WorldWideScience

Sample records for current sheet evolution

  1. Nonlinear Evolution of Magnetic Islands in the Magnetopause Current Sheet

    Institute of Scientific and Technical Information of China (English)

    XianminWANG; ZuyinPU

    1996-01-01

    Nonlinear evolution of magnetic islands produced by time-dependent magnetic reconnection in the magnetopause current sheet is studied.It is shown that the magnetic islands are unstable against the interference from external disturbances.Their structure can be destroyed by medium and small-scale solar wind turbulences,leading to stochastic magnetic reconnection and the formation of irregular small0scale structures in magnetospheric boundary regions.

  2. Nonlinear evolution of three-dimensional instabilities of thin and thick electron scale current sheets: Plasmoid formation and current filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Neeraj; Büchner, Jörg [Max Planck/Princeton Center for Plasma Physics, Göttingen (Germany); Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen (Germany)

    2014-07-15

    Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.

  3. Structure and evolution of the current sheet by multi-spacecraft observations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.Y. [Chinese Academy of Sciences, Beijing (China). Inst. of Geophysics; Russell, C.T. [Univ. of California, Los Angeles, CA (United States). Inst. of Geophysics and Planetary Physics; Gosling, J. [Los Alamos National Lab., NM (United States)

    1997-12-31

    On April 22, 1979, from 0840 to 1018 UT, ISEE 1, ISEE 2 and IMP 8 were all in or near the magnetotail current sheet at 17 Re, 16 Re and 35 Re respectively while ISEE 3 monitored the solar wind 206 Re upstream of the Earth. A global perspective of the four spacecraft observations and of the ground magnetic records is presented in this paper. The hyperbolic tangent current sheet model of Harris has been used to calculate the current sheet thickness and to analyze the plasma distribution in the vertical direction. It is found that during this event the current sheet thickness varied from 2.5 Re to 1.5 Re for northward IMF but thinned abruptly to 0.5 Re when the IMF turned southward.

  4. Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field.

    Science.gov (United States)

    Zenitani, S; Hoshino, M

    2005-08-26

    The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.

  5. The three-dimensional evolution of ion-scale current sheets: tearing and drift-kink instabilities in the presence of proton temperature anisotropy

    CERN Document Server

    Gingell, Peter; Matteini, Lorenzo

    2014-01-01

    We present the first three-dimensional hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent three-dimensional structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the three-dimensional evolution of solar wind current sheets are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of three-dimensional current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of...

  6. Forced current sheet structure, formation and evolution: application to magnetic reconnection in the magnetosphere

    Directory of Open Access Journals (Sweden)

    V. I. Domrin

    2004-07-01

    Full Text Available By means of a simulation model, the earlier predicted nonlinear kinetic structure, a Forced Kinetic Current Sheet (FKCS, with extremely anisotropic ion distributions, is shown to appear as a result of a fast nonlinear process of transition from a previously existing equilibrium. This occurs under triggering action of a weak MHD disturbance that is applied at the boundary of the simulation box. In the FKCS, current is carried by initially cold ions which are brought into the CS by convection from both sides, and accelerated inside the CS. The process then appears to be spontaneously self-sustained, as a MHD disturbance of a rarefaction wave type propagates over the background plasma outside the CS. Comparable to the Alfvénic discontinuity in MHD, transformation of electromagnetic energy into the energy of plasma flows occurs at the FKCS. But unlike the MHD case, ``free" energy is produced here: dissipation should occur later, through particle interaction with turbulent waves generated by unstable ion distribution being formed by the FKCS action. In this way, an effect of magnetic field ``annihilation" appears, required for fast magnetic reconnection. Application of the theory to observations at the magnetopause and in the magnetotail is considered.

  7. Evolution and structure of the plasma of current sheets forming in two-dimensional magnetic fields with a null line at low initial gas ionization and their interpretation

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.

    2012-04-01

    An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10-4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.

  8. Reconnection in thin current sheets

    Science.gov (United States)

    Tenerani, Anna; Velli, Marco; Pucci, Fulvia; Rappazzo, A. F.

    2016-05-01

    It has been widely believed that reconnection is the underlying mechanism of many explosive processes observed both in nature and laboratory, but the question of reconnection speed and initial trigger have remained mysterious. How is fast magnetic energy release triggered in high Lundquist (S) and Reynolds (R) number plasmas?It has been shown that a tearing mode instability can grow on an ideal timescale, i.e., independent from the the Lundquist number, once the current sheet thickness becomes thin enough, or rather the inverse aspect ratio a/L reaches a scale a/L~S-1/3. As such, the latter provides a natural, critical threshold for current sheets that can be formed in nature before they disrupt in a few Alfvén time units. Here we discuss the transition to fast reconnection extended to simple viscous and kinetic models and we propose a possible scenario for the transition to explosive reconnection in high-Lundquist number plasmas, that we support with fully nonlinear numerical MHD simulations of a collapsing current sheet.

  9. Ohm's law for a current sheet

    Science.gov (United States)

    Lyons, L. R.; Speiser, T. W.

    1985-01-01

    The paper derives an Ohm's law for single-particle motion in a current sheet, where the magnetic field reverses in direction across the sheet. The result is considerably different from the resistive Ohm's law often used in MHD studies of the geomagnetic tail. Single-particle analysis is extended to obtain a self-consistency relation for a current sheet which agrees with previous results. The results are applicable to the concept of reconnection in that the electric field parallel to the current is obtained for a one-dimensional current sheet with constant normal magnetic field. Dissipated energy goes directly into accelerating particles within the current sheet.

  10. Self-similar current sheet collapse triggered by "ideal" tearing

    CERN Document Server

    Tenerani, Anna; Rappazzo, Antonio Franco; Pucci, Fulvia

    2015-01-01

    We study the onset and evolution of fast reconnection via the "ideal: tearing mode instability within a collapsing current sheet at high Lundquist numbers ($S\\gg10^4$). As the collapse proceeds, fast reconnection is triggered well before a Sweet-Parker type configuration can form: after the linear phase of the initial instability, X-points collapse and reform nonlinearly, a hierarchy of "ideal" tearing modes repeating faster and faster on current sheets at ever smaller scales. We present a simple model describing the self-similar evolution which explains both the timescale of the disruption of the initial sheet and the consequent turbulent spectra.

  11. Current-sheet formation in 3D ideal incompressible magnetohydrodynamics

    Science.gov (United States)

    Grauer; Marliani

    2000-05-22

    The evolution of current density and vorticity in the ideal, inviscid incompressible magnetohydrodynamic equations in three dimensions is studied numerically. Highly effective resolutions are obtained by adaptive structured mesh refinement techniques. We report on results for three different initial conditions showing similar behavior: in the early stage of the evolution a fast increase in vorticity and current density is observed. Thereafter, the evolution towards nearly two-dimensional current sheets results in a depletion of nonlinearity.

  12. Bifurcation of Jovian magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2006-07-01

    Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.

  13. Three-dimensional evolution of flux rope CMEs and its relation to the local orientation of the heliospheric current sheet

    CERN Document Server

    Isavnin, Alexey; Kilpua, Emilia K J

    2013-01-01

    Flux ropes (FRs) ejected from the Sun may change their geometrical orientation during their evolution which directly affects their geoeffectiveness. Therefore, it is crucial to understand how solar FRs evolve in the heliosphere to improve our space weather forecasting tools. We analyze 15 coronal mass ejections (CMEs), with clear FR signatures, observed during the decay of Solar Cycle 23 and rise of Solar Cycle 24. We estimate initial orientations of the FRs at the origin using extreme ultraviolet observations of post-eruption arcades and/or eruptive prominences. Then we reconstruct multiviewpoint coronagraph observations of the CMEs from ~2 to 30 Rs with a three-dimensional geometric representation of a FR to determine their geometrical parameters. Finally, we propagate the FRs from ~30 Rs to 1 AU through MHD-simulated background solar wind while using in-situ measurements at 1 AU of the associated magnetic cloud as a constraint for the propagation technique. These methodology allows us to estimate the FR or...

  14. Evidence for the Late Cenozoic Antarctic Ice Sheet evolution and bottom current dynamics in the central-western Ross Sea outer margin, Antarctica

    Science.gov (United States)

    Kim, Sookwan; De Santis, Laura; Kuk Hong, Jong; Cottlerle, Diego; Petronio, Lorenzo; Colizza, Ester; Bergamasco, Andrea; Kim, Young-Gyun; Kang, Seung-Goo; Kim, Hyoungjun; Kim, Suhwan; Wardell, Nigel; Geletti, Riccardo; McKay, Robert; Jin, Young Keun; Kang, Sung-Ho

    2016-04-01

    Sedimentary records in polar continental margins provide clues for understanding paleo-depositional environments, related to ice sheet evolution and bottom-water current dynamics, during times of past climate and global sea level changes. Previous seismostratigraphic studies of the Ross Sea embayment, Antarctica, illustrated its general stratigraphic framework and the distribution of glacial sedimentary features over the continental shelf, since the onset of Antarctic ice-sheets at the Eocene-Oligocene boundary (~34.0 Ma). In contrast, there are a fewer studies for the outer continental margin, where continuous sedimentary deposits generally preserve the record of past climate cycles with minimum hiatus, comparing to the inner- and mid-continental shelf, where grounding ice streams eroded most of the sediments. Here we present a seismostratigraphic analysis of 2-D multichannel seismic reflection profiles, from the Central Basin located in the central-western Ross Sea outer margin. A glacial prograding wedge developed at the mouth of the Joides Basin since early-middle Miocene times (RSU4: ~14.0 Ma). And the Central Basin was filled with stacked debris-flow deposits and turbidites. The sediment depocenter shifted from the Central Basin toward the slope in the Pliocene (after RSU2: ~3.3 Ma). Pliocene foreset beds are steep and pinch out at the base of the continental slope. Bottom current controlled sediment drifts well developed since the middle Miocene, along the western slope of the central Basin and on the basement highs These areas are far from the mouth of the Joides trough, where most of the glacial sediment is deposited, and they are also more elevated than the basinal areas, where gravity flow maximum thickness accumulated. Along the western slope of the central Basin and over the basement highs, the signature in the sediments of the action of bottom current reworking and shaping the sea floor can be then clearly recognized. We present the sediment drifts

  15. Origin of the warped heliospheric current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, J.M.; Hoeksema, J.T.; Scherrer, P.H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that ballerina skirt effects may add small-scale ripples.

  16. Origin of the warped heliospheric current sheet

    Science.gov (United States)

    Wilcox, J. M.; Hoeksema, J. T.; Scherrer, P. H.

    1980-08-01

    The warped heliospheric current sheet for early 1976 is calculated from the observed photospheric magnetic field by a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity for early 1976 obtained at several locations in the heliosphere by Helios 1, Helios 2, Pioneer 11, and at the earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field and that 'ballerina skirt' effects may add small scale ripples.

  17. Physics of the magnetotail current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J. (Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375 (United States))

    1993-07-01

    The Earth's magnetotail plays an important role in the solar-wind--magnetosphere coupling. At the midplane of the magnetotail is a current sheet where the dominant magnetic field component reverses sign. The charged particle motion in and near the current sheet is collisionless and nonintegrable, exhibiting chaotic scattering. The current understanding of the dynamical properties of the charged particle motion is discussed. In particular, the relationships between particle dynamics and global attributes of the system are elucidated. Geometrical properties of the phase space determine important physical observables on both micro- and macroscales.

  18. Fluctuation dynamics in reconnecting current sheets

    Science.gov (United States)

    von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas

    2015-11-01

    During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.

  19. Radiating Current Sheets in the Solar Chromosphere

    CERN Document Server

    Goodman, Michael L

    2014-01-01

    An MHD model of a Hydrogen plasma with flow, an energy equation, NLTE ionization and radiative cooling, and an Ohm's law with anisotropic electrical conduction and thermoelectric effects is used to self-consistently generate atmospheric layers over a $50$ km height range. A subset of these solutions contain current sheets, and have properties similar to those of the lower and middle chromosphere. The magnetic field profiles are found to be close to Harris sheet profiles, with maximum field strengths $\\sim 25-150$ G. The radiative flux $F_R$ emitted by individual sheets is $\\sim 4.9 \\times 10^5 - 4.5 \\times 10^6$ ergs-cm$^{-2}$-s$^{-1}$, to be compared with the observed chromospheric emission rate of $\\sim 10^7$ ergs-cm$^{-2}$-s$^{-1}$. Essentially all emission is from regions with thicknesses $\\sim 0.5 - 13$ km containing the neutral sheet. About half of $F_R$ comes from sub-regions with thicknesses 10 times smaller. A resolution $\\lesssim 5-130$ m is needed to resolve the properties of the sheets. The sheets...

  20. Dynamic Current Sheet Formation and Evolution with Application to Inter-(Super)granular Flow Lanes and Quasi-Homologous Jet Activity

    Science.gov (United States)

    Edmondson, Justin K.; Velli, M.

    2011-05-01

    The coronal magnetic field structure is an immensely complex system constantly driven away from equilibrium by global drivers such as photospheric flow, flux emergence/cancellation at the lower boundary, helicity injection and transport, etc. In low-beta plasma systems, such as solar corona, the Maxwell stresses dominate forces and therefore the system dynamics. General Poynting stress injection (i.e., flux injection, helicity injection, translational motions, or any combination thereof) results in (possibly large) geometric deformations of the magnetic field, such that the Maxwell stresses distribute as uniformly as possible, constrained by the distorted geometry and topology of the bounding separatricies. Since the topological connectivity is discontinuous across these separatrix surfaces, the magnetic stresses will be discontinuous there as well, manifesting as current sheets within the field. The solar magnetic field undergoes major geometric expansion passing from the photosphere, through the chromosphere, into the corona. No matter the specific details, a mixed polarity distribution at the lower boundary and the divergence-free condition require invariant topological features such as an X-line and separatricies to exist between fields emanating from separate regions of the photosphere. We present the results of fully-3D numerical simulations of a simplified low-beta model of this field expansion. A symmetric injection of Maxwell stresses into this geometry inflates strongly line-tied fields, generating a region of large current densities and magnetic energy dissipation. Elsewhere the injected stresses accumulate along the existing separatricies. There is no evidence of reconnection dynamics until after the initial left-right parity is broken. Once the symmetry breaks, the X-line deforms explosively into a Syrovatskii-type current sheet, leading to a succession of quasi-homologous jet dynamics. The bursty-oscillations of these jets occur as the stresses within

  1. Plasma Relaxation Dynamics Moderated by Current Sheets

    Science.gov (United States)

    Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho

    2014-10-01

    Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.

  2. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  3. Drift modes of a quasi-two-dimensional current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V.; Malova, Kh. V.; Popov, V. Yu.; Zelenyi, L. M. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2012-03-15

    Stability of a plasma configuration consisting of a thin one-dimensional current sheet embedded into a two-dimensional background current sheet is studied. Drift modes developing in plasma as unstable waves along the current direction are considered. Dispersion relations for kink and sausage perturbation modes are obtained depending on the ratio of parameters of thin and background current sheets. It is shown that the existence of the background sheet results in a decrease in the instability growth rates and a significant increase in the perturbation wavelengths. The role of drift modes in the excitation of oscillations observed in the current sheet of the Earth's magnetotail is discussed.

  4. Thin current sheets in the deep geomagnetic tail

    Energy Technology Data Exchange (ETDEWEB)

    Pulkkinen, T.I. (Finnish Meteorological Institute, Helsinki (Finland)); Baker, D.N.; Owen, C.J. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States)); Gosling, J.T. (Los Alamos National Lab., NM (United States)); Murphy, N. (Jet Propulsion Lab., Pasadena, CA (United States))

    1993-11-19

    The ISEE-3 magnetic field and plasma electron data from Jan-March 1983 have been searched to study thin current sheets in the deep tail region. 33 events were selected where the spacecraft crossed through the current sheet from lobe to lobe within 15 minutes. The average thickness of the observed current sheets was 2.45R[sub E], and in 24 cases the current sheet was thinner than 3.0R[sub E]; 6 very thin current sheets (thickness [lambda] < 0.5R[sub E]) were found. The electron data show that the very thin current sheets are associated with considerable temperature anisotropy. On average, the electron gradient current was [approximately]17% of the total current, whereas the current arising from the electron temperature anisotropy varied between 8-45% of the total current determined from the lobe field magnitude. 21 refs., 5 figs.

  5. Modeling the heliospheric current sheet: Solar cycle variations

    Science.gov (United States)

    Riley, Pete; Linker, J. A.; Mikić, Z.

    2002-07-01

    In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.

  6. Current sheet formation and non-ideal behaviour at three-dimensional magnetic null points

    CERN Document Server

    Pontin, D I; Galsgaard, K

    2007-01-01

    The nature of the evolution of the magnetic field, and of current sheet formation, at three-dimensional (3D) magnetic null points is investigated. A kinematic example is presented which demonstrates that there is no possible choice of boundary conditions which renders the evolution of the field ideal at the null, when the ratios of the null eigenvalues are time-dependent. Resistive MHD simulations are described which demonstrate that this evolution is generic. A 3D null is subjected to boundary driving by shearing motions, and it is shown that a current sheet localised at the null is formed. The qualitative and quantitative properties of the current sheet are discussed. Accompanying the sheet development is the growth of a localised parallel electric field, one of the signatures of magnetic reconnection. Finally, the relevance of the results to a recent theory of turbulent reconnection are discussed.

  7. Magnetic configurations of the tilted current sheets in magnetotail

    Directory of Open Access Journals (Sweden)

    C. Shen

    2008-11-01

    Full Text Available In this research, the geometrical structures of tilted current sheet and tail flapping waves have been analysed based on multiple spacecraft measurements and some features of the tilted current sheets have been made clear for the first time. The geometrical features of the tilted current sheet revealed in this investigation are as follows: (1 The magnetic field lines (MFLs in the tilted current sheet are generally plane curves and the osculating planes in which the MFLs lie are about vertical to the equatorial plane, while the normal of the tilted current sheet leans severely to the dawn or dusk side. (2 The tilted current sheet may become very thin, the half thickness of its neutral sheet is generally much less than the minimum radius of the curvature of the MFLs. (3 In the neutral sheet, the field-aligned current density becomes very large and has a maximum value at the center of the current sheet. (4 In some cases, the current density is a bifurcated one, and the two humps of the current density often superpose two peaks in the gradient of magnetic strength, indicating that the magnetic gradient drift current is possibly responsible for the formation of the two humps of the current density in some tilted current sheets. Tilted current sheets often appear along with tail current sheet flapping waves. It is found that, in the tail flapping current sheets, the minimum curvature radius of the MFLs in the current sheet is rather large with values around 1 RE, while the neutral sheet may be very thin, with its half thickness being several tenths of RE. During the flapping waves, the current sheet is tilted substantially, and the maximum tilt angle is generally larger than 45°. The phase velocities of these flapping waves are several tens km/s, while their periods and wavelengths are several tens of minutes, and several earth radii, respectively. These tail flapping events generally last several hours and occur

  8. Bashful Ballerina: Southward shifted Heliospheric Current Sheet

    Science.gov (United States)

    Mursula, K.; Hiltula, T.

    It is known since long (Rosenberg and Coleman, 1969) that one of the two sectors of the interplanetary magnetic field (IMF) observed at the Earth's orbit dominates at high heliographic latitudes during solar minimum times, reflecting the poloidal structure of the global solar magnetic field at these times. Here we find that while this latitudinal variation of the dominant IMF sector around the solar equator is valid for both solar hemispheres during the last four solar minima covered by direct observations, it is systematically more strongly developed in the northern heliographic hemisphere. This implies that the average heliospheric current sheet is shifted or coned southward during solar minimum times, suggesting that the temporary southward shift of the heliosheet found earlier by Ulysses observations in 1995 is a persistent pattern. This also implies that the open solar magnetic field is north-south asymmetric at these times, suggesting that the solar dynamo has an asymmetric component. Accordingly, the Sun with the heliosheet is like a bashful ballerina who is repeatedly trying to push her excessively high flaring skirt downward. However, the effective shift at 1 AU is only a few degrees, allowing the Rosenberg-Coleman rule to be valid, on an average, in both hemispheres during solar minima.

  9. Local structure of the magnetotail current sheet: 2001 Cluster observations

    Directory of Open Access Journals (Sweden)

    A. Runov

    2006-03-01

    Full Text Available Thirty rapid crossings of the magnetotail current sheet by the Cluster spacecraft during July-October 2001 at a geocentric distance of 19 RE are examined in detail to address the structure of the current sheet. We use four-point magnetic field measurements to estimate electric current density; the current sheet spatial scale is estimated by integration of the translation velocity calculated from the magnetic field temporal and spatial derivatives. The local normal-related coordinate system for each case is defined by the combining Minimum Variance Analysis (MVA and the curlometer technique. Numerical parameters characterizing the plasma sheet conditions for these crossings are provided to facilitate future comparisons with theoretical models. Three types of current sheet distributions are distinguished: center-peaked (type I, bifurcated (type II and asymmetric (type III sheets. Comparison to plasma parameter distributions show that practically all cases display non-Harris-type behavior, i.e. interior current peaks are embedded into a thicker plasma sheet. The asymmetric sheets with an off-equatorial current density peak most likely have a transient nature. The ion contribution to the electric current rarely agrees with the current computed using the curlometer technique, indicating that either the electron contribution to the current is strong and variable, or the current density is spatially or temporally structured.

  10. Unsteady magnetic reconnection in laboratory experiments with current sheets

    Science.gov (United States)

    Frank, Anna

    2009-11-01

    According to present notion, unsteady magnetic reconnection in current sheets (CS) is basic to dramatic natural phenomena: solar and stellar flares, substorms in the Earth and other planetary magnetospheres, as well as to disruptive instabilities in tokamak plasmas. We present a review of laboratory experiments studying evolution of CS formed in 3D and 2D magnetic configurations with an X line, in the CS-3D device. Usually CS exists during an extended period in a metastable stage, without essential changes of its structure and parameters. Under certain conditions this stage may be suddenly interrupted by unsteady phase of magnetic reconnection, which manifests itself in a rapid change of the magnetic field topology, current redistribution, excitation of pulsed electric fields, and other dynamic effects. The unsteady phase results in effective conversion of magnetic energy into the energy of plasma and accelerated particles, and may finally bring about the CS disruption. In the context of the solar flares, a metastable CS is associated with a pre-flare situation, while CS disruption -- with the flare itself. The physical mechanisms triggering the unsteady magnetic reconnection in the laboratory produced current sheets are discussed. Supported by the Russian Foundation for Basic Research (project # 09-02-00971).

  11. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  12. The origin of the warped heliospheric current sheet

    Science.gov (United States)

    Wilcox, J. M.; Scherrer, P. H.; Hoeksema, J. T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 was calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios 1, Helios 2, Pioneer 11 and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that "ballerina skirt" effects may add small scale ripples.

  13. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    Science.gov (United States)

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  14. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    Science.gov (United States)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  15. Solar wind and substorm excitation of the wavy current sheet

    Science.gov (United States)

    Forsyth, C.; Lester, M.; Fear, R. C.; Lucek, E.; Dandouras, I.; Fazakerley, A. N.; Singer, H.; Yeoman, T. K.

    2009-06-01

    Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the -YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002). We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005) and Erkaev et al. (2008). We find that the Erkaev et al. (2008) model gives the best fit to the observations.

  16. Solar wind and substorm excitation of the wavy current sheet

    Directory of Open Access Journals (Sweden)

    C. Forsyth

    2009-06-01

    Full Text Available Following a solar wind pressure pulse on 3 August 2001, GOES 8, GOES 10, Cluster and Polar observed dipolarizations of the magnetic field, accompanied by an eastward expansion of the aurora observed by IMAGE, indicating the occurrence of two substorms. Prior to the first substorm, the motion of the plasma sheet with respect to Cluster was in the ZGSM direction. Observations following the substorms show the occurrence of current sheet waves moving predominantly in the −YGSM direction. Following the second substorm, the current sheet waves caused multiple current sheet crossings of the Cluster spacecraft, previously studied by Zhang et al. (2002. We further this study to show that the velocity of the current sheet waves was similar to the expansion velocity of the substorm aurora and the expansion of the dipolarization regions in the magnetotail. Furthermore, we compare these results with the current sheet wave models of Golovchanskaya and Maltsev (2005 and Erkaev et al. (2008. We find that the Erkaev et al. (2008 model gives the best fit to the observations.

  17. Thickness of Heliospheric Current and Plasma Sheets: Dependence on Distance

    Science.gov (United States)

    Zhou, X.; Smith, E. J.; Winterhalter, D.; McComas, D. J.; Skoug, R. M.; Goldstein, B. E.; Smith, C. W.

    2005-05-01

    Heliospheric current sheets (HCS) are well defined structures that separate the interplanetary magnetic fields with inverse polarities. Surrounded by heliospheric plasma sheets (HPS), the current sheets stretch throughout the heliosphere. Interesting questions that still remain unanswered include how the thickness of these structures will change along the distance? And what determines the thickness of these structures? To answer these fundamental questions, we have carried out a study of the HCS and HPS using recent Ulysses data near 5 AU. When the results were compared with earlier studies at 1 AU using ISEE-3 data, they were surprising and unexplained. Although the plasma sheet grew thicker, the embedded current sheet grew thinner! Using data under the same (or very similar) circumstances, we have extended the analysis in two ways. First, the same current-plasma sheets studied at 5 AU have been identified at 1 AU using ACE data. Second, data obtained while Ulysses was en-route to Jupiter near 3 AU have been analyzed. This three-point investigation reveals the thickness variation along the distance and enables the examination of the controller of this variation.

  18. Relation between current sheets and vortex sheets in stationary incompressible MHD

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2012-03-01

    Full Text Available Magnetohydrodynamic configurations with strong localized current concentrations and vortices play an important role in the dissipation of energy in space and astrophysical plasma. Within this work we investigate the relation between current sheets and vortex sheets in incompressible, stationary equilibria. For this approach it is helpful that the similar mathematical structure of magnetohydrostatics and stationary incompressible hydrodynamics allows us to transform static equilibria into stationary ones. The main control function for such a transformation is the profile of the Alfvén-Mach number MA, which is always constant along magnetic field lines, but can change from one field line to another. In the case of a global constant MA, vortices and electric current concentrations are parallel. More interesting is the nonlinear case, where MA varies perpendicular to the field lines. This is a typical situation at boundary layers like the magnetopause, heliopause, the solar wind flowing around helmet streamers and at the boundary of solar coronal holes. The corresponding current and vortex sheets show in some cases also an alignment, but not in every case. For special density distributions in 2-D, it is possible to have current but no vortex sheets. In 2-D, vortex sheets of field aligned-flows can also exist without strong current sheets, taking the limit of small Alfvén Mach numbers into account. The current sheet can vanish if the Alfvén Mach number is (almost constant and the density gradient is large across some boundary layer. It should be emphasized that the used theory is not only valid for small Alfvén Mach numbers MA << 1, but also for MA ≲ 1. Connection to other theoretical approaches and observations and physical effects in space plasmas are presented. Differences in the various aspects of theoretical investigations of current sheets and vortex

  19. Experimental study of the dynamics of a thin current sheet

    Science.gov (United States)

    Gekelman, W.; DeHaas, T.; Van Compernolle, B.; Daughton, W.; Pribyl, P.; Vincena, S.; Hong, D.

    2016-05-01

    Many plasmas in natural settings or in laboratory experiments carry currents. In magnetized plasmas the currents can be narrow field-aligned filaments as small as the electron inertial length ≤ft(\\tfrac{c}{{ω }pe}\\right) in the transverse dimension or fill the entire plasma column. Currents can take the form of sheets, again with the transverse dimension the narrow one. Are laminar sheets of electric current in a magnetized plasma stable? This became an important issue in the 1960s when current-carrying plasmas became key in the quest for thermonuclear fusion. The subject is still under study today. The conditions necessary for the onset for tearing are known, the key issue is that of the final state. Is there a final state? One possibility is a collection of stable tubes of current. On the other hand, is the interaction between the current filaments which are the byproduct endless, or does it go on to become chaotic? The subject of three-dimensional current systems is intriguing, rich in a variety of phenomena on multiple scale sizes and frequencies, and relevant to fusion studies, solar physics, space plasmas and astrophysical phenomena. In this study a long (δz = 11 m) and narrow (δx = 1 cm, δy = 20 cm) current sheet is generated in a background magnetoplasma capable of supporting Alfvén waves. The current is observed to rapidly tear into a series of magnetic islands when viewed in a cross-sectional plane, but they are in essence three-dimensional flux ropes. At the onset of the current, magnetic field line reconnection is observed between the flux ropes. The sheet on the whole is kink-unstable, and after kinking exhibits large-scale, low-frequency (f ≪ f ci ) rotation about the background field with an amplitude that grows with distance from the source of the current. Three-dimensional data of the magnetic and electric fields is acquired throughout the duration of the experiment and the parallel resistivity is derived from it. The parallel

  20. Monitoring dc stray current corrosion at sheet pile structures

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2012-01-01

    Steel is discarded by railway owners as a material for underground structures near railway lines, due to uncertainty over increased corrosion by DC stray currents stemming from the traction power system. This paper presents a large scale field test in which stray currents interference of a sheet pil

  1. Thin current sheets in collisionless plasma: Equilibrium structure, plasma instabilities, and particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyi, L. M.; Malova, H. V.; Artemyev, A. V.; Popov, V. Yu.; Petrukovich, A. A. [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2011-02-15

    The review is devoted to plasma structures with an extremely small transverse size, namely, thin current sheets that have been discovered and investigated by spacecraft observations in the Earth's magnetotail in the last few decades. The formation of current sheets is attributed to complicated dynamic processes occurring in a collisionless space plasma during geomagnetic perturbations and near the magnetic reconnection regions. The models that describe thin current structures in the Earth's magnetotail are reviewed. They are based on the assumption of the quasi-adiabatic ion dynamics in a relatively weak magnetic field of the magnetotail neutral sheet, where the ions can become unmagnetized. It is shown that the ion distribution can be represented as a function of the integrals of particle motion-the total energy and quasi-adiabatic invariant. Various modifications of the initial equilibrium are considered that are obtained with allowance for the currents of magnetized electrons, the contribution of oxygen ions, the asymmetry of plasma sources, and the effects related to the non-Maxwellian particle distributions. The theoretical results are compared with the observational data from the Cluster spacecraft mission. Various plasma instabilities developing in thin current sheets are investigated. The evolution of the tearing mode is analyzed, and the parameter range in which the mode can grow are determined. The paradox of complete stabilization of the tearing mode in current sheets with a nonzero normal magnetic field component is thereby resolved based on the quasi-adiabatic model. It is shown that, over a wide range of current sheet parameters and the propagation directions of large-scale unstable waves, various modified drift instabilities-kink and sausage modes-can develop in the system. Based on the concept of a turbulent electromagnetic field excited as a result of the development and saturation of unstable waves, a mechanism for charged particle

  2. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2016-10-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  3. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    Science.gov (United States)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  4. Dynamic of Current Sheets and Their Associated Particle Energization

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Los Alamos National Laboratory; Guo, Fan [Los Alamos National Laboratory; Makwan, Kirit [Univ. Chicago; Li, Xiaocan [Los Alamos National Laboratory; Zhandrin, Vladimir [Univ. Washington; Daughton, William Scott [Los Alamos National Laboratory

    2015-08-19

    Magnetic reconnection in current sheets has relevance to Earth's magnetosphere, solar flares, high-energy astrophysics (pulsar wind nebula (e.g. Crab Nebula), gamma-ray bursts, black hole jets), and laboratory plasma/fusion. Data are shown for several cases with varying values of configuration energy Ec and β. Several conclusions were drawn: Depending on the “configuration energy”, the formation, shape, and lifetime of current sheets can vary. Plasma condition (configuration, β, driving, etc.) strongly affect the efficiency of particle acceleration. For low β and general “configuration energy”, particle heating is expected. For low β, large and long-lived current sheets, it is possible to produce highly non-thermal particles via collisionless plasmoid reconnection.

  5. Electron surfing acceleration in a current sheet of flares

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A model of electron acceleration in a current sheet of flares is studied by the analytical approximation solution and the test particle simulation. The electron can be trapped in a potential of propagating electrostatic wave. The trapped electron moving with the phase velocity vp of wave may be effectively accelerated by evc p× Bz force along the outflow direction in the current sheet, if a criterion condition K > 0 for electron surfing acceleration is satisfied. The electron will be accelerated continuously until the electron detrap from the wave potential at the turning point S.

  6. Current-sheet formation in incompressible electron magnetohydrodynamics

    DEFF Research Database (Denmark)

    Ruban, Victor P.

    2002-01-01

    The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local and nonl......The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local...

  7. Electron currents supporting the near-Earth magnetotail during current sheet thinning

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Liu, J.; Runov, A.

    2017-01-01

    Formation of intense, thin current sheets (i.e., current sheet thinning) is a critical process for magnetospheric substorms, but the kinetic physics of this process remains poorly understood. Using a triangular configuration of the three Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at the end of 2015 we investigate field-aligned and transverse currents in the magnetotail current sheet around 12 Earth radii downtail. Combining the curlometer technique with direct measurements of ion and electron velocities, we demonstrate that intense, thin current sheets supported by strong electron currents form in this region. Electron field-aligned currents maximize near the neutral plane Bx˜0, attaining magnitudes of ˜20 nA/m2. Carried by hot (>1 keV) electrons, they generate strong magnetic shear, which contributes up to 20% of the vertical (along the normal direction to the equatorial plane) pressure balance. Electron transverse currents, on the other hand, are carried by the curvature drift of anisotropic, colder (<1 keV) electrons and gradually increase during the current sheet thinning. In the events under consideration the thinning process was abruptly terminated by earthward reconnection fronts which have been previously associated with tail reconnection further downtail. It is likely that the thin current sheet properties described herein are similar to conditions further downtail and are linked to the loss of stability and onset of reconnection there. Our findings are likely applicable to thin current sheets in other geophysical and astrophysical settings.

  8. Metastability of collisionless current sheets. Hannes Alfven Lecture on behalf of Albert Galeev

    Science.gov (United States)

    Zelenyi, L.; Galeev, A.

    2009-04-01

    Complicated magnetic configurations containing numerous magnetic field reversals are widespread in nature. Each of such reversals is supported by corresponding current sheet (CS) which could often have very small thickness comparable to ion skin depth. Since the beginning of Space Age "in situ" investigations of current sheets in the Earth's magnetosphere (magnetopause and magnetotail) acquired one of the highest priorities in national space programs and became one of the cornerstones of various international activities, like ISTP, IACG, and ILWS, which appeared to be very effective. Intense theoretical efforts were undertaken by theorists all over the world to develop both equilibrium models of current sheets and analyze its stability and further nonlinear evolution. Lack of collisions and smallness of many characteristic scales in comparison with ion Larmor radius made an application of straightforward MHD approach dramatically questionable. Professor Alfven was one of the first who suggested in 1968 simple but very physical self-consistent particle model of CS. One of the most intriguing features of current sheets in collisionless plasma is their ability to accumulate tremendous amounts of magnetic energy (1015 J for magnetospheric substorms , 1024 J for solar flare associated sheets) and then suddenly sometimes almost explosively release them. We will demonstrate in this talk that such METASTABILITY is a principal intrinsic feature of current sheets in hot plasma. Very intense theoretical debates of 80-ies and late 90-ies resulted in some consensus that current sheets with the small component of magnetic field normal to their plane become overstable for spontaneous reconnection (i.e. versus the development of ion tearing mode). Analysis of INTERBALL and especially 4- point CLUSTER data have shown that real current sheets observed in the Earth's magnetotail very rarely resemble simplistic HARRIS current sheets which have been used for an early stability

  9. Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona

    Science.gov (United States)

    Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2010-01-01

    Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection

  10. Solar Energetic Particle Transport Near a Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2017-02-01

    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1-800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere.

  11. Kink-like mode of a double gradient instability in a compressible plasma current sheet

    Science.gov (United States)

    Korovinskiy, D.B.; Ivanova, V.V.; Erkaev, N.V.; Semenov, V.S.; Ivanov, I.B.; Biernat, H.K.; Zellinger, M.

    2011-01-01

    A linear MHD instability of the electric current sheet, characterized by a small normal magnetic field component, varying along the sheet, is investigated. The tangential magnetic field component is modeled by a hyperbolic function, describing Harris-like variations of the field across the sheet. For this problem, which is formulated in a 3D domain, the conventional compressible ideal MHD equations are applied. By assuming Fourier harmonics along the electric current, the linearized 3D equations are reduced to 2D ones. A finite difference numerical scheme is applied to examine the time evolution of small initial perturbations of the plasma parameters. This work is an extended numerical study of the so called “double gradient instability”, – a possible candidate for the explanation of flapping oscillations in the magnetotail current sheet, which has been analyzed previously in the framework of a simplified analytical approach for an incompressible plasma. The dispersion curve is obtained for the kink-like mode of the instability. It is shown that this curve demonstrates a quantitative agreement with the previous analytical result. The development of the instability is investigated also for various enhanced values of the normal magnetic field component. It is found that the characteristic values of the growth rate of the instability shows a linear dependence on the square root of the parameter, which scales uniformly the normal component of the magnetic field in the current sheet. PMID:22053125

  12. A Catapult (Slingshot) Current Sheet Relaxation Model for Substorm Triggering

    Science.gov (United States)

    Machida, S.; Miyashita, Y.; Ieda, A.

    2010-12-01

    Based on the results of our superposed epoch analysis of Geotail data, we have proposed a catapult (slingshot) current sheet relaxation model in which earthward flows are produced in the central plasma sheet (CPS) due to the catapult (slingshot) current sheet relaxation, together with the rapid enhancement of Poynting flux toward the CPS in the lobe around X ~ -15 Re about 4 min before the substrom onset. These earthward flows are characterized by plasma pressure decrease and large amplitude magnetic field fluctuations. When these flows reach X ~ 12Re in the magnetotail, they give significant disturbances to the inner magnetosphere to initiate some instability such as a ballooning instability or other instabilities, and the substorm starts in the inner magnetosphere. The occurrence of the magnetic reconnection is a natural consequence of the initial convective earthward flows, because the relaxation of a highly stretched catapult current sheet produces a very thin current at its tailward edge being surrounded by intense magnetic fields which were formerly the off-equatorial lobe magnetic fields. Recently, Nishimura et al. [2010] reported that the substorm onset begins when faint poleward discrete arcs collide with equatorward quiet arcs. The region of earthward convective flows correlatively moves earthward prior to the onset. Thus, this region of the earthward convective flows seems to correspond to the faint poleward discrete arcs. Interestingly, our statistical analysis shows that the earthward convective flows are not produced by the magnetic reconnection, but they are attributed to the dominance of the earthward JxB force over the tailward pressure associated with the progress of the plasma sheet thinning.

  13. Current Sheets in the Heliosheath: Voyager 1, 2009

    Science.gov (United States)

    Burlaga, L. F.; Ness, N. F.

    2011-01-01

    We identified all of the current sheets for which we have relatively complete and accurate magnetic field (B) data from Voyager 1 (V1) from days of year (DOYs) 1 to 331, 2009, which were obtained deep in the heliosheath between 108.5 and 111.8 AU. Three types of current sheets were found: (1) 15 proton boundary layers (PBLs), (2) 10 and 3 magnetic holes and magnetic humps, respectively, and (3) 3 sector boundaries. The magnetic field strength changes across PBL, and the profile B(t) is linearly related to the hyperbolic tangent function, but the direction of B does not change. For each of the three sector boundaries, B rotated in a plane normal to the minimum variance direction, and the component of B along the minimum variance direction was zero within the uncertainties, indicating that the sector boundaries were tangential discontinuities. The structure of the sector boundaries was not as simple as that for PBLs. The average thickness of magnetic holes and humps (approx.30 RL) was twice that of the PBLs (approx.15 RL). The average thickness of the current sheets associated with sector boundaries was close to the thickness of the PBLs. Our observations are consistent with the hypothesis that magnetic holes and humps are solitons, which are initiated by the mirror mode instability, and evolve by nonlinear kinetic plasma processes to pressure balanced structures maintained by magnetization currents and proton drift currents in the gradients of B.

  14. Current-voltage characteristics of borophene and borophane sheets.

    Science.gov (United States)

    Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam

    2017-08-16

    Motivated by recent experimental and theoretical research on a monolayer of boron atoms, borophene, the current-voltage characteristics of three different borophene sheets, 2Pmmn, 8Pmmn, and 8Pmmm, are calculated using density functional theory combined with the nonequilibrium Green's function formalism. Borophene sheets with two and eight atoms in a unit cell are considered. Their band structure, electron density, and structural anisotropy are analyzed in detail. The results show that the 8Pmmn and 8Pmmm structures that have eight atoms in the unit cell have less anisotropy than 2Pmmn. In addition, although 8Pmmn shows a Dirac cone in the band structure, its current is lower than that of the other two. We also consider a fully hydrogenated borophene, borophane, and find that the hydrogenation process reduces the structural anisotropy and the current significantly. Our findings reveal that the current-voltage characteristics of the borophene sheets can be used to detect the type and the growth direction of the sample because it is strongly dependent on the direction of the electron transport, anisotropy, and details of the unit cell of the borophene.

  15. 3-D Magnetospheric Field and Plasma Containing Thin Current Sheets

    Science.gov (United States)

    Zaharia, S.; Cheng, C. Z.; Maezawa, K.; Wing, S.

    2002-05-01

    In this study we present fully-3D self-consistent solutions of the magnetosphere by using observation-based plasma pressure distributions and computational boundary conditions based on the T96 magnetospheric field model. The pressure profiles we use are either taken directly from observations (GEOTAIL pressure data in the plasma sheet and DMSP ionospheric pressure) or empirical (Spence-Kivelson formula for pressure on the midnight equatorial line). The 3-D solutions involve solving 2 coupled elliptic equations in a flux coordinate systems, with the magnetic field expressed by two Euler potentials and using appropriate boundary conditions for both the closed- and open-field regions derived from the empirical field model. We look into how the self-consistent magnetic field and current structures change under different external conditions, and we discuss the appearance of thin cross-tail current sheets during disturbed magnetospheric times.

  16. Heliospheric current sheet inclinations at Venus and Earth

    Directory of Open Access Journals (Sweden)

    G. Ma

    Full Text Available We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU and Earth (1 AU during December 1978-May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ~ 45° with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40° longitudinally, similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.

    Key words. Interplanetary physics (interplanetary magnetic fields; sources of solar wind

  17. Current-sheet formation in incompressible electron magnetohydrodynamics.

    Science.gov (United States)

    Ruban, V P

    2002-04-01

    The nonlinear dynamics of axisymmetric, as well as helical, frozen-in vortex structures is investigated by the Hamiltonian method in the framework of ideal incompressible electron magnetohydrodynamics. For description of current-sheet formation from a smooth initial magnetic field, local and nonlocal nonlinear approximations are introduced and partially analyzed that are generalizations of the previously known exactly solvable local model neglecting electron inertia.

