance ratio of 0.8-1.1. © The Author 2009. Published by Oxford University Press. All rights reserved.

  5. Witnessing Solar Rejuvenation

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    At the end of last year, the Suns large-scale magnetic field suddenly strengthened, reaching its highest value in over two decades. Here, Neil Sheeley and Yi-Ming Wang (both of the Naval Research Laboratory) propose an explanation for why this happened and what it predicts for the next solar cycle.Magnetic StrengtheningUntil midway through 2014, solar cycle 24 the current solar cycle was remarkably quiet. Even at its peak, it averaged only 79 sunspots per year, compared to maximums of up to 190 in recent cycles. Thus it was rather surprising when, toward the end of 2014, the Suns large-scale magnetic field underwent a sudden rejuvenation, with its mean field leaping up to its highest values since 1991 and causing unprecedentedly large numbers of coronal loops to collapse inward.Yet in spite of the increase we observed in the Suns open flux (the magnetic flux leaving the Suns atmosphere, measured from Earth), there was not a significant increase in solar activity, as indicated by sunspot number and the rate of coronal mass ejections. This means that the number of sources of magnetic flux didnt increase so Sheeley and Wang conclude that flux must instead have been emerging from those sources in a more efficient way! But how?Aligned ActivityWSO open flux and the radial component of the interplanetary magnetic field (measures of the magnetic flux leaving the Suns photosphere and heliosphere, respectively), compared to sunspot number (in units of 100 sunspots). A sudden increase in flux is visible after the peak of each of the last four sunspot cycles. Click for a larger view! [Sheeley Wang 2015]The authors show that the active regions on the solar surface in late 2014 lined up in such a way that the emerging flux was enhanced, forming a strong equatorial dipole field that accounts for the sudden rejuvenation observed.Interestingly, this rejuvenation of the Suns open flux wasnt just a one-time thing; similar bursts have occurred shortly after the peak of every sunspot

  6. Solar-Iss a New Solar Reference Spectrum Covering the Far UV to the Infrared (165 to 3088 Nm) Based on Reanalyzed Solar/solspec Cycle 24 Observations

    Science.gov (United States)

    Damé, L.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.

    2017-12-01

    Since April 5, 2008 and until February 15, 2017, the SOLSPEC (SOLar SPECtrometer) spectro-radiometer of the SOLAR facility on the International Space Station performed accurate measurements of Solar Spectral Irradiance (SSI) from the far ultraviolet to the infrared (165 nm to 3088 nm). These measurements, unique by their large spectral coverage and long time range, are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry), noticeably through the "top-down" mechanism amplifying ultraviolet (UV) solar forcing effects on the climate (UV affects stratospheric dynamics and temperatures, altering interplanetary waves and weather patterns both poleward and downward to the lower stratosphere and troposphere regions). SOLAR/SOLSPEC, with almost 9 years of observations covering the essential of the unusual solar cycle 24 from minimum in 2008 to maximum, allowed to establish new reference solar spectra from UV to IR (165 to 3088 nm) at minimum (beginning of mission) and maximum of activity. The complete reanalysis was possible thanks to revised engineering corrections, improved calibrations and advanced procedures to account for thermal, aging and pointing corrections. The high quality and sensitivity of SOLSPEC data allow to follow temporal variability in UV but also in visible along the cycle. Uncertainties on these measurements are evaluated and results, absolute reference spectra and variability, are compared with other measurements (WHI, ATLAS-3, SCIAMACHY, SORCE/SOLSTICE, SORCE/SIM) and models (SATIRE-S, NRLSSI, NESSY)

  7. THE MINIMUM OF SOLAR CYCLE 23: AS DEEP AS IT COULD BE?

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz-Jaramillo, Andrés; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Senkpeil, Ryan R. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Tlatov, Andrey G. [Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Kislovodsk 357700 (Russian Federation); Pevtsov, Alexei A. [National Solar Observatory, Sunspot, NM 88349 (United States); Balmaceda, Laura A. [Institute for Astronomical, Terrestrial and Space Sciences (ICATE-CONICET), San Juan (Argentina); DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Martens, Petrus C. H., E-mail: munoz@solar.physics.montana.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2015-05-01

    In this work we introduce a new way of binning sunspot group data with the purpose of better understanding the impact of the solar cycle on sunspot properties and how this defined the characteristics of the extended minimum of cycle 23. Our approach assumes that the statistical properties of sunspots are completely determined by the strength of the underlying large-scale field and have no additional time dependencies. We use the amplitude of the cycle at any given moment (something we refer to as activity level) as a proxy for the strength of this deep-seated magnetic field. We find that the sunspot size distribution is composed of two populations: one population of groups and active regions and a second population of pores and ephemeral regions. When fits are performed at periods of different activity level, only the statistical properties of the former population, the active regions, are found to vary. Finally, we study the relative contribution of each component (small-scale versus large-scale) to solar magnetism. We find that when hemispheres are treated separately, almost every one of the past 12 solar minima reaches a point where the main contribution to magnetism comes from the small-scale component. However, due to asymmetries in cycle phase, this state is very rarely reached by both hemispheres at the same time. From this we infer that even though each hemisphere did reach the magnetic baseline, from a heliospheric point of view the minimum of cycle 23 was not as deep as it could have been.

  8. Implications of Extended Solar Minima

    Science.gov (United States)

    Adams, Mitzi L.; Davis, J. M.

    2009-01-01

    Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.

  9. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  10. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  11. QUANTIFYING THE ANISOTROPY AND SOLAR CYCLE DEPENDENCE OF '1/f' SOLAR WIND FLUCTUATIONS OBSERVED BY ADVANCED COMPOSITION EXPLORER

    International Nuclear Information System (INIS)

    Nicol, R. M.; Chapman, S. C.; Dendy, R. O.

    2009-01-01

    The power spectrum of the evolving solar wind shows evidence of a spectral break between an inertial range (IR) of turbulent fluctuations at higher frequencies and a '1/f' like region at lower frequencies. In the ecliptic plane at ∼1 AU, this break occurs approximately at timescales of a few hours and is observed in the power spectra of components of velocity and magnetic field. The '1/f' energy range is of more direct coronal origin than the IR, and carries signatures of the complex magnetic field structure of the solar corona, and of footpoint stirring in the solar photosphere. To quantify the scaling properties we use generic statistical methods such as generalized structure functions and probability density functions (PDFs), focusing on solar cycle dependence and on anisotropy with respect to the background magnetic field. We present structure function analysis of magnetic and velocity field fluctuations, using a novel technique to decompose the fluctuations into directions parallel and perpendicular to the mean local background magnetic field. Whilst the magnetic field is close to '1/f', we show that the velocity field is '1/f α ' with α ≠ 1. For the velocity, the value of α varies between parallel and perpendicular fluctuations and with the solar cycle. There is also variation in α with solar wind speed. We have examined the PDFs in the fast, quiet solar wind and intriguingly, whilst parallel and perpendicular are distinct, both the B field and velocity show the same PDF of their perpendicular fluctuations, which is close to gamma or inverse Gumbel. These results point to distinct physical processes in the corona and to their mapping out into the solar wind. The scaling exponents obtained constrain the models for these processes.

  12. Seasonal cycle of the Canary Current.

    Science.gov (United States)

    Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.

    2015-12-01

    The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands. Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC) using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has an amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the

  13. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  14. Environmental Impacts of Solar Thermal Systems with Life Cycle Assessment

    OpenAIRE

    De Laborderie , Alexis; Puech , Clément; Adra , Nadine; Blanc , Isabelle; Beloin-Saint-Pierre , Didier; Padey , Pierryves; Payet , Jérôme; Sie , Marion; Jacquin , Philippe

    2011-01-01

    Available on: http://www.ep.liu.se/ecp/057/vol14/002/ecp57vol14_002.pdf; International audience; Solar thermal systems are an ecological way of providing domestic hot water. They are experiencing a rapid growth since the beginning of the last decade. This study characterizes the environmental performances of such installations with a life-cycle approach. The methodology is based on the application of the international standards of Life Cycle Assessment. Two types of systems are presented. Fir...

  15. Open magnetic fields and the solar cycle. Pt. 1

    International Nuclear Information System (INIS)

    Levine, R.H.

    1982-01-01

    Models of open magnetic structures on the Sun are presented for periods near solar minimum (CR 1626-1634) and near solar maximum (CR 1668-1678). Together with previous models of open magnetic structures during the declining phase (CR 1601-1611) these calculations provide clues to the relations between open structures, coronal holes, and active regions at different times of the solar cycle. Near solar minimum the close relation between active regions and open structures does not exist. It is suggested that near solar minimum the systematic emergence of new flux with the proper polarity imbalance to maintain open magnetic structures may occur primarily at very small spatial scales. Near solar maximum the role of active regions in maintaining open structures and coronal holes is strong, with large active regions emerging in the proper location and orientation to maintain open structures longer than typical active region lifetimes. Although the use of He I 10830 A spectroheliograms as a coronal hole indicator is shown to be subject to significant ambiguity, the agreement between calculated open structures and coronal holes determined from He I 10830 A spectroheliograms is very good. The rotation properties of calculated open structures near solar maximum strongly suggest two classes of features: one that rotates differentially similar to sunspots and active regions and a separate class that rotates more rigidly, as was the case for single large coronal holes during Skylab. (orig.)

  16. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  17. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  18. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    Science.gov (United States)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  19. First Colombian Solar Radio Interferometer: current stage

    Science.gov (United States)

    Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.

    2017-10-01

    Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.

  20. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  1. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    International Nuclear Information System (INIS)

    Tan, Lun C.

    2017-01-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  2. Electron-Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Science.gov (United States)

    Tan, Lun C.

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron-ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  3. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  4. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S. [Department of Earth Science Education, Chonnam National University, Gwangju, 61186 (Korea, Republic of); Yi, Y., E-mail: suyeonoh@jnu.ac.kr [Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134 (Korea, Republic of)

    2017-05-01

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cycles and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.

  6. Solar Cycle Variations in Polar Cap Area Measured by the SuperDARN Radars

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-12-01

    We present a long term study, from January 1996 - August 2012, of the latitude of the Heppner-Maynard Boundary (HMB) measured at midnight using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection, and is used in this study as a measure of the global magnetospheric dynamics and activity. We find that the yearly distribution of HMB latitudes is single-peaked at 64° magnetic latitude for the majority of the 17-year interval. During 2003 the envelope of the distribution shifts to lower latitudes and a second peak in the distribution is observed at 61°. The solar wind-magnetosphere coupling function derived by Milan et al. (2012) suggests that the solar wind driving during this year was significantly higher than during the rest of the 17-year interval. In contrast, during the period 2008-2011 HMB distribution shifts to higher latitudes, and a second peak in the distribution is again observed, this time at 68° magnetic latitude. This time interval corresponds to a period of extremely low solar wind driving during the recent extreme solar minimum. This is the first statistical study of the polar cap area over an entire solar cycle, and the results demonstrate that there is a close relationship between the phase of the solar cycle and the area of the polar cap on a large scale statistical basis.

  7. Solar processing of CO2 and H2O, routes for solar fuels

    International Nuclear Information System (INIS)

    Flammant, G.; Abanades, St.

    2008-01-01

    Complete text of publication follows: Concentrated solar energy provides heat in the temperature range 200 C - 3000 C for concentration ratio variation from 10 to 10 000 (three orders of magnitude). Consequently, solar-driven thermochemical processes may be proposed to produce hydrogen from water decomposition and to reduce carbon dioxide. This lecture gives an overview of such processes. High temperature thermochemical cycles for hydrogen production by water splitting are currently studied at PROMES lab, particularly 2-step and 3-step cycles based on the following reaction scheme, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + H 2 O → MOox + H 2 (low temperature non solar step). Volatile and non-volatile oxide cycles are developed from the chemical and the engineering points of view. A similar reaction scheme may be proposed to reduce carbon dioxide with concentrated solar energy (Fig. 1), it comes, MOox → MOred + 1/2 O 2 (high temperature solar step), MOred + CO 2 → MOox + CO (low temperature non solar step). As a result gas mixtures such as CO 2 /H 2 and CO/H 2 may be produced by solar energy. Such mixtures are the reactants for liquid fuels production (solar fuels)

  8. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  9. Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector

    International Nuclear Information System (INIS)

    Toghyani, Somayeh; Baniasadi, Ehsan; Afshari, Ebrahim

    2016-01-01

    Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.

  10. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  11. Performance analysis of solar parabolic trough collectors driven combined supercritical CO2 and organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Harwinder Singh

    2018-06-01

    Full Text Available In this paper, attempts have been made on the detailed energy and exergy analysis of solar parabolic trough collectors (SPTCs driven combined power plant. The combination of supercritical CO2 (SCO2 cycle and organic Rankine cycle (ORC integrated with SPTCs has been used to produce power, in which SCO2 cycle and ORC are arranged as a topping and bottoming cycle. Five organic working fluids like R134a, R1234yf, R407c, R1234ze, and R245fa were selected for a low temperature bottoming ORC. Five key exergetic parameters such as exergetic efficiency, exergy destruction rate, fuel depletion ratio, irreversibility ratio, and improvement potential were also examined. It was revealed that exergetic and thermal efficiency of all the combined cycles enhances as the direct normal irradiance increases from 0.5 kW/m2 to 0.95 kW/m2. As can be seen, R407c combined cycle has the maximum exergetic as well as thermal efficiency which is around 78.07% at 0.95 kW/m2 and 43.49% at 0.95 kW/m2, respectively. Alternatively, the R134a and R245fa combined cycle yields less promising results with the marginal difference in their performance. As inferred from the study that SCO2 turbine and evaporator has a certain amount of exergy destruction which is around 9.72% and 8.54% of the inlet exergy, and almost 38.10% of the total exergy destruction in case of R407c combined cycle. Moreover, the maximum amount of exergy destructed by the solar collector field which is more than 25% of the solar inlet exergy and around 54% of the total destructed exergy. Finally, this study concludes that R407c combined cycle has a minimum fuel depletion ratio of 0.2583 for a solar collector and possess the highest power output of 3740 kW. Keywords: Supercritical CO2cycle, Organic Rankine cycle, Exergetic performance, SPTCs, Organic fluids

  12. Energetic evaluation of the largest geomagnetic storms of solar cycle 24 on March 17, 2015 and September 8, 2017 during solar maximum and minimum, respectively

    International Nuclear Information System (INIS)

    Tomova, Dimitrinka; Velinov, Peter; Tassev, Yordan; Tomova, Dimitrinka

    2018-01-01

    Some of the most powerful Earth’s directed coronal mass ejections (CMEs) from the current 24 solar cycle have been investigated. These are CMEs on March 15, 2015 and on September 4 and 6, 2017. As a result of these impacts of Sun on Earth, the highest intensity of the geomagnetic storms for the 24th solar cycle is observed. These G4 – Severe geomagnetic storms are in the periods March 17÷19, 2015 and September 7÷10, 2017. We use the solar wind parameters (velocity V, density or concentration N , temperature T p and intensity of the magnetic field B) from measurements by WIND, ACE and SOHO space crafts in the Lagrange equilibrium point L1 between Sun and Earth. We make calculations for the kinetic (dynamic) energy density E k , thermal energy density E t and magnetic energy density E m during the investigated periods May 10÷24, 2015 and September 2÷16, 2017. Both the energy densities for the individual events and the cumulative energy for each of them are evaluated. The quantitative analysis shows that not always the size of the geomagnetic reaction is commensurate with the density of the energy flux reaching the magnetosphere. In both studied periods, the energy densities have different behaviour over time. But for both periods, we can talk about the prognostic effect – with varying degrees of increase of the dynamic and thermal energies. Such an effect is not observed in the density of magnetic energy. An inverse relationship between the magnitude of the density of energies and the effect of Forbush decrease of the galactic cosmic rays is established. Key words: solar activity, flares, coronal mass ejection (CME), G4 –Severe geomagnetic storms, energy density of the solar wind, space weather

  13. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  14. AUTOMATED SOLAR FLARE STATISTICS IN SOFT X-RAYS OVER 37 YEARS OF GOES OBSERVATIONS: THE INVARIANCE OF SELF-ORGANIZED CRITICALITY DURING THREE SOLAR CYCLES

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Freeland, Samuel L.

    2012-01-01

    We analyzed the soft X-ray light curves from the Geostationary Operational Environmental Satellites over the last 37 years (1975-2011) and measured with an automated flare detection algorithm over 300,000 solar flare events (amounting to ≈5 times higher sensitivity than the NOAA flare catalog). We find a power-law slope of α F = 1.98 ± 0.11 for the (background-subtracted) soft X-ray peak fluxes that is invariant through three solar cycles and agrees with the theoretical prediction α F = 2.0 of the fractal-diffusive self-organized criticality (FD-SOC) model. For the soft X-ray flare rise times, we find a power-law slope of α T = 2.02 ± 0.04 during solar cycle minima years, which is also consistent with the prediction α T = 2.0 of the FD-SOC model. During solar cycle maxima years, the power-law slope is steeper in the range of α T ≈ 2.0-5.0, which can be modeled by a solar-cycle-dependent flare pile-up bias effect. These results corroborate the FD-SOC model, which predicts a power-law slope of α E = 1.5 for flare energies and thus rules out significant nanoflare heating. While the FD-SOC model predicts the probability distribution functions of spatio-temporal scaling laws of nonlinear energy dissipation processes, additional physical models are needed to derive the scaling laws between the geometric SOC parameters and the observed emissivity in different wavelength regimes, as we derive here for soft X-ray emission. The FD-SOC model also yields statistical probabilities for solar flare forecasting.

  15. Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24

    Science.gov (United States)

    Thakur, N.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.

    2016-01-01

    We discuss our findings from a survey of all large solar energetic particle (SEP) events of Solar Cycles 23 and 24, i.e. the SEP events where the intensity of greater than 10 megaelectronvolts protons observed by GOES (Geostationary Operational Environmental Satellite) was greater than 10 proton flux units. In our previous work (Gopalswamy et al. in Geophys.Res.Lett. 41, 2673, 2014) we suggested that ground level enhancements (GLEs) in Cycles 23 and 24 also produce an intensity increase in the GOES greater than 700 megaelectronvolts proton channel. Our survey, now extended to include all large SEP events of Cycle 23, confirms this to be true for all but two events: i) the GLE of 6 May 1998 (GLE57) for which GOES did not observe enhancement in greater than 700 megaelectronvolts protons intensities and ii) a high-energy SEP event of 8 November 2000, for which GOES observed greater than 700 megaelectronvolts protons but no GLE was recorded. Here we discuss these two exceptions. We compare GLE57 with other small GLEs, and the 8 November 2000 SEP event with those that showed similar intensity increases in the GOES greater than 700 megaelectronvolts protons but produced GLEs. We find that, because GOES greater than 700 megaelectronvolts proton intensity enhancements are typically small for small GLEs, they are difficult to discern near solar minima due to higher background. Our results also support that GLEs are generally observed when shocks of the associated coronal mass ejections (CMEs) form at heights 1.2-1.93 solar radii [R (sub solar)] and when the solar particle release occurs between 2-6 solar radii [R (sub solar)]. Our secondary findings support the view that the nose region of the CME-shock may be accelerating the first-arriving GLE particles and the observation of a GLE is also dependent on the latitudinal connectivity of the observer to the CME-shock nose. We conclude that the GOES greater than 700 megaelectronvolts proton channel can be used as an indicator

  16. Integration between direct steam generation in linear solar collectors and supercritical carbon dioxide Brayton power cycles

    OpenAIRE

    Coco Enríquez, Luis; Muñoz Antón, Javier; Martínez-Val Peñalosa, José María

    2015-01-01

    Direct Steam Generation in Parabolic Troughs or Linear Fresnel solar collectors is a technology under development since beginning of nineties (1990's) for replacing thermal oils and molten salts as heat transfer fluids in concentrated solar power plants, avoiding environmental impacts. In parallel to the direct steam generation technology development, supercritical Carbon Dioxide Brayton power cycles are maturing as an alternative to traditional Rankine cycles for increasing net plant efficie...

  17. Solar cycle and long term variations of mesospheric ice layers

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  18. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    Science.gov (United States)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  19. Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades

    Science.gov (United States)

    Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M.

    2015-01-01

    Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring.

