WorldWideScience

Sample records for current small molecule

  1. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems

    Directory of Open Access Journals (Sweden)

    Daniel A. Dias

    2016-12-01

    Full Text Available Although significant advances have been made in recent years, the structural elucidation of small molecules continues to remain a challenging issue for metabolite profiling. Many metabolomic studies feature unknown compounds; sometimes even in the list of features identified as “statistically significant” in the study. Such metabolic “dark matter” means that much of the potential information collected by metabolomics studies is lost. Accurate structure elucidation allows researchers to identify these compounds. This in turn, facilitates downstream metabolite pathway analysis, and a better understanding of the underlying biology of the system under investigation. This review covers a range of methods for the structural elucidation of individual compounds, including those based on gas and liquid chromatography hyphenated to mass spectrometry, single and multi-dimensional nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry and includes discussion of data standardization. Future perspectives in structure elucidation are also discussed; with a focus on the potential development of instruments and techniques, in both nuclear magnetic resonance spectroscopy and mass spectrometry that, may help solve some of the current issues that are hampering the complete identification of metabolite structure and function.

  2. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    Science.gov (United States)

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  3. Small Molecule PET-Radiopharmaceuticals

    NARCIS (Netherlands)

    Elsinga, Philip H.; Dierckx, Rudi A. J. O.

    2014-01-01

    This review describes several aspects required for the development of small molecule PET-tracers. Design and selection criteria are important to consider before starting to develop novel PET-tracers. Principles and latest trends in C-11 and F-18-radiochemistry are summarized. In addition an update o

  4. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Small Molecule Fluoride Toxicity Agonists

    Science.gov (United States)

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  6. Small Molecules Target Carcinogenic Proteins

    Science.gov (United States)

    Gradinaru, Claudiu

    2009-03-01

    An ingenious cellular mechanism of effecting protein localization is prenylation: the covalent attachment of a hydrophobic prenyl group to a protein that facilitates protein association with cell membranes. Fluorescence microscopy was used to investigate whether the oncogenic Stat3 protein can undergo artificial prenylation via high-affinity prenylated small-molecule binding agents and thus be rendered inactive by localization at the plasma membrane instead of nucleus. The measurements were performed on a home-built instrument capable of recording simultaneously several optical parameters (lifetime, polarization, color, etc) and with single-molecule sensitivity. A pH-invariant fluorescein derivative with double moiety was designed to bridge a prenyl group and a small peptide that binds Stat3 with high affinity. Confocal fluorescence images show effective localization of the ligand to the membrane of liposomes. Stat3 predominantly localizes at the membrane only in the presence of the prenylated ligand. Single-molecule FRET (fluorescence resonance energy transfer) between donor-labeled prenylated agents and acceptor-labeled, surface tethered Stat3 protein is used to determine the dynamic heterogeneity of the protein-ligand interaction and follow individual binding-unbinding events in real time. The data indicates that molecules can effect protein localization, validating a therapeutic design that influences protein activity via induced localization.

  7. Dark current reduction of small molecule organic photodetectors by controlling gap states of molybdenum oxide buffer layers

    Science.gov (United States)

    Kim, Seong Heon; Heo, Sung; Yun, Dong-Jin; Satoh, Ryu-ichi; Park, Gyeongsu; Kim, Kyu-Sik

    2016-09-01

    The gap states of the molybdenum-oxide (MoO x ) hole-extraction layer (HEL) in an organic photodetector (OPD) device, which originate from oxygen-vacancy defects, are controlled by appropriate plasma treatments on the MoO x layer. The density of MoO x gap states, investigated using X-ray photoelectron spectroscopy (XPS), is enhanced and depressed with Ar- and O2-plasma treatments, respectively. The dark current of an OPD with a MoO x HEL is considerably reduced by controlling the MoO x gap states using the plasma-treatment method. The mechanism of dark-current reduction may be interpreted by reduced gap states and by a suitable energy level bending and alignment.

  8. Device characterization and optimization of small molecule organic solar cells assisted by modelling simulation of the current-voltage characteristics.

    Science.gov (United States)

    Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng

    2015-07-15

    In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.

  9. Small Molecule Organic Optoelectronic Devices

    Science.gov (United States)

    Bakken, Nathan

    Organic optoelectronics include a class of devices synthesized from carbon containing 'small molecule' thin films without long range order crystalline or polymer structure. Novel properties such as low modulus and flexibility as well as excellent device performance such as photon emission approaching 100% internal quantum efficiency have accelerated research in this area substantially. While optoelectronic organic light emitting devices have already realized commercial application, challenges to obtain extended lifetime for the high energy visible spectrum and the ability to reproduce natural white light with a simple architecture have limited the value of this technology for some display and lighting applications. In this research, novel materials discovered from a systematic analysis of empirical device data are shown to produce high quality white light through combination of monomer and excimer emission from a single molecule: platinum(II) bis(methyl-imidazolyl)toluene chloride (Pt-17). Illumination quality achieved Commission Internationale de L'Eclairage (CIE) chromaticity coordinates (x = 0.31, y = 0.38) and color rendering index (CRI) > 75. Further optimization of a device containing Pt-17 resulted in a maximum forward viewing power efficiency of 37.8 lm/W on a plain glass substrate. In addition, accelerated aging tests suggest high energy blue emission from a halogen-free cyclometalated platinum complex could demonstrate degradation rates comparable to known stable emitters. Finally, a buckling based metrology is applied to characterize the mechanical properties of small molecule organic thin films towards understanding the deposition kinetics responsible for an elastic modulus that is both temperature and thickness dependent. These results could contribute to the viability of organic electronic technology in potentially flexible display and lighting applications. The results also provide insight to organic film growth kinetics responsible for optical

  10. Small Molecules-Big Data.

    Science.gov (United States)

    Császár, Attila G; Furtenbacher, Tibor; Árendás, Péter

    2016-11-17

    Quantum mechanics builds large-scale graphs (networks): the vertices are the discrete energy levels the quantum system possesses, and the edges are the (quantum-mechanically allowed) transitions. Parts of the complete quantum mechanical networks can be probed experimentally via high-resolution, energy-resolved spectroscopic techniques. The complete rovibronic line list information for a given molecule can only be obtained through sophisticated quantum-chemical computations. Experiments as well as computations yield what we call spectroscopic networks (SN). First-principles SNs of even small, three to five atomic molecules can be huge, qualifying for the big data description. Besides helping to interpret high-resolution spectra, the network-theoretical view offers several ideas for improving the accuracy and robustness of the increasingly important information systems containing line-by-line spectroscopic data. For example, the smallest number of measurements necessary to perform to obtain the complete list of energy levels is given by the minimum-weight spanning tree of the SN and network clustering studies may call attention to "weakest links" of a spectroscopic database. A present-day application of spectroscopic networks is within the MARVEL (Measured Active Rotational-Vibrational Energy Levels) approach, whereby the transitions information on a measured SN is turned into experimental energy levels via a weighted linear least-squares refinement. MARVEL has been used successfully for 15 molecules and allowed to validate most of the transitions measured and come up with energy levels with well-defined and realistic uncertainties. Accurate knowledge of the energy levels with computed transition intensities allows the realistic prediction of spectra under many different circumstances, e.g., for widely different temperatures. Detailed knowledge of the energy level structure of a molecule coming from a MARVEL analysis is important for a considerable number of modeling

  11. Small Molecule Subgraph Detector (SMSD toolkit

    Directory of Open Access Journals (Sweden)

    Rahman Syed

    2009-08-01

    Full Text Available Abstract Background Finding one small molecule (query in a large target library is a challenging task in computational chemistry. Although several heuristic approaches are available using fragment-based chemical similarity searches, they fail to identify exact atom-bond equivalence between the query and target molecules and thus cannot be applied to complex chemical similarity searches, such as searching a complete or partial metabolic pathway. In this paper we present a new Maximum Common Subgraph (MCS tool: SMSD (Small Molecule Subgraph Detector to overcome the issues with current heuristic approaches to small molecule similarity searches. The MCS search implemented in SMSD incorporates chemical knowledge (atom type match with bond sensitive and insensitive information while searching molecular similarity. We also propose a novel method by which solutions obtained by each MCS run can be ranked using chemical filters such as stereochemistry, bond energy, etc. Results In order to benchmark and test the tool, we performed a 50,000 pair-wise comparison between KEGG ligands and PDB HET Group atoms. In both cases the SMSD was shown to be more efficient than the widely used MCS module implemented in the Chemistry Development Kit (CDK in generating MCS solutions from our test cases. Conclusion Presently this tool can be applied to various areas of bioinformatics and chemo-informatics for finding exhaustive MCS matches. For example, it can be used to analyse metabolic networks by mapping the atoms between reactants and products involved in reactions. It can also be used to detect the MCS/substructure searches in small molecules reported by metabolome experiments, as well as in the screening of drug-like compounds with similar substructures. Thus, we present a robust tool that can be used for multiple applications, including the discovery of new drug molecules. This tool is freely available on http://www.ebi.ac.uk/thornton-srv/software/SMSD/

  12. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  13. Small Molecules in the Cone Snail Arsenal.

    Science.gov (United States)

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom.

  14. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  15. Small molecules for big tasks

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ One of the most important achievements in the post-genome era is discovery of microRNAs (miRNAs), which widely exist from simple-genome organisms such as viruses and bacteria to complexgenome organisms such as plants and animals.miRNAs are single-stranded non-coding RNAs of 18-25 nucleotides in length, which are generated from larger precursors that are transcribed from noncoding genes.As a new type of regulatory molecules, miRNAs present unique features in regulating gene and its products, including rapidly turning off protein production, reversibly, and compartmentalized regulating gene expression.

  16. Small molecule phagocytosis inhibitors for immune cytopenias.

    Science.gov (United States)

    Neschadim, Anton; Kotra, Lakshmi P; Branch, Donald R

    2016-08-01

    Immune cytopenias are conditions characterized by low blood cell counts, such as platelets in immune thrombocytopenia (ITP) and red blood cells in autoimmune hemolytic anemia (AIHA). Chronic ITP affects approximately 4 in 100,000 adults annually while AIHA is much less common. Extravascular phagocytosis and massive destruction of autoantibody-opsonized blood cells by macrophages in the spleen and liver are the hallmark of these conditions. Current treatment modalities for ITP and AIHA include the first-line use of corticosteroids; whereas, IVIg shows efficacy in ITP but not AIHA. One main mechanism of action by which IVIg treatment leads to the reduction in platelet destruction rates in ITP is thought to involve Fcγ receptor (FcγR) blockade, ultimately leading to the inhibition of extravascular platelet phagocytosis. IVIg, which is manufactured from the human plasma of thousands of donors, is a limited resource, and alternative treatments, particularly those based on bioavailable small molecules, are needed. In this review, we overview the pathophysiology of ITP, the role of Fcγ receptors, and the mechanisms of action of IVIg in treating ITP, and outline the efforts and progress towards developing novel, first-in-class inhibitors of phagocytosis as synthetic, small molecule substitutes for IVIg in ITP and other conditions where the pathobiology of the disease involves phagocytosis.

  17. Small-Molecule Carbohydrate-Based Immunostimulants.

    Science.gov (United States)

    Marzabadi, Cecilia H; Franck, Richard W

    2017-02-03

    In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.

  18. Novel Small-Molecule Antibacterial Agents

    Science.gov (United States)

    2014-07-01

    of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Novel Small-Molecule Antibacterial Agents...Release; Distribution Unlimited Novel Small-Molecule Antibacterial Agents The views, opinions and/or findings contained in this report are those of...half life of ~31 days. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or published that acknowledge ARO

  19. A Prospective Method to Guide Small Molecule Drug Design

    Science.gov (United States)

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  20. Chapter 3: Small molecules and disease.

    Directory of Open Access Journals (Sweden)

    David S Wishart

    Full Text Available "Big" molecules such as proteins and genes still continue to capture the imagination of most biologists, biochemists and bioinformaticians. "Small" molecules, on the other hand, are the molecules that most biologists, biochemists and bioinformaticians prefer to ignore. However, it is becoming increasingly apparent that small molecules such as amino acids, lipids and sugars play a far more important role in all aspects of disease etiology and disease treatment than we realized. This particular chapter focuses on an emerging field of bioinformatics called "chemical bioinformatics"--a discipline that has evolved to help address the blended chemical and molecular biological needs of toxicogenomics, pharmacogenomics, metabolomics and systems biology. In the following pages we will cover several topics related to chemical bioinformatics. First, a brief overview of some of the most important or useful chemical bioinformatic resources will be given. Second, a more detailed overview will be given on those particular resources that allow researchers to connect small molecules to diseases. This section will focus on describing a number of recently developed databases or knowledgebases that explicitly relate small molecules--either as the treatment, symptom or cause--to disease. Finally a short discussion will be provided on newly emerging software tools that exploit these databases as a means to discover new biomarkers or even new treatments for disease.

  1. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  2. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    -molecule allosteric inhibitor trametinib in 2013, the progress of more than 10 other allosteric inhibitors in clinical trials, and the emergence of a pipeline of highly selective and potent preclinical molecules, have been reported in the past decade. In this article, we present the current knowledge on allosteric...... inhibition in terms of conception, classification, potential advantages, and summarized debatable topics in the field. Recent progress and allosteric inhibitors that were identified in the past three years are highlighted in this paper....

  3. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  4. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.

    2012-10-23

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  5. Fluorescence Polarization Assays in Small Molecule Screening

    Science.gov (United States)

    Lea, Wendy A.; Simeonov, Anton

    2011-01-01

    Importance of the field Fluorescence polarization (FP) is a homogeneous method that allows rapid and quantitative analysis of diverse molecular interactions and enzyme activities. This technique has been widely utilized in clinical and biomedical settings, including the diagnosis of certain diseases and monitoring therapeutic drug levels in body fluids. Recent developments in the field has been symbolized by the facile adoption of FP in high-throughput screening (HTS) and small molecule drug discovery of an increasing range of target classes. Areas covered in this review The article provides a brief overview on the theoretical foundation of FP, followed by updates on recent advancements in its application for various drug target classes, including G-protein coupled receptors (GPCRs), enzymes and protein-protein interactions (PPIs). The strengths and weaknesses of this method, practical considerations in assay design, novel applications, and future directions are also discussed. What the reader will gain The reader will be informed of the most recent advancements and future directions of FP application to small molecule screening. Take home message In addition to its continued utilization in high-throughput screening, FP has expanded into new disease and target areas and has been marked by increased use of labeled small molecule ligands for receptor binding studies. PMID:22328899

  6. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution deposit

  7. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution deposit

  8. Evaluating enzymatic synthesis of small molecule drugs.

    Science.gov (United States)

    Moura, Matthew; Finkle, Justin; Stainbrook, Sarah; Greene, Jennifer; Broadbelt, Linda J; Tyo, Keith E J

    2016-01-01

    There have been many achievements in applying biochemical synthetic routes to the synthesis of commodity chemicals. However, most of these endeavors have focused on optimizing and increasing the yields of naturally existing pathways. We sought to evaluate the potential for biosynthesis beyond the limits of known biochemistry towards the production of small molecule drugs that do not exist in nature. Because of the potential for improved yields compared to total synthesis, and therefore lower manufacturing costs, we focused on drugs for diseases endemic to many resource poor regions, like tuberculosis and HIV. Using generalized biochemical reaction rules, we were able to design biochemical pathways for the production of eight small molecule drugs or drug precursors and identify potential enzyme-substrate pairs for nearly every predicted reaction. All pathways begin from native metabolites, abrogating the need for specialized precursors. The simulated pathways showed several trends with the sequential ordering of reactions as well as the types of chemistries used. For some compounds, the main obstacles to finding feasible biochemical pathways were the lack of appropriate, natural starting compounds and a low diversity of biochemical coupling reactions necessary to synthesize molecules with larger molecular size.

  9. Cancer Immunotherapy: Selected Targets and Small-Molecule Modulators.

    Science.gov (United States)

    Weinmann, Hilmar

    2016-03-04

    There is a significant amount of excitement in the scientific community around cancer immunotherapy, as this approach has renewed hope for many cancer patients owing to some recent successes in the clinic. Currently available immuno-oncology therapeutics under clinical development and on the market are mostly biologics (antibodies, proteins, engineered cells, and oncolytic viruses). However, modulation of the immune system with small molecules offers several advantages that may be complementary and potentially synergistic to the use of large biologicals. Therefore, the discovery and development of novel small-molecule modulators is a rapidly growing research area for medicinal chemists working in cancer immunotherapy. This review provides a brief introduction into recent trends related to selected targets and pathways for cancer immunotherapy and their small-molecule pharmacological modulators.

  10. Small azomethine molecules and their use in photovoltaic devices

    NARCIS (Netherlands)

    Dingemans, T.J.; Petrus, M.L.

    2015-01-01

    The present invention is in the field of a small azomethine molecule having photovoltaic characteristics, a method of synthesizing said molecule, use of said molecule in a photovoltaic device, a solar cell comprising said molecule, and a film comprising said molecule. The present molecules may find

  11. Small Molecule Library Synthesis Using Segmented Flow

    Directory of Open Access Journals (Sweden)

    Christina M. Thompson

    2011-11-01

    Full Text Available Flow chemistry has gained considerable recognition as a simple, efficient, and safe technology for the synthesis of many types of organic and inorganic molecules ranging in scope from large complex natural products to silicon nanoparticles. In this paper we describe a method that adapts flow chemistry to the synthesis of libraries of compounds using a fluorous immiscible solvent as a spacer between reactions. The methodology was validated in the synthesis of two small heterocycle containing libraries. The reactions were performed on a 0.2 mmol scale, enabling tens of milligrams of material to be generated in a single 200 mL reaction plug. The methodology allowed library synthesis in half the time of conventional microwave synthesis while maintaining similar yields. The ability to perform multiple, potentially unrelated reactions in a single run is ideal for making small quantities of many different compounds quickly and efficiently.

  12. Physiological roles of small RNA molecules.

    Science.gov (United States)

    Michaux, Charlotte; Verneuil, Nicolas; Hartke, Axel; Giard, Jean-Christophe

    2014-06-01

    Unlike proteins, RNA molecules have emerged lately as key players in regulation in bacteria. Most reviews hitherto focused on the experimental and/or in silico methods used to identify genes encoding small RNAs (sRNAs) or on the diverse mechanisms of these RNA regulators to modulate expression of their targets. However, less is known about their biological functions and their implications in various physiological responses. This review aims to compile what is known presently about the diverse roles of sRNA transcripts in the regulation of metabolic processes, in different growth conditions, in adaptation to stress and in microbial pathogenesis. Several recent studies revealed that sRNA molecules are implicated in carbon metabolism and transport, amino acid metabolism or metal sensing. Moreover, regulatory RNAs participate in cellular adaptation to environmental changes, e.g. through quorum sensing systems or development of biofilms, and analyses of several sRNAs under various physiological stresses and culture conditions have already been performed. In addition, recent experiments performed with Gram-positive and Gram-negative pathogens showed that regulatory RNAs play important roles in microbial virulence and during infection. The combined results show the diversity of regulation mechanisms and physiological processes in which sRNA molecules are key actors.

  13. Chemokines: Small Molecules Participate in Diabetes

    Directory of Open Access Journals (Sweden)

    S. Mostafa Hosseini-Zijoud

    2013-04-01

    Full Text Available Background: Chemokines are small protein molecules involved in cell signaling processes. They play a crucial role in many physiological and pathological processes. Chemokines are functionally classified into two categories; inflammatory/inducible and constitutive. Their biologic functional differences are the result of their receptors structural differences. Recently some studies were performed about the chemokines changes in diabetes. Inflammatory mechanisms have an important role in diabetes.Materials and Methods: In this review article we searched the keywords chemokines, diabetes, diabetes pathogenesis, and type 1 and 2 diabetes in Persian resources, PubMed and famous English-language websites through advanced search engines and found the newest studies about the role of chemokines in the pathogenesis of diabetes.Results: The results of the studies showed that diabetes and its disorders enhance the activation of immune cells and the expression of cytokines such as IL-1, IL-6, IL-8, IL-10, SDF-1, INF-γ, TGF-β, MCP-1, IP-10, TNF-α, and RANTES; most of them have impact on the pathogenesis of diabetes.Conclusion: Comparison and analysis of the results obtained from our research and the results of performed studies in the world and Iran shows that chemokines, like other protein molecules involved in the pathogenesis and etiology of diabetes, play a role in this process.

  14. Small Organic Molecules for Direct Aldol Reaction

    Institute of Scientific and Technical Information of China (English)

    TANG Zhuo; GONG Liu-Zhu; MI Ai-Qiao; JIANG Yao-Zhong

    2004-01-01

    Since the pioneering finding by List and Barbas Ⅲ and their coworkers that L-proline could work as a catalyst in the intermolecular direct aldol reaction, the concept of small organic molecules as catalysts has received great attention. However, new organic molecule which have better catalysis ability are reported scarcely.Our groups1 found L-Prolinamides 1 to be active catalysts for the direct aldol reaction of 4-nitrobenaldehyde with neat acetone at room temperature. The enantioselectivity increases as the amide N-H becomes more acidic and thus a better hydrogen bond donor. Introducing another proton donor, hydroxyl, in the catalyst lead to a further improvement in the catalytic enantioselectivity.The calculations reveal that the amide N-H and the terminal hydroxyl groups form hydrogen bonds with the benzaldehyde substrate. These hydrogen bonds reduce the activation energy and cause high enantioselectivity.Catalyst 2, prepared from L-proline and (1S, 2S)-diphenyl-2-aminoethanol, exhibits high enantioselectivities of up to 93% ee for aromatic aldehydes and up to >99% ee for aliphatic aldehydes. It is noteworthy that our results refuted the conventional wisdom that the carboxylic acid group of proline is a reqirement for high enatioselectivity and provide a powerful strategy in the molecular design of new organic catalyst because plentiful chiral resource containing multi-hydrogen bonding donor, for example, peptides.Very recently, we found that L-proline-based peptides 3-7 can catalyze the aldol reactions of hydroxyacetone with aldehydes 8 in aqueous media, to give 1,4-diols 9, the disfavored products with either aldolase or L-proline. Both peptides 5 and 6 give good results.The abilities of peptides 5 and 6 to catalyze the direct aldol reactions of hydroxyacetone with avariety of aldehydes were examined under optimal conditions. The results are shown in table. Highyields and entioselectivities of up to 96% ee were observed for aromatic aldehydes

  15. Database of Small Molecule Thermochemistry for Combustion

    KAUST Repository

    Goldsmith, C. Franklin

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems. © 2012 American Chemical Society.

  16. Small Molecule PET Tracers in Drug Discovery.

    Science.gov (United States)

    Donnelly, David J

    2017-09-01

    The process of discovering and developing a new pharmaceutical is a long, difficult, and risky process that requires numerous resources. Molecular imaging techniques such as PET have recently become a useful tool for making decisions along a drug candidate's development timeline. PET is a translational, noninvasive imaging technique that provides quantitative information about a potential drug candidate and its target at the molecular level. Using this technique provides decisional information to ensure that the right drug candidate is being chosen, for the right target, at the right dose within the right patient population. This review will focus on small molecule PET tracers and how they are used within the drug discovery process. PET provides key information about a drug candidate's pharmacokinetic and pharmacodynamic properties in both preclinical and clinical studies. PET is being used in all phases of the drug discovery and development process, and the goal of these studies are to accelerate the process in which drugs are developed. Copyright © 2017. Published by Elsevier Inc.

  17. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  18. Carbon nanotubes for delivery of small molecule drugs.

    Science.gov (United States)

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.

  19. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  20. Small Molecule PET Tracers for Transporter Imaging.

    Science.gov (United States)

    Kilbourn, Michael R

    2017-09-01

    As the field of PET has expanded and an ever-increasing number and variety of compounds have been radiolabeled as potential in vivo tracers of biochemistry, transporters have become important primary targets or facilitators of radiotracer uptake and distribution. A transporter can be the primary target through the development of a specific high-affinity radioligand: examples are the multiple high-affinity radioligands for the neuronal membrane neurotransmitter or vesicular transporters, used to image nerve terminals in the brain. The goal of a radiotracer might be to study the function of a transporter through the use of a radiolabeled substrate, such as the application of 3-O-[(11)C]methyl]glucose to measure rates of glucose transport through the blood-brain barrier. In many cases, transporters are required for radiotracer distributions, but the targeted biochemistries might be unrelated: an example is the use of 2-deoxy-2-[(18)F]FDG for imaging glucose metabolism, where initial passage of the radiotracer through cell membranes requires the action of specific glucose transporters. Finally, there are transporters such as p-glycoprotein that function to extrude small molecules from tissues, and can effectively work against successful uptake of radiotracers. The diversity of structures and functions of transporters, their importance in human health and disease, and their role in therapeutic drug disposition suggest that in vivo imaging of transporter location and function will continue to be a point of emphasis in PET radiopharmaceutical development. In this review, the variety of transporters and their importance for in vivo PET radiotracer development and application are discussed. Transporters have thus joined the other major protein targets such as G-protein coupled receptors, ligand-gated ion channels, enzymes, and aggregated proteins as of high interest for understanding human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. New small molecules targeting apoptosis and cell viability in osteosarcoma.

    Directory of Open Access Journals (Sweden)

    Doris Maugg

    Full Text Available Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS, the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2 nor primary human osteoblasts (hOB. In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS.

  2. Urea transporter proteins as targets for small-molecule diuretics

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O.; Verkman, Alan S.

    2016-01-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics. PMID:25488859

  3. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  4. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  5. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  6. Fluorescence Emission from Small Molecules Containing Amino Group

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    After the treatment of oxygen gas, the small molecules containing amine group could emit fluorescence. Oxidation was believed to play an important role in the formation of fluorescence centers. Compared to previous results, both small molecules and macromolecules might have the same fluorescence centers.

  7. Torsional sensing of small-molecule binding using magnetic tweezers

    NARCIS (Netherlands)

    Lipfert, J.; Klijnhout, S.; Dekker, N.H.

    2010-01-01

    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove

  8. Bacterial toxins and small molecules elucidate endosomal trafficking.

    Science.gov (United States)

    Slater, Louise H; Clatworthy, Anne E; Hung, Deborah T

    2014-02-01

    Bacterial toxins and small molecules are useful tools for studying eukaryotic cell biology. In a recent issue of PNAS, Gillespie and colleagues describe a novel small molecule inhibitor of bacterial toxins and virus trafficking through the endocytic pathway, 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), that prevents transport from early to late endosomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bioinspired assembly of small molecules in cell milieu.

    Science.gov (United States)

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-03-30

    Self-assembly, the autonomous organization of components to form patterns or structures, is a prevalent process in nature at all scales. Particularly, biological systems offer remarkable examples of diverse structures (as well as building blocks) and processes resulting from self-assembly. The exploration of bioinspired assemblies not only allows for mimicking the structures of living systems, but it also leads to functions for applications in different fields that benefit humans. In the last several decades, efforts on understanding and controlling self-assembly of small molecules have produced a large library of candidates for developing the biomedical applications of assemblies of small molecules. Moreover, recent findings in biology have provided new insights on the assemblies of small molecules to modulate essential cellular processes (such as apoptosis). These observations indicate that the self-assembly of small molecules, as multifaceted entities and processes to interact with multiple proteins, can have profound biological impacts on cells. In this review, we illustrate that the generation of assemblies of small molecules in cell milieu with their interactions with multiple cellular proteins for regulating cellular processes can result in primary phenotypes, thus providing a fundamentally new molecular approach for controlling cell behavior. By discussing the correlation between molecular assemblies in nature and the assemblies of small molecules in cell milieu, illustrating the functions of the assemblies of small molecules, and summarizing some guiding principles, we hope this review will stimulate more molecular scientists to explore the bioinspired self-assembly of small molecules in cell milieu.

  10. Perspective: Accurate ro-vibrational calculations on small molecules

    CERN Document Server

    Tennyson, Jonathan

    2016-01-01

    In what has been described as the fourth age of Quantum Chemistry, variational nuclear motion programs are now routinely being used to obtain the vibration-rotation levels and corresponding wavefunctions of small molecules to the sort of high accuracy demanded by comparison with spectroscopy. In this perspective I will discuss the current state-of-the-art which, for example, shows that these calculations are increasingly competitive with measurements or, indeed, replacing them and thus becoming the primary source of data on key processes. To achieve this accuracy {\\it ab initio} requires consideration small effects, routinely ignored in standard calculations, such those due to quantum electrodynamics (QED). Variational calculations are being used to generate huge list of transitions which provide the input for models of radiative transport through hot atmospheres and to fill in or even replace measured transition intensities. Future prospects such as study of molecular states near dissociation, which can prov...

  11. Small Talk: Children's Everyday `Molecule' Ideas

    Science.gov (United States)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  12. Sorption of small molecules in polymeric media

    Science.gov (United States)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  13. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  14. A guest molecule-host cavity fitting algorithm to mine PDB for small molecule targets.

    Science.gov (United States)

    Byrem, William C; Armstead, Stephen C; Kobayashi, Shunji; Eckenhoff, Roderic G; Eckmann, David M

    2006-08-01

    Inhaled anesthetic molecule occupancy of a protein internal cavity depends in part on the volumes of the guest molecule and the host site. Current algorithms to determine volume and surface area of cavities in proteins whose structures have been determined and cataloged make no allowance for shape or small degrees of shape adjustment to accommodate a guest. We developed an algorithm to determine spheroid dimensions matching cavity volume and surface area and applied it to screen the cavities of 6,658 nonredundant structures stored in the Protein Data Bank (PDB) for potential targets of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane). Our algorithm determined sizes of prolate and oblate spheroids matching dimensions of each cavity found. If those spheroids could accommodate halothane (radius 2.91 A) as a guest, we determined the packing coefficient. 394,766 total cavities were identified. Of 58,681 cavities satisfying the fit criteria for halothane, 11,902 cavities had packing coefficients in the range of 0.46-0.64. This represents 20.3% of cavities large enough to hold halothane, 3.0% of all cavities processed, and found in 2,432 protein structures. Our algorithm incorporates shape dependence to screen guest-host relationships for potential small molecule occupancy of protein cavities. Proteins with large numbers of such cavities are more likely to be functionally altered by halothane.

  15. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Science.gov (United States)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  16. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  17. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  18. Application of a small molecule radiopharmaceutical concept to improve kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Recently, large molecules or nanoparticles are actively studied as radiopharmaceuticals. However, their kinetics is problematic because of a slow penetration through the capillaries and slow distribution to the target. To improve the kinetics, a two-step targeting method can be applied by using small molecules and very rapid copper-free click reaction. Although this method might have limitations such as internalization of the first targeted conjugate, it will provide high target-to-non-target ratio imaging of radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals. In conclusion, the small molecule radiopharmaceuticals generally show excellent biodistribution properties; however, they show poor efficiency of radioisotope delivery. Large molecule or nanoparticle radiopharmaceuticals have advantages of multimodal and efficient delivery, but lower target-to-non-target ratio. Two-step targeting using a bio-orthogonal copper-free click reaction can be a solution of the problem of large molecule or nanoparticle radiopharmaceuticals. The majority of radiopharmaceuticals belong to small molecules of which the molecular weight is less than 2000 Da, and the molecular size is smaller than 2 nm generally. The outstanding feature of the small molecule radiopharmaceuticals compared to large molecules is with their kinetics. Their distribution to target and clearance from non-target tissues are very rapid, which is the essential requirement of radiopharmaceuticals.

  19. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  20. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    Science.gov (United States)

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD.

  1. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  2. Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Minireview.

    Science.gov (United States)

    An, Guohua

    2017-02-01

    Nonlinearities are commonplace in pharmacokinetics, and 1 special source is the saturable binding of the drug to a high-affinity, low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Compared with large-molecule compounds undergoing TMDD, which has been well recognized due to its high prevalence, TMDD in small-molecule compounds is more counterintuitive and has not been well appreciated. With more and more potent small-molecule drugs acting on highly specific targets being developed as well as increasingly sensitive analytical techniques becoming available, many small-molecule compounds have recently been reported to have nonlinear pharmacokinetics imparted by TMDD. To expand our current knowledge of TMDD in small-molecule compounds and increase the awareness of this clinically important phenomenon, this minireview provides an overview of the small-molecule compounds that demonstrate nonlinear pharmacokinetics imparted by TMDD. The present review also summarizes the general features of TMDD in small-molecule compounds and highlights the differences between TMDD in small-molecule compounds and large-molecule compounds. © 2016, The American College of Clinical Pharmacology.

  3. Modulation of p53's transcriptional function by small molecules

    OpenAIRE

    2011-01-01

    p53 tumour suppressor is a transcriptional factor which induces apoptosis or growth arrest in response to stress thus eliminating damaged cells. p53 function is frequently abrogated in tumours either via inactivation mutations in the TP53 gene or by elevated activity of p53 negative regulators HDM2 and HDMX. Therefore application of small molecules that reactivate p53 function is a promising strategy for anti-cancer therapy. In addition, small molecules can serve as valuable research tool to ...

  4. Biocatalysts and small molecule products from metagenomic studies.

    Science.gov (United States)

    Iqbal, Hala A; Feng, Zhiyang; Brady, Sean F

    2012-04-01

    The vast majority of bacteria present in environmental samples have never been cultured and therefore have not been exploited for the ability to produce useful biocatalysts or collections of biocatalysts generating interesting small molecules. Metagenomic libraries constructed using DNA extracted directly from natural bacterial communities offer access to the genetic information present in the genomes of these as yet uncultured bacteria. This review highlights recent efforts to recover both discrete enzymes and small molecules from metagenomic libraries.

  5. Small molecules as pro-apoptotic anticancer agents.

    Science.gov (United States)

    Seneci, Pierfausto

    2012-09-01

    The quest for potent and selective targeted therapies in anticancer research is taking advantage of apoptosis-related mechanisms of action to identify a number of novel clinical candidates. This review is chemically focused on small molecules and deals with five target families that influence caspase-dependent apoptosis: caspase-3, Bcl-2 and IAP protein family members, p53 and the proteasome. Each target class is briefly described at first in terms of its involvement and relevance in tumor initiation and progression. Drug candidates currently undergoing clinical trials are then presented for each target class, followed by a quick summary of target-modulating chemotypes that have appeared in patent literature since 2006. Finally, future trends likely to become significant in apoptosis-targeted cancer therapies are presented and discussed.

  6. TMAO: A small molecule of great expectations.

    Science.gov (United States)

    Ufnal, Marcin; Zadlo, Anna; Ostaszewski, Ryszard

    2015-01-01

    Trimethylamine N-oxide (TMAO) is a small organic compound whose concentration in blood increases after ingesting dietary l-carnitine and phosphatidylcholine. Recent clinical studies show a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events defined as death, myocardial infarction, or stroke. Several experimental studies suggest a possible contribution of TMAO to the etiology of cardiovascular diseases by affecting lipid and hormonal homeostasis. On the other hand, TMAO-rich seafood, which is an important source of protein and vitamins in the Mediterranean diet, has been considered beneficial for the circulatory system. Although in humans TMAO is known mainly as a waste product of choline metabolism, a number of studies suggest an involvement of TMAO in important biological functions in numerous organisms, ranging from bacteria to mammals. For example, cells use TMAO to maintain cell volume under conditions of osmotic and hydrostatic pressure stresses. In this article, we reviewed well-established chemical and biological properties of TMAO and dietary sources of TMAO, as well as looked at the studies suggesting possible involvement of TMAO in the etiology of cardiovascular and other diseases, such as kidney failure, diabetes, and cancer.

  7. Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

    Science.gov (United States)

    2017-01-01

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  8. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Helmut; Ruthardt, Klaus; Mathiak, Jens; Roosen, Christoph [Uhde GmbH, Dortmund (Germany)

    2011-03-15

    With more than 70 wt.-% hydrogen is the most abundant element in the visible universe. On earth, hydrogen holds the 9{sup th} place in natural abundance with a share of only 0.88 wt.%. But, when looking to the production and use, hydrogen is one of those chemical compounds which has mostly influenced our current world and living. Hydrogen is mainly used for three applications: in refineries for upgrading or purification of products obtained from crude oil, for the production of ammonia from the elements and for the production of methanol via synthesis gas. In 2009 hydrogen consumption was 52.2 million t, for 2014 a hydrogen consumption of about 69 million t is predicted. This huge increase is mainly driven by the need for upgrading low-valued fossil fuels (like heavy sulfur rich crude oils or products from oil sands) or for new production routes for platform chemicals from biomass. Classical routes for the production of hydrogen are reforming (Steam Methane Reforming (SMR), Autothermal Reforming (ATR) and Partial Oxidation (POX)) of light fractions (like natural gas), gasification of fossil fuels and refinery operations (like catalytic reforming). New routes for hydrogen production include gasification of biomass derived feedstocks, electrolysis and solar power technologies. These routes are expected to increase due to a shortage of fossil fuels as well as environmental reasons. (orig.)

  9. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  10. Differentiating Alzheimer disease-associated aggregates with small molecules.

    Science.gov (United States)

    Honson, Nicolette S; Johnson, Ronald L; Huang, Wenwei; Inglese, James; Austin, Christopher P; Kuret, Jeff

    2007-12-01

    Alzheimer disease is diagnosed postmortem by the density and spatial distribution of beta-amyloid plaques and tau-bearing neurofibrillary tangles. The major protein component of each lesion adopts cross-beta-sheet conformation capable of binding small molecules with submicromolar affinity. In many cases, however, Alzheimer pathology overlaps with Lewy body disease, characterized by the accumulation of a third cross-beta-sheet forming protein, alpha-synuclein. To determine the feasibility of distinguishing tau aggregates from beta-amyloid and alpha-synuclein aggregates with small molecule probes, a library containing 72,455 small molecules was screened for antagonists of tau-aggregate-mediated changes in Thioflavin S fluorescence, followed by secondary screens to distinguish the relative affinity for each substrate protein. Results showed that >10-fold binding selectivity among substrates could be achieved, with molecules selective for tau aggregates containing at least three aromatic or rigid moieties connected by two rotatable bonds.

  11. Integrated Analysis Identifies Interaction Patterns between Small Molecules and Pathways

    Science.gov (United States)

    Li, Yan; Li, Weiguo; Chen, Xin; Sun, Jiatong; Chen, Huan; Lv, Sali

    2014-01-01

    Previous studies have indicated that the downstream proteins in a key pathway can be potential drug targets and that the pathway can play an important role in the action of drugs. So pathways could be considered as targets of small molecules. A link map between small molecules and pathways was constructed using gene expression profile, pathways, and gene expression of cancer cell line intervened by small molecules and then we analysed the topological characteristics of the link map. Three link patterns were identified based on different drug discovery implications for breast, liver, and lung cancer. Furthermore, molecules that significantly targeted the same pathways tended to treat the same diseases. These results can provide a valuable reference for identifying drug candidates and targets in molecularly targeted therapy. PMID:25114931

  12. Catalytic in vivo protein knockdown by small-molecule PROTACs.

    Science.gov (United States)

    Bondeson, Daniel P; Mares, Alina; Smith, Ian E D; Ko, Eunhwa; Campos, Sebastien; Miah, Afjal H; Mulholland, Katie E; Routly, Natasha; Buckley, Dennis L; Gustafson, Jeffrey L; Zinn, Nico; Grandi, Paola; Shimamura, Satoko; Bergamini, Giovanna; Faelth-Savitski, Maria; Bantscheff, Marcus; Cox, Carly; Gordon, Deborah A; Willard, Ryan R; Flanagan, John J; Casillas, Linda N; Votta, Bartholomew J; den Besten, Willem; Famm, Kristoffer; Kruidenier, Laurens; Carter, Paul S; Harling, John D; Churcher, Ian; Crews, Craig M

    2015-08-01

    The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.

  13. Protein homology reveals new targets for bioactive small molecules.

    Science.gov (United States)

    Gfeller, David; Zoete, Vincent

    2015-08-15

    The functional impact of small molecules is increasingly being assessed in different eukaryotic species through large-scale phenotypic screening initiatives. Identifying the targets of these molecules is crucial to mechanistically understand their function and uncover new therapeutically relevant modes of action. However, despite extensive work carried out in model organisms and human, it is still unclear to what extent one can use information obtained in one species to make predictions in other species. Here, for the first time, we explore and validate at a large scale the use of protein homology relationships to predict the targets of small molecules across different species. Our results show that exploiting target homology can significantly improve the predictions, especially for molecules experimentally tested in other species. Interestingly, when considering separately orthology and paralogy relationships, we observe that mapping small molecule interactions among orthologs improves prediction accuracy, while including paralogs does not improve and even sometimes worsens the prediction accuracy. Overall, our results provide a novel approach to integrate chemical screening results across multiple species and highlight the promises and remaining challenges of using protein homology for small molecule target identification. Homology-based predictions can be tested on our website http://www.swisstargetprediction.ch. david.gfeller@unil.ch or vincent.zoete@isb-sib.ch. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Advances in structure elucidation of small molecules using mass spectrometry

    Science.gov (United States)

    Fiehn, Oliver

    2010-01-01

    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules. Electronic supplementary material The online version of this article (doi:10.1007/s12566-010-0015-9) contains supplementary material, which is available to authorized users. PMID:21289855

  15. Synchrotron radiation VUV double photoionization of some small molecules

    Institute of Scientific and Technical Information of China (English)

    Zhao Yu-Jie; Shan Xiao-Bin; Sheng Liu-Si; Wang Zhen-Ya; Zhang Jie; Yu Chun-Ri

    2011-01-01

    The VUV double photoionizations of small molecules(NO, CO, CO2, CS2, OSC and NH3)were investigated with photoionization mass spectroscopy using synchrotron radiation. The double ionization energies of molecules were determined with photoionization efficiency spectroscopy. The total energies of these molecules and their parent dications (NO2+, CO2+, CO2+2,CS2+2,OS2+C and NH2+3)were calculated using the Gaussian 03 program and Gaussian 2calculations. Then, the adiabatic double ionization energies of the molecules were predicated by using high accuracy energy mode. The experimental double ionization energies of these small molecules were all in reasonable agreement with their respective calculated adiabatic double ionization energies. The mechanisms of double photoionization of these molecules were discussed based on a comparison of our experimental results with those predicted theoretically. The equilibrium geometries and harmonic vibrational frequencies of molecules and their parent dications were calculated by using the MP2(full)method. The differences in configurations between these molecules and their parent dications were also discussed on the basis of theoretical calculations.