  18. Morphology and Density Structure of Post-CME Current Sheets

    Science.gov (United States)

    Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.

    2009-01-01

    Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.

  19. Effect of the initial plasma parameters on the structure of the current sheets developing in two-dimensional magnetic fields with a null line

    Science.gov (United States)

    Ostrovskaya, G. V.; Frank, A. G.; Bogdanov, S. Yu.

    2010-07-01

    The effect of the initial plasma parameters on the structure of the plasma of the current sheets that form in two-dimensional magnetic fields with a null line is studied by holographic interferometry. The evolution of the plasma sheets that develop in an initial low-density plasma, where a gas is mainly ionized by a pulse current passing through the plasma and initiating the formation of a current sheet, has been comprehensively studied for the first time. At the early stage of evolution, the spatial structure of such a plasma sheet differs substantially from the classic current sheets forming in a dense plasma. Nevertheless, extended plasma sheets with similar parameters form eventually irrespective of the initial plasma density.

  20. Deformation texture evolution of pure aluminum sheet under electromagnetic bulging

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-Gang; Li, Ning; Jiang, Hua-Wen; Xiong, Yuan-Yuan; Liu, Lin, E-mail: lliu2000@mail.hust.edu.cn

    2014-03-15

    Highlights: • Pure Al sheet was deformed by electromagnetic bulging at strain rate over 10{sup 3} s{sup −1}. • Texture evolution shows a function of strain path and high strain rate. • Goss and Rotated Goss finally tend to stabilize at P texture for strain path effect. • The mean intra-granular misorientations increase along the function of strain path. • Extra path of texture evolution for enhanced cross slip activity at high strain rate. -- Abstract: The deformation texture and microstructure evolution in pure aluminum sheet after electromagnetic bulging was investigated in detail by using electron backscatter diffraction (EBSD) and transmission electron microscope (TEM) techniques. It was found that the textural and microstructural developments were correlated with the complex strain path and the high strain rate. Stress–strain states from approximate uniaxial tension, non-equibiaxial tension to equibiaxial tension were experienced in the formed conical-shape workpiece along with the increasing strain ratio (i.e., the ratio between minor strain and major strain, representing the strain path of the formed workpiece). The grain orientation and distribution of boundary misorientation were found to be a function of the strain ratio, especially for the texture evolution in volume fraction of 〈1 1 0〉 fiber. A specific orientation with high Taylor factor, Rotated Goss 〈1 1 0〉, was observed and analyzed in terms of the contribution of preferable stress–strain state from the complex strain path and the assistance of high strain rate, which could increase the cross-slip activity, and eventually facilitate the texture development and induce more uniform microstructure.

  1. Spatial Offsets in Flare-CME Current Sheets

    Science.gov (United States)

    Raymond, John C.; Giordano, Silvio; Ciaravella, Angela

    2017-07-01

    Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form magnetic flux ropes and to allow CMEs to escape. Structures that appear between flare loops and CME cores in optical, UV, EUV, and X-ray observations have been identified as current sheets and have been interpreted in terms of the nature of the reconnection process and the energetics of the events. Many of these studies have used UV spectral observations of high temperature emission features in the [Fe xviii] and Si xii lines. In this paper, we discuss several surprising cases in which the [Fe xviii] and Si xii emission peaks are spatially offset from each other. We discuss interpretations based on asymmetric reconnection, on a thin reconnection region within a broader streamer-like structure, and on projection effects. Some events seem to be easily interpreted as the projection of a sheet that is extended along the line of sight that is viewed an angle, but a physical interpretation in terms of asymmetric reconnection is also plausible. Other events favor an interpretation as a thin current sheet embedded in a streamer-like structure.

  2. Numerical Simulation of Current Sheet Formation in a Quasi-Separatrix Layer using Adaptive Mesh Refinement

    CERN Document Server

    Effenberger, Frederic; Arnold, Lukas; Grauer, Rainer; Dreher, Jürgen

    2011-01-01

    The formation of a thin current sheet in a magnetic quasi-separatrix layer (QSL) is investigated by means of numerical simulation using a simplified ideal, low-$\\beta$, MHD model. The initial configuration and driving boundary conditions are relevant to phenomena observed in the solar corona and were studied earlier by Aulanier et al., A&A 444, 961 (2005). In extension to that work, we use the technique of adaptive mesh refinement (AMR) to significantly enhance the local spatial resolution of the current sheet during its formation, which enables us to follow the evolution into a later stage. Our simulations are in good agreement with the results of Aulanier et al. up to the calculated time in that work. In a later phase, we observe a basically unarrested collapse of the sheet to length scales that are more than one order of magnitude smaller than those reported earlier. The current density attains correspondingly larger maximum values within the sheet. During this thinning process, which is finally limite...

  3. Heliospheric current sheet and its interaction with solar cosmic rays

    Science.gov (United States)

    Malova, Helmi; Popov, Victor; Grigorenko, Elena; Dunko, Andrey; Petrukovich, Anatoly

    2016-04-01

    We investigated effects resulting from the interaction of solar cosmic rays (SCR) with the heliospheric current sheet (HCS) in the solar wind. Self-consistent kinetic model of the HCS is developed, where ions demonstrate quasi-adiabatic dynamics. HCS is considered as the equilibrium embedded current structure, where the two main kinds of plasma with different temperatures give the main contribution to the current (low-energy background plasma and SCR). It is shown that HCS is a relatively thin multiscale configuration of the current sheet, embedded in a thicker plasma layer. The taking into account of SCR particles in HCS could lead to a change of its structure and to enhancement of its properties such as the embedding and multi-scaling. Parametric family of solutions is considered where the current balance in HCS is provided at different temperatures of SCR and different concentrations of high-energy plasma. Concentrations of SCR are determined which may contribute to the thickening of the HCS that can be observed in satellite studies. The possibility to apply this modeling for the explanation of experimental observations is considered.

  4. Instabilities of collisionless current sheets revisited: the role of anisotropic heating

    CERN Document Server

    Muñoz, P A; Büchner, J

    2015-01-01

    In this work, we investigate the influence of the anisotropic heating on the spontaneous instability and evolution of thin Harris-type collisionless current sheets, embedded in antiparallel magnetic fields. In particular, we explore the influence of the macroparticle shape-function using a 2D version of the PIC code ACRONYM. We also investigate the role of the numerical collisionality due to the finite number of macroparticles in PIC codes. It is shown that it is appropriate to choose higher order shape functions of the macroparticles compared to a larger number of macroparticles per cell. This allows to estimate better the anisotropic electron heating due to the collisions of macroparticles in a PIC code. Temperature anisotropies can stabilize the tearing mode instability and trigger additional current sheet instabilities. We found a good agreement between the analytically derived threshold for the stabilization of the anisotropic tearing mode and other instabilities, either spontaneously developing or initi...

  5. Multiple current sheet systems in the outer heliosphere: Energy release and turbulence

    CERN Document Server

    Burgess, David; Matteini, Lorenzo

    2016-01-01

    In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely-packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long time scales, in order to capture the evolution from linear growth of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of new-born in...

  6. Current sheet flapping in the near-Earth magnetotail: peculiarities of propagation and parallel currents

    Science.gov (United States)

    Yushkov, Egor V.; Artemyev, Anton V.; Petrukovich, Anatoly A.; Nakamura, Rumi

    2016-09-01

    We consider series of tilted current sheet crossings, corresponding to flapping waves in the near-Earth magnetotail. We analyse Cluster observations from 2005 to 2009, when spacecraft visited the magnetotail neutral plane near X ∈ [ - 17, - 8], Y ∈ [ - 16, - 2] RE (in the GSM system). Large separation of spacecraft allows us to estimate both local and global properties of flapping current sheets. We find significant variation in flapping wave direction of propagation between the middle tail and flanks. Th series of tilted current sheets represent the system of periodic, almost parallel currents with typical thickness of current filaments about L = 0.4 RE. The earthward gradients of Bz magnetic field are reduced within this current system in comparison with the gradients in the quiet near-Earth magnetotail. The wavelength (i.e. a distance between two crossings of current sheets with the same orientations) of the flapping waves is larger than 2πL for most of observations. The velocity of flapping wave propagation is about ion bulk velocity and is significantly lower than the velocity of ion drift relative to electrons. We discuss possible drivers of flapping and estimate the amplitude of the total parallel current generated by flapping waves.

  7. Formation of the current sheet in a coronal streamer

    CERN Document Server

    Abbo, Lucia; Lionello, Roberto; Mikić, Zoran; Riley, Pete

    2011-01-01

    The present work is on the study of a coronal streamer observed in March 2008 at high spectral and spatial resolution by the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model. The results of the analysis show indications on the formation of the current sheet, one of the source regions of the slow coronal wind.

  8. Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters

    Science.gov (United States)

    2007-11-02

    pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma

  9. Current sheets at three-dimensional magnetic nulls: Effect of compressibility

    CERN Document Server

    Pontin, D I; Galsgaard, K

    2007-01-01

    The nature of current sheet formation in the vicinity of three-dimensional magnetic null points is investigated. The particular focus is upon the effect of the compressibility of the plasma on the qualitative and quantitative properties of the current sheet. It is found that as the incompressible limit is approached, the collapse of the null point is suppressed, and instead an approximately planar current sheet aligned to the fan plane is present. Both the peak current and peak reconnection rate are reduced. The results imply that previous analytical solutions for steady-state reconnection at fan current sheets are dynamically accessible, while spine current sheet solutions are not.

  10. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  11. Magnetic guide field generation in collisionless current sheets

    Directory of Open Access Journals (Sweden)

    W. Baumjohann

    2010-03-01

    Full Text Available In thin (Δ< few λi collisionless current sheets in a space plasma like the magnetospheric tail or magnetopause current layer, magnetic fields can grow from thermal fluctuation level by the action of the non-magnetic Weibel instability (Weibel, 1959. The instability is driven by the counter-streaming electron inflow from the "ion diffusion" (ion inertial Hall region into the inner current (electron inertial region after thermalisation by the two-stream instability. Under magnetospheric tail conditions it takes ~50 e-folding times (~100 s for the Weibel field to reach observable amplitudes |bW|~1 nT. In counter-streaming inflows these fields are of guide field type.

  12. Magnetotail Current Sheet Thinning and Magnetic Reconnection Dynamics in Global Modeling of Substorms

    Science.gov (United States)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.

    2008-01-01

    Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated

  13. High current density sheet-like electron beam generator

    Science.gov (United States)

    Chow-Miller, Cora; Korevaar, Eric; Schuster, John

    Sheet electron beams are very desirable for coupling to the evanescent waves in small millimeter wave slow-wave circuits to achieve higher powers. In particular, they are critical for operation of the free-electron-laser-like Orotron. The program was a systematic effort to establish a solid technology base for such a sheet-like electron emitter system that will facilitate the detailed studies of beam propagation stability. Specifically, the effort involved the design and test of a novel electron gun using Lanthanum hexaboride (LaB6) as the thermionic cathode material. Three sets of experiments were performed to measure beam propagation as a function of collector current, beam voltage, and heating power. The design demonstrated its reliability by delivering 386.5 hours of operation throughout the weeks of experimentation. In addition, the cathode survived two venting and pump down cycles without being poisoned or losing its emission characteristics. A current density of 10.7 A/sq cm. was measured while operating at 50 W of ohmic heating power. Preliminary results indicate that the nearby presence of a metal plate can stabilize the beam.

  14. Reconnection current sheet structure in a turbulent medium

    Directory of Open Access Journals (Sweden)

    E. T. Vishniac

    2012-11-01

    Full Text Available In the presence of turbulence, magnetic field lines lose their dynamical identity and particles entrained on field lines diffuse through space at a rate determined by the amplitude of the turbulence. In previous work (Lazarian and Vishniac, 1999; Kowal et al., 2009; Eyink et al., 2011 we showed that this leads to reconnection speeds which are independent of resistivity. In particular, in Kowal et al. (2009 we showed that numerical simulations were consistent with the predictions of this model. Here we examine the structure of the current sheet in simulations of turbulent reconnection. Laminar flows consistent with the Sweet-Parker reconnection model produce very thin and well ordered currents sheets. On the other hand, the simulations of Kowal et al. (2009 show a strongly disordered state even for relatively low levels of turbulence. Comparing data cubes with and without reconnection, we find that large scale field reversals are the cumulative effect of many individual eddies, each of which has magnetic properties which are not very different from turbulent eddies in a homogeneous background. This implies that the properties of stationary and homogeneous MHD turbulence are a reasonable guide to understanding turbulence during large scale magnetic reconnection events. In addition, dissipation and high energy particle acceleration during reconnection events take place over a macroscopic volume, rather than being confined to a narrow zone whose properties depend on microscopic transport coefficients.

  15. Continuous development of current sheets near and away from magnetic nulls

    Science.gov (United States)

    Kumar, Sanjay; Bhattacharyya, R.

    2016-04-01

    The presented computations compare the strength of current sheets which develop near and away from the magnetic nulls. To ensure the spontaneous generation of current sheets, the computations are performed congruently with Parker's magnetostatic theorem. The simulations evince current sheets near two dimensional and three dimensional magnetic nulls as well as away from them. An important finding of this work is in the demonstration of comparative scaling of peak current density with numerical resolution, for these different types of current sheets. The results document current sheets near two dimensional magnetic nulls to have larger strength while exhibiting a stronger scaling than the current sheets close to three dimensional magnetic nulls or away from any magnetic null. The comparative scaling points to a scenario where the magnetic topology near a developing current sheet is important for energetics of the subsequent reconnection.

  16. Pulsar Wind Nebulae as Cosmic Pevatrons: A Current Sheet's Tale

    CERN Document Server

    Arons, Jonathan

    2012-01-01

    I outline, from a theoretical and somewhat personal perspective, significant features of Pulsar Wind Nebulae as Cosmic Accelerators. I discuss recent studies of Pulsar Wind Nebulae (PWNe). I pay special attention to the recently discovered gamma ray flares in the Crab Nebula's emission, focusing on the possibility, raised by the observations, that the accelerating electric field exceeds the magnetic field, suggesting that reconnection in the persistent current layer (a current sheet) plays a significant role in the behavior of this well studied Pevatron. I address the present status of the termination shock model for the particle accelerator that converts the wind flow energy to the observed non thermal particle spectra, concluding that it has a number of major difficulties related to the transverse magnetic geometry of the shock wave. I discuss recent work on the inferred pair outflow rates, which are in excess of those predicted by existing theories of pair creation, and use those results to point out that ...

  17. THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Canu, P. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau, F-91128 (France); Vaivads, A.; Khotyaintsev, Yu. V. [Swedish Institute of Space Physics, Uppsala (Sweden); Sundkvist, D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Greco, A. [Dipartimento di Fisica, Universita della Calabria (Italy); Sorriso-Valvo, L., E-mail: alexandros.chasapis@lpp.polytechnique.fr [IMIP-CNR, U.O.S. LICRYL di Cosenza (Italy)

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (<3), indicating that the former are dominant for energy dissipation. Current sheets corresponding to very high PVI (>5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  18. Spectroscopic observations of evolving flare ribbon substructure suggesting origin in current sheet waves

    Science.gov (United States)

    Brannon, Sean R.; Longcope, Dana; Qiu, Jiong

    2015-04-01

    A flare ribbon is the chromospheric image of reconnection at a coronal current sheet. The dynamics and structure of the ribbon can thus reveal properties of the current sheet, including motion of the reconnecting flare loops. We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph (IRIS) of the evolution of a flare ribbon at high spatial resolution and time cadence. These reveal small-scale substructure in the ribbon, which manifest as oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these we find the best support for some form of elliptical wave localized to the coronal current sheet, such as a tearing mode or Kelvin-Helmholtz instability.IRIS is a NASA Small Explorer mission developed and operated by Lockheed Martin Solar and Astrophysics Laboratory. This work is supported by contract 8100002702 from Lockheed Martin to Montana State University, a Montana Space Grant Consortium fellowship, and by NASA through HSR.

  19. Catapult current sheet relaxation model confirmed by THEMIS observations

    Science.gov (United States)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  20. Substorm onset: Current sheet avalanche and stop layer

    Science.gov (United States)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  1. Simulation of the dynamics in the magnetotail current sheet

    CERN Document Server

    Ojeda, Arian; Calzadilla, Alexander; Savio, Siomel; Alazo, Katy

    2013-01-01

    The dynamics in the magnetosphere current sheet was simulated following transformations to the rectangular NxM array of cells (cellular automaton) originally proposed by Koselov and Koselova (2002). The magnetosphere part of the modeling system was organized as a rectangular arrangement of cells with a stored energy, a local redistribution of the energy will exist when a value threshold is exceeded in one of the cells. We assume that the threshold value in each cell depends on external control parameter which influences the long boundaries of the rectangular array (40x80). The model dynamics controlled by the z-component of the interplanetary magnetic field (Bz) as well as analogies between the model transient processes and the observed substorm auroral activations are discussed. The Bz correspond to temporary windows of the solar wind for a group of magnetic clouds and plasmoids. The model simulates organized patterns in the energy distribution. The function of distribution of probability (or PDF) of the siz...

  2. Multilayer Mg-Stainless Steel Sheets, Twinning and Texture Evolution

    Science.gov (United States)

    Inoue, Junya; Sadeghi, Alireza; Ohmori, Toshinori; Koseki, Toshihiko

    2017-07-01

    In the present study, different combinations of multilayer sheets were prepared from 1 and 2 mm Mg AZ31 along with 0.25, 0.5, and 1 mm 304 L stainless steel. The texture and microstructure of the elongated samples (20 and 30 pct strain) were studied. It was found that the transversal stress plays an important role in both texture evolution and twinning in these composites. The obtained pole figures revealed an axial texture tilt with increasing steel layer volume fraction ( V f). It was found that this is a direct effect of transverse stress, which becomes more significant upon reducing Mg V f. This extra stress component tilts the basal planes away from the original normal direction in monolithic samples. Moreover, our results indicate that with decreasing Mg V f, twinning activity was increased in the 20 pct deformed samples but reduced in the samples with 30 pct elongation. It is known that at high strains where sufficient transverse stress is generated, the activity of prismatic slip is significantly enhanced, which promotes the motion of dislocations and reduces the necessity of twinning. With decreasing Mg V f, stronger transversal stress is generated and Mg reaches the critical threshold of prismatic activity at lower strains.

  3. Global properties of magnetotail current sheet flapping: THEMIS perspectives

    Directory of Open Access Journals (Sweden)

    A. Runov

    2009-01-01

    Full Text Available A sequence of magnetic field oscillations with an amplitude of up to 30 nT and a time scale of 30 min was detected by four of the five THEMIS spacecraft in the magnetotail plasma sheet. The probes P1 and P2 were at X=−15.2 and −12.7 RE and P3 and P4 were at X=−7.9 RE. All four probes were at −6.5>Y>−7.5 RE (major conjunction. Multi-point timing analysis of the magnetic field variations shows that fronts of the oscillations propagated flankward (dawnward and Earthward nearly perpendicular to the direction of the magnetic maximum variation (B1 at velocities of 20–30 km/s. These are typical characteristics of current sheet flapping motion. The observed anti-correlation between ∂B1/∂t and the Z-component of the bulk velocity make it possible to estimate a flapping amplitude of 1 to 3 RE. The cross-tail scale wave-length was found to be about 5 RE. Thus the flapping waves are steep tail-aligned structures with a lengthwise scale of >10 RE. The intermittent plasma motion with the cross-tail velocity component changing its sign, observed during flapping, indicates that the flapping waves were propagating through the ambient plasma. Simultaneous observations of the magnetic field variations by THEMIS ground-based magnetometers show that the flapping oscillations were observed during the growth phase of a substorm.

  4. Analogies between Jovian magnetodisk and heliospheric current sheet

    Science.gov (United States)

    Kislov, Roman; Khabarova, Olga; Malova, Helmi

    Recently due to the development of spatial missions the famous model by E. Parker [1] faced with some problems, such as the effect of magnetic flux excess and the existence of latitude component of magnetic field [2]. Thus the incomplete knowledge about large scale current system of heliospheric current sheet (HCS) motivated us to construct and investigate the self-consistent axisymmetric stationary MHD model of HCS and to compare it with earlier presented model of Jupiterian magnetodisk [3]. Both HCS and magnetodisk have inner plasma sources (i.e. the Sun in case of HCS and satellite Io in case of Jupiter); also they depend on the centrifugal force at small distances and on corotation processes. They both have strong radial component of current density, thin elongated structure etc. Thus in the frame of the MHD model we have calculated for HCS the parallel currents (analogous to Jovian Birkeland currents) and we obtained the latitude component of the magnetic field. The results of the model allowed us to explain the magnetic flux excess by the existence of the self-consistent HCS magnetic field. The decrease of radial magnetic field from the distance from the Sun as the power -5/3 obtained by numerical calculations is in good agreement with experimental data. Generally this model can be applied for the quiet period of the low solar activity when the perturbation of HCS structure named “ballerina skirt” does not play any role. References: 1. Parker E. N., Astrophys. J., V. 128, 664, pp. 664-676, 1958. 2. Khabarova O. V., Астрономический журнал, V. 90, №11, pp. 919-935, 2013. 3. Kislov R.A. et al., Bull. MSU, Physics and Astron., 2013

  5. A Two-Fluid Study of Oblique Tearing Modes in a Force-Free Current Sheet

    CERN Document Server

    Akcay, Cihan; Lukin, Vyacheslav S; Liu, Yi-Hsin

    2016-01-01

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underest...

  6. Thin Current Sheets and Associated Electron Heating in Turbulent Space Plasma

    Science.gov (United States)

    Chasapis, A.; Retinò, A.; Sahraoui, F.; Vaivads, A.; Khotyaintsev, Yu. V.; Sundkvist, D.; Greco, A.; Sorriso-Valvo, L.; Canu, P.

    2015-05-01

    Intermittent structures, such as thin current sheets, are abundant in turbulent plasmas. Numerical simulations indicate that such current sheets are important sites of energy dissipation and particle heating occurring at kinetic scales. However, direct evidence of dissipation and associated heating within current sheets is scarce. Here, we show a new statistical study of local electron heating within proton-scale current sheets by using high-resolution spacecraft data. Current sheets are detected using the Partial Variance of Increments (PVI) method which identifies regions of strong intermittency. We find that strong electron heating occurs in high PVI (>3) current sheets while no significant heating occurs in low PVI cases (5) show the strongest heating and most of the time are consistent with ongoing magnetic reconnection. This suggests that reconnection is important for electron heating and dissipation at kinetic scales in turbulent plasmas.

  7. LASCO White-Light Observations of Eruptive Current Sheets Trailing CMEs

    Science.gov (United States)

    Webb, David F.; Vourlidas, Angelos

    2016-12-01

    Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984 - 1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, ˜130 CME-rays, than during SMM. Important results include: The occurrence rate of the rays is ˜11 % of all CMEs during solar minimum, but decreases to ˜7 % at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3 - 4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is ˜12 R_{⊙}, with the longest current sheet of 18.5 R_{⊙}. The mean CS growth rates are 188 km s^{-1} at minimum and 324 km s^{-1} at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of ˜350 km s^{-1} with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within ˜1 day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic

  8. Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode

    Science.gov (United States)

    Baty, Hubert

    2017-03-01

    Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.

  9. The Onset of Magnetic Reconnection: Tearing Instability in Current Sheets with a Guide Field

    Science.gov (United States)

    Daldorff, Lars K. S.; Klimchuk, James A.; Leake, James E.; Knizhnik, Kalman

    2017-08-01

    Magnetic reconnection is fundamental to many solar phenomena, ranging from coronal heating, to jets, to flares and CMEs. A poorly understood yet crucial aspect of reconnection is that it does not occur until magnetic stresses have built to sufficiently high levels for significant energy release. If reconnection were to happen too soon, coronal heating would be weak and flares would be small. As part of our program to study the onset conditions for magnetic reconnection, we have investigated the instability of current sheets to tearing. Surprisingly little work has been done on this problem for sheets that include a guide field, i.e., for which the field rotates by less than 180 degrees. This is the most common situation on the Sun. We present numerical 3D resistive MHD simulations of several sheets and show how the behavior depends on the shear angle (rotation). We compare our results to the predictions of linear theory and discuss the nonlinear evolution in terms of plasmoid formation and the interaction of different oblique tearing modes. The relevance to the Sun is explained.

  10. The effect of diffusion on the current-sheet speed in a magnetically driven shock tube

    DEFF Research Database (Denmark)

    Chang, C.T.; Popovic, M.; Korsbech, Uffe

    1970-01-01

    The lowering of the current-sheet speed in a magnetically driven shock tube is attributed to the diffusion effect of the current and not to the anchoring of a large fraction of the total current near the driving end.......The lowering of the current-sheet speed in a magnetically driven shock tube is attributed to the diffusion effect of the current and not to the anchoring of a large fraction of the total current near the driving end....

  11. Statistical research on the motion properties of the magnetotail current sheet:Cluster observations

    Institute of Scientific and Technical Information of China (English)

    H.REME; E.LUCEK

    2010-01-01

    The origin of the flapping motion of the earth’s magnetotail current sheet is one of the most important problems in the magnetotail dynamics.Using Cluster data,we make a statistical research on the motion properties of the magnetotail current sheet of 2001 and 2003.We calculate the velocities of the magnetotail current sheet using new methods and obtain the distribution of the magnetotail current sheet velocities in the X-Y plane in GSE coordinate system.Our results show that although most of the current sheets were propagating toward the tail flanks and those of the exceptions lay in dusk side,which is consistent with previous studies,the proportions of the current sheet which were propagating toward midnight (where |YGSE|=0) were higher than those in previous studies.Motions of the current sheet in the middle area (|YGSE|<8 Re) of the magnetotail are investigated.Relatively high value of the Z component of the velocity further confirms that the middle area of the magnetotail might be a source region for the motion of the current sheets which were propagating towards the tail flanks.According to our case studies,the way the current sheets propagated toward midnight area differs significantly from that toward dusk and dawn side,from which we infer that there might be two different kinds of current sheet motions originated from different sources.The statistical results of this paper may give some clues for further studies on the origin of the flapping motion of the magnetotail current sheet.

  12. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability.

    Science.gov (United States)

    Uzdensky, D A; Loureiro, N F

    2016-03-11

    The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.

  13. Current sheets at three-dimensional magnetic nulls: Effect of compressibility

    Science.gov (United States)

    Pontin, D. I.; Bhattacharjee, A.; Galsgaard, K.

    2007-05-01

    The nature of current sheet formation in the vicinity of three-dimensional (3D) magnetic null points is investigated. The particular focus is upon the effect of the compressibility of the plasma on the qualitative and quantitative properties of the current sheet. An initially potential 3D null is subjected to shearing perturbations, as in a previous paper [Pontin et al., Phys. Plasmas 14, 052106 (2007)]. It is found that as the incompressible limit is approached, the collapse of the null point is suppressed and an approximately planar current sheet aligned to the fan plane is present instead. This is the case regardless of whether the spine or fan of the null is sheared. Both the peak current and peak reconnection rate are reduced. The results have a bearing on previous analytical solutions for steady-state reconnection in incompressible plasmas, implying that fan current sheet solutions are dynamically accessible, while spine current sheet solutions are not.

  14. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  15. Dynamo-driven plasmoid formation from a current-sheet instability

    CERN Document Server

    Ebrahimi, F

    2016-01-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from 1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and 2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetic fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time a dynamo poloidal flux amplification is observed at the reconnetion site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplificatio...

  16. High-latitude Conic Current Sheets in the Solar Wind

    Science.gov (United States)

    Khabarova, Olga V.; Malova, Helmi V.; Kislov, Roman A.; Zelenyi, Lev M.; Obridko, Vladimir N.; Kharshiladze, Alexander F.; Tokumaru, Munetoshi; Sokół, Justyna M.; Grzedzielski, Stan; Fujiki, Ken'ichi

    2017-02-01

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2-3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  17. Electrodynamics in a Very Thin Current Sheet Leading to Magnetic Reconnection

    Science.gov (United States)

    Singh, Nagendra; Deverapalli, Chakri; Khazanov, George

    2006-01-01

    We study the formation of a very thin current sheet (CS) and associated plasma electrodynamics using three-dimensional (3-D) particle-in-cell simulations with ion to electron mass ratio M/m=1836. The CS is driven by imposed anti-parallel magnetic fields. The noteworthy features of the temporal evolution of the CS are the following: (i) Steepening of the magnetic field profile B,(z) in the central part of the CS, (ii) Generation of three-peak current distribution with the largest peak in the CS center as B,(z) steepens, (iii) Generation of converging electric fields forming a potential well in the CS center in which ions are accelerated. (iv) Electron and ion heating in the central part of the CS by current-driven instabilities (CDI). (v) Re-broadening of the CS due to increased kinetic plasma pressure in the CS center. (vi) Generation of electron temperature anisotropy with temperature perpendicular to the magnetic field being larger than the parallel one. (vii) Current disruption by electron trapping in an explosively growing electrostatic instability (EGEI) and electron tearing instability (ETI). (viii)The onset of EGEI coincides with an increase in the electron temperature above the temperature of the initially hot ions as well as the appearance of new shear in the electron drift velocity. (ix) Bifurcation of the central CS by the current disruption. (x) Magnetic reconnection (MR) beginning near the null in B, and spreading outward. (xi) Generation of highly energized electrons reaching relativistic speeds and having isotropic pitch-angle distribution in the region of reconnected magnetic fields. We compare some of these features of the current sheet with results from laboratory and space experiments.

  18. Electrodynamics in a very thin current sheet leading to magnetic reconnection

    Directory of Open Access Journals (Sweden)

    N. Singh

    2006-01-01

    Full Text Available We study the formation of a very thin current sheet (CS and associated plasma electrodynamics using three-dimensional (3-D particle-in-cell simulations with ion to electron mass ratio M/m=1836. The CS is driven by imposed anti-parallel magnetic fields. The noteworthy features of the temporal evolution of the CS are the following: (i Steepening of the magnetic field profile Bx(z in the central part of the CS, (ii Generation of three-peak current distribution with the largest peak in the CS center as Bx(z steepens, (iii Generation of converging electric fields forming a potential well in the CS center in which ions are accelerated. (iv Electron and ion heating in the central part of the CS by current-driven instabilities (CDI. (v Re-broadening of the CS due to increased kinetic plasma pressure in the CS center. (vi Generation of electron temperature anisotropy with temperature perpendicular to the magnetic field being larger than the parallel one. (vii Current disruption by electron trapping in an explosively growing electrostatic instability (EGEI and electron tearing instability (ETI. (viiiThe onset of EGEI coincides with an increase in the electron temperature above the temperature of the initially hot ions as well as the appearance of new shear in the electron drift velocity. (ix Bifurcation of the central CS by the current disruption. (x Magnetic reconnection (MR beginning near the null in Bx and spreading outward. (xi Generation of highly energized electrons reaching relativistic speeds and having isotropic pitch-angle distribution in the region of reconnected magnetic fields. We compare some of these features of the current sheet with results from laboratory and space experiments.

  19. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    Science.gov (United States)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  20. Properties and Distribution of Current Sheets in Accretion Disk Coronae

    Science.gov (United States)

    Salvesen, Greg; Begelman, M. C.; Simon, J. B.; Beckwith, K.

    2013-04-01

    Theoretical models involving the interplay of a geometrically thin, optically thick accretion disk embedded in an extended coronal atmosphere may describe black hole X-ray binaries across all spectral states. Buoyant magnetic field generated in the accretion disk is continuously supplied to the corona by a dynamo process driven by the magnetorotational instability. This rising field leads to the formation of a magnetic pressure-dominated, low-density, geometrically thick corona where substantial accretion energy is dissipated, likely by collisionless magnetic reconnection, perhaps even generating outflows. Despite the potential importance of magnetic reconnection in shaping the energetics and kinematics of the corona, studies of multiple reconnection sites in a large volume are currently prohibited by the computational expense required to properly treat the microphysical nature of reconnection. Under the assumption that coronal structure is determined by ideal magnetohydrodynamics, we analyze local simulations of accretion disks (i.e., shearing boxes) performed with the ATHENA code, where the spatial domains are extended to capture 'mesoscale' structures that are dynamically important in accretion disk evolution. We employ a location routine to identify zones of enhanced current density, which trace likely sites of magnetic reconnection. We describe the positions, orientations, sizes, shapes, strengths, and kinematics of these regions and correlate them with the spatial distribution of numerical dissipation. Statistical distributions of these various properties of current density zones are presented to determine the heights within the corona that contribute most to the dissipation rate, the flow properties associated with reconnection sites, and representative parameters for future large volume reconnection simulations.

  1. Kinetic thin current sheets: their formation in relation to magnetotail mesoscale turbulent dynamics

    Directory of Open Access Journals (Sweden)

    A. P. Kropotkin

    2009-04-01

    Full Text Available Dynamics of the magnetotail plasma sheet (PS features nonlinear structures on two totally different scales. There are very thin current sheets (CS on kinetic scale of the ion gyroradius. And there are intense plasma flow and magnetic field variations on mesoscales (a few earth radii; those are interpreted as mostly 2-D MHD turbulence. On the other hand, the specific nature of slow large scale magnetotail evolution leads to large differences in the PS properties and those of the lobe plasma. As a result, while fast reconnection bursts in the tail provide quasi-stationary fast mesoscale reconfigurations in the lobes, they cannot however be accompanied by restructuring of CS on the same fast time scale. Violations of force balance in the PS are thus generated. Simulation using a hybrid code and starting with such imbalance, provides an evidence of very thin kinetic CS structures formation, embedded into the much thicker PS. The momentum balance gets locally restored by means of ion acceleration up to the Alfvénic velocity. The process provides an effective mechanism for transformation of magnetic energy accumulated in the magnetotail, into energy of plasma flows. The fast flows may drive turbulence on shorter spatial scales. In their turn, these motions may serve as an origin for new neutral line generation, and reconnection. Application to substorm phenomenology is discussed.

  2. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    Science.gov (United States)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  3. Flapping current sheet motions in magnetotail excited by non-adiabatic ions: case study

    Science.gov (United States)

    Wei, X., Jr.

    2015-12-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. Three type of current sheet flapping event in this paper will be discussed. This current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  4. The current sheet tiled and non-adiabatic ions effect on the flapping motion in magnetotail

    Science.gov (United States)

    Wei, XinHua

    2016-04-01

    The current sheet is a crucial region of the magnetotail, where energy reserve and release take place. The origin of the up-down motions of the current sheet, referred to as flapping motions, is among the most fundamental issues of magnetotail dynamics. Observational evidences suggest that the flapping motion is a kind of internal excited kink-like waves, but its particular propagating features such as the low phase speeds and the propagating direction from the tail center toward flanks do not match any local generation mechanisms previously established so far. Here we report observations of the current sheet flapping motions induced by non-adiabatic ions in the magnetic field configurations with a finite guiding component, whose population present periodic hemispherical asymmetries. These flapping motion current sheet cases often observed tiled. The current sheet flapping phenomenon implies that the excitation mechanism of the current sheet flapping motions is a self-circulation process between the non-adiabatic ion population and the current sheet equilibrium itself.

  5. Cross-tail current evolution during substorm dipolarization

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2013-06-01

    Full Text Available We examine evolution of the cross-tail current during substorm current disruption/dipolarization using observations from two satellites in the near-Earth magnetotail at the downtail distances of 8–9 RE. By choosing times when these two satellites are separated, mainly in the north–south distance in the tail current sheet, precise determination of current density in the layer embedded between these satellites can be obtained with Ampère's law. Two such events are examined and several common features are found. The current densities in the layer embedded by the two satellites were reduced by ~ 40–70% during substorm dipolarization. The changes in current densities have the fast kinetic timescale, i.e., in seconds, implying a kinetic process for current disruption/dipolarization. The estimated power within the current layer was mainly dissipative in the dawn–dusk direction and mainly dynamo in the Sun–tail direction that is needed to drive the north–south substorm current system in the ionosphere. Remote sensing of the energization site with the ion sounding technique shows that the energization site was initially earthward of the satellite and moved down the tail at later times. Breakdown of the frozen-in condition occurred intermittently during the disturbance interval. These features provide important clues to the substorm onset process.

  6. Numerical analysis of the current sheet near a magnetic null line

    Energy Technology Data Exchange (ETDEWEB)

    Brushlinskii, K.V.; Zaborov, A.M.; Syrovatskii, S.I.

    1980-03-01

    A mathematical model is constructed for the two-dimensional MHD plasma flow near a magnetic null line in a perturbing electric field. A numerical study is also carried out. This type of flow is the key element of the reconnection of magnetic lines of force and is being studied in connection with the mechanism for solar flares, the magnetospheres of planes, and certain questions in thermonuclear fusion. The results show that during this flow a nearly steady-state current sheet forms with a characteristic two-dimensional configuration. The sheet has four outgrowths corresponding to slow MHD shock waves. The geometric shape of the sheet and the maximum current in it are determined primarily by the plasma conductivity. The dependence of the sheet properties on the gas pressure is very weak. The thermal conditions in the flow, which are related to the heat conduction and radiation, strongly affect the plasma density distribution on the current sheet.

  7. Current perspectives on the evolution of birds

    NARCIS (Netherlands)

    Ericson, P.G.P.

    2008-01-01

    The paper summarizes the current understanding of the evolution and diversification of birds. New insights into this field have mainly come from two fundamentally different, but complementary sources of information: the many newly discovered Mesozoic bird fossils and the wealth of genetic analyses

  8. Current perspectives on the evolution of birds

    NARCIS (Netherlands)

    Ericson, P.G.P.

    2008-01-01

    The paper summarizes the current understanding of the evolution and diversification of birds. New insights into this field have mainly come from two fundamentally different, but complementary sources of information: the many newly discovered Mesozoic bird fossils and the wealth of genetic analyses o

  9. The origin of the warped heliospheric current sheet. Scientific technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, J.M.; Scherrer, P.H.; Hoeksema, J.T.

    1980-03-01

    The warped heliospheric current sheet in early 1976 is calculated from the observed photospheric magnetic field using a potential field method. Comparisons with measurements of the interplanetary magnetic field polarity in early 1976 obtained at several locations in the heliosphere at Helios I, Helios II, Pioneer XI and Earth show a rather detailed agreement between the computed current sheet and the observations. It appears that the large-scale structure of the warped heliospheric current sheet is determined by the structure of the photospheric magnetic field, and that 'ballerina skirt' effects may add small-scale ripples.

  10. Low frequency eigenmodes of thin anisotropic current sheets and Cluster observations

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2009-02-01

    Full Text Available The eigenmodes of low frequency perturbations of thin anisotropic current sheets with a finite value of the normal magnetic field, are investigated in this paper. It is shown that two possible polarizations of symmetric and asymmetric modes (sausage and kink exist where the growth rate of instabilities is positive. In addition, we demonstrate that a tearing instability might have a positive growth rate in thin anisotropic current sheets. The class of relatively fast wavy flapping oscillations observed by Cluster is described. The main direction of wave motion coincides with the direction of the current and the typical velocity of this motion is comparable with the plasma drift velocity in the current sheet. The comparison of these characteristics with theoretical predictions of the model of anisotropic thin current sheets, demonstrates that, in principle, the theory adequately describes the observations.

  11. In Situ Observations of Ion Scale Current Sheets and Associated Electron Heating in Turbulent Space Plasmas

    Science.gov (United States)

    Chasapis, A.; Retino, A.; Sahraoui, F.; Greco, A.; Vaivads, A.; Khotyaintsev, Y. V.; Sundkvist, D. J.; Canu, P.

    2014-12-01

    We present a statistical study of ion-scale current sheets in turbulent space plasma. The study was performed using in situ measurements from the Earth's magnetosheath downstream of the quasi-parallel shock. Intermittent structures were identified using the Partial Variance of Increments method. We studied the distribution of the identified structures as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high (>3) and low (3) structures that accounted for ~20% of the total. Those current sheets have high magnetic shear (>90 degrees) and were observed mostly in close proximity to the bow shock with their numbers reducing towards the magnetopause. Enhancement of the estimated electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  12. Dynamo-driven plasmoid formation from a current-sheet instability

    Science.gov (United States)

    Ebrahimi, F.

    2016-12-01

    Axisymmetric current-carrying plasmoids are formed in the presence of nonaxisymmetric fluctuations during nonlinear three-dimensional resistive MHD simulations in a global toroidal geometry. We utilize the helicity injection technique to form an initial poloidal flux in the presence of a toroidal guide field. As helicity is injected, two types of current sheets are formed from (1) the oppositely directed field lines in the injector region (primary reconnecting current sheet), and (2) the poloidal flux compression near the plasma edge (edge current sheet). We first find that nonaxisymmetric fluctuations arising from the current-sheet instability isolated near the plasma edge have tearing parity but can nevertheless grow fast (on the poloidal Alfven time scale). These modes saturate by breaking up the current sheet. Second, for the first time, a dynamo poloidal flux amplification is observed at the reconnection site (in the region of the oppositely directed magnetic field). This fluctuation-induced flux amplification increases the local Lundquist number, which then triggers a plasmoid instability and breaks the primary current sheet at the reconnection site. The plasmoids formation driven by large-scale flux amplification, i.e., a large-scale dynamo, observed here has strong implications for astrophysical reconnection as well as fast reconnection events in laboratory plasmas.

  13. Predicting Ice Sheet and Climate Evolution at Extreme Scales

    Energy Technology Data Exchange (ETDEWEB)

    Heimbach, Patrick [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-02-06

    A main research objectives of PISCEES is the development of formal methods for quantifying uncertainties in ice sheet modeling. Uncertainties in simulating and projecting mass loss from the polar ice sheets arise primarily from initial conditions, surface and basal boundary conditions, and model parameters. In general terms, two main chains of uncertainty propagation may be identified: 1. inverse propagation of observation and/or prior onto posterior control variable uncertainties; 2. forward propagation of prior or posterior control variable uncertainties onto those of target output quantities of interest (e.g., climate indices or ice sheet mass loss). A related goal is the development of computationally efficient methods for producing initial conditions for an ice sheet that are close to available present-day observations and essentially free of artificial model drift, which is required in order to be useful for model projections (“initialization problem”). To be of maximum value, such optimal initial states should be accompanied by “useful” uncertainty estimates that account for the different sources of uncerainties, as well as the degree to which the optimum state is constrained by available observations. The PISCEES proposal outlined two approaches for quantifying uncertainties. The first targets the full exploration of the uncertainty in model projections with sampling-based methods and a workflow managed by DAKOTA (the main delivery vehicle for software developed under QUEST). This is feasible for low-dimensional problems, e.g., those with a handful of global parameters to be inferred. This approach can benefit from derivative/adjoint information, but it is not necessary, which is why it often referred to as “non-intrusive”. The second approach makes heavy use of derivative information from model adjoints to address quantifying uncertainty in high-dimensions (e.g., basal boundary conditions in ice sheet models). The use of local gradient, or

  14. Observational Study on Current Sheet of Magnetic Reconnection in Two Solar Eruptions

    Science.gov (United States)

    Qiang-wei, Cai; Ning, Wu; Jun, Lin

    2016-07-01

    The coronal magnetic configuration behind coronal mass ejections (CMEs) can commonly be stretched severely, thus to push the magnetic fields with opposite polarities to approach each other, and to form a current sheet of magnetic reconnection. The current sheet in solar eruptions is not only an important region to convert the magnetic free energy into thermal energy, plasma kinetic energy, and energetic particle beams, but also plays a role to connect CMEs and flares. In the CME events of 2003 January 3 and 2003 November 4, the development of current sheet has been observed in both cases. We have investigated the dynamic features and physical properties of current sheet in the two events, based on the data of LASCO (Large Angle and Spectrometric Coronagraph) and UVCS (Ultraviolet Coronagraph Spectrometer) on board of SOHO (Solar and Heliospheric Observatory), and the Hα data from BBSO (Big Bear Solar Observatory) and YNAO (Yunnan Astronomical Observatory). The existence of ions with a high degree of ionization, such as Fe+17 and Si+11, indicates a high temperature up to 3×106 ∼5×106 K in the region of current sheet. A direct measurement shows that the thickness of current sheet varies between 1.3×104 and 1.1×105 km, which increases first and then decreases with time. Using the CHIANTI code (v.7.1), we have further calculated the average values of electron temperature and corresponding emission measure (EM) respectively to be 3.86×106 K and 6.1×1024 cm-5 in the current sheet of the 2003 January 3 event. We also find that the current sheet twisted forth and back quasi-periodically during the eruption event on 2003 November 4 by analyzing the observational data from SOHO/UVCS.