  20. Experimental study on solar-powered adsorption refrigeration cycle with activated alumina and activated carbon as adsorbent

    Directory of Open Access Journals (Sweden)

    Himsar Ambarita

    2016-03-01

    Full Text Available Typical adsorbent applied in solar-powered adsorption refrigeration cycle is activated carbon. It is known that activated alumina shows a higher adsorption capacity when it is tested in the laboratory using a constant radiation heat flux. In this study, solar-powered adsorption refrigeration cycle with generator filled by different adsorbents has been tested by exposing to solar radiation in Medan city of Indonesia. The generator is heated using a flat-plate type solar collector with a dimension of 0.5 m×0.5 m. Four cases experiments of solar-powered adsorption cycle were carried out, they are with generator filled by 100% activated alumina (named as 100AA, by a mixed of 75% activated alumina and 25% activated carbon (75AA, by a mixed of 25% activated alumina and 75% activated carbon (25AA, and filled by 100% activated carbon. Each case was tested for three days. The temperature and pressure history and the performance have been presented and analyzed. The results show that the average COP of 100AA, 75AA, 25AA, and 100AC is 0.054, 0.056, 0.06, and 0.074, respectively. The main conclusion can be drawn is that for Indonesian condition and flat-plate type solar collector the pair of activated carbon and methanol is the better than activated alumina.

  1. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Ding, Liuguan; Jiang, Yong; Zhao, Lulu; Li, Gang

    2013-01-01

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon –1 exceed 10 pfu, we categorize fast CMEs with speed >900 km s –1 and width >60° from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon –1 . Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon –1 . For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  2. Size of the coming solar cycle 24 based on Ohl's Precursor Method, final estimate

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-07-01

    Full Text Available In Ohl's Precursor Method (Ohl, 1966, 1976, the geomagnetic activity during the declining phase of a sunspot cycle is shown to be well correlated with the size (maximum sunspot number Rz(max of the next cycle. For solar cycle 24, Kane (2007a used aa(min=15.5 (12-month running mean, which occurred during March–May of 2006 and made a preliminary estimate Rz(max=124±26 (12-month running mean. However, in the next few months, the aa index first increased and then decreased to a new low value of 14.8 in July 2007. With this new low value, the prediction was Rz(max=117±26 (12-month running mean. However, even this proved a false signal. Since then, the aa values have decreased considerably and the last 12-monthly value is 8.7, centered at May 2009. For solar cycle 24, using aa(min=8.7, the latest prediction is, Rz(max=58.0±25.0.

  3. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  4. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    International Nuclear Information System (INIS)

    Velazquez, N.; Garcia-Valladares, O.; Sauceda, D.; Beltran, R.

    2010-01-01

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency.

  5. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  6. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23

    International Nuclear Information System (INIS)

    Bisoi, Susanta Kumar; Janardhan, P.; Ingale, M.; Subramanian, P.; Ananthakrishnan, S.; Tokumaru, M.; Fujiki, K.

    2014-01-01

    The ratio of the rms electron density fluctuations to the background density in the solar wind (density modulation index, ε N ≡ ΔN/N) is of vital importance for understanding several problems in heliospheric physics related to solar wind turbulence. In this paper, we have investigated the behavior of ε N in the inner heliosphere from 0.26 to 0.82 AU. The density fluctuations ΔN have been deduced using extensive ground-based observations of interplanetary scintillation at 327 MHz, which probe spatial scales of a few hundred kilometers. The background densities (N) have been derived using near-Earth observations from the Advanced Composition Explorer. Our analysis reveals that 0.001 ≲ ε N ≲ 0.02 and does not vary appreciably with heliocentric distance. We also find that ε N declines by 8% from 1998 to 2008. We discuss the impact of these findings on problems ranging from our understanding of Forbush decreases to the behavior of the solar wind dynamic pressure over the recent peculiar solar minimum at the end of cycle 23.

  7. Off-design performance analysis of a solar-powered organic Rankine cycle

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Zhao, Pan; Dai, Yiping

    2014-01-01

    Highlights: • Solar-powered organic Rankine cycle with CPC and thermal storage unit is studied. • Off-design performances encountering the changes of key parameters are examined. • Off-design performance is analyzed over a whole day and in different months. - Abstract: Performance evaluation of a thermodynamic system under off-design conditions is very important for reliable and cost-effective operation. In this study, an off-design model of an organic Rankine cycle driven by solar energy is established with compound parabolic collector (CPC) to collect the solar radiation and thermal storage unit to achieve the continuous operation of the overall system. The system off-design behavior is examined under the change in environment temperature, as well as thermal oil mass flow rates of vapor generator and CPC. In addition, the off-design performance of the system is analyzed over a whole day and in different months. The results indicate that a decrease in environment temperature, or the increases in thermal oil mass flow rates of vapor generator and CPC could improve the off-design performance. The system obtains the maximum average exergy efficiency in December and the maximum net power output in June or in September. Both the net power output and the average exergy efficiency reach minimum values in August

  8. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  9. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  10. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  11. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the

  12. Formation of a strong southward IMF near the solar maximum of cycle 23

    Directory of Open Access Journals (Sweden)

    S. Watari

    2004-01-01

    Full Text Available We analyzed observations of the solar activities and the solar wind parameters associated with large geomagnetic storms near the maximum of solar cycle 23. This analysis showed that strong southward interplanetary magnetic fields (IMFs, formed through interaction between an interplanetary disturbance, and background solar wind or between interplanetary disturbances are an important factor in the occurrence of intense geomagnetic storms. Based on our analysis, we seek to improve our understanding of the physical processes in which large negative Bz's are created which will lead to improving predictions of space weather.

    Key words. Interplanetary physics (Flare and stream dynamics; Interplanetary magnetic fields; Interplanetary shocks

  13. Modern representation of databases on the example of the Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity

    Science.gov (United States)

    Ishkov, V. N.; Zabarinskaya, L. P.; Sergeeva, N. A.

    2017-11-01

    The development of studies of solar sources and their effects on the state of the near-Earth space required systematization of the corresponding information in the form of databases and catalogs for the entire time of observation of any geoeffective phenomenon that includes, if possible at the time of creation, all of the characteristics of the phenomena themselves and the sources of these phenomena on the Sun. A uniform presentation of information in the form of a series of similar catalogs that cover long time intervals is of particular importance. The large amount of information collected in such catalogs makes it necessary to use modern methods of its organization and presentation that allow a transition between individual parts of the catalog and a quick search for necessary events and their characteristics, which is implemented in the presented Catalog of Solar Proton Events in the 23rd Cycle of Solar Activity of the sequence of catalogs (six separate issues) that cover the period from 1970 to 2009 (20th-23rd solar cycles).

  14. Exergetic Analysis of a Novel Solar Cooling System for Combined Cycle Power Plants

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-09-01

    Full Text Available This paper presents a detailed exergetic analysis of a novel high-temperature Solar Assisted Combined Cycle (SACC power plant. The system includes a solar field consisting of innovative high-temperature flat plate evacuated solar thermal collectors, a double stage LiBr-H2O absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a simple single-pressure Combined Cycle (CC power plant. Here, a high temperature solar cooling system is coupled with a conventional combined cycle, in order to pre-cool gas turbine inlet air in order to enhance system efficiency and electrical capacity. In this paper, the system is analyzed from an exergetic point of view, on the basis of an energy-economic model presented in a recent work, where the obtained main results show that SACC exhibits a higher electrical production and efficiency with respect to the conventional CC. The system performance is evaluated by a dynamic simulation, where detailed simulation models are implemented for all the components included in the system. In addition, for all the components and for the system as whole, energy and exergy balances are implemented in order to calculate the magnitude of the irreversibilities within the system. In fact, exergy analysis is used in order to assess: exergy destructions and exergetic efficiencies. Such parameters are used in order to evaluate the magnitude of the irreversibilities in the system and to identify the sources of such irreversibilities. Exergetic efficiencies and exergy destructions are dynamically calculated for the 1-year operation of the system. Similarly, exergetic results are also integrated on weekly and yearly bases in order to evaluate the corresponding irreversibilities. The results showed that the components of the Joule cycle (combustor, turbine and compressor are the major sources of irreversibilities. System overall exergetic efficiency was around 48%. Average weekly solar collector

  15. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  16. Dynamics of Intense Currents in the Solar Wind

    Science.gov (United States)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  17. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  18. Solar Cycle Variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere Region

    Science.gov (United States)

    Salinas, C. C. J.; Chang, L. C.; Liang, M. C.; Qian, L.; Yue, J.; Russell, J. M., III; Mlynczak, M. G.

    2017-12-01

    This work aims to present the solar cycle variations of SABER CO2 and MLS H2O in the Mesosphere and Lower Thermosphere region. These observations are then compared to SD-WACCM outputs of CO2 and H2O in order to understand their physical mechanisms. After which, we attempt to model their solar cycle variations using the default TIME-GCM and the TIME-GCM with MERRA reanalysis as lower-boundary conditions. Comparing the outputs of the default TIME-GCM and TIME-GCM with MERRA will give us insight into the importance of solar forcing and lower atmospheric forcing on the solar cycle variations of CO2 and H2O. The solar cycle influence in the parameters are calculated by doing a multiple linear regression with the F10.7 index. The solar cycle of SABER CO2 is reliable above 1e-2 mb and below 1e-3 mb. Preliminary results from the observations show that SABER CO2 has a stronger negative anomaly due to the solar cycle over the winter hemisphere. MLS H2O is reliable until 1e-2. Preliminary results from the observations show that MLS H2O also has a stronger negative anomaly due to the solar cycle over the winter hemisphere. Both SD-WACCM and the default TIME-GCM reproduce these stronger anomalies over the winter hemisphere. An analysis of the tendency equations in SD-WACCM and default TIME-GCM then reveal that for CO2, the stronger winter anomaly may be attributed to stronger downward transport over the winter hemisphere. For H2O, an analysis of the tendency equations in SD-WACCM reveal that the stronger winter anomaly may be attributed to both stronger downward transport and stronger photochemical loss. On the other hand, in the default TIME-GCM, the stronger winter anomaly in H2O may only be attributed to stronger downward transport. For both models, the stronger downward transport is attributed to enhanced stratospheric polar winter jet during solar maximum. Future work will determine whether setting the lower boundary conditions of TIME-GCM with MERRA will improve the match

  19. Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev ...

    Indian Academy of Sciences (India)

    tribpo

    The knowledge of the solar cycle variations in the heliospheric plasma and magnetic fields was .... El Borie, Μ. Α., Duldig, Μ. L., Humble, J. Ε. 1997, 25th International Cosmic Ray ... White, O. R. (Boulder: Colorado University Press), Chapter V.

  20. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    Science.gov (United States)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  1. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  2. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  3. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    Science.gov (United States)

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  4. Equatorial thermospheric wind changes during the solar cycle: Measurements at Arequipa, Peru, from 1983 to 1990

    International Nuclear Information System (INIS)

    Biondi, M.A.; Meriwether, J.W. Jr.; Fejer, B.G.; Gonzalez, S.A.; Hallenbeck, D.C.

    1991-01-01

    Fabry-Perot interferometer measurements of Doppler shifts in the nightglow 630-nm emission line have been used to determine near-equatorial thermospheric wind velocities at Arequipa, Peru, over ∼ 2/3 of a solar cycle. Monthly-average nocturnal variations in the meridional and zonal wind components were calculated from the nightly data to remove short term (day-to-day) variability, facilitating display of seasonal changes in the wind patterns, as well as any additional changes introduced by the progression of the solar cycle. The measured seasonal variations in the wind patterns are more pronounced than the solar cycle variations and are more readily understandable in terms of the expected, underlying forcing and damping processes. For most of the years, at the winter solstice, there is a weak (≤ 100 m/s) transequatorial flow from the summer to the winter hemisphere in the early and the late night, with essentially zero velocities in between. At the equinoxes, an early-night poleward (southward) flow at solar minimum (1986) is replaced by an equatorward (northward) flow at solar maximum (1989-1990). The zonal flows are predominantly eastward throughout the night, except for the solar minimum equinoxes, where brief westward flows appear in the early and the late night. The peak eastward velocities increase toward solar maximum; at the winter solstice, they are ∼ 100-130 m/s in 1983, 1984 and 1986, reaching ∼ 200 m/s in 1988, 1989 and 1990. The present equatorial thermospheric wind determinations agree in some respects with the satellite-data-based horizontal wind model IIWM-87 and the vector spherical harmonic form of the thermospheric general circulation model

  5. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  6. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  7. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Energy Storage and Release through the Solar Activity Cycle Models Meet Radio Observations

    CERN Document Server

    Nindos, Alexander

    2012-01-01

    For nearly sixty years, radio observations have provided a unique insight into the physics of the active and quiescent solar atmosphere. Thanks to the variety of emission mechanisms and to the large altitude range available to observations, fundamental plasma parameters have been measured from the low chromosphere to the upper corona and interplanetary medium. This book presents current research in solar radio astronomy and shows how well it fits in the exceptional scientific context brought by the current space solar observatories. It essentially contains contributed research and review papers presented during the 2010 Community of European Solar Radio Astronomers (CESRA) meeting, which took place in Belgium in June 2010. This book is aimed at graduate students and researchers working in solar physics and space science. Previously published in Solar Physics journal, Vol. 273/2, 2011.

  9. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  10. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  11. Analysis of each branch current of serial solar cells by using an equivalent circuit model

    International Nuclear Information System (INIS)

    Yi Shi-Guang; Zhang Wan-Hui; Ai Bin; Song Jing-Wei; Shen Hui

    2014-01-01

    In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (I sh1 and I sh2 ), diode currents (I D1 and I D2 ), and load current (I L ) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module. (interdisciplinary physics and related areas of science and technology)

  12. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  13. Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments

    Energy Technology Data Exchange (ETDEWEB)

    Markides, Christos N., E-mail: c.markides@imperial.ac.uk [Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-12-10

    This paper is concerned with the emergence and development of low-to-medium-grade thermal-energy-conversion systems for distributed power generation based on thermodynamic vapor-phase heat-engine cycles undergone by organic working fluids, namely organic Rankine cycles (ORCs). ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low/medium-grade heat (at temperatures up to ~300–400°C) to useful work, at an output power scale from a few kilowatts to 10s of megawatts. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability and thus uptake of ORC power systems, by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic, or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e., fuel) use and emission minimization, yet the technology is highly transferable to solar-power generation as an affordable alternative to small-to-medium-scale photovoltaic systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward onsite (thermal) energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  14. Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments

    International Nuclear Information System (INIS)

    Markides, Christos N.

    2015-01-01

    This paper is concerned with the emergence and development of low-to-medium-grade thermal-energy-conversion systems for distributed power generation based on thermodynamic vapor-phase heat-engine cycles undergone by organic working fluids, namely organic Rankine cycles (ORCs). ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low/medium-grade heat (at temperatures up to ~300–400°C) to useful work, at an output power scale from a few kilowatts to 10s of megawatts. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability and thus uptake of ORC power systems, by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic, or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e., fuel) use and emission minimization, yet the technology is highly transferable to solar-power generation as an affordable alternative to small-to-medium-scale photovoltaic systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward onsite (thermal) energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  15. Solar proton events and their effect on space systems

    International Nuclear Information System (INIS)

    Tranquille, C.

    1994-01-01

    Solar protons present a major problem to space systems because of the ionisation and displacement effects which arise from their interaction with matter. This is likely to become a greater problem in the future due to the use of more sensitive electronic components and the proposed expansion of manned activities in space. An outline is provided of the physical processes associated with individual solar events, the solar activity cycle and the transport of solar particles between the Sun and the Earth. The problems of predicting solar event fluences, both over short- and long-term periods, are discussed. The currently available solar proton event models used for long-term forecasting are briefly reviewed, and the advantages and deficiencies of each model are investigated. Predictions using the models are compared to measurements made by the GOES-7 satellite during the rising phase of the current solar cycle. These measurements are also used to illustrate the sensitivity of the models to the choice of confidence level and to the spectral form used for extrapolation over the solar proton energy range. (author)

  16. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    International Nuclear Information System (INIS)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Choudhuri, Arnab Rai

    2014-01-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century

  17. POLAR NETWORK INDEX AS A MAGNETIC PROXY FOR THE SOLAR CYCLE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Priyal, Muthu; Banerjee, Dipankar; Ravindra, B.; Singh, Jagdev [Indian Institute of Astrophysics,Koramangala, Bengaluru 560034 (India); Karak, Bidya Binay [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Muñoz-Jaramillo, Andrés [Montana State University, Bozeman, MT 59717 (United States); Choudhuri, Arnab Rai, E-mail: mpriya@iiap.res.in, E-mail: dipu@iiap.res.in [Indian Institute of Science, Bangalore (India)

    2014-09-20

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (∼0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  18. Modulation of Galactic Cosmic Rays in the Inner Heliosphere over Solar Cycles

    Science.gov (United States)

    Shen, Z.-N.; Qin, G.

    2018-02-01

    The 11- and 22-year modulation of galactic cosmic rays (GCRs) in the inner heliosphere is studied using a numerical model developed by Qin and Shen in 2017. Based on the numerical solutions of Parker’s transport equations, the model incorporates a modified Parker heliospheric magnetic field, a locally static time-delayed heliosphere, and a time-dependent diffusion coefficients model in which an analytical expression of the variation of magnetic turbulence magnitude throughout the inner heliosphere is applied. Furthermore, during solar maximum, the solar magnetic polarity is determined randomly with the possibility of A > 0 decided by the percentage of the solar north polar magnetic field being outward and the solar south polar magnetic field being inward. The computed results are compared at various energies with several GCR observations, e.g., the Interplanetary Monitoring Platform 8 (IMP 8), EPHIN on board the Solar and Heliospheric Observatory (SOHO), Ulysses, and Voyager 1 and 2, and they show good agreement. We show that our model has successfully reproduced the 11- and 22-year modulation cycles.

  19. Combined cycle solar central receiver hybrid power system study. Volume III. Appendices. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    A design study for a 100 MW gas turbine/steam turbine combined cycle solar/fossil-fuel hybrid power plant is presented. This volume contains the appendices: (a) preconceptual design data; (b) market potential analysis methodology; (c) parametric analysis methodology; (d) EPGS systems description; (e) commercial-scale solar hybrid power system assessment; and (f) conceptual design data lists. (WHK)

  20. Mid-Term Quasi-Periodicities and Solar Cycle Variation of the White-Light Corona from 18.5 Years (1996.0 - 2014.5) of LASCO Observations

    Science.gov (United States)

    Barlyaeva, T.; Lamy, P.; Llebaria, A.

    2015-07-01

    We report on the analysis of the temporal evolution of the solar corona based on 18.5 years (1996.0 - 2014.5) of white-light observations with the SOHO/LASCO-C2 coronagraph. This evolution is quantified by generating spatially integrated values of the K-corona radiance, first globally, then in latitudinal sectors. The analysis considers time series of monthly values and 13-month running means of the radiance as well as several indices and proxies of solar activity. We study correlation, wavelet time-frequency spectra, and cross-coherence and phase spectra between these quantities. Our results give a detailed insight on how the corona responds to solar activity over timescales ranging from mid-term quasi-periodicities (also known as quasi-biennial oscillations or QBOs) to the long-term 11 year solar cycle. The amplitude of the variation between successive solar maxima and minima (modulation factor) very much depends upon the strength of the cycle and upon the heliographic latitude. An asymmetry is observed during the ascending phase of Solar Cycle 24, prominently in the royal and polar sectors, with north leading. Most prominent QBOs are a quasi-annual period during the maximum phase of Solar Cycle 23 and a shorter period, seven to eight months, in the ascending and maximum phases of Solar Cycle 24. They share the same properties as the solar QBOs: variable periodicity, intermittency, asymmetric development in the northern and southern solar hemispheres, and largest amplitudes during the maximum phase of solar cycles. The strongest correlation of the temporal variations of the coronal radiance - and consequently the coronal electron density - is found with the total magnetic flux. Considering that the morphology of the solar corona is also directly controlled by the topology of the magnetic field, this correlation reinforces the view that they are intimately connected, including their variability at all timescales.