  16. Strategy to discover diverse optimal molecules in the small molecule universe.

    Science.gov (United States)

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  17. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways.

    Science.gov (United States)

    Abetov, Danysh; Mustapova, Zhanar; Saliev, Timur; Bulanin, Denis; Batyrbekov, Kanat; Gilman, Charles P

    2015-12-01

    The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.

  18. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  19. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  20. Small-molecule control of protein function through Staudinger reduction

    Science.gov (United States)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  1. Multivalent Small-Molecule Pan-RAS Inhibitors.

    Science.gov (United States)

    Welsch, Matthew E; Kaplan, Anna; Chambers, Jennifer M; Stokes, Michael E; Bos, Pieter H; Zask, Arie; Zhang, Yan; Sanchez-Martin, Marta; Badgley, Michael A; Huang, Christine S; Tran, Timothy H; Akkiraju, Hemanth; Brown, Lewis M; Nandakumar, Renu; Cremers, Serge; Yang, Wan Seok; Tong, Liang; Olive, Kenneth P; Ferrando, Adolfo; Stockwell, Brent R

    2017-02-23

    Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Increased Hydrogel Swelling Induced by Absorption of Small Molecules.

    Science.gov (United States)

    Nam, Changwoo; Zimudzi, Tawanda J; Geise, Geoffrey M; Hickner, Michael A

    2016-06-08

    The water and small molecule uptake behavior of amphiphilic diacrylate terminated poly(dimethylsiloxane) (PDMSDA)/poly(ethylene glycol diacrylate) (PEGDA) cross-linked hydrogels were studied using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. These hydrogel networks absorbed more water as the PEGDA content of the network increased. In contrast to typical osmotic deswelling behavior that occurs when liquid water equilibrated hydrogels are immersed in small molecule solutions with water activities less than unity, water-swollen gels immersed in 2-acrylamido-2-methylpropanesulfonic acid (AMPS-H) solutions rapidly regained their water content within 4 min following an initial deswelling response. In situ ATR-FTIR analysis of the hydrogel film during the dynamic swelling experiment indicated that small molecule absorption into the gel played an important role in inducing gel reswelling in low water activity solutions. This aspect of polymer gel water uptake and interaction with small molecules is important for optimizing hydrogel coatings and hydrophilic polymer applications where there is an interaction between the internal chemical structure of the gel and electrolytes or other molecules in solution.

  3. Small-molecule discovery from DNA-encoded chemical libraries.

    Science.gov (United States)

    Kleiner, Ralph E; Dumelin, Christoph E; Liu, David R

    2011-12-01

    Researchers seeking to improve the efficiency and cost effectiveness of the bioactive small-molecule discovery process have recently embraced selection-based approaches, which in principle offer much higher throughput and simpler infrastructure requirements compared with traditional small-molecule screening methods. Since selection methods benefit greatly from an information-encoding molecule that can be readily amplified and decoded, several academic and industrial groups have turned to DNA as the basis for library encoding and, in some cases, library synthesis. The resulting DNA-encoded synthetic small-molecule libraries, integrated with the high sensitivity of PCR and the recent development of ultra high-throughput DNA sequencing technology, can be evaluated very rapidly for binding or bond formation with a target of interest while consuming minimal quantities of material and requiring only modest investments of time and equipment. In this tutorial review we describe the development of two classes of approaches for encoding chemical structures and reactivity with DNA: DNA-recorded library synthesis, in which encoding and library synthesis take place separately, and DNA-directed library synthesis, in which DNA both encodes and templates library synthesis. We also describe in vitro selection methods used to evaluate DNA-encoded libraries and summarize successful applications of these approaches to the discovery of bioactive small molecules and novel chemical reactivity.

  4. Color-Coded Super-Resolution Small-Molecule Imaging.

    Science.gov (United States)

    Beuzer, Paolo; La Clair, James J; Cang, Hu

    2016-06-02

    Although the development of super-resolution microscopy dates back to 1994, its applications have been primarily focused on visualizing cellular structures and targets, including proteins, DNA and sugars. We now report on a system that allows both monitoring of the localization of exogenous small molecules in live cells at low resolution and subsequent super-resolution imaging by using stochastic optical reconstruction microscopy (STORM) on fixed cells. This represents a powerful new tool to understand the dynamics of subcellular trafficking associated with the mode and mechanism of action of exogenous small molecules.

  5. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish and investig......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish...

  6. Interaction of aromatic molecules with small gold clusters

    Science.gov (United States)

    Molina, Luis M.; López, María. J.; Alonso, Julio A.

    2017-09-01

    Ab initio density functional simulations have been performed to study the adsorption of aromatic molecules (benzene and toluene) on small Aun clusters. The calculations reveal a strong interaction between gold and π electrons of benzene, accompanied by a small electronic charge transfer from benzene to gold. We report a variety of binding conformations, with varying degrees of contact between the carbon atoms in benzene and the cluster. Therefore, the interaction between the aromatic part of molecules involved in the synthesis of fine chemicals catalyzed by gold must not be neglected, and could play an important role during some reaction stages.

  7. Targeting Mycobacterium tuberculosis topoisomerase I by small-molecule inhibitors.

    Science.gov (United States)

    Godbole, Adwait Anand; Ahmed, Wareed; Bhat, Rajeshwari Subray; Bradley, Erin K; Ekins, Sean; Nagaraja, Valakunja

    2015-03-01

    We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and M. tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the M. tuberculosis and M. smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

  8. Exporters for Production of Amino Acids and Other Small Molecules.

    Science.gov (United States)

    Eggeling, Lothar

    2016-11-11

    Microbes are talented catalysts to synthesize valuable small molecules in their cytosol. However, to make full use of their skills - and that of metabolic engineers - the export of intracellularly synthesized molecules to the culture medium has to be considered. This step is as essential as is each step for the synthesis of the favorite molecule of the metabolic engineer, but is frequently not taken into account. To export small molecules via the microbial cell envelope, a range of different types of carrier proteins is recognized to be involved, which are primary active carriers, secondary active carriers, or proteins increasing diffusion. Relevant export may require just one carrier as is the case with L-lysine export by Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine excretion by Escherichia coli. Meanwhile carriers for a number of small molecules of biotechnological interest are recognized, like for production of peptides, nucleosides, diamines, organic acids, or biofuels. In addition to carriers involved in amino acid excretion, such carriers and their impact on product formation are described, as well as the relatedness of export carriers which may serve as a hint to identify further carriers required to improve product formation by engineering export.

  9. Interfacial processes in small molecule organic solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper presents an overview of the recent progress of small molecule organic solar cells mainly based on the previous worksof our group. We will mainly focus on the interfacial processes in the cells. The dissociation of excitons at electrode/organic andorganic/organic interfaces can be directly observed by transient photovoltage measurements. A simple model including dissociationof excitons at the interface and drift of free carriers in the built-in field is proposed to explain the observed signals of transientphotovoltage. Besides exciton-blocking and preventing damage due to cathode evaporation,blocking permeation of oxygen and/orwater molecules and modulating the built-in field are proposed as functions of the buffer layer between C60 and Al. By the use ofthe inverted structure,a shelf lifetime of over 1500 h is achieved for unencapsulated small-molecule organic solar cells.

  10. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    Science.gov (United States)

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  11. NMR structural studies of protein-small molecule interactions

    NARCIS (Netherlands)

    Shah, Dipen M.

    2014-01-01

    The research presented in the thesis describes the development and implementation of solution based NMR methods that provide 3D structural information on the protein-small molecule complexes. These methods can be critical for structure based drug design and can be readily applied in the early stages

  12. Caenorhabditis elegans chemical biology: lessons from small molecules

    Science.gov (United States)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  13. Design of a small molecule against an oncogenic noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  14. Predicting where small molecules bind at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Peter Walter

    Full Text Available Small molecules that bind at protein-protein interfaces may either block or stabilize protein-protein interactions in cells. Thus, some of these binding interfaces may turn into prospective targets for drug design. Here, we collected 175 pairs of protein-protein (PP complexes and protein-ligand (PL complexes with known three-dimensional structures for which (1 one protein from the PP complex shares at least 40% sequence identity with the protein from the PL complex, and (2 the interface regions of these proteins overlap at least partially with each other. We found that those residues of the interfaces that may bind the other protein as well as the small molecule are evolutionary more conserved on average, have a higher tendency of being located in pockets and expose a smaller fraction of their surface area to the solvent than the remaining protein-protein interface region. Based on these findings we derived a statistical classifier that predicts patches at binding interfaces that have a higher tendency to bind small molecules. We applied this new prediction method to more than 10,000 interfaces from the protein data bank. For several complexes related to apoptosis the predicted binding patches were in direct contact to co-crystallized small molecules.

  15. High performance photovoltaic applications using solution-processed small molecules.

    Science.gov (United States)

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  16. Small molecules from natural sources, targeting signaling pathways in diabetes.

    Science.gov (United States)

    Liu, Qiong; Chen, Lili; Hu, Lihong; Guo, Yuewei; Shen, Xu

    2010-01-01

    Diabetes mellitus (DM) is a metabolic disease caused by genetic or environmental factors. It has rendered a severe menace to the middle-aged and elderly, while there is still lack of efficient drugs against this disease. The pathogenic mechanism for DM is complex, and the complicated networks related to this disease involve distinct signaling pathways. Currently, discovery of potential modulators targeting these pathways has become a potent approach for anti-diabetic drug lead compound development. Compared with synthetic compounds, natural products provide inherent larger-scale structural diversity and have been the major resource of bioactive agents for new drug discovery. To date, more and more active components from plants or marine organisms have been reported to regulate diabetic pathophysiological signaling pathways and exhibit anti-diabetic activity. This review will summarize the regulation of natural small molecules on some key signaling pathways involved in DM. These pathways include insulin signaling pathway, carbohydrate metabolism pathway, the pathways involving insulin secretion and PPAR regulation, endoplasmic reticulum (ER) stress and inflammation related pathways and chromatin modification pathways. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. A new class of small molecule inhibitor of BMP signaling.

    Directory of Open Access Journals (Sweden)

    Caroline E Sanvitale

    Full Text Available Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP receptor kinase ALK2 (ACVR1 are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP. Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.

  18. Modulated iontophoretic delivery of small and large molecules through microchannels.

    Science.gov (United States)

    Kumar, Vijay; Banga, Ajay K

    2012-09-15

    The objective of this work was to modulate transdermal drug delivery by iontophoresis though skin microchannels created by microneedles. Calcein and human growth hormone were used as a model small and large molecule, respectively. In vitro permeation studies were performed on porcine ear skin under three different settings: (a) modulated iontophoresis alone, (b) pretreatment with microneedles and (c) combination of microneedles pretreatment and modulated iontophoresis. For modulated iontophoresis, 0.5 mA/cm(2) current was applied for 1h each at 2nd and 6th hour of the study. Methylene blue staining, calcein imaging and pore permeability index suggested maltose microneedles created uniform microchannels in skin. Application of iontophoresis provided two peaks in flux of 1.04 μg/(cm(2)h) at 4th hour and 2.09 μg/(cm(2)h) at 8th hour of study for calcein. These peaks in flux were significant higher when skin was pretreated with microneedles (piontophoresis. This combination also provided significant increase in cumulative amount of calcein and human growth hormone delivered as compared to microneedles or iontophoresis alone (piontophoresis can be used to modulate drug delivery across skin microchannels created by microneedles.

  19. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  20. Managing missing measurements in small-molecule screens

    Science.gov (United States)

    Browning, Michael R.; Calhoun, Bradley T.; Swamidass, S. Joshua.

    2013-05-01

    In a typical high-throughput screening (HTS) campaign, less than 1 % of the small-molecule library is characterized by confirmatory experiments. As much as 99 % of the library's molecules are set aside—and not included in downstream analysis—although some of these molecules would prove active were they sent for confirmatory testing. These missing experimental measurements prevent active molecules from being identified by screeners. In this study, we propose managing missing measurements using imputation—a powerful technique from the machine learning community—to fill in accurate guesses where measurements are missing. We then use these imputed measurements to construct an imputed visualization of HTS results, based on the scaffold tree visualization from the literature. This imputed visualization identifies almost all groups of active molecules from a HTS, even those that would otherwise be missed. We validate our methodology by simulating HTS experiments using the data from eight quantitative HTS campaigns, and the implications for drug discovery are discussed. In particular, this method can rapidly and economically identify novel active molecules, each of which could have novel function in either binding or selectivity in addition to representing new intellectual property.

  1. Stimulation of Host Immune Defenses by a Small Molecule Protects C. elegans from Bacterial Infection

    OpenAIRE

    Read Pukkila-Worley; Rhonda Feinbaum; Kirienko, Natalia V; Jonah Larkins-Ford; Conery, Annie L.; Ausubel, Frederick M.

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating...

  2. Small and Large Molecules in the Diffuse Interstellar Medium

    Science.gov (United States)

    Oka, Takeshi; Huang, Jane

    2014-06-01

    Although molecules with a wide range of sizes exist in dense clouds (e.g. H(C≡C)_nC≡N with n = 0 - 5), molecules identified in diffuse clouds are all small ones. Since the initial discovery of CH, CN, and CH^+, all molecules detected in the optical region are diatomics except for H_3^+ in the infrared and C_3 in the visible. Radio observations have been limited up to triatomic molecules except for H_2CO and the ubiquitous C_3H_2. The column densities of all molecules are less than 1014 cm-2 with the two exceptions of CO and H_3^+ as well as CH and C_2 in a few special sightlines. Larger molecules with many carbon atoms have been searched for but have not been detected. On the other hand, the observations of a great many diffuse interstellar bands (380 toward HD 204827 and 414 toward HD 183143) with equivalent widths from 1 to 5700 m Å indicate high column densities of many heavy molecules. If an electronic transition dipole moment of 1 Debye is assumed, the observed equivalent widths translate to column densities from 5 × 1011 cm-2 to 3 × 1015 cm-2. It seems impossible that these large molecules are formed from chemical reactions in space from small molecules. It is more likely that they are fragments of aggregates, perhaps mixed aromatic/aliphatic organic nanoparticles (MAONS). MAONS and their large fragment molecules are stable against photodissociation in the diffuse ISM because the energy of absorbed photons is divided into statistical distributions of vibrational energy and emitted in the infrared rather than breaking a chemical bond. We use a simple Rice-Ramsperger-Kassel-Marcus theory to estimate the molecular size required for the stabilization. Snow, T. P. & McCall, B. J. 2006, ARA&A, 44 367 Hobbs, L. M., York, D. G., Snow, T. P., Oka, T., Thorburn, J. A., et al. 2008, ApJ, 680 1256 Hobbs, L. M., York, D. G., Thorburn, J. A., Snow, T. P., Bishof, M., et al. 2009, ApJ, 705 32 Kwok, S. & Zhang, S. 2013, ApJ, 771 5 Freed, K. F., Oka, T., & Suzuki, H

  3. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  4. Ultrafast charge redistribution in small iodine containing molecules

    CERN Document Server

    Hollstein, Maximilian; Gerken, Nils; Klumpp, Stephan; Palutke, Steffen; Baev, Ivan; Brenner, Günter; Dziarzhytski, Siarhei; Wurth, Wilfried; Pfannkuche, Daniela

    2016-01-01

    The competition between intra molecular charge redistribution and fragmentation has been studied in small molecules containing iodine by using intense ultrashort pulses in the extreme ultraviolet regime (XUV). We show that after an element specific inner-shell photoionization of diiodomethane (CH$_2$I$_2$) and iodomethane (CH$_3$I), the induced positive charge is redistributed with a significantly different efficiency. Therefore, we analyze ion time-of-flight data obtained from XUV-pump XUV-probe experiments at the Free Electron Laser in Hamburg (FLASH). Theoretical considerations on the basis of ab initio electronic structure calculations including correlations relate this effect to a strongly molecule specific, purely electronic charge redistribution process that takes place directly after photoionization causing a distribution of the induced positive charge predominantly on the atoms which exhibit the lowest atomic ionization potential, i.e, in the molecules considered, the iodine atom(s). As a result of t...

  5. Electron transmission and quantum current distribution of C70 molecule

    Institute of Scientific and Technical Information of China (English)

    KATSUNORI; Tagami3; MASARU; Tsukada

    2008-01-01

    The characteristics of electron transmission through C70 molecule bridge in which two atomic chain leads are connected to long-axis carbon atoms are investigated theoretically by using tight-binding approach based on the Green’s function with only one π orbital electron per carbon atom. Electron transmission through C70 molecule from the input to the output terminal is obtained. From the spectrum, the switching feature of the electron transmission through C70 is found, and the oscil-lation property based on the quantized level is explained. The quantum current distributions inside C70 molecule bridge are calculated and simulated by the quan-tum current density theory based on Fisher-Lee formula at the energy point E = -0.2 eV, where the transmission spectrum shows a peak. The maximum and the mini-mum bond quantum currents are presented, and the reason why the currents are distributed nonuniformly is explained by the phase difference of the atomic orbits. The result shows that the currents at each atomic site agree with Kirchhoff quan-tum current conservation law.

  6. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday

    2015-08-01

    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  7. What is next for small-molecule drug discovery?

    Science.gov (United States)

    Doweyko, Arthur M; Doweyko, Lidia M

    2009-09-01

    Humankind has been in the business of discovering drugs for thousands of years. At present, small-molecule drug design is based on specific macromolecular receptors as targets for inhibition or modulation. To this end, a number of clever approaches have evolved over time: computer-aided techniques including structure-activity relationships and synthesis, high-throughput screening, quantitative structure-activity relationships, hypotheses derived from ligand- and/or structure-based information and focused library approaches. In recent years, several alternative strategies have appeared in the form of the emerging paradigms of polypharmacology, systems biology and personalized medicine. These innovations point to key challenges and breakthroughs likely to affect the future of small-molecule drug discovery.

  8. Small molecules with antiviral activity against the Ebola virus.

    Science.gov (United States)

    Litterman, Nadia; Lipinski, Christopher; Ekins, Sean

    2015-01-01

    The recent outbreak of the Ebola virus in West Africa has highlighted the clear shortage of broad-spectrum antiviral drugs for emerging viruses. There are numerous FDA approved drugs and other small molecules described in the literature that could be further evaluated for their potential as antiviral compounds. These molecules are in addition to the few new antivirals that have been tested in Ebola patients but were not originally developed against the Ebola virus, and may play an important role as we await an effective vaccine. The balance between using FDA approved drugs versus novel antivirals with minimal safety and no efficacy data in humans should be considered. We have evaluated 55 molecules from the perspective of an experienced medicinal chemist as well as using simple molecular properties and have highlighted 16 compounds that have desirable qualities as well as those that may be less desirable. In addition we propose that a collaborative database for sharing such published and novel information on small molecules is needed for the research community studying the Ebola virus.

  9. Analysis of Imprecision in Incurred Sample Reanalysis for Small Molecules

    OpenAIRE

    Subramaniam, Sriram; Patel, Devvrat; Davit, Barbara M.; Conner, Dale P.

    2014-01-01

    Over the years, incurred sample (IS) reanalysis (ISR) has become a tool to confirm the reliability of bioanalytical measurements. The recommendation for ISR acceptance criterion for small molecules is at least 67% of ISR samples that have reanalyzed concentrations within 20% of their original concentrations when normalized to their means. To understand the relevance of the ISR acceptance criterion and sample size requirements, simulated ISR studies evaluated the probability of ISR studies pas...

  10. Biocatalysts and their small molecule products from metagenomic studies

    OpenAIRE

    2012-01-01

    The vast majority of bacteria present in environmental samples have never been cultured and therefore they have not been available to exploit their ability to produce useful biocatalysts or collections of biocatalysts that can biosynthesize interesting small molecules. Metagenomic libraries constructed using DNA extracted directly from natural bacterial communities offer access to the genetic information present in the genomes of these as yet uncultured bacteria. This review highlights recent...

  11. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  12. Recent advances in small molecule OLED-on-silicon microdisplays

    Science.gov (United States)

    Ghosh, Amalkumar P.; Ali, Tariq A.; Khayrullin, Ilyas; Vazan, Fridrich; Prache, Olivier F.; Wacyk, Ihor

    2009-08-01

    High resolution OLED-on-silicon microdisplay technology is unique and challenging since it requires very small subpixel dimensions (~ 2-5 microns). eMagin's OLED microdisplay is based on white top emitter architecture using small molecule organic materials. The devices are fabricated using high Tg materials. The devices are hermetically sealed with vacuum deposited thin film layers. LCD-type color filters are patterned using photolithography methods to generate primary R, G, B colors. Results of recent improvements in the OLED-on-silicon microdisplay technology, with emphasis on efficiencies, lifetimes, grey scale and CIE color coordinates for SVGA and SXGA resolution microdisplays is presented.

  13. Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction.

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Yakubov

    Full Text Available Tissue transglutaminase (TG2 mediates protein crosslinking through generation of ε-(γ-glutamyl lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53 potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination.

  14. Organic synthesis toward small-molecule probes and drugs

    Science.gov (United States)

    Schreiber, Stuart L.

    2011-01-01

    “Organic synthesis” is a compound-creating activity often focused on biologically active small molecules. This special issue of PNAS explores innovations and trends in the field that are enabling the synthesis of new types of small-molecule probes and drugs. This perspective article frames the research described in the special issue but also explores how these modern capabilities can both foster a new and more extensive view of basic research in the academy and promote the linkage of life-science research to the discovery of novel types of small-molecule therapeutics [Schreiber SL (2009) Chem Bio Chem 10:26–29]. This new view of basic research aims to bridge the chasm between basic scientific discoveries in life sciences and new drugs that treat the root cause of human disease—recently referred to as the “valley of death” for drug discovery. This perspective article describes new roles that modern organic chemistry will need to play in overcoming this challenge. PMID:21464328

  15. Small-Molecule Hormones: Molecular Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Monika Puzianowska-Kuznicka

    2013-01-01

    Full Text Available Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes.

  16. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.

    2014-01-01

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313

  18. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  19. Persistent current in small superconducting rings.

    Science.gov (United States)

    Schwiete, Georg; Oreg, Yuval

    2009-07-17

    We study theoretically the contribution of fluctuating Cooper pairs to the persistent current in superconducting rings threaded by a magnetic flux. For sufficiently small rings, in which the coherence length xi exceeds the radius R, mean field theory predicts a full reduction of the transition temperature to zero near half-integer flux. We find that nevertheless a very large current is expected to persist in the ring as a consequence of Cooper pair fluctuations that do not condense. For larger rings with R>xi, we calculate analytically the susceptibility in the critical region of strong fluctuations and show that it reflects competition of two interacting complex order parameters.

  20. Small molecule screening at Helmholtz Zentrum München - from biology to molecules.

    Science.gov (United States)

    Schorpp, Kenji; Hadian, Kamyar

    2014-03-01

    Within the last few years the Helmholtz Zentrum München has established several initiatives enabling the translation of basic research results into discovery of novel small molecules that affect pathomechanisms of chronic and complex diseases. Here, one of the main operations is the Assay Development and Screening Platform (ADSP) that has state-of-the-art equipment for compound screening and provides knowledge in a variety of biochemical or cell-based phenotypic assays. In particular, ADSP has a strong focus on complex assays such as high-content screening in stem cells that are likely to provide an innovative approach complementary to biochemical assays for the discovery of novel small molecules modulating key biological processes.

  1. NMR study of small molecule adsorption in MOF-74-Mg.

    Science.gov (United States)

    Lopez, M G; Canepa, Pieremanuele; Thonhauser, T

    2013-04-21

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  2. NMR study of small molecule adsorption in MOF-74-Mg

    Science.gov (United States)

    Lopez, M. G.; Canepa, Pieremanuele; Thonhauser, T.

    2013-04-01

    We calculate the carbon nuclear magnetic resonance (NMR) shielding for CO2 and the hydrogen shieldings for both H2 and H2O inside the metal organic framework MOF-74-Mg. Our ab initio calculations are at the density functional theory level using the van der Waals including density functional vdW-DF. The shieldings are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. We then explore relationships between loading, rotational and positional characteristics, and the NMR shieldings for each adsorbate. Our NMR calculations show a change in the shielding depending on adsorbate, position, and loading in a range that is experimentally observable. We further provide a simple model for the energy and the NMR shieldings throughout the cavity of the MOF. By providing this mapping of shielding to position and loading for these adsorbates, we argue that NMR probes could be used to provide additional information about the position at which these small molecules bind within the MOF, as well as the loading of the adsorbed molecule.

  3. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  4. Proteinlike copolymers as encapsulating agents for small-molecule solutes.

    Science.gov (United States)

    Malik, Ravish; Genzer, Jan; Hall, Carol K

    2015-03-24

    We describe the utilization of proteinlike copolymers (PLCs) as encapsulating agents for small-molecule solutes. We perform Monte Carlo simulations on systems containing PLCs and model solute molecules in order to understand how PLCs assemble in solution and what system conditions promote solute encapsulation. Specifically, we explore how the chemical composition of the PLCs and the range and strength of molecular interactions between hydrophobic segments on the PLC and solute molecules affect the solute encapsulation efficiency. The composition profiles of the hydrophobic and hydrophilic segments, the solute, and implicit solvent (or voids) within the PLC globule are evaluated to gain a complete understanding of the behavior in the PLC/solute system. We find that a single-chain PLC encapsulates solute successfully by collapsing the macromolecule to a well-defined globular conformation when the hydrophobic/solute interaction is at least as strong as the interaction strength among hydrophobic segments and the interaction among solute molecules is at most as strong as the hydrophobic/solute interaction strength. Our results can be used by experimentalists as a framework for optimizing unimolecular PLC solute encapsulation and can be extended potentially to applications such as "drug" delivery via PLCs.

  5. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics

    Science.gov (United States)

    Maschinot, C.A.; Pace, J.R.; Hadden, M.K.

    2016-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds. PMID:26310919

  6. Rethinking Mass Spectrometry-Based Small Molecule Identification Strategies in Metabolomics.

    Science.gov (United States)

    Matsuda, Fumio

    2014-01-01

    The CASMI 2013 (Critical Assessment of Small Molecule Identification 2013, http://casmi-contest.org/) contest was held to systematically evaluate strategies used for mass spectrometry-based identification of small molecules. The results of the contest highlight that, because of the extensive efforts made towards the construction of databases and search tools, database-assisted small molecule identification can now automatically annotate some metabolite signals found in the metabolome data. In this commentary, the current state of metabolite annotation is compared with that of transcriptomics and proteomics. The comparison suggested that certain limitations in the metabolite annotation process need to be addressed, such as (i) the completeness of the database, (ii) the conversion between raw data and structure, (iii) the one-to-one correspondence between measured data and correct search results, and (iv) the false discovery rate in database search results.

  7. Stem cells and small molecule screening: haploid embryonic stem cells as a new tool

    Institute of Scientific and Technical Information of China (English)

    Bi WU; Wei LI; Liu WANG; Zhong-hua LIU; Xiao-yang ZHAO

    2013-01-01

    Stem cells can both self-renew and differentiate into various cell types under certain conditions,which makes them a good model for development and disease studies.Recently,chemical approaches have been widely applied in stem cell biology by promoting stem cell self-renewal,proliferation,differentiation and somatic cell reprogramming using specific small molecules.Conversely,stem cells and their derivatives also provide an efficient and robust platform for small molecule and drug screening.Here,we review the current research and applications of small molecules that modulate stem cell self-renewal and differentiation and improve reprogramming,as well as the applications that use stem cells as a tool for small molecule screening.Moreover,we introduce the recent advance in haploid embryonic stem cells research.Haploid embryonic stem cells maintain haploidy and stable growth over extensive passages,possess the ability to differentiate into all three germ layers in vitro and in vivo,and contribute to the germlines of chimeras when injected into blastocysts.Androgenetic haploid stem cells can also be used in place of sperm to produce fertile progeny after intracytoplasmic injection into mature oocytes.Such characteristics demonstrate that haploid stem cells are a new approach for genetic studies at both the cellular and animal levels and that they are a valuable platform for future small molecule screening.

  8. Stabilization of protein-protein interactions by small molecules.

    Science.gov (United States)

    Giordanetto, Fabrizio; Schäfer, Anja; Ottmann, Christian

    2014-11-01

    Protein-protein interactions (PPIs) are implicated in every disease and mastering the ability to influence PPIs with small molecules would considerably enlarge the druggable genome. Whereas inhibition of PPIs has repeatedly been shown to work successfully, targeted stabilization of PPIs is underrepresented in the literature. This is all the more surprising because natural products like FK506, rapamycin, brefeldin, forskolin and fusicoccin confer their physiological activity by stabilizing specific PPIs. However, recently a number of very interesting synthetic molecules have been reported from drug discovery projects that indeed achieve their desired activities by stabilizing either homo- or hetero-oligomeric complexes of their target proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Diffusion of Small Molecules in Metal Organic Framework Materials

    Science.gov (United States)

    Canepa, Pieremanuele; Nijem, Nour; Chabal, Yves J.; Thonhauser, T.

    2013-01-01

    Ab initio simulations are combined with in situ infrared spectroscopy to unveil the molecular transport of H2, CO2, and H2O in the metal organic framework MOF-74-Mg. Our study uncovers—at the atomistic level—the major factors governing the transport mechanism of these small molecules. In particular, we identify four key diffusion mechanisms and calculate the corresponding diffusion barriers, which are nicely confirmed by time-resolved infrared experiments. We also answer a long-standing question about the existence of secondary adsorption sites for the guest molecules, and we show how those sites affect the macroscopic diffusion properties. Our findings are important to gain a fundamental understanding of the diffusion processes in these nanoporous materials, with direct implications for the usability of MOFs in gas sequestration and storage applications.

  10. An autonomous chemically fuelled small-molecule motor

    Science.gov (United States)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  11. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  12. Spectra and dynamics of small molecules Alexander von Humboldt lectures

    CERN Document Server

    Field, Robert W

    2015-01-01

    These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking special topics that have fascinated the author and his students over the years. Though neither a textbook nor a scholarly monograph, the book provides an illuminating perspective that will benefit students and researchers alike.

  13. Novel targets and derived small molecule inhibitors in multiple myeloma.

    Science.gov (United States)

    Podar, Klaus

    2012-09-01

    Recent research advances have defined a key role of the bone marrow (BM) in multiple myeloma (MM) pathogenesis thereby leading to new treatment paradigms, which aim to target both the tumor cell as well as its BM microenvironment. The incorporation of thalidomide, bortezomib, and lenalidomide into conventional cytotoxic and transplantation regimens in relapsed and refractory, but also in newly diagnosed MM has changed treatment options during the last decade. However, MM remains still incurable. Ongoing translational research aims to identify additional therapeutic targets and to design derived agents, predominantly small molecule inhibitors, with higher potency and less toxicity to further improve MM patient outcome and to overcome drug resistance.

  14. Emissive nanotubes from templated self-assembly of small molecules

    Science.gov (United States)

    Tseng, Kuo-Pi; Tsai, Yu-Tang; Shyue, Jing-Jong; Raffy, Guillaume; Del Guerzo, André; Wong, Ken-Tsung; Bassani, Dario M.

    2017-09-01

    We report the use of supramolecular interactions to promote the AAO-templated formation of emissive nanotubes based on small organic molecules bearing complementary hydrogen-bonding sites. Nanotubes emitting blue, green, and red light were obtained using appropriate chromophores, whereas a mixture of blue and green chromophores afforded nanotubes emitting white light. Further characterization revealed that the emission from the nanotubes is polarized, indicating a preferential orientation of the chromophores. Aqueous dispersions of nanotubes showed that scrambling of the chromophores is minimal, and that it is possible to prepare samples in which many nanotubes of different colors are present in close proximity.

  15. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  16. A general strategy to construct small molecule biosensors in eukaryotes

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-01-01

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.10606.001 PMID:26714111

  17. Biophysical methods in drug discovery from small molecule to pharmaceutical.

    Science.gov (United States)

    Holdgate, Geoffrey; Geschwindner, Stefan; Breeze, Alex; Davies, Gareth; Colclough, Nicola; Temesi, David; Ward, Lara

    2013-01-01

    Biophysical methods have become established in many areas of drug discovery. Application of these methods was once restricted to a relatively small number of scientists using specialized, low throughput technologies and methods. Now, automated high-throughput instruments are to be found in a growing number of laboratories. Many biophysical methods are capable of measuring the equilibrium binding constants between pairs of molecules crucial for molecular recognition processes, encompassing protein-protein, protein-small molecule, and protein-nucleic acid interactions, and several can be used to measure the kinetic or thermodynamic components controlling these biological processes. For a full characterization of a binding process, determinations of stoichiometry, binding mode, and any conformational changes associated with such interactions are also required. The suite of biophysical methods that are now available represents a powerful toolbox of techniques which can effectively deliver this full characterization.The aim of this chapter is to provide the reader with an overview of the drug discovery process and how biophysical methods, such as surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), nuclear magnetic resonance, mass spectrometry (MS), and thermal unfolding methods can answer specific questions in order to influence project progression and outcomes. The selection of these examples is based upon the experiences of the authors at AstraZeneca, and relevant approaches are highlighted where they have utility in a particular drug discovery scenario.

  18. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses.

    Science.gov (United States)

    Lee, Andrew M; Rojek, Jillian M; Spiropoulou, Christina F; Gundersen, Anette T; Jin, Wei; Shaginian, Alex; York, Joanne; Nunberg, Jack H; Boger, Dale L; Oldstone, Michael B A; Kunz, Stefan

    2008-07-04

    Viral hemorrhagic fevers caused by the arenaviruses Lassa virus in Africa and Machupo, Guanarito, Junin, and Sabia virus in South America are among the most devastating emerging human diseases with fatality rates of 15-35% and a limited antiviral therapeutic repertoire available. Here we used high throughput screening of synthetic combinatorial small molecule libraries to identify inhibitors of arenavirus infection using pseudotyped virion particles bearing the glycoproteins (GPs) of highly pathogenic arenaviruses. Our screening efforts resulted in the discovery of a series of novel small molecule inhibitors of viral entry that are highly active against both Old World and New World hemorrhagic arenaviruses. We observed potent inhibition of infection of human and primate cells with live hemorrhagic arenaviruses (IC(50)=500-800 nm). Investigations of the mechanism of action revealed that the candidate compounds efficiently block pH-dependent fusion by the arenavirus GPs (IC(50) of 200-350 nm). Although our lead compounds were potent against phylogenetically distant arenaviruses, they did not show activity against other enveloped viruses with class I viral fusion proteins, indicating specificity for arenavirus GP-mediated membrane fusion.

  19. Small molecules reveal an alternative mechanism of Bax activation.

    Science.gov (United States)

    Brahmbhatt, Hetal; Uehling, David; Al-Awar, Rima; Leber, Brian; Andrews, David

    2016-04-15

    The pro-apoptotic protein Bax commits a cell to death by permeabilizing the mitochondrial outer membrane (MOM). To obtain small-molecule probes for elucidating the molecular mechanism(s) of Bax activation, we screened for compounds that induced Bax-mediated liposome permeabilization. We identified five structurally different small molecules that promoted both Bax targeting to and oligomerization at membranes. All five compounds initiated Bax oligomerization in the absence of membranes by a mechanism unlike Bax activation by Bcl-2 homology 3 domain (BH3) proteins. Some of the compounds induced Bax/Bak-dependent apoptosis in cells. Activation of Bax by the most active compound was poorly inhibited by the anti-apoptotic protein Bcl-XL and requires a cysteine residue at position 126 of Bax that is not required for activation by BH3 proteins. Our results reveal a novel pathway for Bax activation independent of pro-apoptotic BH3 proteins that may have important implications for the regulation of Bax activity in cells. © 2016 The Author(s).

  20. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  1. Potential of Nonfullerene Small Molecules with High Photovoltaic Performance.

    Science.gov (United States)

    Li, Wanning; Yao, Huifeng; Zhang, Hao; Li, Sunsun; Hou, Jianhui

    2017-09-05

    Over the past decades, fullerene derivatives have become the most successful electron acceptors in organic solar cells (OSCs) and have achieved great progress, with power conversion efficiencies (PCEs) of over 11 %. However, fullerenes have some drawbacks, such as weak absorption, limited energy-level tunability, and morphological instability. In addition, fullerene-based OSCs usually suffer from large energy losses of over 0.7 eV, which limits further improvements in the PCE. Recently, nonfullerene small molecules have emerged as promising electron acceptors in OSCs. Their highly tunable absorption spectra and molecular energy levels have enabled fine optimization of the resulting devices, and the highest PCE has surpassed 12 %. Furthermore, several studies have shown that OSCs based on small-molecule acceptors (SMA) have very efficient charge generation and transport efficiency at relatively low energy losses of below 0.6 eV, which suggests great potential for the further improvement of OSCs. In this focus review, we analyze the challenges and potential of SMA-based OSCs and discuss molecular design strategies for highly efficient SMAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stability of lyophilized human platelets loaded with small molecule carbohydrates.

    Science.gov (United States)

    Wang, J X; Yang, C; Wan, W; Liu, M X; Ren, S P; Quan, G B; Han, Y

    2011-01-01

    Long-term preservation of platelets is a great challenge for blood transfusion centers, due to the required narrow storage temperature arange (22 ± 2 degree C). Short shelf life and potential bacterial growth often lead to the shortage of high-quality platelets. Freeze-dried preservation is thus believed to be a potential solution for long-term platelet storage without losing the hemostasis function. Here we report a new platelet preservation method, which uses small molecule carbohydrates to extend storage time and to maintain platelet function. The activities of lyophilized platelets that were stabilized with small molecule carbohydrate (e.g., cell viability, mean platelet volume, activation characteristics, and aggregation kinetics) were maintained after storage of 30, 60, and 90 days at room temperature, 4 degree C, and -20 degree C. The recovery of freeze-dried platelets was 87 percent in comparison to fresh platelets. The mean platelet volume of rehydrated platelets increased (from 6.8 fl to 8.0 fl). About 40 percent of rehydrated platelets was in the early-activated stage (PCA-1 positive) and 30 percent was in the terminal-activated stage (CD62P positive). The cell viability was about 60 percent as measured with CMFDA vital probes. The aggregation rate of rehydrated platelets after 90-day storage was similar to fresh platelets stored at 22 degree C ± 2 degree C.

  3. Roles of small molecules in somatic cell reprogramming.

    Science.gov (United States)

    Su, Jian-bin; Pei, Duan-qing; Qin, Bao-ming

    2013-06-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent. This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine. Indeed, reprogramming technology has developed at a dazzling speed within the past 6 years, yet we are still at the early stages of understanding the mechanisms of cell fate identity. This is particularly true in the case of human induced pluripotent stem cells (iPSCs), which lack reliable standards in the evaluation of their fidelity and safety prior to their application. Along with the genetic approaches, small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes, including the mesenchymal-to-epithelial transition, metabolism, signal transduction and epigenetics. Moreover, small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells. With increasing availability of such chemicals, we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  4. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  5. Reprogramming the assembly of unmodified DNA with a small molecule

    Science.gov (United States)

    Avakyan, Nicole; Greschner, Andrea A.; Aldaye, Faisal; Serpell, Christopher J.; Toader, Violeta; Petitjean, Anne; Sleiman, Hanadi F.

    2016-04-01

    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

  6. Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

    Science.gov (United States)

    Martinelli, Federico; Dolan, David; Fileccia, Veronica; Reagan, Russell L.; Phu, My; Spann, Timothy M.; McCollum, Thomas G.; Dandekar, Abhaya M.

    2016-01-01

    Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. Two trials were conducted: one in the greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gibberellins enhanced two important genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular responses to treatments under field conditions. GPT2 was downregulated by all small-molecule treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, WRKY70, and EDS1. These molecular data encourage long-term application of treatments that combine these regulating molecules in field trials. PMID:27459099

  7. Molecular Responses to Small Regulating Molecules against Huanglongbing Disease.

    Science.gov (United States)

    Martinelli, Federico; Dolan, David; Fileccia, Veronica; Reagan, Russell L; Phu, My; Spann, Timothy M; McCollum, Thomas G; Dandekar, Abhaya M

    2016-01-01

    Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. Two trials were conducted: one in the greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gibberellins enhanced two important genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular responses to treatments under field conditions. GPT2 was downregulated by all small-molecule treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, WRKY70, and EDS1. These molecular data encourage long-term application of treatments that combine these regulating molecules in field trials.

  8. Molecular Responses to Small Regulating Molecules against Huanglongbing Disease.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Huanglongbing (HLB; citrus greening is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1 L-arginine, 2 6-benzyl-adenine combined with gibberellins, and 3 sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. Two trials were conducted: one in the greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was significantly induced by arginine. Benzyladenine and gibberellins enhanced two important genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular responses to treatments under field conditions. GPT2 was downregulated by all small-molecule treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, WRKY70, and EDS1. These molecular data encourage long-term application of treatments that combine these regulating molecules in field trials.

  9. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  10. Prediction of small molecules' metabolic pathways based on functional group composition.

    Science.gov (United States)

    Lu, Jin; Niu, Bing; Liu, Liang; Lu, Wen-Cong; Cai, Yu-Dong

    2009-01-01

    How to correctly and efficiently determine small molecules' biological function is a challenge and has a positive effect on further metabonomics analysis. Here, we introduce a computational approach to address this problem. The new approach is based on AdaBoost method and featured by function group composition to the metabolic pathway analysis, which can fast and automatically map the small chemical molecules back to the possible metabolic pathway that they belong to. As a result, jackknife cross validation test and independent set test on the model reached 73.7% and 73.8%, respectively. It can be concluded that the current approach is very promising for mapping some unknown molecules' possible metabolic pathway. An online predictor developed by this research is available at http://chemdata.shu.edu.cn/pathway.

  11. Proteoform-specific protein binding of small molecules in complex matrices

    Science.gov (United States)

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  12. 'Reactive' nano-complex coated medical cotton: a facile avenue for tailored release of small molecules.

    Science.gov (United States)

    Rather, Adil Majeed; Mahato, Sulendar; Maji, Kousik; Gogoi, Neeha; Manna, Uttam

    2017-08-15

    compromising the embedded anti-wetting property. Thus, our current approach has immense potential to develop appropriate materials for a sustained and controlled release of small molecules from a clinically relevant substrate (i.e., medical-cotton) and may be useful in various bio-medical applications including improving wound management, preventing bacterial infections, better pain management, etc.