  15. A two-fluid study of oblique tearing modes in a force-free current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Akçay, Cihan, E-mail: akcay@lanl.gov; Daughton, William [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lukin, Vyacheslav S. [National Science Foundation, Arlington, Virginia 22230 (United States); Liu, Yi-Hsin [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2016-01-15

    Kinetic simulations have demonstrated that three-dimensional reconnection in collisionless regimes proceeds through the formation and interaction of magnetic flux ropes, which are generated due to the growth of tearing instabilities at multiple resonance surfaces. Since kinetic simulations are intrinsically expensive, it is desirable to explore the feasibility of reduced two-fluid models to capture this complex evolution, particularly, in the strong guide field regime, where two-fluid models are better justified. With this goal in mind, this paper compares the evolution of the collisionless tearing instability in a force-free current sheet with a two-fluid model and fully kinetic simulations. Our results indicate that the most unstable modes are oblique for guide fields larger than the reconnecting field, in agreement with the kinetic results. The standard two-fluid tearing theory is extended to address the tearing instability at oblique angles. The resulting theory yields a flat oblique spectrum and underestimates the growth of oblique modes in a similar manner to kinetic theory relative to kinetic simulations.

  16. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    CERN Document Server

    Seaton, Daniel B; Darnel, Jonathan M

    2016-01-01

    We present AIA observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014~February~25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand km thick for much of the duration of the event and that its temperature generally ranged between $8-10\\,\\mathrm{MK}$. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was $M_{A} \\approx 0.004-0.007$, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  17. Observations of the Formation, Development, and Structure of a Current Sheet in an Eruptive Solar Flare

    Science.gov (United States)

    Seaton, Daniel B.; Bartz, Allison E.; Darnel, Jonathan M.

    2017-02-01

    We present Atmospheric Imaging Assembly observations of a structure we interpret as a current sheet associated with an X4.9 flare and coronal mass ejection that occurred on 2014 February 25 in NOAA Active Region 11990. We characterize the properties of the current sheet, finding that the sheet remains on the order of a few thousand kilometers thick for much of the duration of the event and that its temperature generally ranged between 8 and 10 MK. We also note the presence of other phenomena believed to be associated with magnetic reconnection in current sheets, including supra-arcade downflows and shrinking loops. We estimate that the rate of reconnection during the event was MA ≈ 0.004–0.007, a value consistent with model predictions. We conclude with a discussion of the implications of this event for reconnection-based eruption models.

  18. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  19. Mercury's Magnetospheric Cusps and Cross-Tail Current Sheet: Structure and Dynamics

    Science.gov (United States)

    Poh, Gang Kai

    Mercury has proven to be a unique natural laboratory for space plasma processes. Mercury's magnetosphere is formed by the interaction between its intrinsic planetary magnetic field and the supersonic solar wind. The structure of Mercury's magnetosphere is very similar to Earth's; yet the results from the MESSENGER mission to Mercury have shown that the spatial and temporal scales of magnetospheric processes are very different at Mercury. In this thesis, we analyze in situ observations from the MESSENGER spacecraft to characterize and understand the dynamic physical plasma processes occurring in Mercury's magnetosphere. We identified and analyzed 345 plasma filaments in Mercury's northern magnetospheric cusp to determine their physical properties. Cusp plasma filaments are magnetic structures that are identified on the basis of their characteristic 2-3 seconds long decrease in magnetic field intensity. Our analysis indicates that these cusp filaments are cylindrical flux tubes filled with plasma, which causes a diamagnetic decrease in the magnetic field inside the flux tube. MESSENGER observations of flux transfer events (FTEs) and cusp filament suggests that cusp filaments properties are the low-altitude extension of FTEs formed at Mercury's dayside magnetopause. We examined 319 central plasma sheet crossings observed by MESSENGER. Using a Harris model, we determined the physical properties of Mercury's cross-tail current sheet. Analysis of BZ in the current sheet indicated that MESSENGER usually crossed the current sheet sunward of the Near Mercury Neutral Line. Magnetohydrodynamics-based analysis using the MESSENGER magnetic field and plasma measurements suggests that heavy planetary ions and/or ion temperature anisotropy may be important in maintaining radial stress balance within Mercury's central plasma sheet. We report the observation of significant dawn-dusk variation in Mercury's cross-tail current sheet with thicker, lower plasma beta dawn side current

  20. Field reversing magnetotail current sheets: earth, Venus, and Comet Giacobini-Zinner

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1986-09-01

    This dissertation examines the field reversing magnetotail current sheets at the earth, Venus, and Comet Giacobini-Zinner. In the near earth study a new analysis technique is developed to calculate the detailed current density distributions within the cross tail current sheet for the first time. This technique removes the effects of a variable sheet velocity by inverting intersatellite timings between the co-orbiting satellites ISEE-1 and -2. Case studies of three relatively geomagnetically quiet crossings are made; sheet thicknesses and peak current densities are approx.1-5 x 10/sup 4/ km and approx.5-50 nA/m/sup 2/. Current density distributions reveal a high density central region, lower density shoulders, and considerable fine structure throughout. In the Venus study another new analysis technique is developed to reconstruct the average tail configuration from a correlation between field magnitude and draping angle in a large statistical data set. In the comet study, high resolution magnetic field and plasma electron data from the ICE traversal of Giacobini-Zinner are combined for the first time to determine the tail/current sheet geometry and calculate certain important but unmeasured local ion and upstream properties. Pressure balance across the tail gives ion temperatures and betas of approx.1.2 x 10/sup 5/ K and approx.40 in the center of the current sheet to approx.1 x 10/sup 6/ K and approx.3 in the outer lobes. Axial stress balance shows that the velocity shear upstream near the nucleus is >6 (approx.1 at ICE), and that a region of strongly enhanced mass loading (ion source rate approx.24 times that upstream from lobes) exists upstream from the current sheet. The integrated downtail mass flux is approx.2.6 x 10/sup 26/ H/sub 2/O+/sec, which is only approx.1% of the independently determined total cometary efflux. 79 refs., 37 figs.

  1. Field-aligned currents observed by MMS in the near-Earth plasma sheet during large-scale substorm dipolarizations.

    Science.gov (United States)

    Nakamura, Rumi; Nagai, Tsugunobu; Giles, Barbara; Le Contel, Olivier; Stawarz, Julia; Khotyaintsev, Yuri; Artemyev, Anton

    2017-04-01

    During substorms significant energy conversion has been reported to take place at the sharp dipolarization front in the flow braking region where the probability of observing bursty bulk flows (BBFs) significantly drops. On 10 August 2016, MMS traversed the pre-midnight near-Earth plasma sheet when dipolarization disturbances were detected in an extended nightside local time region by Cluster, Geotail, GOES 13, 14 and 15, and the Van Allen Probes. In an expanding plasma sheet during the dipolarization, MMS detected sub-ion scale field-aligned current layers that are propagating both Earthward (equatorward) as well as tailward (outward). These multi-scale multi-point observations enable a unique investigation of both the meso-scale evolution of the disturbances and the detailed kinetic structures of the fronts and boundaries relevant to the dipolarizations.

  2. Effects of electric field on recrystallization texture evolution in cold-rolled high-purity aluminum sheet during annealing

    Institute of Scientific and Technical Information of China (English)

    WU Yan; ZHAO Xiang; HE Chang-shu; ZHAO Zhi-peng; ZUO Liang; C. ESLING

    2007-01-01

    The effects of an external DC (direct current) electric field on recrystallization texture evolution in the cold-rolled aluminum sheets with 99.99% purity were investigated by means of X-ray diffraction techniques. The cold-rolled high-purity aluminum sheets were annealed for 60 min at 200, 300 and 400 ℃, respectively with and without an external DC electric field of 800 V/mm. The results show that with DC electric field, the recrystallization cube texture is strengthened at the stage of grain growth. Possible reason for the strengthening of the recrystallization cube texture with the applied electric field may be attributed to both selected nucleation and selected growth of cube oriented crystal nuclei.

  3. A Tailward Moving Current Sheet Normal Magnetic Field Front Followed by an Earthward Moving Dipolarization Front

    Science.gov (United States)

    Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.

    2014-01-01

    A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.

  4. Effects of induced shear deformation on microstructure and texture evolution in CP-Ti rolled sheets

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Justin L. [Department of Automotive Engineering, Clemson University, Greenville, SC 29607 (United States); Abu-Farha, Fadi, E-mail: FADI@clemson.edu [Department of Automotive Engineering, Clemson University, Greenville, SC 29607 (United States); Kurfess, Thomas [School of Mechanical Engineering, Georgia Institute of Technology, GA 30332 (United States); Hammond, Vincent H. [US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2014-12-01

    Commercial pure titanium sheets were deformed by shear rolling at 400 °C with subsequent annealing to investigate microstructure and texture evolution along with its effects on the mechanical properties. A four sheet multilayer rolling scheme was used to isolate shear strains within the outer sheets, termed isolated shear rolling (ISR), thus allowing for direct comparison between shear strained material (outer sheets) and plane-strained material under similar conditions. Microstructure and texture evolution were investigated by electron backscatter diffraction analysis, while mechanical properties were evaluated through tensile testing aided by digital image correlation (DIC). Texture was seen to evolve from a ±30° transverse direction (TD) split basal texture to primarily basal texture (〈0001〉//Normal Direction) for the shear-strained sheets, in comparison with a slight rotation to a ±20° TD-split for the plane-strained sheets. After short-term annealing at 600 °C for 15 min, texture remained similar to that of the as-processed material yet at lower intensity levels. Compared to the base material, shear-rolled material showed much higher Lankford Coefficient values, with a significant boost attributed to shear deformation. The greater stretch formability is achieved in the shear-rolled material by rotation of the basal poles to become parallel to the sheet thickness. The results obtained here with ISR in regards to the effects of inducing higher shear strains on the rolled material are comparable to those reported in the literature by differential speed rolling (DSR)

  5. Numerical study of magnetic reconnection process near in- terplanetary current sheet

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The third order accurate upwind compact difference scheme has been applied to the numerical study of the magnetic reconnection process possibly occurring near the interplanetary current sheet, under the framework of the two-dimensional compressible magnetohydrodynamics (MHD). Our results here show that the driven reconnection near the current sheet can occur within 10-30 min for the interplanetary high magnetic Reynolds number, RM =2 000-10 000, the stable magnetic reconnection structure can be formed in hour-order of magnitude, and there are some ba- sic properties such as the multiple X-line reconnections, vortical velocity structures, filament current systems, split-ting and collapse of the high-density plasma bulk. These results are helpful in understanding and identifying the magnetic reconnection phenomena near the interplanetary current sheets.

  6. Current and future darkening of the Greenland ice sheet

    Science.gov (United States)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated

  7. Collisionless reconnection: Mechanism of self-ignition in thin current sheets

    OpenAIRE

    2010-01-01

    The spontaneous onset of magnetic reconnection in thin plane collisionless current sheets is shown to result from a thermal-anisotropy driven non-relativistic magnetic electron Weibel-mode, generating seed-magnetic field X-points in the centre of the current layer. The proposed mechanism is of larger generality. It also works in the presence of magnetic guide fields.

  8. Collisionless reconnection: Mechanism of self-ignition in thin current sheets

    CERN Document Server

    Treumann, R A; Baumjohann, W

    2010-01-01

    The spontaneous onset of magnetic reconnection in thin collisionless current sheets is shown to result from a thermal-anisotropy driven magnetic Weibel-mode, generating seed-magnetic field {\\sf X}-points in the centre of the current layer.

  9. Collisionless reconnection: mechanism of self-ignition in thin plane homogeneous current sheets

    Science.gov (United States)

    Treumann, R. A.; Nakamura, R.; Baumjohann, W.

    2010-10-01

    The spontaneous onset of magnetic reconnection in thin plane collisionless current sheets is shown to result from a thermal-anisotropy driven non-relativistic magnetic electron Weibel-mode, generating seed-magnetic field X-points in the centre of the current layer. The proposed mechanism is of larger generality. It also works in the presence of magnetic guide fields.

  10. Properties of current sheet thinning at x ˜- 10 to -12 RE

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Petrokovich, A. A.

    2016-07-01

    We report on Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations of current sheet thinning in Earth's magnetotail at around x =- 10 to -12 Earth radii. The THEMIS spacecraft configuration in October-December 2015 allows us to construct both gradients that contribute to the cross-tail current density jy=μ0-1(∂Bx/∂z-∂Bz/∂x) (GSM coordinates). For 17 events when the spacecraft observed a gradual Bz decrease and jy increase, we find the following average scaling relations: for the current density jy˜Bz-7/4, for the lobe magnetic field BL˜Bz-1/4, and for the plasma density ni˜Bz-3/4. We show that the temperature of ions and electrons decreases and the plasma pressure gradient ∂p/∂x rapidly increases during current sheet thinning. The scale Lx=(∂lnp/∂x)-1 decreases a few thousand kilometers. We also consider current carriers in thinning current sheets: both ion and electron current-dominated current sheets, preferentially located near dusk and midnight, respectively, are found.

  11. Detection of thin current sheets and associated reconnection in the Earth's turbulent magnetosheath using cluster multi-point measurements

    Science.gov (United States)

    Chasapis, Alexandros; Retino, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2013-04-01

    Magnetic reconnection occurs in turbulent plasma within a large number of volume-filling thin current sheets and is one major candidate for energy dissipation of turbulent plasma. Such dissipation results in particle heating and non-thermal particle acceleration. In situ observations are needed to study the detailed properties of thin current sheets and associated reconnection, in order to determine its importance as a dissipation mechanism at small scales. In particular, multi-point measurements are crucial to unambiguously identify spatial scales (e.g current sheet thickness) and estimate key quantities such as E*J. Here we present a study of the properties of thin current sheets detected in the Earths magnetosheath downstream of the quasi-parallel shock by using Cluster spacecraft data. The current sheets were detected by the rotation of the magnetic field as computed by four-point measurements. We study the distribution of current sheets as a function of the magnetic shear angle θ, their duration and the waiting time between consecutive current sheets. We found that high shear (θ > 90 degrees) current sheets show different properties with respect to low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. We also compare our four-point detection method with other single-point methods (e.g. Partial Variance of Increments - PVI) and we discuss the results of such comparison.

  12. Regulated Synthesis of Mo Sheets and Their Derivative MoX Sheets (X: P, S, or C) as Efficient Electrocatalysts for Hydrogen Evolution Reactions.

    Science.gov (United States)

    Jia, Jin; Zhou, Weijia; Li, Guixiang; Yang, Linjing; Wei, Zhaoqian; Cao, Lindie; Wu, Yisheng; Zhou, Kai; Chen, Shaowei

    2017-03-08

    Electrochemical H2 generation from H2O has been focused on the exploration of non-noble metals as well as earth-rich catalysts. In our practical work, we provide a simple cost-efficient fabrication process to prepare large Mo sheets via the controlled equilibrium between sublimation of MoO3 and reduction of H2. Porous MoP sheets were synthesized from the obtained Mo sheets as the Mo source and template which exhibit notable activity in the hydrogen evolution reaction with a low onset potential of -88 mV vs RHE, small Tafel value of 54.5 mV/dec, and strong catalytic stability. With Mo sheets as the universal Mo source and template, MoS2 and Mo2C sheets were synthesized by a similar process, and the corresponding catalytic activities were calculated by density functional theory.

  13. The generation of rapid solar flare hard X-ray and microwave fluctuations in current sheets

    Science.gov (United States)

    Holman, Gordon D.

    The generation of rapid fluctuations, or spikes, in hard X-ray and microwave bursts via the disruption of electron heating and acceleration in current sheets is studied. It is found that 20 msec hard X-ray fluctuations can be thermally generated in a current sheet if the resistivity in the sheet is highly anomalous, the plasma density in the emitting region is relatively high, and the volume of the emitting region is greater than that of the current sheet. A specific mechanism for producing the fluctuations, involving heating in the presence of ion acoustic turbulence and a constant driving electric field, and interruption of the heating by a strong two-stream instability, is discussed. Variations upon this mechanism are also discussed. This mechanism also modulates electron acceleration, as required for the microwave spike emission. If the hard X-ray emission at energies less than approx. 1000 keV is nonthermal bremsstrahlung, the coherent modulation of electron acceleration in a large number of current sheets is required.

  14. Thin current sheets caused by plasma flow gradients in space plasma

    Science.gov (United States)

    Nickeler, D.; Wiegelmann, T.

    2011-12-01

    To understand complex space plasma systems like the solar wind-magnetosphere coupling, we need to have a good knowledge of the slowly evolving equilibrium state. The slow change of external constraints on the system (for example boundary conditions or other external parameters) lead in many cases to the formation of current sheets. These current sheets can trigger micro-instabilities, which cause resistivity on fluid scales. Consequently resistive instabilities like magnetic reconnection can occur and the systems evolves dynamically. Therefore such a picture of quasi-magneto-hydro-static changes can explain the quasy-static phase of many space plasma before an eruption occurs. Within this work we extend the theory by the inclusion of a nonlinear stationary plasma flows. Our analysis shows that stationary plasma flows with strong flow gradients (for example the solar wind magnetosphere coupling) can be responsible for the existence or generation of current sheets.

  15. Evolutions and Trends in Presenting. The Balance Sheet as a Financial Position Picture of an Entity

    Directory of Open Access Journals (Sweden)

    Ecaterina Necsulescu

    2011-08-01

    Full Text Available In this article we proposed to achieve a synthesis of the key moments in the evolution of the concept of balance, of the theories formulated over time, of the presentation forms of the balance sheet, a taxonomy of balance sheets, supplemented by a breakdown of the concept of financial position and of the structures related to the assessment of the financial position. In other words, we will consider a gradual presentation of the concept of balance sheet over time and a presentation of the balance as the main tool for highlighting the patrimonial situation, of the assets of enterprise owners and of the picture on the financial position of an economic entity.

  16. The evolution and enlightenment of water resources accounting from accounts to balance sheet

    Institute of Scientific and Technical Information of China (English)

    FuHui Jian; XiaoYu Song; LiLi Li; WenQi Gao

    2016-01-01

    The Third Plenary Session of the 18th Central Committee of the Communist Party of China has proposed an important national strategic decision: to explore and establish the balance sheet of natural resources, to implement leaders' of-office auditing system about natural resources assets. Water is one of the most essential nature resources of human beings; water resources accounting, as an important water resources management tool, is an essential part of compiling the natural re-sources balance sheet. In this paper, we provide a summary of the historic evolution of water resources accounting and analyze its application in some typical countries. Although water resources accounting and water resources balance sheet reflect different implications and focus, both require water resources accounts as the basis in system establishment.

  17. Spontaneous current sheets in magnetic fields with applications to stellar X-rays

    CERN Document Server

    Parker, Eugene N

    1994-01-01

    Expanding upon the ideas first proposed in his seminal book Cosmical Magnetic Fields, Eugene N. Parker here offers the first in-depth treatment of the magnetohydrodynamic theory of spontaneous magnetic discontinuities. In detailing his theory of the spontaneous formation of tangential discontinuities (current sheets) in a magnetic field embedded in highly conducting plasma, Parker shows how it can be used to explain the activity of the external magnetic fields of planets, stars, interstellar gas clouds, and galaxies, as well as the magnetic fields in laboratory plasmas. Provocative and fascinating, Spontaneous Current Sheets in Magnetic Fields presents a bold new theory that will excite interest and discussion throughout the space physics community.

  18. The effect of wall friction on the current-sheet speed of a magnetically driven shock tube

    DEFF Research Database (Denmark)

    Chang, C.T.

    1971-01-01

    The effect of wall friction on the current-sheet speed is examined by taking some plausible forms of the friction into consideration. The analysis shows that the current-sheet always attains a steady state regardless of the types of friction concerned. It further shows that the experimentally...... observed velocity limitation of the current-sheet at discharge conditions of high voltage and low pressure might be attributed to a friction drag varying linearly with the driving current and the current-sheet speed....

  19. Cooperatives in Serbia: Evolution and current issues

    Directory of Open Access Journals (Sweden)

    Chroneos-Krasavac Biljana

    2015-01-01

    Full Text Available Cooperatives in Serbia have long history, evolving from big traditional families to the contemporary social networked organizations and even private companies acting like coops. Current legal framework, on one side, enables many possibilities, but on the other side prevents further development of cooperatives. An interview of key players in the coop sector was one of the research methods. Other methods include historical method, comparative analysis method and case study method. In conclusion, the major obstacle for the further coops development in Serbia is legal status of ownership. Other obstacles are: the level of state interference, the loyalty of primary producers and participants, the average land size per households, etc. The paper includes three parts: historical evolution, successful case study and framework for future development.

  20. Non-oriented electrical sheets

    Science.gov (United States)

    Brissonneau, Pierre

    1984-02-01

    After placing the economic and technological importance of non-oriented magnetic sheets on the same level as that of grain-oriented sheets, the recent stages in the history of non-oriented sheets are recalled. The progress made in the knowledge of the physics of magnetism now allows the functions of the principal properties of non-oriented sheets to be analyzed. Current production of non-oriented sheets is marked by an evolution towards a split of the market between top-grade sheets, which could still be improved significantly, and lower grades, for which the cost of production continues to be practically the only determining factor.

  1. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  2. Texture evolution in thin-sheets on AISI 301 metastable stainless steel under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.Y. [Posco Steels, Pohan, South Korea (Korea, Republic of); Kozaczek, K. [Oak Ridge National Lab., TN (United States); Kulkarni, S.M. [TRW Vehicle Safety Systems, Mesa, AZ (United States); Bastias, P.C.; Hahn, G.T. [Vanderbilt Univ., Nashville, TN (United States)

    1995-05-08

    The evolution of texture in thin sheets of metastable austenitic stainless steel AISI 301 is affected by external conditions such as loading rate and temperature, by inhomogeneous deformation phenomena such as twinning and shear band formation, and by the concurent strain induced phase transformation of the retained austenitc ({gamma}) into martensite ({alpha}). The present paper describes texture measurements on different gauges of AISI 301 prior and after uniaxial stretching under different conditions.

  3. "Ideally" unstable current sheets and the triggering of fast magnetic reconnection

    CERN Document Server

    Tenerani, Anna; Pucci, Fulvia; Landi, Simone; Rappazzo, Antonio Franco

    2016-01-01

    Magnetic reconnection is thought to be the dynamical mechanism underlying many explosive phenomena observed both in space and in the laboratory, though the question of how fast magnetic reconnection is triggered in such high Lundquist ($S$) number plasmas has remained elusive. It has been well established that reconnection can develop over timescales faster than those predicted traditionally once kinetic scales are reached. It has also been shown that, within the framework of resistive Magnetohydrodynamics (MHD), fast reconnection is achieved for thin enough sheets via the onset of the so-called plasmoid instability. The latter was discovered in studies specifically devoted to the Sweet-Parker current sheet, either as an initial condition or an apparent transient state developing in nonlinear studies. On the other hand, a fast tearing instability can grow on an ideal, i.e., $S$-independent, timescale (dubbed "ideal" tearing) within current sheets whose aspect ratio scales with the macroscopic Lundquist number...

  4. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  5. Laboratory Investigations of Current Sheets at the Electron Skin Depth Scale

    Science.gov (United States)

    Vincena, S.; Gekelman, W.

    2005-12-01

    Laboratory Investigations of Current Sheets at the Electron Skin Depth Scale. Theoretical investigations, in situ spacecraft and rocket missions, and laboratory studies form an essential triad for understanding the variety of current sheet phenomena found in space plasmas. In the Large Plasma Device (LAPD) at UCLA, the formation dynamics, equilibrium state, and wave-mediated disruptions of current sheets can be studied with great spatial and temporal resolution using a variety of probes as well as non-invasive laser induced fluorescence and other optical diagnostics. The LAPD is aptly suited for studying current sheets flowing in a magnetized background plasma which is capable of supporting Alfvén waves. The cylindrical device is 20m long and one meter in diameter with a solenoidal magnetic field as high as 3000 Gauss. For the parameters in this experiment, the plasma column is ten shear Alfvén wavelengths along the field and 100 electron inertial lengths (δe) (or 200 ρi) in the perpendicular direction. An electron current sheet is created in the plasma by placing a thin copper plate in the plasma column at one end of the device and pulsing this plate positive with respect to the chamber wall. The current sheet extends for the length of the device and has an initial cross-field size of roughly 45 δe by 0.5δe. A parallel flow of ions is observed with similar dimensions and moves in the same direction as the electrons in the current sheet with a velocity of 0.2 times the ion sound speed. A much weaker sheared perpendicular flow is also measured. Cross-sections of the ion flow are measured at several axial locations over a distance of six meters. Second, as the ion flow increases in magnitude, a much broader (8ρi) density depletion (n=0.25nO) develops around the flow. The gradient scale length of the depletion shortens until the spontaneous growth of drift waves occurs. This disrupts the electron current and ion flow, and leads to cross-field transport of

  6. Instability of current sheets with a localized accumulation of magnetic flux

    Science.gov (United States)

    Pritchett, P. L.

    2015-06-01

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small "normal" Bz component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing Bz profile and the other with a localized Bz "hump." The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no Bz accumulation even in the presence of open boundary conditions.

  7. Evidence for two separate heliospheric current sheets of cylindrical shape during MID-2012

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.-M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Young, P. R. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: pyoung@ssd5.nrl.navy.mil, E-mail: karin.muglach@nasa.gov [Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard 'ballerina skirt' picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180°; a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  8. Evidence for Two Separate Heliospheric Current Sheets of Cylindrical Shape During Mid-2012

    Science.gov (United States)

    Wang, Y.-M.; Young, P. R.; Muglach, K.

    2014-01-01

    During the reversal of the Sun's polar fields at sunspot maximum, outward extrapolations of magnetograph measurements often predict the presence of two or more current sheets extending into the interplanetary medium, instead of the single heliospheric current sheet (HCS) that forms the basis of the standard "ballerina skirt" picture. By comparing potential-field source-surface models of the coronal streamer belt with white-light coronagraph observations, we deduce that the HCS was split into two distinct structures with circular cross sections during mid-2012. These cylindrical current sheets were centered near the heliographic equator and separated in longitude by roughly 180° a corresponding four-sector polarity pattern was observed at Earth. Each cylinder enclosed a negative-polarity coronal hole that was identifiable in extreme ultraviolet images and gave rise to a high-speed stream. The two current sheet systems are shown to be a result of the dominance of the Sun's nonaxisymmetric quadrupole component, as the axial dipole field was undergoing its reversal during solar cycle 24.

  9. Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Ritoku; Sato, Tetsuya [Theory and Computer Simulation Center, National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-06-01

    Generation of anomalous resistivity and dynamical development of collisionless reconnection in the vicinity of a magnetically neutral sheet are investigated by means of a three-dimensional particle simulation. For no external driving source, two different types of plasma instabilities are excited in the current layer. The lower hybrid drift instability (LHDI) is observed to grow in the periphery of current layer in an early period, while a drift kink instability (DKI) is triggered at the neutral sheet in a late period as a result of the nonlinear deformation of the current sheet by the LHDI. A reconnection electric field grows at the neutral sheet in accordance with the excitation of the DKI. When an external driving field exists, the convective electric field penetrates into the current layer through the particle kinetic effect and collisionless reconnection is triggered by the convective electric field earlier than the DKI is excited. It is also found that the anisotropic ion distribution is formed through the anomalous ion heating by the DKI. (author)

  10. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    Science.gov (United States)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  11. Linking climate history and ice crystalline fabric evolution in polar ice sheets

    Science.gov (United States)

    Kennedy, Joseph Huston

    An ice sheet consists of an unfathomable number of grains that typically have a preferred orientation of the crystalline lattices, termed fabric. At the surface of ice sheets, the microstructural processes which control the grain structure and fabric evolution are influenced by climate variables. Layers of firn, in different climate regimes, may have an observable variation in fabric which can persist deep into the ice sheet; fabric may have 'memory' of these past climate regimes. To model the evolution of a subtle variation in fabric below the firn-ice transition, we have developed and released an open-source Fabric Evolution with Recrystallization (FEvoR) model. FEvoR is an anisotropic stress model that distributes stresses through explicit nearest-neighbor interaction. The model includes parameterizations of grain growth, rotation recrystallization and migration recrystallization which account for the major recrystallization processes that affect the macroscopic grain structure and fabric evolution. Using this model, we explore the evolution of a subtle variation in near-surface fabric using both constant applied stress and a stress-temperature history based on data from Taylor Dome, East Antarctica. Our results show that a subtle fabric variation will be preserved for ≈200 ka in compressive stress regimes with temperatures typical of polar ice-sheets. The addition of shear to compressive stress regimes preserves fabric variations longer than in compression-only regimes because shear drives a positive feedback between crystal rotation and deformation. We find that temperature affects how long the fabric variation is preserved, but does not affect the strain-integrated fabric evolution profile except when crossing the thermal-activation-energy threshold (≈ -10°C). Even at high temperatures, migration recrystallization does not rid the fabric of its memory under most conditions. High levels of nearest-neighbor interactions between grains will rid the fabric

  12. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Zharkova, V. [Northumbria Univ., Newcastle upon Tyne (United Kingdom). Dept. of Mathematics and Information Systems; Khabarova, O. [RAS (IZMIRAN), Moscow (Russian Federation). Heliophysical Lab.

    2015-09-01

    Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS) or in a front of interplanetary coronal mass ejections (ICMEs) often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons) measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC) simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012). The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR), which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS) are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solarwind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional ''strahls'' (field-aligned most

  13. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    Science.gov (United States)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  14. Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry

    Science.gov (United States)

    Wyper, P. F.; Jain, Rekha

    2013-05-01

    Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan plane in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.

  15. Reconnection at three dimensional magnetic null points: Effect of current sheet asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F.; Jain, Rekha [School of Mathematics and Statistics, University of Sheffield, Sheffield, South Yorkshire S3 7RH (United Kingdom)

    2013-05-15

    Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a radially symmetric 3D null (i.e., a null where the eigenvalues associated with the fan plane are equal) with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is characterized by the reconnection of an equal quantity of flux across the fan plane in both directions. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis, it is shown that when the ohmic dissipation in the layer is assumed to be constant, the increase in the local rate bleeds from the global rate as the sheet deformation is increased. Both models suggest that asymmetry in the current sheet dimensions will have a profound effect on the reconnection rate and manner of flux transport in reconnection involving 3D nulls.

  16. Collisionless reconnection: mechanism of self-ignition in thin plane homogeneous current sheets

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2010-10-01

    Full Text Available The spontaneous onset of magnetic reconnection in thin plane collisionless current sheets is shown to result from a thermal-anisotropy driven non-relativistic magnetic electron Weibel-mode, generating seed-magnetic field X-points in the centre of the current layer. The proposed mechanism is of larger generality. It also works in the presence of magnetic guide fields.

  17. On the drift-sausage mode in one-dimensional current sheet

    Science.gov (United States)

    Yoon, Peter H.; Lui, A. T. Y.

    2001-02-01

    This article presents a two-fluid stability analysis of Harris current sheet equilibrium under the assumption of charge quasi-neutrality. It is found that the charge neutrality condition leads to sausage-type fluctuations, which propagate along the direction of the cross-field current flow, hence the drift-sausage mode. It is also shown that solutions which correspond to kink-type perturbations do not exist under the present assumption of charge neutrality. In view of the fact that a substantial body of simulation works exist which report predominantly kink-like perturbations, and that analytical theories which do not assume charge quasi-neutrality predict that the kink-type mode is a dominant unstable mode, it is concluded that the assumption of quasi-neutrality may be a poor choice in describing the stability of Harris current sheet equilibrium.

  18. The evolution and enlightenment of water resourcesaccounting from accounts to balance sheet

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The Third Plenary Session of the 18th Central Committee of the Communist Party of China has proposed an importantnational strategic decision: to explore and establish the balance sheet of natural resources, to implement leaders' of-officeauditing system about natural resources assets. Water is one of the most essential nature resources of human beings; waterresources accounting, as an important water resources management tool, is an essential part of compiling the natural resourcesbalance sheet. In this paper, we provide a summary of the historic evolution of water resources accounting andanalyze its application in some typical countries. Although water resources accounting and water resources balance sheetreflect different implications and focus, both require water resources accounts as the basis in system establishment.

  19. On the radial force balance in the quiet time magnetotail current sheet

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.

    2016-05-01

    Using Time History of Events and Macroscale Interactions spacecraft observations of the quite magnetotail current sheet within the r∈[9,35]RE region (r is the radial distance from Earth and RE is Earth's radius), we investigate the thermal plasma pressure distribution along the magnetotail. Taking advantage of flapping motions of an ensemble of current sheets at various distances, we estimate the current density magnitude jy (in GSM coordinates). Comparing the tension force jyBz (Bz is the magnetic field component) with the radial gradient of the plasma pressure demonstrates that this gradient is only a small fraction, ˜10-15%, of the Ampere force exerted on the cross-tail current, in the r > 15RE region. We also estimate the contribution of the electron temperature anisotropy to the pressure balance: in the r > 15RE region the corresponding force can balance only 10-15% of the observed tension force jyBz. Thus, we conclude that about 70% of the tension force is not balanced by the combination of isotropic radial pressure gradient or the electron anisotropy. We discuss mechanisms that could be responsible for balancing the magnetotail current sheet.

  20. Coupled Northern Hemisphere permafrost-ice sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-02-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2 and the coupled Northern Hemisphere (NH permafrost-ice sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the last glacial maximum (LGM agrees well with reconstructions and previous modelling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over Central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 kya. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  1. Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-09-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH permafrost–ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  2. Plasmoid formation in the elongated current sheet during transient CHI on HIST

    Science.gov (United States)

    Nagata, Masayoshi; Fujita, Akihiro; Matsui, Takahiro; Kikuchi, Yusuke; Fukumoto, Naoyuki; Kanki, Takashi

    2016-10-01

    The Transient-Coaxial Helicity Injection (T-CHI) is a promising candidate for the non-inductive plasma start-up on Spherical Torus (ST). The problem of the flux closure in the T-CHI is important and related to understand the physics of fast magnetic reconnection. The recent MHD simulation (F. Ebrahimi and R. Raman, Phys. Rev. Lett. 114, 205003 (2015)) on T-CHI for NSTX predicts the formation and breakup of an elongated Sweet-Parker (S-P) current sheet and a transient to plasmoid instability. According to this simulation, the reconnection rate based on the plasmoid instability is faster than that by S-P model and becomes nearly independent of the Lundquist number S. In this meeting, we will present that the formation of multiple X-points and plasmoids has been observed in T-CHI start-up plasmas on HIST. The stronger external guide (toroidal) magnetic field makes plasma less compressible, leading to slower reconnection time and longer current sheet. The experimental observation shows that 2/3 plasmoids are generated in the elongated current sheet with the narrow width comparable to the ion skin depth or the ion sound gyro-radius. The small plasmoids develop to a large-scale flux structure due to a current inward diffusion during the decay phase.

  3. Effect of Inductive Coil Geometry and Current Sheet Trajectory of a Conical Theta Pinch Pulsed Inductive Plasma Accelerator

    Science.gov (United States)

    Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.

    2011-01-01

    Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration

  4. Reconnection at 3D Magnetic Null Points: Effect of Current Sheet Asymmetry

    CERN Document Server

    Wyper, Peter F

    2013-01-01

    Asymmetric current sheets are likely to be prevalent in both astrophysical and laboratory plasmas with complex three dimensional (3D) magnetic topologies. This work presents kinematic analytical models for spine and fan reconnection at a symmetric 3D null with asymmetric current sheets. Asymmetric fan reconnection is characterized by an asymmetric reconnection of flux past each spine line and a bulk flow of plasma across the null point. In contrast, asymmetric spine reconnection is inherently equal and opposite in how flux is reconnected across the fan plane. The higher modes of spine reconnection also include localized wedges of vortical flux transport in each half of the fan. In this situation, two definitions for reconnection rate become appropriate: a local reconnection rate quantifying how much flux is genuinely reconnected across the fan plane and a global rate associated with the net flux driven across each semi-plane. Through a scaling analysis it is shown that when the ohmic dissipation in the layer ...

  5. Magnetic reconnection and tearing in a 3D current sheet about a solar coronal null

    Science.gov (United States)

    Pontin, David; Wyper, Peter

    2014-06-01

    Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We discuss the nature of flux transfer during reconnection an isolated coronal null point, that occurs across the fan plane when a current sheet forms about the null. We then go on to discuss the breakup of the current sheet via a non-linear tearing-type instability and show that the instability threshold corresponds to a Lundquist number comparable to the 2D case. We also discuss the resulting topology of the magnetic field, which involves a layer in which open and closed magnetic fields are effectively mixed, with implications for particle transport.

  6. 3-d resistive MHD simulations of magnetic reconnection and the tearing mode instability in current sheets

    CERN Document Server

    Murphy, G C; Pelletier, Guy

    2008-01-01

    Magnetic reconnection plays a critical role in many astrophysical processes where high energy emission is observed, e.g. particle acceleration, relativistic accretion powered outflows, pulsar winds and probably in dissipation of Poynting flux in GRBs. The magnetic field acts as a reservoir of energy and can dissipate its energy to thermal and kinetic energy via the tearing mode instability. We have performed 3d nonlinear MHD simulations of the tearing mode instability in a current sheet. Results from a temporal stability analysis in both the linear regime and weakly nonlinear (Rutherford) regime are compared to the numerical simulations. We observe magnetic island formation, island merging and oscillation once the instability has saturated. The growth in the linear regime is exponential in agreement with linear theory. In the second, Rutherford regime the island width grows linearly with time. We find that thermal energy produced in the current sheet strongly dominates the kinetic energy. Finally preliminary ...

  7. Peristaltic Pumping near Post-CME Supra-Arcade Current Sheets

    CERN Document Server

    Scott, Roger B; McKenzie, David E

    2013-01-01

    Measurements of temperature and density near supra-arcade current sheets suggest that plasma on unreconnected field lines may experience some degree of "pre-heating" and "pre-densification" prior to their reconnection. Models of patchy reconnection allow for heating and acceleration of plasma along reconnected field lines but do not offer a mechanism for transport of thermal energy across field lines. Here we present a model in which a reconnected flux tube retracts, deforming the surrounding layer of unreconnected field. The deformation creates constrictions that act as peristaltic pumps, driving plasma flow along affected field lines. Under certain circumstances these flows lead to shocks that can extend far out into the unreconnected field, altering the plasma properties in the affected region. These findings have direct implications for observations in the solar corona, particularly in regard to such phenomena as high temperatures near current sheets in eruptive solar flares and wakes seen in the form of ...

  8. Active current sheets and hot flow anomalies in Mercury's bow shock

    CERN Document Server

    Uritsky, V M; Boardsen, S A; Sundberg, T; Raines, J M; Gershman, D J; Collinson, G; Sibeck, D; Khazanov, G V; Anderson, B J; Korth, H

    2013-01-01

    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flo...

  9. Current sheet flapping motions in the tailward flow of magnetic reconnection

    Science.gov (United States)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Vörös, Zoltán.; Ma, Xuanye; Wang, Shui

    2016-08-01

    The feature and origin of current sheet flapping motions are one of most interesting issues of magnetospheric dynamics. In this paper we report the flapping motion of the current sheet detected in the tailward flow of a magnetic reconnection event on 7 February 2009. This flapping motion with frequency about 12 mHz was accompanied by magnetic turbulence. The observations by the tail-elongated fleet of five Time History of Events and Macroscale Interactions during Substorms probes indicate that these flapping oscillations were rather confined within the tailward flow than were due to a global process. This flapping motion could be due to the instability driven by the free energy associated with the ion temperature anisotropy in the tailward flow. Our observations indicate that the flapping motion in the tailward flow could have a different generation mechanism with that in the earthward flow.

  10. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-08-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the climate evolution at the onset of the Last Interglacial. The period from 135 to 120 kyr BP is simulated with the Earth system model of intermediate complexity LOVECLIM v.1.3 with prescribed evolution of the Antarctic ice sheet, the Greenland ice sheet, and the other Northern Hemisphere ice sheets. Variations in meltwater fluxes from the Northern Hemisphere ice sheets lead to North Atlantic temperature changes and modifications of the strength of the Atlantic meridional overturning circulation. By means of the interhemispheric see-saw effect, variations in the Atlantic meridional overturning circulation also give rise to temperature changes in the Southern Hemisphere, which are additionally modulated by the direct impact of Antarctic meltwater fluxes into the Southern Ocean. Freshwater fluxes from the melting Antarctic ice sheet lead to a millennial timescale oceanic cold event in the Southern Ocean with expanded sea ice as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.

  11. Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2000-01-01

    Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.

  12. A Theoretical Model of Pinching Current Sheet in Low-beta Plasmas

    CERN Document Server

    Takeshige, Satoshi; Shibata, Kazunari

    2015-01-01

    Magnetic reconnection is an important physical process in various explosive phenomena in the universe. In the previous studies, it was found that fast re- connection takes place when the thickness of a current sheet becomes on the order of a microscopic length such as the ion larmor radius or the ion inertial length. In this study, we investigated the pinching process of a current sheet by the Lorentz force in a low-{\\beta} plasma using one-dimensional magnetohydrodynam- ics (MHD) simulations. It is known that there is an exact self-similar solution for this problem that neglects gas pressure. We compared the non-linear MHD dynamics with the analytic self-similar solution. From the MHD simulations, we found that with the gas pressure included the implosion process deviates from the analytic self-similar solution as t {\\rightarrow} t 0, where t 0 is the explosion time when the thickness of a current sheet of the analytic solution becomes 0. We also found a pair of MHD fast-mode shocks are generated and propaga...