  1. Analysis of environmental effect of hybrid solar-assisted desalination cycle in Sirdarya Thermal Power Plant, Uzbekistan

    International Nuclear Information System (INIS)

    Alikulov, Khusniddin; Xuan, Tran Dang; Higashi, Osamu; Nakagoshi, Nobukazu; Aminov, Zarif

    2017-01-01

    Highlights: • A hybrid solar-assisted desalination cycle was designed and stimulated. • Maximum of 21,064.00 kW effective solar heat can be achieved. • The use of parabolic-trough collectors in the Multi Effect Distillation is potential. • The cycle can be applied in other regions with high Direct Normal Irradiation. - Abstract: This study was to investigate possible reduction of fossil fuel consumption and carbon dioxide emission in one of energy sectors of Sirdarya Thermal Power Plant (TPP), Uzbekistan. A hybrid solar-assisted desalination cycle has been designed and simulated for partially supplying saturated steam with 200 °C, 8 bar, and 32 t/h parameters to a Multi Effect Distillation (MED) process in the Sirdarya Thermal Power Plant. The outcome of the parental design model stated that maximum, 21,064.00 kW effective solar heat can be achieved, which is equivalent to 31.76 t/h of saturated steam with 200 °C and 8 bar parameters. Total saved fossil fuel in each month proved that it is possible to reduce fossil fuel (heavy oil and natural gas) consumption with 59.64, 95.24, 389.96, and 298.26 tons during available Direct Normal Irradiation (DNI) by using parabolic-trough collectors. Moreover, the above-mentioned fossil fuel savings accounted for CO_2 reduction with amounts of 182.50, 255.46, 1045.87 & 799.96 tons per each consistent month. Findings proved that integration of parabolic-trough collectors into the MED process is feasible in terms of high DNI availability and demand for retrofitting old existing heat-consuming facilities in Sirdarya Thermal Power Plant. Besides, the cycle also can be applied in other regions of Uzbekistan with high DNI for generating solar heat. Therefore, conducted study is eligible to be applied on the research site by taking into account of sufficient meteorological data and required steam parameters.

  2. Solar cycle signatures in the NCEP equatorial annual oscillation

    Science.gov (United States)

    Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.

    2009-08-01

    Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  3. Solar cycle signatures in the NCEP equatorial annual oscillation

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2009-08-01

    Full Text Available Our analysis of temperature and zonal wind data (1958 to 2006 from the National Center for Atmospheric Research (NCAR reanalysis (Re-1, supplied by the National Centers for Environmental Prediction (NCEP, shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC. The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  4. One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Heniti, S.; Al-Agel, F.; Al-Ghamdi, A.A.; Al-Marzouki, F.

    2011-01-01

    Research highlights: → Solar cookers must contain a PCM for cooking indoors. → MgCl 2 .6H 2 O when it cycled in a sealed container. → MgCl 2 .6H 2 O shows maximum of 0.1-3.5 o C of supercooling. → MgCl 2 .6H 2 O is a promising PCM for thermal energy storage. -- Abstract: Cooking is the major necessity for people all over the world. It accounts for a major share of energy consumption in developing countries. There is a critical need for the development of alternative, appropriate, affordable methods of cooking for use in developing countries. There is a history for solar cooking since 1650 where they are broadly divided into direct or focusing type, box-type and indirect or advanced solar cookers. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this paper is to investigate the influence of the melting/solidification fast thermal cycling of commercial grade magnesium chloride hexahydrate (MgCl 2 .6H 2 O) on its thermo-physical properties; such as melting point and latent heat of fusion, to be used as a storage medium inside solar cookers. One thousand cycles have been performed in a sealed container under the extra water principle. The thermo-physical properties are measured using the differential scanning calorimetric technique. It is indicated that MgCl 2 .6H 2 O with the extra water principle and hermetically sealing of the container is a promising phase change material (PCM) for cooking indoors and during law intensity solar radiation periods. It is also found from the melting/solidification behavior of MgCl 2 .6H 2 O that it is solidify almost without supercooling; except in few cases where it showed maximum of 0

  5. Annual Properties of Transverse Waves in the Corona over most of Solar Cycle 24

    Science.gov (United States)

    Weberg, M. J.; Morton, R. J.; McLaughlin, J. A.

    2017-12-01

    Waves are an omnipresent feature in heliophysical plasmas. In particular, transverse (or "Alfvénic") waves have been observed at a wide range of spatial and temporal scales within the corona and solar wind. These waves play a key role in transporting energy through the solar atmosphere and are also thought to contribute to the heating and acceleration of the solar wind. Previous studies of low-frequency (automated detection and measurement of low-frequency transverse waves with over 7 years of SDO / AIA data to provide a detailed picture of coronal transverse waves in polar plumes and, for the first time, begin to examine their long-term behaviour. We measure waves at three different heights in each of eight, four-hour periods spanning May 2010 - May 2017. We find that the bulk wave parameters within these 24 regions are largely consistent over most of a solar cycle. However, there is some evidence for smaller-scale variations both with height and over time periods of a few years. We also discuss total energy flux estimations based on the full wave power spectra, which yields a more nuanced picture than previous values based on summary statistics. Overall, this work expands our view of wave processes in the corona and is relevant to both theoretical and modelling considerations of energy transport within the solar atmosphere. Crucially, these initial results suggest that the energy flux provided by the low-frequency transverse waves varies little over the solar cycle, potentially indicating that the waves provide a consistent source of energy to the corona and beyond.

  6. A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Urbina, Antonio

    2011-01-01

    A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film was ...... photovoltaic technologies. The results showed that an Energy Pay-Back Time (EPBT) of 2.02 years can be achieved for an organic solar module of 2% efficiency, which could be reduced to 1.35 years, if the efficiency was 3%.......A life cycle analysis was performed on a full roll-to-roll coating procedure used for the manufacture of flexible polymer solar cell modules. The process known as ProcessOne employs a polyester substrate with a sputtered layer of the transparent conductor indium-tin-oxide (ITO). The ITO film...... printed. Finally the polymer solar modules were encapsulated, using a polyester barrier material. All operations except the application of ITO were carried out under ambient conditions. The life cycle analysis delivered a material inventory of the full process for a module production...

  7. THINNING OF THE SUN'S MAGNETIC LAYER: THE PECULIAR SOLAR MINIMUM COULD HAVE BEEN PREDICTED

    International Nuclear Information System (INIS)

    Basu, Sarbani; Broomhall, Anne-Marie; Chaplin, William J.; Elsworth, Yvonne

    2012-01-01

    The solar magnetic activity cycle causes changes in the Sun on timescales that are equivalent to human lifetimes. The minimum solar activity that preceded the current solar cycle (cycle 24) was deeper and quieter than any other recent minimum. Using data from the Birmingham Solar Oscillations Network (BiSON), we show that the structure of the solar sub-surface layers during the descending phase of the preceding cycle (cycle 23) was very different from that during cycle 22. This leads us to believe that a detailed examination of the data would have led to the prediction that the cycle 24 minimum would be out of the ordinary. The behavior of the oscillation frequencies allows us to infer that changes in the Sun that affected the oscillation frequencies in cycle 23 were localized mainly to layers above about 0.996 R ☉ , depths shallower than about 3000 km. In cycle 22, on the other hand, the changes must have also occurred in the deeper-lying layers.

  8. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  9. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    International Nuclear Information System (INIS)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J.; Dyk, E.E. van

    2009-01-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  10. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  11. Measurement of solar neutrinos flux in Russian-American gallium experiment SAGE for half 22-years cycle of solar activity

    International Nuclear Information System (INIS)

    Abdurashitov, D.N.; Veretenkin, E.P.; Vermul, V.M.

    2002-01-01

    The results of measuring the solar neutrino capture on the metallic gallium in the Russian-American experiment SAGE for the period slightly exceeding the half of the 22-year cycle of solar activity, are presented. The results of new measurements since April 1998 are quoted and the analysis of all the measurements, performed by years, months and two-year periods, beginning since 1990 are also presented. Simple analysis of the SAGE results together with the results of other solar neutrino experiments leads to estimating the value of the flux of the pp-neutrinos, reaching the Earth without change in their around, equal to (4.6 ± 1.2) x 10 10 neutrino/(cm 2 s). The value of the flux of the pp-neutrinos, originating in the Sun thermonuclear reactions, is equal to (7.6 ± 2.0) x 10 10 neutrino/(cm 2 s), which agrees well with the standard solar model (5.95 ± 0.6) x 10 10 neutrino/(cm 2 s) [ru

  12. Examples of studies of solar and lunar cycles carried out in Ireland in Neolithic times

    Science.gov (United States)

    McKenna McKenna-Lawlor, Susan

    2016-10-01

    Brứ na Bόinn (Newgrange) is the largest member of a group of Neolithic passage graves located in the Boyne Valley, Co. Meath, about 50 km from Dublin in Ireland. According to radio carbon dating, the monument was constructed between about 3200 and 3100 BC and it is thus s about five hundred years older than the current form of Stonehenge as well as older than the Great Pyramid of Giza in Egypt. Also, it predates the Mycenaean culture of ancient Greece. At the Winter Solstice, the rising sun shines through an external architectural feature called the roof box and traverses a 19m long passage to illuminate an inner chamber decorated by an elegant triple spiral and other carvings. This illumination lasts for about 17 minutes. Today, first light enters about four minutes after sunrise, but calculations based on the precession of the Earth show that, 5,000 years ago, first light would have entered exactly at sunrise. The poster presents drawings of the geometrical alignment concerned and places the monument in the context of other Neolithic monuments in Ireland oriented to key dates in the solar calendar. Evidence for the existence in the Boyne Valley of an interest in lunar as well as in solar cycles is discussed and a carving of a lunar cycle, deemed to be the earliest to be identified without serious ambiguity in either Ireland or Britain, is illustrated and described.

  13. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  14. BOREX: Solar neutrino experiment via weak neutral and charged currents in boron-11

    International Nuclear Information System (INIS)

    Kovacs, T.; Mitchell, J.W.; Raghavan, P.

    1989-01-01

    Borex, and experiment to observe solar neutrinos using boron loaded liquid scintillation techniques, is being developed for operation at the Gran Sasso underground laboratory. It aims to observe the spectrum of electron type 8 B solar neutrinos via charged current inverse β-decay of 11 B and the total flux solar neutrinos regardless of flavor by excitation of 11 B via the weak neutral current. 14 refs

  15. Solar neutrino flux measurements by the Soviet-American Gallium Experiment (SAGE) for half the 22-year solar cycle

    International Nuclear Information System (INIS)

    Abdurashitov, J.N.; Veretenkin, E.P.; Vermul, V.M.; Gavrin, V.N.; Girin, S.V.; Gorbachev, V.V.; Gurkina, P.P.; Zatsepin, G.T.; Ibragimova, T.V.; Kalikhov, A.V.; Knodel, T.V.; Mirmov, I.N.; Khairnasov, N.G.; Shikhin, A.A.; Yants, V.E.; Bowles, T.J.; Teasdale, W.A.; Nico, J.S.; Wilkerson, J.F.; Cleveland, B.T.

    2002-01-01

    We present measurements of the solar neutrino capture rate on metallic gallium in the Soviet-American gallium experiment (SAGE) over a period of slightly more than half the 22-year solar cycle. A combined analysis of 92 runs over the twelve-year period from January 1990 until December 2001 yields a capture rate of 70.8 +5.3 -5.2 (stat) +3.7 -3.2 (sys) SNU for solar neutrinos with energies above 0.233 MeV. This value is slightly more than half the rate predicted by the standard solar model, 130 SNU. We present the results of new runs since April 1998 and analyze all runs combined by years, months, and bimonthly periods beginning in 1990. A simple analysis of the SAGE results together with the results of other solar neutrino experiments gives an estimate of (4.6 ± 1.2) x 10 10 neutrinos cm -2 s -1 for the flux of the electron pp neutrinos that reach the Earth without changing their flavor. The flux of the pp neutrinos produced in thermonuclear reactions in the Sun is estimated to be (7.6 ± 2.0) x 10 10 neutrinos cm -2 s -1 , in agreement with the value of (5.95 ± 0.06) x 10 10 neutrinos cm -2 s -1 predicted by the standard solar model

  16. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    Science.gov (United States)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  17. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  18. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  19. Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Science.gov (United States)

    Vainio, Rami; Raukunen, Osku; Tylka, Allan J.; Dietrich, William F.; Afanasiev, Alexandr

    2017-08-01

    Aims: The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. Methods: We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfvén waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Results: Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one.

  20. Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles

    International Nuclear Information System (INIS)

    Henchoz, Samuel; Buchter, Florian; Favrat, Daniel; Morandin, Matteo; Mercangöz, Mehmet

    2012-01-01

    Large scale energy storage may play an increasingly important role in the power generation and distribution sector, especially when large shares of renewable energies will have to be integrated into the electrical grid. Pumped-hydro is the only large scale storage technology that has been widely used. However the spread of this technology is limited by geographic constraints. In the present work, a particular implementation of a storage concept based on thermodynamic cycles, invented by ABB Switzerland ltd. Corporate Research, has been analysed thermoeconomically. A variant using solar thermal collectors is presented. It benefits from the synergy between daily variations in solar irradiance and in electricity demand. This results in an effective increase of the electric energy storage efficiency. A steady state multi-objective optimization of a 50 MW plant was done; minimizing the investment costs and maximizing the energy storage efficiency. Several types of cold storage substances have been implemented in the formulation and two different types of solar collector were investigated. A storage efficiency of 57% at a cost of 1200 USD/kW was calculated for an optimized plant using solar energy. Finally, a computation of the behaviour of the plant along the year showed a yearly availability of 84.4%. -- Highlights: ► A variant of electric energy storage based on thermodynamic cycles is presented. ► It uses solar collectors to improve the energy storage efficiency. ► An optimization minimizing capital cost and maximizing energy storage efficiency, was carried out. ► Capital costs lie between 982 and 3192 USD/kW and efficiency between 43.8% and 84.4%.

  1. THE THERMAL PROPERTIES OF SOLAR FLARES OVER THREE SOLAR CYCLES USING GOES X-RAY OBSERVATIONS

    International Nuclear Information System (INIS)

    Ryan, Daniel F.; Gallagher, Peter T.; Milligan, Ryan O.; Dennis, Brian R.; Kim Tolbert, A.; Schwartz, Richard A.; Alex Young, C.

    2012-01-01

    Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

  2. Return currents in solar flares - Collisionless effects

    Science.gov (United States)

    Rowland, H. L.; Vlahos, L.

    1985-01-01

    If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.

  3. Dynamo generation of magnetic fields in three-dimensional space: Solar cycle main flux tube formation and reversals

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1983-01-01

    Dynamo processes as a magnetic field generation mechanism in astrophysics can be described essentially by movement and deformation of magnetic field lines due to plasma fluid motions. A basic element of the processes is a kinematic problem. As an important prototype of these processes, we investigate the case of the solar magnetic cycle. To follow the movement and deformation, we solve magnetohydrodynamic (MHD) equations by a numerical method with a prescribed velocity field. A simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the Sun. We call them the main flux tubes of the solar cycle. They are progenitors of small-scale flux ropes of the solar activity. This shows that magnetic field generation by fluid motions is, in fact, possible and that MHD equations have a new type of oscillatory solution. The solar cycle can be identified with one of such oscillatory solutions. This means that we can follow detailed stages of the field generation and reversal processes of the dynamo by continuously observing the Sun. It is proposed that the magnetic flux tube formation by streaming plasma flows exemplified here could be a universal mechanism of flux tube formation in astrophysics

  4. The 11-years solar cycle as the manifestation of the dark Universe

    CERN Document Server

    Zioutas, K; Semertzidis, Y K; Papaevangelou, T; Hoffmann, D H H; Anastassopoulos, V

    2014-01-01

    The solar luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies 100000 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

  5. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  6. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  7. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  8. Study of Ionospheric Indexes T and MF2 related to R12 for Solar Cycles 19-21

    Science.gov (United States)

    Villanueva, Lucia

    2013-04-01

    Modern worldwide communications are mainly based on satellite systems, remote communication networks, and advanced technologies. The most important space weather "meteorological" events produce negative effects on signal transmissions. Magnetic storm conditions that follow coronal mass ejections are particularly of great importance for radio communication at HF frequencies (3-30 MHz range), because the Ionization increase (or decrease), significantly over (or below), the Average Values. Nowadays new technologies make possible to establish Geophysical Observatories and monitor the sun almost in real time giving information about geomagnetic indices. Space Weather programs have interesting software predictions of foF2 producing maps and plots, every some minutes. The Average Values of the ionospheric parameters mainly depend on the position, hour, season and the phase of the 11-year cycle of the solar activity. Around 1990´s several ionospheric indexes were suggested to better predict the state of the foF2 monthly media, as: IF2, G, T and MF2, based on foF2 data from different latitude ionospheric observatories. They really show better seasonal changes than monthly solar indexes of solar flux F10.7 or the international sunspot numbers Ri. The main purpose of this paper is to present an analogic model for the ionospheric index MF2, to establish the average long term predictions of this index. Changes of phase from one cycle to the other of one component of the model is found to fit the data. The usefulness of this model could be the prediction of the ionospheric normal conditions for one entire solar cycle having just the prediction of the maximum of the next smooth sunspot number R12. In this presentation, comparisons of the Australian T index and and the Mikhailov MF2 index show an hysteresis variation with the solar monthly index Ri, such dependence is quite well represented by a polynomial fit of degree 6 for rising and decaying fases for solar cycles 19, 20 and

  9. The Origin and Dynamics of Solar Magnetism

    CERN Document Server

    Thompson, M. J; Culhane, J. L; Nordlund, Å; Solanki, S. K; Zahn, J.-P

    2009-01-01

    The articles collected in this volume present all aspects of solar magnetism: from its origin in the solar dynamo to its evolution and dynamics that create the variability of solar phenomena, its well-known 11-year activity cycle that leads to the ever-changing pattern of sunspots and active regions on the Sun. Several contributions deal with the solar dynamo, the driver of many solar phenomena. Other contributions treat the transport and emergence of the magnetic flux through the outer layers of the Sun. The coupling of magnetic fields from the surface to the solar corona and beyond is also described, together with current studies on the predictability of solar activity. This book is aimed at researchers and graduate students working in solar physics and space science. It provides a full review of our current understanding of solar magnetism by the foremost experts in the field.

  10. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    Science.gov (United States)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  11. A devil in the detail: parameter cross-talk from the solar cycle and estimation of solar p-mode frequencies

    Science.gov (United States)

    Chaplin, W. J.; Jiménez-Reyes, S. J.; Eff-Darwich, A.; Elsworth, Y.; New, R.

    2008-04-01

    Frequencies, powers and damping rates of the solar p modes are all observed to vary over the 11-yr solar activity cycle. Here, we show that simultaneous variations in these parameters give rise to a subtle cross-talk effect, which we call the `devil in the detail', that biases p-mode frequencies estimated from analysis of long power frequency spectra. We also show that the resonant peaks observed in the power frequency spectra show small distortions due to the effect. Most of our paper is devoted to a study of the effect for Sun-as-a-star observations of the low-l p modes. We show that for these data the significance of the effect is marginal. We also touch briefly on the likely l dependence of the effect, and discuss the implications of these results for solar structure inversions.

  12. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  13. Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24

    Science.gov (United States)

    Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.

    2018-01-01

    The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.

  14. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    Science.gov (United States)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  15. Three-dimensional data assimilation and reanalysis of radiation belt electrons: Observations over two solar cycles, and operational forecasting.

    Science.gov (United States)

    Kellerman, A. C.; Shprits, Y.; Kondrashov, D. A.; Podladchikova, T.; Drozdov, A.; Subbotin, D.; Makarevich, R. A.; Donovan, E.; Nagai, T.

    2015-12-01

    Understanding of the dynamics in Earth's radiation belts is critical to accurate modeling and forecasting of space weather conditions, both which are important for design, and protection of our space-borne assets. In the current study, we utilize the Versatile Electron Radiation Belt (VERB) code, multi-spacecraft measurements, and a split-operator Kalman filter to recontructe the global state of the radiation belt system in the CRRES era and the current era. The reanalysis has revealed a never before seen 4-belt structure in the radiation belts during the March 1991 superstorm, and highlights several important aspects in regards to the the competition between the source, acceleration, loss, and transport of particles. In addition to the above, performing reanalysis in adiabatic coordinates relies on specification of the Earth's magnetic field, and associated observational, and model errors. We determine the observational errors for the Kalman filter directly from cross-spacecraft phase-space density (PSD) conjunctions, and obtain the error in VERB by comparison with reanalysis over a long time period. Specification of errors associated with several magnetic field models provides an important insight into the applicability of such models for radiation belt research. The comparison of CRRES area reanalysis with Van Allen Probe era reanalysis allows us to perform a global comparison of the dynamics of the radiation belts during different parts of the solar cycle and during different solar cycles. The data assimilative model is presently used to perform operational forecasts of the radiation belts (http://rbm.epss.ucla.edu/realtime-forecast/).