  13. Small molecule semiconductors for high-efficiency organic photovoltaics.

    Science.gov (United States)

    Lin, Yuze; Li, Yongfang; Zhan, Xiaowei

    2012-06-01

    Organic photovoltaic cells (OPVs) are a promising cost-effective alternative to silicon-based solar cells, and possess light-weight, low-cost, and flexibility advantages. Significant progress has been achieved in the development of novel photovoltaic materials and device structures in the last decade. Nowadays small molecular semiconductors for OPVs have attracted considerable attention, due to their advantages over their polymer counterparts, including well-defined molecular structure, definite molecular weight, and high purity without batch to batch variations. The highest power conversion efficiencies of OPVs based on small molecular donor/fullerene acceptors or polymeric donor/fullerene acceptors are up to 6.7% and 8.3%, respectively, and meanwhile nonfullerene acceptors have also exhibited some promising results. In this review we summarize the developments in small molecular donors, acceptors (fullerene derivatives and nonfullerene molecules), and donor-acceptor dyad systems for high-performance multilayer, bulk heterojunction, and single-component OPVs. We focus on correlations of molecular chemical structures with properties, such as absorption, energy levels, charge mobilities, and photovoltaic performances. This structure-property relationship analysis may guide rational structural design and evaluation of photovoltaic materials (253 references).

  14. Discovery & development of small molecule allosteric modulators of glycoprotein hormone receptors

    Directory of Open Access Journals (Sweden)

    Selvaraj G Nataraja

    2015-09-01

    Full Text Available Glycoprotein hormones, follicle-stimulating hormone (FSH, luteinizing hormone (LH, and thyroid stimulating hormone (TSH are heterodimeric proteins with a common subunit and hormone-specific subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G-protein coupled receptors (GPCR. FSH receptor (FSHR and LH receptor (LHR are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women & men respectively. TSH receptor (TSHR is expressed in thyroid cells and regulates the secretion of T3 & T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSH receptor and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical

  15. A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death.

    Science.gov (United States)

    Bucur, Octavian; Gaidos, Gabriel; Yatawara, Achani; Pennarun, Bodvael; Rupasinghe, Chamila; Roux, Jérémie; Andrei, Stefan; Guo, Bingqian; Panaitiu, Alexandra; Pellegrini, Maria; Mierke, Dale F; Khosravi-Far, Roya

    2015-05-11

    Recombinant soluble TRAIL and agonistic antibodies against TRAIL receptors (DR4 and DR5) are currently being created for clinical cancer therapy, due to their selective killing of cancer cells and high safety characteristics. However, resistance to TRAIL and other targeted therapies is an important issue facing current cancer research field. An attractive strategy to sensitize resistant malignancies to TRAIL-induced cell death is the design of small molecules that target and promote caspase 8 activation. For the first time, we describe the discovery and characterization of a small molecule that directly binds caspase 8 and enhances its activation when combined with TRAIL, but not alone. The molecule was identified through an in silico chemical screen for compounds with affinity for the caspase 8 homodimer's interface. The compound was experimentally validated to directly bind caspase 8, and to promote caspase 8 activation and cell death in single living cells or population of cells, upon TRAIL stimulation. Our approach is a proof-of-concept strategy leading to the discovery of a novel small molecule that not only stimulates TRAIL-induced apoptosis in cancer cells, but may also provide insights into the structure-function relationship of caspase 8 homodimers as putative targets in cancer.

  16. A Small-Molecule Inhibitor of Lin28.

    Science.gov (United States)

    Roos, Martina; Pradère, Ugo; Ngondo, Richard P; Behera, Alok; Allegrini, Sara; Civenni, Gianluca; Zagalak, Julian A; Marchand, Jean-Rémy; Menzi, Mirjam; Towbin, Harry; Scheuermann, Jörg; Neri, Dario; Caflisch, Amedeo; Catapano, Carlo V; Ciaudo, Constance; Hall, Jonathan

    2016-10-21

    New discoveries in RNA biology underscore a need for chemical tools to clarify their roles in pathophysiological mechanisms. In certain cancers, synthesis of the let-7 microRNA tumor suppressor is blocked by an RNA binding protein (RBP) Lin28, which docks onto a conserved sequence in let-7 precursor RNA molecules and prevents their maturation. Thus, the Lin28/let-7 interaction might be an attractive drug target, if not for the well-known difficulty in targeting RNA-protein interactions with drugs. Here, we describe a protein/RNA FRET assay using a GFP-Lin28 donor and a black-hole quencher (BHQ)-labeled let-7 acceptor, a fluorescent protein/quencher combination which is rarely used in screening despite favorable spectral properties. We tested 16 000 molecules and identified N-methyl-N-[3-(3-methyl[1,2,4]triazolo[4,3-b]pyridazin-6-yl)phenyl]acetamide, which blocked the Lin28/let-7 interaction, rescued let-7 processing and function in Lin28-expressing cancer cells, induced differentiation of mouse embryonic stem cells, and reduced tumor-sphere formation by 22Rv1 and Huh7 cells. A biotinylated derivative captured Lin28 from cell lysates consistent with an on-target mechanism in cells, though the compound also showed some activity against bromodomains in selectivity assays. The Lin28/let-7 axis is presently of high interest not only for its role as a bistable switch in stem-cell biology but also because of its prominent roles in numerous diseases. We anticipate that much can be learned from the use of this first reported small molecule antagonist of Lin28, including the potential of the Lin28/let-7 interaction as a new drug target for selected cancers. Furthermore, this approach to assay development may be used to identify antagonists of other RBP/RNA interactions suspected to be operative in pathophysiological mechanisms.

  17. Regulatory aspects of small molecule drugs for heart regeneration.

    Science.gov (United States)

    Rodgers, Kathleen; Papinska, Anna; Mordwinkin, Nicholas

    2016-01-15

    Even though recent discoveries prove the existence of cardiac progenitor cells, internal regenerative capacity of the heart is minimal. As cardiovascular disease is the leading cause of deaths in the United States, a number of approaches are being used to develop treatments for heart repair and regeneration. Small molecule drugs are of particular interest as they are suited for oral administration and can be chemically synthesized. However, the regulatory process for the development of new treatment modalities is protracted, complex and expensive. One of the hurdles to development of appropriate therapies is the need for predictive preclinical models. The use of patient-derived cardiomyocytes from iPSC cells represents a novel tool for this purpose. Among other concepts for induction of heart regeneration, the most advanced is the combination of DPP-IV inhibitors with stem cell mobilizers. This review will focus on regulatory aspects as well as preclinical hurdles of development of new treatments for heart regeneration.

  18. Coacervate delivery systems for proteins and small molecule drugs.

    Science.gov (United States)

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  19. Measurement of small molecule diffusion with an optofluidic silicon chip.

    Science.gov (United States)

    Ryckeboer, Eva; Vierendeels, Jan; Lee, Agnes; Werquin, Sam; Bienstman, Peter; Baets, Roel

    2013-11-21

    In this work we explore the micro-ring resonator platform to study the diffusion-driven mass transport of small molecules within microfluidic channels. The micro-ring resonators are integrated on a silicon-on-insulator photonic chip and combined with microfluidics in poly(dimethylsiloxane) (PDMS). We apply a strong initial gradient in the solute concentration and use the micro-ring resonators to observe how this concentration evolves over time and space. This can be achieved by tracking the optical resonances of multiple micro-rings as they shift with changing solute concentration. Experiments are performed for both glucose and NaCl and at different temperatures. The measured concentration profiles are used to calculate the diffusion coefficient of both glucose and NaCl in water. The good agreement between measurement and theoretical prediction demonstrates the relevance of this method.

  20. Small-molecule potentiators for conventional antibiotics against Staphylococcus aureus.

    Science.gov (United States)

    Vermote, Arno; Van Calenbergh, Serge

    2017-09-11

    Antimicrobial resistance constitutes a global health problem, while the discovery and development of novel antibiotics is stagnating. Methicillin-resistant Staphylococcus aureus, responsible for the establishment of recalcitrant, biofilm-related infections, is a well known and notorious example of a highly resistant micro organism. Since resistance development is unavoidable with conventional antibiotics that target bacterial viability, it is vital to develop alternative treatment options on top. Strategies aimed at more subtle manipulation of bacterial behavior have recently attracted attention. Here, we provide a literature overview of several small molecule potentiators for antibiotics, identified for the treatment of Staphylococcus aureus infection. Typically, these potentiators are not bactericidal by themselves and function either by reversing resistance mechanisms, by attenuating Staphylococcus aureus virulence, and/or by interfering with quorum sensing.

  1. Branched terthiophenes in organic electronics: from small molecules to polymers.

    Science.gov (United States)

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article.

  2. Inhibition of HIV-1 Reverse Transcriptase Dimerization by Small Molecules.

    Science.gov (United States)

    Tintori, Cristina; Corona, Angela; Esposito, Francesca; Brai, Annalaura; Grandi, Nicole; Ceresola, Elisa Rita; Clementi, Massimo; Canducci, Filippo; Tramontano, Enzo; Botta, Maurizio

    2016-04-15

    Because HIV-1 reverse transcriptase is an enzyme whose catalytic activity depends on its heterodimeric structure, this system could be a target for inhibitors that perturb the interactions between the protein subunits, p51 and p66. We previously demonstrated that the small molecule MAS0 reduced the association of the two RT subunits and simultaneously inhibited both the polymerase and ribonuclease H activities. In this study, some analogues of MAS0 were rationally selected by docking studies and evaluated in vitro for their ability to disrupt dimeric assembly. Two inhibitors were identified with improved activity compared to MAS0. This study lays the basis for the rational design of more potent inhibitors of RT dimerization.

  3. Small molecule inhibitors of HCV replication from Pomegranate

    Science.gov (United States)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  4. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    Science.gov (United States)

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  5. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures

    Indian Academy of Sciences (India)

    Gopinatha Suresh Kumar

    2012-07-01

    Studies on RNA targeting by small molecules to specifically control certain cellular functions is an area of remarkable current interest. For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are the protoberberines and aristolochia alkaloids distributed widely in many botanical families. Many of the alkaloids of these group exhibit excellent binding affinity to many RNA structures that may be exploited to develop RNA targeted therapeutics. This review attempts to present the current status on the understanding of the interaction of these alkaloids with various RNA structures, mainly highlighting the biophysical aspects.

  6. Elucidating the germination transcriptional program using small molecules.

    Science.gov (United States)

    Bassel, George W; Fung, Pauline; Chow, Tsz-fung Freeman; Foong, Justin A; Provart, Nicholas J; Cutler, Sean R

    2008-05-01

    The transition from seed to seedling is mediated by germination, a complex process that starts with imbibition and completes with radicle emergence. To gain insight into the transcriptional program mediating germination, previous studies have compared the transcript profiles of dry, dormant, and germinating after-ripened Arabidopsis (Arabidopsis thaliana) seeds. While informative, these approaches did not distinguish the transcriptional responses due to imbibition, shifts in metabolism, or breaking of dormancy from those triggered by the initiation of germination. In this study, three mechanistically distinct small molecules that inhibit Arabidopsis seed germination (methotrexate, 2, 4-dinitrophenol, and cycloheximide) were identified using a small-molecule screen and used to probe the germination transcriptome. Germination-responsive transcripts were defined as those with significantly altered transcript abundance across all inhibitory treatments with respect to control germinating seeds, using data from ATH1 microarrays. This analysis identified numerous germination regulators as germination responsive, including the DELLA proteins GAI, RGA, and RGL3, the abscisic acid-insensitive proteins ABI4, ABI5, ABI8, and FRY1, and the gibberellin receptor GID1A. To help visualize these and other publicly available seed microarray data, we designed a seed mRNA expression browser using the electronic Fluorescent Pictograph platform. An overall decrease in gene expression and a 5-fold greater number of transcripts identified as statistically down-regulated in drug-inhibited seeds point to a role for mRNA degradation or turnover during seed germination. The genes identified in our study as responsive to germination define potential uncharacterized regulators of this process and provide a refined transcriptional signature for germinating Arabidopsis seeds.

  7. Inhibition of DNA glycosylases via small molecule purine analogs.

    Directory of Open Access Journals (Sweden)

    Aaron C Jacobs

    Full Text Available Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.

  8. Development of a unique small molecule modulator of CXCR4.

    Directory of Open Access Journals (Sweden)

    Zhongxing Liang

    Full Text Available BACKGROUND: Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4 and its ligand stromal cell-derived factor-1 (CXCL12 interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. METHODOLOGY/PRINCIPAL FINDINGS: We describe the actions of N,N'-(1,4-phenylenebis(methylenedipyrimidin-2-amine (designated MSX-122, a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using (18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. CONCLUSIONS/SIGNIFICANCE: We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can

  9. Selecting, Acquiring, and Using Small Molecule Libraries for High-Throughput Screening.

    Science.gov (United States)

    Dandapani, Sivaraman; Rosse, Gerard; Southall, Noel; Salvino, Joseph M; Thomas, Craig J

    The selection, acquisition and use of high quality small molecule libraries for screening is an essential aspect of drug discovery and chemical biology programs. Screening libraries continue to evolve as researchers gain a greater appreciation of the suitability of small molecules for specific biological targets, processes and environments. The decisions surrounding the make-up of any given small molecule library is informed by a multitude of variables and opinions vary on best-practices. The fitness of any collection relies upon upfront filtering to avoiding problematic compounds, assess appropriate physicochemical properties, install the ideal level of structural uniqueness and determine the desired extent of molecular complexity. These criteria are under constant evaluation and revision as academic and industrial organizations seek out collections that yield ever improving results from their screening portfolios. Practical questions including cost, compound management, screening sophistication and assay objective also play a significant role in the choice of library composition. This overview attempts to offer advice to all organizations engaged in small molecule screening based upon current best practices and theoretical considerations in library selection and acquisition.

  10. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles.

    Science.gov (United States)

    Imbar, Tal; Galliano, Daniela; Pellicer, Antonio; Laufer, Neri

    2014-06-01

    MicroRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. In this issue's Views and Reviews, the authors present the current knowledge regarding the involvement of microRNAs in several aspects of human reproduction and discuss its future implications for clinical practice.

  11. Targeting Th17 Cells with Small Molecules and Small Interference RNA.

    Science.gov (United States)

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.

  12. Targeting Th17 Cells with Small Molecules and Small Interference RNA

    Directory of Open Access Journals (Sweden)

    Hui Lin

    2015-01-01

    Full Text Available T helper 17 (Th17 cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL- 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA and Crohn’s disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4+ T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.

  13. Stereoselective Modulation of P-Glycoprotein by Chiral Small Molecules.

    Science.gov (United States)

    Carocci, Alessia; Catalano, Alessia; Turi, Francesco; Lovece, Angelo; Cavalluzzi, Maria M; Bruno, Claudio; Colabufo, Nicola A; Contino, Marialessandra; Perrone, Maria G; Franchini, Carlo; Lentini, Giovanni

    2016-01-01

    Inhibition of drug efflux pumps such as P-glycoprotein (P-gp) is an approach toward combating multidrug resistance, which is a significant hurdle in current cancer treatments. To address this, N-substituted aryloxymethyl pyrrolidines were designed and synthesized in their homochiral forms in order to investigate the stereochemical requirements for the binding site of P-gp. Our study provides evidence that the chiral property of molecules could be a strategy for improving the capacity for interacting with P-gp, as the most active compounds of the series stereoselectively modulated this efflux pump. The naphthalene-1-yl analogue (R)-2-[(2,3-dichlorophenoxy)methyl]-1-(naphthalen-1-ylmethyl)pyrrolidine) [(R)-7 a] emerged foremost for its potency and stereoselectivity toward P-gp, with the S enantiomer being nearly inactive. The modulation of P-gp by (R)-7 a involved consumption of ATP, thus demonstrating that the compound behaves as a P-gp substrate.

  14. Dissociative chemisorption dynamics of small molecules on metal surfaces

    Institute of Scientific and Technical Information of China (English)

    JIANG Bin; XIE DaiQian

    2014-01-01

    Much progress has been achieved for both experimental and theoretical studies on the dissociative chemisorption of molecules on surfaces.Quantum state-resolved experimental data has provided unprecedented details for these fundamental steps in heterogeneous catalysis,while the quantitative dynamics is still not fully understood in theory.An in-depth understanding of experimental observations relies on accurate dynamical calculations,in which the potential energy surface and adequate quantum mechanical implementation are desired.This article summarizes the current methodologies on the construction of potential energy surfaces and the quantum mechanical treatments,some of which are promising for future applications.The challenges in this field are also addressed.

  15. Small organic molecules modulating iodine uptake in thyroid

    Energy Technology Data Exchange (ETDEWEB)

    Ambroise, Y. [CEA Saclay, DSV/DBJC/SMMCB, 91 - Gif-sur-Yvette (France)

    2006-07-01

    The thyroid gland accumulates large quantities of iodine. This uptake is needed for the production of iodinated hormones (T3 and T4). The first step in the iodine accumulation is a basolateral transport of iodide ions by the cloned 'Natrium Iodide Sym-porter' also called NIS. Using high-throughput screening techniques, we have identified a series of inhibitors of the iodide uptake in thyrocytes. These compounds are of medical significance in case of thyroid deregulation and can also offer solutions for radio-iodine detoxification in case of emergency situations (nuclear industry...). In addition, these small organic molecules can be important tools for the understanding of NIS structure and functions In parallel, we have identified and characterized a single compound capable to strongly enhance the amount of intra-cellular iodide in rat thyrocytes (FRTL5) as well as in HEK293 cells transfected with hNIS (Natrium/Iodide Sym-porter). Preliminary studies show that this effect is NIS dependant, and is induced by alternative and unknown mechanisms. Future work will consist in unraveling the mode of action of this molecule. These informations will help us not only to better understand the iodide pathways in the thyroid, but also to design more active analogues. We will use photo-labelling techniques to identify new proteins involved in the iodide transfer and retention. In addition, preliminary experiments are underway to validate our compound as an anti-cancer agent. Targeted NIS gene delivery into tumors plus radio-iodide injection leads to tumor size regression. Unfortunately, doses of radioactivity are to high for safe treatment. Our compound may lead to enhanced radio-iodide entrapment, thus necessitating lower doses of radioactivity for tumor regression. (author)

  16. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... of different grating periods which result in distinct laser emission wavelengths. Imaging in two dimensions of space is enabled by focusing an image of the laser surface with a cylindrical lens onto the entrance slit of an imaging spectrometer. Imaging is demonstrated by monitoring of diffusing small sucrose...

  17. Potential of small-molecule fungal metabolites in antiviral chemotherapy.

    Science.gov (United States)

    Roy, Biswajit G

    2017-08-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.

  18. Reaction dynamics of small molecules at metal surfaces

    CERN Document Server

    Samson, P A

    1999-01-01

    directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d sub N sub N responsible for the product vibrational excitation. Although N sub 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (approx 10 sup - sup 6 to 10 sup - sup 7). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe sub 4 N. Scanning tunnelling microscopy yields atomic scale features that cannot be explained by simple overlayers. It is proposed that the uppermost iron layer reconstructs to generate quasi-octahedral sites between the top two layers, with sub-surface nitrogen in these sites forming a model for the 'surface nitride' structure. The dissociation-desorption dynamics of D sub 2 upon the Sn/Pt(111) surface alloy a...

  19. Small Molecule Identification with MOLGEN and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Markus Meringer

    2013-05-01

    Full Text Available This paper details the MOLGEN entries for the 2012 CASMI contest for small molecule identification to demonstrate structure elucidation using structure generation approaches. Different MOLGEN programs were used for different categories, including MOLGEN–MS/MS for Category 1, MOLGEN 3.5 and 5.0 for Category 2 and MOLGEN–MS for Categories 3 and 4. A greater focus is given to Categories 1 and 2, as most CASMI participants entered these categories. The settings used and the reasons behind them are described in detail, while various evaluations are used to put these results into perspective. As one author was also an organiser of CASMI, these submissions were not part of the official CASMI competition, but this paper provides an insight into how unknown identification could be performed using structure generation approaches. The approaches are semi-automated (category dependent and benefit greatly from user experience. Thus, the results presented and discussed here may be better than those an inexperienced user could obtain with MOLGEN programs.

  20. Dissecting RNA-interference pathway with small molecules.

    Science.gov (United States)

    Chiu, Ya-Lin; Dinesh, Chimmanamada U; Chu, Chia-ying; Ali, Akbar; Brown, Kirk M; Cao, Hong; Rana, Tariq M

    2005-06-01

    RNA interference (RNAi) is a process whereby short-interfering RNAs (siRNA) silence gene expression in a sequence-specific manner. We have screened a chemical library of substituted dihydropteridinones and identified a nontoxic, cell permeable, and reversible inhibitor of the RNAi pathway in human cells. Biochemical and fluorescence resonance-energy transfer experiments demonstrated that one of the compounds, named ATPA-18, inhibited siRNA unwinding that occurred within 6 hr of siRNA transfection. Extracts prepared from ATPA-18-treated cells also exhibited a decrease in target RNA cleavage by activated RNA-induced silencing complex (RISC*). Interestingly, when activated RISC*, which harbors unwound antisense siRNA, was treated with ATPA-18 in vitro, target RNA cleavage was not affected, indicating that this compound inhibited siRNA unwinding or steps upstream of unwinding in the RNAi pathway. Our results also establish the timing of siRNA unwinding and show that siRNA helicase activity is required for RNAi. ATPA-18 analogs will therefore provide a new class of small molecules for studying RNAi mechanisms in a variety of model organisms and deciphering in vivo genetic functions through reverse genetics.

  1. Small-Molecule Inhibition of BRDT for Male Contraception

    Science.gov (United States)

    Matzuk, Martin M.; McKeown, Michael R.; Filippakopoulos, Panagis; Li, Qinglei; Ma, Lang; Agno, Julio E.; Lemieux, Madeleine E.; Picaud, Sarah; Yu, Richard N.; Qi, Jun; Knapp, Stefan; Bradner, James E.

    2012-01-01

    Summary A pharmacologic approach to male contraception remains a longstanding challenge in medicine. Toward this objective, we explored the spermatogenic effects of a selective small-molecule inhibitor (JQ1) of the bromodomain and extraterminal (BET) subfamily of epigenetic reader proteins. Here, we report potent inhibition of the testis-specific member BRDT, which is essential for chromatin remodeling during spermatogenesis. Biochemical and crystallographic studies confirm that occupancy of the BRDT acetyl-lysine binding pocket by JQ1 prevents recognition of acetylated histone H4. Treatment of mice with JQ1 reduced seminiferous tubule area, testis size, and spermatozoa number and motility without affecting hormone levels. Although JQ1-treated males mate normally, inhibitory effects of JQ1 evident at the spermatocyte and round spermatid stages cause a complete and reversible contraceptive effect. These data establish a new contraceptive that can cross the blood:testis boundary and inhibit bromodomain activity during spermatogenesis, providing a lead compound targeting the male germ cell for contraception. PaperClip PMID:22901802

  2. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  3. Electrocatalytic recycling of CO2 and small organic molecules.

    Science.gov (United States)

    Lee, Jaeyoung; Kwon, Youngkook; Machunda, Revocatus L; Lee, Hye Jin

    2009-10-05

    As global warming directly affects the ecosystems and humankind in the 21st century, attention and efforts are continuously being made to reduce the emission of greenhouse gases, especially carbon dioxide (CO2). In addition, there have been numerous efforts to electrochemically convert CO2 gas to small organic molecules (SOMs) and vice versa. Herein, we highlight recent advances made in the electrocatalytic recycling of CO2 and SOMs including (i) the overall trend of research activities made in this area, (ii) the relations between reduction conditions and products in the aqueous phase, (iii) the challenges in the use of gas diffusion electrodes for the continuous gas phase CO2 reduction, as well as (iv) the development of state of the art hybrid techniques for industrial applications. Perspectives geared to fully exploit the potential of zero-gap cells for CO2 reduction in the gaseous phase and the high applicability on a large scale are also presented. We envision that the hybrid system for CO2 reduction supported by sustainable solar, wind, and geothermal energies and waste heat will provide a long term reduction of greenhouse gas emissions and will allow for continued use of the abundant fossil fuels by industries and/or power plants but with zero emissions.

  4. Phosphate binding energy and catalysis by small and large molecules.

    Science.gov (United States)

    Morrow, Janet R; Amyes, Tina L; Richard, John P

    2008-04-01

    Catalysis is an important process in chemistry and enzymology. The rate acceleration for any catalyzed reaction is the difference between the activation barriers for the uncatalyzed (Delta G(HO)(#)) and catalyzed (Delta G(Me)(#)) reactions, which corresponds to the binding energy (Delta G(S)(#) = Delta G(Me)(#)-Delta G(HO)(#)) for transfer of the reaction transition state from solution to the catalyst. This transition state binding energy is a fundamental descriptor of catalyzed reactions, and its evaluation is necessary for an understanding of any and all catalytic processes. We have evaluated the transition state binding energies obtained from interactions between low molecular weight metal ion complexes or high molecular weight protein catalysts and the phosphate group of bound substrate. Work on catalysis by small molecules is exemplified by studies on the mechanism of action of Zn2(1)(H2O). A binding energy of Delta G(S)(#) = -9.6 kcal/mol was determined for Zn2(1)(H2O)-catalyzed cleavage of the RNA analogue HpPNP. The pH-rate profile for this cleavage reaction showed that there is optimal catalytic activity at high pH, where the catalyst is in the basic form [Zn2(1)(HO-)]. However, it was also shown that the active form of the catalyst is Zn2(1)(H2O) and that this recognizes the C2-oxygen-ionized substrate in the cleavage reaction. The active catalyst Zn2(1)(H2O) shows a high affinity for oxyphosphorane transition state dianions and a stable methyl phosphate transition state analogue, compared with the affinity for phosphate monoanion substrates. The transition state binding energies, Delta G(S)(#), for cleavage of HpPNP catalyzed by a variety of Zn2+ and Eu3+ metal ion complexes reflect the increase in the catalytic activity with increasing total positive charge at the catalyst. These values of Delta G(S)(#) are affected by interactions between the metal ion and its ligands, but these effects are small in comparison with Delta G(S)(#) observed for catalysis

  5. A small-molecule dye for NIR-II imaging.

    Science.gov (United States)

    Antaris, Alexander L; Chen, Hao; Cheng, Kai; Sun, Yao; Hong, Guosong; Qu, Chunrong; Diao, Shuo; Deng, Zixin; Hu, Xianming; Zhang, Bo; Zhang, Xiaodong; Yaghi, Omar K; Alamparambil, Zita R; Hong, Xuechuan; Cheng, Zhen; Dai, Hongjie

    2016-02-01

    Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (∼90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)-a clinically approved NIR-I dye-in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ∼4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

  6. A small-molecule dye for NIR-II imaging

    Science.gov (United States)

    Antaris, Alexander L.; Chen, Hao; Cheng, Kai; Sun, Yao; Hong, Guosong; Qu, Chunrong; Diao, Shuo; Deng, Zixin; Hu, Xianming; Zhang, Bo; Zhang, Xiaodong; Yaghi, Omar K.; Alamparambil, Zita R.; Hong, Xuechuan; Cheng, Zhen; Dai, Hongjie

    2016-02-01

    Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (~90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)--a clinically approved NIR-I dye--in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ~4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.

  7. Cyclopentadithiophene organic core in small molecule organic solar cells: morphological control of carrier recombination.

    Science.gov (United States)

    Domínguez, Rocío; Montcada, Núria F; de la Cruz, Pilar; Palomares, Emilio; Langa, Fernando

    2017-02-01

    Two new planar and symmetrical A-D-A (electron acceptor-electron donor-electron acceptor) small molecules based on a commercial cyclopentadithiophene derivative have been synthesized for solution processed small molecule organic solar cells. The aim was to synthesise the molecules to be energetically identical (similar HOMO-LUMO energy levels) in order to assign the differences observed to changes in the film morphology or to differences in the interfacial recombination kinetics or both. Devices were electrically characterized under one sun simulated (1.5 AM G) conditions by determining current-voltage curves, light harvesting efficiencies and external quantum efficiencies. Moreover, time-resolved photo-induced techniques such as photo-induced charge extraction and photo-induced transient photo-voltage were also performed. The results demonstrate that, despite having the same core, i.e. cyclopentadithiophene, the use of one hexyl chain instead of two in the organic molecule leads to a greater control of the molecular ordering using solvent vapour annealing techniques and also to better solar cell efficiency.

  8. Small-molecule inhibitors of dengue-virus entry.

    Directory of Open Access Journals (Sweden)

    Aaron G Schmidt

    Full Text Available Flavivirus envelope protein (E mediates membrane fusion and viral entry from endosomes. A low-pH induced, dimer-to-trimer rearrangement and reconfiguration of the membrane-proximal "stem" of the E ectodomain draw together the viral and cellular membranes. We found stem-derived peptides from dengue virus (DV bind stem-less E trimer and mimic the stem-reconfiguration step in the fusion pathway. We adapted this experiment as a high-throughput screen for small molecules that block peptide binding and thus may inhibit viral entry. A compound identified in this screen, 1662G07, and a number of its analogs reversibly inhibit DV infectivity. They do so by binding the prefusion, dimeric E on the virion surface, before adsorption to a cell. They also block viral fusion with liposomes. Structure-activity relationship studies have led to analogs with submicromolar IC₉₀s against DV2, and certain analogs are active against DV serotypes 1,2, and 4. The compounds do not inhibit the closely related Kunjin virus. We propose that they bind in a previously identified, E-protein pocket, exposed on the virion surface and although this pocket is closed in the postfusion trimer, its mouth is fully accessible. Examination of the E-trimer coordinates (PDB 1OK8 shows that conformational fluctuations around the hinge could open the pocket without dissociating the trimer or otherwise generating molecular collisions. We propose that compounds such as 1662G07 trap the sE trimer in a "pocket-open" state, which has lost affinity for the stem peptide and cannot support the final "zipping up" of the stem.

  9. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    Science.gov (United States)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  10. Effect of a Small Current Quark Mass on Bag Constant

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; FENG Hong-Tao; SUN Wei-Min; DING Xiao-Ping; PING Jia-Lun

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson-Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.

  11. Effect of a Small Current Quark Mass on Bag Constant

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; FENGHong-Tao; SUNWei-Min; DINGXiao-Ping; PINGJia-Lun

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator within the Dyson Schwinger approach is developed. From this the small current quark mass dependence of the bag constant is evaluated. It is found that the bag constant decreases with the increasing current quark mass and the contribution of the current quark mass cannot be dropped.

  12. Tuning stamp surface energy for soft lithography of polar molecules to fabricate bioactive small-molecule microarrays.

    Science.gov (United States)

    Vaish, Amit; Shuster, Mitchell J; Cheunkar, Sarawut; Weiss, Paul S; Andrews, Anne M

    2011-05-23

    Soft-lithography-based techniques are widely used to fabricate microarrays. Here, the use of microcontact insertion printing is described, a soft-lithography method specifically developed for patterning at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic host self-assembled monolayers (SAMs) are surmounted. Both prefunctionalized tethers and on-chip functionalization of SAMs patterned by microcontact insertion printing enable the fabrication of small-molecule microarrays. Substrates patterned with the neurotransmitter precursor 5-hydroxytryptophan selectively capture a number of different types of membrane-associated receptor proteins, which are native binding partners evolved to recognize free serotonin. These advances provide new avenues for chemically patterning small molecules and fabricating small molecule microarrays with highly specific molecular recognition capabilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL, thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2, produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2 from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.

  14. Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

    Directory of Open Access Journals (Sweden)

    Yan-Chuang Han

    2016-01-01

    Full Text Available Although it is possible to generate neural stem cells (NSC from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine.

  15. Making cardiomyocytes with your chemistry set:Small molecule-induced cardiogenesis in somatic cells

    Institute of Scientific and Technical Information of China (English)

    Woong-Hee; Kim; Da-Woon; Jung; Darren; Reece; Williams

    2015-01-01

    Cell transplantation is an attractive potential therapy for heart diseases. For example, myocardial infarction(MI) is a leading cause of mortality in many countries. Numerous medical interventions have been developed to stabilize patients with MI and, although this has increased survival rates, there is currently no clinically approved method to reverse the loss of cardiac muscle cells(cardiomyocytes) that accompanies this disease. Cell transplantation has been proposed as a method to replace cardiomyocytes, but a safe and reliable source of cardiogenic cells is required. An ideal source would be the patients’ own somatic tissue cells, which could be converted into cardiogenic cells and transplanted into the site of MI. However, these are difficult to produce in large quantities and standardized protocols to produce cardiac cells would be advantageous for the research community. To achieve these research goals, small molecules represent attractive tools to control cell behavior. In this editorial, we introduce the use of small molecules in stem cell research and summarize their application to the induction of cardiogenesis in noncardiac cells. Exciting new developments in this field are discussed, which we hope will encourage cardiac stem cell biologists to further consider employing small molecules in their culture protocols.

  16. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  17. Terminal protection of small molecule-linked ssDNA-SWNT nanoassembly for sensitive detection of small molecule and protein interaction

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Dian-Ming Zhou; Zhan Wu; Li-Juan Tang; Jian-Hui Jiang

    2013-01-01

    The interactions between small molecules and proteins constitute a critical regulatory mechanism in many fundamental biological processes.A novel biosensing strategy has been developed for sensitive and selective detection of small molecule and protein interaction on the basis of terminal protection of small molecule-linked ssDNA-SWNT nanoassembly.The developed strategy is demonstrated using folate and its binding protein folate receptor (FR) as a model case.The results reveal the developed technique displays superb resistance to non-specific binding,very low detection limit as low as subnanomolar,and a wide dynamic range from 100 pmol/L to 500 nmol/L of FR.Thus,it may offer a simple,cost-effective,highly selective and sensitive platform for homogeneous fluorescence detection of small molecule-protein interaction and related biochemical studies.

  18. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Science.gov (United States)

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  19. Ambient roll-to-roll fabrication of flexible solar cells based on small molecules

    DEFF Research Database (Denmark)

    Lin, Yuze; Dam, Henrik Friis; Andersen, Thomas Rieks

    2013-01-01

    All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells.......All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells....

  20. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization

    Directory of Open Access Journals (Sweden)

    Sun Yinghua

    2006-10-01

    Full Text Available Abstract Background Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS externalization. Results In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses. Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X7 receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. Conclusion Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose

  1. Bioactive molecules: current trends in discovery, synthesis, delivery and testing

    Directory of Open Access Journals (Sweden)

    Yew Beng Kang

    2013-04-01

    Full Text Available Important bioactive molecules are moleculesthat are pharmacologically active derived from naturalsources and through chemical synthesis. Over the yearsmany of such molecules have been discovered throughbioprospective endeavours. The discovery of taxol fromthe pacific yew tree bark that has the ability in stabilisingcellular microtubules represents one of the hallmarks ofsuccess of such endeavours. In recent years, the discoveryprocess has been aided by the rapid developmentof techniques and technologies in chemistry andbiotechnology. The progress in advanced genetics andcomputational biology has also transformed the wayhypotheses are formulated as well as the strategies for drugdiscovery. Of equal importance is the use of advanceddrug delivery vehicles in enhancing the efficacy andbioavailability of bioactive molecules. The availability ofsuitable animal models for testing and validation is yetanother major determinant in increasing the prospect forclinical trials of bioactive molecules.

  2. Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction.

    Science.gov (United States)

    Doveston, Richard G; Kuusk, Ave; Andrei, Sebastian A; Leysen, Seppe; Cao, Qing; Castaldi, Maria P; Hendricks, Adam; Brunsveld, Luc; Chen, Hongming; Boyd, Helen; Ottmann, Christian

    2017-08-01

    14-3-3 proteins are positive regulators of the tumor suppressor p53, the mutation of which is implicated in many human cancers. Current strategies for targeting of p53 involve restoration of wild-type function or inhibition of the interaction with MDM2, its key negative regulator. Despite the efficacy of these strategies, the alternate approach of stabilizing the interaction of p53 with positive regulators and, thus, enhancing tumor suppressor activity, has not been explored. Here, we report the first example of small-molecule stabilization of the 14-3-3 - p53 protein-protein interaction (PPI) and demonstrate the potential of this approach as a therapeutic modality. We also observed a disconnect between biophysical and crystallographic data in the presence of a stabilizing molecule, which is unusual in 14-3-3 PPIs. © 2017 Federation of European Biochemical Societies.

  3. Novel small molecule EGFR inhibitors as candidate drugs in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Berardi R

    2013-05-01

    Full Text Available Rossana Berardi, Matteo Santoni, Francesca Morgese, Zelmira Ballatore, Agnese Savini, Azzurra Onofri, Paola Mazzanti, Mirco Pistelli, Chiara Pierantoni, Mariagrazia De Lisa, Miriam Caramanti, Silvia Pagliaretta, Chiara Pellei, Stefano CascinuMedical Oncology Unit, Universita Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I – GM Lancisi – G Salesi, Ancona, ItalyAbstract: In the last decade, better understanding of the role of epidermal growth factor receptor in the pathogenesis and progression of non-small cell lung cancer has led to a revolution in the work-up of these neoplasms. Tyrosine kinase inhibitors, such as erlotinib and gefitinib, have been approved for the treatment of non-small cell lung cancer, demonstrating an improvement in progression-free and overall survival, particularly in patients harboring activating EGFR mutations. Nevertheless, despite initial responses and long-lasting remissions, resistance to tyrosine kinase inhibitors invariably develops, most commonly due to the emergence of secondary T790M mutations or to the amplification of mesenchymal–epithelial transition factor (c-Met, which inevitably leads to treatment failure. Several clinical studies are ongoing (http://www.clinicaltrials.gov/, aimed to evaluate the efficacy and toxicity of combined approaches and to develop novel irreversible or multitargeted tyrosine kinase inhibitors and mutant-selective inhibitors to overcome such resistance. This review is an overview of ongoing Phase I, II, and III trials of novel small molecule epidermal growth factor receptor inhibitors and combinations in non-small cell lung cancer patients.Keywords: clinical trials, combined targeted therapy, epidermal growth factor receptor, non-small cell lung cancer, novel targeted agents, tyrosine kinase inhibitors

  4. Small-molecule quinolinol inhibitor identified provides protection against BoNT/A in mice.

    Directory of Open Access Journals (Sweden)

    Padma Singh

    Full Text Available Botulinum neurotoxins (BoNTs, etiological agents of the life threatening neuroparalytic disease botulism, are the most toxic substances currently known. The potential for the use as bioweapon makes the development of small-molecule inhibitor against these deadly toxins is a top priority. Currently, there are no approved pharmacological treatments for BoNT intoxication. Although an effective vaccine/immunotherapy is available for immuno-prophylaxis but this cannot reverse the effects of toxin inside neurons. A small-molecule pharmacological intervention, especially one that would be effective against the light chain protease, would be highly desirable. Similarity search was carried out from ChemBridge and NSC libraries to the hit (7-(phenyl(8-quinolinylaminomethyl-8-quinolinol; NSC 84096 to mine its analogs. Several hits obtained were screened for in silico inhibition using AutoDock 4.1 and 19 new molecules selected based on binding energy and Ki. Among these, eleven quinolinol derivatives potently inhibited in vitro endopeptidase activity of botulinum neurotoxin type A light chain (rBoNT/A-LC on synaptosomes isolated from rat brain which simulate the in vivo system. Five of these inhibitor molecules exhibited IC(50 values ranging from 3.0 nM to 10.0 µM. NSC 84087 is the most potent inhibitor reported so far, found to be a promising lead for therapeutic development, as it exhibits no toxicity, and is able to protect animals from pre and post challenge of botulinum neurotoxin type A (BoNT/A.

  5. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    Younes Valadbeigi; Hossein Farrokhpour; Mahmoud Tabrizchi

    2015-11-01

    Adsorption of CO, N2, H2O, O2, H2 and NO molecules on B36 cluster was studied using density functional theory (DFT) with B3LYP functional and 6-311+G(d,p) basis set. Energies, enthalpies and Gibbs free energies of the adsorption processes were calculated. The thermodynamic data showed that the B36 cluster is a good adsorbent only for CO, O2 and NO molecules. The calculated energies of adsorption of N2, H2 O and H2 on the B36 cluster were positive values. CO molecule is adsorbed via the carbon atom more effectively, while the nitrogen atom of NO is adsorbed better than the oxygen atom. Also, when NO and O2 are adsorbed synchronously via both atoms, they dissociate. The edge boron atoms of the B36 cluster showed more reactivity than the inner atoms.

  6. Novel Small Molecule Antagonists of the Interaction of the Androgen Receptor and Transcriptional Co-regulators

    Science.gov (United States)

    2009-01-01

    Netherlands ) (see appendices). Small Molecule Inhibitors of the Androgen Receptor Transcriptional Activity for Prostate Cancer Drug Discovery...peritoneal injection, tail injection, oral gavage, retro-orbital blood sampling, isoflurane anesthesia, CO2 euthanasia , cardiac stick, organ harvesting...Discovery Poster Award, Androgens 2008 Meeting, Rotterdam (The Netherlands ), October 2008 Novel Small Molecules Antagonists of the Interaction of

  7. Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells

    DEFF Research Database (Denmark)

    Huang, Jianhua; Zhang, Shanlin; jiang, Bo

    2016-01-01

    With respect to the successes from symmetric small molecules, asymmetric ones have recently emerged as an alternative choice. In this paper, we present the synthesis and photovoltaic properties of four asymmetric small molecule donors. The benzo[1,2-b:4,5-b']dithiophene (BDT) end in the asymmetri...

  8. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy

    DEFF Research Database (Denmark)

    Farkas, Thomas; Daugaard, Mads; Jaattela, Marja

    2011-01-01

    by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes...

  9. Group specific internal standard technology (GSIST) for simultaneous identification and quantification of small molecules

    Science.gov (United States)

    Adamec, Jiri; Yang, Wen-Chu; Regnier, Fred E

    2014-01-14

    Reagents and methods are provided that permit simultaneous analysis of multiple diverse small molecule analytes present in a complex mixture. Samples are labeled with chemically identical but isotopically distince forms of the labeling reagent, and analyzed using mass spectrometry. A single reagent simultaneously derivatizes multiple small molecule analytes having different reactive functional groups.