  13. Kinetic model of force-free current sheets with non-uniform temperature

    Science.gov (United States)

    Kolotkov, D. Y.; Vasko, I. Y.; Nakariakov, V. M.

    2015-11-01

    The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by Harrison and Neukirch [Phys. Rev. Lett. 102(13), 135003 (2009)] predicts uniform distributions of the plasma temperature and density across the CS. However, in realistic physical systems, inhomogeneities of these plasma parameters may arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD limit), it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the MHD limit. In this paper, we generalise the kinetic model of a force-free current sheet, taking into account the inhomogeneity of the density and temperature across the CS. In the developed model, the density may either be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile, keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution functions for the protons and electrons, are determined analytically. Applications of the developed model to current sheets observed in space plasmas are discussed.

  14. Observations of Thin Current Sheets in the Solar Wind and Their Role in Magnetic Energy Dissipation

    Science.gov (United States)

    Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.; Gurgiolo, C. A.; Karimabadi, H.; Mozer, F.; Wendel, D. E.; TenBarge, J.; Roytershteyn, V.

    2013-12-01

    A recent analysis of 450 vec/s resolution data from the STAFF search-coil magnetometer on board Cluster has revealed, for the first time, the presence of thin current sheets and discontinuities from the proton Larmor scale down to the electron Larmor scale in the solar wind. This is in the range of scales where a cascade of energy consistent with highly oblique kinetic Alfvénic fluctuations (KAW), eventually dissipated by electron Landau damping, has been detected. The current sheets have been found to have a size between 20-200 km, indicating that they are very localized. We will compare the observations with results coming from 2D Hall MHD, Gyrokinetic, and full Particle-in-Cell turbulence simulations. Preliminary work has highlighted promising qualitative agreement between the properties of the structures observed in the Cluster data and the current sheets generated in the simulations. With the aim of investigating the role played by those structures in dissipating the magnetic energy in the solar wind, E●J has been computed within each magnetic discontinuity. This has been made possible via a combined analysis of both STAFF-SC magnetic field data and the electric field data from the Electric Fields and Wave instrument (EFW). We describe procedures used to reduce the noise in the EFW data. The results obtained represent an effort to clarify the processes involved in the dissipation of magnetic energy in the solar wind.

  15. Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars

    CERN Document Server

    Cerutti, Benoît; Philippov, Alexander A

    2016-01-01

    Polarization is a powerful diagnostic tool to constrain the site of the high-energy pulsed emission and particle acceleration in gamma-ray pulsars. Recent particle-in-cell simulations of pulsar magnetosphere suggest that high-energy emission results from particles accelerated in the equatorial current sheet emitting synchrotron radiation. In this study, we re-examine the simulation data to compute the phase-resolved polarization properties. We find that the emission is mildly polarized and that there is an anticorrelation between the flux and the degree of linear polarization (on-pulse: ~15%, off-pulse: ~30%). The decrease of polarization during pulses is mainly attributed to the formation of caustics in the current sheet. Each pulse of light is systematically accompanied by a rapid swing of the polarization angle due to the change of the magnetic polarity when the line of sight passes through the current sheet. The optical polarization pattern observed in the Crab can be well-reproduced for a pulsar inclinat...

  16. The Role of Current Sheets in Solar Eruptive Events: An ISSI International Team Project

    Science.gov (United States)

    Suess, Steven T.; Poletto, Giannina

    2006-01-01

    Current sheets (CSs) are a prerequisite for magnetic reconnection. An International Space Science Institute (ISSI, of Bern, Switzerland) research team will work to empirically define current sheet properties in the solar atmosphere and their signatures in the interplanetary medium, and to understand their role in the development of solar eruptive events. The project was inspired by recently acquired ground and space based observations that reveal CS signatures at the time of flares and Coronal Mass Ejections (CMEs), in the chromosphere, in the corona and in the interplanetary medium. At the same time, theoretical studies predict the formation of CSs in different models and configurations, but theories and observational results have not yet developed an interaction efficient enough to allow us to construct a unified scenario. The team will generate synergy between observers, data analysts, and theoreticians, so as to enable a significant advance in understanding of current sheet behavior and properties. A further motivation for studying CSs is related to the expected electric fields in CSs that may be the source of solar energetic particles (SEPs). The team has 14 members from Europe and the US. The first meeting is in October 2006 and the second is late in 2007.

  17. The Evolution of Dark Matter Halo Properties in Clusters, Filaments, Sheets and Voids

    CERN Document Server

    Hahn, Oliver; Porciani, Cristiano; Dekel, Avishai

    2007-01-01

    We use a series of N-body simulations of the LCDM cosmology to investigate the redshift evolution since z=1 of the properties and alignment with the large-scale structure of haloes in clusters, filaments, sheets and voids. We find that: (i) Once a rescaling of the halo mass with M*, the mass scale collapsing at redshift z, is performed, there is no further significant redshift dependence in the halo properties; (ii) The environment influences halo shape and formation time at all investigated redshifts for haloes with masses MM* in filaments spin more rapidly than similar mass haloes in clusters; haloes in voids have the lowest median spin parameters; c) Haloes with MM* perpendicular to it. For masses M>M*, the major axis of haloes in filaments and sheets is strongly aligned w ith the filament or the sheet. Such halo-LSS alignments may be of importance in weak lensing analyses of cosmic shear. A question that is opened by our study is why, in the 0 < z < 1 redshift regime that we have investigated, the m...

  18. Phase field modeling of grain structure evolution during directional solidification of multi-crystalline silicon sheet

    Science.gov (United States)

    Lin, H. K.; Lan, C. W.

    2017-10-01

    Evolution of grain structures and grain boundaries (GBs), especially the coincident site lattice GBs, during directional solidification of multi-crystalline silicon sheet are simulated by using a phase field model for the first time. Since the coincident site lattice GBs having lower mobility, tend to follow their own crystallographic directions despite thermal gradients, the anisotropic energy and mobility of GBs are considered in the model. Three basic interactions of GBs during solidification are examined and they are consistent with experiments. The twinning process for new grain formation is further added in the simulation by considering twin nucleation. The effect of initial distribution of GB types and grain orientations is also investigated for the twinning frequency and the evolution of grain size and GB types.

  19. Heliospheric current sheet and effects of its interaction with solar cosmic rays

    Science.gov (United States)

    Malova, H. V.; Popov, V. Yu.; Grigorenko, E. E.; Dunko, A. V.; Petrukovich, A. A.

    2016-08-01

    The effects of interaction of solar cosmic rays (SCRs) with the heliospheric current sheet (HCS) in the solar wind are analyzed. A self-consistent kinetic model of the HCS is developed in which ions with quasiadiabatic dynamics can present. The HCS is considered an equilibrium embedded current structure in which two main plasma species with different temperatures (the low-energy background plasma of the solar wind and the higher energy SCR component) contribute to the current. The obtained results are verified by comparing with the results of numerical simulations based on solving equations of motion by the particle tracing method in the given HCS magnetic field with allowance for SCR particles. It is shown that the HCS is a relatively thin multiscale current configuration embedded in a thicker plasma layer. In this case, as a rule, the shear (tangential to the sheet current) component of the magnetic field is present in the HCS. Taking into account high-energy SCR particles in the HCS can lead to a change of its configuration and the formation of a multiscale embedded structure. Parametric family of solutions is considered in which the current balance in the HCS is provided at different SCR temperatures and different densities of the high-energy plasma. The SCR densities are determined at which an appreciable (detectable by satellites) HCS thickening can occur. Possible applications of this modeling to explain experimental observations are discussed.

  20. Measurement of ion velocity profiles in a magnetic reconnection layer via current sheet jogging

    Science.gov (United States)

    Stein, G.; Yoo, J.; Yamada, M.; Ji, H.; Dorfman, S.; Lawrence, E.; Myers, C.; Tharp, T.

    2011-10-01

    In many laboratory plasmas, constructing stationary Langmuir and Mach probe arrays with resolution on the order of electron skin depth is technically difficult, and can introduce significant plasma perturbations. However, complete two- dimensional profiles of plasma density, electron temperature, and ion flow are important for studying the transfer of energy from magnetic fields to particles during magnetic reconnection. Through the use of extra ``Shaping Field'' coils in the Magnetic Reconnection Experiment (MRX) at the Princeton Plasma Physics Laboratory, the inward motion of the current sheet in the reconnection layer can be accelerated, or ``jogged,'' allowing the measurement of different points across the sheet with stationary probes. By acquiring data from Langmuir probes and Mach probes at different locations in the MRX with respect to the current sheet center, profiles of electron density and temperature and a vector plot of two-dimensional ion velocity in the plane of reconnection are created. Results from probe measurements will be presented and compared to profiles generated from computer simulation.

  1. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets

    CERN Document Server

    Loureiro, N F; Uzdensky, D A

    2012-01-01

    A 2D linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of Reduced MHD. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al, Phys. Plasmas {\\bf 14}, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids ($k_{\\rm max}\\Lsheet \\sim S^{3/8}$, where $k_{\\rm max}$ is the wave-number of fastest growing mode, $S=\\Lsheet V_A/\\eta$ is the Lundquist number, $\\Lsheet$ is the length of the sheet, $V_A$ is the Alfv\\'en speed and $\\eta$ is the plasma resistivity), which grows super-Alfv\\'enically fast ($\\gmax\\tau_A\\sim S^{1/4}$, where $\\gmax$ is the maximum growth rate, and $\\tau_A=\\Lsheet/V_A$). For typical background profiles, the growth rate and the wave-number are found to {\\it increase} in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability...

  2. Force-free collisionless current sheet models with non-uniform temperature and density profiles

    Science.gov (United States)

    Wilson, F.; Neukirch, T.; Allanson, O.

    2017-09-01

    We present a class of one-dimensional, strictly neutral, Vlasov-Maxwell equilibrium distribution functions for force-free current sheets, with magnetic fields defined in terms of Jacobian elliptic functions, extending the results of Abraham-Shrauner [Phys. Plasmas 20, 102117 (2013)] to allow for non-uniform density and temperature profiles. To achieve this, we use an approach previously applied to the force-free Harris sheet by Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)]. In one limit of the parameters, we recover the model of Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)], while another limit gives a linear force-free field. We discuss conditions on the parameters such that the distribution functions are always positive and give expressions for the pressure, density, temperature, and bulk-flow velocities of the equilibrium, discussing the differences from previous models. We also present some illustrative plots of the distribution function in velocity space.

  3. Acceleration and transport of ions in turbulent current sheets: formation of non-maxwelian energy distribution

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2009-11-01

    Full Text Available The paper is devoted to particle acceleration in turbulent current sheet (CS. Our results show that the mechanism of CS particle interaction with electromagnetic turbulence can explain the formation of power law energy distributions. We study the ratio between adiabatic acceleration of particles in electric field in the presence of stationary turbulence and acceleration due to electric field in the case of dynamic turbulence. The correlation between average energy gained by particles and average particle residence time in the vicinity of the neutral sheet is discussed. It is also demonstrated that particle velocity distributions formed by particle-turbulence interaction are similar in essence to the ones observed near the far reconnection region in the Earth's magnetotail.

  4. The Role of Evolutive Elastic Properties in the Performance of a Sheet Formed Spring Applied in Multimedia Car Industry

    Directory of Open Access Journals (Sweden)

    Silva Joel

    2016-01-01

    Full Text Available The manufacturing process and the behavior of a sheet formed spring manufactured from an aluminum sheet is described and investigated in this work considering the specifications for the in-service conditions. The sheet formed spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multi-step forming process and in working conditions.

  5. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Science.gov (United States)

    Wyper, P. F.; Pontin, D. I.

    2013-03-01

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers.

  6. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F. [School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH (United Kingdom); Pontin, D. I. [Division of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

    2013-03-15

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is an ideal candidate for the formation of current-vortex sheets in complex magnetic fields and, therefore, the enhanced heating and connectivity change associated with the instabilities of such layers.

  7. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-01-15

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  8. Double peak structure and diamagnetic wings of the magnetotail current sheet

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    2004-07-01

    Full Text Available Recent Cluster observations in the magnetotail at about 20 Earth radii downtail have unambiguously shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. We report numerical simulations of the ion dynamics in a quasi-neutral sheet in the presence of magnetic turbulence, which is often observed in the magnetotail, and for various anisotropies of the ion distribution function. Ions are injected at the boundary of the simulation box with a velocity distribution corresponding to a shifted Maxwellian. The simulation parameters, are adjusted to be similar to those of Cluster observations. We find that even for moderate fluctuation levels, the computed current density profile develops a double peak, in agreement with the observations. By varying the anisotropy of the injected distribution function, we are able to reproduce, for weak anisotropy, the magnetic field overshoots which are sometimes observed prior to magnetotail traversals. Therefore, we suggest an ion current profile with a double peak due to magnetic turbulence, and with possible diamagnetic current wings, present in the case of weak anisotropy of the ion distribution function.

  9. THEMIS multispacecraft observations of a reconnecting magnetosheath current sheet with symmetric boundary conditions and a large guide field

    Science.gov (United States)

    Øieroset, M.; Phan, T. D.; Shay, M. A.; Haggerty, C. C.; Fujimoto, M.; Angelopoulos, V.; Eastwood, J. P.; Mozer, F. S.

    2017-08-01

    We report three spacecraft observations of a reconnecting magnetosheath current sheet with a guide field of unity, with THEMIS D (THD) and THEMIS E (THE)/THEMIS A (THA) observing oppositely directed reconnection exhausts, indicating the presence of an X line between the spacecraft. The near-constant convective speed of the magnetosheath current sheet allowed the direct translation of the observed time series into spatial profiles. THD observed asymmetries in the plasma density and temperature profiles across the exhaust, characteristics of symmetric reconnection with a guide field. The exhausts at THE and THA, on the other hand, were not the expected mirror image of the THD exhaust in terms of the plasma and field profiles. They consisted of a main outflow at the center of the current sheet, flanked by oppositely directed flows at the two edges of the current sheet, suggesting the presence of a second X line, whose outflow wraps around the outflow from the first X line.

  10. The Topological Inner Structure of Chern-Simons Tensor Current and the World-Sheet of Strings

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; YANG Jie

    2005-01-01

    @@ Using the decomposition theory of U(1) gauge potential and φ-mapping topological current theory, we investigate the topological inner structure of Chern-Simons tensor current. It is proven that the U(1) Chern-Simons tensor current in four-dimensional manifold is just the topological current of creating the string world-sheets.

  11. Quaternary evolution and ice sheet history of contrasting landscapes in Uummannaq and Sukkertoppen, western Greenland

    Science.gov (United States)

    Beel, C. R.; Lifton, N. A.; Briner, J. P.; Goehring, B. M.

    2016-10-01

    Constraining the history of the Greenland Ice Sheet (GIS) is important for improving our understanding of ice sheet dynamics and landscape evolution processes. We analyzed in situ cosmogenic 10Be and 26Al in 26 rock samples from two high-elevation landscapes adjacent to the GIS, minimally eroded by past glaciations and of differing character in Uummannaq (n = 16) and Sukkertoppen (n = 10), western Greenland. The Uummannaq region is characterized by a marine embayment with islands and peninsulas, where the margin of the GIS is marine-based, whereas the Sukkertoppen landscape resides within the wide terrestrial fringe outboard of the land-terminating portion of the southwestern GIS margin. We targeted landscapes for sampling with highly weathered surfaces adjacent to cold-based portions of extant ice caps (indicated by preservation of fragile, dead vegetation emerging from beneath retreating ice margins). Paired isotope results require differing surface histories between the two areas. Many surfaces in the Uummannaq region have minimum exposure durations up to ca. 300 kyr, but with no significant burial. Most surfaces in the Sukkertoppen region, however, yield complex exposure histories with minimum cumulative exposure durations up to ca. 100 kyr and minimum cumulative burial durations up to ca. 400 kyr, yielding minimum total surface histories of up to 500 ka. These findings suggest that parts of the Uummannaq landscape may have been continuously exposed throughout much of the middle and late Quaternary. On the other hand, the high-altitude surfaces in the Sukkertoppen region were largely preserved beneath minimally-erosive, cold-based ice during the same period. Data from the Uummannaq region thus stand in contrast not only to the Sukkertoppen region, but also to other sites surrounding Baffin Bay reported in previous studies. We hypothesize that surfaces in the Uummannaq region may have remained as nunataks above the Last Glacial Maximum (LGM) ice sheet surface

  12. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    Science.gov (United States)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  13. MHD Flow with Hall current and Joule Heating Effects over an Exponentially Stretching Sheet

    Science.gov (United States)

    Srinivasacharya, D.; Jagadeeshwar, P.

    2017-06-01

    The aim of the present paper is to study the influence of Hall current and Joule heating on flow, heat and mass transfer over an exponentially stretching sheet in a viscous fluid. Using similarity transformations the governing nonlinear coupled equations are converted into ordinary differential equations. These equations are linearized using the successive linearization method and then solved using the Chebyshev pseudo spectral method. The influence of magnetic parameter, Hall parameter, suction/injection parameter and slip parameter on the physical quantities are presented graphically. The obtained results are compared with the previously published results for special cases.

  14. Chaotic jumps in the generalized first adiabatic invariant in current sheets

    Science.gov (United States)

    Brittnacher, M. J.; Whipple, E. C.

    1991-01-01

    The present study examines how the changes in the generalized first adiabatic invariant J derived from the separatrix crossing theory can be incorporated into the drift variable approach to generating distribution functions. A method is proposed for determining distribution functions for an ensemble of particles following interaction with the tail current sheet by treating the interaction as a scattering problem characterized by changes in the invariant. Generalized drift velocities are obtained for a 1D tail configuration by using the generalized first invariant. The invariant remained constant except for the discrete changes caused by chaotic scattering as the particles cross the separatrix.

  15. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  16. Analysis of induction-type coilgun performance based on cylindrical current sheet model

    Energy Technology Data Exchange (ETDEWEB)

    He, J.L.; Levi, E.; Zabar, Z.; Birenbaum, L.; Naot, Y. (Polytechnic Univ., Brooklyn, NY (United States))

    1991-01-01

    This paper presents a method based on a cylindrical current sheet model for the analysis and design of induction-type coilguns. The paper starts with a derivation of closed-form formulas which relate the dimensions of the gun to the performance expressed in terms of propulsive and local maximum forces on the projectile, power factor and efficiency of the system, thermal stress of the projectile armature, distributions of the flux density around the launcher, and the system parameters in a multisection coilgun. The paper ends with a numerical example.

  17. Analysis of induction-type coilgun performance based on cylindrical current sheet model

    Science.gov (United States)

    He, J. L.; Levi, E.; Zabar, Z.; Birenbaum, L.; Naot, Y.

    1991-01-01

    A method which is based on a cylindrical current sheet model for the analysis and design of induction-type coilguns is presented. The work starts with a derivation of closed-form formulas which relate the dimensions of the gun to the performance expressed in terms of propulsive and local maximum forces on the projectile, power factor and efficiency of the system, thermal stress of the projectile armature, distributions of the flux density around the launcher, and the system parameters in a multisection coilgun. A numerical example is given.

  18. The role of oxygen ions in the formation of a bifurcated current sheet in the magnetotail

    CERN Document Server

    Dalena, S; Zimbardo, G; Veltri, P

    2010-01-01

    Cluster observations in the near-Earth magnetotail have shown that sometimes the current sheet is bifurcated, i.e. it is divided in two layers. The influence of magnetic turbulence on ion motion in this region is investigated by numerical simulation, taking into account the presence of both protons and oxygen ions. The magnetotail current sheet is modeled as a magnetic field reversal with a normal magnetic field component $B_n$, plus a three-dimensional spectrum of magnetic fluctuations $\\delta {\\bf B}$, which represents the observed magnetic turbulence. The dawn-dusk electric field E$_y$ is also included. A test particle simulation is performed using different values of $\\delta {\\bf B}$, E$_y$ and injecting two different species of particles, O$^+$ ions and protons. O$^+$ ions can support the formation of a double current layer both in the absence and for large values of magnetic fluctuations ($\\delta B/B_0 = 0.0$ and $\\delta B/B_0 \\geq 0.4$, where B$_0$ is the constant magnetic field in the magnetospheric l...

  19. Secondary magnetic islands generated by the Kelvin-Helmholtz instability in a reconnecting current sheet.

    Science.gov (United States)

    Fermo, R L; Drake, J F; Swisdak, M

    2012-06-22

    Magnetic islands or flux ropes produced by magnetic reconnection have been observed on the magnetopause, in the magnetotail, and in coronal current sheets. Particle-in-cell simulations of magnetic reconnection with a guide field produce elongated electron current layers that spontaneously produce secondary islands. Here, we explore the seed mechanism that gives birth to these islands. The most commonly suggested theory for island formation is the tearing instability. We demonstrate that in our simulations these structures typically start out, not as magnetic islands, but as electron flow vortices within the electron current sheet. When some of these vortices first form, they do not coincide with closed magnetic field lines, as would be the case if they were islands. Only after they have grown larger than the electron skin depth do they couple to the magnetic field and seed the growth of finite-sized islands. The streaming of electrons along the magnetic separatrix produces the flow shear necessary to drive an electron Kelvin-Helmholtz instability and produce the initial vortices. The conditions under which this instability is the dominant mechanism for seeding magnetic islands are explored.

  20. Thin current sheets caused by plasma flow gradients in space and astrophysical plasma

    Directory of Open Access Journals (Sweden)

    D. H. Nickeler

    2010-08-01

    Full Text Available Strong gradients in plasma flows play a major role in space and astrophysical plasmas. A typical situation is that a static plasma equilibrium is surrounded by a plasma flow, which can lead to strong plasma flow gradients at the separatrices between field lines with different magnetic topologies, e.g., planetary magnetospheres, helmet streamers in the solar corona, or at the boundary between the heliosphere and interstellar medium. Within this work we make a first step to understand the influence of these flows towards the occurrence of current sheets in a stationary state situation. We concentrate here on incompressible plasma flows and 2-D equilibria, which allow us to find analytic solutions of the stationary magnetohydrodynamics equations (SMHD. First we solve the magnetohydrostatic (MHS equations with the help of a Grad-Shafranov equation and then we transform these static equilibria into a stationary state with plasma flow. We are in particular interested to study SMHD-equilibria with strong plasma flow gradients perpendicular to separatrices. We find that induced thin current sheets occur naturally in such situations. The strength of the induced currents depend on the Alfvén Mach number and its gradient, and on the magnetic field.

  1. Unique Sandwiched Carbon Sheets@Ni-Mn Nanoparticles for Enhanced Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Yang, Jiao; Bai, Yuanjuan; Qiu, Huajun; Wang, Yu

    2016-05-11

    A unique sandwich-like architecture, where Ni-Mn nanoparticles are enveloped in coupled carbon sheets (CS@Ni-Mn), has been successfully fabricated. In the synthesis process, a great quantity of uniform NiMnO3 nanosheets generated by a universal hydrothermal method acts as precursors and templates and the cheap, environmentally friendly and recyclable glucose functions as a green carbon source. Via subsequent hydrothermal reaction and thermal annealing, sandwiched nanocomposites with Ni-Mn nanoparticles embedded inside and carbon sheets encapsulating outside can be massively prepared. The novel sandwich-like CS@Ni-Mn possesses numerous advantages, such as an intrinsic porous feature, large specific surface area, and enhanced electronic conductivity. Moreover, as a promising NiMn-based oxygen evolution reaction (OER) catalyst, the special sandwiched nanostructure demonstrates improved electrochemical properties in 1 M KOH, including a low overpotential of about 250 mV, a modest Tafel slope of 40 mV dec(-1), excellent stability over 2000 cycles, and durability for 40 h.

  2. Microstructure and texture evolution of cold-rolled deep-drawing steel sheet during annealing

    Science.gov (United States)

    Zhou, Le-yu; Wu, Lei; Liu, Ya-zheng; Cheng, Xiao-jie; Sun, Jin-hong

    2013-06-01

    In accordance with experimental results about the annealing microstructure and texture of cold-rolled deepdrawing sheet based on the compact strip production (CSP) process, a two-dimensional cellular automation simulation model, considering real space and time scale, was established to simulate recrystallization and grain growth during the actual batch annealing process. The simulation results show that pancaked grains form during recrystallization. {111} advantageous texture components become the main parts of the recrystallization texture. After grain growth, the pancaked grains coarsen gradually. The content of {111} advantageous texture components in the annealing texture increases from 55vol% to 65vol%; meanwhile, the contents of {112} and {100} texture components decrease by 4% and 8%, respectively, compared with the recrystallization texture. The simulation results of microstructure and texture evolution are also consistent with the experimental ones, proving the accuracy and usefulness of the model.

  3. 3D reconnection due to oblique modes: a simulation of Harris current sheets

    Directory of Open Access Journals (Sweden)

    G. Lapenta

    2000-01-01

    Full Text Available Simulations in three dimensions of a Harris current sheet with mass ratio, mi/me = 180, and current sheet thickness, pi/L = 0.5, suggest the existence of a linearly unstable oblique mode, which is independent from either the drift-kink or the tearing instability. The new oblique mode causes reconnection independently from the tearing mode. During the initial linear stage, the system is unstable to the tearing mode and the drift kink mode, with growth rates that are accurately described by existing linear theories. How-ever, oblique modes are also linearly unstable, but with smaller growth rates than either the tearing or the drift-kink mode. The non-linear stage is first reached by the drift-kink mode, which alters the initial equilibrium and leads to a change in the growth rates of the tearing and oblique modes. In the non-linear stage, the resulting changes in magnetic topology are incompatible with a pure tearing mode. The oblique mode is shown to introduce a helical structure into the magnetic field lines.

  4. Mercury's cross-tail current sheet: Structure, X-line location and stress balance

    Science.gov (United States)

    Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.

    2017-01-01

    The structure, X-line location, and magnetohydrodynamic (MHD) stress balance of Mercury's magnetotail were examined between -2.6 MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) measurements from 319 central plasma sheet (CPS) crossings. The mean plasma β in the CPS calculated from MESSENGER data is 6. The CPS magnetic field was southward (i.e., tailward of X-line) 2-18% of the time. Extrapolation of downtail variations in BZ indicates an average X-line location at -3 RM. Modeling of magnetic field measurements produced a cross-tail current sheet (CS) thickness, current density, and inner CS edge location of 0.39 RM, 92 nA/m2 and -1.22 RM, respectively. Application of MHD stress balance suggests that heavy planetary ions may be important in maintaining stress balance within Mercury's CPS. Qualitative similarities between Mercury's and Earth's magnetotail are remarkable given the differences in upstream conditions, internal plasma composition, finite gyro-radius scaling, and Mercury's lack of ionosphere.

  5. Numerical experiments on the detailed energy conversion and spectrum studies in a corona current sheet

    CERN Document Server

    Ni, Lei; Mei, Zhixing; Li, Yan

    2015-01-01

    In this paper, we study the energy conversion and spectra in a corona current sheet by 2.5-dimensional MHD numerical simulations. Numerical results show that many Petschek-like fine structures with slow-mode shocks mediated by plasmoid instabilities develop during the magnetic reconnection process. The termination shocks can also be formed above the primary magnetic island and at the head of secondary islands. These shocks play important roles in generating thermal energy in a corona current sheet. For a numerical simulation with initial conditions close to the solar corona environment, the ratio of the generated thermal energy to the total dissipated magnetic energy is around $1/5$ before secondary islands appear. After secondary islands appear, the generated thermal energy starts to increase sharply and this ratio can reach a value about $3/5$. In an environment with a relatively lower plasma density and plasma $\\beta$, the plasma can be heated to a much higher temperature. After secondary islands appear, t...

  6. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  7. Chaotic scattering of pitch angles in the current sheet of the magnetotail

    Science.gov (United States)

    Burkhart, G. R.; Chen, J.

    1992-01-01

    The modified Harris field model is used to investigate the process of pitch angle scattering by a current sheet. The relationship between the incoming asymptotic pitch angle alpha(in) and the outgoing asymptotic pitch angle alpha(out) is studied from first principles by numerically integrating the equation of motion. Evidence that charged particles undergo chaotic scattering by the current sheet is found. For fixed alpha(in), it is shown that alpha(out) exhibits sensitive dependence on the energy parameter in certain energy ranges. For a fixed energy parameter value in the same energy ranges, alpha(out) sensitively depends on alpha(in). For other energy values, alpha(out) does not show sensitive dependence on alpha(in) for most phase angles. A distribution of alpha(in) is mapped from the asymptotic region to the midplane, and it is found that the resulting particle distribution should have beam structures with well-collimated pitch angles near each resonance energy value. Implications for the particle distribution functions in the earth's magnetotail are discussed.

  8. Streaming sausage, kink and tearing instabilities in a current sheet with applications to the earth's magnetotail

    Science.gov (United States)

    Lee, L. C.; Wang, S.; Wei, C. Q.; Tsurutani, B. T.

    1988-01-01

    This paper investigates the growth rates and eigenmode structures of the streaming sausage, kink, and tearing instabilities in a current sheet with a super-Alfvenic flow. The growth rates and eigenmode structures are first considered in the ideal incompressible limit by using a four-layer model, as well as a more realistic case in which all plasma parameters and the magnetic field vary continuously along the direction perpendicular to the magnetic field and plasma flow. An initial-value method is applied to obtain the growth rate and eigenmode profiles of the fastest growing mode, which is either the sausage mode or kink mode. It is shown that, in the earth's magnetotail, where super-Alfvenic plasma flows are observed in the plasma sheet and the ratio between the plasma and magnetic pressures far away from the current layer is about 0.1-0.3 in the lobes, the streaming sausage and streaming tearing instabilities, but not kink modes, are likely to occur.

  9. Evolution of Lava Sheets for LIPs: Types of Local and Regional Trends

    Science.gov (United States)

    Rakhmenkulova, I. F.; Sharapov, V. N.

    2011-12-01

    The North-Atlantic Igneous Province (NAIP), the Permian-Triassic traps of the Siberian Platform (SP), and the volcanic shields of the Hawaiian Ridge can be regarded as the examples of local and regional trends for lava sheets evolution of LIPs. Complex statistical analysis for distribution functions of petrogenic and trace components showed that cyclicity and spatial asymmetry for melt compositions are typical for all lava sheets of LIPs. NAIP has the following features: 1) the formation of continental swell and its rifting; 2) the oceanic basin formation as a system of open basins at the east and the opening of the Central Atlantic to the north with the transverse volcanic zone of the Ferraro Ridge; 3) quick opening of the oceanic basin with the formation and accretion of lava sheet in the centre of the spreading zone (MOR). At the western NAIP part, during the sheet breakage, magnesian melts were forming, in the east - 'typical' trap tholeiitic association with thick lava profiles; oceanic part of the system contains various oceanic basalts. Iceland lava sheet passed through at least three subsequent formation stages with typical petrochemical igneous rock complexes. There are local petrochemical trends in the Iceland sheet: as the basalt crust thickens, acid melt amounts increase. The Permian-Triassic SP traps at the southern part of the Khatanga Rift (where the province started to develop spatially) have the following zones: layered profiles of tuffaceous rocks in the Tunguska Syncline, with various quantities of lava flows in the upper part of the profiles; to the south, within the holes between the net of fissure and central lava-breccia volcanic structures, reloaded tuff material is located; more to the south this structural zone changes to swarms of dyke-diatreme structures having typical near-vent depressions. The explosive coefficient within these zones increases from the north to the south. In the western part of trap zone there is a petrochemical zoning

  10. Evolution and current challenges of laparoscopic cholecystectomy

    Directory of Open Access Journals (Sweden)

    XU Dahua.

    2013-03-01

    Full Text Available Since its introduction at the end of the 20th century, laparoscopic cholecystectomy has evolved into a safe and convenient minimally invasive surgical method, which is now the gold standard therapy for cholelithiasis worldwide. Physicians have continued to improve upon the procedure, creating methods that further minimize the related scarring and pain, such as the laproendoscopic single-site cholecystectomy and the gasless-lift laparoscopy. Additionally, the primary challenge of limited operative space in these procedures remains a key feature requiring improvement. In this review, the development and progression of laparoscopic cholecystectomy over the past 26 years is discussed, highlighting the current advantages and disadvantages that need to be addressed by practicing physicians to maximize the clinical value of this important therapy.

  11. Visco-resistive plasmoid instability in Sweet-Parker current sheets

    Science.gov (United States)

    Grasso, Daniela; Comisso, Luca

    2016-10-01

    The linear analysis by Loureiro et al. is generalized to investigate the plasmoid instability in visco-resistive Sweet-Parker sheets. We cover both the linear and nonlinear growth of the plasmoids. The linear growth rate and the wavenumber scale as S 1 / 4 (1 +Pm)- 5 / 8 and S 3 / 8 (1 +Pm)- 3 / 16 with respect to the Lundquist number S and the magnetic Prandtl number Pm. The growth of the plasmoids slows down from an exponential growth to an algebraic growth when they enter into the nonlinear regime. The time-scale of the nonlinear growth of the plasmoids is found to be τNL S - 3 / 16 (1 +Pm)19/32τA , L . We also discuss how the plasmoid instability can enable fast magnetic reconnection in visco-resistive plasmas. In this regime, the global reconnection rate is shown to be 0.01vA , uBu (1 +Pm)- 1 / 2. The same author will present another poster in a closely related topic: ``Generalized Plasmoid Instability in Time Evolving Current Sheets''. Hence, we request the committee to ensure that these 2 posters are placed alongside each other.

  12. Kelvin-Helmholtz instability in a current-vortex sheet at a 3D magnetic null

    CERN Document Server

    Wyper, P F

    2013-01-01

    We report here, for the first time, an observed instability of a Kelvin-Helmholtz (KH) nature occurring in a fully three-dimensional (3D) current-vortex sheet at the fan plane of a 3D magnetic null point. The current-vortex layer forms self-consistently in response to foot point driving around the spine lines of the null. The layer first becomes unstable at an intermediate distance from the null point, with the instability being characterized by a rippling of the fan surface and a filamentation of the current density and vorticity in the shear layer. Owing to the 3D geometry of the shear layer, a branching of the current filaments and vortices is observed. The instability results in a mixing of plasma between the two topologically distinct regions of magnetic flux on either side of the fan separatrix surface, as flux is reconnected across this surface. We make a preliminary investigation of the scaling of the system with the dissipation parameters. Our results indicate that the fan plane separatrix surface is...

  13. Investigation of scaling properties of a thin current sheet by means of particle trajectories study

    CERN Document Server

    Sasunov, Yu L; Alexeev, I I; Belenkaya, E S; Semenov, V S; Kubyshkin, I V; Mingalev, O V

    2015-01-01

    A thin current sheet (TCS), with the width of an order of thermal proton gyroradius, appears a fundamental physical object which plays an important role in structuring of major magnetospheric current systems (magnetotail, magnetodisk, etc.). The TCSs are nowadays under extensive study by means of space missions and theoretical models. We consider a simple model of the TCS separating two half-spaces occupied by a homogenous magnetic field of opposite sign tangential to the TCS; a small normal component of the magnetic field is prescribed. An analytical solution for the electric current and plasma density in the close vicinity of the TCS has been obtained and compared with numerical simulation. The number density and the electric current profiles have two maxima each. The characteristic spatial scale $z_S$ of the maxima location was investigated as a function of initial pitch-angle of an incoming charge particle. The effect of the thermal dispersion of the incoming proton beam have been taken into consideration...

  14. Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets.

    Science.gov (United States)

    Loureiro, N F; Schekochihin, A A; Uzdensky, D A

    2013-01-01

    A two-dimensional (2D) linear theory of the instability of Sweet-Parker (SP) current sheets is developed in the framework of reduced magnetohydrodynamics. A local analysis is performed taking into account the dependence of a generic equilibrium profile on the outflow coordinate. The plasmoid instability [Loureiro et al., Phys. Plasmas 14, 100703 (2007)] is recovered, i.e., current sheets are unstable to the formation of a large-wave-number chain of plasmoids (k(max)L(CS)~S(3/8), where k(max) is the wave number of fastest growing mode, S=L(CS)V(A)/η is the Lundquist number, L(CS) is the length of the sheet, V(A) is the Alfvén speed, and η is the plasma resistivity), which grows super Alfvénically fast (γ(max)τ(A)~S(1/4), where γ(max) is the maximum growth rate, and τ(A)=L(CS)/V(A)). For typical background profiles, the growth rate and the wave number are found to increase in the outflow direction. This is due to the presence of another mode, the Kelvin-Helmholtz (KH) instability, which is triggered at the periphery of the layer, where the outflow velocity exceeds the Alfvén speed associated with the upstream magnetic field. The KH instability grows even faster than the plasmoid instability γ(max)τ(A)~k(max)L(CS)~S(1/2). The effect of viscosity (ν) on the plasmoid instability is also addressed. In the limit of large magnetic Prandtl numbers Pm=ν/η, it is found that γ(max)~S(1/4)Pm(-5/8) and k(max)L(CS)~S(3/8)Pm(-3/16), leading to the prediction that the critical Lundquist number for plasmoid instability in the Pm>1 regime is S(crit)~10(4)Pm(1/2). These results are verified via direct numerical simulation of the linearized equations, using an analytical 2D SP equilibrium solution.

  15. Heating Mechanisms in the Low Solar Atmosphere through Magnetic Reconnection in Current Sheets

    Science.gov (United States)

    Ni, Lei; Lin, Jun; Roussev, Ilia I.; Schmieder, Brigitte

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 104 K) and low temperature (˜104 K) magnetic reconnection events can happen in the low solar atmosphere (100-600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the main mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 104 K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (˜104 K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 104) in the future.

  16. Trends in the exchange current for hydrogen evolution

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Logadottir, Ashildur;

    2005-01-01

    A density functional theory database of hydrogen chemisorption energies on close packed surfaces of a number of transition and noble metals is presented. The bond energies are used to understand the trends in the exchange current for hydrogen evolution. A volcano curve is obtained when measured...... exchange currents are plotted as a function of the calculated hydrogen adsorption energies and a simple kinetic model is developed to understand the origin of the volcano. The volcano curve is also consistent with Pt being the most efficient electrocatalyst for hydrogen evolution. (c) 2005...

  17. Paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets.

    Science.gov (United States)

    Lee, E; Brachet, M E; Pouquet, A; Mininni, P D; Rosenberg, D

    2008-12-01

    We propose two sets of initial conditions for magnetohydrodynamics (MHD) in which both the velocity and the magnetic fields have spatial symmetries that are preserved by the dynamical equations as the system evolves. When implemented numerically they allow for substantial savings in CPU time and memory storage requirements for a given resolved scale separation. Basic properties of these Taylor-Green flows generalized to MHD are given, and the ideal nondissipative case is studied up to the equivalent of 2048;{3} grid points for one of these flows. The temporal evolution of the logarithmic decrements delta of the energy spectrum remains exponential at the highest spatial resolution considered, for which an acceleration is observed briefly before the grid resolution is reached. Up to the end of the exponential decay of delta , the behavior is consistent with a regular flow with no appearance of a singularity. The subsequent short acceleration in the formation of small magnetic scales can be associated with a near collision of two current sheets driven together by magnetic pressure. It leads to strong gradients with a fast rotation of the direction of the magnetic field, a feature also observed in the solar wind.

  18. CMEs from AR 10365: Morphology and Physical Parameters of the Ejections and of the Associated Current Sheet

    Science.gov (United States)

    Schettino, G.; Poletto, G.; Romoli, M.

    2010-01-01

    We study the evolution and physical parameters of three consecutive coronal mass ejections (CMEs) that occurred at the west limb of the Sun on 2003 June 2 at 00:30, 08:54, 16:08 UT, respectively. The Large Angle and Spectrometric Coronagraph Experiment (LASCO) CME catalog shows that the CMEs entered the C2 field of view with position angles within a 5° interval. This suggests a common origin for the ejections, to be identified with the magnetic system associated with the active region that lies below the CMEs. The close proximity in time and source location of the events prompted us to analyze LASCO white light data and Ultraviolet Coronagraph Spectrometer (UVCS) spectra with the aim of identifying similarities and differences among the three CMEs. It turns out that two of them display the typical three-part structure, while no conclusion can be drawn about the morphology of the third ejection. The CMEs plasma is "cool," i.e., electron temperatures in the CMEs front are of the order of 2 × 105 K, with no significant variation between different events. However, ejection speeds vary by a factor of ~1.5 between consecutive events and electron densities (more precisely emission measures) by a factor of ~6 between the first CME and the second and third CMEs. In the aftermath of all events, we found evidence of current sheets (CSs) both in LASCO and UVCS. We give here the CS physical parameters (electron temperature, density, and kinetic temperature) and follow, in one of the events, their temporal evolution over a 6 hr time interval. A discussion of our results, in the framework of previous findings, concludes the paper.

  19. Dependence of anomalous resistivity on bulk drift velocity of electrons in the reconnecting current sheets in solar flares

    Institute of Scientific and Technical Information of China (English)

    Gui-Ping Wu; Guang-Li Huang; Hai-Sheng Ji

    2010-01-01

    Anomalous resistivity is critical for triggering fast magnetic reconnection in the nearly collisionless coronal plasma.Its nonlinear dependence on bulk drift velocity is usually assumed in MHD simulations.However,the mechanism for the production of anomalous resistivity and its evolution is still an open question.We numerically solved the one dimension Vlasov equation with the typical solar coronal parameters and realistic mass ratios to infer the relationship between anomalous resistivity and bulk drift velocity of electrons in the reconnecting current sheets as well as its nonlinear characteristics.Our principal findings are summarized as follows: 1)the relationship between the anomalous resistivity and bulk drift velocity of electrons relative to ions may be described as ηmax = 0.03724(vd/ve)5.702 Ω m for vd/ve in the range of 1.4-2.0 and ηmax = 0.8746(vd/ve)1.284 Ωm for vd/ve in the range of 2.5-4.5; 2)if drift velocity is just slightly larger than the threshold of ion-acoustic instability,the anomalous resistivity due to the wave-particle interactions is enhanced by about five orders as compared with classic resistivity due to Coulomb collisions.With the increase of drift velocity from 1.4ve to 4.5ve,the anomalous resistivity continues to increase 100 times; 3)in the rise phase of unstable waves,the anomalous resistivity has the same order as the one estimated from quasi-linear theory; after saturation of unstable waves,the anomalous resistivity decreases at least about one order as compared with its peak value; 4)considering that the final velocity of electrons ejected out of the reconnecting current sheet(RCS)decreases with the distance from the neutral point in the neutral plane,the anomalous resistivity decreases with the distance from the neutral point,which is favorable for the Petschek-like reconnection to take place.