  16. THE 'TWIN-CME' SCENARIO AND LARGE SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 23

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Liuguan; Jiang, Yong [College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044 (China); Zhao, Lulu; Li, Gang, E-mail: gang.li@uah.edu [Department of Physics and CSPAR, University of Alabama in Huntsville, AL 35899 (United States)

    2013-01-20

    Energetic particles in large solar energetic particle (SEP) events are a major concern for space weather. Recently, Li et al. proposed a 'twin-CME' scenario for ground-level events. Here we extend that study to large SEP events in solar cycle 23. Depending on whether preceding coronal mass ejections (CMEs) within 9 hr exist and whether ions >10 MeV nucleon{sup -1} exceed 10 pfu, we categorize fast CMEs with speed >900 km s{sup -1} and width >60 Degree-Sign from the western hemisphere source regions into four groups: groups I and II are 'twin' and single CMEs that lead to large SEPs; groups III and IV are 'twin' and single CMEs that do not lead to large SEPs. The major findings of this paper are: first, large SEP events tend to be 'twin-CME' events. Of 59 western large SEP events in solar cycle 23, 43 are 'twin-CME' (group I) events and 16 are single-CME (group II) events. Second, not all 'twin CMEs' produced large SEPs: 28 twin CMEs did not produce large SEPs (group III events). Some of them produced excesses of particles up to a few MeV nucleon{sup -1}. Third, there were 39 single fast CMEs that did not produce SEPs (group IV events). Some of these also showed an excess of particles up to a few MeV nucleon{sup -1}. For all four groups of events, we perform statistical analyses on properties such as the angular width, the speed, the existence of accompanying metric type II radio bursts, and the associated flare class for the main CMEs and the preceding CMEs.

  17. Graphene as transparent and current spreading electrode in silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Behura, Sanjay K., E-mail: sanjaybehura@gmail.com; Nayak, Sasmita; Jani, Omkar [Solar Energy Research Wing, Gujarat Energy Research and Management Institute - Research, Innovation and Incubation Centre, Gandhinagar 382007, Gujarat (India); Mahala, Pramila [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat (India)

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  18. The Structure of the Heliosphere with Solar Cycle and Its Effect on the Conditions in the Local ISM

    Science.gov (United States)

    Opher, M.; Drake, J. F.; Toth, G.; Swisdak, M.; Michael, A.; Kornbleuth, M. Z.; Zieger, B.

    2017-12-01

    We argued (Opher et al. 2015, Drake et al. 2015) that the magnetic tension of the solar magnetic field plays a crucial role in organizing the solar wind in the heliosheath into two jet-like structures. The heliosphere then has a "croissant"-like shape where the distance to the heliopause downtail is almost the same as towards the nose. Regardless of whether the heliospheric tail is split in two or has a long comet shape there is consensus that the magnetic field in the heliosheath behaves differently than previously expected - it has a "slinky" structure and is turbulent. In this presentation, we will discuss several aspects related with this new model. We will show that this structure persists when the solar magnetic field is treated as a dipole. We show how the heliosphere, with its "Croissant" shape, evolves when the solar wind with solar cycle conditions are included and when the neutrals are treated kinetically (with our new MHD-Kinetic code). Due to reconnection (and turbulence of the jets) there is a substantial amount of heliosheath material sitting on open field lines. We will discuss the impact of artificial dissipation of the magnetic field in driving mixing and how it evolves with the solar cycle. We will discuss as well the development of turbulence in the jets and its role in mixing the plasma in the heliosheath and LISM and controlling the global structure of the heliosphere. We will discuss how the conditions upstream of the heliosphere, in the local interstellar medium are affected by reconnection in the tail and how it evolves with solar cycle. Recently we established (Opher et al. 2017) that reconnection in the eastern flank of the heliosphere is responsible for the twist of the interstellar magnetic field (BISM) acquiring a strong east-west component as it approaches the Heliopause. Reconnection drives a rotational discontinuity (RD) that twists the BISM into the -T direction and propagates upstream in the interstellar medium toward the nose

  19. Joint Ne/O and Fe/O Analysis to Diagnose Large Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C.; Shao, Xi [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Malandraki, Olga E., E-mail: ltan@umd.edu [IAASARS, National Observatory of Athens, GR-15236, Penteli (Greece)

    2017-02-01

    We have examined 29 large solar energetic particle (SEP) events with the peak proton intensity J {sub pp}(>60 MeV) > 1 pfu during solar cycle 23. The emphasis of our examination is put on a joint analysis of Ne/O and Fe/O data in the energy range (3–40 MeV nucleon{sup −1}) covered by Wind /Low-Energy Matrix Telescope and ACE /Solar Isotope Spectrometer sensors in order to differentiate between the Fe-poor and Fe-rich events that emerged from the coronal mass ejection driven shock acceleration process. An improved ion ratio calculation is carried out by rebinning ion intensity data into the form of equal bin widths in the logarithmic energy scale. Through the analysis we find that the variability of Ne/O and Fe/O ratios can be used to investigate the accelerating shock properties. In particular, the high-energy Ne/O ratio is well correlated with the source plasma temperature of SEPs.

  20. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  1. Determination of Duty Cycle for Energy Storage Systems in a Renewables (Solar) Firming Application

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.; Ellison, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Electric Power Systems Research Dept.

    2016-04-01

    This report supplements the document, “Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems,” issued in a revised version in April 2016, which will include the renewables (solar) firming application for an energy storage system (ESS). This report provides the background and documentation associated with the determination of a duty cycle for an ESS operated in a renewables (solar) firming application for the purpose of measuring and expressing ESS performance in accordance with the ESS performance protocol.

  2. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  3. Solar Rotational Periodicities and the Semiannual Variation in the Solar Wind, Radiation Belt, and Aurora

    Science.gov (United States)

    Emery, Barbara A.; Richardson, Ian G.; Evans, David S.; Rich, Frederick J.; Wilson, Gordon R.

    2011-01-01

    The behavior of a number of solar wind, radiation belt, auroral and geomagnetic parameters is examined during the recent extended solar minimum and previous solar cycles, covering the period from January 1972 to July 2010. This period includes most of the solar minimum between Cycles 23 and 24, which was more extended than recent solar minima, with historically low values of most of these parameters in 2009. Solar rotational periodicities from S to 27 days were found from daily averages over 81 days for the parameters. There were very strong 9-day periodicities in many variables in 2005 -2008, triggered by recurring corotating high-speed streams (HSS). All rotational amplitudes were relatively large in the descending and early minimum phases of the solar cycle, when HSS are the predominant solar wind structures. There were minima in the amplitudes of all solar rotational periodicities near the end of each solar minimum, as well as at the start of the reversal of the solar magnetic field polarity at solar maximum (approx.1980, approx.1990, and approx. 2001) when the occurrence frequency of HSS is relatively low. Semiannual equinoctial periodicities, which were relatively strong in the 1995-1997 solar minimum, were found to be primarily the result of the changing amplitudes of the 13.5- and 27-day periodicities, where 13.5-day amplitudes were better correlated with heliospheric daily observations and 27-day amplitudes correlated better with Earth-based daily observations. The equinoctial rotational amplitudes of the Earth-based parameters were probably enhanced by a combination of the Russell-McPherron effect and a reduction in the solar wind-magnetosphere coupling efficiency during solstices. The rotational amplitudes were cross-correlated with each other, where the 27 -day amplitudes showed some of the weakest cross-correlations. The rotational amplitudes of the > 2 MeV radiation belt electron number fluxes were progressively weaker from 27- to 5-day periods

  4. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    K. E. J. Huttunen

    2005-02-01

    Full Text Available The magnetic structure and geomagnetic response of 73 magnetic clouds (MC observed by the WIND and ACE satellites in solar cycle 23 are examined. The results have been compared with the surveys from the previous solar cycles. The preselected candidate MC events were investigated using the minimum variance analysis to determine if they have a flux-rope structure and to obtain the estimation for the axial orientation (θC, φC. Depending on the calculated inclination relative to the ecliptic we divided MCs into "bipolar" (θC<45° and "unipolar" (θC>45°. The number of observed MCs was largest in the early rising phase, although the halo CME rate was still low. It is likely that near solar maximum we did not identify all MCs at 1AU, as they were crossed far from the axis or they had interacted strongly with the ambient solar wind or with other CMEs. The occurrence rate of MCs at 1AU is also modified by the migration of the filament sites on the Sun towards the poles near solar maximum and by the deflection of CMEs towards the equator due to the fast solar wind flow from large polar coronal holes near solar minimum. In the rising phase nearly all bipolar MCs were associated with the rotation of the magnetic field from the south at the leading edge to the north at the trailing edge. The results for solar cycles 21-22 showed that the direction of the magnetic field in the leading portion of the MC starts to reverse at solar maximum. At solar maximum and in the declining phase (2000-2003 we observed several MCs with the rotation from the north to the south. We observed unipolar (i.e. highly inclined MCs frequently during the whole investigated period. For solar cycles 21-22 the majority of MCs identified in the rising phase were bipolar while in the declining phase most MCs were unipolar. The geomagnetic response of a given MC depends greatly on its magnetic structure and the orientation of the sheath fields. For each event we distinguished the

  5. Solar activity simulation and forecast with a flux-transport dynamo

    Science.gov (United States)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  6. Fluctuations of the peak current of tunnel diodes in multi-junction solar cells

    International Nuclear Information System (INIS)

    Jandieri, K; Baranovskii, S D; Stolz, W; Gebhard, F; Guter, W; Hermle, M; Bett, A W

    2009-01-01

    Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

  7. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    Science.gov (United States)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  8. Life cycle cost analysis of single slope hybrid (PV/T) active solar still

    International Nuclear Information System (INIS)

    Kumar, Shiv; Tiwari, G.N.

    2009-01-01

    This paper presents the life cycle cost analysis of the single slope passive and hybrid photovoltaic (PV/T) active solar stills, based on the annual performance at 0.05 m water depth. Effects of various parameters, namely interest rate, life of the system and the maintenance cost have been taken into account. The comparative cost of distilled water produced from passive solar still (Rs. 0.70/kg) is found to be less than hybrid (PV/T) active solar still (Rs. 1.93/kg) for 30 years life time of the systems. The payback periods of the passive and hybrid (PV/T) active solar still are estimated to be in the range of 1.1-6.2 years and 3.3-23.9 years, respectively, based on selling price of distilled water in the range of Rs. 10/kg to Rs. 2/kg. The energy payback time (EPBT) has been estimated as 2.9 and 4.7 years, respectively. (author)

  9. Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nafey, A.S.; Sharaf, M.A. [Department of Engineering Science, Faculty of Petroleum and Mining Engineering, Suez Canal University, Suez (Egypt)

    2010-11-15

    Organic Rankine cycles (ORC) have unique properties that are well suited to solar power generation. In this work design and performance calculations are performed using MatLab/SimuLink computational environment. The cycle consists of thermal solar collectors (Flat Plate Solar Collector (FPC), or Parabolic Trough Collector (PTC), or Compound Parabolic Concentrator (CPC)) for heat input, expansion turbine for work output, condenser unit for heat rejection, pump unit, and Reverse Osmosis (RO) unit. Reverse osmosis unit specifications used in this work is based on Sharm El-Shiekh RO desalination plant. Different working fluids such as: butane, isobutane, propane, R134a, R152a, R245ca, and R245fa are examined for FPC. R113, R123, hexane, and pentane are investigated for CPC. Dodecane, nonane, octane, and toluene are allocated for PTC. The proposed process units are modeled and show a good validity with literatures. Exergy and cost analysis are performed for saturation and superheated operating conditions. Exergy efficiency, total exergy destruction, thermal efficiency, and specific capital cost are evaluated for direct vapor generation (DVG) process. Toluene and Water achieved minimum results for total solar collector area, specific total cost and the rate of exergy destruction. (author)

  10. Association of solar flares with coronal mass ejections accompanied by Deca-Hectometric type II radio burst for two solar cycles 23 and 24

    Science.gov (United States)

    Kharayat, Hema; Prasad, Lalan; Pant, Sumit

    2018-05-01

    The aim of present study is to find the association of solar flares with coronal mass ejections (CMEs) accompanied by Deca-Hectometric (DH) type II radio burst for the period 1997-2014 (solar cycle 23 and ascending phase of solar cycle 24). We have used a statistical analysis and found that 10-20∘ latitudinal belt of northern region and 80-90∘ longitudinal belts of western region of the sun are more effective for flare-CME accompanied by DH type II radio burst events. M-class flares (52%) are in good association with the CMEs accompanied by DH type II radio burst. Further, we have calculated the flare position and found that most frequent flare site is at the center of the CME span. However, the occurrence probability of all flares is maximum outside the CME span. X-class flare associated CMEs have maximum speed than that of M, C, and B-class flare associated CMEs. We have also found a good correlation between flare position and central position angle of CMEs accompanied by DH type II radio burst.

  11. Solar Effects of Low-Earth Orbit objects in ORDEM 3.0

    Science.gov (United States)

    Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.

    2014-01-01

    Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.

  12. Comparison of Heat Transfer Fluid and Direct Steam Generation technologies for Integrated Solar Combined Cycles

    International Nuclear Information System (INIS)

    Rovira, Antonio; Montes, María José; Varela, Fernando; Gil, Mónica

    2013-01-01

    At present time and in the medium term, Solar Thermal Power Plants are going to share scenario with conventional energy generation technologies, like fossil and nuclear. In such a context, Integrated Solar Combined Cycles (ISCCs) may be an interesting choice since integrated designs may lead to a very efficient use of the solar and fossil resources. In this work, different ISCC configurations including a solar field based on parabolic trough collectors and working with the so-called Heat Transfer Fluid (HTF) and Direct Steam Generation (DSG) technologies are compared. For each technology, four layouts have been studied: one in which solar heat is used to evaporate part of the high pressure steam of a bottoming Rankine cycle with two pressure levels, another that incorporates a preheating section to the previous layout, the third one that includes superheating instead of preheating and the last one including both preheating and superheating in addition to the evaporation. The analysis is made with the aim of finding out which of the different layouts reaches the best performance. For that purpose, three types of comparisons have been performed. The first one assesses the benefits of including a solar steam production fixed at 50 MW th . The second one compares the configurations with a standardised solar field size instead of a fixed solar steam production. Finally, the last one consists on an even more homogeneous comparison considering the same steam generator size for all the configurations as well as standardised solar fields. The configurations are studied by mean of exergy analyses. Several figures of merit are used to correctly assess the configurations. Results reveal that the only-evaporative DSG configuration becomes the best choice, since it benefits of both low irreversibility at the heat recovery steam generator and high thermal efficiency in the solar field. Highlights: ► ISCC configurations with DSG and HTF technologies are compared. ► Four

  13. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisa; Lopes, Ilidio, E-mail: ilidio.lopes@ist.utl.pt [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-09-20

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  14. IMPACT OF A REALISTIC DENSITY STRATIFICATION ON A SIMPLE SOLAR DYNAMO CALCULATION

    International Nuclear Information System (INIS)

    Cardoso, Elisa; Lopes, Ilídio

    2012-01-01

    In our Sun, the magnetic cycle is driven by the dynamo action occurring inside the convection zone, beneath the surface. Rotation couples with plasma turbulent motions to produce organized magnetic fields that erupt at the surface and undergo relatively regular cycles of polarity reversal. Among others, the axisymmetric dynamo models have been proved to be a quite useful tool to understand the dynamical processes responsible for the evolution of the solar magnetic cycle and the formation of the sunspots. Here, we discuss the role played by the radial density stratification on the critical layers of the Sun on the solar dynamo. The current view is that a polytropic description of the density stratification from beneath the tachocline region up to the Sun's surface is sufficient for the current precision of axisymmetric dynamo models. In this work, by using an up-to-date density profile obtained from a standard solar model, which is itself consistent with helioseismic data, we show that the detailed peculiarities of the density in critical regions of the Sun's interior, such as the tachocline, the base of the convection zone, the layers of partial ionization of hydrogen and helium, and the super-adiabatic layer, play a non-negligible role on the evolution of the solar magnetic cycle. Furthermore, we found that the chemical composition of the solar model plays a minor role in the formation and evolution of the solar magnetic cycle.

  15. Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China

    International Nuclear Information System (INIS)

    Hou, Guofu; Sun, Honghang; Jiang, Ziying; Pan, Ziqiang; Wang, Yibo; Zhang, Xiaodan; Zhao, Ying; Yao, Qiang

    2016-01-01

    Graphical abstract: Comparison of life cycle GHG emissions of various power sources. - Highlights: • The LCA study of grid-connected PV generation with silicon solar modules in China has been performed. • The energy payback times range from 1.6 to 2.3 years. • The GHG emissions are in the range of 60.1–87.3 g-CO_2,eq/kW h. • The PV manufacturing process occupied about 85% or higher of total energy usage and total GHG emission. • The SoG-Si production process accounted for more than 35% of total energy consumption and GHG emissions. - Abstract: The environmental impacts of grid-connected photovoltaic (PV) power generation from crystalline silicon (c-Si) solar modules in China have been investigated using life cycle assessment (LCA). The life cycle inventory was first analyzed. Then the energy consumption and greenhouse gas (GHG) emission during every process were estimated in detail, and finally the life-cycle value was calculated. The results showed that the energy payback time (T_E_P_B_T) of grid-connected PV power with crystalline silicon solar modules ranges from 1.6 to 2.3 years, while the GHG emissions now range from 60.1 to 87.3 g-CO_2,eq/kW h depending on the installation methods. About 84% or even more of the total energy consumption and total GHG emission occupied during the PV manufacturing process. The solar grade silicon (SoG-Si) production is the most energy-consuming and GHG-emitting process, which accounts for more than 35% of the total energy consumption and the total GHG emission. The results presented in this study are expected to provide useful information to enact reasonable policies, development targets, as well as subsidies for PV technology in China.

  16. Thermospheric response observed over Fritz peak, Colorado, during two large geomagnetic storms near solar cycle maximum

    International Nuclear Information System (INIS)

    Hernandez, G.; Roble, R.G.; Ridley, E.C.; Allen, J.H.

    1982-01-01

    Nightime thermospheric winds and temperatures have been measured over Fritz Peak Observatory, Colorado (39.9 0 N, 105.5 0 W), with a high resolution Fabry-Perot spectrometer. The winds and temperatures are obtained from the Doppler shifts and line profiles of the (O 1) 15,867K (630 nm) line emission. Measurements made during two large geomagnetic storm periods near solar cycle maximum reveal a thermospheric response to the heat and momentum sources associated with these storms that is more complex than the ones measured near solar cycle minimum. In the earlier measurements made during solar cycle minimum, the winds to the north of Fritz Peak Observatory had an enhanced equatorward component and the winds to the south were also equatorward, usually with smaller velocities. The winds measured to the east and west of the observatory both had an enhanced westward wind component. For the two large storms near the present solar cycle maximum period converging winds are observed in each of the cardinal directions from Fritz Peak Observatory. These converging winds with speeds of hundreds of meters per second last for several hours. The measured neutral gas temperature in each of the directions also increases several hundred degrees Kelvin. Numerical experiments done with the NCAR thermospheric general circulation model (TGCM) suggest that the winds to the east and north of the station are driven by high-latitude heating and enhanced westward ion drag associated with magnetospheric convection. The cause of the enhanced poleward and eastward winds measured to the south and west of Fritz Peak Observatory, respectively, is not known. During geomagnetic quiet conditions the circulation is typically from the soutwest toward the northeast in the evening hours

  17. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.R.; Yamaguchi, H.; Uneno, D. [Department of Mechanical Engineering, Doshisha University, Kyoto 630-0321 (Japan); Fujima, K. [Mayekawa MFG Co., Ltd., 2000 Tatsuzawa Moriya-city, Ibaraki-Pref. 302-0118 (Japan); Enomoto, M. [Showa Denko K. K., 1-480, Inuzuka, Oyama-city, Tochigi 323-8679 (Japan); Sawada, N. [Showa Tansan Co., Ltd., 7-1, Ogimachi, Kawasaki-Ku, Kawasaki-city, Kanagawa 210-0867 (Japan)

    2006-10-15

    Theoretical analysis of a solar energy-powered Rankine thermodynamic cycle utilizing an innovative new concept, which uses supercritical carbon dioxide as a working fluid, is presented. In this system, a truly 'natural' working fluid, carbon dioxide, is utilized to generate firstly electricity power and secondly high-grade heat power and low-grade heat power. The uniqueness of the system is in the way in which both solar energy and carbon dioxide, available in abundant quantities in all parts of the world, are simultaneously used to build up a thermodynamic cycle and has the potential to reduce energy shortage and greatly reduce carbon dioxide emissions and global warming, offering environmental and personal safety simultaneously. The system consists of an evacuated solar collector system, a power-generating turbine, a high-grade heat recovery system, a low-grade heat recovery system and a feed pump. The performances of this CO{sub 2}-based Rankine cycle were theoretically investigated and the effects of various design conditions, namely, solar radiation, solar collector area and CO{sub 2} flow rate, were studied. Numerical simulations show that the proposed system may have electricity power efficiency and heat power efficiency as high as 11.4% and 36.2%, respectively. It is also found that the cycle performances strongly depend on climate conditions. Also the electricity power and heat power outputs increase with the collector area and CO{sub 2} flow rate. The estimated COP{sub power} and COP{sub heat} increase with the CO{sub 2} flow rate, but decrease with the collector area. The CO{sub 2}-based cycle can be optimized to provide maximum power, maximum heat recovery or a combination of both. The results suggest the potential of this new concept for applications to electricity power and heat power generation. (author)

  18. Towards a better representation of the solar cycle in general circulation models

    Directory of Open Access Journals (Sweden)

    K. M. Nissen

    2007-10-01

    Full Text Available We introduce the improved Freie Universität Berlin (FUB high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB. Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction of the solar SW heating rate signal by about 20%.