  10. Battle for the bulge: directing small molecules to DNA and RNA defects.

    Science.gov (United States)

    Bevilacqua, Philip C

    2002-08-01

    Small molecules were tailored to specifically bind bulged DNA by complementing the geometry and nucleotide size of the bulge site. The prospect of generating small molecules that influence the secondary structure of DNA and RNA holds great promise for clinical applications.

  11. Blu-ray based optomagnetic aptasensor for detection of small molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Pinto, Alessandro

    2016-01-01

    This paper describes an aptamer-based optomagnetic biosensor for detection of a small molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) clustering. For the detection of a target small molecule, two mutually exclusive binding reactions (aptamer-target binding...

  12. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf;

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1...

  13. Electrostatic potential of several small molecules from density functional theory

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A number of density functional theory (DFT) methods were used to calculate the electrostatic potential for the series of molecules N2, F2, NH3, H2O, CHF3, CHCl3, C6H6, TiF4, CO(NH2)2 and C4H5N3O compared with QCISD (quadratic configuration interaction method including single and double substitutions) results. Comparisons were made between the DFT computed results and the QCISD ab initio ones and MP2 ab initio ones, compared with the root-mean-square deviation and electrostatic potential difference contours figures. It was found that the hybrid DFT method B3LYP, yields electrostatic potential in good agreement with the QCISD results. It is suggest this is a useful approach, especially for large molecules that are difficult to study by ab initio methods.

  14. Chasing the structures of small molecules in arbuscular mycorrhizal signaling.

    Science.gov (United States)

    Bucher, Marcel; Wegmüller, Sarah; Drissner, David

    2009-08-01

    The arbuscular mycorrhiza (AM) is a symbiosis between most terrestrial plants and fungi of the ancient phylum Glomeromycota. AM improves the uptake of water and mineral nutrients, such as phosphorus (P) and nitrogen (N), of the host plant in exchange for photosynthetically fixed carbon. Successful colonization and a functional interaction between host plant and mycobiont are based upon exchange of signaling molecules at different stages of symbiosis development. Strigolactones, a novel class of plant hormones, are secreted by plant roots stimulating presymbiotic growth of AM fungi. Fungi release soluble signaling molecules, the enigmatic 'Myc factors', that activate early symbiotic root responses. Lysophosphatidylcholine is a lipophilic intraradical mycorrhizal signal triggering plant phosphate transporter gene expression late in AM development through a P-controlled transcriptional mechanism. This enables uptake of orthophosphate released from the AM fungus.

  15. Efficient Solution-Processed Blue Electrophosphorescent Devices Based on a Novel Small-Molecule Host

    Institute of Scientific and Technical Information of China (English)

    HOU Liu-Dong; LI Wei; DUAN Lian; QIU Yong

    2008-01-01

    @@ Efficient blue small molecular phosphorescent light-emitting diodes with a blue phosphorescent dye bis(3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxypride) iridium (Ⅲ) (Flrpic) doped into a novel small-molecule host 9,9-bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl] fluorene (TBCPF) as the light-emitting layer have been fabricated by spin-coating. The host TBCPF can form homogeneous amorphous films by spin-coating and has triplet energy higher than that of the blue phosphorescent dye Flrpic. All the devices with different Flrpic concentration in the emitting layer give emission from Flrpic indicating complete energy transfer from TBCPF to Flrpic. The device shows the best performance with a peak brightness of 8050cd/m2 at 10.2 V and the maximum current efficiency up to 3.52 cd/A, when the Flrpic doped concentration is as high as 16%.

  16. Encapsulation of small ionic molecules within alpha-cyclodextrins.

    Science.gov (United States)

    Rodriguez, Javier; Elola, M Dolores

    2009-02-05

    Results from molecular dynamics experiments pertaining to the encapsulation of ClO4- within the hydrophobic cavity of an aqueous alpha-cyclodextrin (alpha-CD) are presented. Using a biased sampling procedure, we constructed the Gibbs free energy profile associated with the complexation process. The profile presents a global minimum at the vicinity of the primary hydroxyl groups, where the ion remains tightly coordinated to four water molecules via hydrogen bonds. Our estimate for the global free energy of encapsulation yields DeltaGenc approximately -2.5 kBT. The decomposition of the average forces acting on the trapped ion reveals that the encapsulation is controlled by Coulomb interactions between the ion and OH groups in the CD, with a much smaller contribution from the solvent molecules. Changes in the previous results, arising from the partial methylation of the host CD and modifications in the charge distribution of the guest molecule are also discussed. The global picture that emerges from our results suggests that the stability of the ClO4- encapsulation involves not only the individual ion but also its first solvation shell.

  17. Direct and selective small-molecule activation of proapoptotic BAX

    Science.gov (United States)

    Gavathiotis, Evripidis; Reyna, Denis E; Bellairs, Joseph A; Leshchiner, Elizaveta S; Walensky, Loren D

    2013-01-01

    BCL-2 family proteins are key regulators of the apoptotic pathway. Antiapoptotic members sequester the BCL-2 homology 3 (BH3) death domains of proapoptotic members such as BAX to maintain cell survival. The antiapoptotic BH3-binding groove has been successfully targeted to reactivate apoptosis in cancer. We recently identified a geographically distinct BH3-binding groove that mediates direct BAX activation, suggesting a new strategy for inducing apoptosis by flipping BAX’s ‘on switch’. Here we applied computational screening to identify a BAX activator molecule that directly and selectively activates BAX. We demonstrate by NMR and biochemical analyses that the molecule engages the BAX trigger site and promotes the functional oligomerization of BAX. The molecule does not interact with the BH3-binding pocket of antiapoptotic proteins or proapoptotic BAK and induces cell death in a BAX-dependent fashion. To our knowledge, we report the first gain-of-function molecular modulator of a BCL-2 family protein and demonstrate a new paradigm for pharmacologic induction of apoptosis. PMID:22634637

  18. Gradient-Driven Molecule Construction: An Inverse Approach Applied to the Design of Small-Molecule Fixating Catalysts

    CERN Document Server

    Weymuth, Thomas

    2014-01-01

    Rational design of molecules and materials usually requires extensive screening of molecular structures for the desired property. The inverse approach to deduce a structure for a predefined property would be highly desirable, but is, unfortunately, not well-defined. However, feasible strategies for such an inverse design process may be successfully developed for specific purposes. We discuss options for calculating 'jacket' potentials that fulfill a predefined target requirement - a concept that we recently introduced [T. Weymuth, M. Reiher, MRS Proceediungs, 2013, 1524, DOI:10.1557/opl.2012.1764]. We consider the case of small-molecule activating transition metal catalysts. As a target requirement we choose the vanishing geometry gradients on all atoms of a subsystem consisting of a metal center binding the small molecule to be activated. The jacket potential can be represented within a full quantum model or by a sequence of approximations of which a field of electrostatic point charges is the simplest. In a...

  19. Discovery of a Structurally Unique Small Molecule that Inhibits Protein Synthesis

    Science.gov (United States)

    Thakral, Durga; Tae, Hyun Seop

    2017-01-01

    Identifying and characterizing natural products and synthetic small molecules that inhibit biochemical processes such as ribosomal translation can lead to novel sources of molecular probes and therapeutics. The search for new antibiotics has been invigorated by the increasing burden of drug-resistant bacteria and has identified many clinically essential prokaryote-specific ribosome inhibitors. However, the current cohort of antibiotics is limited with regards to bacterial resistance mechanisms because of structural similarity within classes. From a high-throughput screen for translation inhibitors, we discovered a new compound, T6102, which inhibits bacterial protein synthesis in vitro, inhibits bacterial growth of Bacillus subtilis in vivo, and has a chemical structure that appears to be unique among known classes of translation-inhibiting antibiotics. T6102’s unique structure compared to current clinically-utilized antibiotics makes it an exciting new candidate for the development of next-generation antibiotics.

  20. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  1. Targeted delivery as key for the success of small osteoinductive molecules.

    Science.gov (United States)

    Balmayor, Elizabeth R

    2015-11-01

    Molecules such as growth factors, peptides and small molecules can guide cellular behavior and are thus important for tissue engineering. They are rapidly emerging as promising compounds for the regeneration of tissues of the musculoskeletal system. Growth factors have disadvantages such as high cost, short half-life, supraphysiological amounts needed, etc. Therefore, small molecules may be an alternative. These molecules have been discovered using high throughput screening. Small osteoinductive molecules exhibit several advantages over growth factors owing to their small sizes, such as high stability and non-immunogenicity. These molecules may stimulate directly signaling pathways that are important for osteogenesis. However, systemic application doesn't induce osteogenesis in most cases. Therefore, local administration is needed. This may be achieved by using a bone graft material providing additional osteoconductive properties. These graft materials can also act by themselves as a delivery matrix for targeted and local delivery. Furthermore, vascularization is necessary in the process of osteogenesis. Many of the small molecules are also capable of promoting vascularization of the tissue to be regenerated. Thus, in this review, special attention is given to molecules that are capable of inducing both angiogenesis and osteogenesis simultaneously. Finally, more recent preclinical and clinical uses in bone regeneration of those molecules are described, highlighting the needs for the clinical translation of these promising compounds.

  2. Mapping the Protein Interaction Landscape for Fully Functionalized Small-Molecule Probes in Human Cells

    OpenAIRE

    Kambe, Tohru; Correia, Bruno E.; Niphakis, Micah J.; Cravatt, Benjamin F.

    2014-01-01

    Phenotypic screening provides a means to discover small molecules that perturb cell biological processes. Discerning the proteins and biochemical pathways targeted by screening hits, however, remains technically challenging. We recently described the use of small molecules bearing photoreactive groups and latent affinity handles as fully functionalized probes for integrated phenotypic screening and target identification. The general utility of such probes, or, for that matter, any small-molec...

  3. Identification of a new class of small molecules that efficiently reactivate latent Epstein-Barr Virus.

    Science.gov (United States)

    Tikhmyanova, Nadezhda; Schultz, David C; Lee, Theresa; Salvino, Joseph M; Lieberman, Paul M

    2014-03-21

    Epstein-Barr Virus (EBV) persists as a latent infection in many lymphoid and epithelial malignancies, including Burkitt's lymphomas, nasopharyngeal carcinomas, and gastric carcinomas. Current chemotherapeutic treatments of EBV-positive cancers include broad-spectrum cytotoxic drugs that ignore the EBV-positive status of tumors. An alternative strategy, referred to as oncolytic therapy, utilizes drugs that stimulate reactivation of latent EBV to enhance the selective killing of EBV-positive tumors, especially in combination with existing inhibitors of herpesvirus lytic replication, like Ganciclovir (GCV). At present, no small molecule, including histone deacetylase (HDAC) inhibitors, have proven safe or effective in clinical trials for treatment of EBV-positive cancers. Aiming to identify new chemical entities that induce EBV lytic cycle, we have developed a robust high-throughput cell-based assay to screen 66,840 small molecule compounds. Five structurally related tetrahydrocarboline derivatives were identified, two of which had EC50 measurements in the range of 150-170 nM. We show that these compounds reactivate EBV lytic markers ZTA and EA-D in all EBV-positive cell lines we have tested independent of the type of latency. The compounds reactivate a higher percentage of latently infected cells than HDAC inhibitors or phorbol esters in many cell types. The most active compounds showed low toxicity to EBV-negative cells but were highly effective at selective cell killing of EBV-positive cells when combined with GCV. We conclude that we have identified a class of small molecule compounds that are highly effective at reactivating latent EBV infection in a variety of cell types and show promise for lytic therapy in combination with GCV.

  4. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule.

  5. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling.

    Science.gov (United States)

    Wagner, Bridget K; Clemons, Paul A

    2009-12-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe-discovery and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of 'virtual' profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe-discovery and drug-discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections.

  6. Recent advances in inorganic materials for LDI-MS analysis of small molecules.

    Science.gov (United States)

    Shi, C Y; Deng, C H

    2016-05-10

    In this review, various inorganic materials were summarized for the analysis of small molecules by laser desorption/ionization mass spectrometry (LDI-MS). Due to its tremendous advantages, such as simplicity, high speed, high throughput, small analyte volumes and tolerance towards salts, LDI-MS has been widely used in various analytes. During the ionization process, a suitable agent is required to assist the ionization, such as an appropriate matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, it is normally difficult to analyze small molecules with the MALDI technique because conventional organic matrices may produce matrix-related peaks in the low molecular-weight region, which limits the detection of small molecules (m/z molecules. These inorganic materials can transfer energy and improve the ionization efficiency of analytes. In addition, functionalized inorganic materials can act as both an adsorbent and an agent in the enrichment and ionization of small molecules. In this review, we mainly focus on present advances in inorganic materials for the LDI-MS analysis of small molecules in the last five years, which contains the synthetic protocols of novel inorganic materials and the detailed results achieved by inorganic materials. On the other hand, this review also summarizes the application of inorganic materials as adsorbents in the selective enrichment of small molecules, which provides a new field for the application of inorganic materials.

  7. Advanced Applications of Vibrational Circular Dichroism: from Small Chiral Molecules to Fibrils

    Science.gov (United States)

    Dukor, Rina K.

    2017-06-01

    Vibrational Circular Dichroism (VCD), first discovered in the early 1970s, and commercialized in the late 1990's, is finally coming of age! No longer a curiosity of the few selected academic groups, it is now used by all major pharmaceutical companies, regulatory agencies, government labs and academic institutions. The main application for the technology has been determination of absolute configuration of small pharmaceutical molecules. In more recent years, this has extended to more complicated molecules such as natural products with many chiral centers and conformational flexibility. Other applications include determination of enantiomeric purity, chiral polymers, and characterization of other biological molecules such as proteins, carohydrates and nucleic acids. One of the most fascinating discoveries in the VCD field has been been unusual enhancement in intensity for proteins that form fibrils. We have demonstrated sensitivity of VCD to in situ solution-phase probe of the process of fibrillogenesis and subsequent development that currently can only be studied in detail with dried samples by such techniques as scanning electron microscopy or atomic force microscopy. We have further shown that several different proteins, that in their native state have different secondary structures, have a very similar unique signature of mature fibrils. In this presentation, we will discuss fundamentals of VCD, demonstrate a few examples of different applications and showcase the sensitivity to structure of fibrils, including new results on micro-sampling.

  8. High Speed Development and Synthesis of Novel Small Molecule Libraries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.

  9. High Speed Development and Synthesis of Novel Small Molecule Libraries

    Institute of Scientific and Technical Information of China (English)

    XIAO; Xiao-Yi

    2001-01-01

    Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.  ……

  10. Nonclinical Evaluations of Small-Molecule Oncology Drugs: Integration into Clinical Dose Optimization and Toxicity Management.

    Science.gov (United States)

    Dambach, Donna M; Simpson, Natalie E; Jones, Thomas W; Brennan, Richard J; Pazdur, Richard; Palmby, Todd R

    2016-06-01

    Multidisciplinary approaches that incorporate nonclinical pharmacologic and toxicologic characterization of small-molecule oncology drugs into clinical development programs may facilitate improved benefit-risk profiles and clinical toxicity management in patients. The performance of the current nonclinical safety-testing scheme was discussed, highlighting current strengths and areas for improvement. While current nonclinical testing appears to predict the clinical outcome where the prevalence of specific adverse effects are high, nonclinical testing becomes less reliable for predicting clinical adverse effects that occur infrequently, as with some kinase inhibitors. Although adverse effects associated with kinase inhibitors can often be predicted on the basis of target biology, drugs can be promiscuous and inhibit targets with poorly defined function and associated risks. Improvements in adverse effect databases and better characterization of the biologic activities of drug targets may enable better use of computational modeling approaches in predicting adverse effects with kinase inhibitors. Assessing safety of a lead candidate in parallel with other drug properties enables incorporation of a molecule's best features during chemical design, eliminates the worst molecules early, and permits timely investigation/characterization of toxicity mechanisms for identified liabilities. A safety lead optimization and candidate identification strategy that reduces intrinsic toxicity and metabolic risk and enhances selectivity can deliver selective kinase inhibitors that demonstrate on-target adverse effects identified nonclinically. Integrating clinical and nonclinical data during drug development can facilitate better identification and management of oncology drugs. Follow-up nonclinical studies may be used to better understand the risks in a given patient population and minimize or manage these risks more appropriately. Clin Cancer Res; 22(11); 2618-22. ©2016 AACR SEE ALL

  11. Identification of Small Molecule Modulators of MicroRNA by Library Screening.

    Science.gov (United States)

    Xiao, Zhangang; Chen, Yangchao

    2017-01-01

    MicroRNAs (miRNAs) function as oncogenes or tumor suppressors and are dysregulated in cancer. miRNAs therefore represent promising therapeutic targets for cancer. Small molecules that could modulate the expression of miRNAs would thus have potential as anticancer agents. Library screening of small molecules targeting miRNAs is a useful technology platform for anticancer drug development. Here, we describe a hepatocellular carcinoma (HCC) cell-based luciferase reporter system which could be used to screen for small molecule modulators of tumor suppressor microRNA-34a.

  12. Genome-wide characterisation of the binding repertoire of small molecule drugs

    Directory of Open Access Journals (Sweden)

    Makowski Lee

    2003-11-01

    Full Text Available Abstract Most, if not all, drugs interact with multiple proteins. One or more of these interactions are responsible for carrying out the primary therapeutic effects of the drug. Others are involved in the transport or metabolic processing of the drug or in the mediation of side effects. Still others may be responsible for activities that correspond to alternate therapeutic applications. The potential clinical impact of a drug and its cost of development are affected by the sum of all these interactions. The drug development process includes the identification and characterisation of a drug's clinically relevant interactions. This characterisation is presently accomplished by a combination of experimental laboratory techniques and clinical trials, with increasing numbers of patient participants. Efficient methods for the identification of all the molecular targets of a drug prior to clinical trials could greatly expedite the drug development process. Combinatorial peptide and cDNA phage display have the potential for achieving a complete characterisation of the binding repertoire of a small molecule. This paper will discuss the current state of phage display technology, as applied to the identification of novel receptors for small molecules, using a successful application with the drug Taxol™ as an example of the technical and theoretical benefits and pitfalls of this method.

  13. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  14. SM-TF: A structural database of small molecule-transcription factor complexes.

    Science.gov (United States)

    Xu, Xianjin; Ma, Zhiwei; Sun, Hongmin; Zou, Xiaoqin

    2016-06-30

    Transcription factors (TFs) are the proteins involved in the transcription process, ensuring the correct expression of specific genes. Numerous diseases arise from the dysfunction of specific TFs. In fact, over 30 TFs have been identified as therapeutic targets of about 9% of the approved drugs. In this study, we created a structural database of small molecule-transcription factor (SM-TF) complexes, available online at http://zoulab.dalton.missouri.edu/SM-TF. The 3D structures of the co-bound small molecule and the corresponding binding sites on TFs are provided in the database, serving as a valuable resource to assist structure-based drug design related to TFs. Currently, the SM-TF database contains 934 entries covering 176 TFs from a variety of species. The database is further classified into several subsets by species and organisms. The entries in the SM-TF database are linked to the UniProt database and other sequence-based TF databases. Furthermore, the druggable TFs from human and the corresponding approved drugs are linked to the DrugBank. © 2016 Wiley Periodicals, Inc.

  15. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    Science.gov (United States)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-10-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  16. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  17. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity.

    Science.gov (United States)

    Wetzel, Christiane; Pifferi, Simone; Picci, Cristina; Gök, Caglar; Hoffmann, Diana; Bali, Kiran K; Lampe, André; Lapatsina, Liudmila; Fleischer, Raluca; Smith, Ewan St John; Bégay, Valérie; Moroni, Mirko; Estebanez, Luc; Kühnemund, Johannes; Walcher, Jan; Specker, Edgar; Neuenschwander, Martin; von Kries, Jens Peter; Haucke, Volker; Kuner, Rohini; Poulet, James F A; Schmoranzer, Jan; Poole, Kate; Lewin, Gary R

    2017-02-01

    The skin is equipped with specialized mechanoreceptors that allow the perception of the slightest brush. Indeed, some mechanoreceptors can detect even nanometer-scale movements. Movement is transformed into electrical signals via the gating of mechanically activated ion channels at sensory endings in the skin. The sensitivity of Piezo mechanically gated ion channels is controlled by stomatin-like protein-3 (STOML3), which is required for normal mechanoreceptor function. Here we identify small-molecule inhibitors of STOML3 oligomerization that reversibly reduce the sensitivity of mechanically gated currents in sensory neurons and silence mechanoreceptors in vivo. STOML3 inhibitors in the skin also reversibly attenuate fine touch perception in normal mice. Under pathophysiological conditions following nerve injury or diabetic neuropathy, the slightest touch can produce pain, and here STOML3 inhibitors can reverse mechanical hypersensitivity. Thus, small molecules applied locally to the skin can be used to modulate touch and may represent peripherally available drugs to treat tactile-driven pain following neuropathy.

  18. General approach for engineering small-molecule-binding DNA split aptamers.

    Science.gov (United States)

    Kent, Alexandra D; Spiropulos, Nicholas G; Heemstra, Jennifer M

    2013-10-15

    Here we report a general method for engineering three-way junction DNA aptamers into split aptamers. Split aptamers show significant potential for use as recognition elements in biosensing applications, but reliable methods for generating these sequences are currently lacking. We hypothesize that the three-way junction is a "privileged architecture" for the elaboration of aptamers into split aptamers, as it provides two potential splitting sites that are distal from the target binding pocket. We propose a general method for split aptamer engineering that involves removing one loop region, then systematically modifying the number of base pairs in the remaining stem regions in order to achieve selective assembly only in the presence of the target small molecule. We screen putative split aptamer sequence pairs using split aptamer proximity ligation (StAPL) technology developed by our laboratory, but we validate that the results obtained using StAPL translate directly to systems in which the aptamer fragments are assembling noncovalently. We introduce four new split aptamer sequences, which triples the number of small-molecule-binding DNA split aptamers reported to date, and the methods described herein provide a reliable route for the engineering of additional split aptamers, dramatically advancing the potential substrate scope of DNA assembly based biosensors.

  19. Synthesis of diketopyrrolopyrrole (DPP)-based small molecule donors containing thiophene or furan for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yujeong [Department of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760 (Korea, Republic of); Song, Chang Eun [Department of Materials Science and Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejon 305-701 (Korea, Republic of); Cho, Ara; Kim, Jungwoon; Eom, Yoonho; Ahn, Jongho [Department of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760 (Korea, Republic of); Moon, Sang-Jin [Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Lim, Eunhee, E-mail: ehlim@kyonggi.ac.kr [Department of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760 (Korea, Republic of)

    2014-01-15

    Two π-conjugated small molecules based on diketopyrrolopyrrole (DPP), DPP4T and DPP2F2T, were synthesized using the Suzuki coupling reaction. DPP4T and DPP2F2T contained furan and thiophene, respectively, next to a DPP core. Organic photovoltaic cells (OPVs) were fabricated using two DPP-based oligothiophenes as donors. DPP4T showed higher power conversion efficiency (PCE) (1.44%) than DPP2F2T (0.85%). The short-circuit current (J{sub SC}) of DPP4T (4.38 mA cm{sup −2}) was nearly twice that of DPP2F2T (2.49 mA cm{sup −2}). The improved photovoltaic properties of DPP4T could be explained by the optical properties and the film morphology. - Highlights: • Two small molecules based on diketopyrrolopyrrole were synthesized for OPVs. • To determine the effects of furan and thiophene on the performance. • DPP4T yielded a better PCE (1.44%) than DPP2F2T (0.85%). • DPP4T have the broad absorption and the low-lying HOMO energy level than DPP2F2T.

  20. A small molecule screen identifies in vivo modulators of peripheral nerve regeneration in zebrafish

    Science.gov (United States)

    Skinner, Julianne; Granato, Michael

    2017-01-01

    Adult vertebrates have retained the ability to regenerate peripheral nerves after injury, although regeneration is frequently incomplete, often leading to functional impairments. Small molecule screens using whole organisms have high potential to identify biologically relevant targets, yet currently available assays for in vivo peripheral nerve regeneration are either very laborious and/or require complex technology. Here we take advantage of the optical transparency of larval zebrafish to develop a simple and fast pectoral fin removal assay that measures peripheral nerve regeneration in vivo. Twenty-four hours after fin amputation we observe robust and stereotyped nerve regrowth at the fin base. Similar to laser mediated nerve transection, nerve regrowth after fin amputation requires Schwann cells and FGF signaling, confirming that the fin amputation assay identifies pathways relevant for peripheral nerve regeneration. From a library of small molecules with known targets, we identified 21 compounds that impair peripheral nerve regeneration. Several of these compounds target known regulators of nerve regeneration, further validating the fin removal assay. Twelve of the identified compounds affect targets not previously known to control peripheral nerve regeneration. Using a laser-mediated nerve transection assay we tested ten of those compounds and confirmed six of these compounds to impair peripheral nerve regeneration: an EGFR inhibitor, a glucocorticoid, prostaglandin D2, a retinoic acid agonist, an inhibitor of calcium channels and a topoisomerase I inhibitor. Thus, we established a technically simple assay to rapidly identify valuable entry points into pathways critical for vertebrate peripheral nerve regeneration. PMID:28575069

  1. A mapping of drug space from the viewpoint of small molecule metabolism.

    Directory of Open Access Journals (Sweden)

    James Corey Adams

    2009-08-01

    Full Text Available Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the "effect space" comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism.

  2. FDA-approved small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E.; Clausen, Mads Hartvig

    2015-01-01

    Kinases have emerged as one of the most intensivelypursued targets in current pharmacological research,especially for cancer, due to their critical roles in cellularsignaling. To date, the US FDA has approved 28 smallmoleculekinase inhibitors, half of which were approvedin the past 3 years. While...

  3. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2016-03-01

    Full Text Available Small-molecule microarray (SMM is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  4. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    Science.gov (United States)

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  5. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    Science.gov (United States)

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P.; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  6. Discovery and demonstration of small circular DNA molecules derived from Chinese tomato yellow leaf curl virus

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tomato yellow leaf curl viruses belong to Begomoviruses of geminiviruses.In this work, we first found and demonstrated that the small circular DNA molecules were derived from Chinese tomato yellow leaf curl viruses (TYLCV-CHI).These small circular DNA molecules are about 1.3 kb, which are half the full-length of TYLCV-CHI DNA A.It was shown by sequence determination and analysis that there was unknown-origin sequence insertion in the middle of the small molecules.These sequences of unknown-origin were neither homologous to DNA A nor to DNA B, and were formed by recombination of virus DNA and plant DNA.Although various defective molecules contained different unknown-origin sequence insertion, all the molecules contained the intergenic region and part of the AC1(Rep) gene.But they did not contain full ORF.

  7. Small molecule modulators of histone acetyltransferase p300.

    Science.gov (United States)

    Balasubramanyam, Karanam; Swaminathan, V; Ranganathan, Anupama; Kundu, Tapas K

    2003-05-23

    Histone acetyltransferases (HATs) are a group of enzymes that play a significant role in the regulation of gene expression. These enzymes covalently modify the N-terminal lysine residues of histones by the addition of acetyl groups from acetyl-CoA. Dysfunction of these enzymes is often associated with the manifestation of several diseases, predominantly cancer. Here we report that anacardic acid from cashew nut shell liquid is a potent inhibitor of p300 and p300/CBP-associated factor histone acetyltranferase activities. Although it does not affect DNA transcription, HAT-dependent transcription from a chromatin template was strongly inhibited by anacardic acid. Furthermore, we describe the design and synthesis of an amide derivative N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) using anacardic acid as a synthon, which remarkably activates p300 HAT activity but not that of p300/CBP-associated factor. Although CTPB does not affect DNA transcription, it enhances the p300 HAT-dependent transcriptional activation from in vitro assembled chromatin template. However, it has no effect on histone deacetylase activity. These compounds would be useful as biological switching molecules for probing into the role of p300 in transcriptional studies and may also be useful as new chemical entities for the development of anticancer drugs.

  8. Structure-property relationships: asymmetric alkylphenyl-substituted anthracene molecules for use in small-molecule solar cells.

    Science.gov (United States)

    Kim, Yu Jin; Ahn, Eun Soo; Jang, Sang Hun; An, Tae Kyu; Kwon, Soon-Ki; Chung, Dae Sung; Kim, Yun-Hi; Park, Chan Eon

    2015-05-11

    Two asymmetric anthracene-based organic molecules, NDHPEA and TNDHPEA, were prepared without or with a thiophene spacer between the anthracene and naphthalene units. These asymmetric oligomers displayed different degrees of coplanarity, as evidenced by differences in the dihedral angles calculated by using DFT. Differential scanning calorimetry and XRD studies were used to probe the crystallization characteristics and molecular packing structures in the active layers. The coplanarity of the molecules in the asymmetric structure significantly affected the crystallization behavior and the formation of crystalline domains in the solid state. The small-molecule crystalline properties were correlated with the device physics by determining the J-V characteristics and hole mobilities of the devices.

  9. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  10. Introducing a high gravity field to enhance infiltration of small molecules into polyelectrolyte multilayers.

    Science.gov (United States)

    Liu, Xiaolin; Zhao, Kun; Jiang, Chao; Wang, Yue; Shao, Lei; Zhang, Yajun; Shi, Feng

    2015-07-28

    Loading functional small molecules into nano-thin films is fundamental to various research fields such as membrane separation, molecular imprinting, interfacial reaction, drug delivery etc. Currently, a general demand for enhancing the loading rate without affecting the film structures exists in most infiltration phenomena. To handle this issue, we have introduced a process intensification method of a high gravity technique, which is a versatile energy form of mechanical field well-established in industry, into the investigations on diffusion/infiltration at the molecular level. By taking a polyelectrolyte multilayer as a model thin film and a photo-reactive molecule, 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt (DAS), as a model small functional molecule, we have demonstrated remarkably accelerated adsorption/infiltration of DAS into a poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) multilayer by as high as 20-fold; meanwhile, both the film property of the multilayer and photoresponsive-crosslinking function of DAS were not disturbed. Furthermore, the infiltration of DAS and the surface morphology of the multilayer could be tuned based on their high dependence on the intensity of the high gravity field regarding different rotating speeds. The mechanism of the accelerated adsorption/infiltration under the high gravity field was interpreted by the increased turbulence of the diffusing layer with the thinned laminar boundary layer and the stepwise delivery of the local concentration gradient from the solution to the interior of the multilayer. The introduction of mechanical field provides a simple and versatile strategy to address the paradox of the contradictory loading amount and loading rate, and thus to promote applications of various membrane processes.

  11. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  12. Synthesis and Photovoltaic Properties of Non-fullerene Solution Processable Small Molecule Acceptors

    Institute of Scientific and Technical Information of China (English)

    LI Hui; LIU Zhao-yang; ZHANG Xiao-yu; YAO Shi-yu; WEN Shan-peng; TIAN Wen-jing

    2013-01-01

    Two non-fullerene small molecules,BT-C6 and BT-C12,based on the vinylene-linked benzothiadiazolethiophene(BT) moiety flanked with 2-(3,5,5-trimethylcyclohex-2-en-l-ylidene)malononitrile have been synthesized and characterized by solution/thin film UV-Vis absorption,photoluminescence(PL),and cyclic voltammetry(CV) measurements.The two molecules show intense absorption bands in a wide range from 300 nm to 700 nm and low optical bandgaps for BT-C6(1.60 eV) and for BT-C12(1.67 eV).The lowest unoccupied molecular orbital(LUMO) levels of both the molecules are relatively higher than that of [6,6]-phenyl C61 butyric acid methyl ester(PCBM),promising high open circuit voltage(Voc) for photovoltaic application.Bulk heterojunction(BHJ) solar cells with poly(3-hexylthiophene)(P3HT) as the electron donor and the two molecules as the acceptors were fabricated.Under 100 mW/cm2 AM 1.5 G illumination,the devices based on P3HT∶BT-C6(1∶1,mass ratio) show a power conversion efficiency(PCE) of 0.67%,a short-circuit current(Jsc) of 1.63 mA/cm2,an open circuit voltage(Voc) of 0.74 V,and a fill factor(FF) of 0.56.

  13. Large Scale Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass Spectrometry.

    Science.gov (United States)

    Yagnik, Gargey B; Hansen, Rebecca L; Korte, Andrew R; Reichert, Malinda D; Vela, Javier; Lee, Young Jin

    2016-09-20

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. The screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  14. Methods to enable the design of bioactive small molecules targeting RNA

    Science.gov (United States)

    Disney, Matthew D.; Yildirim, Ilyas; Childs-Disney, Jessica L.

    2014-01-01

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including Structure-Activity Relationships Through Sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome. PMID:24357181

  15. Synthesis of many different types of organic small molecules using one automated process.

    Science.gov (United States)

    Li, Junqi; Ballmer, Steven G; Gillis, Eric P; Fujii, Seiko; Schmidt, Michael J; Palazzolo, Andrea M E; Lehmann, Jonathan W; Morehouse, Greg F; Burke, Martin D

    2015-03-13

    Small-molecule synthesis usually relies on procedures that are highly customized for each target. A broadly applicable automated process could greatly increase the accessibility of this class of compounds to enable investigations of their practical potential. Here we report the synthesis of 14 distinct classes of small molecules using the same fully automated process. This was achieved by strategically expanding the scope of a building block-based synthesis platform to include even C(sp3)-rich polycyclic natural product frameworks and discovering a catch-and-release chromatographic purification protocol applicable to all of the corresponding intermediates. With thousands of compatible building blocks already commercially available, many small molecules are now accessible with this platform. More broadly, these findings illuminate an actionable roadmap to a more general and automated approach for small-molecule synthesis. Copyright © 2015, American Association for the Advancement of Science.

  16. Biomedical application of MALDI mass spectrometry for small-molecule analysis

    NARCIS (Netherlands)

    Kampen, J.J. van; Burgers, P.C.; Groot, R. de; Gruters, R.A.; Luider, T.M.

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high toleranc

  17. Biomedical application of MALDI mass spectrometry for small-molecule analysis

    NARCIS (Netherlands)

    Kampen, J.J. van; Burgers, P.C.; Groot, R. de; Gruters, R.A.; Luider, T.M.

    2011-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is an emerging analytical tool for the analysis of molecules with molar masses below 1,000 Da; that is, small molecules. This technique offers rapid analysis, high sensitivity, low sample consumption, a relative high

  18. Elasticity Dominated Surface Segregation of Small Molecules in Polymer Mixtures

    Science.gov (United States)

    Krawczyk, Jarosław; Croce, Salvatore; McLeish, T. C. B.; Chakrabarti, Buddhapriya

    2016-05-01

    We study the phenomenon of migration of the small molecular weight component of a binary polymer mixture to the free surface using mean field and self-consistent field theories. By proposing a free energy functional that incorporates polymer-matrix elasticity explicitly, we compute the migrant volume fraction and show that it decreases significantly as the sample rigidity is increased. A wetting transition, observed for high values of the miscibility parameter can be prevented by increasing the matrix rigidity. Estimated values of the bulk modulus suggest that the effect should be observable experimentally for rubberlike materials. This provides a simple way of controlling surface migration in polymer mixtures and can play an important role in industrial formulations, where surface migration often leads to decreased product functionality.

  19. Non-Collinearity in Small Magnetic Cobalt-Benzene Molecules

    CERN Document Server

    González, J W; Delgado, F; Aguilera-Granja, F; Ayuela, A

    2016-01-01

    Cobalt clusters covered with benzene in the form of rice-ball structures have recently been synthesized using laser ablation. Here, we investigate the types of magnetic order such clusters have, and whether they retain any magnetic order at all. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings. We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. This is surprising because nanostructures and small clusters based on pure cobalt typically have a predominantly ferromagnetic order, and additional organic ligands such as benzene tend to remove the magnetization. We analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. Moreover, we propose electron paramagnetic resonance as ...

  20. UP-scaling of inverted small molecule based organic solar cells

    OpenAIRE

    Patil, Bhushan Ramesh; Madsen, Morten

    2015-01-01

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoper...

  1. A-D-A small molecules for solution-processed organic photovoltaic cells.

    Science.gov (United States)

    Ni, Wang; Wan, Xiangjian; Li, Miaomiao; Wang, Yunchuang; Chen, Yongsheng

    2015-03-25

    A-D-A small molecules have drawn more and more attention in solution-processed organic solar cells due to the advantages of a diversity of structures, easy control of energy levels, etc. Recently, a power conversion efficiency of nearly 10% has been achieved through careful material design and device optimization. This feature article reviews recent representative progress in the design and application of A-D-A small molecules in organic photovoltaic cells.

  2. LC-MSMS identification of small molecules; X-Rank, a robust library search algorithm

    OpenAIRE

    Mylonas, Roman

    2010-01-01

    Identification of small molecules is of major importance for many applications. Liquid Chromatography Tandem Mass spectrometry (LC- MSMS) is gaining increasing interest in the field of small molecule identification. LC-MSMS has a broad range of detection, is sensitive and does not need special sample pre-processing. As a major chal- lenge, spectra of the same compound can show great variability across acquisitions. High spectra variability limits the use of LC-MSMS for library search identifi...

  3. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  4. Small molecule tyrosine kinase inhibitors in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Sachin Gupta

    2008-10-01

    Full Text Available Sachin Gupta, Bassel F El-RayesDepartment of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, MI, USAAbstract: Pancreatic cancer has proven to be chemo-resistant, with gemcitabine being the only cytotoxic agent approved for advanced pancreatic cancer since 1996. Tyrosine kinase inhibitors represent a newer generation of chemotherapeutic agents targeting specific tumor pathways associated with carcinogenesis including cell cycle control, signal transduction, apoptosis and angiogenesis. These agents present a more selective way of treating pancreatic cancer. Erlotinib is the prototype of the tyrosine kinase inhibitors with proven efficacy in advanced pancreatic cancer and has been recently approved in that setting. Multiple other tyrosine kinase inhibitors targeting the VEGFR, PDGFR, and Src kinases are in various phases of clinical trials testing. The preliminary results of these trials have been disappointing. Current challenges in pancreatic cancer clinical trials testing include improving patient selection, identifying effective combinations, improving the predictive value of current preclinical models and better study designs. This review summarizes the present clinical development of tyrosine kinase inhibitors in pancreatic cancer and strategies for future drug development.Keywords: pancreatic cancer, erlotinib, tyrosine kinase inhibitors

  5. Identification of small molecules that support human leukemia stem cell activity ex vivo.

    Science.gov (United States)

    Pabst, Caroline; Krosl, Jana; Fares, Iman; Boucher, Geneviève; Ruel, Réjean; Marinier, Anne; Lemieux, Sébastien; Hébert, Josée; Sauvageau, Guy

    2014-04-01

    Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However, currently available culture conditions do not prevent spontaneous differentiation of LSCs, which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells, several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound, UM729, that collaborates with AhR suppressors in preventing AML cell differentiation. Together, these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.

  6. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  7. Dockres: a computer program that analyzes the output of virtual screening of small molecules

    Directory of Open Access Journals (Sweden)

    Zhou Ming-Ming

    2010-01-01

    Full Text Available Abstract Background This paper describes a computer program named Dockres that is designed to analyze and summarize results of virtual screening of small molecules. The program is supplemented with utilities that support the screening process. Foremost among these utilities are scripts that run the virtual screening of a chemical library on a large number of processors in parallel. Methods Dockres and some of its supporting utilities are written Fortran-77; other utilities are written as C-shell scripts. They support the parallel execution of the screening. The current implementation of the program handles virtual screening with Autodock-3 and Autodock-4, but can be extended to work with the output of other programs. Results Analysis of virtual screening by Dockres led to both active and selective lead compounds. Conclusions Analysis of virtual screening was facilitated and enhanced by Dockres in both the authors' laboratories as well as laboratories elsewhere.

  8. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L

    2006-02-08

    The recent discovery that short hybrid RNA:DNA molecules (siHybrids) induce long-term silencing of gene expression in mammalian cells conflicts with the currently hypothesized mechanisms explaining the action of small, interfering RNA (siRNA). As a first step to elucidating the mechanism for this effect, we set out to quantify the delivery of siHybrids and determine their cellular localization in mammalian cells. We then tracked the segregation of the siHybrids into daughter cells after cell division. Markers for siHybrid delivery were shown to enter cells with and without the use of a transfection agent. Furthermore, delivery without transfection agent only occurred after a delay of 2-4 hours, suggesting a degradation process occurring in the cell culture media. Therefore, we studied the effects of nucleases and backbone modifications on the stability of siHybrids under cell culture conditions.

  9. Effective Absorption Enhancement in Small Molecule Organic Solar Cells by Employing Trapezoid Gratings

    CERN Document Server

    Chun-Ping, Xiang; Yu, Jin; Bin-Zong, Xu; Wei-Min, Wang; Xin, Wei; Guo-Feng, Song; Yun, Xu

    2013-01-01

    We demonstrate the optical absorption has been enhanced in the small molecule organic solar cells by employing trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which has been simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce high intensity field increment in the donor layer. Meanwhile, the waveguide modes result a high intensity field in acceptor layer. The increment of field improves the absorption of organic solar cells, significantly, which has been demonstrated by simulating the electrical properties. The simulated results exhibiting 31 % increment of the short-circuit current has been achieved in the optimized device, which is supported by the experimental measurement. The power conversion efficiency of the grating sample obtained in experiment exhibits an...

  10. Chemical 'Jekyll and Hyde's: small-molecule inhibitors of developmental signaling pathways.

    Science.gov (United States)

    Sakata, Tomoyo; Chen, James K

    2011-08-01

    Small molecules that perturb developmental signaling pathways can have devastating effects on embryonic patterning, as evidenced by the chemically induced onset of cyclopic lambs and children with severely shortened limbs during the 1950s. Recent studies, however, have revealed critical roles for these pathways in human disorders and diseases, spurring the re-examination of these compounds as new targeted therapies. In this tutorial review, we describe four case studies of teratogenic compounds, including inhibitors of the Hedgehog (Hh), Wnt, and bone morphogenetic protein (BMP) pathways. We discuss how these teratogens were discovered, their mechanisms of action, their utility as molecular probes, and their potential as therapeutic agents. We also consider current challenges in the field and possible directions for future research. This journal is © The Royal Society of Chemistry 2011

  11. Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules

    Science.gov (United States)

    Pundsack, Thomas J.