  20. Reduction of neoclassical polarization current contribution to NTM evolution

    Science.gov (United States)

    Qu, Hongpeng; Peng, Xiaodong; Wang, Feng; Wang, Aike; Shen, Yong

    2016-09-01

    The neoclassical polarization current, which can be generated by a time-dependent electric field resulting from magnetic island rotation, is believed to play an important role in the initial stage of the neoclassical tearing mode (NTM) evolution in tokamak plasmas. In the previous analytical description of the neoclassical polarization current contribution to the evolution of NTMs in the limit of low collision frequency ( νii≪ɛω , νii is ion collision frequency, ɛ is the inverse aspect ratio, and ω is the island propagation frequency in the plasma rest frame), the width of magnetic islands has been assumed to be much larger than the finite-banana-width (FBW) of the trapped ions in order to solve the drift-kinetic equation of ions by using the perturbation method. In this paper, we introduce a new analytical approach to investigate the neoclassical polarization current contribution to the NTM evolution without the assumption of the large island width by solving the drift-kinetic equation in a so-called ion-banana-center coordinate system. The results show that, when the island width is comparable to the FBW of the thermal ion, the neoclassical polarization current term in the equation of the NTM evolution is much smaller than the previous analytical expression but matches well with the empirical anticipation commonly adopted in experiments.

  1. The Role of Evolutive Elastic Properties in the Performance of a Sheet Formed Spring Applied in Multimedia Car Industry

    Science.gov (United States)

    Faria, J.; Silva, J.; Bernardo, P.; Araújo, M.; Alves, J. L.

    2016-08-01

    The manufacturing process and the behaviour of a spring manufactured from an aluminium sheet is described and investigated in this work considering the specifications for the in-service conditions. The spring is intended to be applied in car multimedia industry to replace bolted connections. Among others, are investigated the roles of the constitutive parameters and the hypothesis of evolutive elastic properties with the plastic work in the multistep forming process and in working conditions.

  2. Earthward electric field and its reversal in the near-Earth current sheet

    Science.gov (United States)

    Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Zelenyi, L. M.

    2016-11-01

    Using Time History of Events and Macroscale Interactions during Substorms observations (radial distance r from 9 to 35 Earth radii, RE), we investigate ion and electron contributions to the cross-tail current density in the magnetotail current sheet. We analyze plasma pressure measurements (including the contribution from high-energy particles) and estimate the magnitudes of ion and electron diamagnetic drifts. In the downtail, r > 15RE, region, ion (electron) diamagnetic drifts are shown to provide more than 50% (less than 25%) of the cross-tail current density at the neutral plane, Bx=0. Conversely, in the near-Earth region, r≤15RE, the ion (electron) diamagnetic drift contribution to the cross-tail current density is 20% (50%). The directly measured duskward (dawnward) component of the ion (electron) velocity, vyi (-vye), where y is the GSM direction, is very small (quite large) in the downtail region but large (small) in the near-Earth region. This systematic discrepancy between the expected values of vyi, -vye (based on estimates of diamagnetic drifts) and the direct measurements of the velocity, vyi, -vye, is consistent with a contribution to the total velocity by an E × B drift caused by an electric field oriented parallel to the x axis, Ex. To decrease the ion (increase the electron) total drift to agree with the measured flows in the downtail region and increase (decrease) this total drift to match the measurements in the near-Earth region, this Ex would need to be directed earthward at r > 15RE and tailward at r≤15RE. Such an Ex distribution is consistent with the equatorial projection of the Harang discontinuity.

  3. Current state and future perspectives on coupled ice-sheet – sea-level modelling

    NARCIS (Netherlands)

    de Boer, B.; Stocchi, P.; Whitehouse, P.L.; van de Wal, R.S.W.

    2017-01-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established fieldof research for many years. However, recent advances in numerical modelling have shed new light on theprecise interaction of marine ice sheets with the change in near-field sea level, and the

  4. Sinusoidal current and stress evolutions in lithium-ion batteries

    Science.gov (United States)

    Yang, Xiao-Guang; Bauer, Christoph; Wang, Chao-Yang

    2016-09-01

    Mechanical breakdown of graphite materials due to diffusion-induced stress (DIS) is a key aging mechanism of lithium-ion batteries. In this work, electrochemical-thermal coupled model along with a DIS model is developed to study the DIS distribution across the anode thickness. Special attention is paid to the evolution behavior of surface tangential stress (STS) in the discharge process for graphite at different locations of the anode. For the first time, we report that the evolution of STS, as well as local current, at all locations of the anode, evolve like sinusoidal waves in the discharge process with several crests and troughs. The staging behavior of graphite active material, in particular the sharp change of open-circuit potential (OCP) of graphite in the region between two plateaus, is found to be the root cause for the sinusoidal patterns of current and stress evolution. Furthermore, the effects of various parameters, such as starting state of charge, discharge C-rate and electrode thickness on the current and stress evolutions are investigated.

  5. X-ray emission from the base of a current sheet in the wake of a CME

    CERN Document Server

    Saint-Hilaire, Pascal; Lin, Robert P

    2011-01-01

    Following a CME which started on 2002 November 26, RHESSI, the Ramaty High Energy Solar Spectroscopic Imager, observed for 12 hours an X-ray source above the solar limb, at altitudes between 0.1 and 0.3 RS above the photosphere. The GOES baseline was remarkably high throughout this event. The X-ray source's temperature peaked around 10-11 MK, and its emission measure increased throughout this time interval. Higher up, at 0.7 RS, hot (initially >8 MK) plasma has been observed by UVCS on SoHO for 2.3 days. This hot plasma was interpreted as the signature of a current sheet trailing the CME (Bemporad et al. 2006). The thermal energy content of the X-ray source is more than an order of magnitude larger than in the current sheet. Hence, it could be the source of the hot plasma in the current sheet, although current sheet heating by magnetic reconnection within it cannot be discounted. To better characterize the X-ray spectrum, we have used novel techniques (back-projection based and visibility-based) for long inte...

  6. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction.

    Science.gov (United States)

    Dong, Quan-Li; Wang, Shou-Jun; Lu, Quan-Ming; Huang, Can; Yuan, Da-Wei; Liu, Xun; Lin, Xiao-Xuan; Li, Yu-Tong; Wei, Hui-Gang; Zhong, Jia-Yong; Shi, Jian-Rong; Jiang, Shao-En; Ding, Yong-Kun; Jiang, Bo-Bin; Du, Kai; He, Xian-Tu; Yu, M Y; Liu, C S; Wang, Shui; Tang, Yong-Jian; Zhu, Jian-Qiang; Zhao, Gang; Sheng, Zheng-Ming; Zhang, Jie

    2012-05-25

    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

  7. Laboratory study of magnetic reconnection with a density asymmetry across the current sheet.

    Science.gov (United States)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E; Chen, Li-Jen

    2014-08-29

    The effects of a density asymmetry across the current sheet on anti-parallel magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant density ratio of up to 10, the in-plane magnetic field profile is not significantly changed. On the other hand, the out-of-plane Hall magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to quadrupolar in structure with the symmetric configuration. Moreover, the ion stagnation point is shifted to the low-density side, and the electrostatic potential profile also becomes asymmetric with a deeper potential well on the low-density side. Nonclassical bulk electron heating together with electromagnetic fluctuations in the lower hybrid frequency range is observed near the low-density-side separatrix. The dependence of the ion outflow and reconnection electric field on the density asymmetry is measured and compared with theoretical expectations. The measured ion outflow speeds are about 40% of the theoretical values.

  8. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    CERN Document Server

    Makwana, K D; Li, H; Daughton, W; Cattaneo, F

    2014-01-01

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv\\'{e}n waves, which interfere and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{\\perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{\\perp}^{-1.5}$ for smaller simulation domain, and $k_{\\perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. T...

  9. Magnetar Giant Flares in Multipolar Magnetic Fields --- II. Flux Rope Eruptions With Current Sheets

    CERN Document Server

    Huang, Lei

    2014-01-01

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. Especially, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. The released magnetic energy is sufficient to drive giant flares. The flux rope would go away from the magnetar quasi-statically, which is ...

  10. The penetration of ions into the magnetosphere through the magnetopause turbulent current sheet

    Directory of Open Access Journals (Sweden)

    A. Taktakishvili

    Full Text Available This paper reports the results of numerical modeling of magnetosheath ion motion in the magnetopause current sheet (MCS in the presence of magnetic fluctuations. Our model of magnetic field turbulence has a power law spectrum in the wave vector space, reaches maximum intensity in the center of MCS, and decreases towards the magnetosheath and magnetosphere boundaries. We calculated the density profile across the MCS. We also calculated the number of particles entering the magnetosphere, reflected from the magnetopause and escaping from the flanks, as a function of the fluctuation level of the turbulence and magnetic field shear parameter. All of these quantities appeared to be strongly dependent on the fluctuation level, but not on the magnetic field shear parameter. For the highest fluctuation levels the number of particles entering the magnetosphere does not exceed 15% of the total number of particles launched from the magnetosheath side of the MCS; the modeling also reproduced the effective reflection of the magnetosheath flow from very high levels of magnetic fluctuations.

    Key words. Magnetospheric physics (magnetosheath; magnetospheric configuration and dynamics; turbulence

  11. Current Sheets in the Corona and the Complexity of Slow Wind

    Science.gov (United States)

    Antiochos, Spiro

    2010-01-01

    The origin of the slow solar wind has long been one of the most important problems in solar/heliospheric physics. Two observational constraints make this problem especially challenging. First, the slow wind has the composition of the closed-field corona, unlike the fast wind that originates on open field lines. Second, the slow wind has substantial angular extent, of order 30 degrees, which is much larger than the widths observed for streamer stalks or the widths expected theoretically for a dynamic heliospheric current sheet. We propose that the slow wind originates from an intricate network of narrow (possibly singular) open-field corridors that emanate from the polar coronal hole regions. Using topological arguments, we show that these corridors must be ubiquitous in the solar corona. The total solar eclipse in August 2008, near the lowest point of cycle 23 affords an ideal opportunity to test this theory by using the ultra-high resolution Predictive Science's (PSI) eclipse model for the corona and wind. Analysis of the PSI eclipse model demonstrates that the extent and scales of the open-field corridors can account for both the angular width of the slow wind and its closed-field composition. We discuss the implications of our slow wind theory for the structure of the corona and heliosphere at solar minimum and describe further observational and theoretical tests.

  12. 太阳爆发过程中的大尺度磁重联电流片:理论和观测%Large-Scale Reconnecting Current Sheets in Solar Eruptions: Theories and Observations

    Institute of Scientific and Technical Information of China (English)

    吴宁; 李燕; 沈呈彩; 林隽

    2012-01-01

    sheets form and develop in a highly dynamical fashion in an eruptive process. Theoretical calculations indicate that the current sheet in major eruptive processes could evolve and extend in length at speed up to 102 km·s-1, and observational results suggest rapid evolution of the current sheet as well. In such a process, the scale, especially the thickness, of the current sheet should not be as simple as the Larmor radius of particles. Instead various plasma instabilities inevitably occur and play an important role in governing the scale of the current sheet. Consistent with the above theoretical argument, the combination of observations from LASCO, EIT, UVCS on board SOHO detected directly the CME/flare current sheet soon after the basic framework of the catastrophe model of solar eruptions had constructed, and confirmed that the current sheet predicted by the model does exist and is observable in major eruptions. Plasma blobs flowing with the reconnection outflow inside the current sheet sunward and anti-sunward were observed subsequently, indicating that magnetic re-connection is occurring or has occurred. The reconnection inflow observed in the eruption marks the location and orientation of the current sheet, and helped estimate the apparent thickness of the current sheet for the first time. The result is astonishing, which shows that the CME/flare current sheet could be as thick as a few times 104 km! A set of follow-ups by different instruments, one of them is even on the ground, and in different wavelengths consistently provided clear evidence bringing the sheet thickness to range from a few times 104 km to a few times 105 km! The impact of projection effects on measurements surely exists, and causes the sheet to look thicker than it actually is. The geometric structure and relatively tenuous material of the current sheet yields that its size and emission are easily dominated by other large-scale and bright structures nearby. So detailed analyses showed that in

  13. Characterization of the Greenland Ice Sheet evolution in a changing climate using a multi-model approach

    Science.gov (United States)

    Seroussi, H. L.; Morlighem, M.; Larour, E. Y.; Rignot, E. J.; Aubry, D.; Ben Dhia, H.

    2011-12-01

    Hybrid models that combine several ice flow approximations of varying order of complexity have the potential to improve continental-scale projections of ice sheet dynamics in a changing climate. Indeed, this approach allows the use of higher-order or full-Stokes models in critical areas, such as the vicinity of the grounding line, while being compatible with available computational resources as simpler models are employed in non-critical areas. Here, we use this approach to model the Greenland Ice Sheet and project its evolution for the next 500 years under different climate scenarios set up by the SeaRISE assessment. The model is initialized using data assimilation to constrain basal friction under the ice sheet and therefore starts from a configuration close to the present-day conditions. A set of experiments is then performed to assess the influence of changes in: 1) atmospheric conditions (air temperature and precipitation), 2) basal conditions (increase in basal lubrication due to enhanced melting) and 3) oceanic conditions (melting under ice shelves and at marine-terminated fronts). We employ the Ice Sheet System Model (ISSM, http://issm.jpl.nasa.gov), a thermo-dynamic finite element model developed at JPL/UCI to perform these simulations. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory, University of California Irvine and Ecole Centrale Paris under a contract with the National Aeronautics and Space Administration's Modeling, Analysis and Prediction (MAP) Program.

  14. A statistical study of the THEMIS satellite data for plasma sheet electrons carrying auroral upward field-aligned currents

    Science.gov (United States)

    Lee, S.; Shiokawa, K.; McFadden, J. P.

    2010-12-01

    The magnetospheric electron precipitation along the upward field-aligned currents without the potential difference causes diffuse aurora, and the magnetospheric electrons accelerated by a field-aligned potential difference cause the intense and bright type of aurora, namely discrete aurora. In this study, we are trying to find out when and where the aurora can be caused with or without electron acceleration. We statistically investigate electron density, temperature, thermal current, and conductivity in the plasma sheet using the data from the electrostatic analyzer (ESA) onboard the THEMIS-D satellite launched in 2007. According to Knight (Planet. Space Sci., 1973) and Lyons (JGR, 1980), the thermal current, jth(∝ nT^(1/2) where n is electron density and T is electron temperature in the plasma sheet), represents the upper limit to field aligned current that can be carried by magnetospheric electrons without field-aligned potential difference. The conductivity, K(∝ nT^(-1/2)), represents the efficiency of the upward field-aligned current (j) that the field-aligned potential difference (V) can produce (j=KV). Therefore, estimating jth and K in the plasma sheet is important in understanding the ability of plasma sheet electrons to carry the field-aligned current which is driven by various magnetospheric processes such as flow shear and azimuthal pressure gradient. Similar study was done by Shiokawa et al. (2000) based on the auroral electron data obtained by the DMSP satellites above the auroral oval and the AMPTE/IRM satellite in the near Earth plasma sheet at 10-18 Re on February-June 1985 and March-June 1986 during the solar minimum. The purpose of our study is to examine auroral electrons with pitch angle information inside 12 Re where Shiokawa et al. (2000) did not investigate well. For preliminary result, we found that in the dawn side inner magnetosphere (source of the region 2 current), electrons can make sufficient thermal current without field

  15. CURRENT SHEET REGULATION OF SOLAR NEAR-RELATIVISTIC ELECTRON INJECTION HISTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Agueda, N.; Sanahuja, B. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona (Spain); Vainio, R. [Department of Physics, University of Helsinki (Finland); Dalla, S. [Jeremiah Horrocks Institute, University of Central Lancashire (United Kingdom); Lario, D. [Applied Physics Laboratory, Johns Hopkins University (United States)

    2013-03-10

    We present a sample of three large near-relativistic (>50 keV) electron events observed in 2001 by both the ACE and the Ulysses spacecraft, when Ulysses was at high-northern latitudes (>60 Degree-Sign ) and close to 2 AU. Despite the large latitudinal distance between the two spacecraft, electrons injected near the Sun reached both heliospheric locations. All three events were associated with large solar flares, strong decametric type II radio bursts and accompanied by wide (>212 Degree-Sign ) and fast (>1400 km s{sup -1}) coronal mass ejections (CMEs). We use advanced interplanetary transport simulations and make use of the directional intensities observed in situ by the spacecraft to infer the electron injection profile close to the Sun and the interplanetary transport conditions at both low and high latitudes. For the three selected events, we find similar interplanetary transport conditions at different heliolatitudes for a given event, with values of the mean free path ranging from 0.04 AU to 0.27 AU. We find differences in the injection profiles inferred for each spacecraft. We investigate the role that sector boundaries of the heliospheric current sheet (HCS) have on determining the characteristics of the electron injection profiles. Extended injection profiles, associated with coronal shocks, are found if the magnetic footpoints of the spacecraft lay in the same magnetic sector as the associated flare, while intermittent sparse injection episodes appear when the spacecraft footpoints are in the opposite sector or a wrap in the HCS bounded the CME structure.

  16. Magnetar giant flares in multipolar magnetic fields. II. Flux rope eruptions with current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Object, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-11-20

    We propose a physical mechanism to explain giant flares and radio afterglows in terms of a magnetospheric model containing both a helically twisted flux rope and a current sheet (CS). With the appearance of a CS, we solve a mixed boundary value problem to get the magnetospheric field based on a domain decomposition method. We investigate properties of the equilibrium curve of the flux rope when the CS is present in background multipolar fields. In response to the variations at the magnetar surface, it quasi-statically evolves in stable equilibrium states. The loss of equilibrium occurs at a critical point and, beyond that point, it erupts catastrophically. New features show up when the CS is considered. In particular, we find two kinds of physical behaviors, i.e., catastrophic state transition and catastrophic escape. Magnetic energy would be released during state transitions. This released magnetic energy is sufficient to drive giant flares, and the flux rope would, therefore, go away from the magnetar quasi-statically, which is inconsistent with the radio afterglow. Fortunately, in the latter case, i.e., the catastrophic escape, the flux rope could escape the magnetar and go to infinity in a dynamical way. This is more consistent with radio afterglow observations of giant flares. We find that the minor radius of the flux rope has important implications for its eruption. Flux ropes with larger minor radii are more prone to erupt. We stress that the CS provides an ideal place for magnetic reconnection, which would further enhance the energy release during eruptions.

  17. Genesis of return stroke current evolution at the wavefront

    Science.gov (United States)

    Kumar, Udaya; Raysaha, Rosy Balaram

    2013-07-01

    The channel dynamics at the wavefront is complex and is primarily responsible for the evolution of return stroke current. The enhancement of channel conductance at the wavefront is necessary for the evolution of current and hence, return stroke. In this regard several questions arise like: (i) what causes the enhancement of conductance, (ii) as the channel core temperature and electrical conductance are closely related, does one support the other and (iii) is the increase in core temperature on the nascent section of the channel the result of free burning arc of the wavefront just below. The present work investigates on these issues with appropriate transient thermal analysis and a macroscopic physical model for the lightning return stroke. Results clearly indicate that the contribution from the thermal field of the wavefront region to the adjacent nascent channel section is negligible as compared to the field enhancement brought in by the same. In other words, the whole process of return stroke evolution is dependent on the local heat generation at the nascent section caused by the enhancement of electric field due to the arrival of the wavefront.

  18. Ion motion in the current sheet with sheared magnetic field – Part 1: Quasi-adiabatic theory

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-02-01

    Full Text Available We present a theory of trapped ion motion in the magnetotail current sheet with a constant dawn–dusk component of the magnetic field. Particle trajectories are described analytically using the quasi-adiabatic invariant corresponding to averaging of fast oscillations around the tangential component of the magnetic field. We consider particle dynamics in the quasi-adiabatic approximation and demonstrate that the principal role is played by large (so called geometrical jumps of the quasi-adiabatic invariant. These jumps appear due to the current sheet asymmetry related to the presence of the dawn–dusk magnetic field. The analytical description is compared with results of numerical integration. We show that there are four possible regimes of particle motion. Each regime is characterized by certain ranges of values of the dawn–dusk magnetic field and particle energy. We find the critical value of the dawn–dusk magnetic field, where jumps of the quasi-adiabatic invariant vanish.

  19. 3D MHD simulation of post--flare supra--arcade downflows in a turbulent current sheet medium

    CERN Document Server

    Cécere, M; Costa, A; Schneiter, M

    2014-01-01

    Supra--arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper using 3D MHD simulations we investigate if the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin--Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced triggered by an impulsive deposition of energy. We find that to give account of the observational dark lane structures an addition of local energy provided by a reconnection event is required. This local reconnection can trigger a nonlinear internal wave dynamic, generated by the bouncing and interfering of shocks and expansion waves that compose relatively stable voids.

  20. Radiation from a current sheet at the interface between a conventional medium and anisotropic negative refractive medium

    Indian Academy of Sciences (India)

    Yuan You

    2009-08-01

    In this paper we investigate the radiation from a current sheet at the interface between semiinfinite isotropic positive refractive medium and anisotropic negative refractive medium. The distribution of the electric and magnetic fields in two regions and Poynting vectors associated with propagating and evanescent waves are calculated. The reasons for the singularity of the electric or magnetic field are briefly provided if the waves are evanescent in two media.

  1. The evolution and current state of emergency care in Ghana

    Directory of Open Access Journals (Sweden)

    Maxwell Osei-Ampofo

    2013-06-01

    Full Text Available Emergency Medicine as a specialty has only recently been introduced to Ghana. This article reviews the overall health and medical care systems as well as the evolution and the current state of emergency care in Ghana and the progress made in establishing Emergency Medicine (EM as a specialty along the Anglo-American model of emergency care. The article also describes the improvements implemented in emergency patient care, and emergency medicine management systems. Although there are challenges to overcome, much optimism remains about the future of this new specialty in Ghana and its ability to transform the face of emergency care.

  2. Simulation of annealing process effect on texture evolution of deep-drawing sheet St15

    Institute of Scientific and Technical Information of China (English)

    Jinghong Sun; Yazheng Liu; Leyu Zhou

    2005-01-01

    A two-dimensional cellular automaton method was used to simulate grain growth during the recrystallization annealing of deep-drawing sheet Stl5, taking the simulated result of recrystallization and the experimental result of the annealing texture of deepdrawing sheet St15 as the initial condition and reference. By means of computer simulation, the microstructures and textures of different periods of grain growth were predicted. It is achieved that the grain size, shape and texture become stable after the grain growth at a constant temperature of 700℃ for 10 h, and the advantaged texture components { 111 } and { 111 } are dominant.

  3. Optimization Of Pulsed Current Parameters To Minimize Pitting Corrosion İn Pulsed Current Micro Plasma Arc Welded Aısı 304l Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kondapalli Siva Prasad

    2013-06-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA was developed to optimize the process parameters for minimizing the pitting corrosion rates.

  4. Simulating the Thinning Magnetotail Current Sheet During a Substorm Growth Phase with the Rice Convection Model-Equilibrium

    Science.gov (United States)

    Lemon, C. L.; Crabtree, C. E.; Chen, M.; Guild, T. B.

    2015-12-01

    Modeling the progression of the magnetotail configuration during a substorm growth phase is challenging because the current sheet becomes very thin, and is difficult to resolve while keeping the problem computationally tractable. Magnetohydrodynamics (MHD) models have dealt with this problem in various ways, and many claim to be driven by physical rather than numerical considerations. The Rice Convection Model-Equilibrium (RCM-E) is not an MHD model, and has advantages and disadvantages compared to MHD. The notable advantages are the characterization of the full energy distribution of the plasma (including the associated gradient/curvature drift), as well as its generally more comprehensive treatment of the electrodynamics of magnetosphere-ionosphere coupling. The disadvantages include the bounce-averaging of plasma drift, which limits the domain to closed field lines, and the assumption of slow flow relative to the Alfvén speed. The RCM-E has been used in the past to model a substorm growth phase, but its assumptions do not allow it to properly treat the onset mechanism or the formation of x-lines. It can simulate the approach to onset, but is limited by its ability to resolve the thinning current sheet. In this presentation, we present advances in the technique used to calculate the self-consistent magnetic field, which allows us to resolve thinner current sheets than were previously possible. We combine this with a generalized ballooning mode analysis of specific flux tubes in order to assess the stability of the magnetotail to substorm onset.

  5. Current Sheet Structures Observed by the TESIS EUV Telescope during a Flux Rope Eruption on the Sun

    Science.gov (United States)

    Reva, A. A.; Ulyanov, A. S.; Kuzin, S. V.

    2016-11-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 {R}⊙ from the Sun’s center in the Fe 171 Å line. The Fe 171 Å line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed coronal mass ejection (CME) had a core with a spiral—flux rope—structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70,000 K, observed in He 304 Å line) and a hotter core (0.7 MK, observed in Fe 171 Å line). Such a structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We interpreted the Y-structure as a hot envelope of the current sheet and hot reconnection outflows. The Y-structure had a thickness of 6.0 Mm. Its length increased over time from 79 Mm to more than 411 Mm.

  6. Effects on magnetic reconnection of a density asymmetry across the current sheet

    Directory of Open Access Journals (Sweden)

    K. G. Tanaka

    2008-08-01

    Full Text Available The magnetopause (MP reconnection is characterized by a density asymmetry across the current sheet. The asymmetry is expected to produce characteristic features in the reconnection layer. Here we present a comparison between the Cluster MP crossing reported by Retinò et al. (2006 and virtual observations in two-dimensional particle-in-cell simulation results. The simulation, which includes the density asymmetry but has zero guide field in the initial condition, has reproduced well the observed features as follows: (1 The prominent density dip region is detected at the separatrix region (SR on the magnetospheric (MSP side of the MP. (2 The intense electric field normal to the MP is pointing to the center of the MP at the location where the density dip is detected. (3 The ion bulk outflow due to the magnetic reconnection is seen to be biased towards the MSP side. (4 The out-of-plane magnetic field (the Hall magnetic field has bipolar rather than quadrupolar structure, the latter of which is seen for a density symmetric case. The simulation also showed rich electron dynamics (formation of field-aligned beams in the proximity of the separatrices, which was not fully resolved in the observations. Stepping beyond the simulation-observation comparison, we have also analyzed the electron acceleration and the field line structure in the simulation results. It is found that the bipolar Hall magnetic field structure is produced by the substantial drift of the reconnected field lines at the MSP SR due to the enhanced normal electric field. The field-aligned electrons at the same MSP SR are identified as the gun smokes of the electron acceleration in the close proximity of the X-line. We have also analyzed the X-line structure obtained in the simulation to find that the density asymmetry leads to a steep density gradient in the in-flow region, which may lead to a non-stationary behavior of the X-line when three-dimensional freedom is taken into account.

  7. Spatial-temporal evolution of the current filamentation instability

    CERN Document Server

    Pathak, V B; Stockem, A; Fonseca, R A; Silva, L O

    2015-01-01

    The spatial-temporal evolution of the purely transverse current filamentation instability is analyzed by deriving a single partial differential equation for the instability and obtaining the analytical solutions for the spatially and temporally growing current filament mode. When the beam front always encounters fresh plasma, our analysis shows that the instability grows spatially from the beam front to the back up to a certain critical beam length; then the instability acquires a purely temporal growth. This critical beam length increases linearly with time and in the non-relativistic regime it is proportional to the beam velocity. In the relativistic regime the critical length is inversely proportional to the cube of the beam Lorentz factor $\\gamma_{0b}$. Thus, in the ultra-relativistic regime the instability immediately acquires a purely temporal growth all over the beam. The analytical results are in good agreement with multidimensional particle-in-cell simulations performed with OSIRIS. Relevance of curr...

  8. Antarctic ice rises and rumples : Their properties and significance for ice-sheet dynamics and evolution

    NARCIS (Netherlands)

    Matsuoka, Kenichi; Hindmarsh, Richard C A; Moholdt, Geir; Bentley, Michael J.; Pritchard, Hamish D.; Brown, Joel; Conway, Howard; Drews, Reinhard; Durand, Gaël; Goldberg, Daniel; Hattermann, Tore; Kingslake, Jonathan; Lenaerts, Jan T M; Martín, Carlos; Mulvaney, Robert; Nicholls, Keith W.; Pattyn, Frank; Ross, Neil; Scambos, Ted; Whitehouse, Pippa L.

    2015-01-01

    Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around

  9. Bayesian calibration of a post-LGM model of Laurentide ice-sheet evolution

    Science.gov (United States)

    Tarasov, L.; Peltier, W. R.

    2003-04-01

    Though numerous inferences have been made with regard to the deglaciation history of the Wisconsin North American ice sheet complex, no attempt has been made to place objective confidence ranges on these inferences. Furthermore, past efforts to reconstruct the Wisconsin deglaciation history have relied on restricted discipline-specific constraints. Approaches based on dynamical glacial models have ignored geophysical constraints such as Relative Sea Level histories. Geophysical based reconstructions, on the other hand, have ignored glaciological self-consistency and Marine Limit data. To remedy this situation, we present a Bayesian calibration of a 3D thermo-mechanically coupled ice-sheet systems model using: 1) a large set of Relative Sea Level observations (from 415 sites), 2) Marine Limit observations, 3) a North-South transect of gravity measurements, 4) direct observations of the present day rate of basal uplift at Yellowknife, 5) and a new high-resolution ice margin chronology derived from geological and geomorphological observations. Given the large parameter space (O(20) parameters), Bayesian neural networks, trained from a thousand runs of the ice-sheet systems model, are employed to simulate the glacial model within the statistical analyses. The end result is a posterior distribution for model parameters (and thereby modelled glacial histories) given the observational data sets that thereby also takes into account data uncertainty. Strong support is provided for a multi-domed Laurentide ice-sheet. We also identify key dynamical processes (ie most relevant model parameters) along with critical geographic regions in need of further data.

  10. Antarctic ice rises and rumples : Their properties and significance for ice-sheet dynamics and evolution

    NARCIS (Netherlands)

    Matsuoka, Kenichi; Hindmarsh, Richard C A; Moholdt, Geir; Bentley, Michael J.; Pritchard, Hamish D.; Brown, Joel; Conway, Howard; Drews, Reinhard; Durand, Gaël; Goldberg, Daniel; Hattermann, Tore; Kingslake, Jonathan; Lenaerts, Jan T M|info:eu-repo/dai/nl/314850163; Martín, Carlos; Mulvaney, Robert; Nicholls, Keith W.; Pattyn, Frank; Ross, Neil; Scambos, Ted; Whitehouse, Pippa L.

    2015-01-01

    Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around

  11. Firn densification in a Late Noachian “icy highlands” Mars: Implications for ice sheet evolution and thermal response

    Science.gov (United States)

    Cassanelli, James P.; Head, James W.

    2015-06-01

    Recent modeling of a thicker early CO2 martian atmosphere and Late Noachian climate predicts that for pressures beyond a fraction of a bar, atmosphere-surface thermal coupling occurs, resulting in adiabatic cooling of high areas across Mars. This promotes the transport of water ice from relatively warmer low-lying areas to the highlands, where deposition and accumulation of water ice result in an "icy highlands" Late Noachian Mars. Deposits will remain stable in the highlands under nominal Late Noachian conditions, but the potential exists for punctuated heating by both top-down (e.g. impacts, volcanism) and bottom-up (e.g. elevated geothermal heat flux) processes. Important in understanding melt generation from these processes is the state of the accumulated snow and ice. Through modeling of the firn densification process in the "icy highlands" framework we assess: (1) the nature of snow accumulation and the physical growth and evolution of the predicted ice deposits, and (2) the implications for the thermal properties of the ice sheets and the response to heating events. Analysis of the firn densification process in the "icy highlands" context indicates that: (1) the upper layers of the ice sheet will be more vulnerable to melting from top-down heating processes because they are comprised of the least dense and least thermally conductive ice, and (2) even with a low thermal conductivity firn layer, basal melting is only likely to occur through a combination of top-down and bottom-up heating. This is because at the nominal mean annual surface temperatures and estimated effective thermal conductivities, the predicted ice sheet thicknesses do not produce enough basal warming to initiate melting for plausible geothermal heat fluxes. Variations in spin-axis/orbital parameters alone are not predicted to cause widespread ablation (melting and sublimation) of the icy highlands ice sheets.

  12. Research Program of International Geophysical Year (Igy-1957 Have Ended In the Millennium Beginning By Discovery of the Theoretical Current Sheets in the Nature

    Directory of Open Access Journals (Sweden)

    Ostapenko V. A.

    2016-08-01

    Full Text Available We declare about the discovery in the Nature of theoretical current sheets by S. I. Syrovatskij. The first “natural” current sheet was discovered in flare spectrum, calculated and researched experimentally. The current sheets (CS are found in chromosphere and downward levels in optical range data. The main problem of physics of solar flares has been solved. Magnetic field energy is a primary source of active processes in solar plasma. Current sheet (CS of S. I. Syrovatskij is the mechanism of magnetic energy transformation into plasma energy. The current sheet is not discovered in a flare, as expected. As a matter of fact, solar flare is in itself a current sheet, its direct observed development in chromosphere plasma. Continuous current sheet radiation is the «black» (BLF and the «white» (WLF flare (like light of Sun photosphere. It is the negative hydrogen ion excitation upon reaching hydrogen plasma density of ˃5 1017 cm -3

  13. The impact of the North American glacial topography on the evolution of the Eurasian ice sheet over the last glacial cycle

    Science.gov (United States)

    Liakka, Johan; Löfverström, Marcus; Colleoni, Florence

    2016-05-01

    Modeling studies have shown that the continental-scale ice sheets in North America and Eurasia in the last glacial cycle had a large influence on the atmospheric circulation and thus yielded a climate distinctly different from the present. However, to what extent the two ice sheets influenced each others' growth trajectories remains largely unexplored. In this study we investigate how an ice sheet in North America influences the downstream evolution of the Eurasian ice sheet, using a thermomechanical ice-sheet model forced by climate data from atmospheric snapshot experiments of three distinctly different phases of the last glacial cycle: the Marine Isotope Stages 5b, 4, and 2 (Last Glacial Maximum - LGM). Owing to the large uncertainty associated with glacial changes in the Atlantic meridional overturning circulation, each atmospheric snapshot experiment was conducted using two distinctly different ocean heat transport representations. Our results suggest that changes in the North American paleo-topography may have largely controlled the zonal distribution of the Eurasian ice sheet. In the MIS4 and LGM experiments, the Eurasian ice sheet migrates westward towards the Atlantic sector - largely consistent with geological data and contemporary ice-sheet reconstructions - due to a low wave number stationary wave response, which yields a cooling in Europe and a warming in northeastern Siberia. The expansion of the North American ice sheet between MIS4 and the LGM amplifies the Siberian warm anomaly, which limits the glaciation there and may therefore help explain the progressive westward migration of the Eurasian ice sheet in this time period. The ocean heat transport only has a small influence on the stationary wave response to the North American glacial topography; however, because temperature anomalies have a smaller influence on an ice sheet's ablation in a colder climate than in a warmer one, the impact of the North American glacial topography on the Eurasian ice-sheet

  14. Antarctic polar plateau vertical electric field variations across heliocentric current sheet crossings

    Science.gov (United States)

    Burns, G. B.; Tinsley, B. A.; Klekociuk, A. R.; Troshichev, O. A.; Frank-Kamenetsky, A. V.; Duldig, M. L.; Bering, E. A.; Clem, J. M.

    2006-03-01

    A superposed epoch analysis of variations of the vertical electric field measured at Vostok (78.5°S, 107°E; magnetic latitude 83.6°S) during 1998 2002 heliocentric current sheet (HCS) crossings yields no significant variation other than an association imposed by polar-cap potential differences above the site. This result contradicts published reports of a reduction ˜15% in electric field 1 3 days after HCS crossings, an observation initially made ˜30 years ago. If such a reduction had been caused by reductions in stratospheric ionising radiation, the presence of polar stratospheric clouds (PSC) would seem necessary for the occurrence of this effect. PSCs would increase the resistance of the stratosphere thus making ionisation in that region significant in the context of the ionosphere ground current flow, in a manner analogous to the role of volcanic aerosols in the stratosphere in the explanation of the weakening of northern hemisphere winter cyclones associated with HCS crossings, the so-called ‘Wilcox effect’. However, separating the present data to correspond to the likely presence of PSC above Vostok also does not yield the reported reduction. Significant increases or decreases of the vertical electric field emerge from the observations when the HCS crossings are separated into sets depending on whether the solar wind magnetic field changes from ‘toward-to-away’ (increase of ˜11%) and ‘away-to-toward’ (decrease of ˜8%). Polar-cap potential changes above the site, inferred from solar wind parameters using the Weimer model, also show such step functions that reverse with the sign of HCS transition and are broadly consistent with the measured electric field increases or decreases. Remaining differences between the measurements and the model are consistent with a somewhat stronger solar wind speed and/or magnetic activity influence on polar-cap convection above Vostok than is predicted by the model. Variations in ground-level neutron counts, a

  15. Compensation of the Persistent Current Multipoles in the LHC Dipoles by making the Coil Protection Sheet from Soft Magnetic Material

    CERN Document Server

    Völlinger, C

    2000-01-01

    This note presents a scheme for compensating the persistent current multipole errors of the LHC dipoles by making the coil protection sheets from soft magnetic material of 0.5 mm thickness. The material properties assumed in this study are those of iron sheets with a very low content of impurities (99.99% pure Fe). The non-linearities in the upramp cycle on the b3 multipole component can be reduced by the factor of four (while decreasing the b5 variation by the factor of two. Using sheets of slightly different thicknesses offers a tuning possibility for the series magnet coils and can compensate deviations arising from cables of different suppliers. The calculation method is based on a semi-analytical hysteresis model for hard superconductors and an M(B) - iteration using the method of coupled boundary elements - finite elements (BEM - FEM). It is now possible to compute persistent current multipole errors of geometries with arbitrarily shaped iron yokes and thin layers of soft magnetic material such as tunin...

  16. Fact Sheets

    Science.gov (United States)

    ... Fact Sheets are available in both English and Spanish and can be downloaded for free. Currently available ... Antiviral Medications to Treat or Prevent Influenza (the Flu) PDF | Espanol PDF Apremilast (Otezla®) PDF | Espanol PDF ...

  17. Macroscopic fields in thin ferromagnetic sheets taking into account eddy currents and Landau-Lifshitz magnetization

    Science.gov (United States)

    Dupré, Luc; Olyslager, Frank; Melkebeek, Jan

    2004-05-01

    The paper deals with a numerical model for the evaluation of the electromagnetic behavior in thin magnetic sheets. Therefore, we consider Maxwell's equations together with a nonlinear magnetic constitutive law described by the Landau-Lifshitz equation. We present a suitable numerical approximation based upon a finite element-finite difference method. At each time step in the numerical scheme, the magnetization dynamics is calculated analytically by introducing for each finite element node a transformation towards a local coordinate system.

  18. Formation and evolution of flapping and ballooning waves in magnetospheric plasma sheet

    Science.gov (United States)

    Ma, J. Z. G.; Hirose, A.

    2016-05-01

    By adopting Lembége & Pellat's 2D plasma-sheet model, we investigate the flankward flapping motion and Sunward ballooning propagation driven by an external source (e.g., magnetic reconnection) produced initially at the sheet center. Within the ideal MHD framework, we adopt the WKB approximation to obtain the Taylor-Goldstein equation of magnetic perturbations. Fourier spectral method and Runge-Kutta method are employed in numerical simulations, respectively, under the flapping and ballooning conditions. Studies expose that the magnetic shears in the sheet are responsible for the flapping waves, while the magnetic curvature and the plasma gradient are responsible for the ballooning waves. In addition, the flapping motion has three phases in its temporal development: fast damping phase, slow recovery phase, and quasi-stabilized phase; it is also characterized by two patterns in space: propagating wave pattern and standing wave pattern. Moreover, the ballooning modes are gradually damped toward the Earth, with a wavelength in a scale size of magnetic curvature or plasma inhomogeneity, only 1-7% of the flapping one; the envelops of the ballooning waves are similar to that of the observed bursty bulk flows moving toward the Earth.

  19. Radical Islam in Xinjiang – Evolution and Current State

    Directory of Open Access Journals (Sweden)

    Jiri Suchanek

    2012-06-01

    Full Text Available The article analyses the evolution and the current state of radical Islam in China’s Xinjiang Uyghur Autonomous Region. Chinese government considers Islamic radicalism as a serious threat, in particular in the Xinjiang region, which borders on some states in Central Asia as well as Pakistan and Afghanistan. The purpose of this article is to describe and evaluate roots and historical development of significant groups, in particular the East Turkestan Islamic Movement – ETIM. In its next part, the article deals with the contemporary situation as well as the cooperation between Uyghur radicals and other radical Islamic movements, in particular al-Qaeda and Taliban, and their activities. The article concludes that contemporary Uyghur Islamic radicalism cannot be considered as a major security threat, since the activities of these groups have largely shifted to Pakistan and rather have the nature of a propaganda war.

  20. The evolution and geological footprint of the last Eurasian ice-sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along

  1. Small-scale magnetic islands in the solar wind and their role in particle acceleration. Part 1: Dynamics of magnetic islands near the heliospheric current sheet

    CERN Document Server

    Khabarova, O; Li, G; Roux, J A le; Webb, G M; Dosch, A; Malandraki, O E

    2015-01-01

    Increases of ion fluxes in the keV-MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle (SEP) events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller current sheets in the solar wind (Zharkova & Khabarova 2012), of which a consequence is particle energization by the dynamically evolving secondary current sheets and magnetic islands (Zank et al. 2014; Drake et al. 2006a). The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples c...

  2. Evolution and current development of Transversal Themes: possibilities and limits

    Directory of Open Access Journals (Sweden)

    Carlos Rosales López

    2015-02-01

    Full Text Available The aim of this study was to determine the characteristics of the evolution and current development of transversal themes in education, considering them basically as important social cuestions with great influence in the overall education of the student. Specifically it seeks to clarify the level of preparation and dedication of teachers and schools to teach them. To do this, legislation used in our country (organics laws and decrees curriculum were analyzed and also the contribution of outstanding educators, institutions and researchers. We analyzed the characteristics of transversal themes in the educational project and the teaching program, its development in the clasroom and its projection out of it through the help of family and community. Conclusions about their current status (possibilities and limitations are derived and future proposals are made on the improvement of initial and ongoing training of teachers, to increase their collegiate or cooperative work of planning, intervention and evaluation, increased media and counseling in use, the need for increased communication and collaboration with families and other community institutions.How to reference this articleRosales López, C. (2015. Evolución y desarrollo actual de los Temas Transversales: posibilidades y límites. Foro de Educación, 13(18, pp. 143-160. doi: http://dx.doi.org/10.14516/fde.2015.013.018.008

  3. Evidence for a current sheet forming in the wake of a Coronal Mass Ejection from multi-viewpoint coronagraph observations

    OpenAIRE

    Patsourakos, S.; Vourlidas, A.

    2010-01-01

    Ray-like features observed by coronagraphs in the wake of Coronal Mass Ejections (CMEs) are sometimes interpreted as the white light counterparts of current sheets (CSs) produced by the eruption. The 3D geometry of these ray-like features is largely unknown and its knowledge should clarify their association to the CS and place constraints on CME physics and coronal conditions. With this study we test these important implications for the first time. An example of such a post-CME ray was observ...