    The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal.

    Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account.

    The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy.

  19. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  20. Long-period variations of wind parameters in the mesopause region and the solar cycle dependence

    International Nuclear Information System (INIS)

    Greisiger, K.M.; Schminder, R.; Kuerschner, D.

    1987-01-01

    A solar dependence of wind parameters below 100 km was found by Sprenger and Schminder on the basis of long-term continuous ionospheric drift measurements. For winter they obtained for the prevailing wind a positive correlation with solar activity and for the amplitude of the semi-diurnal tidal wind a negative correlation. However, after the years 1973-1974 we found a significant negative correlation with solar activity with an indication of a new change after 1983. We conclude that this long-term behaviour points rather to a climatic variation with an internal atmospheric cause than to a direct solar control. Recent satellite data of the solar u.v. radiation and the upper stratospheric ozone have shown that the possible variation of the thermal tidal excitation during the solar cycle amounts to only a few per cent. This is, therefore, insufficient to account for the 40-70% variation of the tidal amplitudes. Some other possibilities of explaining this result are discussed. (author)

  1. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  2. Graphene as transparent and current spreading electrode in silicon solar cell

    Directory of Open Access Journals (Sweden)

    Sanjay K. Behura

    2014-11-01

    Full Text Available Fabricated bi-layer graphene (BLG has been studied as transparent and current spreading electrode (TCSE for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%, in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  3. Possible variations in atmospheric ozone related to the eleven year solar cycle

    International Nuclear Information System (INIS)

    Penner, J.E.; Chang, J.S.

    1978-07-01

    Changes in ozone, temperature, and other minor constituents resulting from eleven year variations in the solar flux between 180 and 340 nm are presented. Results were computed using a one-dimensional time dependent model that allows for all major feedbacks and time delays which may result from changing photolysis rates in the O/sub x/--NO/sub x/--HO/sub x/--ClO/sub x/ system. Since the 1950's the chlorine content of the stratosphere has been increasing. The effect of this increase on ozone variability during the last two solar cycles is analyzed. Expected variations in O 3 and temperature resulting from changes in the uv flux are compared to available measurements

  4. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brockway, Anna M. [U.S. Department of Energy, Washington, DC (United States); Ulrich, Elaine [U.S. Department of Energy, Washington, DC (United States); Margolis, Robert [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-07

    This report provides a high-level overview of the current U.S. shared solar landscape, the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  5. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  6. The most intense electric currents in turbulent high speed solar wind

    Science.gov (United States)

    Podesta, J. J.

    2017-12-01

    Theory and simulations suggest that dissipation of turbulent energy in collisionless astrophysical plasmas occurs most rapidly in spatial regions where the current density is most intense. To advance understanding of plasma heating by turbulent dissipation in the solar corona and solar wind, it is of interest to characterize the properties of plasma regions where the current density takes exceptionally large values and to identify the operative dissipation processes. In the solar wind, the curl of the magnetic field cannot be measured using data from a single spacecraft, however, a suitable proxy for this quantity can be constructed from the spatial derivative of the magnetic field along the flow direction of the plasma. This new approach is used to study the properties of the most intense current carrying structures in a high speed solar wind stream near 1 AU. In this study, based on 11 Hz magnetometer data from the WIND spacecraft, the spatial resolution of the proxy technique is approximately equal to the proton inertial length. Intense current sheets or current carrying structures were identified as events where the magnitude of the current density exceeds μ+5σ, where μ and σ are the mean and standard deviation of the magnitude of the current density (or its proxy), respectively. Statistical studies show (1) the average size of these 5σ events is close to the smallest resolvable scale in the data set, the proton inertial length; (2) the linear distance between neighboring events follows a power law distribution; and (3) the average peak current density of 5σ events is around 1 pA/cm2. The analysis techniques used in these studies have been validated using simulated spacecraft data from three dimensional hybrid simulations which show that results based on the analysis of the proxy are qualitatively and quantitatively similar to results based on the analysis of the true current density.

  7. Solar-cycle Variations of Meridional Flows in the Solar Convection Zone Using Helioseismic Methods

    Science.gov (United States)

    Lin, Chia-Hsien; Chou, Dean-Yi

    2018-06-01

    The solar meridional flow is an axisymmetric flow in solar meridional planes, extending through the convection zone. Here we study its solar-cycle variations in the convection zone using SOHO/MDI helioseismic data from 1996 to 2010, including two solar minima and one maximum. The travel-time difference between northward and southward acoustic waves is related to the meridional flow along the wave path. Applying the ray approximation and the SOLA inversion method to the travel-time difference measured in a previous study, we obtain the meridional flow distributions in 0.67 ≤ r ≤ 0.96R ⊙ at the minimum and maximum. At the minimum, the flow has a three-layer structure: poleward in the upper convection zone, equatorward in the middle convection zone, and poleward again in the lower convection zone. The flow speed is close to zero within the error bar near the base of the convection zone. The flow distribution changes significantly from the minimum to the maximum. The change above 0.9R ⊙ shows two phenomena: first, the poleward flow speed is reduced at the maximum; second, an additional convergent flow centered at the active latitudes is generated at the maximum. These two phenomena are consistent with the surface meridional flow reported in previous studies. The change in flow extends all the way down to the base of the convection zone, and the pattern of the change below 0.9R ⊙ is more complicated. However, it is clear that the active latitudes play a role in the flow change: the changes in flow speed below and above the active latitudes have opposite signs. This suggests that magnetic fields could be responsible for the flow change.

  8. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  9. Shared Solar. Current Landscape, Market Potential, and the Impact of Federal Securities Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brockway, Anna M. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Ulrich, Elaine [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-04-01

    This report provides a high-level overview of the current U.S. shared solar landscape and the impact that a given shared solar program’s structure has on requiring federal securities oversight, as well as an estimate of market potential for U.S. shared solar deployment.

  10. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Fry, C.D. [Exploration Physics International, Inc., Huntsville, AL (United States); Dryer, M. [Exploration Physics International, Inc., Huntsville, AL (United States); NOAA Space Environment Center, Boulder, CO (United States); Heynderickx, D. [D-H Consultancy, Leuven (Belgium); Kecskemety, K. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Kudela, K. [Institute of Experimental Physics, Kosice (Slovakia); Balaz, J. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Institute of Experimental Physics, Kosice (Slovakia)

    2012-07-01

    The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2) numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay) of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events) associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50 %). This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50 %, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter ''Probability of Detection, yes'' (PODy) which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed), yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The

  11. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2012-02-01

    Full Text Available The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2 numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50%. This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50%, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter "Probability of Detection, yes" (PODy which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed, yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The statistical

  12. Life cycle assessment of a conventional and plastic solar collector in alternative air-conditioning

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    Alternative solar systems include a large number of heat-and mass exchange apparatus (HMTA) with considerable size surfaces. Prequired for realization of the work processes. This result in the increase in the overall dimentions. and cost of the system. The possibility of using the principle of combining the working and auxiliary processes within the (HMTA) has been considred, and the calculation proving the working ability of the alternative system for solving the task of air-condition, obtaining comfort parameters by employing evaporative air-cooling methods only, and a solar system with flat solar collectors to provide for the absorbent regeneration, have been performed. The study shows the importance in using Live Cycle Assessment, study for renewable energy, technologies, where environmental performance is especially important.(Author)

  13. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (solar activity periods, i.e., from minimum to maximum, are needed to achieve comprehensive understanding of such physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  14. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  15. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng

    2014-05-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  16. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Zhou, Cheng

    2014-01-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  17. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  18. RIEGER-TYPE PERIODICITY DURING SOLAR CYCLES 14–24: ESTIMATION OF DYNAMO MAGNETIC FIELD STRENGTH IN THE SOLAR INTERIOR

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil; Ramishvili, Giorgi; Shergelashvili, Bidzina [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Hanslmeier, Arnold [IGAM, Institute of Physics, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Poedts, Stefaan, E-mail: teimuraz.zaqarashvili@uni-graz.at [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001, Leuven (Belgium)

    2016-07-20

    Solar activity undergoes a variation over timescales of several months known as Rieger-type periodicity, which usually occurs near maxima of sunspot cycles. An early analysis showed that the periodicity appears only in some cycles and is absent in other cycles. But the appearance/absence during different cycles has not been explained. We performed a wavelet analysis of sunspot data from the Greenwich Royal Observatory and the Royal Observatory of Belgium during cycles 14–24. We found that the Rieger-type periods occur in all cycles, but they are cycle dependent: shorter periods occur during stronger cycles. Our analysis revealed a periodicity of 185–195 days during the weak cycles 14–15 and 24 and a periodicity of 155–165 days during the stronger cycles 16–23. We derived the dispersion relation of the spherical harmonics of the magnetic Rossby waves in the presence of differential rotation and a toroidal magnetic field in the dynamo layer near the base of the convection zone. This showed that the harmonics of fast Rossby waves with m = 1 and n = 4, where m ( n ) indicates the toroidal (poloidal) wavenumbers, perfectly fit with the observed periodicity. The variation of the toroidal field strength from weaker to stronger cycles may lead to the different periods found in those cycles, which explains the observed enigmatic feature of the Rieger-type periodicity. Finally, we used the observed periodicity to estimate the dynamo field strength during cycles 14–24. Our estimations suggest a field strength of ∼40 kG for the stronger cycles and ∼20 kG for the weaker cycles.

  19. An evaluation of thermodynamic solar plants with cylindrical parabolic collectors and air turbine engines with open Joule–Brayton cycle

    International Nuclear Information System (INIS)

    Ferraro, Vittorio; Marinelli, Valerio

    2012-01-01

    A performance analysis of innovative solar plants operating with cylindrical parabolic collectors and atmospheric air as heat transfer fluid in an open Joule–Brayton cycle, with and without intercooling and regeneration, is presented. The analysis was made for two operating modes of the plants: with variable air flow rate and constant inlet temperature to the turbine and with constant flow rate and variable inlet temperature to the turbine. The obtained results show a good performance of this type of solar plant, in spite of its simplicity; it seems able to compete well with other more complex plants operating with different heat transfer fluids. -- Highlights: ► Innovative CPS solar plants, operating with air in open Joule–Brayton cycle, are proposed. ► They are attractive for their simplicity and present interesting values of global efficiency. ► They seem able to compete well with other more complex solar plants.

  20. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  1. ON THE CONSTANCY OF THE DIAMETER OF THE SUN DURING THE RISING PHASE OF SOLAR CYCLE 24

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, M.; Hauchecorne, A.; Irbah, A. [Université de Versailles Saint-Quentin-en-Yvelines, Sorbonne Universités, Université Paris VI—Pierre et Marie Curie, CNRS/INSU, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Institut Pierre Simon Laplace (IPSL), 11 Boulevard d’Alembert, 78280 Guyancourt (France); Corbard, T.; Ikhlef, R.; Morand, F.; Renaud, C. [Université de Nice Sophia-Antipolis, CNRS, Laboratoire Lagrange, UMR 7293, Observatoire de la Côte d’Azur (OCA), Boulevard de l’Observatoire, 06304 Nice (France); Riguet, F.; Pradal, F., E-mail: Mustapha.Meftah@latmos.ipsl.fr, E-mail: Thierry.Corbard@oca.eu [Safran REOSC, Avenue de la Tour Maury, 91280 Saint-Pierre-du-Perray (France)

    2015-07-20

    The potential relationship between solar activity and changes in solar diameter remains the subject of debate and requires both models and measurements with sufficient precision over long periods of time. Using the PICARD instruments, we carried out precise measurements of variations in solar diameter during the rising phase of solar cycle 24. From new correction methods we found changes in PICARD space telescope solar radius amplitudes that were less than ±20 mas (i.e. ±14.5 km) for the years 2010–2011. Moreover, PICARD ground-based telescope solar radius amplitudes are smaller than ±50 mas from 2011 to 2014. Our observations could not find any direct link between solar activity and significant fluctuations in solar radius, considering that the variations, if they exist, are included within this range of values. Further, the contribution of solar radius fluctuations is low with regard to variations in total solar irradiance. Indeed, we find a small variation of the solar radius from space measurements with a typical periodicity of 129.5 days, with ±6.5 mas variation.

  2. Energetic and financial investigation of a stand-alone solar-thermal Organic Rankine Cycle power plant

    International Nuclear Information System (INIS)

    Tzivanidis, Christos; Bellos, Evangelos; Antonopoulos, Kimon A.

    2016-01-01

    Highlights: • A stand-alone solar driven Organic Rankine Cycle is optimized parametrically. • The system is optimized energetically and financially. • Nine working fluids are tested with cyclohexane to be the most suitable. • A collecting area of 25,000 m"2 parabolic trough collectors is the optimum solution. • The maximum IRR is 13.46% and the payback period is about 9 years. - Abstract: The use of solar thermal energy for electricity production is a clean and sustainable way to cover the increasing energy needs of our society. The most mature technology for capturing solar energy in high temperature levels is the parabolic trough collectors (PTC). In this study, an Organic Rankine Cycle (ORC) coupled with PTC is analyzed parametrically in order to be optimized financially and energetically. The first step is the thermodynamic investigation of the ORC by using various working fluids. The second step is the energetic and financial investigation of the total system which includes the solar field, the storage tank and the ORC module. By testing many combinations of collecting areas and storage tank volumes, finally cyclohexane proved to be the most suitable working fluid for producing 1 MW_e_l with PTC. Specifically, in the optimum situation a solar field of 25,000 m"2 with storage tank of about 300 m"3 leads to a payback period of 9 years and to an internal rate of return (IRR) equal to 13.46%. Moreover, an economic comparison for different commercial collectors is presented, with Eurotrough ET-150 being the financially optimum solution for this case study.

  3. Solar causes of the excitation of earth electric currents and of geomagnetic field disturbances

    International Nuclear Information System (INIS)

    Krivsky, L.

    1977-01-01

    A survey is given of the effects of solar activity on geomagnetic and geoelectric disturbances. Indexes are given showing changes in the magnetic field, the occurrence of calm geomagnetic days related to solar activity, proton solar flares and electrical currents in the high layers of the atmosphere in the polar region, powerfull solar activity and electric currents in the polar region, the time rise of shock waves in the development of proton flares and the boundaries of sector structures of the interplanetary magnetic field and its effect on the Earth. It is stated that the geoelectric and geomagnetic fields are affected by the discrete phenomena of solar activity and by the transition of the quasimagnetic sectors of interplanetary fields. (J.P.)

  4. Distribution of ionospheric currents induced by the solar wind interaction with Venus

    International Nuclear Information System (INIS)

    Daniell, R.E. Jr.; Cloutier, P.A.

    1977-01-01

    The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus. Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed. (author)

  5. Solar Thermochemical Energy Storage Through Carbonation Cycles of SrCO3/SrO Supported on SrZrO3.

    Science.gov (United States)

    Rhodes, Nathan R; Barde, Amey; Randhir, Kelvin; Li, Like; Hahn, David W; Mei, Renwei; Klausner, James F; AuYeung, Nick

    2015-11-01

    Solar thermochemical energy storage has enormous potential for enabling cost-effective concentrated solar power (CSP). A thermochemical storage system based on a SrO/SrCO3 carbonation cycle offers the ability to store and release high temperature (≈1200 °C) heat. The energy density of SrCO3/SrO systems supported by zirconia-based sintering inhibitors was investigated for 15 cycles of exothermic carbonation at 1150 °C followed by decomposition at 1235 °C. A sample with 40 wt % of SrO supported by yttria-stabilized zirconia (YSZ) shows good energy storage stability at 1450 MJ m(-3) over fifteen cycles at the same cycling temperatures. After further testing over 45 cycles, a decrease in energy storage capacity to 1260 MJ m(-3) is observed during the final cycle. The decrease is due to slowing carbonation kinetics, and the original value of energy density may be obtained by lengthening the carbonation steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The turbulent cascade and proton heating in the solar wind during solar minimum

    International Nuclear Information System (INIS)

    Coburn, Jesse T.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Joshua E.; Forman, Miriam A.

    2013-01-01

    Solar wind measurements at 1 AU during the recent solar minimum and previous studies of solar maximum provide an opportunity to study the effects of the changing solar cycle on in situ heating. Our interest is to compare the levels of activity associated with turbulence and proton heating. Large-scale shears in the flow caused by transient activity are a source that drives turbulence that heats the solar wind, but as the solar cycle progresses the dynamics that drive the turbulence and heat the medium are likely to change. The application of third-moment theory to Advanced Composition Explorer (ACE) data gives the turbulent energy cascade rate which is not seen to vary with the solar cycle. Likewise, an empirical heating rate shows no significan changes in proton heating over the cycle.

  7. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  8. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    Science.gov (United States)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  9. Conception and simulation of an improved solar refrigeration unit

    International Nuclear Information System (INIS)

    Chaouachi, B.; Gabsi, S.

    2006-01-01

    If the solar energy possesses the advantage to be c lean , free and new able, this last is probably, considered like an adapted potential solution, that answers in even time at a economic preoccupation and ecological problems. Among the main done currently research is the use of free source to make operate system of refrigeration. following a bibliographic study on the absorption cycles, the utilized couples absorbents-refrigerating fluids and the capture of the solar energy, an unit refrigeration using an improved solar absorption cycle of ammonia has been conceived and studied. The simulation results in permanent regime concerned the determination of the variation of the performance criteria mainly according to the operatives kept for this study. The obtained results showed, that the improved mono pressure absorption cycle of ammonia is suitable well for the cold production by means of the solar energy and that with a simple plate collector we can reach a power, of the order of 900 watts sufficient for domestic use.(Author)

  10. Essential features of long-term changes of areas and diameters of sunspot groups in solar activity cycles 12-24

    Science.gov (United States)

    Efimenko, V. M.; Lozitsky, V. G.

    2018-06-01

    We analyze the Greenwich catalog data on areas of sunspot groups of last thirteen solar cycles. Various parameters of sunspots are considered, namely: average monthly smoothed areas, maximum area for each year and equivalent diameters of groups of sunspots. The first parameter shows an exceptional power of the 19th cycle of solar activity, which appears here more contrastively than in the numbers of spots (that is, in Wolf's numbers). It was found that in the maximum areas of sunspot groups for a year there is a unique phenomenon: a short and high jump in the 18th cycle (in 1946-1947) that has no analogues in other cycles. We also studied the integral distributions for equivalent diameters and found the following: (a) the average value of the index of power-law approximation is 5.4 for the last 13 cycles and (b) there is reliable evidence of Hale's double cycle (about 44 years). Since this indicator reflects the dispersion of sunspot group diameters, the results obtained show that the convective zone of the Sun generates embryos of active regions in different statistical regimes which change with a cycle of about 44 years.

  11. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  12. Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery

    International Nuclear Information System (INIS)

    Lapp, J.; Davidson, J.H.; Lipiński, W.

    2012-01-01

    Improvements in the effectiveness of solid phase heat recovery and in the thermodynamic properties of metal oxides are the most important paths to achieving unprecedented thermal efficiencies of 10% and higher in non-stoichiometric solar redox reactors. In this paper, the impact of solid and gas phase heat recovery on the efficiency of a non-stoichiometric cerium dioxide-based H 2 O/CO 2 splitting cycle realized in a solar-driven reactor are evaluated in a parametric thermodynamic analysis. Application of solid phase heat recovery to the cycling metal oxide allows for lower reduction zone operating temperatures, simplifying reactor design. An optimum temperature for metal oxide reduction results from two competing phenomena as the reduction temperature is increased: increasing re-radiation losses from the reactor aperture and decreasing heat loss due to imperfect solid phase heat recovery. Additionally, solid phase heat recovery increases the efficiency gains made possible by gas phase heat recovery. -- Highlights: ► Both solid and gas phase heat recovery are essential to achieve high thermal efficiency in non-stoichiometric ceria-based solar redox reactors. ► Solid phase heat recovery allows for lower reduction temperatures and increases the gains made possible by gas phase heat recovery. ► The optimum reduction temperature increases with increasing concentration ratio and decreasing solid phase heat recovery effectiveness. ► Even moderate levels of heat recovery dramatically improve reactor efficiency from 3.5% to 16%.