    To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in fits and the most reasonable fitting parameters.

  12. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules

    Institute of Scientific and Technical Information of China (English)

    Hyukjin Jung; Moonseong Park; Minhee Kang; Ki-Hun Jeong

    2016-01-01

    High-throughput small-molecule assays play essential roles in biomedical diagnosis,drug discovery,environmental analysis,and physiological function research.Nanoplasmonics holds a great potential for the label-free detection of small molecules at extremely low concentrations.Here,we report the development of nanoplasmonic paper (NP-paper) for the rapid separation and ultrasensitive detection of mixed small molecules.NP-paper employs nanogap-rich silver nanoislands on cellulose fibers,which were simply fabricated at the wafer level by using low-temperature solid-state dewetting of a thin silver film.The nanoplasmonic detection allows for the scalable quantification and identification of small molecules over broad concentration ranges.Moreover,the combination of chromatographic separation and nanoplasmonic detection allows both the highly sensitive fluorescence detection of mixed small molecules at the attogram level and the label-free detection at the sub-nanogram level based on surface-enhanced Raman scattering.This novel material provides a new diagnostic platform for the high-throughput,low-cost,and label-free screening of mixed small molecules as an alternative to conventional paper chromatography.

  13. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.

    Science.gov (United States)

    Seashore-Ludlow, Brinton; Rees, Matthew G; Cheah, Jaime H; Cokol, Murat; Price, Edmund V; Coletti, Matthew E; Jones, Victor; Bodycombe, Nicole E; Soule, Christian K; Gould, Joshua; Alexander, Benjamin; Li, Ava; Montgomery, Philip; Wawer, Mathias J; Kuru, Nurdan; Kotz, Joanne D; Hon, C Suk-Yee; Munoz, Benito; Liefeld, Ted; Dančík, Vlado; Bittker, Joshua A; Palmer, Michelle; Bradner, James E; Shamji, Alykhan F; Clemons, Paul A; Schreiber, Stuart L

    2015-11-01

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses. ©2015 American Association for Cancer Research.

  14. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery

    Science.gov (United States)

    Cooper, David R.; Porebski, Przemyslaw J.; Chruszcz, Maksymilian; Minor, Wladek

    2011-01-01

    Introduction Crystallography is the key initial component for structure-based and fragment-based drug design and can often generate leads that can be developed into high potency drugs. Therefore, huge sums of money are committed based on the outcome of crystallography experiments and their interpretation. Areas covered This review discusses how to evaluate the correctness of an X-ray structure, focusing on the validation of small molecule-protein complexes. Various types of inaccuracies found within the PDB are identified and the ramifications of these errors are discussed. The reader will gain an understanding of the key parameters that need to be inspected before a structure can be used in drug discovery efforts, as well as an appreciation of the difficulties of correctly interpreting electron density for small molecules. The reader will also be introduced to methods for validating small molecules within the context of a macromolecular structure. Expert opinion One of the reasons that ligand identification and positioning, within a macromolecular crystal structure, is so difficult is that the quality of small molecules widely varies in the PDB. For this reason, the PDB can not always be considered a reliable repository of structural information pertaining to small molecules, and this makes the derivation of general principles that govern small molecule-protein interactions more difficult. PMID:21779303

  15. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  16. Self-organizing ontology of biochemically relevant small molecules

    Directory of Open Access Journals (Sweden)

    Chepelev Leonid L

    2012-01-01

    Full Text Available Abstract Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology

  17. ENHANCEMENT OF DAMPING PERFORMANCE OF POLYMERS BY FUNCTIONAL SMALL MOLECULES

    Institute of Scientific and Technical Information of China (English)

    Chi-fei Wu; Saburo Akiyama

    2002-01-01

    The addition effects of organic small molecular substances N,N'-dicyclohexyl-benzothiazyl-2-sulfenamide (DZ) and 3,9-bis{ 1, 1-dimethyl-2[β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl}-2,4,8, 10-tetraoxaspiro[5,5]-undecane (AO-80) on the dynamic mechanical properties of chlorinated polyethylene (CPE), chlorinated polypropylene (CPP), acrylate rubber (ACM) and their blends were investigated. In the case of compatible systems such as CPE/DZ and ACM/AO-80, the height of the loss tangent (tanδ) peak of a matrix polymer (CPE or ACM) increases, and its peak position shifts to a higher temperature with the addition of DZ or AO-80. By contrast, for incompatible CPE/AO-80, a novel transition appeared above the glass transition temperature of CPE. This additional transition was assigned to dissociation of the intermolecular hydrogen bond between the α-hydrogen of CPE and the hydroxyl groups of AO-80 within the AO-80-rich domain. This will provide a new concept for developing damping material. However, the minimum value between two tanδ peaks is lower. It was found that the temperature dependence of tanδ could be improved by adding chlorinated paraffin (CP) or ACM to CPE/AO-80. In addition, another ternary system of ACM/CPP with more AO-80 was found to be a very good self-adhesive damping material because of the appearance of a novel transition due to an interfacial layer of ACM/CPP.

  18. Efficient feeder-free episomal reprogramming with small molecules.

    Directory of Open Access Journals (Sweden)

    Junying Yu

    Full Text Available Genetic reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs could offer replenishable cell sources for transplantation therapies. To fulfill their promises, human iPSCs will ideally be free of exogenous DNA (footprint-free, and be derived and cultured in chemically defined media free of feeder cells. Currently, methods are available to enable efficient derivation of footprint-free human iPSCs. However, each of these methods has its limitations. We have previously derived footprint-free human iPSCs by employing episomal vectors for transgene delivery, but the process was inefficient and required feeder cells. Here, we have greatly improved the episomal reprogramming efficiency using a cocktail containing MEK inhibitor PD0325901, GSK3β inhibitor CHIR99021, TGF-β/Activin/Nodal receptor inhibitor A-83-01, ROCK inhibitor HA-100 and human leukemia inhibitory factor. Moreover, we have successfully established a feeder-free reprogramming condition using chemically defined medium with bFGF and N2B27 supplements and chemically defined human ESC medium mTeSR1 for the derivation of footprint-free human iPSCs. These improvements enabled the routine derivation of footprint-free human iPSCs from skin fibroblasts, adipose tissue-derived cells and cord blood cells. This technology will likely be valuable for the production of clinical-grade human iPSCs.

  19. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong

    2012-01-01

    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  20. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    Science.gov (United States)

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  1. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors.

    Science.gov (United States)

    Will, Leon; Sonni, Ida; Kopka, Klaus; Kratochwil, Clemens; Giesel, Frederik L; Haberkorn, Uwe

    2017-06-01

    Prostate cancer (PC) is one of the most common malignancies worldwide. Prostate-specific membrane antigen (PSMA) has been found to be expressed in most PCs and represents an ideal target for diagnostic and therapeutic purposes. Numerous PSMA tracers have been recently developed. This review aims to provide an overview on the clinical influence of PSMA tracers in primary staging, biochemical recurrence (BCR) of PC and advanced, metastatic PC. Additionally, the use of PSMA tracers in systemic radioligand therapy (RLT) of metastatic castration-resistant prostate cancer (mCRPC), as well as non-prostatic specific uptake of PSMA tracers and the use of PSMA imaging to manage therapy have been described. A computerized search of the literature (PubMed) was conducted in order to find evidence on the role of PSMA tracers in the diagnosis and therapy of PC. PSMA positron-emission tomography/computed tomography (PET/CT) outperforms conventional imaging in the settings of primary PC, BCR and advanced PC. Especially in BCR of PC, PSMA PET/CT shows clinical value with significantly higher detection rates than standard modalities. The use of PSMA PET/CT resulted in a change of the therapeutic management in up to half of the cases. Regarding RLT, smaller studies were able to show positive clinical effects of 177Lu-labeled PSMA tracers without the occurrence of severe side effects. The currently available data clearly shows that PSMA targeting has a clinical impact on the diagnosis of PC, and that RLT using radiolabeled PSMA tracers has high potentiality in the settings of resistance to conventional therapeutic approaches.

  2. Current and novel therapeutic molecules and targets in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2016-01-01

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline, i.e., dementia. The disease starts with mild symptoms and gradually becomes severe. AD is one of the leading causes of mortality worldwide. Several different hallmarks of the disease have been reported such as deposits of β-amyloid around neurons, hyperphosphorylated tau protein, oxidative stress, dyshomeostasis of bio-metals, low levels of acetylcholine, etc. AD is not simple to diagnose since there is no single diagnostic test for it. Pharmacotherapy for AD currently provides only symptomatic relief and mostly targets cognitive revival. Computational biology approaches have proved to be reliable tools for the selection of novel targets and therapeutic ligands. Molecular docking is a key tool in computer-assisted drug design and development. Docking has been utilized to perform virtual screening on large libraries of compounds, and propose structural hypotheses of how the ligands bind with the target with lead optimization. Another potential application of docking is optimization stages of the drug-discovery cycle. This review summarizes the known drug targets of AD, in vivo active agents against AD, state-of-the-art docking studies done in AD, and future prospects of the docking with particular emphasis on AD.

  3. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides

    Science.gov (United States)

    Yang, B.; Ming, X.; Cao, C.; Laing, B.; Yuan, A.; Porter, M. A.; Hull-Ryde, E. A.; Maddry, J.; Suto, M.; Janzen, W. P.; Juliano, R. L.

    2015-01-01

    The therapeutic use of antisense and siRNA oligonucleotides has been constrained by the limited ability of these membrane-impermeable molecules to reach their intracellular sites of action. We sought to address this problem using small organic molecules to enhance the effects of oligonucleotides by modulating their intracellular trafficking and release from endosomes. A high-throughput screen of multiple small molecule libraries yielded several hits that markedly potentiated the actions of splice switching oligonucleotides in cell culture. These compounds also enhanced the effects of antisense and siRNA oligonucleotides. The hit compounds preferentially caused release of fluorescent oligonucleotides from late endosomes rather than other intracellular compartments. Studies in a transgenic mouse model indicated that these compounds could enhance the in vivo effects of a splice-switching oligonucleotide without causing significant toxicity. These observations suggest that selected small molecule enhancers may eventually be of value in oligonucleotide-based therapeutics. PMID:25662226

  4. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    Science.gov (United States)

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  5. Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules.

    Science.gov (United States)

    Vizcaino, Maria I; Engel, Philipp; Trautman, Eric; Crawford, Jason M

    2014-07-02

    The gene cluster responsible for synthesis of the unknown molecule "colibactin" has been identified in mutualistic and pathogenic Escherichia coli. The pathway endows its producer with a long-term persistence phenotype in the human bowel, a probiotic activity used in the treatment of ulcerative colitis, and a carcinogenic activity under host inflammatory conditions. To date, functional small molecules from this pathway have not been reported. Here we implemented a comparative metabolomics and targeted structural network analyses approach to identify a catalog of small molecules dependent on the colibactin pathway from the meningitis isolate E. coli IHE3034 and the probiotic E. coli Nissle 1917. The structures of 10 pathway-dependent small molecules are proposed based on structural characterizations and network relationships. The network will provide a roadmap for the structural and functional elucidation of a variety of other small molecules encoded by the pathway. From the characterized small molecule set, in vitro bacterial growth inhibitory and mammalian CNS receptor antagonist activities are presented.

  6. Small Molecule Binding, Docking, and Characterization of the Interaction between Pth1 and Peptidyl-tRNA

    Directory of Open Access Journals (Sweden)

    Mary C. Hames

    2013-11-01

    Full Text Available Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition.

  7. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning1

    Institute of Scientific and Technical Information of China (English)

    Holger A SCHEIDT; Daniel HUSTER

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological impor-tance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  8. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  9. Optically switchable transistors by simple incorporation of photochromic systems into small-molecule semiconducting matrices

    Science.gov (United States)

    Gemayel, Mirella El; Börjesson, Karl; Herder, Martin; Duong, Duc T.; Hutchison, James A.; Ruzié, Christian; Schweicher, Guillaume; Salleo, Alberto; Geerts, Yves; Hecht, Stefan; Orgiu, Emanuele; Samorì, Paolo

    2015-03-01

    The fabrication of multifunctional high-performance organic thin-film transistors as key elements in future logic circuits is a major research challenge. Here we demonstrate that a photoresponsive bi-functional field-effect transistor with carrier mobilities exceeding 0.2 cm2 V-1 s-1 can be developed by incorporating photochromic molecules into an organic semiconductor matrix via a single-step solution processing deposition of a two components blend. Tuning the interactions between the photochromic diarylethene system and the organic semiconductor is achieved via ad-hoc side functionalization of the diarylethene. Thereby, a large-scale phase-segregation can be avoided and superior miscibility is provided, while retaining optimal π-π stacking to warrant efficient charge transport and to attenuate the effect of photoinduced switching on the extent of current modulation. This leads to enhanced electrical performance of transistors incorporating small conjugated molecules as compared with polymeric semiconductors. These findings are of interest for the development of high-performing optically gated electronic devices.

  10. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors.

    Science.gov (United States)

    Geppert, Hanna; Humrich, Jens; Stumpfe, Dagmar; Gärtner, Thomas; Bajorath, Jürgen

    2009-04-01

    Support vector machine (SVM) database search strategies are presented that aim at the identification of small molecule ligands for targets for which no ligand information is currently available. In pharmaceutical research and chemical biology, this situation is faced, for example, when studying orphan targets or newly identified members of protein families. To investigate methods for de novo ligand identification in the absence of known three-dimensional target structures or active molecules, we have focused on combining sequence and ligand information for closely and distantly related proteins. To provide a basis for these investigations, a set of 11 protease targets from different families was assembled together with more than 2000 inhibitors directed against individual proteases. We have compared SVM approaches that combine protein sequence and ligand information in different ways and utilize 2D fingerprints as ligand descriptors. These methodologies were applied to search for inhibitors of individual proteases not taken into account during learning. A target sequence-ligand kernel and, in particular, a linear combination of multiple target-directed SVMs consistently identified inhibitors with high accuracy including test cases where homology-based similarity searching using data fusion and conventional SVM ranking nearly or completely failed. The SVM linear combination and target-ligand kernel methods described herein are intuitive and straightforward to adopt for ligand prediction against other targets.

  11. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Viktoriya; Rotan, Olga; Klesing, Jan [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany); Nalbant, Perihan [University of Duisburg-Essen, Faculty of Biology, Institute of Molecular Cell Biology (Germany); Buer, Jan; Knuschke, Torben; Westendorf, Astrid M. [University Hospital Essen, University of Duisburg-Essen, Institute of Medical Microbiology (Germany); Epple, Matthias, E-mail: matthias.epple@uni-due.de [University of Duisburg-Essen, Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE) (Germany)

    2012-06-15

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100-250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  12. Current Clinical Indications for Small Bowel Capsule Endoscopy.

    Science.gov (United States)

    Rosa, Bruno; Cotter, José

    2015-01-01

    Small bowel capsule endoscopy is currently the first line diagnostic examination for many diseases affecting the small bowel. This article aims to review and critically address the current indications of small bowel capsule endoscopy in clinical practice. Bibliographic review of relevant and recent papers indexed in PubMed. Small bowel capsule endoscopy enables a non-invasive full-assessment of the small bowel mucosa, with high diagnostic yield even for subtle lesions. In patients with obscure gastrointestinal bleeding, diagnostic yield is higher when performed early after the onset of bleeding. Endoscopic treatment of angioectasias using balloon-assisted enteroscopy may contribute to reduce rebleeding, while the risk of rebleeding in patients with 'negative' small bowel capsule endoscopy is debatable. Cross-sectional imaging may be more accurate than small bowel capsule endoscopy for the diagnosis of large small bowel tumors. The Smooth Protruding Index on Capsule Endoscopy (SPICE score) may help to differentiate submucosal tumors from innocent bulges. Small bowel capsule endoscopy is also a key diagnostic instrument in patients with suspected Crohn's disease and non-diagnostic ileocolonoscopy; it may also influence prognosis and therapeutic management, by determining disease extent and activity in patients with known Crohn's disease. The role of small bowel capsule endoscopy to investigate possible complications in patients with non-responsive coeliac disease is evolving. Small bowel capsule endoscopy is a valuable diagnostic instrument for patients with obscure gastrointestinal bleeding and/or suspected small bowel tumors; it may also be a key examination in patients with suspected Crohn's disease, or patients with known Crohn's disease to fully assess disease extension and activity; finally, it may contribute for the diagnosis of complications of non-responsive coeliac disease.

  13. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    Science.gov (United States)

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  14. Identification of potential small molecule allosteric modulator sites on IL-1R1 ectodomain using accelerated conformational sampling method.

    Directory of Open Access Journals (Sweden)

    Chao-Yie Yang

    Full Text Available The interleukin-1 receptor (IL-1R is the founding member of the interleukin 1 receptor family which activates innate immune response by its binding to cytokines. Reports showed dysregulation of cytokine production leads to aberrant immune cells activation which contributes to auto-inflammatory disorders and diseases. Current therapeutic strategies focus on utilizing antibodies or chimeric cytokine biologics. The large protein-protein interaction interface between cytokine receptor and cytokine poses a challenge in identifying binding sites for small molecule inhibitor development. Based on the significant conformational change of IL-1R type 1 (IL-1R1 ectodomain upon binding to different ligands observed in crystal structures, we hypothesized that transient small molecule binding sites may exist when IL-1R1 undergoes conformational transition and thus suitable for inhibitor development. Here, we employed accelerated molecular dynamics (MD simulation to efficiently sample conformational space of IL-1R1 ectodomain. Representative IL-1R1 ectodomain conformations determined from the hierarchy cluster analysis were analyzed by the SiteMap program which leads to identify small molecule binding sites at the protein-protein interaction interface and allosteric modulator locations. The cosolvent mapping analysis using phenol as the probe molecule further confirms the allosteric modulator site as a binding hotspot. Eight highest ranked fragment molecules identified from in silico screening at the modulator site were evaluated by MD simulations. Four of them restricted the IL-1R1 dynamical motion to inactive conformational space. The strategy from this study, subject to in vitro experimental validation, can be useful to identify small molecule compounds targeting the allosteric modulator sites of IL-1R and prevent IL-1R from binding to cytokine by trapping IL-1R in inactive conformations.

  15. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    Directory of Open Access Journals (Sweden)

    Lavu Siva

    2009-03-01

    Full Text Available Abstract Background Calorie restriction (CR produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM on gene expression data to elucidate downstream effects of SIRT1 activation. Results Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet. Conclusion CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.

  16. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  17. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C. [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials; Perez, Louis A. [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials and Dept. of Materials; Hoven, Corey V. [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials; Zhang, Yuan [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials; Dang, Xuan-Dung [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials; Sharenko, Alexander [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials and Dept. of Materials; Toney, Michael F. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL); Kramer, Edward J. [Univ. of California, Santa Barbara, CA (United States). Dept. of Chemical Engineering and Dept. of Materials; Nguyen, Thuc-Quyen [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials, Center for Polymers and Organic Solids and Dept. of Chemistry & Biochemistry; Bazan, Guillermo C. [Univ. of California, Santa Barbara, CA (United States). Center for Energy Efficient Materials, Center for Polymers and Organic Solids, Dept. of Chemistry & Biochemistry and Dept. of Materials

    2011-07-22

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  18. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.

    Science.gov (United States)

    Chen, Yiping; Xianyu, Yunlei; Jiang, Xingyu

    2017-02-21

    accessibility of small molecules on AuNPs in most cases can be precisely controlled without compromising their bioactivity as well, thus ensuring the performance, such as the specificity and sensitivity, of AuNP-based biochemical assays. This Account reviews recent progress in the surface chemistry of functionalized AuNPs for biochemical assays. The surface chemistries mainly include click chemistry, ligand exchange reaction, and coordination-based recognition. These surface-modified AuNPs allow for assaying a range of important biochemical markers including metal ions, small biomolecules, enzymes, and antigens and antibodies. Applications of these systems range from environmental monitoring to medical diagnostics. This Account highlights the advantages and limitations (sensitivity, detection efficiency, and stability) that AuNP-mediated assays still have compared with conventional analytical methods. This Account also discusses the future research directions of surface-modified AuNP-mediated biochemical analysis. The main aim of this Account is to summarize the current surface modification strategies for AuNPs and further demonstrate how to make use of surface modification strategies to effectively improve the performance of AuNP-mediated analytical methods for a wide variety of applications relating to biochemical analysis.

  19. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  20. Predicting metabolic pathways of small molecules and enzymes based on interaction information of chemicals and proteins.

    Science.gov (United States)

    Gao, Yu-Fei; Chen, Lei; Cai, Yu-Dong; Feng, Kai-Yan; Huang, Tao; Jiang, Yang

    2012-01-01

    Metabolic pathway analysis, one of the most important fields in biochemistry, is pivotal to understanding the maintenance and modulation of the functions of an organism. Good comprehension of metabolic pathways is critical to understanding the mechanisms of some fundamental biological processes. Given a small molecule or an enzyme, how may one identify the metabolic pathways in which it may participate? Answering such a question is a first important step in understanding a metabolic pathway system. By utilizing the information provided by chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions, a novel method was proposed by which to allocate small molecules and enzymes to 11 major classes of metabolic pathways. A benchmark dataset consisting of 3,348 small molecules and 654 enzymes of yeast was constructed to test the method. It was observed that the first order prediction accuracy evaluated by the jackknife test was 79.56% in identifying the small molecules and enzymes in a benchmark dataset. Our method may become a useful vehicle in predicting the metabolic pathways of small molecules and enzymes, providing a basis for some further analysis of the pathway systems.

  1. Signal-amplification detection of small molecules by use of Mg2+-dependent DNAzyme.

    Science.gov (United States)

    Guo, Zhijun; Wang, Jiahai; Wang, Erkang

    2013-05-01

    Because small molecules can be beneficial or toxic in biology and the environment, specific and sensitive detection of small molecules is one of the most important objectives of the scientific community. In this study, new signal amplification assays for detection of small molecules based on Mg(2+)-dependent DNAzyme were developed. A cleavable DNA substrate containing a ribonucleotide, the ends of which were labeled with black hole quencher (BHQ) and 6-carboxyfluorescein (FAM), was used for fluorescence detection. When the small molecule of interest is added to the assay solution, the Mg(2+)-dependent DNAzyme is activated, facilitating hybridization between the Mg(2+)-dependent DNAzyme and the DNA substrate. Binding of the substrate to the DNAzyme structure results in hydrolytic cleavage of the substrate in the presence of Mg(2+) ions. The fluorescence signal was amplified by continuous cleavage of the enzyme substrate. Ochratoxin A (OTA) and adenosine triphosphate (ATP) were used as model analytes in these experiments. This method can detect OTA specifically with a detection limit as low as 140 pmol L(-1) and detect ATP specifically with a detection limit as low as 13 nmol L(-1). Moreover, this method is potentially extendable to detection of other small molecules which are able to dissociate the aptamer from the DNAzyme, leading to activation of the DNAzyme.

  2. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    Science.gov (United States)

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  3. Influence of thermocleavable functionality on organic field-effect transistor performance of small molecules

    Science.gov (United States)

    Mahale, Rajashree Y.; Dharmapurikar, Satej S.; Chini, Mrinmoy Kumar; Venugopalan, Vijay

    2017-06-01

    Diketopyrrolopyrrole based donor-acceptor-donor conjugated small molecules using ethylene dioxythiophene as a donor was synthesized. Electron deficient diketopyrrolopyrrole unit was substituted with thermocleavable (tert-butyl acetate) side chains. The thermal treatment of the molecules at 160 °C eliminated the tert-butyl ester group results in the formation of corresponding acid. Optical and theoretical studies revealed that the molecules adopted a change in molecular arrangement after thermolysis. The conjugated small molecules possessed p-channel charge transport characteristics in organic field effect transistors. The charge carrier mobility was increased after thermolysis of tert-butyl ester group to 5.07 × 10-5 cm2/V s.

  4. Development of pharmacophore models for small molecules targeting RNA: Application to the RNA repeat expansion in myotonic dystrophy type 1.

    Science.gov (United States)

    Angelbello, Alicia J; González, Àlex L; Rzuczek, Suzanne G; Disney, Matthew D

    2016-12-01

    RNA is an important drug target, but current approaches to identify bioactive small molecules have been engineered primarily for protein targets. Moreover, the identification of small molecules that bind a specific RNA target with sufficient potency remains a challenge. Computer-aided drug design (CADD) and, in particular, ligand-based drug design provide a myriad of tools to identify rapidly new chemical entities for modulating a target based on previous knowledge of active compounds without relying on a ligand complex. Herein we describe pharmacophore virtual screening based on previously reported active molecules that target the toxic RNA that causes myotonic dystrophy type 1 (DM1). DM1-associated defects are caused by sequestration of muscleblind-like 1 protein (MBNL1), an alternative splicing regulator, by expanded CUG repeats (r(CUG)(exp)). Several small molecules have been found to disrupt the MBNL1-r(CUG)(exp) complex, ameliorating DM1 defects. Our pharmacophore model identified a number of potential lead compounds from which we selected 11 compounds to evaluate. Of the 11 compounds, several improved DM1 defects both in vitro and in cells.

  5. Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations

    CERN Document Server

    Lee, B W; Sum, A K; Vattulainen, I; Patra, M; Karttunen, M; Lee, Bryan W; Faller, Roland; Sum, Amadeu K; Vattulainen, Ilpo; Patra, Michael; Karttunen, Mikko

    2004-01-01

    We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. They do not strongly change the structure of the bilayer. Alcohols and DMSO destabilize the bilayer as they increase its area per molecule in the bilayer plane and decrease the order parameter. Alcohols have a stronger detrimental effect than DMSO. The observables which we compare are the area per molecule in the plane of the bilayer, the membrane thickness, and the NMR order parameter of DPPC hydrocarbon tails. The area per molecule and the order parameter are very well correlated whereas the bilayer thickness is not necessarily correlated with them.

  6. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    Science.gov (United States)

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)(exp)) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)(exp). In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)(exp) and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)(exp) in its natural context.

  7. Systems-based Discovery of Tomatidine as a Natural Small Molecule Inhibitor of Skeletal Muscle Atrophy*

    Science.gov (United States)

    Dyle, Michael C.; Ebert, Scott M.; Cook, Daniel P.; Kunkel, Steven D.; Fox, Daniel K.; Bongers, Kale S.; Bullard, Steven A.; Dierdorff, Jason M.; Adams, Christopher M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that lacks an effective therapy. To address this problem, we used a systems-based discovery strategy to search for a small molecule whose mRNA expression signature negatively correlates to mRNA expression signatures of human skeletal muscle atrophy. This strategy identified a natural small molecule from tomato plants, tomatidine. Using cultured skeletal myotubes from both humans and mice, we found that tomatidine stimulated mTORC1 signaling and anabolism, leading to accumulation of protein and mitochondria, and ultimately, cell growth. Furthermore, in mice, tomatidine increased skeletal muscle mTORC1 signaling, reduced skeletal muscle atrophy, enhanced recovery from skeletal muscle atrophy, stimulated skeletal muscle hypertrophy, and increased strength and exercise capacity. Collectively, these results identify tomatidine as a novel small molecule inhibitor of muscle atrophy. Tomatidine may have utility as a therapeutic agent or lead compound for skeletal muscle atrophy. PMID:24719321

  8. Direct Generation of Human Neuronal Cells from Adult Astrocytes by Small Molecules

    Directory of Open Access Journals (Sweden)

    Longfei Gao

    2017-03-01

    Full Text Available Astrocytes, due to the proximity to neuronal lineage and capability to proliferate, are ideal starting cells to regenerate neurons. Human fetal astrocytes have been successfully converted into neuronal cells by small molecules, which offered a broader range of further applications than transcription factor-mediated neuronal reprogramming. Here we report that human adult astrocytes could also be converted into neuronal cells by a different set of small molecules. These induced cells exhibited typical neuronal morphologies, expressed neuronal markers, and displayed neuronal electrophysiological properties. Genome-wide RNA-sequencing analysis showed that the global gene expression profile of induced neuronal cells resembled that of human embryonic stem cell-differentiated neurons. When transplanted into post-natal mouse brains, these induced neuronal cells could survive and become electrophysiologically mature. Altogether, our study provides a strategy to directly generate transgene-free neuronal cells from human adult astrocytes by small molecules.

  9. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures.

    Science.gov (United States)

    Kumar, Gopinatha Suresh; Basu, Anirban

    2016-05-01

    RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Discovery of Small Molecules that Inhibit the Disordered Protein, p27Kip1

    Science.gov (United States)

    Iconaru, Luigi I.; Ban, David; Bharatham, Kavitha; Ramanathan, Arvind; Zhang, Weixing; Shelat, Anang A.; Zuo, Jian; Kriwacki, Richard W.

    2015-01-01

    Disordered proteins are highly prevalent in biological systems, they control myriad signaling and regulatory processes, and their levels and/or cellular localization are often altered in human disease. In contrast to folded proteins, disordered proteins, due to conformational heterogeneity and dynamics, are not considered viable drug targets. We challenged this paradigm by identifying through NMR-based screening small molecules that bound specifically, albeit weakly, to the disordered cell cycle regulator, p27Kip1 (p27). Two groups of molecules bound to sites created by transient clusters of aromatic residues within p27. Conserved chemical features within these two groups of small molecules exhibited complementarity to their binding sites within p27, establishing structure-activity relationships for small molecule:disordered protein interactions. Finally, one compound counteracted the Cdk2/cyclin A inhibitory function of p27 in vitro, providing proof-of-principle that small molecules can inhibit the function of a disordered protein (p27) through sequestration in a conformation incapable of folding and binding to a natural regulatory target (Cdk2/cyclin A). PMID:26507530

  11. Concentration-related response potentiometric titrations to study the interaction of small molecules with large biomolecules.

    Science.gov (United States)

    Hamidi-Asl, Ezat; Daems, Devin; De Wael, Karolien; Van Camp, Guy; Nagels, Luc J

    2014-12-16

    In the present paper, the utility of a special potentiometric titration approach for recognition and calculation of biomolecule/small-molecule interactions is reported. This approach is fast, sensitive, reproducible, and inexpensive in comparison to the other methods for the determination of the association constant values (Ka) and the interaction energies (ΔG). The potentiometric titration measurement is based on the use of a classical polymeric membrane indicator electrode in a solution of the small-molecule ligand. The biomolecule is used as a titrant. The potential is measured versus a reference electrode and transformed into a concentration-related signal over the entire concentration interval, also at low concentrations, where the millivolt (y-axis) versus log canalyte (x-axis) potentiometric calibration curve is not linear. In the procedure, Ka is calculated for the interaction of cocaine with a cocaine binding aptamer and with an anticocaine antibody. To study the selectivity and cross-reactivity, other oligonucleotides and aptamers are tested, as well as other small ligand molecules such as tetrakis(4-chlorophenyl)borate, metergoline, lidocaine, and bromhexine. The calculated Ka compared favorably to the value reported in the literature using surface plasmon resonance. The potentiometric titration approach called "concentration-related response potentiometry" is used to study molecular interaction for seven macromolecular target molecules and four small-molecule ligands.

  12. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  13. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  14. Small-molecule library screening by docking with PyRx.

    Science.gov (United States)

    Dallakyan, Sargis; Olson, Arthur J

    2015-01-01

    Virtual molecular screening is used to dock small-molecule libraries to a macromolecule in order to find lead compounds with desired biological function. This in silico method is well known for its application in computer-aided drug design. This chapter describes how to perform small-molecule virtual screening by docking with PyRx, which is open-source software with an intuitive user interface that runs on all major operating systems (Linux, Windows, and Mac OS). Specific steps for using PyRx, as well as considerations for data preparation, docking, and data analysis, are also described.

  15. Small-molecule control of cytokine function: new opportunities for treating immune disorders

    Science.gov (United States)

    Sundberg, Thomas B.; Xavier, Ramnik J.; Schreiber, Stuart L.; Shamji, Alykhan F.

    2016-01-01

    Manipulating cytokine function with protein-based drugs has proven effective for treating a wide variety of autoimmune and auto-inflammatory disorders. However, the limited ability of protein-based drugs to modulate intracellular targets, including many implicated by studies of the genetics and physiology of these diseases, and to coordinately neutralize redundant inflammatory cytokines, suggest an important and complementary role for small molecules in immunomodulatory drug development. The recent clinical approval of Janus kinase and phosphodiesterase inhibitors, along with emerging evidence from other compound classes, firmly establish small molecules as effective tools for modulating therapeutically relevant proteins that give rise to aberrant cytokine signaling or mediate its downstream consequences. PMID:25222143

  16. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist

    DEFF Research Database (Denmark)

    Lin, Zhonghui; Jensen, Jan Kristian; Hong, Zebin

    2013-01-01

    and cancer. Several types of PAI-1 antagonist have been developed, but the structural basis for their action has remained largely unknown. Here we report X-ray crystal structure analysis of PAI-1 in complex with a small-molecule antagonist, embelin. We propose a mechanism for embelin-induced rapid conversion...... of PAI-1 into a substrate for its target proteases and the subsequent slow conversion of PAI-1 into an irreversibly inactivated form. Our work provides structural clues to an understanding of PAI-1 inactivation by small-molecule antagonists and an important step toward the design of drugs targeting PAI-1....

  17. A NOVEL SECOND-ORDER TRANSITION IN ORGANIC HYBRIDS CONSISTING OF POLYMERS AND SMALL MOLECULES

    Institute of Scientific and Technical Information of China (English)

    Chi-fei Wu

    2001-01-01

    A novel transition appeared above the glass transition temperature of chlorinated polyethylene (CPE) for binary blends of CPE and additives such as organic small molecules or oligomers. This transition was assigned to the dissociation of intermolecular hydrogen bonds between the polymer and additive within the additive rich phase. Of particular interest is that a novel pyramid crystal was observed in the annealed CPE/hindered phenol blends. Another intriguing observation is that these polymer/small molecule blends organized by intermolecular hydrogen bonding have several potential properties, such as shape-memorization, self-restoration, self-adhesiveness and super damping.``

  18. Design, synthesis and selection of DNA-encoded small-molecule libraries.

    Science.gov (United States)

    Clark, Matthew A; Acharya, Raksha A; Arico-Muendel, Christopher C; Belyanskaya, Svetlana L; Benjamin, Dennis R; Carlson, Neil R; Centrella, Paolo A; Chiu, Cynthia H; Creaser, Steffen P; Cuozzo, John W; Davie, Christopher P; Ding, Yun; Franklin, G Joseph; Franzen, Kurt D; Gefter, Malcolm L; Hale, Steven P; Hansen, Nils J V; Israel, David I; Jiang, Jinwei; Kavarana, Malcolm J; Kelley, Michael S; Kollmann, Christopher S; Li, Fan; Lind, Kenneth; Mataruse, Sibongile; Medeiros, Patricia F; Messer, Jeffrey A; Myers, Paul; O'Keefe, Heather; Oliff, Matthew C; Rise, Cecil E; Satz, Alexander L; Skinner, Steven R; Svendsen, Jennifer L; Tang, Lujia; van Vloten, Kurt; Wagner, Richard W; Yao, Gang; Zhao, Baoguang; Morgan, Barry A

    2009-09-01

    Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.

  19. Dynamic Variation in Protein-Small Molecule Interaction Observed by Double-Nanohole Optical Trapping

    CERN Document Server

    Balushi, Ahmed Al

    2014-01-01

    The interaction of proteins with small molecules is fundamental to their function in living organisms and it is widely studied in drug development. Here we compare optical trapping dynamics of streptavidin and biotinylated streptavidin using a double nanohole optical trap in a metal film. Consistent and clearly distinct behavior is seen between the protein with and without the small molecule binding. The real-time dynamics at the single protein level are accessible with this technique, which also has advantages of not requiring tethering to a surface or the need for exogeneous markers.

  20. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    Science.gov (United States)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  1. Small molecule cardiogenol C upregulates cardiac markers and induces cardiac functional properties in lineage-committed progenitor cells.

    Science.gov (United States)

    Mike, Agnes K; Koenig, Xaver; Koley, Moumita; Heher, Philipp; Wahl, Gerald; Rubi, Lena; Schnürch, Michael; Mihovilovic, Marko D; Weitzer, Georg; Hilber, Karlheinz

    2014-01-01

    Cell transplantation into the heart is a new therapy after myocardial infarction. Its success, however, is impeded by poor donor cell survival and by limited transdifferentiation of the transplanted cells into functional cardiomyocytes. A promising strategy to overcome these problems is the induction of cardiomyogenic properties in donor cells by small molecules. Here we studied cardiomyogenic effects of the small molecule compound cardiogenol C (CgC), and structural derivatives thereof, on lineage-committed progenitor cells by various molecular biological, biochemical, and functional assays. Treatment with CgC up-regulated cardiac marker expression in skeletal myoblasts. Importantly, the compound also induced cardiac functional properties: first, cardiac-like sodium currents in skeletal myoblasts, and secondly, spontaneous contractions in cardiovascular progenitor cell-derived cardiac bodies. CgC induces cardiomyogenic function in lineage-committed progenitor cells, and can thus be considered a promising tool to improve cardiac repair by cell therapy.

  2. Rational Design of Diketopyrrolopyrrole-Based Small Molecules as Donating Materials for Organic Solar Cells

    Science.gov (United States)

    Jin, Ruifa; Wang, Kai

    2015-01-01

    A series of diketopyrrolopyrrole-based small molecules have been designed to explore their optical, electronic, and charge transport properties as organic solar cell (OSCs) materials. The calculation results showed that the designed molecules can lower the band gap and extend the absorption spectrum towards longer wavelengths. The designed molecules own the large longest wavelength of absorption spectra, the oscillator strength, and absorption region values. The optical, electronic, and charge transport properties of the designed molecules are affected by the introduction of different π-bridges and end groups. We have also predicted the mobility of the designed molecule with the lowest total energies. Our results reveal that the designed molecules are expected to be promising candidates for OSC materials. Additionally, the designed molecules are expected to be promising candidates for electron and/or hole transport materials. On the basis of our results, we suggest that molecules under investigation are suitable donors for [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and its derivatives as acceptors of OSCs. PMID:26343640

  3. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  4. Process Intensification Tools in the Small‐Scale Pharmaceutical Manufacturing of Small Molecules

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Gernaey, Krist V.

    2015-01-01

    of processes are in a state of change. However, it is important to note that not all processes can be intensified easily, such as slow chemical reactions, processes with solids, slurries, and on the like. This review summarizes applications of promising tools for achieving process intensification in the small......‐scale pharmaceutical manufacturing of so‐called small molecules. The focus is on microwave radiation, microreactors, ultrasounds, and meso‐scale tubular reactors....

  5. A density functional study on the adsorption of hydrogen molecule onto small copper clusters

    Indian Academy of Sciences (India)

    Xiang-Jun Kuang; Xin-Qiang Wang; Gao-Bin Liu

    2011-09-01

    An all-electron scalar relativistic calculation on the adsorption of hydrogen molecule onto small copper clusters has been performed by using density functional theory with the generalized gradient approximation (GGA) at PW91 level. Our results reveal that after adsorption of H2 molecule, the Cu-Cu interaction is strengthened and the H-H interaction is weakened, the reactivity enhancement of H2 molecule is obvious. The VIPs, HLGs and VEAs of CuH2 clusters show an obvious odd-even oscillation. It is suggested that the H2 molecule is more favourable to be adsorbed by the even-numbered small copper clusters. Meanwhile, the odd-even alteration of magnetic moments is also observed and may be served as the material with tunable code capacity of `0’ and `1' by adsorbing hydrogen molecule onto odd or even-numbered small copper clusters. Some discrepancies of dissociative adsorption between our work and previous works are found and may be understood in terms of the electron pairing effect and the scalar relativistic effect.

  6. Small molecule mimetics of an HIV-1 gp41 fusion intermediate as vaccine leads.

    Science.gov (United States)

    Caulfield, Michael J; Dudkin, Vadim Y; Ottinger, Elizabeth A; Getty, Krista L; Zuck, Paul D; Kaufhold, Robin M; Hepler, Robert W; McGaughey, Georgia B; Citron, Michael; Hrin, Renee C; Wang, Ying-Jie; Miller, Michael D; Joyce, Joseph G

    2010-12-24

    We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.

  7. Transcriptional analysis of antiviral small molecule therapeutics as agonists of the RLR pathway

    Directory of Open Access Journals (Sweden)

    R.R. Green

    2016-03-01

    Full Text Available The recognition of pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRR during viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon Regulator Factor 3 (IRF3. We identified small molecule compounds that activate IRF3 through MAVS, thereby inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus, Filoviridae (Ebola virus, Orthomyxoviridae (influenza A virus, Arenaviridae (Lassa virus and Paramyxoviridae (respiratory syncytial virus, Nipah virus (1. In this study, we tested a lead compound along with medicinal chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the induction of specific antiviral genes and identified a novel module of host driven immune regulated genes that suppress infection of a range of RNA viruses. Microarray data can be found in Gene Expression Omnibus (GSE74047.

  8. Using nonlocal electrostatics for solvation free energy computations ions and small molecules

    CERN Document Server

    Hildebrandt, A; Blossey, R; Lenhof, H P

    2002-01-01

    Solvation free energy is an important quantity in Computational Chemistry with a variety of applications, especially in drug discovery and design. The accurate prediction of solvation free energies of small molecules in water is still a largely unsolved problem, which is mainly due to the complex nature of the water-solute interactions. In this letter we develop a scheme for the determination of the electrostatic contribution to the solvation free energy of charged molecules based on nonlocal electrostatics involving a minimal parameter set which in particular allows to introduce atomic radii in a consistent way. We test our approach on simple ions and small molecules for which both experimental results and other theoretical descriptions are available for quantitative comparison. We conclude that our approach is both physically transparent and quantitatively reliable.