  4. Effect of strain on the critical current density of Bi-2223 thick films sandwiched between Ag sheets

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J.H. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Kong, Q.P. (Academia Sinica, Hefei (China). Inst. of Solid State Physics); Wang, S.X. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics); Han, H.M. (Academia Sinica, Hefei, Anhui (China). Inst. of Plasma Physics)

    1994-08-16

    The tapes of (Bi, Pb)[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub x] (Bi-2223) thick film sandwiched between Ag sheets are known to have very high J[sub c]. In this note, the stress-strain behaviour and the strain dependence of critical current density of the Ag/Bi-2223/Ag tapes are investigated. The microstructure of superconducting thick films subjected to various amounts of deformation was examined with a scanning electron microscope (SEM). (orig.)

  5. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    Science.gov (United States)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  6. Role of magnetic field fluctuations in the Evolution of the kappa Distribution Functions in the Plasma Sheet

    Science.gov (United States)

    Espinoza, Cristobal; Antonova, Elizaveta; Stepanova, Marina; Valdivia, Juan Alejandro

    2016-07-01

    The evolution with the distance to Earth of ion and electron distribution functions in the plasma sheet, approximated by kappa distributions, was studied by Stepanova and Antonova (2015, JGRA 120). Using THEMIS data for 5 events of satellite alignments along the tail, covering between 5 and 30 Earth radii, they found that the kappa parameter increases tailwards, for both ions and electrons. In this work we analyse the magnetic fluctuations present in THEMIS data for the same 5 events. The aim is to explore the hypothesis proposed by Navarro et al. (2014, PRL 112), for solar wind plasmas, that the observed magnetic fluctuations could be closely related to spontaneous fluctuations in the plasma, if this can be described by stable distributions. Here we present our first results on the correlation between the spectral properties of the magnetic fluctuations and the observed parameters of the kappa distributions for different distances from Earth.

  7. Palaeoglacial lake and outburst flood reconstructions along the southern late-glacial Cordilleran Ice Sheet margin: implications for ice sheet reconstruction and landscape evolution

    Science.gov (United States)

    Cripps, Jonathan; Brennand, Tracy

    2016-04-01

    Proglacial lakes are crucial in controlling the meltwater and sediment flux from decaying ice margins, affect local ice dynamics, and can influence local and regional weather and climate. They are also potential sources of outburst floods, which can have major impacts on regional geomorphology and drainage networks. As such, proglacial lakes are important components of deglacial environments, and reconstructing proglacial lakes during decay of past ice sheets will improve understanding of their potential influence in the future. The presence of palaeo-ice-dammed lakes in valleys dissecting the southern Interior Plateau of British Columbia (BC), is evident in abundant lake-bottom sediments, deltaic deposits and shorelines. To date, the palaeogeography of these lakes have not been well constrained, and the damming ice margins have been proposed under a paradigm of Cordilleran Ice Sheet (CIS) stagnation - lakes dammed by dead-ice lobes in valleys where ice was thickest; this paradigm has been challenged by recent studies elsewhere on the Interior Plateau that support generally active, systematic retreat of the ice margin to the north and west. This project reinvestigated glacial Lake Nicola (gLN) on the northern Thompson Plateau, the key site for development of the stagnation paradigm, to improve palaeogeographic and palaeohydrological reconstructions of this basin. Five lake stages for gLN have been identified on the basis of shoreline and delta elevations and the extent of lake-bottom sediments. Glacioisostatic tilts were reconstructed for the four most extensive stages of between 1.6 and 1.9 m/km up to the north-northwest. Areal extent and lake volume for each lake were extracted by plotting lake planes onto DEMs adjusted to these reconstructed tilts; maximum volumes for each stage are in the order of 10 km3, with the largest reconstructed at 260km3. These lakes expanded and lowered to the northwest, as progressively lower outlets were opened by ice recession in

  8. Current Sheet Structures Observed by the TESIS EUV Telescope During A Flux Rope Eruption on the Sun

    CERN Document Server

    Reva, Anton; Kuzin, Ssergey

    2016-01-01

    We use the TESIS EUV telescope to study the current sheet signatures observed during flux rope eruption. The special feature of the TESIS telescope was its ability to image the solar corona up to a distance of 2 $R_\\odot$ from the Sun's center in the Fe 171 \\AA\\ line. The Fe 171 \\AA\\ line emission illuminates the magnetic field lines, and the TESIS images reveal the coronal magnetic structure at high altitudes. The analyzed CME had a core with a spiral-flux rope-structure. The spiral shape indicates that the flux rope radius varied along its length. The flux rope had a complex temperature structure: cold legs (70 000 K, observed in He 304 \\AA\\ line) and a hotter core (0.7 MK, observed in Fe 171 \\AA\\ line). Such structure contradicts the common assumption that the CME core is a cold prominence. When the CME impulsively accelerated, a dark double Y-structure appeared below the flux rope. The Y-structure timing, location, and morphology agree with the previously performed MHD simulations of the current sheet. We...

  9. Plasma heating in a post eruption Current Sheet: a case study based on ultraviolet, soft, and hard X-ray data

    CERN Document Server

    Susino, Roberto; Krucker, Säm

    2013-01-01

    Off-limb observations of the solar corona after Coronal Mass Ejections (CMEs) often show strong, compact, and persistent UV sources behind the eruption. They are primarily observed by the SOHO/UVCS instrument in the "hot" Fe XVIII {\\lambda}974 {\\AA} line and are usually interpreted as a signature of plasma heating due to magnetic reconnection in the post-CME Current Sheet (CS). Nevertheless, the physical process itself and the altitude of the main energy release are currently not fully understood. In this work, we studied the evolution of plasma heating after the CME of 2004 July 28 by comparing UV spectra acquired by UVCS with soft X-ray (SXR) and hard X-ray (HXR)images of the post-flare loops taken by GOES/SXI and RHESSI. The X-ray data show a long-lasting extended source that is rising upwards, toward the high-temperature source detected by UVCS. UVCS data show the presence of significant non-thermal broadening in the CS (signature of turbulent motions) and a strong density gradient across the CS region. T...

  10. The Most Intense Electron-Scale Current Sheets in the Solar Wind

    Science.gov (United States)

    Podesta, John J.

    2017-04-01

    Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of 1 pA/cm2. Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor's hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when νc≫ νb, where νc is the measurement bandwidth and νb ≈ 1/3 Hz is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately 1/νc, and the average peak current density is a weakly increasing function that scales approximately like νc^{0.1}.

  11. Magnetic Reconnection in the Heliospheric Current Sheet: The Implications of the Different Environments Seen by the VoyagerSpacecraft

    Science.gov (United States)

    Swisdak, M. M.; Drake, J. F.; Opher, M.

    2014-12-01

    The magnetic field abutting the heliospheric current sheet (HCS) is primarily in the azimuthal direction, either east-to-west or west-to-east. Mis-alignment of the solar rotational and magnetic axesleads to the characteristic ballerina-skirt shape of the HCS and during the solar cycle there can be large excursions in the sheet's latitudinal extent. Voyager 2's observations of energetic electrondropouts are related to its crossing of this boundary. Magnetic reconnection is also thought to occur as the HCS compresses and narrows between the termination shock and the heliopause. Near theequator the two HCS field alignments are present in roughly equal amounts, while near the edges the distribution can be considerably skewed. This will lead to substantial differences in the environmentsof the two Voyager spacecraft since Voyager 1 is north of the equator, but firmly in the sector region, while Voyager 2 is south of the equator and skirting the edges of the sector region. We presentparticle-in-cell simulations demonstrating the consequences of the reconnection of asymmetric amounts of flux. In particular, we will discuss Voyager 2's remaining time in the heliosphere -- including theimplications for the solar wind velocity, energetic particle transport, and the expected structure of Voyager 2's heliopause crossing -- and compare it with the data collected from Voyager 1.

  12. The Power-Law Distribution of Flare Kernels and Fractal Current Sheets in a Solar Flare

    CERN Document Server

    Nishizuka, N; Takasaki, H; Kurokawa, H; Shibata, K; 10.1088/0004-637X/694/1/L74

    2013-01-01

    We report a detailed examination of the fine structure inside flare ribbons and the temporal evolution of this fine structure during the X2.5 solar flare that occurred on 2004 November 10. We examine elementary bursts of the C IV (1550{\\AA}) emission lines seen as local transient brightenings inside the flare ribbons in the ultraviolet (1600{\\AA}) images taken with Transition Region and Coronal Explorer, and we call them C IV kernels. This flare was also observed in Ha with the Sartorius 18 cm Refractor telescope at Kwasan observatory, Kyoto University, and in hard X-rays (HXR) with Reuven Ramaty High Energy Solar Spectroscopic Imager. Many C IV kernels, whose sizes were comparable to or less than 2", were found to brighten successively during the evolution of the flare ribbon. The majority of them were well correlated with the Ha kernels in both space and time, while some of them were associated with the HXR emission. These kernels were thought to be caused by the precipitation of nonthermal particles at the...

  13. Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution

    Science.gov (United States)

    Patton, H.; Swift, D. A.; Clark, C. D.; Livingstone, S. J.; Cook, S. J.

    2016-09-01

    Glacier bed overdeepenings are ubiquitous in glacier systems and likely exert significant influence on ice dynamics, subglacial hydrology, and ice stability. Understanding of overdeepening formation and evolution has been hampered by an absence of quantitative empirical studies of their distribution and morphology, with process insights having been drawn largely from theoretical or numerical studies. To address this shortcoming, we first map the distribution of potential overdeepenings beneath the Antarctic and Greenland ice sheets using a GIS-based algorithm that identifies closed-contours in the bed topography and then describe and analyse the characteristics and metrics of a subset of overdeepenings that pass further quality control criteria. Overdeepenings are found to be widespread, but are particularly associated with areas of topographically laterally constrained ice flow, notably near the ice sheet margins where outlet systems follow deeply incised troughs. Overdeepenings also occur in regions of topographically unconstrained ice flow (for example, beneath the Siple Coast ice streams and on the Greenland continental shelf). Metrics indicate that overdeepening growth is generally allometric and that topographic confinement of ice flow in general enhances overdeepening depth. However, overdeepening depth is skewed towards shallow values - typically 200-300 m - indicating that the rate of deepening slows with overdeepening age. This is reflected in a decline in adverse slope steepness with increasing overdeepening planform size. Finally, overdeepening long-profiles are found to support headward quarrying as the primary factor in overdeepening development. These observations support proposed negative feedbacks related to hydrology and sediment transport that stabilise overdeepening growth through sedimentation on the adverse slope but permit continued overdeepening planform enlargement by processes of headward erosion.

  14. Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Federico [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina); Moreno, Cesar [INFIP-PLADEMA, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Clausse, Alejandro [CNEA-CONICET and Universidad Nacional del Centro, 7000 Tandil (Argentina)

    2005-08-01

    The movement and shaping of the current sheath in coaxial plasma guns is numerically modelled by means of a dynamic finite-elements representation. Numerical instabilities are avoided by a reshaping algorithm applied during the tracking of the current sheath acceleration. Improving upon older versions of the algorithm, the present model includes a delay model to treat the dielectric breakdown. Comparison against experimental measurements showed very good performances in representing the arrival times of the shock front at different filling pressures.

  15. GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS: Cluster Observation of Electrostatic Solitary Waves around Magnetic Null Point in Thin Current Sheet

    Science.gov (United States)

    Li, Shi-You; Deng, Xiao-Hua; Zhou, Meng; Yuan, Zhi-Gang; Wang, Jing-Fang; Lin, Xi; Lin, Min-Hui; Fu, Song

    2010-01-01

    Electrostatic solitary waves (ESWs) are observed in the vicinity of the magnetic null of the widely studied magnetic reconnection taking place at the near-earth tail when current sheet becomes dramatic thinning during substorm time on 1 October 2001. We use the Imada method for the 2-D reconnection model and study the characteristics of ESWs near the X-line region and the magnetic null points. The result shows that the amplitude of the observed ESWs in the vicinity of X-line region ranges from 0.1 mV/m to 5 mV/m, and the amplitude is larger near the magnetic null points. The generation mechanism and the role of ESWs associated with magnetic reconnection are also discussed.

  16. Internal pinch instability at the edge of an inviscid current sheet

    CERN Document Server

    Priede, Jānis

    2015-01-01

    This paper presents numerical analysis a pinch-type instability in a semi-infinite planar layer of inviscid conducting liquid bounded by solid walls and carrying a uniform electric current. The instability resembles the Tayler instability in astrophysics and can presumably disrupt the operation of the recently developed liquid metal batteries (Wang et al. 2014 Nature 514, 348). We show that the instability in liquid metals, which are relatively poor conductors, significantly differs from that in a well conducting fluid. In the latter, instability is dominated by the current perturbation resulting from the advection of the magnetic field. In the former, the instability is dominated by the magnetic field perturbation resulting from the diffusion of the electric current perturbation. As a result, in liquid metals, instability develops on the magnetic response time scale, which depends on the conductivity, and is much longer than the Alfv\\'en time scale, on which the instability develops in a well conducting flui...

  17. Eddy current testing of metallic sheets with defects using force measurements

    Directory of Open Access Journals (Sweden)

    Brauer Hartmut

    2008-01-01

    Full Text Available The problem of determining defects in structures using eddy current methods was investigated. The goal of this work is to demonstrate that the forces generated by the eddy currents and acting back on the magnet system can be used to detect defects in the object. Numerical simulations and experimental investigations have been performed. This novel technique has been found to be sensitive enough to detect even deep defects in an Aluminium bar moving relative to the field-generating magnet system.

  18. Statistical analysis on static recrystallization texture evolution in cold-rolled AZ31 magnesium alloy sheet.

    Science.gov (United States)

    Park, Jun-Ho; Ahn, Tae-Hong; Choi, Hyun-Sik; Chung, Jung-Man; Kim, Dong-Ik; Oh, Kyu Hwan; Han, Heung Nam

    2013-08-01

    Cast AZ31B-H24 magnesium alloy, comprising Mg with 3.27 wt% Al and 0.96 wt% Zn, was cold rolled and subsequently annealed. Global texture evolutions in the specimens were observed by X-ray diffractometry after the thermomechanical processing. Image-based microstructure and texture for the deformed, recrystallized, and grown grains were observed by electron backscattered diffractometry. Recrystallized grains could be distinguished from deformed ones by analyzing grain orientation spread. Split basal texture of ca. ±10-15° in the rolling direction was observed in the cold-rolled sample. Recrystallized grains had widely spread basal poles at nucleation stage; strong {0001} basal texture developed with grain growth during annealing.

  19. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These

  20. Monitoring DC stray current interference of steel sheet pile structures in railway environment

    NARCIS (Netherlands)

    Peelen, W.H.A.; Neeft, E.A.C.; Leegwater, G.; Kanten-Roos, W. van; Courage, W.M.G.

    2011-01-01

    Steel structures near DC powered railways are expected to be affected by stray current interference. This causes accelerated corrosion rates. Therefore steel is often not used as a building material in these cases, although certain advantages over the alternative material concrete exist. These advan

  1. As it happens: current directions in experimental evolution.

    Science.gov (United States)

    Bataillon, Thomas; Joyce, Paul; Sniegowski, Paul

    2013-02-23

    Recent decades have seen a significant rise in studies in which evolution is observed and analysed directly-as it happens-under replicated, controlled conditions. Such 'experimental evolution' approaches offer a degree of resolution of evolutionary processes and their underlying genetics that is difficult or even impossible to achieve in more traditional comparative and retrospective analyses. In principle, experimental populations can be monitored for phenotypic and genetic changes with any desired level of replication and measurement precision, facilitating progress on fundamental and previously unresolved questions in evolutionary biology. Here, we summarize 10 invited papers in which experimental evolution is making significant progress on a variety of fundamental questions. We conclude by briefly considering future directions in this very active field of research, emphasizing the importance of quantitative tests of theories and the emerging role of genome-wide re-sequencing.

  2. Current approaches in evolution: from molecules to cells and organisms.

    Science.gov (United States)

    Thattai, Mukund; Peisajovich, Sergio G

    2014-11-01

    This is an exciting time to be an evolutionary biologist. Indeed, it is difficult to keep up with all the studies that fall under the broad category of "Evolution" since they span species, traits, and scales of organization. This special issue gives a flavor of exciting new approaches in evolutionary biology, but also emphasizes universal themes. The reviews contained here discuss important aspects of molecular evolution at multiple scales, from individual proteins to complex regulatory networks, as well as from unicellular organisms to macroscopic traits in animals. Though the model systems are diverse, the issues addressed are fundamental: the origin of evolutionary novelties, and the forces that drive them to fixation.

  3. Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets

    Science.gov (United States)

    Liu, Jing; Gao, Xiaolong; Zhang, Jianxun

    2016-11-01

    The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.

  4. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Yin, D.L.; Zhang, K.F.; Wang, G.F. [School of Material Science and Technology, Harbin Inst. of Tech. (China)

    2005-07-01

    Fine-grained AZ31 magnesium alloy sheets were prepared through hot rolling process. The superplastic properties of hot-rolled AZ31 Mg alloy was examined by uniaxial tensile tests at a temperature range 250{proportional_to}450 C and strain rate range 0.7 x 10{sup -3}{proportional_to}1.4 x 10{sup -1} s{sup -1}. Optical and scanning electronic microscope (SEM) were used to observe the microstructure evolution and fracture behavior in superplastic deformation of AZ31 Mg alloy and the values of deformation activation energy at various temperatures were calculated. It is demonstrated that, the hot-rolled AZ31 alloy begins to exhibit superplasticity from 300 C and a maximum elongation of 362.5% is obtained at 400 C and 0.7 x 10{sup -3} s{sup -1}. In the temperature range 300{proportional_to}400 C, the dominant superplastic deformation mechanism is grain boundary sliding (GBS) controlled by grain boundary diffusion and the influence of temperature on the fracture behavior of AZ31 Mg alloy is characterized by the change from dimple-aggregating type to intercrystalline one. (orig.)

  5. Deglacial to Holocene history of ice-sheet retreat and bottom current strength on the western Barents Sea shelf

    Science.gov (United States)

    Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann

    2017-10-01

    High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.

  6. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    Science.gov (United States)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the

  7. Early steps in plastid evolution: current ideas and controversies.

    Science.gov (United States)

    Bodył, Andrzej; Mackiewicz, Paweł; Stiller, John W

    2009-11-01

    Some nuclear-encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi-protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear-encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into fully integrated organelles. From this perspective it is more parsimonious to presume the early evolution of post-translational protein import via simpler, ancestral forms of modern Toc and Tic plastid translocons, with EM trafficking arising later to accommodate glycosylation and/or protein targeting to multiple cellular locations. This hypothesis is supported by both empirical and comparative data, and is consistent with the relative paucity of EM-based transport to modern primary plastids.

  8. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    NARCIS (Netherlands)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-01-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the cl

  9. Impact of ice sheet meltwater fluxes on the climate evolution at the onset of the Last Interglacial

    NARCIS (Netherlands)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-01-01

    Large climate perturbations occurred during the transition between the penultimate glacial period and the Last Interglacial (Termination II), when the ice sheets retreated from their glacial configuration. Here we investigate the impact of ice sheet changes and associated freshwater fluxes on the

  10. Robotics in urological surgery: evolution, current status and future perspectives.

    Science.gov (United States)

    Sivaraman, A; Sanchez-Salas, R; Prapotnich, D; Barret, E; Mombet, A; Cathala, N; Rozet, F; Galiano, M; Cathelineau, X

    2015-09-01

    Robotic surgery is rapidly evolving and has become an essential part of surgical practice in several parts of the world. Robotic technology will expand globally and most of the surgeons around the world will have access to surgical robots in the future. It is essential that we are updated about the outcomes of robot assisted surgeries which will allow everyone to develop an unbiased opinion on the clinical utility of this innovation. In this review we aim to present the evolution, objective evaluation of clinical outcomes and future perspectives of robot assisted urologic surgeries. A systematic literature review of clinical outcomes of robotic urological surgeries was made in the PUBMED. Randomized control trials, cohort studies and review articles were included. Moreover, a detailed search in the web based search engine was made to acquire information on evolution and evolving technologies in robotics. The present evidence suggests that the clinical outcomes of the robot assisted urologic surgeries are comparable to the conventional open surgical and laparoscopic results and are associated with fewer complications. However, long term results are not available for all the common robotic urologic surgeries. There are plenty of novel developments in robotics to be available for clinical use in the future. Robotic urologic surgery will continue to evolve in the future. We should continue to critically analyze whether the advances in technology and the higher cost eventually translates to improved overall surgical performance and outcomes. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Evolution of the subglacial hydrologic system beneath the rapidly decaying Cordilleran Ice Sheet caused by ice-dammed lake drainage: implications for meltwater-induced ice acceleration

    Science.gov (United States)

    Burke, Matthew J.; Brennand, Tracy A.; Perkins, Andrew J.

    2012-09-01

    A positive correlation between ice-dammed lake drainage and ice acceleration at Antarctic Ice Sheets (AIS) and land-terminating sections of the Greenland Ice Sheet (GrIS) has been implicated in enhanced ice sheet decay. However, the paucity of direct measurements at the ice sheet bed restricts our understanding of subglacial drainage system evolution in response to transient water inputs. We present evidence that two meltwater corridors on the former bed of the thin (˜600 m at Last Glacial Maximum over the interior Plateaus of British Columbia) and rapidly decaying Cordilleran Ice Sheet (CIS) were generated subglacially in response to the drainage of an ice-dammed lake and operated as canals (tunnel channels). Geomorphological, ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) data reveal a simple event sequence that includes initial propagation of a broad (at least 2.5 km wide) floodwave (inefficient drainage) from an ice-dammed lake, over relatively short (3-24 km) zones at the corridor heads that collapsed into efficient canals (large (up to 0.25-2.5 km wide) channels incised down into the sediment bed and up into the ice) downglacier. Canal formation on the southern Fraser Plateau involved synchronous (along the full canal length) system development, including elements of headward erosion and plunge pool formation. Our data suggest that ice-dammed lake drainage beneath a rapidly decaying thin ice mass that has an efficient antecedent drainage network is not conducive to large-scale ice acceleration. These data may aid better assessment of the role of ice-dammed lake drainage on the dynamics of former, as well as contemporary, ice sheets.

  12. THE EVOLUTION OF ECONOMIC GLOBALIZATION DURING THE CURRENT GLOBAL CRISIS

    Directory of Open Access Journals (Sweden)

    Sabina Tuca

    2013-12-01

    Full Text Available The current economic crisis constitutes a serious test for the process of globalization. The purpose of this study is to analyze the influence of the current global crisis on economic globalization. To assess the impact of the current crisis on economic globalization, this paper examines the KOF Index of Globalization, before and during the crisis. The findings generally support the idea that economic globalization has been, in fact, weakened, after the onset of the current crisis. However, there is evidence that suggest that economic globalization has resumed the upward trend that characterized it before the crisis. Despite the fact the global crisis has shaken the process of globalization, we cannot talk of an end of globalization, as some predictions have indicated.

  13. Triassic salt sheets of Mezzouna, Central Tunisia: New comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin

    Science.gov (United States)

    Dhahri, Ferid; Boukadi, Noureddine

    2017-05-01

    Two discrete Triassic salt sheets have been discovered within the Coniacian-Santonian series near the salt wall of Mezzouna, central Tunisia. The structure and the lithology of these sheets suggest two halokinetic episodes giving respectively 1) Triassic evaporitic rocks flows over a sloped basin floor resulting in probable salt glacier, and 2) redeposition of erosional debris from the nearby salt wall of Mezzouna, transported and then deposited next to the wall. This finding is used to precise the halokinetic events and the geodynamic evolution of the northern African margin near the Pelagian block between southeastern Tunisia and Tripolitania during Late Cretaceous. A discussion of the halokinesis-related structures is also attempted with emphasize of their genetic mechanisms and temporal development as inferred from geological mapping and new field data.

  14. Evolution of the large-scale atmospheric circulation in response to changing ice sheets over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Löfverström

    2014-07-01

    Full Text Available We present modelling results of the atmospheric circulation at the cold periods of marine isotope stage 5b (MIS 5b, MIS 4 and the Last Glacial Maximum (LGM, as well as the interglacial. The palaeosimulations are forced by ice-sheet reconstructions consistent with geological evidence and by appropriate insolation and greenhouse gas concentrations. The results suggest that the large-scale atmospheric winter circulation remained largely similar to the interglacial for a significant part of the glacial cycle. The proposed explanation is that the ice sheets were located in areas where their interaction with the mean flow is limited. However, the LGM Laurentide Ice Sheet induces a much larger planetary wave that leads to a zonalisation of the Atlantic jet. In summer, the ice-sheet topography dynamically induces warm temperatures in Alaska and central Asia that inhibits the expansion of the ice sheets into these regions. The warm temperatures may also serve as an explanation for westward propagation of the Eurasian Ice Sheet from MIS 4 to the LGM.

  15. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao, E-mail: egnever@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  16. The Evolution of the Electric Current during the Formation and Eruption of Active-region Filaments

    Science.gov (United States)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan; Xue, Zhike; Xiang, Yongyuan; Li, Hao

    2016-02-01

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period, respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.

  17. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  18. Fine structure of flare ribbons and evolution of electric currents

    CERN Document Server

    Sharykin, I N

    2014-01-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains the flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of C2.1 flare of August 15, 2013, observed with New Solar Telescope (NST) of Big Bear Solar Observatory, Solar Dynamics Observatory (SDO), GOES and FERMI spacecraft. The observations reveal previously unresolved sub-arcsecond structure of the flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe red-blue asymmetry of H alpha flare ribbons with a width as small as 100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be r...

  19. [Asperger syndrome: evolution of the concept and current clinical data].

    Science.gov (United States)

    Aussilloux, C; Baghdadli, A

    2008-05-01

    Although Asperger syndrome is described by international classifications as a category of pervasive developmental disorder (PDD), its validity as a specific entity distinct from autistic disorders remains controversial. The syndrome, first described by Hans Asperger, could not be distinguished from high functioning autism (onset, symptoms, outcome...). However, international classifications propose a distinction between the two syndromes based on a delayed onset, the absence of speech delay, the presence of motor disorders and a better outcome in Asperger syndrome. This categorical differentiation is not confirmed by current studies and in the absence of biological markers, no clinical, neuropsychological or epidemiological criteria makes it possible to distinguish high functioning autism from Asperger syndrome. From a clinical perspective, it is nevertheless of interest to isolate Asperger syndrome from other autistic disorders to propose specific assessment and therapy.

  20. The Evolution of Process Safety: Current Status and Future Direction.

    Science.gov (United States)

    Mannan, M Sam; Reyes-Valdes, Olga; Jain, Prerna; Tamim, Nafiz; Ahammad, Monir

    2016-06-01

    The advent of the industrial revolution in the nineteenth century increased the volume and variety of manufactured goods and enriched the quality of life for society as a whole. However, industrialization was also accompanied by new manufacturing and complex processes that brought about the use of hazardous chemicals and difficult-to-control operating conditions. Moreover, human-process-equipment interaction plus on-the-job learning resulted in further undesirable outcomes and associated consequences. These problems gave rise to many catastrophic process safety incidents that resulted in thousands of fatalities and injuries, losses of property, and environmental damages. These events led eventually to the necessity for a gradual development of a new multidisciplinary field, referred to as process safety. From its inception in the early 1970s to the current state of the art, process safety has come to represent a wide array of issues, including safety culture, process safety management systems, process safety engineering, loss prevention, risk assessment, risk management, and inherently safer technology. Governments and academic/research organizations have kept pace with regulatory programs and research initiatives, respectively. Understanding how major incidents impact regulations and contribute to industrial and academic technology development provides a firm foundation to address new challenges, and to continue applying science and engineering to develop and implement programs to keep hazardous materials within containment. Here the most significant incidents in terms of their impact on regulations and the overall development of the field of process safety are described.

  1. Modified pulsar current analysis: probing magnetic field evolution

    CERN Document Server

    Igoshev, A P

    2014-01-01

    We use a modified pulsar current analysis to study magnetic field decay in radio pulsars. In our approach we analyse the flow, not along the spin period axis as has been performed in previous studies, but study the flow along the direction of growing characteristic age, $\\tau=P/(2\\dot P)$. We perform extensive tests of the method and find that in most of the cases it is able to uncover non-negligible magnetic field decay (more than a few tens of per cent during the studied range of ages) in normal radio pulsars for realistic initial properties of neutron stars. However, precise determination of the magnetic field decay timescale is not possible at present. The estimated timescale may differ by a factor of few for different sets of initial distributions of neutron star parameters. In addition, some combinations of initial distributions and/or selection effects can also mimic enhanced field decay. We apply our method to the observed sample of radio pulsars at distances $<10$ kpc in the range of characteristi...

  2. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films.

    Science.gov (United States)

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-15

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  3. Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one-dimensional spin-current conducting films

    Science.gov (United States)

    Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-Ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo

    2016-03-01

    Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.

  4. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Directory of Open Access Journals (Sweden)

    E. Amata

    2006-01-01

    Full Text Available We study plasma transport at a thin magnetopause (MP, described hereafter as a thin current sheet (TCS, observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF model in the magnetosheath (MSH up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23. The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV, being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006.

  5. Polar conic current sheets as sources and channels of energetic particles in the high-latitude heliosphere

    Science.gov (United States)

    Khabarova, Olga; Malova, Helmi; Kislov, Roman; Zelenyi, Lev; Obridko, Vladimir; Kharshiladze, Alexander; Tokumaru, Munetoshi; Sokół, Justyna; Grzedzielski, Stan; Fujiki, Ken'ichi; Malandraki, Olga

    2017-04-01

    The existence of a large-scale magnetically separated conic region inside the polar coronal hole has been predicted by the Fisk-Parker hybrid heliospheric magnetic field model in the modification of Burger and co-workers (Burger et al., ApJ, 2008). Recently, long-lived conic (or cylindrical) current sheets (CCSs) have been found from Ulysses observations at high heliolatitudes (Khabarova et al., ApJ, 2017). The characteristic scale of these structures is several times lesser than the typical width of coronal holes, and the CCSs can be observed at 2-3 AU for several months. CCS crossings in 1994 and 2007 are characterized by sharp decreases in the solar wind speed and plasma beta typical for predicted profiles of CCSs. In 2007, a CCS was detected directly over the South Pole and strongly highlighted by the interaction with comet McNaught. The finding is confirmed by restorations of solar coronal magnetic field lines that reveal the occurrence of conic-like magnetic separators over the solar poles both in 1994 and 2007. Interplanetary scintillation data analysis also confirms the existence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. The occurrence of long-lived CCSs in the high-latitude solar wind could shed light on how energetic particles reach high latitudes. Energetic particle enhancements up to tens MeV were observed by Ulysses at edges of CCSs both in 1994 and 2007. In 1994 this effect was clearer, probably due to technical reasons. Accelerated particles could be produced either by magnetic reconnection at the edges of a CCS in the solar corona or in the solar wind. We discuss the role of high-latitude CCSs in propagation of energetic particles in the heliosphere and revisit previous studies of energetic particle enhancements at high heliolatitudes. We also suggest that the existence of a CCS can modify the distribution of the solar wind as a function of heliolatitude and consequently impact ionization

  6. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

  7. Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet

    NARCIS (Netherlands)

    van Angelen, J. H.; van den Broeke, M. R.; Wouters, B.; Lenaerts, J. T M

    2013-01-01

    We assess the contemporary (1960–2012) surface mass balance (SMB) of the Greenland ice sheet (GrIS), its individual components and trends. We use output of the high-resolution (11 km) regional atmospheric climate model (RACMO2), evaluated with automatic weather stations and GRACE data. A persistent

  8. Chemical vapor deposition of monolayer WS2 nano- sheets on Au foils toward direct application in hydrogen evolution

    Institute of Scientific and Technical Information of China (English)

    Yanshuo Zhang[1; Jianping Shi[1; Gaofeng Han[3; Minjie Li[2; Qingqing Ji[2; Donglin Ma[2; Yu Zhang[1,2; Cong Li[1,2; Xingyou Lang[3; Yanfeng Zhang[1,2; Zhongfan Liu[2

    2015-01-01

    Monolayer tungsten disulfide (WS2), a typical member of the semiconducting transition metal dichalcogenide family has drawn considerable interest because of its unique properties. Intriguingly the edge of WS2 exhibits an ideal hydrogen binding energy which makes WS2 a potential alternative to Pt-based electrocatalysts for the hydrogen evolution reaction (HER). Here, we demonstrate for the first time the successful synthesis of uniform monolayer WS2 nanosheets on centimeter- scale Au foils using a facile, low-pressure chemical vapor deposition method. The edge lengths of the universally observed triangular WS2 nanosheets are tunable from -100 to N1,000 nm. The WS2 nanosheets on Au foils featuring abundant edges were then discovered to be efficient catalysts for the HER, exhibiting a rather high exchange current density of -30.20 μA/cm2 and a small onset potential of Nl10 mV. The effects of coverage and domain size (which correlate closely with the active edge density of WS2) on the electrocatalytic activity were investigated. This work not only provides a novel route toward the batch-production of monolayer WS2 via the introduction of metal foil substrates but also opens up its direct application for facile HER.

  9. Simultaneous observation of the poleward expansion of substorm electrojet activity and the tailward expansion of current sheet disruption in the near-earth magnetotail

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.E. (Univ. of Maryland, College Park (United States)); Koskinen, H.E.J.; Pulkkinen, T.I. (Finnish Meteorological Inst., Helsinki (Finland)); Boesinger, T. (Univ. of Oulu (Finland)); McEntire, R.W.; Potemra, T.A. (Johns Hopkins Univ., Laurel, MD (United States))

    1993-06-01

    This paper reports on observations of a magnetospheric substorm on June 7, 1985. This event was observed simultaneously by a number of different systems. Particle and magnetic field data were collected by AMPTE/CCE, located near the neutral sheet; magnetic field data was monitored by the EISCAT magnetometer cross; STARE radar data was also collected; and Pi 1 data from Sodankyla. The ground based systems observed the poleward and westward expansion of electrojet activity at the start of the storm. The satellite was able to see the storms onset, and record perturbations in the current sheet at the onset of the substorm, in addition to later perturbations, which the authors argue originates tailward of the satellite. Satellite measurements are shown to occur in conjunction with ground events.

  10. RESULTS OF CALCULATION-EXPERIMENTAL INVESTIGATIONS OF ELECTRO-THERMAL RESISTIBILITY OF SHEET STEEL SAMPLES TO ACTION OF RATIONED COMPONENTS OF PULSED CURRENT OF ARTIFICIAL LIGHTING

    Directory of Open Access Journals (Sweden)

    M.I. Baranov

    2016-06-01

    Full Text Available Purpose. Calculation and experimental researches of the electro-thermal resistibility of the steel sheet samples to action standard pulse current components of the artificial lightning with amplitude-time parameters (ATP, corresponded the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. Methodology. Electrophysics bases of technique of high tensions and large impulsive currents (LIC, and also scientific and technical bases of planning of devices of high-voltage impulsive technique and measuring in them LIC. Сurrent amplitude ImA=±200 kA (with a tolerance of ±10 %; current action integral JA=2∙106 A2•s (with a tolerance of ±20 %; time, corresponding to the amplitude of the current ImA, tmA≤50 microseconds; the duration of the current flow τpA≤500 microseconds. Results. The results of the evaluation of the calculated and experimental studies of electro-thermal resistance of the samples of plates measuring 0,5 m  0,5 m stainless steel 1 mm thickness to the action on them artificial lightning impulse currents with rationed ATP on the requirements of normative documents of USA for SAE ARP 5412 & SAE ARP 5416. A pulse A- component have a first amplitude 192 kA, the corresponding time of 34 μs, and the duration aperiodic component amplitude 804 A, corresponding to the time 9 ms. It has been shown that the long C- component current of artificial lightning can lead to keyhole these samples. The diameter of the holes in this thin steel sheet, which is formed during the flow of current C- components can reach 15 mm. The results of calculation and experiment agree within 28 %. Originality. For the first time in world practice on the generator large pulsed currents experimental studies of resistibility of sheet steel samples to the action of artificial lightning currents with critical parameters. Practical value. Using the results obtained in the practice of lightning protection will significantly improve the

  11. Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas

    Science.gov (United States)

    Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.

    2016-10-01

    V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.

  12. Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations

    Science.gov (United States)

    Nishimura, Yukitoshi; Kikuchi, Takashi; Ebihara, Yusuke; Yoshikawa, Akimasa; Imajo, Shun; Li, Wen; Utada, Hisashi

    2016-08-01

    We investigated evolution of ionospheric currents during sudden commencements using a ground magnetometer network in conjunction with an all-sky imager, which has the advantage of locating field-aligned currents much more accurately than ground magnetometers. Preliminary (PI) and main (MI) impulse currents showed two-cell patterns propagating antisunward, particularly during a southward interplanetary magnetic field (IMF). Although this overall pattern is consistent with the Araki (solar wind sources of magnetospheric ultra-low-frequency waves. Geophysical monograph series, vol 81. AGU, Washington, DC, pp 183-200, 1994. doi: 10.1029/GM081p0183) model, we found several interesting features. The PI and MI currents in some events were highly asymmetric with respect to the noon-midnight meridian; the post-noon sector did not show any notable PI signal, but only had an MI starting earlier than the pre-noon MI. Not only equivalent currents but also aurora and equatorial magnetometer data supported the much weaker PI response. We suggest that interplanetary shocks impacting away from the subsolar point caused the asymmetric current pattern. Additionally, even when PI currents form in both pre- and post-noon sectors, they can initiate and disappear at different timings. The PI currents did not immediately disappear but coexisted with the MI currents for the first few minutes of the MI. During a southward IMF, the MI currents formed equatorward of a preexisting DP-2, indicating that the MI currents are a separate structure from a preexisting DP-2. In contrast, the MI currents under a northward IMF were essentially an intensification of a preexisting DP-2. The magnetometer and imager combination has been shown to be a powerful means for tracing evolution of ionospheric currents, and we showed various types of ionospheric responses under different upstream conditions.

  13. Microstructure and texture evolution of ultra-thin grain-oriented silicon steel sheet fabricated using strip casting and three-stage cold rolling method

    Science.gov (United States)

    Song, Hong-Yu; Liu, Hai-Tao; Wang, Yin-Ping; Wang, Guo-Dong

    2017-03-01

    A 0.1 mm-thick grain-oriented silicon steel sheet was successfully produced using strip casting and three-stage cold rolling method. The microstructure, texture and inhibitor evolution during the processing was briefly analyzed. It was found that Goss texture was absent in the hot rolled sheet because of the lack of shear deformation. After normalizing, a large number of dispersed MnS precipitates with the size range of 15-90 nm were produced. During first cold rolling, dense shear bands were generated in the deformed ferrite grains, resulting in the intense Goss texture after first intermediate annealing. The microstructure was further refined and homogenized during the subsequent cold rolling and annealing processes. After primary recrystallization annealing, a homogeneous microstructure consisting of fine and equiaxed grains was produced while the associated texture was characterized by a strong γ-fiber texture. Finally, a complete secondary recrystallization microstructure consisting of entirely large Goss grains was produced. The magnetic induction B8 and iron loss P10/400 was 1.79 T and 6.9 W/kg, respectively.

  14. The Co-Evolution of Galaxies and Black Holes: Current Status and Future Prospects

    CERN Document Server

    Heckman, T M

    2008-01-01

    I begin by summarizing the evidence that there is a close relationship between the evolution of galaxies and supermassive black holes. They evidently share a common fuel source, and feedback from the black hole may be needed to suppress over-cooling in massive galaxies. I then review what we know about the co-evolution of galaxies and black holes in the modern universe (z 2) the most massive black holes and the progenitors of the most massive galaxies are forming. Here, we currently have a tantalizing but fragmented view of their co-evolution. In the next decade the huge increase in sensitivity and discovery power of our observatories will enable us to analyze the large, complete samples we need to achieve robust and clear results.

  15. Evolution of the Topology, Electric Currents, and Ribbons during an X-class Flare

    Science.gov (United States)

    Savcheva, Antonia; Janvier, Miho; Pariat, Etienne

    2016-05-01

    The standard model for eruptive flares has in the past few years been extended to 3D. It predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the Quasi-Separatrix Layers (QSLs). We study the evolution of the photospheric traces of the current density and the flare ribbons observed with SDO. We aim at comparing their morphology and their time evolution, before and during the flare, with the topological features found in a magnetic field model. For this purpose we investigate the photospheric current evolution during the 6 Sep 2011 X-class flare occurring in AR11283 from observational data of the magnetic field obtained with HMI. This evolution is compared with that of the flare ribbons observed with AIA. We also compare the observed electric current density and the flare ribbon morphology with that of the QSLs computed from magnetic field models obtained from the the flux rope insertion method. Both the NLFFF and the unstable (eruptive) model show the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding in elongated flux rope that appears in the observations as two parts of a filament. The magnetofrictional evolution of the unstable model tells a consistent story of the filament eruption in which topology plays an important role. The photospheric QSL traces of the fan configuration appear as an elongated flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained at several times during the flare. For the first time, we propose a combined analysis of the photospheric traces of an eruptive flare, in a complex topology, with direct measurements of electric currents and QSLs from observational data and a magnetic field model. The results obtained by two independent

  16. Optimization of Fusion Zone Grain Size, Hardness, and Ultimate Tensile Strength of Pulsed Current Microplasma Arc Welded AISI 304L Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Kondapalli

    2014-01-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace, and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Microplasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. The quality of welded joint depends on the grain size, hardness, and ultimate tensile strength, which have to be properly controlled and optimized to ensure better economy and desirable mechanical characteristics of the weld. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to grain size, and ultimate tensile strength in PCMPAW of AISI 304L sheets. The experiments were conducted based on a five-factor, five-level central composite rotatable design matrix. A genetic algorithm (GA was developed to optimize the process parameters for achieving the desired grain size, hardness, and ultimate tensile strength.

  17. Three-dimensional Geometry of a Current Sheet in the High Solar Corona: Evidence for Reconnection in the Late Stage of the Coronal Mass Ejections

    Science.gov (United States)

    Kwon, Ryun-Young; Vourlidas, Angelos; Webb, David

    2016-07-01

    Motivated by the standard flare model, ray-like structures in the wake of coronal mass ejections (CMEs) have been often interpreted as proxies of the reconnecting current sheet connecting the CME with the postflare arcade. We present the three-dimensional properties of a post-CME ray derived from white light images taken from three different viewing perspectives on 2013 September 21. By using a forward modeling method, the direction, cross section, and electron density are determined within the heliocentric distance range of 5-9 R ⊙. The width and depth of the ray are 0.42 ± 0.08 R ⊙ and 1.24 ± 0.35 R ⊙, respectively, and the electron density is (2.0 ± 0.5) × 104 cm-3, which seems to be constant with height. Successive blobs moving outward along the ray are observed around 13 hr after the parent CME onset. We model the three-dimensional geometry of the parent CME with the Gradual Cylindrical Shell model and find that the CME and ray are coaxial. We suggest that coaxial post-CME rays, seen in coronagraph images, with successive formation of blobs could be associated with current sheets undergoing magnetic reconnection in the late stage of CMEs.