  13. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    International Nuclear Information System (INIS)

    Delgado-Torres, Agustin M.; Garcia-Rodriguez, Lourdes

    2010-01-01

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects.

  14. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  15. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Effenberger, Frederic; Costa, Fatima Rubio da; Petrosian, Vahé [Department of Physics and KIPAC, Stanford University, Stanford, CA 94305 (United States); Oka, Mitsuo; Saint-Hilaire, Pascal; Krucker, Säm [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Liu, Wei [Bay Area Environmental Research Institute, 625 2nd Street, Suite 209, Petaluma, CA 94952 (United States); Glesener, Lindsay, E-mail: feffen@stanford.edu, E-mail: frubio@stanford.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES ) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  16. The inner magnetosphere ion composition and local time distribution over a solar cycle

    Science.gov (United States)

    Kistler, L. M.; Mouikis, C. G.

    2016-03-01

    Using the Cluster/Composition and Distribution Function (CODIF) analyzer data set from 2001 to 2013, a full solar cycle, we determine the ion distributions for H+, He+, and O+ in the inner magnetosphere (L < 12) over the energy range 40 eV to 40 keV as a function magnetic local time, solar EUV (F10.7), and geomagnetic activity (Kp). Concentrating on L = 6-7 for comparison with previous studies at geosynchronous orbit, we determine both the average flux at 90° pitch angle and the pitch angle anisotropy as a function of energy and magnetic local time. We clearly see the minimum in the H+ spectrum that results from the competition between eastward and westward drifts. The feature is weaker in O+ and He+, leading to higher O+/H+ and He+/H+ ratios in the affected region, and also to a higher pitch angle anisotropy, both features expected from the long-term effects of charge exchange. We also determine how the nightside L = 6-7 densities and temperatures vary with geomagnetic activity (Kp) and solar EUV (F10.7). Consistent with other studies, we find that the O+ density and relative abundance increase significantly with both Kp and F10.7. He+ density increases with F10.7, but not significantly with Kp. The temperatures of all species decrease with increasing F10.7. The O+ and He+ densities increase from L = 12 to L ~ 3-4, both absolutely and relative to H+, and then drop off sharply. The results give a comprehensive view of the inner magnetosphere using a contiguous long-term data set that supports much of the earlier work from GEOS, ISEE, Active Magnetospheric Particle Tracer Explorers, and Polar from previous solar cycles.

  17. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  18. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Science.gov (United States)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  19. A cylindrical current sheet over the South solar pole observed by Ulysses

    Science.gov (United States)

    Khabarova, Olga; Kislov, Roman; Malova, Helmi; Obridko, Vladimir

    2016-04-01

    We provide the first evidence for the existence of a quasi-stable cylindrical current sheet over the South solar pole as observed by Ulysses in 2006, near the solar minimum, when it reached maximal heliolatitude of 79.7 degrees at 2.4 AU. It took place inside a fast speed stream from the coronal hole, and the tube was presumably crossed rather far from the center within two degrees of heliolatitude and ~10 degrees of heliolongitude. During the spacecraft passage throughout the structure, the solar wind velocity was approximately twice as little, the solar wind density was 20 times lower than the surrounded plasma values, but the temperature was twice as large in the point closest to the pole. The interplanetary magnetic field (IMF) strongly decreased due to sharp variations in the IMF radial component (RTN) that changed its sign twice, but other components did not show changes out of usual stochastic behavior. Both the behavior of the IMF, rotation of the plasma flow direction and other features indicate the occurrence of cylindrical current sheet. We discuss its solar origin and present modeling that can explain the observations.

  20. TRACKING THE SOLAR CYCLE THROUGH IBEX OBSERVATIONS OF ENERGETIC NEUTRAL ATOM FLUX VARIATIONS AT THE HELIOSPHERIC POLES

    Energy Technology Data Exchange (ETDEWEB)

    Reisenfeld, D. B.; Janzen, P. H. [University of Montana, Missoula, MT 59812 (United States); Bzowski, M., E-mail: dan.reisenfeld@umontana.edu, E-mail: paul.janzen@umontana.edu, E-mail: bzowski@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-716, Warsaw (Poland); and others

    2016-12-20

    With seven years of Interstellar Boundary Explorer ( IBEX ) observations, from 2009 to 2015, we can now trace the time evolution of heliospheric energetic neutral atoms (ENAs) through over half a solar cycle. At the north and south ecliptic poles, the spacecraft attitude allows for continuous coverage of the ENA flux; thus, signal from these regions has much higher statistical accuracy and time resolution than anywhere else in the sky. By comparing the solar wind dynamic pressure measured at 1 au with the heliosheath plasma pressure derived from the observed ENA fluxes, we show that the heliosheath pressure measured at the poles correlates well with the solar cycle. The analysis requires time-shifting the ENA measurements to account for the travel time out and back from the heliosheath, which allows us to estimate the scale size of the heliosphere in the polar directions. We arrive at an estimated distance to the center of the ENA source region in the north of 220 au and in the south a distance of 190 au. We also find a good correlation between the solar cycle and the ENA energy spectra at the poles. In particular, the ENA flux for the highest IBEX energy channel (4.3 keV) is quite closely correlated with the areas of the polar coronal holes, in both the north and south, consistent with the notion that polar ENAs at this energy originate from pickup ions of the very high speed wind (∼700 km s{sup −1}) that emanates from polar coronal holes.

  1. OBSERVATIONS OF THE INTERPLANETARY HYDROGEN DURING SOLAR CYCLES 23 AND 24. WHAT CAN WE DEDUCE ABOUT THE LOCAL INTERSTELLAR MEDIUM?

    International Nuclear Information System (INIS)

    Vincent, Frédéric E.; Quémerais, Eric; Koutroumpa, Dimitra; Katushkina, Olga; Izmodenov, Vladislav; Ben-Jaffel, Lotfi; Harris, Walter M.; Clarke, John

    2014-01-01

    Observations of interstellar helium atoms by the Interstellar Boundary Explorer (IBEX) spacecraft in 2009 reported a local interstellar medium (LISM) velocity vector different from the results of the Ulysses spacecraft between 1991 and 2002. The interplanetary hydrogen (IPH), a population of neutrals that fills the space between planets inside the heliosphere, carries the signatures of the LISM and its interaction with the solar wind. More than 40 yr of space-based studies of the backscattered solar Lyα emission from the IPH provided limited access to the velocity distribution, with the first temporal evolution map of the IPH line-shift during solar cycle 23. This work presents the results of the latest IPH observations made by the Hubble Space Telescope's Space Telescope Imaging Spectrograph during solar cycle 24. These results have been compiled with previous measurements, including data from the Solar Wind Anisotropies instrument on the Solar and Heliospheric Observatory. The whole set has been compared to physically realistic models to test both sets of LISM physical parameters as measured by Ulysses and IBEX, respectively. This comparison shows that the LISM velocity vector has not changed significantly since Ulysses measurements

  2. OBSERVATIONS OF THE INTERPLANETARY HYDROGEN DURING SOLAR CYCLES 23 AND 24. WHAT CAN WE DEDUCE ABOUT THE LOCAL INTERSTELLAR MEDIUM?

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Frédéric E.; Quémerais, Eric; Koutroumpa, Dimitra [Université Versailles St.-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CRNS/INSU, LATMOS-IPSL, 11 boulevard d' Alembert, 78280 Guyancourt (France); Katushkina, Olga; Izmodenov, Vladislav [Space Research Institute of Russian Academy of Sciences, Moscow (Russian Federation); Ben-Jaffel, Lotfi [UPMC Univ. Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Harris, Walter M. [University of Arizona, Lunar and Planetary Laboratory, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Clarke, John [Center for Space Physics, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-06-20

    Observations of interstellar helium atoms by the Interstellar Boundary Explorer (IBEX) spacecraft in 2009 reported a local interstellar medium (LISM) velocity vector different from the results of the Ulysses spacecraft between 1991 and 2002. The interplanetary hydrogen (IPH), a population of neutrals that fills the space between planets inside the heliosphere, carries the signatures of the LISM and its interaction with the solar wind. More than 40 yr of space-based studies of the backscattered solar Lyα emission from the IPH provided limited access to the velocity distribution, with the first temporal evolution map of the IPH line-shift during solar cycle 23. This work presents the results of the latest IPH observations made by the Hubble Space Telescope's Space Telescope Imaging Spectrograph during solar cycle 24. These results have been compiled with previous measurements, including data from the Solar Wind Anisotropies instrument on the Solar and Heliospheric Observatory. The whole set has been compared to physically realistic models to test both sets of LISM physical parameters as measured by Ulysses and IBEX, respectively. This comparison shows that the LISM velocity vector has not changed significantly since Ulysses measurements.

  3. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    -water mixture evaporates and condenses with a temperature glide, thus providing a better match with the heat source/sink temperature profile. This better match results in reduced thermal irreversibility, but at the cost of relatively larger heat exchanger areas. The parabolic trough collector is the most mature...... heat transfer correlations, and appropriate cost functions were used to estimate the costs for the various plant components. The optimal capital investment costs were determined for several values of the turbine inlet ammonia mass fraction and among the compared cases, the Kalina cycle has the minimum......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  4. Life-cycle air emissions from PV power systems

    International Nuclear Information System (INIS)

    Watt, M.E.; Johnson, A.J.; Outhred, H.R.; Ellis, M.

    1998-01-01

    This paper addresses the air emission of grid supply versus grid-connected and off-grid photovoltaic power generation, using the framework of life-cycle assessment, in the contents of rural household energy supply in Australia. Emissions of carbon dioxide, sulphur dioxde and nitrous oxides are calculated for the three life-cycle stages of manufacture, use and disposal. Sensitivities to materials and data inputs, as well as to component efficiencies, lifetimes and sizing are discussed. For each supply option, demand management options, including insulation and appliance choice, and the substitution of solar heating or bottled gas for electricity are considered. The best option in all cases, in terms of life-cycle air emissions, is a grid-connected photovoltaic system used to supply an energy-efficient household with a mix of solar, gas and electric appliances. However, in financial terms, with current Australian energy prices, this option represents a high capital and life-cycle costs. Additionally, for the grid options, electricity costs do not significantly disadvantage the high demand scenarios. Both results provide a clear illustration of current Australian energy-pricing policies being in conflict with long-term environmental sustainability. (Author)

  5. Current system of the solar wind: results of numerical calculation

    International Nuclear Information System (INIS)

    Pisanko, Yu.V.

    1985-01-01

    Results of numerical calculations of surface current in the interplanetary current layer and steady volume current in the solar wind for heliocentric distances (1-10)Rsub(s) (Rsub(s) is the Sun radius) are given. The strength of current dependence on spatial coordinates is considered. Stationary nondissipative magnetohydrodynamic corona expansion (SNMCE) in the reference system rotating with the Sun is studied. Calculations show that three-dimensional current system of nonaxial-symmetric and nonsymmetric relatively to helioequator plane of SNMCE is more complicated than the zonal ring current around the Sun, which is the only component of the current system in spatial symmetric case

  6. ON THE WEAKENING OF THE POLAR MAGNETIC FIELDS DURING SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Wang, Y.-M.; Sheeley, N. R.; Robbrecht, E.

    2009-01-01

    The Sun's polar fields are currently ∼40% weaker than they were during the previous three sunspot minima. This weakening has been accompanied by a corresponding decrease in the interplanetary magnetic field (IMF) strength, by a ∼20% shrinkage in the polar coronal-hole areas, and by a reduction in the solar-wind mass flux over the poles. It has also been reflected in coronal streamer structure and the heliospheric current sheet, which only showed the expected flattening into the equatorial plane after sunspot numbers fell to unusually low values in mid-2008. From latitude-time plots of the photospheric field, it has long been apparent that the polar fields are formed through the transport of trailing-polarity flux from the sunspot latitudes to the poles. To address the question of why the polar fields are now so weak, we simulate the evolution of the photospheric field and radial IMF strength from 1965 to the present, employing a surface transport model that includes the effects of active region emergence, differential rotation, supergranular convection, and a poleward bulk flow. We find that the observed evolution can be reproduced if the amplitude of the surface meridional flow is varied by as little as 15% (between 14.5 and 17 m s -1 ), with the higher average speeds being required during the long cycles 20 and 23.

  7. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  8. Resistive instabilities of current sheets in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Dobrowolny, M [CNR, Laboratorio per il Plasma nello Spazio, Frascati, Italy; Trussoni, E [CNR, Laboratorio di Cosmo-Geofisica, Turin, Italy

    1979-03-01

    Resistive magnetohydrodynamic instabilities are investigated numerically for non-antisymmetric magnetic field profiles similar to those indicated in spacecraft data on solar wind discontinuities. The eigenvalue problem derived for the growth rate of possible instabilities from dimensionless equations for velocity and magnetic field perturbations is solved starting from the outer regions where the plasma is frozen to the magnetic field. For an antisymmetric magnetic profile, calculations show only tearing modes to be present, with instabilities occurring only at long wavelengths, while for a non-antisymmetric magnetic profile resembling the observed solar wind, calculations indicate the presence of rippling modes driven by resistivity gradients, in addition to the tearing modes. Calculations of the scale lengths of variation of the reversing component based on a scaling law relating the maximum growth rate to the magnetic Reynolds number are found to agree with observed solar current sheet scale lengths.

  9. LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Heather A.; McComas, David J. [Southwest Research Institute, San Antonio, TX (United States); DeForest, Craig E. [Southwest Research Institute, Boulder, CO (United States)

    2016-11-20

    We examine the long-term time evolution (1965–2015) of the relationships between solar wind proton temperature ( T {sub p}) and speed ( V {sub p}) and between the proton density ( n {sub p}) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature–speed ( T {sub p}– V {sub p}) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density–speed ( n {sub p}– V {sub p}) relationship is not linear like the T {sub p}– V {sub p} relationship, we perform power-law fits for n {sub p}– V {sub p}. The exponent (steepness in the n {sub p}– V {sub p} relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n {sub p} for different speed ranges, and found that for the slow wind n {sub p} is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n {sub p} variation was less, but in phase with the cycle. This phase difference may contribute to the n {sub p}– V {sub p} exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T {sub p} and V {sub p} data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  10. Effect of line-of-sight inclinations on the observation of solar activity cycle: Lessons for CoRoT and Kepler

    International Nuclear Information System (INIS)

    Vazquez Ramio, H; Regulo, C; Mathur, S; GarcIa, R A

    2011-01-01

    CoRoT and Kepler missions are collecting data of solar-like oscillating stars of unprecedented quality. Moreover, thanks to the length of the time series, we are able to study their seismic variability. In this work we use numerical simulations based on the last 3 solar cycles to analyze the light curves as a function of the line-of-sight inclination angle. These preliminary results showed that the direct observation of the light curve can induce some bias in the position of the maximum of the cycle.

  11. Effects of thermal cycle annealing on reduction of defect density in lattice-mismatched InGaAs solar cells

    International Nuclear Information System (INIS)

    Sasaki, T.; Arafune, K.; Lee, H.S.; Ekins-Daukes, N.J.; Tanaka, S.; Ohshita, Y.; Yamaguchi, M.

    2006-01-01

    Lattice-mismatched In 0.16 Ga 0.84 As solar cells were grown on GaAs substrates using graded In x Ga 1- x As buffer layers and homogenous In 0.16 Ga 0.84 As buffer layers. The indium composition x in the graded buffer changed from 0% to 16% continuously. Thermal cycle annealing (TCA) was performed after the growth of the graded buffer layers. The effects of TCA on the solar cell open-circuit voltage and quantum efficiency have been investigated. The minority carrier lifetime is observed to increase in the p-type In 0.16 Ga 0.84 As layer after applying the TCA process. Electron-beam-induced current microscopy also shows a related reduction in dislocation density in the p-type In 0.16 Ga 0.84 As layer after TCA processing. Cross-sectional transmission electron microscopy performed on the graded buffer layer suggests that the strain present in the cell layers is reduced after the TCA process, implying that the TCA treatment promotes strain relaxation in the graded buffer layers

  12. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles

    Directory of Open Access Journals (Sweden)

    Sara F. Martin

    2018-05-01

    Full Text Available Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3–4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42–75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of

  13. Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter

    Science.gov (United States)

    Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan

    2018-04-01

    The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.

  14. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  15. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    Directory of Open Access Journals (Sweden)

    Lei Qi

    2017-01-01

    Full Text Available We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750–1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5–6 times smaller than those of state-of-the-art molten salt systems.

  16. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  17. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    Science.gov (United States)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  18. Design and modeling of low temperature solar thermal power station

    International Nuclear Information System (INIS)

    Shankar Ganesh, N.; Srinivas, T.

    2012-01-01

    Highlights: ► The optimum conditions are different for efficiency and power conditions. ► The current model works up to a maximum separator temperature of 150 °C. ► The turbine concentration influences the high pressure. ► High solar beam radiation and optimized cycle conditions give low collector cost. -- Abstract: During the heat recovery in a Kalina cycle, a binary aqua–ammonia mixture changes its state from liquid to vapor, the more volatile ammonia vaporizes first and then the water starts vaporization to match temperature profile of the hot fluid. In the present work, a low temperature Kalina cycle has been investigated to optimize the heat recovery from solar thermal collectors. Hot fluid coming from solar parabolic trough collector with vacuum tubes is used to generate ammonia rich vapor in a boiler for power generation. The turbine inlet conditions are optimized to match the variable hot fluid temperature with the intermittent nature of the solar radiation. The key parameters discussed in this study are strong solution concentration, separator temperature which affects the hot fluid inlet temperature and turbine ammonia concentration. Solar parabolic collector system with vacuum tubes has been designed at the optimized power plant conditions. This work can be used in the selection of boiler, separator and turbine conditions to maximize the power output as well as efficiency of power generation system. The current model results a maximum limit temperature for separator as 150 °C at the Indian climatic conditions. A maximum specific power of 105 kW per kg/s of working fluid can be obtained at 80% of strong solution concentration with 140 °C separator temperature. The corresponding plant and cycle efficiencies are 5.25% and 13% respectively. But the maximum efficiencies of 6% and 15% can be obtained respectively for plant and Kalina cycle at 150 °C of separator temperature.

  19. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Malova, H. V., E-mail: hmalova@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2016-08-15

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  20. Solar Cycle Variability Induced by Tilt Angle Scatter in a Babcock-Leighton Solar Dynamo Model

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark

    2017-09-01

    We present results from a three-dimensional Babcock-Leighton (BL) dynamo model that is sustained by the emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of {σ }δ =15^\\circ produces a variability comparable to the observed solar cycle variability of ˜32%, as quantified by the sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima and grand maxima. The time spent in grand minima for {σ }δ =15^\\circ is somewhat less than that inferred for the Sun from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to {σ }δ =30^\\circ , the simulation statistics are comparable to the Sun (˜18% of the time in grand minima and ˜10% in grand maxima). Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°-2° is sufficient to limit the dynamo growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

  1. Propagation of large amplitude Alfven waves in the solar wind current sheet

    International Nuclear Information System (INIS)

    Malara, Francesco; Primavera, Leonardo; Veltri, Pierluigi

    1996-01-01

    The time evolution of Alfvenic perturbations in the Solar Wind current sheet is studied by using numerical simulations of the compressible magnetohydrodynamic (MHD) equations. The simulations show that the interaction between the large amplitude Alfvenic pertubation and the solar wind current sheet decreases the correlation between velocity and magnetic field fluctuations and produces compressive fluctuations. The characteristics of these compressive fluctuations compare rather well with spatial observations. The behavior of the correlation between density and magnetic field intensity fluctuations and of the their spectra are well reproduced so that the physical mechanisms giving rise to these behaviors can be identified

  2. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Wang, Xin; Markel, Robert S.; Thompson, Michael J. [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J.; Malanushenko, Anna V. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Davey, Alisdair R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Howe, Rachel [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Krista, Larisza D. [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80205 (United States); Cirtain, Jonathan W. [Marshall Space Flight Center, Code ZP13, Huntsville, AL 35812 (United States); Gurman, Joseph B.; Pesnell, William D., E-mail: mscott@ucar.edu [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-01

    Sunspots are a canonical marker of the Sun's internal magnetic field which flips polarity every ∼22 yr. The principal variation of sunspots, an ∼11 yr variation, modulates the amount of the magnetic field that pierces the solar surface and drives significant variations in our star's radiative, particulate, and eruptive output over that period. This paper presents observations from the Solar and Heliospheric Observatory and Solar Dynamics Observatory indicating that the 11 yr sunspot variation is intrinsically tied to the spatio-temporal overlap of the activity bands belonging to the 22 yr magnetic activity cycle. Using a systematic analysis of ubiquitous coronal brightpoints and the magnetic scale on which they appear to form, we show that the landmarks of sunspot cycle 23 can be explained by considering the evolution and interaction of the overlapping activity bands of the longer-scale variability.