  9. Controlling conformations of conjugated polymers and small molecules: the role of nonbonding interactions.

    Science.gov (United States)

    Jackson, Nicholas E; Savoie, Brett M; Kohlstedt, Kevin L; Olvera de la Cruz, Monica; Schatz, George C; Chen, Lin X; Ratner, Mark A

    2013-07-17

    The chemical variety present in the organic electronics literature has motivated us to investigate potential nonbonding interactions often incorporated into conformational "locking" schemes. We examine a variety of potential interactions, including oxygen-sulfur, nitrogen-sulfur, and fluorine-sulfur, using accurate quantum-chemical wave function methods and noncovalent interaction (NCI) analysis on a selection of high-performing conjugated polymers and small molecules found in the literature. In addition, we evaluate a set of nonbonding interactions occurring between various heterocyclic and pendant atoms taken from a group of representative π-conjugated molecules. Together with our survey and set of interactions, it is determined that while many nonbonding interactions possess weak binding capabilities, nontraditional hydrogen-bonding interactions, oxygen-hydrogen (CH···O) and nitrogen-hydrogen (CH···N), are alone in inducing conformational control and enhanced planarity along a polymer or small molecule backbone at room temperature.

  10. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells.

    Science.gov (United States)

    Yamakoshi, Hiroyuki; Dodo, Kosuke; Palonpon, Almar; Ando, Jun; Fujita, Katsumasa; Kawata, Satoshi; Sodeoka, Mikiko

    2012-12-26

    Alkyne has a unique Raman band that does not overlap with Raman scattering from any endogenous molecule in live cells. Here, we show that alkyne-tag Raman imaging (ATRI) is a promising approach for visualizing nonimmobilized small molecules in live cells. An examination of structure-Raman shift/intensity relationships revealed that alkynes conjugated to an aromatic ring and/or to a second alkyne (conjugated diynes) have strong Raman signals in the cellular silent region and can be excellent tags. Using these design guidelines, we synthesized and imaged a series of alkyne-tagged coenzyme Q (CoQ) analogues in live cells. Cellular concentrations of diyne-tagged CoQ analogues could be semiquantitatively estimated. Finally, simultaneous imaging of two small molecules, 5-ethynyl-2'-deoxyuridine (EdU) and a CoQ analogue, with distinct Raman tags was demonstrated.

  11. Small-molecule inhibition of APT1 affects Ras localization and signaling

    NARCIS (Netherlands)

    Dekker, Frank J.; Rocks, Oliver; Vartak, Nachiket; Menninger, Sascha; Hedberg, Christian; Balamurugan, Rengarajan; Wetzel, Stefan; Renner, Steffen; Gerauer, Marc; Schoelermann, Beate; Rusch, Marion; Kramer, John W.; Rauh, Daniel; Coates, Geoffrey W.; Brunsveld, Luc; Bastiaens, Philippe I. H.; Waldmann, Herbert

    2010-01-01

    Cycles of depalmitoylation and repalmitoylation critically control the steady-state localization and function of various peripheral membrane proteins, such as Ras proto-oncogene products. Interference with acylation using small molecules is a strategy to modulate cellular localization-and thereby un

  12. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins.

    Science.gov (United States)

    Harder, Edward; Damm, Wolfgang; Maple, Jon; Wu, Chuanjie; Reboul, Mark; Xiang, Jin Yu; Wang, Lingle; Lupyan, Dmitry; Dahlgren, Markus K; Knight, Jennifer L; Kaus, Joseph W; Cerutti, David S; Krilov, Goran; Jorgensen, William L; Abel, Robert; Friesner, Richard A

    2016-01-12

    The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.

  13. New serum markers for small-cell lung cancer. II. The neural cell adhesion molecule, NCAM

    DEFF Research Database (Denmark)

    Vangsted, A; Drivsholm, L; Andersen, E;

    1994-01-01

    The neural cell adhesion molecule (NCAM) was recently suggested as a marker for small-cell lung cancer (SCLC). Immunohistochemical analysis demonstrated the presence of the NCAM in 78% of SCLC patients and in 25% of patients with other cancer forms. NCAM was proposed to be the most sensitive marker...

  14. Rhodanine dye-based small molecule acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Kim, Yujeong; Song, Chang Eun; Moon, Sang-Jin; Lim, Eunhee

    2014-08-01

    The solution-processable small molecules based on carbazole or fluorene containing rhodanine dyes at both ends were synthesized and introduced as acceptors in organic photovoltaic cells. The high energy levels of their lowest unoccupied molecular orbitals resulted in a power conversion efficiency of 3.08% and an open circuit voltage of up to 1.03 V.

  15. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidicacid

    DEFF Research Database (Denmark)

    Khandelia, Himanshu

    2008-01-01

    , comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of XPA ) 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 ( 80 × 106. An MD simulation on the siramesine:PA interaction...

  16. Treatment of Prostate Cancer using Anti-androgen Small Molecules | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute seeks parties interested in collaborative research to co-develop and commercialize a new class of small molecules for the treatment of prostate cancer. General information on co-development research collaborations, can be found on our web site (http://ttc.nci.nih.gov/forms).

  17. Small Molecule-Assisted Exfoliation of Layered Zirconium Phosphate Nanoplatelets by Ionic Liquids

    Science.gov (United States)

    Xia, Fangqing; Yong, Huaisong; Han, Xiao; Sun, Dazhi

    2016-07-01

    Exfoliation of layered inorganic nanomaterials into single-layered sheets has been widely interested in materials chemistry and composite fabrication. Here, we report the exfoliation of layered zirconium phosphate nanoplatelets by using small molecule intercalating agents in ionic liquids, which opens a new platform for fabricating single-layered inorganic materials from synthetic layered compounds.

  18. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOX...

  19. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  20. Diffusion nuclear magnetic resonance spectroscopy detects substoichiometric concentrations of small molecules in protein samples

    NARCIS (Netherlands)

    Ribeiro, João P.; Palczewska, Małgorzata; André, Sabine; Cañada, F. Javier; Gabius, Hans-Joachim; Jiménez-Barbero, Jesús; Mellström, Britt; Naranjo, José R.; Scheffers, Dirk-Jan; Groves, Patrick

    2010-01-01

    Small molecules are difficult to detect in protein solutions, whether they originate from elution during affinity chromatography (e.g., imidazole, lactose), buffer exchange (Tris), stabilizers (e.g., β-mercaptoethanol, glycerol), or excess labeling reagents (fluorescent reagents). Mass spectrometry

  1. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    Science.gov (United States)

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example.

  2. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    Science.gov (United States)

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  3. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry

    NARCIS (Netherlands)

    Petrus,M. L.; Bouwer, R. K. M.; Lafont, U.; Athanasopoulos, S.; Greenham, N. C.; Dingemans, T. J.

    2014-01-01

    Conjugated small-molecule azomethines for photovoltaic applications were prepared via Schiff base condensation chemistry. Bulk heterojunction (BHJ) devices exhibit efficiencies of 1.2% with MoOx as the hole-transporting layer. The versatility and simplicity of the chemistry is illustrated by prepari

  4. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling

    NARCIS (Netherlands)

    Dekker, Frank J.; Hedberg, Christian

    2011-01-01

    The H- and N-Ras GTPases are prominent examples of proteins, whose localizations and signalling capacities are regulated by reversible palmitoylations and depalmitoylations. Recently, the novel small molecule inhibitor palmostatin B has been described to inhibit Ras depalmitoylation and to revert th

  5. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    NARCIS (Netherlands)

    R. Palchaudhuri (Rahul); M.J. Lambrecht (Michael J.); R.C. Botham (Rachel C.); K.C. Partlow (Kathryn C.); T.J. vanHam (Tjakko J.); K.S. Putt (Karson S.); L.T. Nguyen (Laurie T.); S.-H. Kim (Seok-Ho); R.T. Peterson (Randall); T.M. Fan (Timothy M.); P.J. Hergenrother (Paul J.)

    2015-01-01

    textabstractApoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, na

  6. Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors.

    Science.gov (United States)

    Dharmaraja, Allimuthu T; Alvala, Mallika; Sriram, Dharmarajan; Yogeeswari, Perumal; Chakrapani, Harinath

    2012-10-25

    Here, we report 5-hydroxy-1,2,3,4,4a,9a-hexahydro-1,4-ethano-9,10-anthraquinone (13), a small molecule generating reactive oxygen species (ROS) in pH 7.4 buffer under ambient aerobic conditions that has selective and potent Mycobacterium tuberculosis growth inhibitory activity.

  7. Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry

    NARCIS (Netherlands)

    Petrus,M. L.; Bouwer, R. K. M.; Lafont, U.; Athanasopoulos, S.; Greenham, N. C.; Dingemans, T. J.

    2014-01-01

    Conjugated small-molecule azomethines for photovoltaic applications were prepared via Schiff base condensation chemistry. Bulk heterojunction (BHJ) devices exhibit efficiencies of 1.2% with MoOx as the hole-transporting layer. The versatility and simplicity of the chemistry is illustrated by

  8. Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology

    NARCIS (Netherlands)

    Cannon, M.J.; Papalia, G.A.; Navratilova, I.; Fisher, R.J.; Roberts, L.R.; Worthy, K.M.; Stephen, A.G.; Marchesini, G.R.; Collins, E.J.; Casper, D.; Qiu, H.; Satpaev, D.; Liparoto, S.F.; Rice, D.A.; Gorshkova, I.; Darling, R.J.; Bennett, D.B.; Sekar, M.; Hommema, E.; Liang, A.M.; Day, E.S.; Inman, J.; Karlicek, S.H.; Ullrich, S.J.; Hodges, D.; Chu, T.; Sullivan, E.; Simpson, J.; Rafique, A.; Luginbühl, B.; Nyholm Westin, S.; Bynum, M.; Cachia, P.; Li, Y.J.; Kao, D.; Neurauter, A.; Wong, M.

    2004-01-01

    To gauge the experimental variability associated with Biacore analysis, 36 different investigators analyzed a small molecule/enzyme interaction under similar conditions. Acetazolamide (222 g/mol) binding to carbonic anhydrase II (CAII; 30,000 Da) was chosen as a model system. Both reagents were stab

  9. THEORETICAL CALCULATIONS OF THE MAGNETIZABILITY OF SOME SMALL FLUORINE-CONTAINING MOLECULES USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Ruud, K.; Helgaker, T.; Jørgensen, Poul

    1994-01-01

    We report a systematic investigation of the magnetizability of a series of small molecules. The use of London atomic orbitals ensures gauge invariance and a fast basis set convergence. Good agreement is obtained with experimental magnetizabilities, both isotropic and anisotropic. The calculations...

  10. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been...

  11. Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers.

    Science.gov (United States)

    Jamal, Salma; Arora, Sonam; Scaria, Vinod

    2016-01-01

    The dynamic and differential regulation and expression of genes is majorly governed by the complex interactions of a subset of biomolecules in the cell operating at multiple levels starting from genome organisation to protein post-translational regulation. The regulatory layer contributed by the epigenetic layer has been one of the favourite areas of interest recently. This layer of regulation as we know today largely comprises of DNA modifications, histone modifications and noncoding RNA regulation and the interplay between each of these major components. Epigenetic regulation has been recently shown to be central to development of a number of disease processes. The availability of datasets of high-throughput screens for molecules for biological properties offer a new opportunity to develop computational methodologies which would enable in-silico screening of large molecular libraries. In the present study, we have used data from high throughput screens for the inhibitors of epigenetic modifiers. Computational predictive models were constructed based on the molecular descriptors. Machine learning algorithms for supervised training, Naive Bayes and Random Forest, were used to generate predictive models for the small molecule inhibitors of histone methyl-transferases and demethylases. Random forest, with the accuracy of 80%, was identified as the most accurate classifier. Further we complemented the study with substructure search approach filtering out the probable pharmacophores from the active molecules leading to drug molecules. We show that effective use of appropriate computational algorithms could be used to learn molecular and structural correlates of biological activities of small molecules. The computational models developed could be potentially used to screen and identify potential new biological activities of molecules from large molecular libraries and prioritise them for in-depth biological assays. To the best of our knowledge, this is the first and

  12. Targeting of the MYCN protein with small molecule c-MYC inhibitors.

    Directory of Open Access Journals (Sweden)

    Inga Müller

    Full Text Available Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH, one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH. Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma.

  13. All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions

    Institute of Scientific and Technical Information of China (English)

    Zhang Zheng-Zhong; Shen Rui; Sheng Li; Wang Rui-Qiang; Wang Bai-Gen; Xing Ding-Yu

    2011-01-01

    A single-molecule magnet (SMM)coupled to two normal metallic electrodes can both switch spin-up and spindown electronic currents within two different windows of SMM gate voltage. Such spin current switching in the SMM tunnel junction arises from spin-selected single electron resonant tunneling via the lowest unoccupied molecular orbit of the SMM. Since it is not magnetically controlled but all-electrically controlled, the proposed spin current switching effect may have potential applications in future spintronics.

  14. Small molecule kinase inhibitors alleviate different molecular features of myotonic dystrophy type 1.

    Science.gov (United States)

    Wojciechowska, Marzena; Taylor, Katarzyna; Sobczak, Krzysztof; Napierala, Marek; Krzyzosiak, Wlodzimierz J

    2014-01-01

    Expandable (CTG)n repeats in the 3' UTR of the DMPK gene are a cause of myotonic dystrophy type 1 (DM1), which leads to a toxic RNA gain-of-function disease. Mutant RNAs with expanded CUG repeats are retained in the nucleus and aggregate in discrete inclusions. These foci sequester splicing factors of the MBNL family and trigger upregulation of the CUGBP family of proteins resulting in the mis-splicing of their target transcripts. To date, many efforts to develop novel therapeutic strategies have been focused on disrupting the toxic nuclear foci and correcting aberrant alternative splicing via targeting mutant CUG repeats RNA; however, no effective treatment for DM1 is currently available. Herein, we present results of culturing of human DM1 myoblasts and fibroblasts with two small-molecule ATP-binding site-specific kinase inhibitors, C16 and C51, which resulted in the alleviation of the dominant-negative effects of CUG repeat expansion. Reversal of the DM1 molecular phenotype includes a reduction of the size and number of foci containing expanded CUG repeat transcripts, decreased steady-state levels of CUGBP1 protein, and consequent improvement of the aberrant alternative splicing of several pre-mRNAs misregulated in DM1.

  15. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies

    Directory of Open Access Journals (Sweden)

    Mohammad Hojjat-Farsangi

    2014-08-01

    Full Text Available Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs i.e., tyrosine kinase inhibitors (TKIs in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1 the characteristics and function of RTKs and TKIs; (2 the recent advances in the improvement of specific/selective RTK–TKIs in preclinical or clinical settings; and (3 emerging RTKs for targeted cancer therapies by TKIs.

  16. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy.

    Science.gov (United States)

    Bol, Guus M; Vesuna, Farhad; Xie, Min; Zeng, Jing; Aziz, Khaled; Gandhi, Nishant; Levine, Anne; Irving, Ashley; Korz, Dorian; Tantravedi, Saritha; Heerma van Voss, Marise R; Gabrielson, Kathleen; Bordt, Evan A; Polster, Brian M; Cope, Leslie; van der Groep, Petra; Kondaskar, Atul; Rudek, Michelle A; Hosmane, Ramachandra S; van der Wall, Elsken; van Diest, Paul J; Tran, Phuoc T; Raman, Venu

    2015-03-27

    Lung cancer is the most common malignancy worldwide and is a focus for developing targeted therapies due to its refractory nature to current treatment. We identified a RNA helicase, DDX3, which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients. We designed a first-in-class small molecule inhibitor, RK-33, which binds to DDX3 and abrogates its activity. Inhibition of DDX3 by RK-33 caused G1 cell cycle arrest, induced apoptosis, and promoted radiation sensitization in DDX3-overexpressing cells. Importantly, RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer. Mechanistically, loss of DDX3 function either by shRNA or by RK-33 impaired Wnt signaling through disruption of the DDX3-β-catenin axis and inhibited non-homologous end joining-the major DNA repair pathway in mammalian somatic cells. Overall, inhibition of DDX3 by RK-33 promotes tumor regression, thus providing a compelling argument to develop DDX3 inhibitors for lung cancer therapy.

  17. Preparation of pancreatic β-cells from human iPS cells with small molecules.

    Science.gov (United States)

    Hosoya, Masaki

    2012-01-01

    Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed.

  18. HIV capsid is a tractable target for small molecule therapeutic intervention.

    Directory of Open Access Journals (Sweden)

    Wade S Blair

    Full Text Available Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.

  19. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  20. Roadmap to cellular reprogramming--manipulating transcriptional networks with DNA, RNA, proteins and small molecules.

    Science.gov (United States)

    Wörsdörfer, P; Thier, M; Kadari, A; Edenhofer, F

    2013-06-01

    Recent reports demonstrate that the plasticity of mammalian somatic cells is much higher than previously assumed and that ectopic expression of transcription factors may have the potential to induce the conversion of any cell type into another. Fibroblast cells can be converted into embryonic stem cell-like cells, neural cells, cardiomyocytes, macrophage-like cells as well as blood progenitors. Additionally, the conversion of astrocytes into neurons or neural stem cells into monocytes has been demonstrated. Nowadays, in the era of systems biology, continuously growing holistic data sets are providing increasing insights into core transcriptional networks and cellular signaling pathways. This knowledge enables cell biologists to understand how cellular fate is determined and how it could be manipulated. As a consequence for biomedical applications, it might be soon possible to convert patient specific somatic cells directly into desired transplantable other cell types. The clinical value, however, of such reprogrammed cells is currently limited due to the invasiveness of methods applied to induce reprogramming factor activity. This review will focus on experimental strategies to ectopically induce cell fate modulators. We will emphasize those strategies that enable efficient and robust overexpression of transcription factors by minimal genetic alterations of the host genome. Furthermore, we will discuss procedures devoid of any genomic manipulation, such as the direct delivery of mRNA, proteins, or the use of small molecules. By this, we aim to give a comprehensive overview on state of the art techniques that harbor the potential to generate safe reprogrammed cells for clinical applications.

  1. Synthesis and Characterization of A Small Molecule CFTR Chloride Channel Inhibitor

    Institute of Scientific and Technical Information of China (English)

    HE Cheng-yan; ZHANG Heng-jun; SU Zhong-min; ZHOU Jin-song; YANG Hong; MA Tong-hui

    2004-01-01

    A thiazolidinone CFTR inhibitor(CFTRinh-172) was synthesized by a three-step procedure with trifluromethylaniline as the starting material. The synthesized CFTR inhibitor was characterized structurally by means of 1H NMR and functionally in a CFTR-expressing cell line FRT/hCFTR/EYFP-H148Q by both fluorescent and electrophysiological methods. A large amount(100 g) of high-quality small molecule thiazolidinone CFTR chloride channel inhibitor, CFTRinh-172, can be produced with this simple three-step synthetic procedure. The structure of the final product 2-thioxo-3-(3-trifluromethylphenyl)-5-[4-carboxyphenyl-methylene]-4-thiazolidinone was confirmed by 1H NMR. The overall yield was 58% with a purity over 99% as analyzed by HPLC. The synthesized CFTRinh-172 specifically inhibited CFTR chloride channel function in a cell-based fluorescence assay(Kd≈1.5 μmol/L) and in a Ussing chamber-based short-circuit current assay(Kd≈0.2 μmol/L), indicating better quality than that of the commercial combinatorial compound. The synthesized inhibitor is nontoxic to cultured cells at a high concentration and to mouse at a high dose. The synthetic procedure developed here can be used to produce a large amount of the high-quality CFTRinh-172 suitable for antidiarrheal studies and for creation of cystic fibrosis models in large animals. The procedure can be used to synthesize radiolabled CFTRinh-172 for in vivo pharmacokinetics studies.

  2. Vismodegib, a small-molecule inhibitor of the hedgehog pathway for the treatment of advanced cancers.

    Science.gov (United States)

    De Smaele, Enrico; Ferretti, Elisabetta; Gulino, Alberto

    2010-06-01

    Vismodegib (GDC-0449) is a small, orally administrable molecule, belonging to the 2-arylpyridine class, which was discovered by Genentech Inc under a collaboration with Curis Inc. Vismodegib inhibits the Hedgehog (Hh) pathway, which is involved in tumorigenesis, thus providing a strong rationale for its use in the treatment of a variety of cancers. Vismodegib suppresses Hh signaling by binding to and interfering with smoothened, a membrane protein that provides positive signals to the Hh signaling pathway. Preclinical studies demonstrated the antitumor activity of vismodegib in mouse models of medulloblastoma (MB) and in xenograft models of colorectal and pancreatic cancer. Phase I clinical trials in patients with advanced basal cell carcinoma (BCC) and MB highlighted an objective response to vismodegib. Reported side effects were minor, with only one grade 4 adverse event. Vismodegib is currently undergoing phase II clinical trials for the treatment of advanced BCC, metastatic colorectal cancer, ovarian cancer, MB and other solid tumors. Because of its low toxicity and specificity for the Hh pathway, this drug has potential advantages compared with conventional chemotherapy, and may also be used in combination treatments. Clinical trials with other Hh inhibitors are also ongoing and their therapeutic potential will need to be compared with vismodegib.

  3. Multi-small molecule conjugations as new targeted delivery carriers for tumor therapy

    Directory of Open Access Journals (Sweden)

    Shan L

    2015-09-01

    Full Text Available Lingling Shan,1 Ming Liu,2 Chao Wu,1 Liang Zhao,1 Siwen Li,3 Lisheng Xu,1 Wengen Cao,1 Guizhen Gao,1 Yueqing Gu3 1Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, People’s Republic of China; 2Department of Biology, University of South Dakota, Vermillion, SD, USA; 3Department of Biomedical Engineering, School of Life Science and Technology, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: In response to the challenges of cancer chemotherapeutics, including poor physicochemical properties, low tumor targeting ability, and harmful side effects, we developed a new tumor-targeted multi-small molecule drug delivery platform. Using paclitaxel (PTX as a model therapeutic, we prepared two prodrugs, ie, folic acid-fluorescein-5(6-isothiocyanate-arginine-paclitaxel (FA-FITC-Arg-PTX and folic acid-5-aminofluorescein-glutamic-paclitaxel (FA-5AF-Glu-PTX, composed of folic acid (FA, target, amino acids (Arg or Glu, linker, and fluorescent dye (fluorescein in vitro or near-infrared fluorescent dye in vivo in order to better understand the mechanism of PTX prodrug targeting. In vitro and acute toxicity studies demonstrated the low toxicity of the prodrug formulations compared with the free drug. In vitro and in vivo studies indicated that folate receptor-mediated uptake of PTX-conjugated multi-small molecule carriers induced high antitumor activity. Notably, compared with free PTX and with PTX-loaded macromolecular carriers from our previous study, this multi-small molecule-conjugated strategy improved the water solubility, loading rate, targeting ability, antitumor activity, and toxicity profile of PTX. These results support the use of multi-small molecules as tumor-targeting drug delivery systems. Keywords: multi-small molecules, paclitaxel, prodrugs, targeting, tumor therapy

  4. Ani9, A Novel Potent Small-Molecule ANO1 Inhibitor with Negligible Effect on ANO2.

    Directory of Open Access Journals (Sweden)

    Yohan Seo

    Full Text Available Anoctamin1 (ANO1/transmembrane protein 16A (TMEM16A, a calcium-activated chloride channel (CaCC, is involved in many physiological functions such as fluid secretion, smooth muscle contraction, nociception and cancer progression. To date, only a few ANO1 inhibitors have been described, and these have low potency and selectivity for ANO1. Here, we performed a high-throughput screening to identify highly potent and selective small molecule inhibitors of ANO1. Three novel ANO1 inhibitors were discovered from screening of 54,400 synthetic small molecules, and they were found to fully block ANO1 channel activity with an IC50 < 3 μM. Electrophysiological analysis revealed that the most potent inhibitor, 2-(4-chloro-2-methylphenoxy-N-[(2-methoxyphenylmethylideneamino]-acetamide (Ani9, completely inhibited ANO1 chloride current with submicromolar potency. Notably, unlike previous small-molecule ANO1 inhibitors identified to date, Ani9 displayed high selectivity for ANO1 as compared to ANO2, which shares a high amino acid homology to ANO1. In addition, Ani9 did not affect the intracellular calcium signaling and CFTR chloride channel activity. Our results suggest that Ani9 may be a useful pharmacological tool for studying ANO1 and a potential development candidate for drug therapy of cancer, hypertension, pain, diarrhea and asthma.

  5. Roll-coating fabrication of flexible large area small molecule solar cells with power conversion efficiency exceeding 1%

    DEFF Research Database (Denmark)

    Liu, Wenqing; Liu, Shiyong; Zawacka, Natalia Klaudia

    2014-01-01

    All solution-processed flexible large area small molecule bulk heterojunction solar cells were fabricated via roll-coating technology. Our devices were produced from slot-die coating on a lab-scale mini roll-coater under ambient conditions without the use of spin-coating or vacuum evaporation.......01%, combined with an open circuit voltage of 0.73 V, a short-circuit current density of 3.13 mA cm (2) and a fill factor of 44% were obtained for the device with SM1, which was the first example reported for efficient roll-coating fabrication of flexible large area small molecule solar cells with PCE exceeding...... 1%. In addition, rollcoated devices based on SMs 2-4 also showed good performances with PCEs of 0.41%, 0.54%, and 0.31%, respectively. Our results prove that small molecules have the potential for use in industries for large scale production of efficient organic solar cells....

  6. Current trends in small vocabulary speech recognition for equipment control

    Science.gov (United States)

    Doukas, Nikolaos; Bardis, Nikolaos G.

    2017-09-01

    Speech recognition systems allow human - machine communication to acquire an intuitive nature that approaches the simplicity of inter - human communication. Small vocabulary speech recognition is a subset of the overall speech recognition problem, where only a small number of words need to be recognized. Speaker independent small vocabulary recognition can find significant applications in field equipment used by military personnel. Such equipment may typically be controlled by a small number of commands that need to be given quickly and accurately, under conditions where delicate manual operations are difficult to achieve. This type of application could hence significantly benefit by the use of robust voice operated control components, as they would facilitate the interaction with their users and render it much more reliable in times of crisis. This paper presents current challenges involved in attaining efficient and robust small vocabulary speech recognition. These challenges concern feature selection, classification techniques, speaker diversity and noise effects. A state machine approach is presented that facilitates the voice guidance of different equipment in a variety of situations.

  7. Tailored treatment options for patients with psoriatic arthritis and psoriasis: review of established and new biologic and small molecule therapies.

    Science.gov (United States)

    Elyoussfi, Sarah; Thomas, Benjamin J; Ciurtin, Coziana

    2016-05-01

    The diverse clinical picture of PsA suggests the need to identify suitable therapies to address the different combinations of clinical manifestations. This review aimed to classify the available biologic agents and new small molecule inhibitors (licensed and nonlicensed) based on their proven efficacy in treating different clinical manifestations associated with psoriasis and PsA. This review presents the level of evidence of efficacy of different biologic treatments and small molecule inhibitors for certain clinical features of treatment of PsA and psoriasis, which was graded in categories I-IV. The literature searches were performed on the following classes of biologic agents and small molecules: TNF inhibitors (adalimumab, etanercept, infliximab, golimumab, certolizumab), anti-IL12/IL23 (ustekinumab), anti-IL17 (secukinumab, brodalumab, ixekizumab), anti-IL6 (tocilizumab), T cell modulators (alefacept, efalizumab, abatacept, itolizumab), B cell depletion therapy (rituximab), phosphodiesterase 4 inhibitor (apremilast) and Janus kinase inhibitor (tofacitinib). A comprehensive table including 17 different biologic agents and small molecule inhibitors previously tested in psoriasis and PsA was generated, including the level of evidence of their efficacy for each of the clinical features included in our review (axial and peripheral arthritis, enthesitis, dactylitis, and nail and skin disease). We also proposed a limited set of recommendations for a sequential biologic treatment algorithm for patients with PsA who failed the first anti-TNF therapy, based on the available literature data. There is good evidence that many of the biologic treatments initially tested in psoriasis are also effective in PsA. Further research into both prognostic biomarkers and patient stratification is required to allow clinicians the possibility to make better use of the various biologic treatment options available. This review showed that there are many potentially new treatments that are

  8. A high throughput screening assay system for the identification of small molecule inhibitors of gsp.

    Directory of Open Access Journals (Sweden)

    Nisan Bhattacharyya

    Full Text Available Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT or mutant Gsα proteins (R201C and R201H. Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT or higher (R201C and R201H cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET-based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.

  9. The small molecule Retro-1 enhances the pharmacological actions of antisense and splice switching oligonucleotides.

    Science.gov (United States)

    Ming, Xin; Carver, Kyle; Fisher, Michael; Noel, Romain; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien; Cao, Canhong; Bauman, John; Juliano, Rudolph L

    2013-04-01

    The attainment of strong pharmacological effects with oligonucleotides is hampered by inefficient access of these molecules to their sites of action in the cytosol or nucleus. Attempts to address this problem with lipid or polymeric delivery systems have been only partially successful. Here, we describe a novel alternative approach involving the use of a non-toxic small molecule to enhance the pharmacological effects of oligonucleotides. The compound Retro-1 was discovered in a screen for small molecules that reduce the actions of bacterial toxins and has been shown to block the retrograde trafficking pathway. We demonstrate that Retro-1 can also substantially enhance the effectiveness of antisense and splice switching oligonucleotides in cell culture. This effect occurs at the level of intracellular trafficking or processing and is correlated with increased oligonucleotide accumulation in the nucleus but does not involve the perturbation of lysosomal compartments. We also show that Retro-1 can alter the effectiveness of splice switching oligonucleotides in the in vivo setting. These observations indicate that it is possible to enhance the pharmacological actions of oligonucleotides using non-toxic and non-lysosomotropic small molecule adjuncts.

  10. Small Molecule Modulator of p53 Signaling Pathway: Application for Radiosensitizing or Radioprotection Agents

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sang Taek; Cho, Mun Ju; Gwak, Jung Sug; Ryu, Min Jung [PharmacoGenomics Research Center, Inje University, Busan (Korea, Republic of); Song, Jie Young; Yun, Yeon Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The tumor suppressor p53 is key molecule to protect the cell against genotoxic stress and..the most frequently mutated..protein..in cancer cells. Lack of functional p53..is accompanied by high rate of genomic instability, rapid tumor progression, resistance to anticancer therapy, and increased angiogenesis. In response to DNA damage, p53 protein rapidly accumulated through attenuated proteolysis and is also activated as transcription factor. Activated p53 up-regulates target genes involved in cell cycle arrest and/or apoptosis and then lead to suppression of malignant transformation and the maintenance of genomic integrity. Chemical genetics is a new technology to uncover the signaling networks that regulated biological phenotype using exogenous reagents such as small molecules. Analogous to classical forward genetic screens in model organism, this approach makes use of high throughput, phenotypic assay to identify small molecules that disrupt gene product function in a way that alters a phenotype of interest. Recently, interesting small molecules were identified from cell based high throughput screening and its target protein or mechanism of action were identified by various methods including affinity chromatography, protein array profiling, mRNA or phage display, transcription profiling, and RNA interference.

  11. Structure elucidation of uniformly 13C labeled small molecule natural products.

    Science.gov (United States)

    Reibarkh, Mikhail; Wyche, Thomas P; Saurí, Josep; Bugni, Tim S; Martin, Gary E; Williamson, R Thomas

    2015-12-01

    Utilization of isotopically labeled proteins and peptides is a routinely employed approach in biomolecular NMR investigations. The widespread availability of inexpensive, uniformly (13) C-enriched glucose now makes it possible to produce uniformly (13) C-labeled natural products by microbial fermentation. In this feature article, the authors describe an experimental approach for the rapid structural characterization of uniformly (13) C-labeled natural products based on the Constant-Time HSQC (CT-HSQC) experiment. Rigorous theoretical evaluation of the CT-HSQC experiment allowed the applicability of the experiment to be expanded from the traditional, narrow scope of labeled amino acids to encompass virtually any small molecule or U-(13) C labeled natural product. A suite of experiments including CT-HSQC, (13) C-(13) C COSY, and COSYLR experiments is sufficient for the structure elucidation of uniformly (13) C-labeled small molecules and natural products. Differences in NMR approaches for structure elucidation of natural abundance and uniformly (13) C-labeled molecules are also discussed. The present work provides a researcher working in this area of natural products chemistry with NMR structure elucidation tools for investigating (13) C-labeled small molecules and natural products.

  12. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    Science.gov (United States)

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-01

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  13. Detection of small molecules by an evanescent wave fiber optic biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Shriver-Lake, L.C.; Ligler, F.S. [Naval Research Lab., Washington, DC (United States). Center for Bio/Molecular Science and Engineering

    1995-12-31

    Detection of small molecules is important in environmental analyses as most pollutants are low molecular weight compounds. Utilizing the specificity of antibodies, the rapid signal transduction of optical fibers and the signal-to-noise discrimination of fluorescence, an evanescent wave fiber optic-based biosensor was modified for the detection of these molecules. To facilitate the isolation of personnel and equipment from hazardous environments, long partially clad optical fibers are employed. Antibodies were immobilized on the 10 cm sensing region at the distal portion of the optical fiber probe. A 200 {micro}l sample chamber was fabricated from a capillary tube. The core of the fiber in the sensing region is tapered for maximum signal recovery. A competitive immunoassay was performed. Basically, the small molecule competes with a fluorescently-labelled analog for the capture antibody binding sites. As the level of analyte increases in the sample, the fluorescent signal decreases. Two assays for the small molecules, trinitrotoluene (TNT) and polychlorinated biphenyl (PCB) will be described. Detection levels of 10 ng/ml TNT (8 ppb) have been achieved with this sensor.

  14. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors.

    Science.gov (United States)

    Krall, Nikolaus; Pretto, Francesca; Decurtins, Willy; Bernardes, Gonçalo J L; Supuran, Claudiu T; Neri, Dario

    2014-04-14

    Antibody-drug conjugates are a very promising class of new anticancer agents, but the use of small-molecule ligands for the targeted delivery of cytotoxic drugs into solid tumors is less well established. Here, we describe the first small-molecule drug conjugates for the treatment of carbonic anhydrase IX expressing solid tumors. Using ligand-dye conjugates we demonstrate that such molecules can preferentially accumulate inside antigen-positive lesions, have fast targeting kinetics and good tumor-penetrating properties, and are easily accessible by total synthesis. A disulfide-linked drug conjugate with the maytansinoid DM1 as the cytotoxic payload and a derivative of acetazolamide as the targeting ligand exhibited a potent antitumor effect in SKRC52 renal cell carcinoma in vivo. It was furthermore superior to sunitinib and sorafenib, both small-molecule standard-of-care drugs for the treatment of kidney cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Prediction of adsorption of small molecules in porous materials based on ab initio force field method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.

  16. In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.

    Science.gov (United States)

    Martini, Laura; Meyer, Adam J; Ellefson, Jared W; Milligan, John N; Forlin, Michele; Ellington, Andrew D; Mansy, Sheref S

    2015-10-16

    An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.

  17. A quantitative application of the J-based configuration analysis method to a flexible small molecule.

    Science.gov (United States)

    Sharman, Gary J

    2007-04-01

    An example of the use of the J-based configuration analysis method to determine relative stereochemistry of a small molecule related to reboxetine is described. This study was complicated by the fact that the molecule did not exhibit J-couplings and NOEs consistent with a single conformation, but rather an ensemble average. A quantitative fitting procedure using predicted couplings and NOEs from all possible conformers was used. This gave a clear indication of the stereochemistry, and the populations of the conformers involved.

  18. SLAP: Small Labeling Pair for Single-Molecule Super-Resolution Imaging.

    Science.gov (United States)

    Wieneke, Ralph; Raulf, Anika; Kollmannsperger, Alina; Heilemann, Mike; Tampé, Robert

    2015-08-24

    Protein labeling with synthetic fluorescent probes is a key technology in chemical biology and biomedical research. A sensitive and efficient modular labeling approach (SLAP) was developed on the basis of a synthetic small-molecule recognition unit (Ni-trisNTA) and the genetically encoded minimal protein His6-10 -tag. High-density protein tracing by SLAP was demonstrated. This technique allows super-resolution fluorescence imaging and fulfills the necessary sampling criteria for single-molecule localization-based imaging techniques. It avoids masking by large probes, for example, antibodies, and supplies sensitive, precise, and robust size analysis of protein clusters (nanodomains).

  19. Psmir: a database of potential associations between small molecules and miRNAs.

    Science.gov (United States)

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  20. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules.

    Science.gov (United States)

    Miao, Yuqing; Ouyang, Lei; Zhou, Shilin; Xu, Lina; Yang, Zhuoyuan; Xiao, Mingshu; Ouyang, Ruizhuo

    2014-03-15

    The electrocatalysis toward small molecules, especially small organic compounds, is of importance in a variety of areas. Nickel based materials such as nickel, its oxides, hydroxides as well as oxyhydroxides exhibit excellent electrocatalysis performances toward many small molecules, which are widely used for fuel cells, energy storage, organic synthesis, wastewater treatment, and electrochemical sensors for pharmaceutical, medical, food or environmental analysis. Their electrocatalytic mechanisms are proposed from three aspects such as Ni(OH)2/NiOOH mediated electrolysis, direct electrocatalysis of Ni(OH)2 or NiOOH. Under exposure to air or aqueous solution, two distinct layers form on the Ni surface with a Ni hydroxide layer at the air-oxide interface and an oxide layer between the metal substrate and the outer hydroxide layer. The transformation from nickel or its oxides to hydroxides or oxyhydroxides could be further speeded up in the strong alkaline solution under the cyclic scanning at relatively high positive potential. The redox transition between Ni(OH)2 and NiOOH is also contributed to the electrocatalytic oxidation of Ni and its oxides toward small molecules in alkaline media. In addition, nickel based materials or nanomaterials, their preparations and applications are also overviewed here.

  1. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation.

    Science.gov (United States)

    Song, No-Joon; Kim, Suji; Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes.

  2. Structure–activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1

    DEFF Research Database (Denmark)

    Bach, Anders; Stuhr-Hansen, Nicolai; Thorsen, Thor S.

    2010-01-01

    Recently, we described the first small-molecule inhibitor, (E)-ethyl 2-cyano-3-(3,4-dichlorophenyl)acryloylcarbamate (1), of the PDZ domain of protein interacting with Ca-kinase 1 (PICK1), a potential drug target against brain ischemia, pain and cocaine addiction. Herein, we explore structure......, docking studies were used to correlate biological affinities with structural considerations for ligand–protein interactions. The most potent analogue obtained in this study showed an improvement in affinity compared to 1 and is currently a lead in further studies of PICK1 inhibition....

  3. Small organic molecules detection based on aptamer-modified gold nanoparticles-enhanced quartz crystal microbalance with dissipation biosensor.

    Science.gov (United States)

    Zheng, Bin; Cheng, Sheng; Liu, Wei; Lam, Michael Hon-Wah; Liang, Haojun

    2013-07-15

    Small molecules are difficult to detect by the conventional quartz crystal microbalance with dissipation (QCM-D) technique directly because the changes in frequency resulting from the binding processes of small biomolecules are often small. In the current study, an aptamer-based gold nanoparticles (AuNPs)-enhanced sensing strategy for detection of small molecules was developed. The QCM crystal was first modified with a layer of thiolated linker DNA, which can be partly base-paired with the detection part containing the adenosine aptamer sequence. In the presence of adenosine, the aptamer bound with adenosine and folded to the complex structure, which precluded the reporter part carrying AuNPs to combine with the random coiled detection part. Therefore, the lower the concentration of adenosine, the more AuNPs combined to the crystal. The resulting aptasensor showed a linear response to the increase of the adenosine concentration in the range of 0-2 μM with a linear correlation of r=0.99148 and a detection limit of 65 nM. Moreover, the aptasensor exhibited several excellent characteristics such as high sensitivity, selectivity, good stability, and reproducibility.

  4. A Novel Family of Small Molecules that Enhance the Intracellular Delivery and Pharmacological Effectiveness of Antisense and Splice Switching Oligonucleotides.

    Science.gov (United States)

    Wang, Ling; Ariyarathna, Yamuna; Ming, Xin; Yang, Bing; James, Lindsey I; Kreda, Silvia M; Porter, Melissa; Janzen, William; Juliano, Rudolph L

    2017-08-18

    The pharmacological effectiveness of oligonucleotides has been hampered by their tendency to remain entrapped in endosomes, thus limiting their access to cytosolic or nuclear targets. We have previously reported a group of small molecules that enhance the effects of oligonucleotides by causing their release from endosomes. Here, we describe a second novel family of oligonucleotide enhancing compounds (OECs) that is chemically distinct from the compounds reported previously. We demonstrate that these molecules substantially augment the actions of splice switching oligonucleotides (SSOs) and antisense oligonucleotides (ASOs) in cell culture. We also find enhancement of SSO effects in a murine model. These new compounds act by increasing endosome permeability and causing partial release of entrapped oligonucleotides. While they also affect the permeability of lysosomes, they are clearly different from typical lysosomotropic agents. Current members of this compound family display a relatively narrow window between effective dose and toxic dose. Thus, further improvements are necessary before these agents can become suitable for therapeutic use.

  5. Using the gini coefficient to measure the chemical diversity of small-molecule libraries.

    Science.gov (United States)

    Weidlich, Iwona E; Filippov, Igor V

    2016-08-15

    Modern databases of small organic molecules contain tens of millions of structures. The size of theoretically available chemistry is even larger. However, despite the large amount of chemical information, the "big data" moment for chemistry has not yet provided the corresponding payoff of cheaper computer-predicted medicine or robust machine-learning models for the determination of efficacy and toxicity. Here, we present a study of the diversity of chemical datasets using a measure that is commonly used in socioeconomic studies. We demonstrate the use of this diversity measure on several datasets that were constructed to contain various congeneric subsets of molecules as well as randomly selected molecules. We also apply our method to a number of well-known databases that are frequently used for structure-activity relationship modeling. Our results show the poor diversity of the common sources of potential lead compounds compared to actual known drugs. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A geometry-based simulation of the hydration of ions and small molecules

    CERN Document Server

    Plumridge, T H

    2001-01-01

    software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, ...

  7. Molecular locks and keys: the role of small molecules in phytohormone research

    Directory of Open Access Journals (Sweden)

    Sandra eFonseca

    2014-12-01

    Full Text Available Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signalling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signalling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function.Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signalling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated responses. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.

  8. Molecular locks and keys: the role of small molecules in phytohormone research.

    Science.gov (United States)

    Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea

    2014-01-01

    Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.