  18. Contemporary (1960-2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet

    Science.gov (United States)

    van Angelen, J. H.; van den Broeke, M. R.; Wouters, B.; Lenaerts, J. T. M.

    2014-09-01

    We assess the contemporary (1960-2012) surface mass balance (SMB) of the Greenland ice sheet (GrIS), its individual components and trends. We use output of the high-resolution (11 km) regional atmospheric climate model (RACMO2), evaluated with automatic weather stations and GRACE data. A persistent negative North Atlantic oscillation index over the last 6 years resulted in the summertime advection of relatively warm continental air toward the GrIS. Added to the enhanced radiative forcing by increased CO2 levels, this has resulted in an increase in near-surface temperature of more than 2 K during 2007-2012 compared to 1960-1990. The associated decrease in albedo led to an extra absorption of shortwave radiation of ˜6 Wm-2 (11 %) in the summer months, which is the main driver of enhanced surface melting and runoff in recent years. From 1990 onward, we see a steady increase in meltwater runoff and an associated decrease in the SMB, accelerating after 2005, with the record low SMB year in 2010. Despite the fact that the GrIS was subject to the highest surface melt rates in 2012, relatively high accumulation rates prevented 2012 to set a record low SMB. In 2012, melt occurred relatively high on the ice sheet where melt water refreezes in the porous firn layer. Up to 2005, increased runoff was partly offset by increased accumulation rates. Since then, accumulation rates have decreased, resulting in low SMB values. Other causes of decreased SMB are the loss of firn pore space and decreasing refreezing rates in the higher ablation area. The GrIS has lost in total 1,800 ± 300 Gt of mass from surface processes alone since 1990 and about half of that in the last 6 years.

  19. Enhancement of photocatalytic H2 evolution over TiO2 nano-sheet films by surface loading NiS nanoparticles

    Science.gov (United States)

    Liu, Yaopeng; Tang, Chunni

    2016-05-01

    NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV-Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm-2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.

  20. Early evolution of electron cyclotron driven current during suppression of tearing modes in a circular tokamak

    CERN Document Server

    Pratt, J; Westerhof, E

    2016-01-01

    When electron cyclotron (EC) driven current is first applied to the inside of a magnetic island, the current spreads throughout the island and after a short period achieves a steady level. Using a two equation fluid model for the EC current that allows us to examine this early evolution in detail, we analyze high-resolution simulations of a 2/1 classical tearing mode in a low-beta large aspect-ratio circular tokamak. These simulations use a nonlinear 3D reduced-MHD fluid model and the JOREK code. During the initial period where the EC driven current grows and spreads throughout the magnetic island, it is not a function of the magnetic flux. However, once it has reached a steady-state, it should be a flux function. We demonstrate numerically that if sufficiently resolved toroidally, the steady-state EC driven current becomes approximately a flux function. We discuss the physics of this early period of EC evolution and its impact on the size of the magnetic island.

  1. Effects of electron cyclotron current drive on the evolution of double tearing mode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Guanglan, E-mail: sunguanglan@nciae.edu.cn; Dong, Chunying [Basic Science Section, North China Institute of Aerospace Engineering, Langfang 065000 (China); Duan, Longfang [School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang 065000 (China)

    2015-09-15

    The effects of electron cyclotron current drive (ECCD) on the double tearing mode (DTM) in slab geometry are investigated by using two-dimensional compressible magnetohydrodynamics equations. It is found that, mainly, the double tearing mode is suppressed by the emergence of the secondary island, due to the deposition of driven current on the X-point of magnetic island at one rational surface, which forms a new non-complete symmetric magnetic topology structure (defined as a non-complete symmetric structure, NSS). The effects of driven current with different parameters (magnitude, initial time of deposition, duration time, and location of deposition) on the evolution of DTM are analyzed elaborately. The optimal magnitude or optimal deposition duration of driven current is the one which makes the duration of NSS the longest, which depends on the mutual effect between ECCD and the background plasma. Moreover, driven current introduced at the early Sweet-Parker phase has the best suppression effect; and the optimal moment also exists, depending on the duration of the NSS. Finally, the effects varied by the driven current disposition location are studied. It is verified that the favorable location of driven current is the X-point which is completely different from the result of single tearing mode.

  2. Evolution of Wave Energy Deposition Profile in HT-7 Lower Hybrid Current Drive Experiment

    Institute of Scientific and Technical Information of China (English)

    方瑜德; 石跃江; 匡光力; 刘岳修; 沈慰慈; 丁伯江

    2001-01-01

    Lower hybrid waves (LHWs) with a selected n‖ spectrum have been used to control the energy deposition profiles, and then the wave driven current profiles effectively in tokamak discharges. In our lower hybrid current drive experiment in the HT-7 tokamak, it was found that the set-up of the wave energy deposition profile is a graduation process. In the beginning phase of the wave injection duration, the waves (with different n‖ spectra)deposit almost all their energy in the central region of the plasma column, even if their n‖ are very different. Up to around one hundred milliseconds, the wave energy deposition profiles can only take their corresponding shapes according to the n‖ spectra of LHWs. It also shown that this evolution process is affected obviously by the LHW driven current profile, which has been formed early.

  3. Evolution of the magnetospheric storm-ring current with a constant time delay

    Energy Technology Data Exchange (ETDEWEB)

    Cluadegonzalez, A.L.; Gonzalez, W.D.; Detman, T.R.; Joselyn, J.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)

    1994-01-01

    Using the energy balance equation for the ring current during magnetic storms, a theoretical study of the response of this current is done, for the case of a constant time decay tau. The input energy function for the balance equation is assumed to be described by a simple time variation during the injection time, such that an analytical response can be obtained. The model is used for 5 of the 10 intense storms in the interval August 1978-December 1979, for which the ISEE-3 interplanetary data are available. The energy input function for these 5 events (those with less data gaps) is assumed to be one of both, the azimuthal interplanetary electric field or the Akasofu`s coupling function. These input functions are approximated by one of the simple mentioned input functions and the solution obtained from the energy balance equation, for different values of tau, is compared to the actual evolution of the ring current (derived from the geomagnetic index Dst). The sets of input functions and tau values that better reproduce the observed storm evolution are adopted as the best approximation. As a conclusion, it is found that the more appropriate values of tau are longer than those determined in previous studies, especially for the case of more intense storms.

  4. A Conceptual Analysis of Current Trends in the Evolution of Risk Management Process

    Directory of Open Access Journals (Sweden)

    Monika Wieczorek-Kosmala

    2013-11-01

    Full Text Available Purpose of the article: The traditional idea of risk management is continually evolving as it enjoys growing popularity in corporations. The paper reviews the risk management procedure within the traditional concept and then identifies and discusses the main trends currently observed within the organisation and implementation of this procedure. Scientific aim: The paper aims at identyfing and describing the currently observed trends in the evolution of risk management process. To achieve this, it aims at comparative analysis of solutions within traditional risk management concept and the ideas underpinning the current process of risk management standardisation. It also aims at reviewing the validity of clasiffication of risk treatment techniques. Methodology/methods: The paper represents a conceptual analysis of the current state of affairs and uses the method of comparative analysis and deduction based on the literature review and the lecture of standardisation documents. As a viewpoint paper, it represents au-thor’s own ideas and findings. Findings: The two main trends of risk management evolution should be idetified. The first one is related with strategic dimension of risk management as this procedure is often promoted as an integrated concept. It springs from the regulations of standardisation procedures which aim at unifying the terminology and set of activities from practitioners’ perspective. The second direction of risk management concept evolution is observed within the development of risk financing techniques due to the innovations observed within traditional risk retention and trasfer solutions, as a result of continuous convergence of insurance and capital markets. Conclusions: (limits, implications etc The risk management process is constantly evolving toward the strategic dimension as the risk perception changes, concerning both the downside and upside of risk. However, the standards follow similar sequence of

  5. Current views on hunter-gatherer nutrition and the evolution of the human diet.

    Science.gov (United States)

    Crittenden, Alyssa N; Schnorr, Stephanie L

    2017-01-01

    Diet composition and food choice are not only central to the daily lives of all living people, but are consistently linked with turning points in human evolutionary history. As such, scholars from a wide range of fields have taken great interest in the role that subsistence has played in both human cultural and biological evolution. Central to this discussion is the diet composition and nutrition of contemporary hunters and gatherers, who are frequently conscripted as model populations for ancestral human nutrition. Research among the world's few remaining foraging populations is experiencing a resurgence, as they are making the final transition away from diets composed of wild foods, to those dominated by domesticated cultigens and/or processed foods. In an effort to glean as much information as possible, before such populations are no longer hunting and gathering, researchers interested in the evolution of human nutrition are rapidly collecting and accessing new and more data. Methods of scientific inquiry are in the midst of rapid change and scholars are able to revisit long-standing questions using state of the art analyses. Here, using the most relevant findings from studies in ethnography, nutrition, human physiology, and microbiomes, we provide a brief summary of the study of the evolution of human nutrition as it has specifically pertained to data coming from living hunter-gatherers. In doing so, we hope to bridge the disciplines that are currently invested in research on nutrition and health among foraging populations. © 2017 American Association of Physical Anthropologists.

  6. The Current Outbreak of Ebola virus is still Continue in Guinea, Liberia and Sierra Leone: A Fact Sheet

    Directory of Open Access Journals (Sweden)

    Tauseef Ahmad

    2015-01-01

    Full Text Available The current outbreak of the Ebola virus occurred in the West Africa and it is the largest and more lethal outbreak in the history of Ebola virus. Thousands of peoples were infected along with thousands of death. The first case of current outbreak of Ebola virus was reported from Guine and acute;e Forestie` re (Forested Guinea, eastern area of Guinea in December 2013 (Ahmad, 2014; Baize et al., 2014; Gatherer, 2014. But in March 2014 the diseases spread so much fast and infected the surrounding countries Liberia and Sierra Leone. While in August 2014 the Ebola virus were reported from the Nigeria (Ahmad, 2014. [Biomed Res Ther 2015; 2(1.000: 193-195

  7. Drifter Observations Of Wave-Current Evolution Through The San Francisco Bight

    Science.gov (United States)

    Pearman, D. W.; Herbers, T. H.; Janssen, T. T.; McIntyre, S.; Jessen, P.

    2012-12-01

    Ocean waves approaching the Golden Gate, the narrow strait connecting the San Francisco Bay to the Pacific Ocean, are affected by refraction over the San Francisco Bar and the strong tidal currents in the area. During ebb tides, when currents through the Golden Gate can exceed 2.5 m/s, the approach to San Francisco Bay is characterized by focusing and steepening of the incident wave field on the opposing current jet. These dynamics are not uncommon in coastal inlets and are known to present hazardous navigation conditions. The strong inhomogeneity and enhanced nonlinearity of the waves can result in deviations from non-Gaussian statistics and changes in the likelihood of extreme waves. However, since observations of wave-current dynamics are so difficult to make with conventional instruments, these dynamics remain still poorly understood. In this work we present the development and testing of a compact, low-cost, Wave-Resolving Drifter (WRD), designed to resolve the wave orbital surface motions and surface drifts in high-energy areas. The WRDs consist of a 30cm buoy equipped with an off-the-shelf GPS receiver and a three-axis accelerometer. The combined GPS-accelerometer package is functionally equivalent to a conventional pitch-roll (or PUV) wave height and direction instrument, but at a fraction of the price. In our presentation we will discuss results from several WRD array deployments in the San Francisco Bight during high-energy conditions with strong ebb currents. The buoys are shown to resolve the surface waves and surface drift with remarkable accuracy and allow the analysis of the evolution of the wave group structure over the opposing current. To obtain statistical results for currents and waves, WRDs were released in clusters (ensemble) from which shoaling effects over the bar and wave-current interaction can be identified.

  8. Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan

    2009-01-01

    We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (~100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ~10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.

  9. Modelling of sediment transport and morphological evolution under the combined action of waves and currents

    Directory of Open Access Journals (Sweden)

    G. Franz

    2017-09-01

    Full Text Available Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH, which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.

  10. Modelling of sediment transport and morphological evolution under the combined action of waves and currents

    Science.gov (United States)

    Franz, Guilherme; Delpey, Matthias T.; Brito, David; Pinto, Lígia; Leitão, Paulo; Neves, Ramiro

    2017-09-01

    Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.

  11. Non-contact characterization of hybrid aluminium/carbon-fibre-reinforced plastic sheets using multi-frequency eddy-current sensors

    Science.gov (United States)

    Yin, W.; Li, X.; Withers, P. J.; Peyton, A. J.

    2010-10-01

    The characterization of hybrid aluminium/carbon-fibre-reinforced plastic (CFRP) sheets using multi-frequency eddy-current sensors is presented in this paper. Both air-cored circular sensors and highly directional ferrite-cored sensors are designed for bulk conductivity measurements and directionality characterization. An analytical model describing the interaction of the circular sensors with the hybrid planar structure is developed. Finite element (FE) models that take into account the anisotropicity of CFRP have also been proposed. Both models are in good agreement with experimental results. The features of the sensor output signals are analysed and explained. It is proved that an anisotropic model (tensor expression for conductivity) is appropriate for the CFRP materials under investigation. A formula to link the bulk conductivity with the conductivity tensor is proposed and verified. Lift-off effects are also discussed. It is believed that this is amongst the first published reports of using eddy-current techniques for characterizing the hybrid aluminium/CFRP material.

  12. The evolution of seabirds in the Humboldt Current: new clues from the Pliocene of Central Chile.

    Directory of Open Access Journals (Sweden)

    Martín Chávez Hoffmeister

    Full Text Available BACKGROUND: During the last decade, new Neogene fossil assemblages from South America have revealed important clues about the evolution of seabird faunas in one of the major upwelling systems of the world: the Humboldt Current. However, most of this record comes from arid Northern Chile and Southern Peru and, in consequence, our knowledge of the evolutionary history of seabirds in the temperate transitional zone is negligible. A new Late Pliocene assemblage of fossil birds from the coastal locality of Horcon in Central Chile offers a unique opportunity to fill this gap. PRINCIPAL FINDINGS: Isolated bones of a medium-sized penguin are the most abundant bird remains. Morphological and cladistic analyses reveal that these specimens represent a new species of crested penguin, Eudyptes calauina sp. nov. Eudyptes is a penguin genus that inhabit temperate and subantarctic regions and currently absent in central Chile. Additionally, a partial skeleton of a small species of cormorant and a partial tarsometatarsus of a sooty shearwater have been identified. CONCLUSION/SIGNIFICANCE: The Horcon fossils suggest the existence of a mixed avifauna in central Chile during the Pliocene in concordance with the latitudinal thermal gradient. This resembles the current assemblages from the transitional zone, with the presence of species shared with Northern Chile and Southern Peru and a previously unrecorded penguin currently absent from the Humboldt System but present in the Magellanic region. Comparison of Pliocene seabird diversity across the Pacific coast of South America shows that the Horcon avifauna represents a distinctive assemblage linking the living faunas with the Late Miocene ones. A comparison with the fossil record near the Benguela Current (west coast of southern Africa suggests that the thermic gradient could play an important role in the preservation of a higher diversity of cold/temperate seabirds in the Humboldt Current.

  13. Evolution of oxygen reduction current and biofilm on stainless steels cathodically polarised in natural aerated seawater

    Energy Technology Data Exchange (ETDEWEB)

    Faimali, Marco [ISMAR-CNR, Via De Marini 6, 16149 Genoa (Italy)], E-mail: marco.faimali@ismar.cnr.it; Chelossi, Elisabetta; Garaventa, Francesca; Corra, Christian; Greco, Giuliano; Mollica, Alfonso [ISMAR-CNR, Via De Marini 6, 16149 Genoa (Italy)

    2008-12-01

    The aim of a series of works recently performed at ISMAR was to provide new useful information for a better understanding of the mechanisms by which bacteria settlement causes corrosion on Stainless Steels (SS) and similar active-passive alloys exposed to seawater. In this work, the evolutions of cathodic current, bacteria population, and electronic structure of the passive layer were investigated on SS samples polarised at fixed potentials during their exposure to natural seawater. It was found that, during the first phase of biofilm growth, cathodic current increase is proportional to the number of settled bacteria at each fixed potential. However, the proportionality factor between settled bacteria and cathodic current depends on imposed potential. In particular, the proportionality factor strongly decreases when the potential is increased above a critical value close to -150 mV Ag/AgCl. This effect seems to be correlated with the electronic structure of the passive layer. Indeed, the outer part of the passive layer on tested SS was found to behave like a conductor at potentials more active than -150 mV Ag/AgCl, and like an n-type semiconductor at more noble potentials.

  14. Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution.

    Science.gov (United States)

    Meyer, Matthias; Palkopoulou, Eleftheria; Baleka, Sina; Stiller, Mathias; Penkman, Kirsty E H; Alt, Kurt W; Ishida, Yasuko; Mania, Dietrich; Mallick, Swapan; Meijer, Tom; Meller, Harald; Nagel, Sarah; Nickel, Birgit; Ostritz, Sven; Rohland, Nadin; Schauer, Karol; Schüler, Tim; Roca, Alfred L; Reich, David; Shapiro, Beth; Hofreiter, Michael

    2017-06-06

    The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods ~120 and ~244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.

  15. Lean management in the current context of evolution of an organization

    Directory of Open Access Journals (Sweden)

    AMALIA VENERA TODORUŢ

    2011-06-01

    Full Text Available In this paper I have approached issues concerning the importance of Lean Management method in the current context of evolution of an organization. With roots in the just in time method, Lean Management model focuses on the process of changes evolving and adapting to them and regards issues such as: the dimensioning of life cycle, the dimensioning of processes, the dimensioning of ranges of products. I have also presented the relationship between Lean Management method and the human factor as a determinant in forming an organizational culture which leads to the formation and development of Lean thinking. Relevant factors which determine the change and interact with the Lean Management method are: training, motivation, teamwork spirit, communication methods, training and motivation. An important aspect of this paper is to integrate Lean Management with Six Sigma, and with other managerial techniques leading to getting quality products at low costs

  16. CFD-DEM Simulations of Current-Induced Dune Formation and Morphological Evolution

    CERN Document Server

    Sun, Rui

    2015-01-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', `small dune', `vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver...

  17. The Evolution of Current Research Impact Metrics: From Bibliometrics to Altmetrics?

    Science.gov (United States)

    Butler, Joseph S; Kaye, I David; Sebastian, Arjun S; Wagner, Scott C; Morrissey, Patrick B; Schroeder, Gregory D; Kepler, Christopher K; Vaccaro, Alexander R

    2017-03-23

    The prestige of publication has been based on traditional citation metrics, most commonly journal impact factor. However, the Internet has radically changed the speed, flow, and sharing of medical information. Furthermore, the explosion of social media, along with development of popular professional and scientific websites and blogs, has led to the need for alternative metrics, known as altmetrics, to quantify the wider impact of research. We explore the evolution of current research impact metrics and examine the evolving role of altmetrics in measuring the wider impact of research. We suggest that altmetrics used in research evaluation should be part of an informed peer-review process such as traditional metrics. Moreover, results based on altmetrics must not lead to direct decision making about research, but instead, should be used to assist experts in making decisions. Finally, traditional and alternative metrics should complement, not replace, each other in the peer-review process.

  18. A soluble-lead redox flow battery with corrugated graphite sheet and reticulated vitreous carbon as positive and negative current collectors

    Indian Academy of Sciences (India)

    A Banerjee; D Saha; T N Guru Row; A K Shukla

    2013-02-01

    A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1.5M lead (II) methanesulfonate and 0.9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min-1. During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g−1 at a load current-density of 20 mA cm-2 with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

  19. Anomalous Transport in Current Sheets.

    Science.gov (United States)

    1983-11-25

    York," New York 10027 Code 2628 (22 copies) ATTN: R. Taussig R.A. Gross University of Alaska University of California Geophysical Institute Bersiy...90024 Lysak, Robert School of Physics and Astronomy University of Minnesota Minneapolis, MN 55455 Schulz, Michael Aerospace Corp. A6/2451, P.O. Box...92957 Los Angeles, California 90009 Shawhan, Stanley Dept. of Physics & Astronomy University of Iowa Iowa City, Iowa 52242 Temerin, Michael Space Science

  20. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges.

    Science.gov (United States)

    Marazzi, Brigitte; Bronstein, Judith L; Koptur, Suzanne

    2013-06-01

    Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit. This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions. Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.

  1. Microstructural evolution in warm-rolled and cold-rolled strip cast 6.5 wt% Si steel thin sheets and its influence on magnetic properties

    Science.gov (United States)

    Wang, Xianglong; Liu, Zhenyu; Li, Haoze; Wang, Guodong

    2017-07-01

    6.5 wt% Si steel thin sheets were usually fabricated by warm rolling. In our previous work, 6.5 wt% Si steel thin sheets with good magnetic properties had been successfully fabricated by cold rolling based on strip casting. In the present work, the main purposes were to find out the influences of warm rolling and cold rolling on microstructures and magnetic properties of the thin sheets with the thickness of 0.2 mm, and to confirm which rolling method was more suitable for fabricating 6.5 wt% Si steel thin sheets. The results showed that the cold rolled sheet could obtain good surface quality and flatness, while the warm rolled sheet could not. The intensity of γ-fiber rolling texture (//ND) of cold rolled specimen was weaker than that of the warm rolled specimen, especially for the {1 1 1} component at surface layer and {1 1 1} component at center layer. After the same annealing treatment, the cold rolled specimen, which had higher stored energy and weaker intensity of γ-fiber rolling texture, could obtain smaller recrystallization grain size, weaker intensity of γ-fiber recrystallization texture and stronger intensity of λ-fiber recrystallization texture. Therefore, due to the good surface quality, smaller recrystallization grain size and optimum recrystallization texture, the cold rolled specimen possessed improved magnetic properties, and cold rolling should be more suitable for fabricating 6.5 wt% Si steel thin sheets.

  2. Microstructure Evolution of Electron Beam Physical Vapour Deposited Ni-23.5Cr-2.66Co-1.44Al Superalloy Sheet During Annealing at 600 °C

    Directory of Open Access Journals (Sweden)

    Li Mingwei

    2013-02-01

    Full Text Available Microstructure evolution of electron beam physical vapour deposited (EB-PVD Ni‑23.5Cr‑2.66Co‑1.44Al superalloy sheet during annealing at 600 °C was investigated. The results showed that the as-deposited alloy was composed of only g phase. After annealing at 600 °C, the locations of diffraction peaks were still the same. The (220 diffraction peak of the deposition side increased with annealing time. The sheet on deposited side had a tendency toward forming (220 texture during post-annealing. No obvious texture was observed at as-deposited and annealed sheet at 600 °C in substrate side. The count and size of "voids" decreased with time. The size of grains increased obviously with annealing time. The ultimate tensile strength of EB-PVD Ni-23.5Cr-2.66Co-1.44Al alloy sheet increased from 641 MPa to 829 MPa after annealing at 600 °C for 30 hours.

  3. Horizontal electromagnetic casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  4. Horizontal electromagnetic casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  5. Effect of Current Frequency on Droplet Evolution During Magnetic-Field-Controlled Electroslag Remelting Process Via Visualization Method

    Science.gov (United States)

    Wang, Huai; Zhong, Yunbo; Li, Qiang; Fang, Yipeng; Ren, Weili; Lei, Zuosheng; Ren, Zhongming

    2017-02-01

    A transparent physical model was set up to investigate the influence of the remelting current frequencies on droplet evolution during the magnetic-field-controlled electroslag remelting process. Physical simulation experiments were done under the remelting current of 8 A with frequencies ranging from 10 to 500 Hz, and a transverse static magnetic field (TSMF) of 0.7 T was superimposed simultaneously. The high-speed camera was used to record the evolution behavior of the droplet. Representative processes of formation and detachment of the droplets were observed under different conditions. The results showed that there was little influence of the current frequencies on the evolution behavior of the droplet without the external magnetic field. Nevertheless, if a TSMF was introduced, the liquid droplet's neck would be smashed into a lot of smaller droplets when the remelting current frequencies were lower than 100 Hz, while the smashing effect disappeared when the frequencies were higher than 100 Hz. The mechanism of the smashing effect was discussed. Statistical work was done to obtain the quantitative data to give a clear result revealing the influence of the remelting current frequencies on droplet evolution. The decrease in the diameter of the liquid droplets would remarkably increase the interface area and shorten the migrating distance of the inclusions in the droplets, which meant that a higher purifying efficiency could be expected.

  6. Ice Sheet System Model as Educational Entertainment

    Science.gov (United States)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  7. Assessing the role of oxygen on ring current formation and evolution through numerical experiments

    Science.gov (United States)

    Ilie, R.; Liemohn, M. W.; Toth, G.; Yu Ganushkina, N.; Daldorff, L. K. S.

    2015-06-01

    We address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single-fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics-based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics-based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross-polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.

  8. CFD-DEM simulations of current-induced dune formation and morphological evolution

    Science.gov (United States)

    Sun, Rui; Xiao, Heng

    2016-06-01

    Understanding the fundamental mechanisms of sediment transport, particularly those during the formation and evolution of bedforms, is of critical scientific importance and has engineering relevance. Traditional approaches of sediment transport simulations heavily rely on empirical models, which are not able to capture the physics-rich, regime-dependent behaviors of the process. With the increase of available computational resources in the past decade, CFD-DEM (computational fluid dynamics-discrete element method) has emerged as a viable high-fidelity method for the study of sediment transport. However, a comprehensive, quantitative study of the generation and migration of different sediment bed patterns using CFD-DEM is still lacking. In this work, current-induced sediment transport problems in a wide range of regimes are simulated, including 'flat bed in motion', 'small dune', 'vortex dune' and suspended transport. Simulations are performed by using SediFoam, an open-source, massively parallel CFD-DEM solver developed by the authors. This is a general-purpose solver for particle-laden flows tailed for particle transport problems. Validation tests are performed to demonstrate the capability of CFD-DEM in the full range of sediment transport regimes. Comparison of simulation results with experimental and numerical benchmark data demonstrates the merits of CFD-DEM approach. In addition, the improvements of the present simulations over existing studies using CFD-DEM are presented. The present solver gives more accurate prediction of sediment transport rate by properly accounting for the influence of particle volume fraction on the fluid flow. In summary, this work demonstrates that CFD-DEM is a promising particle-resolving approach for probing the physics of current-induced sediment transport.

  9. Time evolution of secondary electron emission and trapped charge accumulation in polyimide film under various primary electron irradiation currents

    Science.gov (United States)

    Song, Bai-Peng; Zhou, Run-Dong; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun; Bu, Ren-An

    2016-12-01

    Time-resolved evolution of secondary electron emission and trapped charge accumulation in polyimide film is investigated during two interval electrons bombardment, derived from the measurement of displacement current and secondary current via a hemispherical detector with the shielded grid. Under various irradiation current, secondary electron yield (SEY σ) at a certain injected energy decreases exponentially from initial amplitude σ0 to self-consistent steady value σ∞ close to 0.93. The time constant τ of charging process is characterized as a function of incident current Ip, and the results indicate that the formula Ip × τ is fitted by a hyperbolical law. The influence of Ip on the amount of trapped charge is studied and no significant change in its saturation value is observed. The evolution of SEY σ and trapped charge is dependent on incident dose Qp but not the incident rate Ip. Furthermore, the trap density and capture cross section are discussed.

  10. A technique for generating consistent ice sheet initial conditions for coupled ice-sheet/climate models

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2013-04-01

    Full Text Available A new technique for generating ice sheet preindustrial 1850 initial conditions for coupled ice-sheet/climate models is developed and demonstrated over the Greenland Ice Sheet using the Community Earth System Model (CESM. Paleoclimate end-member simulations and ice core data are used to derive continuous surface mass balance fields which are used to force a long transient ice sheet model simulation. The procedure accounts for the evolution of climate through the last glacial period and converges to a simulated preindustrial 1850 ice sheet that is geometrically and thermodynamically consistent with the 1850 preindustrial simulated CESM state, yet contains a transient memory of past climate that compares well to observations and independent model studies. This allows future coupled ice-sheet/climate projections of climate change that include ice sheets to integrate the effect of past climate conditions on the state of the Greenland Ice Sheet, while maintaining system-wide continuity between past and future climate simulations.

  11. The evolution of parental care in insects: A test of current hypotheses.

    Science.gov (United States)

    Gilbert, James D J; Manica, Andrea

    2015-05-01

    Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature-compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced-for example, by caring for multiple broods-but rejecting the "enhanced fecundity" hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  12. 自然资源核算从账户到资产负债表:演进与启示%Natural Resource Accounting From Accounts to Balance Sheet:Evolution and Enlightenment

    Institute of Scientific and Technical Information of China (English)

    黄溶冰; 赵谦

    2015-01-01

    通过梳理和分析自然资源核算的历史演进以及典型国家开展自然资源核算的实践经验,对自然资源核算账户、环境经济综合核算以及自然资源资产负债表的关系进行了辨析,指出作为生态文明建设中的一项重要制度创新,自然资源资产负债表与环境经济综合核算两种核算体系揭示和反映的重点不同,但两者都需要以自然资源核算账户为基础进行编制。自然资源资产负债表的构建有助于健全政府宏观会计体系,完善国家资产负债表的数据基础。%The evolution of natural resources accounting and typical countries'experience are arranged and analyzed in this paper.The relationship of natural resource accounts,integrated en-vironmental & economic accounting and natural resources balance sheet are explored.It is point-ed out that,as an important institutional innovation in the ecological civilization,natural re-sources balance sheet and integrated environmental & economic accounting have different implica-tions and different focuses,but both need natural resources account as their basis for preparation. The construction of the natural resource balance sheet is helpful to perfect the government macro accounting system,and can improve the data base of the national balance sheet.

  13. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  14. Evolution of Flare Ribbons, Electric Currents and Quasi-separatrix Layers During an X-class Flare

    CERN Document Server

    Janvier, M; Pariat, E; Tassev, S; Millholland, S; Bommier, V; McCauley, P; McKillop, S; Dougan, F

    2016-01-01

    The standard model for eruptive flares has in the past few years been extended to 3D. It predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the Quasi-Separatrix Layers (QSLs). Such a morphology is also found for flare ribbons observed in the EUV band, as well as in non-linear force-free field (NLFFF) magnetic field extrapolations and models. We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the SDO instruments. We investigate the photospheric current evolution during the 6 September 2011 X-class flare (SOL2011-09-06T22:20) from observational data of the magnetic field obtained with HMI. This evolution is compared with that of the flare ribbons observed in the EUV filters of the AIA. We also compare the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method/NLFFF model. The NLFFF model shows the presence of a fan-...

  15. Past changes, current state and future evolution of the ozone layer

    Science.gov (United States)

    Godin-Beekmann, S.

    2013-05-01

    The ozone layer has been under scrutiny since the discovery of the ozone hole over Antarctica in the mid-eighties (Farman et al., 1985). The rapid disclosure of the main processes involved in polar ozone destruction lead to the signature of the Montreal Protocol that regulates the emission of ozone depleting substances (ODS). The objective of this presentation is to review the current understanding of past changes and current state of the ozone layer, the evolution of ODS concentration in the atmosphere and assess the projections of ozone recovery. Satellite measurements revealed a peak of ODS concentration in the mid and end of the nineties and ODS concentrations have started to decrease, albeit at a slower pace than during the increase period due to the atmospheric lifetimes of these compounds. The total ozone content has stabilized at global scale since the beginning of the 21st century. In 2009, integrated ozone content was about 3.5 % smaller in the 60°S-60°N region compared to values prior to 1980 (WMO, 2011). Climate change will influence the recovery of stratospheric. Both ozone depletion and increase of carbon dioxide induce a cooling of the stratosphere. In the winter polar stratosphere, this cooling enhances the formation of polar stratospheric clouds involved in the formation of the ozone hole. In the high stratosphere, it slows the chemical reactions destroying ozone and accelerates its reformation (WMO, 2011). Besides, most chemistry-climate models predict an acceleration of the stratospheric meridional circulation, which would speed up the ozone recovery (Eyring et al., 2010). This recovery is forecasted in periods ranging between 2015 and 2030 and between 2030 and 2040 in the northern and southern hemispheres, respectively. The Antarctic ozone hole will not disappear before 2050. Because of the acceleration of the meridional circulation, models simulate a super-recovery of ozone in the high latitude regions and an under recovery in the tropics. At

  16. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare

    Science.gov (United States)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.

    2016-07-01

    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric

  17. Seeing graphene-based sheets

    Directory of Open Access Journals (Sweden)

    Jaemyung Kim

    2010-03-01

    Full Text Available Graphene-based sheets such as graphene, graphene oxide and reduced graphene oxide have stimulated great interest due to their promising electronic, mechanical and thermal properties. Microscopy imaging is indispensable for characterizing these single atomic layers, and oftentimes is the first measure of sample quality. This review provides an overview of current imaging techniques for graphene-based sheets and highlights a recently developed fluorescence quenching microscopy technique that allows high-throughput, high-contrast imaging of graphene-based sheets on arbitrary substrate and even in solution.

  18. The Evolution of Surgical Simulation: The Current State and Future Avenues for Plastic Surgery Education.

    Science.gov (United States)

    Kazan, Roy; Cyr, Shantale; Hemmerling, Thomas M; Lin, Samuel J; Gilardino, Mirko S

    2017-02-01

    Alongside the ongoing evolution of surgical training toward a competency-based paradigm has come the need to reevaluate the role of surgical simulation in residency. Simulators offer the ability for trainees to acquire specific skills and for educators to objectively assess the progressive development of these skills. In this article, the authors discuss the historical evolution of surgical simulation, with a particular focus on its past and present role in plastic surgery education. The authors also discuss the future steps required to further advance plastic surgery simulation in an effort to continue to train highly competent plastic surgery graduates.

  19. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution

    KAUST Repository

    Lu, Ang-Yu

    2016-08-31

    The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.

  20. The evolution of parental care in insects: A test of current hypotheses

    Science.gov (United States)

    Gilbert, James D J; Manica, Andrea

    2015-01-01

    Which sex should care for offspring is a fundamental question in evolution. Invertebrates, and insects in particular, show some of the most diverse kinds of parental care of all animals, but to date there has been no broad comparative study of the evolution of parental care in this group. Here, we test existing hypotheses of insect parental care evolution using a literature-compiled phylogeny of over 2000 species. To address substantial uncertainty in the insect phylogeny, we use a brute force approach based on multiple random resolutions of uncertain nodes. The main transitions were between no care (the probable ancestral state) and female care. Male care evolved exclusively from no care, supporting models where mating opportunity costs for caring males are reduced—for example, by caring for multiple broods—but rejecting the “enhanced fecundity” hypothesis that male care is favored because it allows females to avoid care costs. Biparental care largely arose by males joining caring females, and was more labile in Holometabola than in Hemimetabola. Insect care evolution most closely resembled amphibian care in general trajectory. Integrating these findings with the wealth of life history and ecological data in insects will allow testing of a rich vein of existing hypotheses. PMID:25825047

  1. Currents induced by vertical varied radiation stress in standing waves and evolution of the bed composed of fine sediments

    Institute of Scientific and Technical Information of China (English)

    Jing-Xin ZHANG; Hua LIU

    2009-01-01

    This paper extends the conventional concept of radiation stress (Longuet-Higgins and Stewart, 1964)in progressive water waves to standing waves, so that its vertical profile could be defined and calculated in a new technical way. The hydrodynamic numerical model being coupled with the vertically varying radiation stress in standing waves is used to simulate the currents being induced by standing waves in the vertical section. Numerical modeling of suspended sediment transport is then carried out to simulate the evolution of the bed composed of fine sediments by the currents. The scour and deposition patterns simulated are in qualitative agreement with prior laboratory and field observations.

  2. Structural Biology Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area ​Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  3. The evolution of arguments regarding the existence of field-aligned currents

    Science.gov (United States)

    Dessler, A. J.

    1984-01-01

    The present understanding of Birkeland (magnetically-field-aligned) currents was not obtained by a direct, logical course. The story is rather more complex. Starting at the end of the 19th century, the Norwegian scientist Kristian Birkeland laid out a compelling case, supported by both theory and experiment, for the existence of field-aligned currents that cause both the aurora and polar geomagnetic disturbances. Sydney Chapman, the British geophysicist, became the acknowledged leader and opinion maker in the field in the decades following Birkeland's death. Chapman proposed, in contradistinction to Birkeland's ideas, equivalent currents that were restricted to flow in the ionosphere with no vertical or field-aligned components. Birkeland's ideas may have faded completely if it had not been for Hannes Alfven, who became involved well after Chapman's ideas gained predominance. Alfven kept insisting that Birkeland's current system made more sense because field-aligned currents were required to drive most of the ionospheric currents. The author became personally involved when Zmuda et al. (1966) submitted to the Journal of Geophysical Research a paper reporting satellite data showing magnetic disturbances above the ionosphere that were consistent with field-aligned Birkeland currents, but which they did not interpret as being due to such currents.

  4. Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U

    Science.gov (United States)

    Ilhan, Zeki Okan

    Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator

  5. FEDERAL SUPPORT OF SCIENTIFIC INQUIRY IN THE UNITED STATES: CURRENT EVOLUTION UNDER THE POLITICAL STRUGGLE

    Directory of Open Access Journals (Sweden)

    I. A. Istomin

    2016-01-01

    Full Text Available 2000’s and 2010’s witnessed diminishing margin of the United States in science and technology. Meanwhile, the U.S. remains a clear leader in this fi eld. Major driving force of the country’s success in the second half of the ХХ century remained assertive federal science policy. The article seeks to identify major trends in evolution of the U.S. science policy and the reasons behind relative decline of the level of budget support of the scientifi c research. The author studies evolution of the policies of George Bush and Barack Obama, as well as the views of Democrats and Republicans in the House of Representatives and the Senate. The article also examines the input into the federal policy of the governmental bodies, which are directly responsible for its implementation, as well as non-governmental organizations, which seek to advocate interests of scientists; it studies rising competition between the executive authorities and legislators for the recognition as a major champion of the academic community as well as American Recovery and Reinvestment Act.

  6. Review of Incremental Forming of Sheet Metal Components

    Directory of Open Access Journals (Sweden)

    Nimbalkar D.H

    2013-09-01

    Full Text Available Incremental sheet forming has demonstrated its great potential to form complex three dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides competitive alternative for economically and effectively fabricating low volume functional sheet products. The process locally deforms sheet metal using a moving tool head achieving higher forming limit than those conventional sheet metal stamping process. Incremental sheet metal forming has the potential to revolutionize sheet metal forming, making it accessible to all level of manufacturing. This paper describes the current state of the art of Incremental sheet metal forming.

  7. An Intrinsically Three-Dimensional Magnetic Reconnection Process in a Generalized Harris Sheet

    CERN Document Server

    Zhu, Ping; Wang, Zechen; Bonofiglo, Phillip

    2016-01-01

    A magnetic reconnection process in the generalized Harris sheet has been revealed to be intrinsically three-dimensional both geometrically and dynamically despite the spatial invariance of the original current sheet in the equilibrium current direction. The spatial distribution and structure of the quasi-separatrix layers, as well as their temporal emergence and evolution, indicate that the associated magnetic reconnection can only occur in a three-dimensional geometry which is irreducible to a two-dimensional reconnection process. Such a three-dimensional reconnection process is induced by the nonlinear development of an ideal MHD ballooning instability in the generalized Harris sheet, which is itself an intrinsically three-dimensional dynamic process.

  8. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities.

    Science.gov (United States)

    Lu, Xunyu; Zhao, Chuan

    2015-03-17

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm(-2)) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel-iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm(-2) at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis.

  9. Microstructural Evolution and Migration Mechanism Study in a Eutectic Sn-37Pb Lap Joint Under High Current Density

    Science.gov (United States)

    Zhang, Zhihao; Cao, Huijun; Yang, Haifeng; Xiao, Yong; Li, Mingyu; Yu, Yuxi; Yao, Shun

    2017-08-01

    The microstructural evolution in eutectic Sn-37Pb solder under high current density seriously threatens the reliability of solder interconnections, but atomic electromigration has often been confused with thermomigration. In this paper, after decoupling the effect of the non-uniform temperature distribution in a Cu/Sn-37Pb/Cu lap joint from the current stress, the microstructural evolution was investigated under an average current density of 1.84 × 104 A cm-2 for 0-24 h. The decomposition and recombination of the Pb-rich phase occurred at the cathode and the anode, respectively. The corresponding migration mechanism was proposed from the viewpoint of energy and was explained by the interactions among the potential energies of ripening, electron wind force, and back stress. Our study may be helpful for understanding the migration mechanism and reliability of eutectic two-phase solder joints and provides supporting data for interpreting the acceleration tests of Sn-37Pb solder joints under electromigration.

  10. Influence of frontal cyclones evolution on the 2009 (Ekman and 2010 (Franklin Loop Current Eddy detachment events

    Directory of Open Access Journals (Sweden)

    Y. S. Androulidakis

    2014-07-01

    Full Text Available The anticyclonic Loop Current Eddy (LCE shedding events are strongly associated with the evolution of Loop Current Frontal Eddies (LCFEs over the eastern Gulf of Mexico (GoM. A numerical simulation, in tandem with in situ measurements and satellite data, was used to investigate the Loop Current (LC evolution and the surrounding LCFEs formation, structure, growth and migration during the Eddy Ekman and Eddy Franklin shedding events in the summers of 2009 and 2010, respectively. During both events, Northern GoM LCFEs appeared vertically coherent to at least 1500 m in temperature observations. They propagated towards the base of the LC where, together with the migration of Campeche Bank eddies from south of the LC, contributed to its "necking down". Growth of Campeche Bank LCFEs involved in Eddy Franklin was partially attributed to Campeche Bank waters following upwelling events. Slope processes associated with such upwelling include offshore exports of high positive vorticity that may trigger cyclone formation and growth. The advection and growth of LCFEs, originating from the northern and southern GoM, and their interaction with the LC over the LCE detachment area favor shedding conditions and may lead to the final separation of the LCE.

  11. Evolution of the gate current in 32 nm MOSFETs under irradiation

    Science.gov (United States)

    Palumbo, F.; Debray, M.; Vega, N.; Quinteros, C.; Kalstein, A.; Guarin, F.

    2016-05-01

    Radiation induced currents on single 32 nm MOSFET transistors have been studied using consecutive runs of 16O at 25 MeV. The main feature is the generation of current peaks - in the gate and channel currents - due to the collection of the electro-hole pairs generated by the incident radiation runs. It has been observed that the incident ions cause damage in the dielectric layer and in the substrate affecting the collection of carriers, and hence the radiation-induced current peaks. It has been find out a decrease of the current peak due to the increase of the series resistance by non-ionizing energy loss in the semiconductor substrate, and an increase of the leakage current due to defects in the gate oxide by ionizing energy loss. For low levels of damage in the gate oxide, the main feature is the shift of the VTH. Hot carriers heated by the incident radiation in the depletion region and injected in the gate oxide cause the change of the VTH due to electron or hole trapping for n- or p-channel respectively. The overall results illustrate that these effects must be taken into consideration for an accurate reliability projection.