  3. Mini Solar and Sea Current Power Generation System

    Science.gov (United States)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  4. Solar proton fluxes since 1956

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1977-01-01

    The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of 56 Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of 22 Na and 55 Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity

  5. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  6. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  7. NON-NEUTRALIZED ELECTRIC CURRENT PATTERNS IN SOLAR ACTIVE REGIONS: ORIGIN OF THE SHEAR-GENERATING LORENTZ FORCE

    International Nuclear Information System (INIS)

    Georgoulis, Manolis K.; Titov, Viacheslav S.; Mikić, Zoran

    2012-01-01

    Using solar vector magnetograms of the highest available spatial resolution and signal-to-noise ratio, we perform a detailed study of electric current patterns in two solar active regions (ARs): a flaring/eruptive and a flare-quiet one. We aim to determine whether ARs inject non-neutralized (net) electric currents in the solar atmosphere, responding to a debate initiated nearly two decades ago that remains inconclusive. We find that well-formed, intense magnetic polarity inversion lines (PILs) within ARs are the only photospheric magnetic structures that support significant net current. More intense PILs seem to imply stronger non-neutralized current patterns per polarity. This finding revises previous works that claim frequent injections of intense non-neutralized currents by most ARs appearing in the solar disk but also works that altogether rule out injection of non-neutralized currents. In agreement with previous studies, we also find that magnetically isolated ARs remain globally current-balanced. In addition, we confirm and quantify the preference of a given magnetic polarity to follow a given sense of electric currents, indicating a dominant sense of twist in ARs. This coherence effect is more pronounced in more compact ARs with stronger PILs and must be of sub-photospheric origin. Our results yield a natural explanation of the Lorentz force, invariably generating velocity and magnetic shear along strong PILs, thus setting a physical context for the observed pre-eruption evolution in solar ARs.

  8. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelov, N. V.; Zank, G. P. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Suess, S. T. [National Space Science and Technology Center, Huntsville, AL 35805 (United States); Borovikov, S. N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Dr., Huntsville, AL 35805 (United States); Ebert, R. W.; McComas, D. J., E-mail: np0002@uah.edu [Southwest Research Institute, San Antonio, TX 78227 (United States)

    2013-07-20

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90 Degree-Sign , separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)-the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  9. THREE-DIMENSIONAL FEATURES OF THE OUTER HELIOSPHERE DUE TO COUPLING BETWEEN THE INTERSTELLAR AND INTERPLANETARY MAGNETIC FIELDS. IV. SOLAR CYCLE MODEL BASED ON ULYSSES OBSERVATIONS

    International Nuclear Information System (INIS)

    Pogorelov, N. V.; Zank, G. P.; Suess, S. T.; Borovikov, S. N.; Ebert, R. W.; McComas, D. J.

    2013-01-01

    The solar cycle has a profound influence on the solar wind (SW) interaction with the local interstellar medium (LISM) on more than one timescales. Also, there are substantial differences in individual solar cycle lengths and SW behavior within them. The presence of a slow SW belt, with a variable latitudinal extent changing within each solar cycle from rather small angles to 90°, separated from the fast wind that originates at coronal holes substantially affects plasma in the inner heliosheath (IHS)—the SW region between the termination shock (TS) and the heliopause (HP). The solar cycle may be the reason why the complicated flow structure is observed in the IHS by Voyager 1. In this paper, we show that a substantial decrease in the SW ram pressure observed by Ulysses between the TS crossings by Voyager 1 and 2 contributes significantly to the difference in the heliocentric distances at which these crossings occurred. The Ulysses spacecraft is the source of valuable information about the three-dimensional and time-dependent properties of the SW. Its unique fast latitudinal scans of the SW regions make it possible to create a solar cycle model based on the spacecraft in situ measurements. On the basis of our analysis of the Ulysses data over the entire life of the mission, we generated time-dependent boundary conditions at 10 AU from the Sun and applied our MHD-neutral model to perform a numerical simulation of the SW-LISM interaction. We analyzed the global variations in the interaction pattern, the excursions of the TS and the HP, and the details of the plasma and magnetic field distributions in the IHS. Numerical results are compared with Voyager data as functions of time in the spacecraft frame. We discuss solar cycle effects which may be reasons for the recent decrease in the TS particles (ions accelerated to anomalous cosmic-ray energies) flux observed by Voyager 1.

  10. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  11. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  12. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Huth, Radan; Bochníček, Josef; Hejda, Pavel

    2007-01-01

    Roč. 69, č. 9 (2007), s. 1095-1109 ISSN 1364-6826 R&D Projects: GA AV ČR IAA3042401 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z30120515 Keywords : Arctic Oscillation * Solar cycle * 10.7 cm radio flux * Sea level pressure * Principal component analysis Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.566, year: 2007

  13. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  14. Solar wind and seasonal influence on ionospheric currents from Swarm and CHAMP measurements

    DEFF Research Database (Denmark)

    Laundal, K. M.; Finlay, C. C.; Olsen, N.

    2018-01-01

    the ionosphere with the magnetosphere. The model provides ionospheric current values at any location as continuous functions of solar wind speed, interplanetary magnetic field (IMF), dipole tilt angle, and the F10.7 index of solar flux. Geometric distortions due to variations in the Earth's main magnetic field...

  15. A study of the asymmetrical distribution of solar activity features on solar and plasma parameters (1967-2016)

    Science.gov (United States)

    El-Borie, M. A.; El-Taher, A. M.; Aly, N. E.; Bishara, A. A.

    2018-04-01

    The impact of asymmetrical distribution of hemispheric sunspot areas (SSAs) on the interplanetary magnetic field, plasma, and solar parameters from 1967 to 2016 has been studied. The N-S asymmetry of solar-plasma activities based on SSAs has a northern dominance during solar cycles 20 and 24. However, it has a tendency to shift to the southern hemisphere in cycles 21, 22, and 23. The solar cycle 23 showed that the sorted southern SSAs days predominated over the northern days by ˜17%. Through the solar cycles 21-24, the SSAs of the southern hemisphere were more active. In contrast, the northern SSAs predominate over the southern one by 9% throughout solar cycle 20. On the other hand, the average differences of field magnitude for the sorted northern and southern groups during solar cycles 20-24 are statistically insignificant. Clearly, twenty years showed that the solar plasma ion density from the sorted northern group was denser than that of southern group and a highest northern dominant peak occurred in 1971. In contrast, seventeen out of fifty years showed the reverse. In addition, there are fifteen clear asymmetries of solar wind speed (SWS), with SWS (N) > SWS (S), and during the years 1972, 2002, and 2008, the SWS from the sorted northern group was faster than that of southern activity group by 6.16 ± 0.65 km/s, 5.70 ± 0.86 km/s, and 5.76 ± 1.35 km/s, respectively. For the solar cycles 20-24, the grand-averages of P from the sorted solar northern and southern have nearly the same parameter values. The solar plasma was hotter for the sorted northern activity group than the southern ones for 17 years out of 50. Most significant northern prevalent asymmetries were found in 1972 (5.76 ± 0.66 × 103 K) and 1996 (4.7 ± 0.8 × 103 K), while two significant equivalent dominant southern asymmetries (˜3.8 ± 0.3 × 103 K) occurred in 1978 and 1993. The grand averages of sunspot numbers have symmetric activity for the two sorted northern and southern hemispheres

  16. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  17. Solar and terrestrial physics. [effects of solar activities on earth environment

    Science.gov (United States)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  18. Solar wind parameters responsible for the plasma injection into the magnetospheric ring current region

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1977-01-01

    Solar wind effect on the magnetospheric ring-current region has been considered. The correlations with solar wind parameters of the magnitude qsub(o) proportional to the total energy of particles being injected into the magnetospheric ring-current region per one hour are studied statistically and by comparison of time variations. The data on 8 sporadic geomagnetic storms of various intensity, from moderate to very severe one, are used. It is found that qsub(o) correlates not only with the magnitude and the direction of the solar-wind magnetic field component normal to the ecliptic plane, Bsub(z), but also with the variability, sigmasub(B), of the total magnetic-field strength vector. The solar-wind flux velocity ν influences the average storm intensity but the time variations of ν during any individual storm do not correlate with those of qsub(o)

  19. Interactions of Dust Grains with Coronal Mass Ejections and Solar Cycle Variations of the F-Coronal Brightness

    Science.gov (United States)

    Ragot, B. R.; Kahler, S. W.

    2003-01-01

    The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital

  20. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  1. Retrofitted Solar Domestic Hot Water Systems for Swedish Single-Family Houses—Evaluation of a Prototype and Life-Cycle Cost Analysis

    Directory of Open Access Journals (Sweden)

    Luis Ricardo Bernardo

    2016-11-01

    Full Text Available According to recent technology road maps, system cost reductions and development of standardised plug-and-function systems are some of the most important goals for solar heating technology development. Retrofitting hot water boilers in single-family houses when installing solar collectors has the potential to significantly reduce both material and installation costs. Previous studies have investigated such retrofitting, using theoretical simulations and laboratory tests, but no actual installations were made and tested in practice. This article describes the installation, measured performance and cost effectiveness of a retrofitting solution that converts existing domestic hot water heaters to a solar domestic hot water system. The measured performance is characterised by the monthly and annual solar fractions. The cost effectiveness is evaluated by a life-cycle cost analysis, comparing the retrofitted system to a conventional solar domestic hot water system and the case without any solar heating system. Measurements showed that approximately 50% of the 5000 kWh/year of domestic hot water consumption was saved by the retrofitted system in south Sweden. Such savings are in agreement with previous estimations and are comparable to the energy savings when using a conventional solar domestic hot water system. The life-cycle cost analysis showed that, according to the assumptions and given climate, the return on investment of the retrofitted system is approximately 17 years, while a conventional system does not reach profitability during its lifetime of 25 years.

  2. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  3. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    Science.gov (United States)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  4. Environment-oriented life cycle analysis of bulk materials, applied in solar cell systems

    International Nuclear Information System (INIS)

    Geelen, H.

    1994-04-01

    In the solar cell technology several bulk materials (glass, steel, aluminium, concrete, copper, zinc and synthetic materials) are applied intensively. By means of a life cycle analysis (LCA) the environmental effects and bottlenecks of the use of these materials is investigated in this report. Also attention is paid to the options to reduce the environmental effects of photovoltaic (PV) systems by changing processes and/or by redesign of the PV systems. Two systems are studied: solar cells, integrated in pitched roofs, and solar cells on the ground in solar cell arrays. The study is focused on the use of bulk materials in the solar module, the cables and the supporting construction. After brief introductions on the environment-oriented LCA method, the standard construction of PV modules and the principles of solar cells, an overview is given of the present and future material input for the above-mentioned PV-systems. Next, attention is paid to the energy consumption and the most important emissions of the production of the bulk materials. Based on these data three environmental effect scores of the PV systems are calculated and analyzed: the energy consumption, the greenhouse effect or global warming equivalent, and the acidifying effect or acidification equivalent. Also a fourth effect, for which the so-called environmental indicator human toxicity is defined, is described. By means of this indicator the hazardous effects for the public health can be indicated. The sum of the four indicators is a measure for the environmental profile of the roof PV-system and the ground PV-array system. Recommendations are given by which the systems and their environmental profiles can be improved. 29 figs., 50 tabs., 5 appendices, refs

  5. Annual and solar cycle dependencies of SuperDARN scatter occurrence and ionospheric convection measurements

    Science.gov (United States)

    Lester, M.; Imber, S. M.; Milan, S. E.

    2012-12-01

    The Super Dual Auroral Radar Network (SuperDARN) provides a long term data series which enables investigations of the coupled magnetosphere-ionosphere system. The network has been in existence essentially since 1995 when 6 radars were operational in the northern hemisphere and 4 in the southern hemisphere. We have been involved in an analysis of the data over the lifetime of the project and present results here from two key studies. In the first study we calculated the amount of ionospheric scatter which is observed by the radars and see clear annual and solar cycle variations in both hemispheres. The recent extended solar minimum also produces a significant effect in the scatter occurrence. In the second study, we have determined the latitude of the Heppner-Maynard Boundary (HMB) using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection for the interval 1996 - 2011. We find that the average latitude of the HMB at midnight is 61° magnetic latitude during solar the maximum of 2003, but it moves significantly poleward during solar minimum, averaging 64° latitude during 1996, and 68° during 2010. This poleward motion is observed despite the increasing number of low latitude radars built in recent years as part of the StormDARN network, and so is not an artefact of data coverage. We believe that the recent extreme solar minimum led to an average HMB location that was further poleward than the previous solar cycle. We have also calculated the Open-Closed field line Boundary (OCB) from auroral images during a subset of the interval (2000 - 2002) and find that on average the HMB is located equatorward of the OCB by ~7o. We suggest that the HMB may be a useful proxy for the OCB when global images are not available. The work presented in this paper has been undertaken as part of the European Cluster Assimilation Technology (ECLAT) project which is funded through the EU FP7 programme and involves groups at

  6. Did Geomagnetic Activity Challenge Electric Power Reliability During Solar Cycle 23? Evidence from the PJM Regional Transmission Organization in North America

    Science.gov (United States)

    Forbes, Kevin F.; Cyr, Chris St

    2012-01-01

    During solar cycle 22, a very intense geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in Canada. This event clearly demonstrated that geomagnetic storms have the potential to lead to blackouts. This paper addresses whether geomagnetic activity challenged power system reliability during solar cycle 23. Operations by PJM Interconnection, LLC (hereafter PJM), a regional transmission organization in North America, are examined over the period 1 April 2002 through 30 April 2004. During this time PJM coordinated the movement of wholesale electricity in all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia in the United States. We examine the relationship between a proxy of geomagnetically induced currents (GICs) and a metric of challenged reliability. In this study, GICs are proxied using magnetometer data from a geomagnetic observatory located just outside the PJM control area. The metric of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive power conditions. The statistical methods employed make it possible to disentangle the effects of GICs on power system operations from purely terrestrial factors. The results of the analysis indicate that geomagnetic activity can significantly increase the likelihood that the system operator will dispatch generating units based on system stability considerations rather than economic merit.

  7. Variation of the Solar Microwave Spectrum in the Last Half Century

    Energy Technology Data Exchange (ETDEWEB)

    Shimojo, Masumi; Saito, Masao [National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), Mitaka, Tokyo, 181-8588 (Japan); Iwai, Kazumasa [Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Chikusa-ku, Nagoya, 464-8601 (Japan); Asai, Ayumi [Kwasan and Hida Observatories, Kyoto University, Sakyo-ku, Kyoto, 606-8502 (Japan); Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki, 310-8512 (Japan); Minamidani, Tetsuhiro, E-mail: masumi.shimojo@nao.ac.jp [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University of Advanced Studies), Mitaka, Tokyo, 181-8588 (Japan)

    2017-10-10

    The total solar fluxes at 1, 2, 3.75, and 9.4 GHz were observed continuously from 1957 to 1994 at Toyokawa, Japan, and from 1994 until now at Nobeyama, Japan, with the current Nobeyama Radio Polarimeters. We examined the multi-frequency and long-term data sets, and found that not only the microwave solar flux but also its monthly standard deviation indicate the long-term variation of solar activity. Furthermore, we found that the microwave spectra at the solar minima of Cycles 20–24 agree with each other. These results show that the average atmospheric structure above the upper chromosphere in the quiet-Sun has not varied for half a century, and suggest that the energy input for atmospheric heating from the sub-photosphere to the corona have not changed in the quiet-Sun despite significantly differing strengths of magnetic activity in the last five solar cycles.

  8. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Calculated optimism at 'PV Cycle'. EU does not approve of the solar industry's voluntary recycling programme; Zweckoptimismus bei 'PV Cycle'. Die Solarindustrie ist mit ihrem freiwilligen Recyclingprogram bei der EU gescheitert

    Energy Technology Data Exchange (ETDEWEB)

    Beneking, Andreas

    2011-12-15

    'PV Cycle' was an initiative of the solar industry for voluntary recycling of used solar modules. Now that the EU decided to integrate solar modules in the EU electronic scrap regulation, the organisation will serve to implement EU policy. The economic results for manufacturers will depend on political decisions.

  10. The most intense current sheets in the high-speed solar wind near 1 AU

    Science.gov (United States)

    Podesta, John J.

    2017-03-01

    Electric currents in the solar wind plasma are investigated using 92 ms fluxgate magnetometer data acquired in a high-speed stream near 1 AU. The minimum resolvable scale is roughly 0.18 s in the spacecraft frame or, using Taylor's "frozen turbulence" approximation, one proton inertial length di in the plasma frame. A new way of identifying current sheets is developed that utilizes a proxy for the current density J obtained from the derivatives of the three orthogonal components of the observed magnetic field B. The most intense currents are identified as 5σ events, where σ is the standard deviation of the current density. The observed 5σ events are characterized by an average scale size of approximately 3di along the flow direction of the solar wind, a median separation of around 50di or 100di along the flow direction of the solar wind, and a peak current density on the order of 0.5 pA/cm2. The associated current-carrying structures are consistent with current sheets; however, the planar geometry of these structures cannot be confirmed using single-point, single-spacecraft measurements. If Taylor's hypothesis continues to hold for the energetically dominant fluctuations at kinetic scales 1current-carrying structures in high-speed wind occur at electron scales, although the peak current densities at kinetic and electron scales are predicted to be nearly the same as those found in this study.

  11. Ring current energy injection rate and solar wind-magnetosphere energy coupling

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.; Akasofu, S.-I.

    1982-01-01

    The purpose of this paper is to (i) formulate the ring current injection rate Usub(R) in terms of phisub(CT) (cross-tail potential drop) by assuming that the ring current formation is a direct consequence of an enhanced convection, (ii) examine the relationship between the injection rate Usub(R) and the power transferred from the solar wind to the magnetosphere and (iii) demonstrate that an enhanced convection indeed leads to the formation of the ring current. (author)

  12. Distinct Pattern of Solar Modulation of Galactic Cosmic Rays above a High Geomagnetic Cutoff Rigidity

    Science.gov (United States)

    Mangeard, Pierre-Simon; Clem, John; Evenson, Paul; Pyle, Roger; Mitthumsiri, Warit; Ruffolo, David; Sáiz, Alejandro; Nutaro, Tanin

    2018-05-01

    Solar modulation refers to Galactic cosmic-ray variations with the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle and is relevant to the space radiation environment and effects on Earth’s atmosphere. Its complicated dependence on solar and heliospheric conditions is only roughly understood and has been empirically modeled in terms of a single modulation parameter. Most analyses of solar modulation use neutron monitor (NM) data from locations with relatively low geomagnetic cutoff rigidity, i.e., the threshold for cosmic rays to penetrate Earth’s magnetic field. The Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, has the world’s highest cutoff rigidity (≈17 GV) where observations span a complete solar modulation cycle (since late 2007). The pattern of solar modulation at Doi Inthanon during 2011–2014 was qualitatively very different from that at a low geomagnetic cutoff and is not well described by the same modulation parameter. At other times, NM count rates from Doi Inthanon and McMurdo, Antarctica (cutoff ∼1 GV), were linearly correlated and confirm the observation from latitude surveys in the previous solar cycle that the slope of the correlation changes with solar magnetic polarity. Low solar magnetic tilt angles (magnetic field, which is consistent with an increase in diffusion at high rigidity short-circuiting the effects of drifts and the heliospheric current sheet.

  13. Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.; Baumgarten, G.

    2009-11-01

    Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.

  14. Erratum to "Solar Sources and Geospace Consequences of Interplanetary Magnetic Clouds Observed During Solar Cycle 23-Paper 1" [J. Atmos. Sol.-Terr. Phys. 70(2-4) (2008) 245-253

    Science.gov (United States)

    Gopalswamy, N.; Akiyama, S.; Yashiro, S.; Michalek, G.; Lepping, R. P.

    2009-01-01

    One of the figures (Fig. 4) in "Solar sources and geospace consequences of interplanetary magnetic Clouds observed during solar cycle 23 -- Paper 1" by Gopalswamy et al. (2008, JASTP, Vol. 70, Issues 2-4, February 2008, pp. 245-253) is incorrect because of a software error in t he routine that was used to make the plot. The source positions of various magnetic cloud (MC) types are therefore not plotted correctly.

  15. Recurring coronal holes and their rotation rates during the solar cycles 22-24

    Science.gov (United States)

    Prabhu, K.; Ravindra, B.; Hegde, Manjunath; Doddamani, Vijayakumar H.