  9. Considerable improvement in the stability of solution processed small molecule OLED by annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mao Guilin [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Wu Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); He Qiang [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of UAV, Wuhan Ordnance Noncommissioned Officers Academy, Wuhan, 430075 (China); Jiao Bo; Xu Guojin; Hou Xun [Key Laboratory of Photonics Technology for Information, Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Chen Zhijian; Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing, 100871 (China)

    2011-06-15

    We investigated the annealing effect on solution processed small organic molecule organic films, which were annealed with various conditions. It was found that the densities of the spin-coated (SC) films increased and the surface roughness decreased as the annealing temperature rose. We fabricated corresponding organic light emitting diodes (OLEDs) by spin coating on the same annealing conditions. The solution processed OLEDs show the considerable efficiency and stability, which were prior or equivalent to the vacuum-deposited (VD) counterparts. Our research shows that annealing process plays a key role in prolonging the lifetime of solution processed small molecule OLEDs, and the mechanism for the improvement of the device performance upon annealing was also discussed.

  10. Exploiting Transient Protein States for the Design of Small-Molecule Stabilizers of Mutant p53

    Science.gov (United States)

    Joerger, Andreas C.; Bauer, Matthias R.; Wilcken, Rainer; Baud, Matthias G.J.; Harbrecht, Hannes; Exner, Thomas E.; Boeckler, Frank M.; Spencer, John; Fersht, Alan R.

    2015-01-01

    Summary The destabilizing p53 cancer mutation Y220C creates an extended crevice on the surface of the protein that can be targeted by small-molecule stabilizers. Here, we identify different classes of small molecules that bind to this crevice and determine their binding modes by X-ray crystallography. These structures reveal two major conformational states of the pocket and a cryptic, transiently open hydrophobic subpocket that is modulated by Cys220. In one instance, specifically targeting this transient protein state by a pyrrole moiety resulted in a 40-fold increase in binding affinity. Molecular dynamics simulations showed that both open and closed states of this subsite were populated at comparable frequencies along the trajectories. Our data extend the framework for the design of high-affinity Y220C mutant binders for use in personalized anticancer therapy and, more generally, highlight the importance of implementing protein dynamics and hydration patterns in the drug-discovery process. PMID:26636255

  11. Inhibition of Protein-Protein Interactions and Signaling by Small Molecules

    Science.gov (United States)

    Freire, Ernesto

    2010-03-01

    Protein-protein interactions are at the core of cell signaling pathways as well as many bacterial and viral infection processes. As such, they define critical targets for drug development against diseases such as cancer, arthritis, obesity, AIDS and many others. Until now, the clinical inhibition of protein-protein interactions and signaling has been accomplished with the use of antibodies or soluble versions of receptor molecules. Small molecule replacements of these therapeutic agents have been extremely difficult to develop; either the necessary potency has been hard to achieve or the expected biological effect has not been obtained. In this presentation, we show that a rigorous thermodynamic approach that combines differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC) provides a unique platform for the identification and optimization of small molecular weight inhibitors of protein-protein interactions. Recent advances in the development of cell entry inhibitors of HIV-1 using this approach will be discussed.

  12. Radiolabeled Small Molecule Protein Kinase Inhibitors for Imaging with PET or SPECT

    Directory of Open Access Journals (Sweden)

    Justin W. Hicks

    2010-11-01

    Full Text Available Imaging protein kinase expression with radiolabeled small molecule inhibitors has been actively pursued to monitor the clinical potential of targeted therapeutics and treatments as well as to determine kinase receptor density changes related to disease progression. The goal of the present review is to provide an overview of the breadth of radiolabeled small molecules that have been synthesized to target intracellular protein kinases, not only for imaging in oncology, but also for other areas of interest, particularly the central nervous system.  Considerable radiotracer development has focused on imaging receptor tyrosine kinases of growth factors, protein kinases A, B and C, and glycogen synthase kinase–3β. Design considerations, structural attributes and relevant biological results are summarized.

  13. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...... ranging on a scale from a few mm2 to cm2, are produced by organic molecular beam deposition (OMBD). All the layers in the device are fabricated from a highly sophisticated vacuum cluster deposition system that includes electrode, interfacial layer and organic layer deposition in one high-vacuum deposition...

  14. The logic and design of analog-sensitive kinases and their small molecule inhibitors.

    Science.gov (United States)

    Lopez, Michael S; Kliegman, Joseph I; Shokat, Kevan M

    2014-01-01

    Analog-sensitive AS Kinase technology allows for rapid, reversible, and highly specific inhibition of individual engineered kinases in cells and in mouse models of human diseases. The technique consists of two parts: a kinase containing a space-creating mutation in the ATP-binding pocket and a bulky ATP-competitive small molecule inhibitor that complements the shape of the mutant ATP pocket. This strategy enables dissection of phospho-signaling pathways, elucidation of the physiological function of individual kinases, and characterization of the pharmacology of clinical-kinase inhibitors. Here, we present an overview of AS technology and describe a stepwise approach for generating AS Kinase mutants and identifying appropriate small molecule inhibitors. We also describe commonly encountered technical obstacles and provide strategies to overcome them.

  15. A DNA-Mediated Homogeneous Binding Assay for Proteins and Small Molecules

    DEFF Research Database (Denmark)

    Zhang, Zhao; Hejesen, Christian; Kjelstrup, Michael Brøndum

    2014-01-01

    Optical detection of molecular targets typically requires immobilization, separation, or chemical or enzymatic processing. An important exception is aptamers that allow optical detection in solution based on conformational changes. This method, however, requires the laborious selection of aptamers...... with high target specificity and affinity, and the ability to undergo the required conformational changes. Here we report on an alternative generic scheme for detecting small molecules and proteins in solution based on a shift in the equilibrium of DNA-based strand displacement competition reaction....... The shift occurs upon binding of a protein, for example, an antibody to its target. We demonstrate nanomolar detection of small molecules such as biotin, digoxigenin, vitamin D, and folate, in buffer and in plasma. The method is flexible, and we also show nanomolar detection of the respective antibodies...

  16. Using RosettaLigand for small molecule docking into comparative models.

    Directory of Open Access Journals (Sweden)

    Kristian W Kaufmann

    Full Text Available Computational small molecule docking into comparative models of proteins is widely used to query protein function and in the development of small molecule therapeutics. We benchmark RosettaLigand docking into comparative models for nine proteins built during CASP8 that contain ligands. We supplement the study with 21 additional protein/ligand complexes to cover a wider space of chemotypes. During a full docking run in 21 of the 30 cases, RosettaLigand successfully found a native-like binding mode among the top ten scoring binding modes. From the benchmark cases we find that careful template selection based on ligand occupancy provides the best chance of success while overall sequence identity between template and target do not appear to improve results. We also find that binding energy normalized by atom number is often less than -0.4 in native-like binding modes.

  17. A philicity based analysis of adsorption of small molecules in zeolites

    Indian Academy of Sciences (India)

    Angeles Cáun; Marcelo Galván; Pratim Kumar Chattaraj

    2005-09-01

    Adsorption of small molecules like CH4, CO and NH3 into the acid sites of zeolites is analysed as an interaction between an electrophile and a nucleophile. Global reactivity descriptors like softness and electrophilicity, and local reactivity descriptors like the Fukui function, local softness and local philicity are calculated within density functional as well as Hartree-Fock frameworks using both Mulliken and Hirshfeld population analysis schemes. The HSAB principle and the best electrophilenucleophile combination suggest that the reaction between the NH3 and Brönsted acid site of the zeolite is the strongest. Interaction between the zeolite and a small probe molecule takes place through the most electrophilic atom of one with the most nucleophilic atom of the other. This result is in conformity with those provided by the frontier orbital theory and the local HSAB principle.

  18. Blu-ray based optomagnetic aptasensor for detection of small molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Pinto, Alessandro

    2016-01-01

    This paper describes an aptamer-based optomagnetic biosensor for detection of a small molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) clustering. For the detection of a target small molecule, two mutually exclusive binding reactions (aptamer-target binding...... and aptamer-DNA linker hybridization) are designed. An aptamer specific to the target and a DNA linker complementary to a part of the aptamer sequence are immobilized onto separate MNPs. Hybridization of the DNA linker and the aptamer induces formation of MNP clusters. The target-to-aptamer binding on MNPs...... prior to the addition of linker-functionalized MNPs significantly hinders the hybridization reaction, thus reducing the degree of MNP clustering. The clustering state, which is thus related to the target concentration, is then quantitatively determined by an optomagnetic readout technique that provides...

  19. Clinical grade iPS cells: need for versatile small molecules and optimal cell sources.

    Science.gov (United States)

    Wu, Yan-Ling; Pandian, Ganesh N; Ding, Yan-Ping; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-11-21

    Adult mammals possess limited ability to regenerate their lost tissues or organs. The epoch-making strategy of inducing pluripotency in somatic cells incorporates multiple applications in regenerative medicine. However, concerns about the clinical translation of induced pluripotent stem (iPS) cells still exist because of the occurrence of aberrancies, even in genome integration-free methods. As cellular reprogramming is multi-gene-oriented, versatile, bioactive small molecules could concomitantly modulate the transcriptional machinery and aid the generation of clinical grade iPS cells. The availability of optimal cell sources has additional influence on the clinical translation of iPS cells. Herein we provide a critical overview of methods and cell sources available for iPS cell production. We think the review will be a useful resource for researchers who aim to develop small molecules for speeding up the journey of iPS cells from the laboratory to the clinic.

  20. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    Science.gov (United States)

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  1. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control.

  2. Growth factor and small molecule influence on urological tissue regeneration utilizing cell seeded scaffolds.

    Science.gov (United States)

    Sharma, Arun K; Cheng, Earl Y

    2015-03-01

    Regenerative medicine strategies combine various attributes from multiple disciplines including stem cell biology, chemistry, materials science and medicine. The junction at which these disciplines intersect provides a means to address unmet medical needs in an assortment of pathologies with the goal of creating sustainable, functional replacement tissues. Tissue damage caused by trauma for example, requires rapid responses in order to mitigate further tissue deterioration. Cell/scaffold composites have been utilized to initiate and stabilize regenerative responses in vivo with the hope that functional tissue can be attained. Along with the gross reconfiguration of regenerating tissues, small molecules and growth factors also play a pivotal role in tissue regeneration. Several regenerative studies targeting a variety of urological tissues demonstrate the utility of these small molecules or growth factors in an in vivo setting.

  3. STITCH 2: an interaction network database for small molecules and proteins

    DEFF Research Database (Denmark)

    Kuhn, Michael; Szklarczyk, Damian; Franceschini, Andrea

    2010-01-01

    Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug-target r......Over the last years, the publicly available knowledge on interactions between small molecules and proteins has been steadily increasing. To create a network of interactions, STITCH aims to integrate the data dispersed over the literature and various databases of biological pathways, drug......-target relationships and binding affinities. In STITCH 2, the number of relevant interactions is increased by incorporation of BindingDB, PharmGKB and the Comparative Toxicogenomics Database. The resulting network can be explored interactively or used as the basis for large-scale analyses. To facilitate links to other...

  4. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  5. Organic Small Molecule as the Underlayer Toward High Performance Planar Perovskite Solar Cells.

    Science.gov (United States)

    Cong, Shan; Yang, Hao; Lou, Yanhui; Han, Liang; Yi, Qinghua; Wang, Haibo; Sun, Yinghui; Zou, Guifu

    2017-01-25

    The underlayer plays an important role for organic-inorganic hybrid perovskite formation and charge transport in perovskite solar cells (PSCs). Here, we employ a classical organic small molecule, 5,6,11,12-tetraphenyltetracene (rubrene), as the underlayer of perovskite films to achieve 15.83% of power conversion efficiency with remarkable moisture tolerance exposed to the atmosphere. Experiments demonstrate rubrene hydrophobic underlayer not only drives the crystalline grain growth of high quality perovskite, but also contributes to the moisture tolerance of PSCs. Moreover, the matching energy level of the desirable underlayer is conductive to extracting holes and blocking electrons at anode in PSCs. This introduction of organic small molecule into PSCs provides alternative materials for interface optimization, as well as platform for flexible and wearable solar cells.

  6. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2016-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231

  7. Discovery and characterization of small molecule inhibitors of the BET family bromodomains.

    Science.gov (United States)

    Chung, Chun-Wa; Coste, Herve; White, Julia H; Mirguet, Olivier; Wilde, Jonathan; Gosmini, Romain L; Delves, Chris; Magny, Sylvie M; Woodward, Robert; Hughes, Stephen A; Boursier, Eric V; Flynn, Helen; Bouillot, Anne M; Bamborough, Paul; Brusq, Jean-Marie G; Gellibert, Francoise J; Jones, Emma J; Riou, Alizon M; Homes, Paul; Martin, Sandrine L; Uings, Iain J; Toum, Jerome; Clement, Catherine A; Boullay, Anne-Benedicte; Grimley, Rachel L; Blandel, Florence M; Prinjha, Rab K; Lee, Kevin; Kirilovsky, Jorge; Nicodeme, Edwige

    2011-06-09

    Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodomain containing proteins has advanced considerably, the therapeutic tractability of this protein family is only now becoming understood. This paper describes the discovery and molecular characterization of potent (nM) small molecule inhibitors that disrupt the function of the BET family of bromodomains (Brd2, Brd3, and Brd4). By using a combination of phenotypic screening, chemoproteomics, and biophysical studies, we have discovered that the protein-protein interactions between bromodomains and acetylated histones can be antagonized by selective small molecules that bind at the acetylated lysine recognition pocket. X-ray crystal structures of compounds bound into bromodomains of Brd2 and Brd4 elucidate the molecular interactions of binding and explain the precisely defined stereochemistry required for activity.

  8. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.

    Science.gov (United States)

    Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle

    2015-09-18

    Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.

  9. Structure-based DNA-targeting strategies with small molecule ligands for drug discovery.

    Science.gov (United States)

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2013-09-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics.

  10. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  11. Small Molecule Inhibitors of Bcl-2 Family Proteins for Pancreatic Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Masood, Ashiq [Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201 (United States); Azmi, Asfar S. [Department of Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit MI 48201 (United States); Mohammad, Ramzi M., E-mail: mohammar@karmanos.org [Department of Internal Medicine/Pathology, Karmanos Cancer Institute, Wayne State University, 4100 John R, HWCRC 732, Detroit, MI 48201 (United States); Department of Oncology, Karmanos Cancer Institute, 4100 John R, HWCRC 732, Detroit, MI 48201 (United States)

    2011-03-24

    Pancreatic cancer (PC) has a complex etiology and displays a wide range of cellular escape pathways that allow it to resist different treatment modalities. Crucial signaling molecules that function downstream of the survival pathways, particularly at points where several of these pathways crosstalk, provide valuable targets for the development of novel anti-cancer drugs. Bcl-2 family member proteins are anti-apoptotic molecules that are known to be overexpressed in most cancers including PC. The anti-apoptotic machinery has been linked to the observed resistance developed to chemotherapy and radiation and therefore is important from the targeted drug development point of view. Over the past ten years, our group has extensively studied a series of small molecule inhibitors of Bcl-2 against PC and provide solid preclinical platform for testing such novel drugs in the clinic. This review examines the efficacy, potency, and function of several small molecule inhibitor drugs targeted to the Bcl-2 family of proteins and their preclinical progress against PC. This article further focuses on compounds that have been studied the most and also discusses the anti-cancer potential of newer class of Bcl-2 drugs.

  12. Using NMR to study small molecule adsorption in metal organic frameworks

    Science.gov (United States)

    Lopez, M. G.; Canepa, P.; Thonhauser, T.

    2013-03-01

    We calculate the carbon nuclear magnetic resonance (NMR) chemical shift for the CO2 molecule and the hydrogen shift for both H2 and H2O inside the metal organic framework structure Mg-MOF74 using ab initio calculations at the density functional theory level[1,2] with the van der Waals density functional (vdW-DF).[3] These shifts are obtained while placing the small molecules throughout the structure, including the calculated adsorption site for various loading scenarios. Our binding energy results agree well with previous experiments and calculation, and the NMR calculations show that it is reasonable to expect an experimentally observable change in the chemical shift depending on adsorbant, position, and loading. By providing this mapping of chemical shift to position and loading for these adsorbants, we argue that NMR probes could be used to provide information about the position at which these small molecules bind within the MOF and provide information about the loading of the adsorbed molecule.

  13. Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules.

    Science.gov (United States)

    Pan, Shih-Jung; Tapley, Asa; Adamson, John; Little, Tessa; Urbanowski, Michael; Cohen, Keira; Pym, Alexander; Almeida, Deepak; Dorasamy, Afton; Layre, Emilie; Young, David C; Singh, Ravesh; Patel, Vinod B; Wallengren, Kristina; Ndung'u, Thumbi; Wilson, Douglas; Moody, D Branch; Bishai, William

    2015-12-01

    Improved biomarkers are needed for tuberculosis. To develop tests based on products secreted by tubercle bacilli that are strictly associated with viability, we evaluated 3 bacterial-derived, species-specific, small molecules as biomarkers: 2 mycobactin siderophores and tuberculosinyladenosine. Using liquid chromatography-tandem mass spectrometry, we demonstrated the presence of 1 or both mycobactins and/or tuberculosinyladenosine in serum and whole lung tissues from infected mice and sputum, cerebrospinal fluid (CSF), or lymph nodes from infected patients but not uninfected controls. Detection of the target molecules distinguished host infection status in 100% of mice with both serum and lung as the target sample. In human subjects, we evaluated detection of the bacterial small molecules (BSMs) in multiple body compartments in 3 patient cohorts corresponding to different forms of tuberculosis. We detected at least 1 of the 3 molecules in 90%, 71%, and 40% of tuberculosis patients' sputum, CSF, and lymph node samples, respectively. In paucibacillary forms of human tuberculosis, which are difficult to diagnose even with culture, detection of 1 or more BSM was rapid and compared favorably to polymerase chain reaction-based detection. Secreted BSMs, detectable in serum, warrant further investigation as a means for diagnosis and therapeutic monitoring in patients with tuberculosis.

  14. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut.

    Directory of Open Access Journals (Sweden)

    Derrick K Mathias

    Full Text Available Malaria transmission-blocking (T-B interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001 in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA domain: (i circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP and (ii vWA domain-related protein (WARP. By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when

  15. High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection.

    Science.gov (United States)

    Kotova, Elena; Tulin, Alexei V

    2017-01-01

    Poly(ADP-ribose)polymerase 1 (PARP-1) protein became a popular target for treatment of several types of cancer. A number of PARP-1 inhibitors are currently in clinical trials. Most of them were designed competitors with NAD for a binding site on PARP-1 molecule. This strategy resulted in a discovery of mainly nucleotide-like PARP-1 inhibitors, which may target not only PARP-1 but also other pathways involving NAD and other nucleotides. Many cancer types demonstrate rapid development of resistance to NAD-like PARP-1 inhibitors. Thus, identification and characterization of new small molecules inhibit PARP-1 with high specificity and efficacy is important for the clinical research. We have proposed a new approach to screen libraries for new PARP-1 inhibitors based on histone H4-dependent PARP-1 activation. Beside identification of NAD competitors in a small molecules collection, this approach allows finding other classes of PARP-1 inhibitors that specifically disrupt H4-based PARP-1 activation or arrest inactive allosteric conformation of PARP-1. Here, we present an adaptation of this approach for a large-scale high-throughput screen.

  16. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins.

    Science.gov (United States)

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M S

    2011-07-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

  17. Identification of small molecule binding sites within proteins using phage display technology.

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  18. An unbiased cell morphology-based screen for new, biologically active small molecules.

    Directory of Open Access Journals (Sweden)

    Masahiro Tanaka

    2005-05-01

    Full Text Available We have implemented an unbiased cell morphology-based screen to identify small-molecule modulators of cellular processes using the Cytometrix (TM automated imaging and analysis system. This assay format provides unbiased analysis of morphological effects induced by small molecules by capturing phenotypic readouts of most known classes of pharmacological agents and has the potential to read out pathways for which little is known. Four human-cancer cell lines and one noncancerous primary cell type were treated with 107 small molecules comprising four different protein kinase-inhibitor scaffolds. Cellular phenotypes induced by each compound were quantified by multivariate statistical analysis of the morphology, staining intensity, and spatial attributes of the cellular nuclei, microtubules, and Golgi compartments. Principal component analysis was used to identify inhibitors of cellular components not targeted by known protein kinase inhibitors. Here we focus on a hydroxyl-substituted analog (hydroxy-PP of the known Src-family kinase inhibitor PP2 because it induced cell-specific morphological features distinct from all known kinase inhibitors in the collection. We used affinity purification to identify a target of hydroxy-PP, carbonyl reductase 1 (CBR1, a short-chain dehydrogenase-reductase. We solved the X-ray crystal structure of the CBR1/hydroxy-PP complex to 1.24 A resolution. Structure-based design of more potent and selective CBR1 inhibitors provided probes for analyzing the biological function of CBR1 in A549 cells. These studies revealed a previously unknown function for CBR1 in serum-withdrawal-induced apoptosis. Further studies indicate CBR1 inhibitors may enhance the effectiveness of anticancer anthracyclines. Morphology-based screening of diverse cancer cell types has provided a method for discovering potent new small-molecule probes for cell biological studies and anticancer drug candidates.

  19. Small?molecule Hedgehog inhibitor attenuates the leukemia?initiation potential of acute myeloid leukemia cells

    OpenAIRE

    Fukushima, Nobuaki; Minami, Yosuke; Kakiuchi, Seiji; Kuwatsuka, Yachiyo; Hayakawa, Fumihiko; Jamieson, Catoriona; Kiyoi, Hitoshi; Naoe, Tomoki

    2016-01-01

    Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF?04449913 (PF?913) is a selective, small?molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof?of?concept and mechanism of action of PF?913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signali...

  20. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents

    Science.gov (United States)

    Liu, Yu; Wan, Wen-zhu; Li, Yan; Zhou, Guan-lian; Liu, Xin-guang

    2017-01-01

    Phosphatidylinostitol-3-kinase (PI3K) is the potential anticancer target in the PI3K/Akt/ mTOR pathway. Here we reviewed the ATP-competitive small molecule PI3K inhibitors in the past few years, including the pan Class I PI3K inhibitors, the isoform-specific PI3K inhibitors and/or the PI3K/mTOR dual inhibitors. PMID:27769061

  1. Catalytic Activation of Small Molecules. Development and Characterisation of Ruthenium Complexes for Application in Catalysis

    OpenAIRE

    Choi, Jong-Hoo

    2016-01-01

    In this work, the synthesis, characterisation and catalytic application of ruthenium pincer complexes is presented. In this context, new synthetic strategies are discussed to obtain novel ruthenium pincer dihydrogen complexes. Furthermore, the reactivity of the complexes towards small molecules (e.g. alcohols, boranes, ammonia, amines, nitriles and hydrogen) was observed, delivering fundamental insights into catalytic applications. With the reactivity testing, new borylated B-H-σ-complexes we...

  2. Allosteric “beta-blocker” isolated from a DNA-encoded small molecule library

    Science.gov (United States)

    Ahn, Seungkirl; Kahsai, Alem W.; Pani, Biswaranjan; Wang, Qin-Ting; Zhao, Shuai; Wall, Alissa L.; Strachan, Ryan T.; Staus, Dean P.; Wingler, Laura M.; Sun, Lillian D.; Sinnaeve, Justine; Choi, Minjung; Cho, Ted; Xu, Thomas T.; Hansen, Gwenn M.; Burnett, Michael B.; Lamerdin, Jane E.; Bassoni, Daniel L.; Gavino, Bryant J.; Husemoen, Gitte; Olsen, Eva K.; Franch, Thomas; Costanzi, Stefano; Chen, Xin; Lefkowitz, Robert J.

    2017-01-01

    The β2-adrenergic receptor (β2AR) has been a model system for understanding regulatory mechanisms of G-protein–coupled receptor (GPCR) actions and plays a significant role in cardiovascular and pulmonary diseases. Because all known β-adrenergic receptor drugs target the orthosteric binding site of the receptor, we set out to isolate allosteric ligands for this receptor by panning DNA-encoded small-molecule libraries comprising 190 million distinct compounds against purified human β2AR. Here, we report the discovery of a small-molecule negative allosteric modulator (antagonist), compound 15 [([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide], exhibiting a unique chemotype and low micromolar affinity for the β2AR. Binding of 15 to the receptor cooperatively enhances orthosteric inverse agonist binding while negatively modulating binding of orthosteric agonists. Studies with a specific antibody that binds to an intracellular region of the β2AR suggest that 15 binds in proximity to the G-protein binding site on the cytosolic surface of the β2AR. In cell-signaling studies, 15 inhibits cAMP production through the β2AR, but not that mediated by other Gs-coupled receptors. Compound 15 also similarly inhibits β-arrestin recruitment to the activated β2AR. This study presents an allosteric small-molecule ligand for the β2AR and introduces a broadly applicable method for screening DNA-encoded small-molecule libraries against purified GPCR targets. Importantly, such an approach could facilitate the discovery of GPCR drugs with tailored allosteric effects. PMID:28130548

  3. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1

    OpenAIRE

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related in...

  4. Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit.

    Science.gov (United States)

    Costales, Matthew G; Haga, Christopher L; Velagapudi, Sai Pradeep; Childs-Disney, Jessica L; Phinney, Donald G; Disney, Matthew D

    2017-03-08

    A hypoxic state is critical to the metastatic and invasive characteristics of cancer. Numerous pathways play critical roles in cancer maintenance, many of which include noncoding RNAs such as microRNA (miR)-210 that regulates hypoxia inducible factors (HIFs). Herein, we describe the identification of a small molecule named Targapremir-210 that binds to the Dicer site of the miR-210 hairpin precursor. This interaction inhibits production of the mature miRNA, derepresses glycerol-3-phosphate dehydrogenase 1-like enzyme (GPD1L), a hypoxia-associated protein negatively regulated by miR-210, decreases HIF-1α, and triggers apoptosis of triple negative breast cancer cells only under hypoxic conditions. Further, Targapremir-210 inhibits tumorigenesis in a mouse xenograft model of hypoxic triple negative breast cancer. Many factors govern molecular recognition of biological targets by small molecules. For protein, chemoproteomics and activity-based protein profiling are invaluable tools to study small molecule target engagement and selectivity in cells. Such approaches are lacking for RNA, leaving a void in the understanding of its druggability. We applied Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP) to study the cellular selectivity and the on- and off-targets of Targapremir-210. Targapremir-210 selectively recognizes the miR-210 precursor and can differentially recognize RNAs in cells that have the same target motif but have different expression levels, revealing this important feature for selectively drugging RNAs for the first time. These studies show that small molecules can be rapidly designed to selectively target RNAs and affect cellular responses to environmental conditions, resulting in favorable benefits against cancer. Further, they help define rules for identifying druggable targets in the transcriptome.

  5. Activation of Small Molecules by DyI_2 and Dy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The reactivities of dysprosium diiodide and metallic dysprosium toward small molecules are discussed.For instance,DyI2-induced silyl radical reactions are described.The combination of dysprosium diiodide and dichloromethane can serve as an effective methylene transfer reagent for cyclopropanation of unfunctionalized alkenes beyond that possible with other metal-dichloromethane systems.Furthermore,we report that the combination of chlorosilane and metallic Dy can also serve as an effective prom...

  6. A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    OpenAIRE

    Rahul Palchaudhuri; Michael J. Lambrecht; Rachel C. Botham; Kathryn C. Partlow; Tjakko J. van Ham; Karson S. Putt; Laurie T. Nguyen; Seok-Ho Kim; Randall T. Peterson; Timothy M. Fan; Paul J. Hergenrother

    2015-01-01

    textabstractApoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Ra...

  7. Label-free detection of small-molecule binding to a GPCR in the membrane environment.

    Science.gov (United States)

    Heym, Roland G; Hornberger, Wilfried B; Lakics, Viktor; Terstappen, Georg C

    2015-08-01

    Evaluation of drug-target interaction kinetics is becoming increasingly important during the drug-discovery process to investigate selectivity of a drug and predict in vivo target occupancy. To date, it remains challenging to obtain kinetic information for interactions between G-protein-coupled receptors (GPCRs) and small-molecule ligands in a label-free manner. Often GPCRs need to be solubilized or even stabilized by mutations which can be difficult and is time consuming. In addition, it is often unclear if the native conformation of the receptors is sustained. In this study, surface plasmon resonance (SPR) and surface acoustic wave (SAW) technologies have been used to detect ligand binding to the GPCR chemokine (C-X-C motif) receptor 4 (CXCR4) expressed in lipoparticles. We first evaluated different strategies to immobilize CXCR4-expressing lipoparticles. The highest small-molecule binding signal in SPR and SAW was achieved with a matrix-free carboxymethylated sensor chip coated with wheat germ agglutinin for lipoparticle capturing. Next, the binding kinetics of the anti-CXCR4 antibody 12G5 raised against a conformational epitope (k(on)=1.83×10(6)M(-1)s(-1), k(off)=2.79×10(-4) s(-1)) and the small molecule AMD3100 (k(on)=5.46×10(5)M(-1)s(-1), k(off)=1.01×10(-2)s(-1)) were assessed by SAW. Our kinetic and affinity data are consistent with previously published radioligand-binding experiments using cells and label-free experiments with solubilized CXCR4. This is the first study demonstrating label-free kinetic characterization of small-molecule binding to a GPCR in the membrane environment. The presented method holds the potential to greatly facilitate label-free assay development for GPRCs that can be expressed at high levels in lipoparticles.

  8. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas Eiland; Clausen, Mads Hartvig

    2016-01-01

    Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function, and ther...... to be unreliable. Although previous SMKI research was concentrated on tyrosine kinase inhibitors for cancer treatment, recent progress indicates diversification of SMKI research in terms of new targets, mechanistic types, and therapeutic indications....

  9. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    Science.gov (United States)

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  10. Current status of renal biopsy for small renal masses.

    Science.gov (United States)

    Ha, Seung Beom; Kwak, Cheol

    2014-09-01

    Small renal masses (SRMs) are defined as radiologically enhancing renal masses of less than 4 cm in maximal diameter. The incidence of renal cell carcinoma (RCC) has increased in recent years, which is mainly due to the rise in incidental detection of localized SRMs. However, the cancer-specific mortality rate is not increasing. This discrepancy may be dependent on the indolent nature of SRMs. About 20% of SRMs are benign, and smaller masses are likely to have pathologic characteristics of low Fuhrman grade and clear cell type. In addition, SRMs are increasingly detected in elderly patients who are likely to have comorbidities and are a high-risk group for active treatment like surgery. As the information about the nature of SRMs is improved and management options for SRMs are expanded, the current role of renal mass biopsy for SRMs is also expanding. Traditionally, renal mass biopsy has not been accepted as a standard diagnostic tool in the clinical scenario because of several issues about safety and accuracy. However, current series on SRM biopsy have reported high diagnostic accuracy with rare complications. Studies of modern SRM biopsy have reported diagnostic accuracy greater than 90% with very high specificity. Also, current series have shown very rare morbid cases caused by renal mass biopsy. Currently, renal biopsy of SRMs can be recommended in most cases except when patients have imaging or clinical characteristics indicative of pathology and in cases in which conservative management is not considered.

  11. Current Status of Renal Biopsy for Small Renal Masses

    Science.gov (United States)

    Ha, Seung Beom

    2014-01-01

    Small renal masses (SRMs) are defined as radiologically enhancing renal masses of less than 4 cm in maximal diameter. The incidence of renal cell carcinoma (RCC) has increased in recent years, which is mainly due to the rise in incidental detection of localized SRMs. However, the cancer-specific mortality rate is not increasing. This discrepancy may be dependent on the indolent nature of SRMs. About 20% of SRMs are benign, and smaller masses are likely to have pathologic characteristics of low Fuhrman grade and clear cell type. In addition, SRMs are increasingly detected in elderly patients who are likely to have comorbidities and are a high-risk group for active treatment like surgery. As the information about the nature of SRMs is improved and management options for SRMs are expanded, the current role of renal mass biopsy for SRMs is also expanding. Traditionally, renal mass biopsy has not been accepted as a standard diagnostic tool in the clinical scenario because of several issues about safety and accuracy. However, current series on SRM biopsy have reported high diagnostic accuracy with rare complications. Studies of modern SRM biopsy have reported diagnostic accuracy greater than 90% with very high specificity. Also, current series have shown very rare morbid cases caused by renal mass biopsy. Currently, renal biopsy of SRMs can be recommended in most cases except when patients have imaging or clinical characteristics indicative of pathology and in cases in which conservative management is not considered. PMID:25237457

  12. Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite By Small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tocheva, E.I.; Eltis, L.D.; Murphy, M.E.P.

    2009-05-26

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  13. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Lin X. Chen

    2011-08-01

    Full Text Available Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems.

  14. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices.

    Science.gov (United States)

    Szarko, Jodi M; Guo, Jianchang; Rolczynski, Brian S; Chen, Lin X

    2011-01-01

    Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems.

  15. Non-Peptide-based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    Science.gov (United States)

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-02-23

    We report herein a non-peptide-based small molecule probe for fluorogenic and chromogenic detection of chymotrypsin, and the primary application. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognization group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity, and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first non-peptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related diseases diagnosis.

  16. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity

    Science.gov (United States)

    Kimani, Stanley G.; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V.; Sarafianos, Stefan G.; Bertino, Joseph R.; Welsh, William J.; Birge, Raymond B.

    2017-01-01

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics. PMID:28272423

  17. Small molecule hydration energy and entropy from 3D-RISM

    Science.gov (United States)

    Johnson, J.; Case, D. A.; Yamazaki, T.; Gusarov, S.; Kovalenko, A.; Luchko, T.

    2016-09-01

    Implicit solvent models offer an attractive way to estimate the effects of a solvent environment on the properties of small or large solutes without the complications of explicit simulations. One common test of accuracy is to compute the free energy of transfer from gas to liquid for a variety of small molecules, since many of these values have been measured. Studies of the temperature dependence of these values (i.e. solvation enthalpies and entropies) can provide additional insights into the performance of implicit solvent models. Here, we show how to compute temperature derivatives of hydration free energies for the 3D-RISM integral equation approach. We have computed hydration free energies of 1123 small drug-like molecules (both neutral and charged). Temperature derivatives were also used to calculate hydration energies and entropies of 74 of these molecules (both neutral and charged) for which experimental data is available. While direct results have rather poor agreement with experiment, we have found that several previously proposed linear hydration free energy correction schemes give good agreement with experiment. These corrections also provide good agreement for hydration energies and entropies though simple extensions are required in some cases.

  18. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview.

    Science.gov (United States)

    Swaminathan, Amrutha; Kumar, Manoj; Halder Sinha, Sarmistha; Schneider-Anthony, Anne; Boutillier, Anne-Laurence; Kundu, Tapas K

    2014-12-17

    Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.

  19. Lessons from the swamp: developing small molecules that confer salamander muscle cellularization in mammals.

    Science.gov (United States)

    Um, JungIn; Jung, Da-Woon; Williams, Darren Reece

    2017-12-01

    The ability of salamanders, such as newts, to regenerate damaged tissues has been studied for centuries. A prominent example of this regenerative power is the ability to re-grow entire amputated limbs. One important step in this regeneration process is skeletal muscle cellularization, in which the muscle fibers break down into dedifferentiated, mononuclear cells that proliferate and form new muscle in the replacement limb. In contrast, mammalian skeletal muscle does not undergo cellularization after injury. A significant proportion of research about tissue regeneration in salamanders aims to characterize regulatory genes that may have mammalian homologs. A less mainstream approach is to develop small molecule compounds that induce regeneration-related mechanisms in mammals. In this commentary, we discuss progress in discovering small molecules that induce cellularization in mammalian muscle. New research findings using these compounds has also shed light on cellular processes that regulate cellularization, such as apoptotic signaling. Although formidable technical hurdles remain, this progress increases our understanding of tissue regeneration and provide opportunities for developing small molecules that may enhance tissue repair in humans.

  20. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening.

    Science.gov (United States)

    Wu, Chun-Yi; Wang, Don-Hong; Wang, Xiaobing; Dixon, Seth M; Meng, Liping; Ahadi, Sara; Enter, Daniel H; Chen, Chao-Yu; Kato, Jason; Leon, Leonardo J; Ramirez, Laura M; Maeda, Yoshiko; Reis, Carolina F; Ribeiro, Brianna; Weems, Brittany; Kung, Hsing-Jien; Lam, Kit S

    2016-06-13

    Identifying "druggable" targets and their corresponding therapeutic agents are two fundamental challenges in drug discovery research. The one-bead-one-compound (OBOC) combinatorial library method has been developed to discover peptides or small molecules that bind to a specific target protein or elicit a specific cellular response. The phage display cDNA expression proteome library method has been employed to identify target proteins that interact with specific compounds. Here, we combined these two high-throughput approaches, efficiently interrogated approximately 10(13) possible molecular interactions, and identified 91 small molecule compound beads that interacted strongly with the phage library. Of 19 compounds resynthesized, 4 were cytotoxic against cancer cells; one of these compounds was found to interact with EIF5B and inhibit protein translation. As more binding pairs are confirmed and evaluated, the "library-against-library" screening approach and the resulting small molecule-protein domain interaction database may serve as a valuable tool for basic research and drug development.

  1. A small molecule restores function to TRPML1 mutant isoforms responsible for mucolipidosis type IV.

    Science.gov (United States)

    Chen, Cheng-Chang; Keller, Marco; Hess, Martin; Schiffmann, Raphael; Urban, Nicole; Wolfgardt, Annette; Schaefer, Michael; Bracher, Franz; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2014-08-14

    Mucolipidosis type IV (MLIV) is an autosomal recessive lysosomal storage disorder often characterized by severe neurodevelopmental abnormalities and neuro-retinal degeneration. Mutations in the TRPML1 gene are causative for MLIV. We used lead optimization strategies to identify--and MLIV patient fibroblasts to test--small-molecule activators for their potential to restore TRPML1 mutant channel function. Using the whole-lysosome planar patch-clamp technique, we found that activation of MLIV mutant isoforms by the endogenous ligand PI(3,5)P2 is strongly reduced, while activity can be increased using synthetic ligands. We also found that the F465L mutation renders TRPML1 pH insensitive, while F408Δ impacts synthetic ligand binding. Trafficking defects and accumulation of zinc in lysosomes of MLIV mutant fibroblasts can be rescued by the small molecule treatment. Collectively, our data demonstrate that small molecules can be used to restore channel function and rescue disease associated abnormalities in patient cells expressing specific MLIV point mutations.

  2. Suppression of the FOXM1 transcriptional programme via novel small molecule inhibition.

    Science.gov (United States)

    Gormally, Michael V; Dexheimer, Thomas S; Marsico, Giovanni; Sanders, Deborah A; Lowe, Christopher; Matak-Vinković, Dijana; Michael, Sam; Jadhav, Ajit; Rai, Ganesha; Maloney, David J; Simeonov, Anton; Balasubramanian, Shankar

    2014-11-12

    The transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA-binding domain (DBD) and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here--from a high-throughput screen applied to a library of 54,211 small molecules--we identify novel small molecule inhibitors of FOXM1 that block DNA binding. One of the identified compounds, FDI-6 (NCGC00099374), is characterized in depth and is shown to bind directly to FOXM1 protein, to displace FOXM1 from genomic targets in MCF-7 breast cancer cells, and induce concomitant transcriptional downregulation. Global transcript profiling of MCF-7 cells by RNA-seq shows that FDI-6 specifically downregulates FOXM1-activated genes with FOXM1 occupancy confirmed by ChIP-PCR. This small molecule-mediated effect is selective for FOXM1-controlled genes with no effect on genes regulated by homologous forkhead family factors.

  3. Identification of the first small-molecule inhibitor of the REV7 DNA repair protein interaction.

    Science.gov (United States)

    Actis, Marcelo L; Ambaye, Nigus D; Evison, Benjamin J; Shao, Youming; Vanarotti, Murugendra; Inoue, Akira; McDonald, Ezelle T; Kikuchi, Sotaro; Heath, Richard; Hara, Kodai; Hashimoto, Hiroshi; Fujii, Naoaki

    2016-09-15

    DNA interstrand crosslink (ICL) repair (ICLR) has been implicated in the resistance of cancer cells to ICL-inducing chemotherapeutic agents. Despite the clinical significance of ICL-inducing chemotherapy, few studies have focused on developing small-molecule inhibitors for ICLR. The mammalian DNA polymerase ζ, which comprises the catalytic subunit REV3L and the non-catalytic subunit REV7, is essential for ICLR. To identify small-molecule compounds that are mechanistically capable of inhibiting ICLR by targeting REV7, high-throughput screening and structure-activity relationship (SAR) analysis were performed. Compound 1 was identified as an inhibitor of the interaction of REV7 with the REV7-binding sequence of REV3L. Compound 7 (an optimized analog of compound 1) bound directly to REV7 in nuclear magnetic resonance analyses, and inhibited the reactivation of a reporter plasmid containing an ICL in between the promoter and reporter regions. The normalized clonogenic survival of HeLa cells treated with cisplatin and compound 7 was lower than that for cells treated with cisplatin only. These findings indicate that a small-molecule inhibitor of the REV7/REV3L interaction can chemosensitize cells by inhibiting ICLR.

  4. Small molecules activating TrkB receptor for treating a variety of CNS disorders.

    Science.gov (United States)

    Zeng, Yan; Wang, Xiaonan; Wang, Qiang; Liu, Shumin; Hu, Xiamin; McClintock, Shawn M

    2013-11-01

    The brain-derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin-receptor-kinase B (TrkB) play a critical role in neuronal differentiation and survival, synapse plasticity, and memory. Indeed, both have been implicated in the pathophysiology of numerous diseases. Although the remarkable therapeutic potential of BDNF has generated much research over the past decade, the poor pharmacokinetics and adverse side effect profile have limited its clinical usefulness of BDNF. Small compounds that mimic BDNF's neurotrophic signaling and overcome the pharmacokinetic and side effect barriers may have greater therapeutic potential. The purpose of this review is to provide a survey of the various strategies taken towards the development of small molecule mimetics for BDNF and the selective TrkB agonist. A particular focus was placed on TrkB agonist 7, 8-dihydroxyflavone, which modulates multiple functions and has demonstrated remarkable therapeutic efficacy in a variety of central nervous system disease models. Two other small molecules included in this review are adenosine A2A receptor agonists that indirectly activate TrkB, and TrkB binding domains of BDNF, loop II-LM22A compounds that directly activate TrkB. These alternative molecules have shown promise in preclinical studies and may be included in prospective clinical investigations.