    2018-05-01

    Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between ± 20° latitudes. In this period, more number of recurring coronal holes appeared in and around 100° and 200° Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area <10^{21} cm2 appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between ± 60° latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.

  16. SOLAR CYCLE VARIABILITY AND SURFACE DIFFERENTIAL ROTATION FROM Ca II K-LINE TIME SERIES DATA

    Energy Technology Data Exchange (ETDEWEB)

    Scargle, Jeffrey D.; Worden, Simon P. [NASA Ames Research Center, Moffett Field, CA, 94035 (United States); Keil, Stephen L. [National Solar Observatory, P.O. Box 57, Sunspot, NM 88349 (United States)

    2013-07-01

    Analysis of over 36 yr of time series data from the NSO/AFRL/Sac Peak K-line monitoring program elucidates 5 components of the variation of the 7 measured chromospheric parameters: (a) the solar cycle (period {approx} 11 yr), (b) quasi-periodic variations (periods {approx} 100 days), (c) a broadband stochastic process (wide range of periods), (d) rotational modulation, and (e) random observational errors, independent of (a)-(d). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these parameters. Time-frequency analysis illuminates periodic and quasi-periodic signals, details of frequency modulation due to differential rotation, and in particular elucidates the rather complex harmonic structure (a) and (b) at timescales in the range {approx}0.1-10 yr. These results using only full-disk data suggest that similar analyses will be useful for detecting and characterizing differential rotation in stars from stellar light curves such as those being produced by NASA's Kepler observatory. Component (c) consists of variations over a range of timescales, in the manner of a 1/f random process with a power-law slope index that varies in a systematic way. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the more rapid variations of the stochastic process (c). Component (d) characterizes differential rotation of the active regions. Component (e) is of course not characteristic of solar variability, but the fact that the observational errors are quite small greatly facilitates the analysis of the other components. The data analyzed in this paper can be found at the National Solar Observatory Web site http://nsosp.nso.edu/cak{sub m}on/, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  17. Construction of a century solar chromosphere data set for solar activity related research

    Science.gov (United States)

    Lin, Ganghua; Wang, Xiao Fan; Yang, Xiao; Liu, Suo; Zhang, Mei; Wang, Haimin; Liu, Chang; Xu, Yan; Tlatov, Andrey; Demidov, Mihail; Borovik, Aleksandr; Golovko, Aleksey

    2017-06-01

    This article introduces our ongoing project "Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research". Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a time span of more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant signs of progress are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  18. Construction of a century solar chromosphere data set for solar activity related research

    Directory of Open Access Journals (Sweden)

    Ganghua Lin

    2017-06-01

    Full Text Available This article introduces our ongoing project “Construction of a Century Solar Chromosphere Data Set for Solar Activity Related Research”. Solar activities are the major sources of space weather that affects human lives. Some of the serious space weather consequences, for instance, include interruption of space communication and navigation, compromising the safety of astronauts and satellites, and damaging power grids. Therefore, the solar activity research has both scientific and social impacts. The major database is built up from digitized and standardized film data obtained by several observatories around the world and covers a timespan more than 100 years. After careful calibration, we will develop feature extraction and data mining tools and provide them together with the comprehensive database for the astronomical community. Our final goal is to address several physical issues: filament behavior in solar cycles, abnormal behavior of solar cycle 24, large-scale solar eruptions, and sympathetic remote brightenings. Significant progresses are expected in data mining algorithms and software development, which will benefit the scientific analysis and eventually advance our understanding of solar cycles.

  19. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  20. Modeling the small-scale dish-mounted solar thermal Brayton cycle

    Science.gov (United States)

    Le Roux, Willem G.; Meyer, Josua P.

    2016-05-01

    The small-scale dish-mounted solar thermal Brayton cycle (STBC) makes use of a sun-tracking dish reflector, solar receiver, recuperator and micro-turbine to generate power in the range of 1-20 kW. The modeling of such a system, using a turbocharger as micro-turbine, is required so that optimisation and further development of an experimental setup can be done. As a validation, an analytical model of the small-scale STBC in Matlab, where the net power output is determined from an exergy analysis, is compared with Flownex, an integrated systems CFD code. A 4.8 m diameter parabolic dish with open-cavity tubular receiver and plate-type counterflow recuperator is considered, based on previous work. A dish optical error of 10 mrad, a tracking error of 1° and a receiver aperture area of 0.25 m × 0.25 m are considered. Since the recuperator operates at a very high average temperature, the recuperator is modeled using an updated ɛ-NTU method which takes heat loss to the environment into consideration. Compressor and turbine maps from standard off-the-shelf Garrett turbochargers are used. The results show that for the calculation of the steady-state temperatures and pressures, there is good comparison between the Matlab and Flownex results (within 8%) except for the recuperator outlet temperature, which is due to the use of different ɛ-NTU methods. With the use of Matlab and Flownex, it is shown that the small-scale open STBC with an existing off-the-shelf turbocharger could generate a positive net power output with solar-to-mechanical efficiency of up to 12%, with much room for improvement.

  1. Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL

    DEFF Research Database (Denmark)

    Luthra, Sunil; Govindan, Kannan; Kharb, Ravinder K.

    2016-01-01

    Determining solar power initiatives and developments for a country as large as India is difficult due to the involvement of different enablers. The decisions of these enablers will influence the formulation of strategies to encourage solar power development in India. The present research work...... critically analyzes Indian solar power developments to recognize and to evaluate key enablers that will encourage greater usage in Indias current scenario. A literature review that explores the Indian solar power sector is included, with a focus on need potential, and an examination of the key enablers....... This work identifies sixteen solar power enablers based on relevant literature and experts inputs. To evaluate and to categorize the recognized solar power development key enablers, a fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) based methodology is utilized. The fuzzy DEMATEL approach...

  2. Semi-annual Sq-variation in solar activity cycle

    Science.gov (United States)

    Pogrebnoy, V.; Malosiev, T.

    The peculiarities of semi-annual variation in solar activity cycle have been studied. The data from observatories having long observational series and located in different latitude zones were used. The following observatories were selected: Huancayo (magnetic equator), from 1922 to 1959; Apia (low latitudes), from 1912 to 1961; Moscow (middle latitudes), from 1947 to 1965. Based on the hourly values of H-components, the average monthly diurnal amplitudes (a difference between midday and midnight values), according to five international quiet days, were computed. Obtained results were compared with R (relative sunspot numbers) in the ranges of 0-30R, 40-100R, and 140-190R. It was shown, that the amplitude of semi-annual variation increases with R, from minimum to maximum values, on average by 45%. At equatorial Huancayo observatory, the semi-annual Sq(H)-variation appears especially clearly: its maximums take place at periods of equinoxes (March-April, September-October), and minimums -- at periods of solstices (June-July, December-January). At low (Apia observatory) and middle (Moscow observatory) latitudes, the character of semi-annual variation is somewhat different: it appears during the periods of equinoxes, but considerably less than at equator. Besides, with the growth of R, semi-annual variation appears against a background of annual variation, in the form of second peaks (maximum in June). At observatories located in low and middle latitudes, second peaks become more appreciable with an increase of R (March-April and September-October). During the periods of low solar activity, they are insignificant. This work has been carried out with the support from International Scientific and Technology Center (Project #KR-214).

  3. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...

  4. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    OpenAIRE

    Vanya Zhivkova

    2013-01-01

    Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  5. COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA

    Energy Technology Data Exchange (ETDEWEB)

    Arden, William M. [University of Southern Queensland, Toowoomba, Queensland (Australia); Norton, Aimee A.; Sun, Xudong; Zhao, Xuepu [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2016-05-20

    Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magnetic Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R {sub ⊙} provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R {sub ⊙} give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R {sub ⊙} respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.

  6. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Zhengqi Shi

    2017-12-01

    Full Text Available Commercial solar cells have a power conversion efficiency (PCE in the range of 10–22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5–3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed.

  7. CURRENT TRENDS IN THE USE OF SOLAR ENERGY

    Directory of Open Access Journals (Sweden)

    Vanya Zhivkova

    2013-06-01

    Full Text Available Solar energy represents the amount of solar radiation per unit time on unit area. Solar energy is used to obtain thermal energy through solar, and electrical energy through exist for solar energy: passive and active. The utilization of solar energy is essential for the development of human civilization.

  8. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  9. Long-period intensity pulsations in the solar corona during activity cycle 23

    Science.gov (United States)

    Auchère, F.; Bocchialini, K.; Solomon, J.; Tison, E.

    2014-03-01

    We report on the detection (10σ) of 917 events of long-period (3 to 16 h) intensity pulsations in the 19.5 nm passband of the SOHO Extreme ultraviolet Imaging Telescope. The data set spans from January 1997 to July 2010, i.e. the entire solar cycle 23 and the beginning of cycle 24. The events can last for up to six days and have relative amplitudes up to 100%. About half of the events (54%) are found to happen in active regions, and 50% of these have been visually associated with coronal loops. The remaining 46% are localized in the quiet Sun. We performed a comprehensive analysis of the possible instrumental artefacts and we conclude that the observed signal is of solar origin. We discuss several scenarios that could explain the main characteristics of the active region events. The long periods and the amplitudes observed rule out any explanation in terms of magnetohydrodynamic waves. Thermal non-equilibrium could produce the right periods, but it fails to explain all the observed properties of coronal loops and the spatial coherence of the events. We propose that moderate temporal variations of the heating term in the energy equation, so as to avoid a thermal non-equilibrium state, could be sufficient to explain those long-period intensity pulsations. The large number of detections suggests that these pulsations are common in active regions. This would imply that the measurement of their properties could provide new constraints on the heating mechanisms of coronal loops. Movies are available in electronic form at http://www.aanda.org

  10. Do polar faculae terminate or commence an extended cycle of solar activity?

    International Nuclear Information System (INIS)

    Bumba, V.

    1990-01-01

    From the local as well as from the global points of view, polar magnetic fields are formed from successively developed trailing polarity fields expelled from the main activity zone. Polar faculae observed during the 20th and the 21st cycles of activity fill in the areas covered by the most intense unipolar fields distributed in the convection network. These polar regions formed from magnetic fields of an old activity cycle are sharply separated from low-latitude magnetic fields and from fields developed by a new cycle of activity. The polarity distribution in polar faculae seems to follow from unipolarity of their magnetic fields - the prevailing polarity becomes the main leading polarity. The greatest part of the main activity zone, the most intense faculae shifting equatorwards are connected with the zone of the prevailing leading polarity magnetic fields. Some of these faculae - the weak and inhomogeneously distributed ones, bordering the main faculae butterflies polewards - are related again to the trailing polarity fields shifting polewards. The main characteristic of the latitudinal distribution of solar faculae is the existence of their two latitudinal types: the polar faculae shifting polewards are related to the trailing polarity fields of the old cycle, the faculae of the main activity zone shifting equatorwards are related mainly (from the global point of view) to the leading polarity fields, and their activity ends several years earlier than that of the polar ones. The polar faculae with their magnetic fields represent the last phase of the magnetic activity cycle lasting 15-17 years. (author). 6 figs., 21 refs

  11. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  12. Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator

    International Nuclear Information System (INIS)

    Le Roux, W.G.; Bello-Ochende, T.; Meyer, J.P.

    2011-01-01

    The small-scale open and direct solar thermal Brayton cycle with recuperator has several advantages, including low cost, low operation and maintenance costs and it is highly recommended. The main disadvantages of this cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the net power output of such a system. The irreversibilities of the solar thermal Brayton cycle are mainly due to heat transfer across a finite temperature difference and fluid friction. In this paper, thermodynamic optimisation is applied to concentrate on these disadvantages in order to optimise the receiver and recuperator and to maximise the net power output of the system at various steady-state conditions, limited to various constraints. The effects of wind, receiver inclination, rim angle, atmospheric temperature and pressure, recuperator height, solar irradiance and concentration ratio on the optimum geometries and performance were investigated. The dynamic trajectory optimisation method was applied. Operating points of a standard micro-turbine operating at its highest compressor efficiency and a parabolic dish concentrator diameter of 16 m were considered. The optimum geometries, minimum irreversibility rates and maximum receiver surface temperatures of the optimised systems are shown. For an environment with specific conditions and constraints, there exists an optimum receiver and recuperator geometry so that the system produces maximum net power output. -- Highlights: → Optimum geometries exist such that the system produces maximum net power output. → Optimum operating conditions are shown. → Minimum irreversibility rates and minimum entropy generation rates are shown. → Net power output was described in terms of total entropy generation rate. → Effects such as wind, recuperator height and irradiance were investigated.

  13. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  14. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Larrain, Diego; Favrat, Daniel

    2001-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The wast...

  15. Small Hybrid Solar Power System

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Larrain, Diego; Allani, Yassine

    2003-01-01

    This paper introduces a novel of mini-hybrid solar power plant integrating a field of solar concentrators, two superposed Organic Rankine Cycles (ORC) and a (bio)Diesel engine. Turbines for the organic Rankine Cycles are hermetic scroll expander-generators. Sun tracking solar collectors are composed of rows of flat mirror bands (CEP) arranged in a plane, which focus the solar energy onto a collector tube similar to those used in SEGS plant in California. The waste heat from both...

  16. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil

    Science.gov (United States)

    Frigo, Everton; Antonelli, Francesco; da Silva, Djeniffer S. S.; Lima, Pedro C. M.; Pacca, Igor I. G.; Bageston, José V.

    2018-04-01

    Quasi-periodic variations in solar activity and galactic cosmic rays (GCRs) on decadal and bidecadal timescales have been suggested as a climate forcing mechanism for many regions on Earth. One of these regions is southern Brazil, where the lowest values during the last century were observed for the total geomagnetic field intensity at the Earth's surface. These low values are due to the passage of the center of the South Atlantic Magnetic Anomaly (SAMA), which crosses the Brazilian territory from east to west following a latitude of ˜ 26°. In areas with low geomagnetic intensity, such as the SAMA, the incidence of GCRs is increased. Consequently, possible climatic effects related to the GCRs tend to be maximized in this region. In this work, we investigate the relationship between the ˜ 11-year and ˜ 22-year cycles that are related to solar activity and GCRs and the annual average temperature recorded between 1936 and 2014 at two weather stations, both located near a latitude of 26° S but at different longitudes. The first of these stations (Torres - TOR) is located in the coastal region, and the other (Iraí - IRA) is located in the interior, around 450 km from the Atlantic Ocean. Sunspot data and the solar modulation potential for cosmic rays were used as proxies for the solar activity and the GCRs, respectively. Our investigation of the influence of decadal and bidecadal cycles in temperature data was carried out using the wavelet transform coherence (WTC) spectrum. The results indicate that periodicities of 11 years may have continuously modulated the climate at TOR via a nonlinear mechanism, while at IRA, the effects of this 11-year modulation period were intermittent. Four temperature maxima, separated by around 20 years, were detected in the same years at both weather stations. These temperature maxima are almost coincident with the maxima of the odd solar cycles. Furthermore, these maxima occur after transitions from even to odd solar cycles, that is

  17. Synoptic maps of solar wind parameters from in situ spacecraft observations

    Science.gov (United States)

    Gazis, P. R.

    1995-01-01

    Solar wind observations from the Interplanetary Monitoring Platform-8 (IMP-8) and Pioneer Venus Orbiter (PVO) spacecraft from 1982 until 1988 are combined to construct synoptic maps of solar wind parameters near 1 AU. Each map consists of 6 months of hourly averaged solar wind data, binned by heliographic latitude and Carrington longitude and projected back to the Sun. These maps show the structure and time evolution of solar wind streams near 1 AU in the heliographic latitudes of +/- 7.25 deg and provide and explicit picture of several phenomena, such as gradients, changes in the inclination of the heliospheric current sheet, and the relative positions of various structures in the inner heliosphere, that is difficult to obtain from single-spacecraft observations. The stream structure varied significantly during the last solar cycle. Between 1982 and early 1985, solar wind parameters did not depend strongly on heliographic latitude. During the last solar minimum, the solar wind developed significant latitudinal structure, and high-speed streams were excluded from the vicinity of the solar equator. The interplanetary magnetic field was strongly correlated with the coronal field, and the current sheet tended to coincide with the coronal neutral line. The solar wind speed showed the expected correlations with temperature, interplanetary magnetic field, and distance from the current sheet. The solar wind speed was anticorrelated with density, but the regions of highest density occurred east of the heliospheric current sheet and the regions of lowest solar wind speed. This is consistent with compression at the leading edge of high-speed streams.

  18. How unprecedented a solar minimum was it?

    Science.gov (United States)

    Russell, C T; Jian, L K; Luhmann, J G

    2013-05-01

    The end of the last solar cycle was at least 3 years late, and to date, the new solar cycle has seen mainly weaker activity since the onset of the rising phase toward the new solar maximum. The newspapers now even report when auroras are seen in Norway. This paper is an update of our review paper written during the deepest part of the last solar minimum [1]. We update the records of solar activity and its consequent effects on the interplanetary fields and solar wind density. The arrival of solar minimum allows us to use two techniques that predict sunspot maximum from readings obtained at solar minimum. It is clear that the Sun is still behaving strangely compared to the last few solar minima even though we are well beyond the minimum phase of the cycle 23-24 transition.

  19. Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle

    International Nuclear Information System (INIS)

    He, Ya-Ling; Mei, Dan-Hua; Tao, Wen-Quan; Yang, Wei-Wei; Liu, Huai-Liang

    2012-01-01

    Highlights: ► A parabolic trough solar power generation system with ORC is numerically simulated. ► The effects of key parameters on collector field and system performance are studied. ► Collector heat loss increases with small absorber and glass tube interlayer pressure. ► Heat collecting efficiency increases with initial increase of absorber HTO flow rate. ► Recommended thermal storage system volumes are different in year four typical days. -- Abstract: A model for a typical parabolic trough solar thermal power generation system with Organic Rankine Cycle (PT-SEGS–ORC) was built within the transient energy simulation package TRNSYS, which is formed by integrating several submodels for the trough collector system, the single-tank thermal storage system, the auxiliary power system and the heat-electricity conversion system. With this model, the effects of several key parameters, including the interlayer pressure between the absorber tube and the glass tube (p inter ), the flow rate of high temperature oil in the absorber tube (v), solar radiation intensity (I dn ) and incidence angle (θ), on the performance of the parabolic trough collector field based on the meteorological data of Xi’an city were examined. The study shows that the heat loss of the solar collector (q loss ) increases sharply with the increase in p inter at beginning and then reaches to an approximately constant value. The variation of heat collecting efficiency (η hc ) with v is quite similar to the variation of q loss with p inter . However, I dn and θ exhibit opposite effect on η hc . In addition, it is found that the optimal volume of the thermal storage system is sensitively dependent on the solar radiation intensity. The optimal volumes are 100, 150, 50, and 0 m 3 for spring equinox, summer solstice, autumnal equinox and winter solstice, respectively.

  20. Cycle for Science: An informal outreach program connecting K-12 students with renewable energy and physics through miniature 3D-printed, solar-powered bicycles

    Science.gov (United States)

    Woods-Robinson, R.; Case, E.

    2017-12-01

    Engaging communities with renewable energy is key to fighting climate change. Cycle for Science, an innovative STEM outreach organization, has reached more than 3,000 K-12 students across the United States by bringing early-career female scientists into classrooms to teach basic physics and solar energy engineering through hands-on, DIY science activities. We designed a fleet of miniature, 3D-printed, solar-powered bicycles called "Sol Cycles" to use as teaching tools. Traveling by bicycle, Cycle for Science has brought them to rural and urban communities across the U.S. in two major efforts so far: one traversing the country (2015), and one through central California (2017). The program involves (1) introducing the scientists and why they value science, (2) running a skit to demonstrate how electrons and photons interact inside the solar panel, (3) assembling the Sol Cycles, (4) taking students outdoors to test the effects of variables (e.g. light intensity) on the Sol Cycles' movement, (5) and debriefing about the importance of renewable energy. In addition to physics and solar energy, the lessons teach the scientific process, provide tactile engagement with science, and introduce a platform to engage students with climate change impacts. By cycling to classrooms, we provide positive examples of low-impact transportation and a unique avenue for discussing climate action. It was important that this program extend beyond the trips, so the lesson and Sol Cycle design are open source to encourage teachers and students to play, change and improve the design, as well as incorporate new exercises (e.g. could you power the bicycle by wind?). Additionally, it has been permanently added to the XRaise Lending Library at Cornell University, so teachers across the world can implement the lesson. By sharing our project at AGU, we aim to connect with other scientists, educators, and concerned citizens about how to continue to bring renewable energy lessons into classrooms.