  5. Small molecule mimetics of an interferon-α receptor interacting domain.

    Science.gov (United States)

    Bello, Angelica M; Wei, Lianhu; Majchrzak-Kita, Beata; Salum, Noruê; Purohit, Meena K; Fish, Eleanor N; Kotra, Lakshmi P

    2014-02-01

    Small molecules that mimic IFN-α epitopes that interact with the cell surface receptor, IFNAR, would be useful therapeutics. One such 8-amino acid region in IFN-α2, designated IRRP-1, was used to derive 11 chemical compounds that belong to 5 distinct chemotypes, containing the molecular features represented by the key residues Leu30, Arg33, and Asp35 in IRRP-1. Three of these compounds exhibited potential mimicry to IRRP-1 and, in cell based assays, as predicted, effectively inhibited IFNAR activation by IFN-α. Of these, compound 3 did not display cell toxicity and reduced IFN-α-inducible STAT1 phosphorylation and STAT-DNA binding. Based on physicochemical properties' analyses, our data suggest that moieties with acidic pKa on the small molecule may be a necessary element for mimicking the carboxyl group of Asp35 in IRRP-1. Our data confirm the relevance of this strategy of molecular mimicry of ligand-receptor interaction domains of protein partners for small molecule drug discovery.

  6. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    Science.gov (United States)

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca(2+) in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  7. ELAKCA: Enzyme-Linked Aptamer Kissing Complex Assay as a Small Molecule Sensing Platform.

    Science.gov (United States)

    Chovelon, Benoit; Durand, Guillaume; Dausse, Eric; Toulmé, Jean-Jacques; Faure, Patrice; Peyrin, Eric; Ravelet, Corinne

    2016-03-01

    We report herein a novel sandwich-type enzyme-linked assay for the "signal-on" colorimetric detection of small molecules. The approach (referred to as enzyme-linked aptamer kissing complex assay (ELAKCA)) relied on the kissing complex-based recognition of the target-bound hairpin aptamer conformational state by a specific RNA hairpin probe. The aptamer was covalently immobilized on a microplate well surface to act as target capture element. Upon small analyte addition, the folded aptamer was able to bind to the biotinylated RNA hairpin module through loop-loop interaction. The formed ternary complex was then revealed by the introduction of the streptavidin-horseradish peroxidase conjugate that catalytically converted the 3,3',5,5'-tetramethylbenzidine substrate into a colorimetric product. ELAKCA was successfully designed for two different systems allowing detecting the adenosine and theophylline molecules. The potential practical applicability in terms of biological sample analysis (human plasma), temporal stability, and reusability was also reported. Owing to the variety of both hairpin functional nucleic acids, kissing motifs, and enzyme-based signaling systems, ELAKCA opens up new prospects for developing small molecule sensing platforms of wide applications.

  8. Oligometastatic non-small-cell lung cancer: current treatment strategies

    Directory of Open Access Journals (Sweden)

    Richard PJ

    2016-11-01

    Full Text Available Patrick J Richard, Ramesh Rengan Department of Radiation Oncology, University of Washington, Seattle, WA, USA Abstract: The oligometastatic disease theory was initially described in 1995 by Hellman and Weichselbaum. Since then, much work has been performed to investigate its existence in many solid tumors. This has led to subclassifications of stage IV cancer, which could redefine our treatment approaches and the therapeutic outcomes for this historically “incurable” entity. With a high incidence of stage IV disease, non-small-cell lung cancer (NSCLC remains a difficult cancer to treat and cure. Recent work has proven the existence of an oligometastatic state in NSCLC in terms of properly selecting patients who may benefit from aggressive therapy and experience long-term overall survival. This review discusses the current treatment approaches used in oligometastatic NSCLC and provides the evidence and rationale for each approach. The prognostic factors of many trials are discussed, which can be used to properly select patients for aggressive treatment regimens. Future advances in both molecular profiling of NSCLC to find targetable mutations and investigating patient selection may increase the number of patients diagnosed with oligometastatic NSCLC. As this disease entity increases, it is of utmost importance for oncologists treating NSCLC to be aware of the current treatment strategies that exist and the potential advantages/disadvantages of each. Keywords: oligometastatic, non-small-cell lung cancer, oligoprogressive, treatment

  9. Predicting the multi-modal binding propensity of small molecules: towards an understanding of drug promiscuity.

    Science.gov (United States)

    Park, Keunwan; Lee, Soyoung; Ahn, Hee-Sung; Kim, Dongsup

    2009-08-01

    Drug promiscuity is one of the key issues in current drug development. Many famous drugs have turned out to behave unexpectedly due to their propensity to bind to multiple targets. One of the primary reasons for this promiscuity is that drugs bind to multiple distinctive target environments, a feature that we call multi-modal binding. Accordingly, investigations into whether multi-modal binding propensities can be predicted, and if so, whether the features determining this behavior can be found, would be an important advance. In this study, we have developed a structure-based classifier that predicts whether small molecules will bind to multiple distinct binding sites. The binding sites for all ligands in the Protein Data Bank (PDB) were clustered by binding site similarity, and the ligands that bind to many dissimilar binding sites were identified as multi-modal binding ligands. The mono-binding ligands were also collected, and the classifiers were built using various machine-learning algorithms. A 10-fold cross-validation procedure showed 70-85% accuracy depending on the choice of machine-learning algorithm, and the different definitions used to identify multi-modal binding ligands. In addition, a quantified importance measurement for global and local descriptors was also provided, which suggests that the local features are more likely to have an effect on multi-modal binding than the global ones. The interpretable global and local descriptors were also ranked by their importance. To test the classifier on real examples, several test sets including well-known promiscuous drugs were collected by a literature and database search. Despite the difficulty in constructing appropriate testable sets, the classifier showed reasonable results that were consistent with existing information on drug behavior. Finally, a test on natural enzyme substrates and artificial drugs suggests that the natural compounds tend to exhibit a broader range of multi-modal binding than the

  10. Segmental Interactions between Polymers and Small Molecules in Batteries and Biofuel Purification

    Science.gov (United States)

    Balsara, Nitash

    2015-03-01

    Polymers such as poly(ethylene oxide) (PEO) and poly(dimethyl siloxane) (PDMS) have the potential to play an important role in the emerging clean energy landscape. Mixtures of PEO and lithium salts are the most widely studied non-flammable electrolyte for rechargeable lithium batteries. PDMS membranes are ideally suited for purifying bioethanol and biobutanol from fermentation broths. The ability of PEO and PDMS to function in these applications depends on segmental interactions between the polymeric host and small molecule guests. One experimental approach for studying these interactions is X-ray absorption spectroscopy (XAS). Models for interpreting XAS spectra of amorphous mixtures and charged species such as salts must quantify the effect of segmental interactions on the electronic structure of the atoms of interest (e.g. sulfur). This combination of experiment and theory is used to determine the species formed in during charging and discharging lithium-sulfur batteries; the theoretical specific energy of lithium-sulfur batteries is a factor of four larger than that of current lithium-ion batteries. Selective transport of alcohols in PDMS-containing membranes is controlled by the size, shape, and connectivity of sub-nanometer cavities or free volume that form and disappear spontaneously as the chain segments undergo Brownian motion. We demonstrate that self-assembly of PDMS-containing block copolymers can be used to control segmental relaxation, which, in turn, affects free volume. Positron annihilation was used to determine the size distribution of free volume cavities in the PDMS-containing block copolymers. The effect of this artificial free volume on selective permeation of alcohols formed by fermentation of sugars derived from lignocellulosic biomass is studied. Molecular dynamics simulations are needed to understand the relationship between self-assembly, free volume, and transport in block copolymers.

  11. Efficient small-molecule organic solar cells incorporating a doped buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dei-Wei [Department of aviation and Communication Electronics, Air Force Institute of Technology, Kaohsiung 820, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung 831, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Tsao, Yao-Jen [Department of Applied Physics, National University of Kaohsiung, Nanzih, Kaohsiung 811, Taiwan (China); Chen, Wen-Ray; Meen, Teen-Hang [Department of Electronic Engineering, National Formosa University, Hu-Wei, Yunlin 632, Taiwan (China)

    2013-06-01

    Small-molecule organic solar cells (OSCs) with an optimized structure of indium tin oxide/poly (3,4-ethylenedioxythioxythiophene):poly(styrenesulfonate)/copper phthalocyanine (CuPc) (10 nm)/CuPc: fullerene (C{sub 60}) mixed (20 nm)/C{sub 60} (20 nm)/4,7-diphenyl-1,10-phenanthroline (BPhen) (5 nm)/Ag were fabricated. In this study, the cesium carbonate-doped BPhen (Cs{sub 2}CO{sub 3}:BPhen) was adopted as the buffer layer to enhance the efficiency of the OSCs. The photovoltaic parameters of the OSCs, such as the short-circuit current density and fill factor, depend on the doping concentration of Cs{sub 2}CO{sub 3} in the BPhen layer. The cell with a Cs{sub 2}CO{sub 3}:BPhen (1:4) cathode buffer layer exhibits a power conversion efficiency (PCE) of 3.51%, compared to 3.37% for the device with the pristine BPhen layer. The enhancement of PCE was attributed to the energy-level alignment between the C{sub 60} layer and the Cs{sub 2}CO{sub 3}:BPhen layer. In addition, the characterization measured using atomic force microscopy shows that the Cs{sub 2}CO{sub 3}:BPhen layers have smoother surfaces. - Highlight: • Cs2CO3-doped 4,7-diphenyl-1,10-phenanthroline (BPhen) cathode buffer layer. • Cs2CO3:BPhen layer with different ratios affects organic solar cells performance. • Cell with 1:4 (Cs2CO3:BPhen) ratio shows 3.51% power conversion efficiency.

  12. Cytoprotective effect of selective small-molecule caspase inhibitors against staurosporine-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Wu J

    2014-05-01

    Full Text Available Jianghong Wu, Yuren Wang, Shuguang Liang, Haiching Ma Reaction Biology Corp, Malvern, PA, USA Abstract: Caspases are currently known as the central executioners of the apoptotic pathways. Inhibition of apoptosis and promotion of normal cell survival by caspase inhibitors would be a tremendous benefit for reducing the side effects of cancer therapy and for control of neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. The objective of this study was to discover small-molecule caspase inhibitors with which to achieve cytoprotective effect. We completed the high-throughput screening of Bionet's 37,500-compound library (Key Organics Limited, Camelford, Cornwall, UK against caspase-1, -3, and -9 and successfully identified 43 initial hit compounds. The 43 hit compounds were further tested for cytoprotective activity against staurosporine-induced cell death in NIH3T3 cells. Nineteen compounds were found to have significant cytoprotective effects in cell viability assays. One of the compounds, RBC1023, was demonstrated to protect NIH3T3 cells from staurosporine-induced caspase-3 cleavage and activation. RBC1023 was also shown to protect against staurosporine-induced impairment of mitochondrial membrane potential. DNA microarray analysis demonstrated that staurosporine treatment induced broad global gene expression alterations, and RBC1023 co-treatment significantly restored these changes, especially of the genes that are related to cell growth and survival signaling such as Egr1, Cdc25c, cdkn3, Rhob, Nek2, and Taok1. Collectively, RBC1023 protects NIH3T3 cells against staurosporine-induced apoptosis via inhibiting caspase activity, restoring mitochondrial membrane potential, and possibly upregulating some cell survival-related gene expressions and pathways. Keywords: cell death, caspase inhibition, mitochondria, RBC1023

  13. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs.

    Science.gov (United States)

    Disney, Matthew D; Winkelsas, Audrey M; Velagapudi, Sai Pradeep; Southern, Mark; Fallahi, Mohammad; Childs-Disney, Jessica L

    2016-06-17

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

  14. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    Science.gov (United States)

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-12-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule.

  15. Small Molecules in C60 and C70: Which Complexes Could Be Stabilized?

    Science.gov (United States)

    Korona, Tatiana; Dodziuk, Helena

    2011-05-10

    The recent syntheses of complexes involving some small molecules in opened fullerenes and those of hydrogen molecule(s) in C60 and C70 are accompanied in the literature by numerous computations for endohedral fullerene complexes which cope with the problem of the stability of these complexes. In this contribution, stabilization energies of endohedral complexes of C60 and C70 with H2, N2, CO, HCN, H2O, H2S, NH3, CH4, CO2, C2H2, H2CO, and CH3OH guests have been estimated using symmetry-adapted perturbation theory, which, contrary to the standard DFT and some other approaches, correctly describes the dispersion contribution of the host-guest interactions. On the basis of these calculations, the endohedral complexes with all these guests were found stable in the larger fullerene, while the C60 cage was found too small to host the latter four molecules. Except for H2 and H2CO, a stabilization effect for most guests in the C60 cage is about 30 kJ/mol. For H2 and H2O guests, a typical supramolecular effect is observed; namely, the stabilization in the smaller cage is equal to or larger than that in the larger C70 host. Except for the water molecule where the induction interaction plays a non-negligible role, in all complexes the main stabilization effect comes from the dispersion interaction. The information on the stability of hypothetical endohedral fullerene complexes and physical factors contributing to it can be of importance in designing future experiments contributing to their applications.

  16. The small-voxel tracking algorithm for simulating chemical reactions among diffusing molecules

    Science.gov (United States)

    Seitaridou, Effrosyni

    2014-01-01

    Simulating the evolution of a chemically reacting system using the bimolecular propensity function, as is done by the stochastic simulation algorithm and its reaction-diffusion extension, entails making statistically inspired guesses as to where the reactant molecules are at any given time. Those guesses will be physically justified if the system is dilute and well-mixed in the reactant molecules. Otherwise, an accurate simulation will require the extra effort and expense of keeping track of the positions of the reactant molecules as the system evolves. One molecule-tracking algorithm that pays careful attention to the physics of molecular diffusion is the enhanced Green's function reaction dynamics (eGFRD) of Takahashi, Tănase-Nicola, and ten Wolde [Proc. Natl. Acad. Sci. U.S.A.141, 2473 (2010)]. We introduce here a molecule-tracking algorithm that has the same theoretical underpinnings and strategic aims as eGFRD, but a different implementation procedure. Called the small-voxel tracking algorithm (SVTA), it combines the well known voxel-hopping method for simulating molecular diffusion with a novel procedure for rectifying the unphysical predictions of the diffusion equation on the small spatiotemporal scale of molecular collisions. Indications are that the SVTA might be more computationally efficient than eGFRD for the problematic class of non-dilute systems. A widely applicable, user-friendly software implementation of the SVTA has yet to be developed, but we exhibit some simple examples which show that the algorithm is computationally feasible and gives plausible results. PMID:25527927

  17. Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.

    Science.gov (United States)

    Halambage, Upul D; Wong, Jason P; Melancon, Bruce J; Lindsley, Craig W; Aiken, Christopher

    2015-09-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity.

  18. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christine M. [Brandeis Univ., Waltham, MA (United States)

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  19. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans.

    Science.gov (United States)

    Pungaliya, Chirag; Srinivasan, Jagan; Fox, Bennett W; Malik, Rabia U; Ludewig, Andreas H; Sternberg, Paul W; Schroeder, Frank C

    2009-05-12

    Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure-activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the male-attracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying small-molecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits.

  20. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    Science.gov (United States)

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular

  1. Single molecule high-throughput footprinting of small and large DNA ligands.

    Science.gov (United States)

    Manosas, Maria; Camunas-Soler, Joan; Croquette, Vincent; Ritort, Felix

    2017-08-21

    Most DNA processes are governed by molecular interactions that take place in a sequence-specific manner. Determining the sequence selectivity of DNA ligands is still a challenge, particularly for small drugs where labeling or sequencing methods do not perform well. Here, we present a fast and accurate method based on parallelized single molecule magnetic tweezers to detect the sequence selectivity and characterize the thermodynamics and kinetics of binding in a single assay. Mechanical manipulation of DNA hairpins with an engineered sequence is used to detect ligand binding as blocking events during DNA unzipping, allowing determination of ligand selectivity both for small drugs and large proteins with nearly base-pair resolution in an unbiased fashion. The assay allows investigation of subtle details such as the effect of flanking sequences or binding cooperativity. Unzipping assays on hairpin substrates with an optimized flat free energy landscape containing all binding motifs allows determination of the ligand mechanical footprint, recognition site, and binding orientation.Mapping the sequence specificity of DNA ligands remains a challenge, particularly for small drugs. Here the authors develop a parallelized single molecule magnetic tweezers approach using engineered DNA hairpins that can detect sequence selectivity, thermodynamics and kinetics of binding for small drugs and large proteins.

  2. Metal-organic frameworks with functional pores for recognition of small molecules.

    Science.gov (United States)

    Chen, Banglin; Xiang, Shengchang; Qian, Guodong

    2010-08-17

    Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to discriminate different substrates for selective recognition of specific molecules has proved challenging. The extensive research on synthetic receptors for molecular recognition, particularly on noncovalent complexes self-assembled by hydrogen bonding and metal-organic coordination, has revealed some underlying principles. In particular, these studies have demonstrated that the shapes of the supramolecular receptors play significant roles in their specific and selective recognition of substrates: receptors can offer concave surfaces that complement their convex targets. This Account describes our research to develop a synthetic molecular recognition platform using porous metal-organic frameworks (MOFs). These materials contain functional pores to direct their specific and unique recognition of small molecules through several types of interactions: van der Waals interactions of the framework surface with the substrate, metal-substrate interactions, and hydrogen bonding of the framework surface with the substrate. These materials have potential applications for gas storage, separation, and sensing. We demonstrate a simple strategy to construct a primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters M(2)(CO(2))(4) (M = Cu(2+), Zn(2+), and Co(2+)) with two types of organic dicarboxylic acid and pillar bidentate linkers. This efficient method allows us to rationally tune the micropores to size-exclusively sort different small gas molecules, leading to the highly selective separation and purification of gases. By optimizing the

  3. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  4. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Science.gov (United States)

    Çakir, Bilal; Dağliyan, Onur; Dağyildiz, Ezgi; Bariş, İbrahim; Kavakli, Ibrahim Halil; Kizilel, Seda; Türkay, Metin

    2012-01-01

    Insulin-degrading enzyme (IDE) is an allosteric Zn(+2) metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  5. Potent antimicrobial small molecules screened as inhibitors of tyrosine recombinases and Holliday junction-resolving enzymes.

    Science.gov (United States)

    Rideout, Marc C; Boldt, Jeffrey L; Vahi-Ferguson, Gabriel; Salamon, Peter; Nefzi, Adel; Ostresh, John M; Giulianotti, Marc; Pinilla, Clemencia; Segall, Anca M

    2011-11-01

    Holliday junctions (HJs) are critical intermediates in many recombination-dependent DNA repair pathways. Our lab has previously identified several hexameric peptides that target HJ intermediates formed in DNA recombination reactions. One of the most potent peptides, WRWYCR, is active as a homodimer and has shown bactericidal activity partly because of its ability to interfere with DNA repair proteins that act upon HJs. To increase the possibility of developing a therapeutic targeting DNA repair, we searched for small molecule inhibitors that were functional surrogates of the peptides. Initial screens of heterocyclic small molecule libraries resulted in the identification of several N-methyl aminocyclic thiourea inhibitors. Like the peptides, these inhibitors trapped HJs formed during recombination reactions in vitro, but were less potent than the peptides in biochemical assays and had little antibacterial activity. In this study, we describe the screening of a second set of libraries containing somewhat larger and more symmetrical scaffolds in an effort to mimic the symmetry of a WRWYCR homodimer and its target. From this screen, we identified several pyrrolidine bis-cyclic guanidine inhibitors that also interfere with processing of HJs in vitro and are potent inhibitors of Gram-negative and especially Gram-positive bacterial growth. These molecules are proof-of-principle of a class of compounds with novel activities, which may in the future be developed into a new class of antibiotics that will expand the available choices for therapy against drug-resistant bacteria.

  6. Evaluation of interactions between RAW264.7 macrophages and small molecules by capillary electrophoresis.

    Science.gov (United States)

    Wang, Feng-Qin; Li, Qiao-Qiao; Zhang, Qian; Wang, Yin-Zhen; Hu, Yuan-Jia; Li, Peng; Wan, Jian-Bo; Yang, Feng-Qing; Xia, Zhi-Ning

    2016-12-09

    In this study, the affinity interactions between RAW 264.7 macrophages and three small molecules including naringin, oleuropein and paeoniflorin were evaluated by affinity capillary electrophoresis (ACE), partial filling affinity capillary electrophoresis (PFACE) and frontal analysis capillary electrophoresis (FACE), respectively. The result indicated that ACE (varying concentrations of cell suspension were filled in the capillary as receptor) may not be suitable for the evaluation of interactions between cell and small molecules due to the high viscosity of cell suspension; PFACE can qualitatively evaluate the interaction, but the difference in viscosity between RAW264.7 suspension and buffer effects on the liner relationship between filling length and injection time, which makes the calculation of binding constant difficult. Furthermore, based on the PFACE results, naringin showed stronger interaction with macrophages than the other two molecules; taking advantage of the aggregation phenomenon of cell induced by electric field, FACE was successfully used to determine the stoichiometry (n = 5×10(9) ) and binding constant (Kb = 1×10(4) L/mol) of the interaction between RAW264.7 and naringin.

  7. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Directory of Open Access Journals (Sweden)

    Yok-Ai Que

    Full Text Available Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA, a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  8. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Science.gov (United States)

    Que, Yok-Ai; Hazan, Ronen; Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N; Rahme, Laurence G

    2013-01-01

    Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  9. Small molecule, non-peptide p75 ligands inhibit Abeta-induced neurodegeneration and synaptic impairment.

    Directory of Open Access Journals (Sweden)

    Tao Yang

    Full Text Available The p75 neurotrophin receptor (p75(NTR is expressed by neurons particularly vulnerable in Alzheimer's disease (AD. We tested the hypothesis that non-peptide, small molecule p75(NTR ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.

  10. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    Science.gov (United States)

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops.

  11. A study of small molecule ingress into planar and cylindrical materials using ion beam analysis

    CERN Document Server

    Smith, R W

    2001-01-01

    mechanisms that take place, and where relevant diffusion coefficients have been obtained using either a semi-infinite medium Fickian planar diffusion model or a cylindrical Fickian diffusion model. Ion beam analysis techniques have been developed to allow profiling of small molecules diffused into materials at depths ranging from 10 sup - sup 7 to 10 sup - sup 1 m. A model DPS/PS/DPS triple-layer film and D( sup 3 He,p) sup 4 He nuclear reaction analysis was used to test the applicability of a novel data processing program - the IBA DataFurnace - to nuclear reaction data. The same reaction and program were used to depth profile the diffusion of heavy water into cellophane. A scanning sup 3 He micro-beam technique was developed to profile the diffusion of small molecules into both planar and cylindrical materials. The materials were exposed to liquids containing deuterium labelled molecules. A cross-section was exposed by cutting the material perpendicular to the surface and this was bombarded by a scanning su...

  12. Immunoaffinity Ultrafiltration with Ion Spray HPLC/MS for Screening Small-Molecule Libraries.

    Science.gov (United States)

    Wieboldt, R; Zweigenbaum, J; Henion, J

    1997-05-01

    A solution-phase screening method for libraries of pharmaceutically relevant molecules is presented. The technique is applicable to screening combinatorial libraries of 20-30 closely related molecules. In this report, individual benzodiazepines are selected from a multicomponent library mixture by formation in solution of noncovalent immunoaffinity complexes with antibodies raised to therapeutically proven drugs such as nitrazepam, temazepam, or oxazepam. Captured compounds are separated from nonspecifically bound library components by centrifugal ultrafiltration. The specifically selected molecules retained on the filter are subsequently liberated from the antibodies by acidification and analyzed by HPLC coupled with pneumatically assisted electrospray (ion spray) ionization mass spectrometric detection. Competition by the benzodiazepines for limited antibody binding sites is controlled by varying the stoichiometry of the complexation mixture. This procedure selects library components with the greatest affinity for a particular antibody. Specific capture of benzodiazepines is demonstrated by screening both a pool of structurally similar benzodiazepines and a more complex mixture of benzodiazepines with an additional set of unrelated compounds. Affinity ultrafiltration and electrospray mass spectrometry complement each other to enhance screening and identification of pooled drug candidates and potentially can be extended to other small-molecule combinatorial libraries and macromolecular receptor preparations.

  13. Desmoplastic Small Round Cell Tumor: Current Management and Recent Findings

    Directory of Open Access Journals (Sweden)

    Armelle Dufresne

    2012-01-01

    Full Text Available Desmoplastic small round cell tumor (DSRCT is a rare and highly aggressive mesenchymal tumor that develops in the abdominal cavity of young men adults. Patients typically present with symptoms of abdominal sarcomatosis. Diagnosis is based on histological analysis of biopsies which typically show small round blue cells in nests separated by an abundant desmoplastic stroma. DSRCT is associated with a unique chromosomal translocation t(11:22 (p 13; q 12 that involves the EWSR1 and WT1 genes. The prognosis is particularly poor; median survival ranges from 17 to 25 months, largely due to the presentation of the majority of patients with metastatic disease. Management of DSRCT remains challenging and current schemes lack a significant cure rate despite the use of aggressive treatments such as polychemotherapy, debulking surgery and whole abdominal radiation. Several methods are being evaluated to improve survival: addition of chemotherapy and targeted therapies to standard neoadjuvant protocol, completion of surgical resection with HIPEC, postoperative IMRT, treatment of hepatic metastases with [90Y]Yttrium microsphere liver embolization.

  14. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  15. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    Science.gov (United States)

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  16. Selection of RNAs for constructing "Lighting-UP" biomolecular switches in response to specific small molecules.

    Directory of Open Access Journals (Sweden)

    Tamaki Endoh

    Full Text Available RNA and protein are potential molecules that can be used to construct functional nanobiomaterials. Recent findings on riboswitches emphasize on the dominative function of RNAs in regulating protein functions through allosteric interactions between RNA and protein. In this study, we demonstrate a simple strategy to obtain RNAs that have a switching ability with respect to protein function in response to specific target molecules. RNA aptamers specific for small ligands and a trans-activation-responsive (TAR-RNA were connected by random RNA sequences. RNAs that were allosterically bound to a trans-activator of transcription (Tat-peptide in response to ligands were selected by repeated negative and positive selection in the absence and presence of the ligands, respectively. The selected RNAs interacted with artificially engineered Renilla Luciferase, in which the Tat-peptide was inserted within the Luciferase, in the presence of the specific ligand and triggered the "Lighting-UP" switch of the engineered Luciferase.

  17. Thieno[3,4-b]thiophene-Based Novel Small-Molecule Optoelectronic Materials.

    Science.gov (United States)

    Zhang, Cheng; Zhu, Xiaozhang

    2017-06-20

    Because of the tailorable photoelectric properties derived from judicious molecular design and large-area and low-temperature processability especially on flexible substrates, design and synthesis of new organic π-functional materials is always a central topic in the field of organic optoelectronics, which siginificantly contributed to the development of high-performance optoelectronic devices such as organic photovoltaics (OPVs), organic field-effect transistors (OFETs), and organic light-emitting diodes (OLEDs). Compared with polymers, small molecules with well-defined molecular structures benefit the establishment of structure-property relationships, which may provide valuable guidelines for the design of new optoelectronic materials to further promote the device performance. New building blocks are essential for the construction of optoelectronic materials. As is well recognized, thiophene-based functional materials have played an indispensable role in the development of organic optoelectronics. Compared with six-membered benzene, five-membered thiophene shows weaker aromaticity and lower steric hindrance and may provide extra sulfur-sulfur interactions in solid state. Among various thiophene building blocks, thieno[3,4-b]thiophene (TbT) is an asymmetric fused bithiophene containing four functionalization positions, in which the proaromatic thiophene can effectively stabilize the quinoidal resonance of the aromatic thiophene. Thus, TbT exhibits a unique characteristic of quinoid-resonance effect that is powerful to modulate electronic structures. Although the application of TbT in polymer donor materials represented by PTB-7 has achieved a great success, its application in small-molecule optoelectronic materials is almost an untouched field. In this Account, we summerize the rational design of a series of TbT-based small-molecule optoelectronic materials designed and optimized by quinoid-resonance effect, regiochemistry, and side-chain engineering and

  18. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Mallika, A. [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Badiger, Jayasree [HKE' s Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India); Alinakhi [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Talukdar, Pinaki [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India); Sachchidanand [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  19. A blend of small molecules regulates both mating and development in Caenorhabditis elegans.

    Science.gov (United States)

    Srinivasan, Jagan; Kaplan, Fatma; Ajredini, Ramadan; Zachariah, Cherian; Alborn, Hans T; Teal, Peter E A; Malik, Rabia U; Edison, Arthur S; Sternberg, Paul W; Schroeder, Frank C

    2008-08-28

    In many organisms, population-density sensing and sexual attraction rely on small-molecule-based signalling systems. In the nematode Caenorhabditis elegans, population density is monitored through specific glycosides of the dideoxysugar ascarylose (the 'ascarosides') that promote entry into an alternative larval stage, the non-feeding and highly persistent dauer stage. In addition, adult C. elegans males are attracted to hermaphrodites by a previously unidentified small-molecule signal. Here we show, by means of combinatorial activity-guided fractionation of the C. elegans metabolome, that the mating signal consists of a synergistic blend of three dauer-inducing ascarosides, which we call ascr#2, ascr#3 and ascr#4. This blend of ascarosides acts as a potent male attractant at very low concentrations, whereas at the higher concentrations required for dauer formation the compounds no longer attract males and instead deter hermaphrodites. The ascarosides ascr#2 and ascr#3 carry different, but overlapping, information, as ascr#3 is more potent as a male attractant than ascr#2, whereas ascr#2 is slightly more potent than ascr#3 in promoting dauer formation. We demonstrate that ascr#2, ascr#3 and ascr#4 are strongly synergistic, and that two types of neuron, the amphid single-ciliated sensory neuron type K (ASK) and the male-specific cephalic companion neuron (CEM), are required for male attraction by ascr#3. On the basis of these results, male attraction and dauer formation in C. elegans appear as alternative behavioural responses to a common set of signalling molecules. The ascaroside signalling system thus connects reproductive and developmental pathways and represents a unique example of structure- and concentration-dependent differential activity of signalling molecules.

  20. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  1. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure

    Science.gov (United States)

    Kho, Changwon; Lee, Ahyoung; Jeong, Dongtak; Oh, Jae Gyun; Gorski, Przemek A.; Fish, Kenneth; Sanchez, Roberto; DeVita, Robert J.; Christensen, Geir; Dahl, Russell; Hajjar, Roger J.

    2015-01-01

    Decreased activity and expression of the cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a), a critical pump regulating calcium cycling in cardiomyocyte, are hallmarks of heart failure. We have previously described a role for the small ubiquitin-like modifier type 1 (SUMO-1) as a regulator of SERCA2a and have shown that gene transfer of SUMO-1 in rodents and large animal models of heart failure restores cardiac function. Here, we identify and characterize a small molecule, N106, which increases SUMOylation of SERCA2a. This compound directly activates the SUMO-activating enzyme, E1 ligase, and triggers intrinsic SUMOylation of SERCA2a. We identify a pocket on SUMO E1 likely to be responsible for N106's effect. N106 treatment increases contractile properties of cultured rat cardiomyocytes and significantly improves ventricular function in mice with heart failure. This first-in-class small-molecule activator targeting SERCA2a SUMOylation may serve as a potential therapeutic strategy for treatment of heart failure. PMID:26068603

  2. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  3. Ocean metabolism and dissolved organic matter: How do small dissolved molecules persist in the ocean?

    Science.gov (United States)

    Benner, Ronald

    2010-05-01

    The ocean reservoir of dissolved organic matter (DOM) is among the largest global reservoirs (~700 Pg C) of reactive organic carbon. Marine primary production (~50 Pg C/yr) by photosynthetic microalgae and cyanobacteria is the major source of organic matter to the ocean and the principal substrate supporting marine food webs. The direct release of DOM from phytoplankton and other organisms as well as a variety of other processes, such as predation and viral lysis, contribute to the ocean DOM reservoir. Continental runoff and atmospheric deposition are relatively minor sources of DOM to the ocean, but some components of this material appear to be resistant to decomposition and to have a long residence time in the ocean. Concentrations of DOM are highest in surface waters and decrease with depth, a pattern that reflects the sources and diagenesis of DOM in the upper ocean. Most (70-80%) marine DOM exists as small molecules of low molecular weight (1 kDalton) DOM is relatively enriched in major biochemicals, such as combined neutral sugars and amino acids, and is more bioavailable than low-molecular-weight DOM. The observed relationships among the size, composition, and reactivity of DOM have led to the size-reactivity continuum model, which postulates that diagenetic processes lead to the production of smaller molecules that are structurally altered and resistant to microbial degradation. The radiocarbon content of these small dissolved molecules also indicates these are the most highly aged components of DOM. Chemical signatures of bacteria are abundant in DOM and increase during diagenesis, indicating bacteria are an important source of slowly cycling biochemicals. Recent analyses of DOM isolates by ultrahigh-resolution mass spectrometry have revealed an incredibly diverse mixture of molecules. Carboxyl-rich alicyclic molecules are abundant in DOM, and they appear to be derived from diagenetically-altered terpenoids, such as sterols and hopanoids. Thermally

  4. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists

    Directory of Open Access Journals (Sweden)

    Shulok Janine

    2002-11-01

    Full Text Available Abstract Background The Hedgehog (Hh signaling pathway is vital to animal development as it mediates the differentiation of multiple cell types during embryogenesis. In adults, Hh signaling can be activated to facilitate tissue maintenance and repair. Moreover, stimulation of the Hh pathway has shown therapeutic efficacy in models of neuropathy. The underlying mechanisms of Hh signal transduction remain obscure, however: little is known about the communication between the pathway suppressor Patched (Ptc, a multipass transmembrane protein that directly binds Hh, and the pathway activator Smoothened (Smo, a protein that is related to G-protein-coupled receptors and is capable of constitutive activation in the absence of Ptc. Results We have identified and characterized a synthetic non-peptidyl small molecule, Hh-Ag, that acts as an agonist of the Hh pathway. This Hh agonist promotes cell-type-specific proliferation and concentration-dependent differentiation in vitro, while in utero it rescues aspects of the Hh-signaling defect in Sonic hedgehog-null, but not Smo-null, mouse embryos. Biochemical studies with Hh-Ag, the Hh-signaling antagonist cyclopamine, and a novel Hh-signaling inhibitor Cur61414, reveal that the action of all these compounds is independent of Hh-protein ligand and of the Hh receptor Ptc, as each binds directly to Smo. Conclusions Smo can have its activity modulated directly by synthetic small molecules. These studies raise the possibility that Hh signaling may be regulated by endogenous small molecules in vivo and provide potent compounds with which to test the therapeutic value of activating the Hh-signaling pathway in the treatment of traumatic and chronic degenerative conditions.

  5. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    Science.gov (United States)

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  6. Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives

    Science.gov (United States)

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V.

    2010-01-01

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure- based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. PMID:20688506

  7. A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells

    Directory of Open Access Journals (Sweden)

    QIN Yang

    2014-04-01

    Full Text Available We report the synthesis of a novel three-dimensional tetrahedral-shaped small molecule,SO,containing a tetraphenylsilane core and cyanoester functionalized terthiophene arms.A deep lying HOMO energy level of -5.3 eV and a narrow bandgap of 1.9 eV were obtained from cyclic voltammetry measurements.Absorption,X-ray scattering and differential scanning calorimetry experiments all indicate high crystallinity of this compound.Solar cells employing SO were fabricated and evaluated.The relatively low performance was mainly ascribed to lack of appreciable phase separation,which is confirmed by optical microscopy.

  8. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pérez, Louis A.

    2013-09-04

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites.

    Science.gov (United States)

    Xiao, Fei; Wang, Lu; Duan, Hongwei

    2016-01-01

    Small molecule metabolites secreted by pathological processes can act as molecular biomarkers for clinical diagnosis. In vitro detection of the metabolites such as glucose and reactive oxygen species is of great significance for precise screening, monitoring and prognosis of metabolic disorders and relevant diseases such as cancer, and has been under intense research and development in clinical chemistry and molecular diagnostics. In this review, we summarize recent developments in nanomaterial based electrochemical (bio)sensors for in vitro detection of glucose and reactive oxygen species and the progress in utilizing lightweight and flexible electrodes and micro/nanoscale electrodes for flexible and miniaturized sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  11. Interrelation between crystal packing and small-molecule organic solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, Roland; Reinold, Egon; Mena-Osteritz, Elena; Baeuerle, Peter [Institut fuer Organische Chemie II und Neue Materialien, Universitaet Ulm (Germany); Elschner, Chris; Koerner, Christian; Riede, Moritz; Leo, Karl [Institut fuer Angewandte Photophysik, TU Dresden (Germany); Weil, Matthias [Institut fuer Chemische Technologien und Analytik, Abteilung Strukturchemie, TU Wien, Vienna (Austria); Uhrich, Christian; Pfeiffer, Martin [Heliatek GmbH, Dresden (Germany)

    2012-02-02

    X-ray investigations on single crystals of a series of terminally dicyanovinyl-substituted quaterthiophenes and co-evaporated blend layers with C{sub 60} give insight into molecular packing behavior and morphology, which are crucial parameters in the field of organic electronics. Structural characteristics on various levels and length scales are correlated with the photovoltaic performance of bulk heterojunction small-molecule organic solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells

    KAUST Repository

    Rumer, Joseph W.

    2015-02-01

    A bis-azide-based small molecule crosslinker is synthesized and evaluated as both a stabilizing and efficiency-boosting additive in bulk heterojunction organic photovoltaic cells. Activated by a noninvasive and scalable solution processing technique, polymer:fullerene blends exhibit improved thermal stability with suppressed polymer skin formation at the cathode and frustrated fullerene aggregation on ageing, with initial efficiency increased from 6% to 7%. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available The deep study of solvent annealed small molecules bulk heterojunction organic solar cells based on DPP(TBFu2 : PC60BM blend is carried out. To reveal the reason of the solvent annealing advantage over the thermal one, capacitance-voltage measurements were applied. It was found that controlling the vertical phase segregation in the solar cells a high fullerene population in the vicinity of the cathode could be achieved. This results in increase of the shunt resistance of the cell, thus improving the light harvesting efficiency.

  14. Identification and Biochemical Characterization of Small-Molecule Inhibitors of Clostridium Botulinum Neurotoxin Serotype A

    Science.gov (United States)

    2009-08-01

    post- exposure therapeutics. Methodology/Principal Findings: In this study, we report on five novel small-molecule BoNT/A inhibitors that have been...cellular and tissue-based assays intended to mimic BoNT exposure . These five compounds (at 15 mM) protected N2a cells from BoNT/A-mediated cleavage of SNAP...neurotoxin (rELC; residues 1 to 423) and truncated type A LC ( tALC ; residues 1 to 425) will be described elsewhere. Briefly, rELC with a C-terminal His6

  15. The caged state of some small molecules in the C60 cage

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The potential energy curves of some small molecules, H2, N2, O2, F2, HF, CO and NO, in the caged state within C60 cage and in the free state have been calculated by the quantum-chemical method AM1. In this study, the focus is on the cage effect of C60, and the concept of caged state is put forward. The results show that the bond lengths in the caged states are not much different from those in their corresponding free states, but the bond intensities in the caged states are much greater than those in their corresponding free states.

  16. Laser operation in nondoped thin films made of a small-molecule organic red-emitter

    Science.gov (United States)

    Rabbani-Haghighi, Hadi; Forget, Sébastien; Chénais, Sébastien; Siove, Alain; Castex, Marie-Claude; Ishow, Elena

    2009-07-01

    Stimulated emission in small-molecule organic films at a high dye concentration is generally hindered by fluorescence quenching, especially in the red region of the spectrum. Here we demonstrate the achievement of high net gains (up to 50 cm-1) around 640 nm in thermally evaporated nondoped films of 4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, which makes this material suitable for green-light pumped single mode organic lasers with low threshold and superior stability. Lasing effect is demonstrated in a distributed Bragg resonator configuration, as well as under the form of random lasing at high pump intensities.

  17. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    OpenAIRE

    Childs-Disney, Jessica L.; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2013-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loop...

  18. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Qin NIE; Xiao-guang DU; Mei-yu GENG

    2011-01-01

    Amyloid β (Aβ) peptides have long been viewed as a potential target for Alzheimer's disease (AD). Aggregation of Aβ peptides in the brain tissue is believed to be an exclusively pathological process. Therefore, blocking the initial stages of Aβ peptide aggregation with small molecules could hold considerable promise as the starting point for the development of new therapies for AD. Recent rapid progresses in our understanding of toxic amyloid assembly provide a fresh impetus for this interesting approach. Here, we discuss the problems, challenges and new concepts in targeting Aβ peptides.

  19. Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme

    OpenAIRE

    Bilal Çakir; Onur Dağliyan; Ezgi Dağyildiz; İbrahim Bariş; Ibrahim Halil Kavakli; Seda Kizilel; Metin Türkay

    2012-01-01

    Structure Based Discovery of Small Molecules to Regulate the Activity of Human Insulin Degrading Enzyme Bilal C¸ akir1, Onur Dag˘ liyan1, Ezgi Dag˘ yildiz1, I˙brahim Baris¸1, Ibrahim Halil Kavakli1,2*, Seda Kizilel1*, Metin Tu¨ rkay3* 1 Department of Chemical and Biological Engineering, Koc¸ University, Sariyer, Istanbul, Turkey, 2 Department of Molecular Biology and Genetics, Koc¸ University, Sariyer, Istanbul, Turkey, 3 Department of Industrial Engineering, Koc¸ University...

  20. Water and oxygen induced degradation of small molecule organic solar cells

    DEFF Research Database (Denmark)

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed...... with isotopic labeling using H218O and 18O2 provided information on where and to what extent the atmosphere had reacted with the device. A comparison was made between the use of a humid (oxygen free) atmosphere, a dry oxygen atmosphere, and a dry (oxygen free) nitrogen atmosphere during testing of devices...