  12. Feature Profile Evolution During Etching of SiO2 in Radio-Frequency or Direct-Current Plasmas

    Science.gov (United States)

    Zhao, Zhanqiang; Dai, Zhongling; Wang, Younian

    2012-01-01

    We have developed a plasma etching simulator to investigate the evolution of pattern profiles in SiO2 material under different plasma conditions. This model focuses on energy and angular dependent etching yield (physical sputtering in this paper), neutral and ion angular distributions, and reflection of ions or neutrals on the surface of a photoresist or SiO2. The effect of positive charge accumulation on the surface of insulated mask or SiO2 is studied and the charge accumulation contributes to a deflection of ion trajectory. The wafer profile evolution has been simulated using a cellular-automata-like method under radio-frequency (RF) bias and direct-current (DC) bias, respectively. On the basis of the critical role of angular distribution of ions or neutrals, the wafer profile evolution has been simulated for different variances of angles. Observed microtrenching has been well reproduced in the simulator. The ratio of neutrals to ions has been considered and the result shows that because the neutrals are not accelerated by an electric field, their energy is much lower compared with ions, so they are easily reflected on the surface of SiO2, which makes the trench shallower.

  13. Development of Auto Sheets in Baosteel

    Institute of Scientific and Technical Information of China (English)

    LuJiangxin; WangLi

    2005-01-01

    The development trends of auto sheets in recent years are summarized with regard to the envirorunental regulations, market demands and strategy of the steel industry. The growth of domestic auto industry and demands for auto sheets are also briefed. The current status of development of Bake hardenable steel, Isotropic steel for outer panels and Transformation induced plasticity steel, dual phase steel for structural parts in Baosteel is introduced and the future of auto sheets in Baosteel is forecasted.

  14. HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF Zr-Sn-Nb ZIRCONIUM ALLOY SHEETS%Zr-Sn-Nb新型锆合金板材加工过程中不均匀组织与织构演变

    Institute of Scientific and Technical Information of China (English)

    陈建伟; 栾佰峰; 柴林江; 余泓冰; 刘庆; 周军; 李中奎

    2012-01-01

    利用XRD,SEM-ECC,TEM和EBSD技术,研究了Zr-Sn-Nb系新型锆合金板材加工过程的微观组织及织构演变.结果表明,β相淬火得到的随机织构经热轧后形成沿横向倾斜的基面织构,随后的加工过程均保留该织构;热轧及两次冷轧后的基面织构都为〈10(1)0〉方向平行于轧向(〈10(1)0〉//RD),而退火后转变为〈1(2)10〉方向平行于轧向(〈1(2)10〉//RD).淬火形成的网状魏氏组织经热轧转变为不均匀形变组织,两次冷轧使组织的不均匀性更显著,最终退火得到完全再结晶组织;轧制形成的难变形晶粒多为晶粒C轴平行于轧板法向(C//ND)的取向;最终退火板材的大晶粒多为〈1(2)10〉//RD的基面织构,小晶粒则以(10(1)0〉//RD为主.结合锆合金的变形及再结晶机制对轧制时产生的不均匀组织及再结晶过程的织构转变进行了分析.%Zirconium alloys are widely used as fuel cladding and structural materials for nuclear reactors due to the low neutron absorption cross-section, good corrosion resistance and acceptable mechanical properties. These properties are greatly dependent on microstructural and textural features, such as grain morphology, grain size, crystallographic texture and distribution of precipitates. It is necessary to understand microstructure and texture evolution during fabrication in order to optimize the manufacturing process and to improve the service performance. In this work, microstructure and texture evolution during fabrication of Zr-Sn-Nb new zirconium alloy sheets are investigated using XRD, SEM-ECC, TEM and EBSD. The results show that the random texture formed by β quenching transforms into tilt basal texture after hot rolling. The basal texture keeps stable during the following fabrication stages. The texture of the rolling sheets is mainly characterized as (1010) direction parallel to rolling direction ({1010}//RD), while the texture of the annealing sheets is (1210) direction

  15. EVOLUTION OF THE ROMANIAN RESIDENTIAL MARKET AFTER OUTBREAK OF THE CURRENT ECONOMIC AND FINANCIAL CRISIS

    Directory of Open Access Journals (Sweden)

    Şteliac Nela

    2013-04-01

    Full Text Available The residential market is one of the market sectors seriously affected by the current economic and financial crisis. This is mirrored both in the fall of real estate trading prices and in the decreased number of transactions and cutback of newly built constructions. This trend is applicable to the entire spectrum of the residential market (luxury properties and homes destined to average-income customers. Romania is no exception from this European and world-wide state of affairs. This paper aims to briefly outline the trends on the Romanian residential market in the aftermath of the current crisis.

  16. Evolution and variation of the Tsushima warm current during the late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes

    Institute of Scientific and Technical Information of China (English)

    LI TieGang; SUN RongTao; ZHANG DeYu; LIU ZhenXia; LI Qing; JIANG Bo

    2007-01-01

    The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller G ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the Iowstand period during 40-24 cai ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cai ka BP, and the impact of the Kuroshio increased in the middle and northern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cai ka BP,since then the circulation structure has been relatively stable. The water of the modern Tsushima current primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cai ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.

  17. ORGAN-SPARING SURGERY FOR RECTAL CANCER: EVOLUTION, CURRENT TRENDS, AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    R. I. Tamrazov

    2013-01-01

    Full Text Available The article describes the main stages of the development of sphincter-saving surgery for rectal cancer. An historical look at this issue from the standpoint of research of past years in our country and abroad, as well as analysis of current sphincter-preserving surgery and future directions in this area.

  18. 49 CFR 236.338 - Mechanical locking required in accordance with locking sheet and dog chart.

    Science.gov (United States)

    2010-10-01

    ... locking sheet and dog chart. 236.338 Section 236.338 Transportation Other Regulations Relating to... in accordance with locking sheet and dog chart. Mechanical locking shall be in accordance with locking sheet and dog chart currently in effect....

  19. The Current Evolution of Slavic Languages in Central and Eastern Europe in the Context of the EU Multilingualism Policy

    Directory of Open Access Journals (Sweden)

    Wojciech Paweł Sosnowski

    2015-12-01

    Full Text Available The Current Evolution of Slavic Languages in Central and Eastern Europe in the Context of the EU Multilingualism Policy The respect for and protection of cultural and linguistic diversity have long been guaranteed in various international and European legislative acts. More recently, the European Union has also developed laws aimed at the preservation and promotion of multilingualism. Linguistic diversity has long been seen as an obstacle to the effective functioning of EU institutions. Recently, however, it has been considered as a valuable “heritage” of the EU. In our article, we will present a brief overview of policies promoting multilingualism in Europe, and more specifically, in the EU. Subsequently, we will compare this framework to the changes occurring presently in modern Slavic languages of Central and Eastern Europe. The tendency of these languages towards increased analitism transforms these predominantly synthetic languages into more analytical ones. These conclusions have led us to the following question: What is the current state of modern Slavic languages and how far may their evolution be addressed by policies promoting multilingualism? Our analysis consists of two parts: first, we scrutinised various European legislative acts promoting multilingualism; second, we analysed modern Slavic languages by means of the parallel corpora of chosen languages from the Common Language Resources and Technology Infrastructure project (including UNESCO and EU legislation, etc..

  20. Current evolution and plasma density space distribution in the reflex discharge with ring cathodes

    Science.gov (United States)

    Samokhin, A. A.; Liziakin, G. D.; Gavrikov, A. V.; Usmanov, R. A.; Smirnov, V. P.

    2016-11-01

    In this paper the numerical model of direct current gas discharge in drift-diffusion approximation is considered. For two-component plasma the processes of the gas discharge development in the reflex geometry with ring cathodes at a helium pressure of 35 mTorr are studied. We investigate the influence of: (a) the boundary conditions on the dielectric, (b) the electron temperature and (c) the coefficient of the secondary ion-electron emission on the I-U curve of the discharge. In a magnetic field of 50 Gauss the impact of the discharge voltage U = 300-700 V on the evolutionary process of the discharge is examined. The effect of diffusion on maintaining steady state discharge is researched. The parameters of the existence of a high-current (tens of μA) and low voltage (tens of mA) discharge modes are defined.

  1. The effect of rf pulse pattern on bremsstrahlung and ion current time evolution of an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T.; Tarvainen, O.; Toivanen, V.; Peura, P.; Jones, P.; Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, Jyvaeskylae FI-40014 (Finland); Noland, J.; Leitner, D. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2010-02-15

    Time-resolved helium ion production and bremsstrahlung emission from JYFL 14 GHz ECRIS is presented with different radio frequency pulse lengths. rf on times are varied from 5 to 50 ms and rf off times from 10 to 1000 ms between different measurement sets. It is observed that the plasma breakdown occurs a few milliseconds after launching the rf power into the plasma chamber, and in the beginning of the rf pulses a preglow transient is seen. During this transient the ion beam currents are increased by several factors compared to a steady state situation. By adjusting the rf pulse separation the maximum ion beam currents can be maintained during the so-called preglow regime while the amount of bremsstrahlung radiation is significantly decreased.

  2. [Outpatient thoracic surgery: Evolution of the indications, current applications and limits].

    Science.gov (United States)

    Bagan, P; Berna, P; De Dominicis, F; Lafitte, S; Zaimi, R; Dakhil, B; Das Neves Pereira, J-C

    2016-12-01

    The objectives of outpatient surgery are to reduce the risks connected to hospitalization, to improve postoperative recovery and to decrease the health costs. Few studies have been performed in the field of thoracic surgery and there remains great scope for progress in outpatient lung surgery. The purpose of this article is to present a revue of the current situation and the prospects for the development of out patient thoracic surgery.

  3. EVOLUTION OF THE ROMANIAN RESIDENTIAL MARKET AFTER OUTBREAK OF THE CURRENT ECONOMIC AND FINANCIAL CRISIS

    OpenAIRE

    Şteliac Nela

    2013-01-01

    The residential market is one of the market sectors seriously affected by the current economic and financial crisis. This is mirrored both in the fall of real estate trading prices and in the decreased number of transactions and cutback of newly built constructions. This trend is applicable to the entire spectrum of the residential market (luxury properties and homes destined to average-income customers). Romania is no exception from this European and world-wide state of affairs. This paper a...

  4. Evolution and variation of the Tsushima warm current during the late Quaternary: Evidence from planktonic foraminifera, oxygen and carbon isotopes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolution and variation history of the Tsushima warm current during the late Quaternary was reconstructed based on the quantitative census data of planktonic foraminiferal fauna, together with oxygen and carbon isotope records of mixed layer dweller G. ruber and thermocline dweller N. dutertrei in piston core CSH1 and core DGKS9603 collected separately from the Tsushima warm current and the Kuroshio dominated area. The result showed that the Tsushima warm current vanished in the lowstand period during 40―24 cal ka BP, while the Kuroshio still flowed across the Okinawa Trough, arousing strong upwelling in the northern Trough. Meanwhile, the influence of freshwater greatly increased in the northern Okinawa Trough, as the broad East China Sea continental shelf emerged. The freshwater reached its maximum during the last glacial maximum (LGM), when the upwelling obviously weakened for the lowest sea-level and the depression of the Kuroshio. The modern Tsushima warm current began its development since 16 cal ka BP, and the impact of the Kuroshio increased in the middle and north- ern Okinawa Trough synchronously during the deglaciation and gradually evolved as the main water source of the Tsushima current. The modern Tsushima current finally formed at about 8.5 cal ka BP, since then the circulation structure has been relatively stable. The water of the modern Tsushima cur- rent primarily came from the Kuroshio axis. A short-term wiggle of the current occurred at about 3 cal ka BP, probably for the influences from the enhancement of the winter monsoon and the depression of the Kuroshio. The cold water masses greatly strengthened during the wiggle.

  5. 阵列探头在传热管管板区涡流检测中的应用%The Feasibility Research of Array Probe Technique on Eddy Current Inspection of Tube Sheet Area

    Institute of Scientific and Technical Information of China (English)

    曹刚; 师绍猛; 袁建中; 杨敏

    2011-01-01

    Bobbin probes are used to inspect tubes of the condenser, but the inspection is subjected with the "blind area" problem near the tube sheet. Based on this inspection requirement, the application of CXB (Circ X+ Bobbin probe, a kind of array probe) on eddy current inspection of tube sheet area is under discussed. Experiment results by mockup show that CXB is capable of solving "blind area" problems encountered in tube sheet area with bobbin technique. In addition, the problem of CXB quantitative evaluation of defects is figured out successfully. Finally, site results are shown.%传统上采用Bobbin探头进行凝汽器传热管涡流检测时存在管板盲区问题。基于传热管管板区涡流检测需求,研究了CXB型阵列探头在此领域的应用。通过设计制作凝汽器模拟管板,开展了试验研究。试验发现,CXB探头能够有效解决涡流检测中Bobbin探头在传热管管板区存在的盲区问题。同时,试验解决了CXB探头对于缺陷的定量评定难题。最后给出了现场检测中的实际应用结果。

  6. The Coverage of Human Evolution in High School Biology Textbooks in the 20th Century and in Current State Science Standards

    Science.gov (United States)

    Skoog, Gerald

    Efforts to eliminate or neutralize the coverage of evolution in high school biology textbooks in the United States have persisted with varying degrees of intensity and success since the 1920s. In particular, the coverage of human evolution has been impacted by these efforts. Evidence of the success of these efforts can be chronicled by the emphasis given to human evolution in secondary biology textbooks historically and in the current state science standards. Prior to the 1960s, biology textbooks provided little emphasis to human evolution. In the 1970s and early 1980s textbooks reduced the coverage of human evolution. However, in the 1990s the coverage became quite comprehensive again. In 2004, the state science frameworks of only three states had standards concerned with human evolution.

  7. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    simulations of the Greenland ice sheet using ice sheet models offers the possibility of deriving reconstructions of past ice sheet topography, flow and extent, consistent with the dynamics of ice flow and the imposed climate forcing. The large-scale response of the ice sheet modelled by such approaches can...... core derived temperature and precipitation histories have a long history of being used in studies of the past evolution of the Greenland ice sheet, acting as climatic forcing of the ice sheet models. However, the conversion from the isotopic records to past temperatures remain challenging, owing...... to both uncertain processes and depositional histories. Using five different temperature reconstructions derived from isotope records of Greenlandic ice cores, the influence of the paleo records on the simulated ice sheet was investigated using a high-resolution, large-scale ice sheet model (PISM...

  8. The treatment of hepatoblastoma: Its evolution and the current status as per the SIOPEL trials

    Directory of Open Access Journals (Sweden)

    Daniel C Aronson

    2014-01-01

    Full Text Available Aim of the Review: To describe the significant improvement in the diagnosis, treatment and outcome of children diagnosed with hepatoblastoma (HB that has occurred in the past four decades. Recent findings are mainly focused on lessons learned from the experiences of the Childhood Liver Tumors Strategy Group (SIOPEL. Important milestones were the risk stratification of HB that allowed to tailor down therapy for standard-risk HB and intensify treatment for high-risk HB. The multi-institutional international cooperative SIOPEL trials are reviewed and current treatment guidelines are given. Intensified cooperation between the SIOPEL and the Children′s Oncology Group (COG and the national study groups from Germany (GPOH and Japan (JPLT led to the acceptance and use of one staging system (PRETEXT and the formation of a single robust database containing data of 1605 HB patients. This will allow analysis with enough statistical power of treatment directing factors that will form one of the bases of the next-generation clinical trial that is currently designed by all four collaborating study groups. Summary: Successive SIOPEL trials and increasing international collaboration have improved survival rates of patients with HB through risk stratification, advances in chemotherapy and increased complete resection rates including liver transplantation as a surgical option.

  9. Study on the Evolution of the Current ISO Certifications in Romania

    Directory of Open Access Journals (Sweden)

    Teodor Socaciu

    2013-06-01

    Full Text Available To increase the efficiency and effectiveness of processes within an organization, ISO standards can help both large enterprises and small companies (SMEs, both in industrialized and in developing countries offering solutions and bringing considerable advantages in almost all existing fields. ISO certification brings a set of measures in the areas of an organization, be it about quality, environmental safety, food or protection and safety of personnel, this certification brings benefits both in the current processes and more importantly, the future development plans. In this paper, graphs showing the distributions of increasing certification, demonstrate that more and more companies in Romania have realized that, only implementing and certifying ISO standards, they will be successful in domestic and international market in terms of competition, in particular against European companies.

  10. Current Experiences with Internet Telepathology and Possible Evolution in the Next Generation of Internet Services

    Directory of Open Access Journals (Sweden)

    V. Della Mea

    2000-01-01

    Full Text Available The last five years experience has definitely demonstrated the possible applications of the Internet for telepathology. They may be listed as follows: (a teleconsultation via multimedia e‐mail; (b teleconsultation via web‐based tools; (c distant education by means of World Wide Web; (d virtual microscope management through Web and Java interfaces; (e real‐time consultations through Internet‐based videoconferencing. Such applications have led to the recognition of some important limits of the Internet, when dealing with telemedicine: (i no guarantees on the quality of service (QoS; (ii inadequate security and privacy; (iii for some countries, low bandwidth and thus low responsiveness for real‐time applications. Currently, there are several innovations in the world of the Internet. Different initiatives have been aimed at an amelioration of the Internet protocols, in order to have quality of service, multimedia support, security and other advanced services, together with greater bandwidth.

  11. Energy-dependent evolution of the ring current during the magnetic storms

    Science.gov (United States)

    Temporin, Ayako; Ebihara, Yusuke; Fritz, Theodore A.

    The ring current is known to mainly consist of two components of ions; one having energy from keV to tens of keV (low-energy), and the other having energy from 100keV to several hundreds keV(high-energy) in the quiet time. According to the past observations, the low-energy component increases during the storm main phase, and decreases during the storm recovery phase. However, the behavior of the high-energy component and the relationship between the two components are less known. For the purpose of understanding the behavior of the ring current in detail, we use data from the ion mass spectrometer called MICS and the magnetometer called MFE aboard the Polar satellite. We focus on the differential flux of protons with 31-80keV (as a proxy of the low-energy component) and those with 125-173keV (as a proxy of the high-energy component) at a pitch angle of 90 degrees when the Polar satellite crossed the magnetic equatorial plane. Pre-storm condition (t1), intense phase of magnetic storm (t2), and decline phase (t3) are identified based on the Dst index. We selected 27 subsets from January 1997 to March 2000 and from April 2001 to April 2002. We obtained the following major results. (1) In the low-energy component, the proton flux tends to increase during the intense phase, and decrease during the decline phase with an exception in the pre-noon sector. (2) In the high-energy component, the proton flux tends to be stationary during the intense phase. During the decline phase, the flux tends to increase, and occasionally, exceeds that in the pre-storm condition. (3) The magnetic field tends to decrease during the intense phase, and increase during the decline phase. The anti-correlation between the low-energy component and the magnetic field may indicate a diamagnetic response. The weak correlation between the high-energy component and the magnetic field during the decline phase may indicate an adiabatic variation of high-energy component. It is suggested that the high

  12. The Evolution of Cardiovascular Surgery in Elderly Patient: A Review of Current Options and Outcomes

    Directory of Open Access Journals (Sweden)

    Francesco Nicolini

    2014-01-01

    Full Text Available Due to the increase in average life expectancy and the higher incidence of cardiovascular disease with advancing age, more elderly patients present for cardiac surgery nowadays. Advances in pre- and postoperative care have led to the possibility that an increasing number of elderly patients can be operated on safely and with a satisfactory outcome. Currently, coronary artery bypass surgery, aortic and mitral valve surgery, and major surgery of the aorta are performed in elderly patients. The data available show that most cardiac surgical procedures can be performed in elderly patients with a satisfactory outcome. Nevertheless, the risk for these patients is only acceptable in the absence of comorbidities. In particular, renal dysfunction, cerebrovascular disease, and poor clinical state are associated with a worse outcome in elderly patients. Careful patient selection, flawless surgery, meticulous hemostasis, perfect anesthesia, and adequate myocardial protection are basic requirements for the success of cardiac surgery in elderly patients. The care of elderly cardiac surgical patients can be improved only through the strict collaboration of geriatricians, anesthesiologists, cardiologists, and cardiac surgeons, in order to obtain a tailored treatment for each individual patient.

  13. Understanding the Dynamical Evolution of the Earth Radiation Belt and Ring Current Coupled System

    Science.gov (United States)

    Shprits, Yuri; Usanova, Maria; Kellerman, Adam; Drozdov, Alexander

    2016-07-01

    Modeling and understanding the ring current and radiation belt-coupled system has been a grand challenge since the beginning of the space age. In this study we show long-term simulations with a 3D Versatile Electron Radiation Belt (VERB) code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. Simulations can reproduce long term variations of the electron radiation belt fluxes and show the importance of local acceleration, radial diffusion, loss to the atmosphere and loss to the magnetopause. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV, a number of processes work simultaneously, including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulation of the March 2013 storm are compared with Van Allen Probes observations.

  14. Turbulence evolution and transport behavior during current ramp-up in ITER-like plasmas on DIII-D

    Science.gov (United States)

    McKee, G. R.; Austin, M.; Boedo, J.; Bravenec, R.; Holland, C.; Jackson, G.; Luce, T. C.; Rhodes, T. L.; Rudakov, D.; Wang, G.; Yan, Z.; Zeng, L.; Zhao, Y.

    2017-08-01

    Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q) and kinetic profiles as well as the appearance and evolution of low-order rational surfaces. Density fluctuations from 0.75  qualitative consistency with measured fluctuation levels, but calculations don’t exhibit reduced growth rates near low-order rational surfaces, which is inconsistent with experimental observations. This indicates a mechanism that can contribute to reconciling observed turbulence behavior with transport models, allowing for the development of more accurate predictive tools.

  15. CURRENT STATE AND EVOLUTION PERSPECTIVES FOR MANAGEMENT ACCOUNTING IN THE ENERGY SECTOR BY IMPLEMENTING THE ABC METHOD

    Directory of Open Access Journals (Sweden)

    Rof Letitia Maria

    2011-07-01

    Full Text Available Based on a controversial issue, namely determining and controlling costs in the energy sector, the present study falls within the scope of management accounting and control. This scientific approach was initiated as a result of personal research concerns in the area of accounting, starting from the need to know and quantify costs in a sector of the economy that is less exploited. The main objective of this scientific approach is to address the evolution of the energy sector in a national and international context, in terms of economy and finances, with the aim to underline the need to organize and conduct management accounting in this sector. We will present a few particularities of the energy system, the current status of implementation of a medium and long term strategy aimed at developing the energy sector, as well as the need to adopt modern costing methods in this sector, which ensure operative cost control and performance growth of the entities that operate in this sector. Information on the reviewed topic was conducted by studying the national and international literature in the field, by analyzing the associated legislation, by consulting specialized web-sites and various articles in the database. The main research methods used in this scientific approach were analysis and synthesis, and qualitative research was the type of used research. The results of the research will materialize in providing the necessary conditions for designing an econometric model for implementing the ABC method, the conceptual and ideological delimitation of the ABC method, the deepening of the positive and negative aspects that the implementation of the Activity Based Costing involves. The major implication for the researched field is ensuring success for the implementation of a modern costing method in the energy sector, underlining the shortcomings of the traditional costing methods. The added value of the paper consists in conducting a rigorous study of the

  16. Evolution of the Tore Supra Lower Hybrid Current Drive System for WEST

    Energy Technology Data Exchange (ETDEWEB)

    Delpech, Léna, E-mail: lena.delpech@cea.fr [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Achard, Joelle; Armitano, Arthur; Berger-By, Gilles; Ekedahl, Annika; Gargiulo, Laurent; Goniche, Marc; Guilhem, Dominique; Hertout, Patrick; Hillairet, Julien; Magne, Roland; Mollard, Patrick [CEA, IRFM, F-13108 St Paul-Lez-Durance (France); Piluso, P. [CNIM Industrial Systems, 83507 La Seyne-sur-Mer (France); Poli, Serge; Prou, Marc; Saille, Alain; Samaille, Franck [CEA, IRFM, F-13108 St Paul-Lez-Durance (France)

    2015-10-15

    Highlights: • Describe the state of the Lower Hybrid heating system for the WEST project. • Detailed the experiments to assess the coupling in WEST configuration. • Give the modifications required on the launchers to be adapted to WEST configuration. • Detailed the technical modifications with the CNIM company on the launchers. - Abstract: The WEST-project (W-tungsten Environment in Steady-state Tokamak) involves equipping Tore Supra with a full tungsten divertor, capable of withstanding heat load of 10 MW/m{sup 2} in steady-state conditions, in discharges sustained by Lower Hybrid Current Drive (LHCD). The LHCD generator, recently upgraded to deliver 9.2 MW/1000 s, is equipped with sixteen TH2103C klystrons powering two launchers. The WEST transformation involves reducing the plasma volume, thus moving the launchers ∼10 cm closer to the tokamak centre. The toroidal curvature of the launchers no longer fits the plasma curvature due to the strong magnetic field ripple effect, leading to a degradation of the LH wave coupling, especially with the Full Active Multijunction Launcher (FAM). The toroidal curvature radius of the FAM launcher mouth will therefore be reshaped from 1700 mm to 2300 mm. The machining process is described in this article. In order to improve the coupling of the LH wave, the local gas injection has been modified to help to meet the requirement of 7 MW/1000 s of LH power coupled to the plasma in the WEST scenarios. Finally, the curvature radius of the waveguide septa are rounded to minimize the excitation of suprathermal electrons near the plasma edge, which can induce high power loads on the plasma facing components.

  17. Simulation of Eddy Current Sensor Testing of Sheet Steel with Inner Air Holes%涡流传感器检测薄板内气孔型缺陷的三维仿真

    Institute of Scientific and Technical Information of China (English)

    谭书涛; 陈建钧; 潘红良

    2012-01-01

    AbBased on the theory of electromagnetic-field, the calculation model of magnetic fields generated by detecting coil is deduced. This paper simulates the magnetic-field of eddy current testing of sheet steel with inner air holes. The aim is to determine the best drive frequency of testing the sheet steel by simulating the small air hole near the lower surface. According to the air hole with different diameter and different depth, analysis is made of the change rule of amplitude and phase of corresponding impedance. The result that we got is identical to the theory of electromagnetic-field, this can provide a meaningful reference and analysis method for the quantitative analysis and qualitative analysis of eddy current testing.%根据电磁场理论,推导出检测线圈所产生磁场的计算模型。采用ANSYS有限元软件,对涡流检测薄板内气孔型缺陷的磁场进行了数值模拟。通过仿真靠近下表面的小气孔,来确定检测该薄板的最佳激励频率。针对不同直径、不同深度的气孔,分析对应的阻抗改变值的幅值和相位角的变化规律。得出的结果与理论相吻合,可以为涡流检测的定量定性分析提供有意义的参考依据和分析方法。

  18. Coal-water slurry fuel production: Its evolution and current status in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.L.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    current political, environmental, and economic climates mandate greater efficiency in the production and use of coal. Coal suppliers and coal-fired utilities must establish the actual cost of the CWSF production for the technology to move forward. Coal-fired utilities that own fine coal impoundments and/or operate fine coal cleaning circuits need to determine how these coal fines can be used to reduce operating cost.

  19. Large-eddy simulation of a turbulent jet and a vortex sheet interaction: particle formation and evolution in the near field of an aircraft wake

    Directory of Open Access Journals (Sweden)

    Roberto Paoli

    2008-04-01

    Full Text Available Aircraft are prolific sources of particles (soot, liquid aerosols and contrails that can impact cloudiness and affect the Earth's radiative budget balance. In order to study the formation and evolution of these particles, a numerical approach has been developed combining large-eddy simulation (LES and a detailed microphysical model. Generally very detailed microphysical models are run along a single average trajectory, without any temperature fluctuation. However, this approach may lead to significant differences in particle properties and particle size distribution as it oversimplifies dynamical and mixing processes compared to multidimensional descriptions of aircraft wakes. This may affect the initialisation of meso-scale models, such as, for example, the formation of cloud condensation nuclei from persistent contrails, and heterogeneous chemical reactions. In this paper, we present the results of detailed microphysical processes calculations applied to a large number of fluid parcels trajectories, generated by a LES two-phase flow solver.

  20. Unique Fe2P Nanoparticles Enveloped in Sandwichlike Graphited Carbon Sheets as Excellent Hydrogen Evolution Reaction Catalyst and Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Feng, Yangyang; Liu, Li; Wang, Yu

    2015-12-09

    The novel Fe2P nanoparticles encapsulated in sandwichlike graphited carbon envelope nanocomposite (Fe2P/GCS) that can be first applied in hydrogen evolution reaction (HER) as well as lithium-ion batteries (LIBs) has been designed and fabricated. The unique sandwiched Fe2P/GCS is characterized with several prominent merits, including large specific surface area, nanoporous structure, excellent electronic conductivity, enhanced structural integrity and so on. All of these endow the Fe2P/GCS with brilliant electrochemical performance. When used as a HER electrocatalyst in acidic media, the harvested Fe2P/GCS demonstrates low onset overpotential and Tafel slope as well as particularly outstanding durability. Moreover, as an anode material for LIBs, the sandwiched Fe2P/GCS presents high specific capacity and excellent cyclability and rate capability. As a consequence, the acquired Fe2P/GCS is a promising material for energy applications, especially HER and LIBs.

  1. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  2. Zika Virus Fact Sheet

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key ... and last for 2-7 days. Complications of Zika virus disease Based on a systematic review of ...

  3. Trauma Fact Sheet

    Science.gov (United States)

    ... Home > Science Education > Physical Trauma Fact Sheet Physical Trauma Fact Sheet Tagline (Optional) Middle/Main Content Area ... of physical trauma. Credit: iStock. What is physical trauma? Physical trauma is a serious injury to the ...

  4. Diabetes Fact Sheet

    Science.gov (United States)

    ... diabetes by losing weight. Related information Fitness and nutrition Heart disease and stroke Obesity and weight loss fact sheet Physical activity fact sheet Pregnancy The javascript used in this widget is not ...

  5. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2017-08-01

    Full Text Available The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB of the Greenland ice sheet (GrIS is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  6. On the importance of the albedo parameterization for the mass balance of the Greenland ice sheet in EC-Earth

    Science.gov (United States)

    Helsen, Michiel M.; van de Wal, Roderik S. W.; Reerink, Thomas J.; Bintanja, Richard; Madsen, Marianne S.; Yang, Shuting; Li, Qiang; Zhang, Qiong

    2017-08-01

    The albedo of the surface of ice sheets changes as a function of time due to the effects of deposition of new snow, ageing of dry snow, bare ice exposure, melting and run-off. Currently, the calculation of the albedo of ice sheets is highly parameterized within the earth system model EC-Earth by taking a constant value for areas with thick perennial snow cover. This is an important reason why the surface mass balance (SMB) of the Greenland ice sheet (GrIS) is poorly resolved in the model. The purpose of this study is to improve the SMB forcing of the GrIS by evaluating different parameter settings within a snow albedo scheme. By allowing ice-sheet albedo to vary as a function of wet and dry conditions, the spatial distribution of albedo and melt rate improves. Nevertheless, the spatial distribution of SMB in EC-Earth is not significantly improved. As a reason for this, we identify omissions in the current snow albedo scheme, such as separate treatment of snow and ice and the effect of refreezing. The resulting SMB is downscaled from the lower-resolution global climate model topography to the higher-resolution ice-sheet topography of the GrIS, such that the influence of these different SMB climatologies on the long-term evolution of the GrIS is tested by ice-sheet model simulations. From these ice-sheet simulations we conclude that an albedo scheme with a short response time of decaying albedo during wet conditions performs best with respect to long-term simulated ice-sheet volume. This results in an optimized albedo parameterization that can be used in future EC-Earth simulations with an interactive ice-sheet component.

  7. Dipolarization front and current disruption

    Science.gov (United States)

    Lui, A. T. Y.

    2016-10-01

    The modification of current density on the dawn-dusk cross section of the magnetotail with the earthward approach of a dipolarization front (DF) is examined through the recently published results of a three-dimensional (3-D) particle-in-cell (PIC) simulation. It is found that the current density intensifies by 37% abruptly within 1.5 ion gyrotime as the DF approaches and shows localized regions with north-south extrusions. After reaching its peak value, it undergoes a drastic current reduction (DCR) by 65% within 2 ion gyrotime. Breakdown of the frozen-in condition occurs in the neutral sheet region in association with DCR, demonstrating the non-MHD behavior of the phenomenon. The evolution of current density from this 3-D PIC simulation bears several similarities to those observed for the current disruption (CD) phenomenon, such as explosive growth and disruption of the current density leading to a breakdown of the frozen-in condition. The evolution is also similar to those from a previous two-dimensional (2-D) PIC simulation specially designed to investigate the nonlinear evolution of the cross-field current instability for CD. One interpretation of these findings is that CD and substorm triggering can be associated with earthward intrusion of a DF into the near-Earth plasma sheet as indicated by previous Cluster and Time History of Events and Macroscale Interactions during Substorms observations. An alternative interpretation is that both DF and CD are consequences of a global evolution from an ion-tearing-like instability of the magnetotail.

  8. Electromagnetic augmentation for casting of thin metal sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  9. Flow Behavior and Microstructure Evolution of 2024 Aluminum Alloy Sheet during Hot Tension Deformation%2024铝合金板材高温拉伸流变行为和微观组织演化研究

    Institute of Scientific and Technical Information of China (English)

    赵婷; 邓磊; 王新云

    2015-01-01

    目的:研究高温拉伸应力状态下,2024铝合金板材的流变行为和微观组织演化行为。方法对退火后的2024铝合金板进行等温拉伸试验,得到其应力应变曲线,并通过金相实验测定平均晶粒尺寸。建立了2024铝合金板材高温拉伸条件下的流变应力本构关系和晶粒尺寸模型。结果流变应力随温度的升高而减小。流变应力对应变速率有正的敏感性,随着温度的升高,应变速率敏感系数变大。变形后的平均晶粒尺寸随Zener-Hollomon参数升高而减小,随应变量的增加先减小后增大。结论所建立的流变应力本构关系和晶粒尺寸模型,有助于在实际生产过程中优化工艺参数,获得细小晶粒,提高零件性能。该研究为2024铝合金板材热成形工艺的开发和组织控制奠定了理论基础。%ABSTRACT:The aim of this work was to study the flow behavior and microstructure evolution of 2024 aluminum alloy sheet during hot tension deformation. The 2024 aluminum alloy sheet was stretched to get the true stress-strain curves when the range of deformation temperature was 300 ℃ ~450 ℃ and the range of strain rate was 0. 001 s-1 ~0. 1 s-1 , after the deformation, metallographic tests were carried out on the deformed samples to determine the average grain size. The flow stress constitutive relationship and grain size model for 2024 aluminum alloy sheet under hot tension condition were estab-lished using the experiment results. The flow behavior decreased with the increase of temperature. The flow behavior had a positive sensitivity to the strain rate. With the increase of temperature, the sensitivity coefficient of strain rate became lar-ger. After deformation, the average grain size decreased with the increase of Zener-Hollomon parameter. With the increase of strain, the average grain size first decreased and then increased. The flow stress constitutive relationship and grain size model established were conductive to

  10. Nanotechnology for Site Remediation: Fact Sheet

    Science.gov (United States)

    This fact sheet presents a snapshot of nanotechnology and its current uses in remediation. It presents information to help site project managers understand the potential applications of this group of technologies at their sites.

  11. Plasma Formation and Evolution on Cu, Al, Ti, and Ni Surfaces Driven by a Mega-Ampere Current Pulse

    Science.gov (United States)

    Yates, Kevin C.

    Metal alloy mm-diameter rods have been driven by a 1-MA, 100-ns current pulse from the Zebra z-pinch. The intense current produces megagauss surface magnetic fields that diffuse into the load, ohmically heating the metal until plasma forms. Because the radius is much thicker than the skin depth, the magnetic field reaches a much higher value than around a thin-wire load. With the "barbell" load design, plasma formation in the region of interest due to contact arcing or electron avalanche is avoided, allowing for the study of ohmically heated loads. Work presented here will show first evidence of a magnetic field threshold for plasma formation in copper 101, copper 145, titanium, and nickel, and compare with previous work done with aluminum. Copper alloys 101 and 145, titanium grade II, and nickel alloy 200 form plasma when the surface magnetic field reaches 3.5, 3.0, 2.2, and 2.6 megagauss, respectively. Varying the element metal, as well as the alloy, changes multiple physical properties of the load and affects the evolution of the surface material through the multiple phase changes. Similarities and differences between these metals will be presented, giving motivation for continued work with different material loads. During the current rise, the metal is heated to temperatures that cause multiple phase changes. When the surface magnetic field reaches a threshold, the metal ionizes and the plasma becomes pinched against the underlying cooler, dense material. Diagnostics fielded have included visible light radiometry, two-frame shadowgraphy (266 and 532 nm wavelengths), time-gated EUV spectroscopy, single-frame/2ns gated imaging, and multi-frame/4ns gated imaging with an intensified CCD camera (ICCD). Surface temperature, expansion speeds, instability growth, time of plasma formation, and plasma uniformity are determined from the data. The time-period of potential plasma formation is scrutinized to understand if and when plasma forms on the surface of a heated

  12. Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets

    Institute of Scientific and Technical Information of China (English)

    Kondapalli Siva Prasad; Chalamalasetti Srinivasa Rao; Damera Nageswara Rao

    2012-01-01

    The paper focuses on developing mathematical models to predict grain size and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy.Four factors,five levels,central composite rotatable design matrix is used to optimize the number of experiments.The mathematical models have been developed by response surface method.The adequacy of the models is checked by analysis of variance technique.By using the developed mathematical models,grain size and ultimate tensile strength of the joints can be predicted with 99%0 confidence level.Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld ioints.

  13. A simple model for the short-time evolution of near-surface current and temperature profiles

    CERN Document Server

    Jenkins, A D; Jenkins, Alastair D.; Ward, Brian

    2005-01-01

    A simple analytical/numerical model has been developed for computing the evolution, over periods of up to a few hours, of the current and temperature profile in the upper layer of the ocean. The model is based upon conservation laws for heat and momentum, and employs an eddy diffusion parameterisation which is dependent on both the wind speed and the wind stress applied at the sea surface. Other parameters such as the bulk-skin surface temperature difference and CO$_2$ flux are determined by application of the Molecular Oceanic Boundary Layer Model (MOBLAM) of Schluessel and Soloviev. A similar model, for the current profile only, predicts a temporary increase in wave breaking intensity and decrease in wave height under conditions where the wind speed increases suddenly, such as, for example, during gusts and squalls. The model results are compared with measurements from the lagrangian Skin Depth Experimental Profiler (SkinDeEP) surface profiling instrument made during the 1999 MOCE-5 field experiment in the ...

  14. Evolution, current structure, and role of a primary care clinical pharmacy service in an integrated managed care organization.

    Science.gov (United States)

    Heilmann, Rachel M F; Campbell, Stephanie M; Kroner, Beverly A; Proksel, Jenel R; Billups, Sarah J; Witt, Daniel M; Helling, Dennis K

    2013-01-01

    The impact of the declining number of primary care physicians is exacerbated by a growing elderly population in need of chronic disease management. Primary care clinical pharmacy specialists, with their unique knowledge and skill set, are well suited to address this gap. At Kaiser Permanente of Colorado (KPCO), primary care clinical pharmacy specialists have a long history of integration with medical practices and are located in close proximity to physicians, nurses, and other members of the health care team. Since 1992, Primary Care Clinical Pharmacy Services (PCCPS) has expanded from 4 to 30 full-time equivalents (FTEs) to provide services in all KPCO medical office buildings. With this growth in size, PCCPS has evolved to play a vital role in working with primary care medical teams to ensure that drug therapy is effective, safe, and affordable. In addition, PCCPS specialists provide ambulatory teaching sites for pharmacy students and pharmacy residents. There is approximately 1 specialist FTE for every 13,000 adult KPCO members and every 9 clinical FTEs of internal medicine and family medicine physicians. All clinical pharmacy specialists in the pharmacy department are required to have a PharmD degree, to complete postgraduate year 2 residencies, and, as a condition of employment, to become board certified in an applicable specialty. The evolution, current structure, and role of PCCPS at KPCO, including factors facilitating successful integration within the medical team, are highlighted. Patient and nonpatient care responsibilities are described.

  15. Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste eBosson

    2016-04-01

    Full Text Available This contribution explores the internal structure of very small debris-covered glacier systems located in permafrost environments and their current dynamical responses to short-term climatic variations. Three systems were investigated with electrical resistivity tomography and dGPS monitoring over a 3-year period. Five distinct sectors are highlighted in each system: firn and bare-ice glacier, debris-covered glacier, heavily debris-covered glacier of low activity, rock glacier and ice-free debris. Decimetric to metric movements, related to ice ablation, internal deformation and basal sliding affect the glacial zones, which are mainly active in summer. Conversely, surface lowering is close to zero (-0.04 m yr-1 in the rock glaciers. Here, a constant and slow internal deformation was observed (c. 0.2 m yr-1. Thus, these systems are affected by both direct and high magnitude responses and delayed and attenuated responses to climatic variations. This differential evolution appears mainly controlled by (1 the proportion of ice, debris and the presence of water in the ground, and (2 the thickness of the superficial debris layer.

  16. Halo Evolution of Hypereutectic Al-17.5Si Alloy Treated with High-Current Pulsed Electron Beam

    Directory of Open Access Journals (Sweden)

    L. Hu

    2015-01-01

    Full Text Available Halo evolution of an Al-17.5Si alloy surface after treatment with increasing pulse numbers of a high-current pulsed electron beam (HCPEB was investigated. A halo is a ring microstructure resembling a bull’s eye. SEM results indicate that the nanocrystallization of halo induced by HCPEB treatment leads to gradual diffusion of the Si phase. Multiple pulses numbers cause the Si phase to be significantly refined and uniformly distributed. In addition, nanosilicon particles with a grain size of 30~100 nm were formed after HCPEB treatment, as shown by TEM observation. XRD results indicate that Si diffraction peaks broadened after HCPEB treatment. The microhardness tests demonstrate that the microhardness at the midpoint from the halo edge to center decreased sharply from 9770.7 MPa at 5 pulses to 2664.14 MPa at 25 pulses. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 6.5, exhibiting optimal wear resistance.

  17. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  18. 磁重联电流片的参数变化对电子加速的影响%Impact of Variations of the Parameters for the Current Sheet on Electron Accelerations

    Institute of Scientific and Technical Information of China (English)

    李燕; 林隽

    2009-01-01

    通过采用试验粒子的方法,研究了在有引导磁场Bz存在的磁重联电流片中,电子被super-Dreicer电场Ez加速后的运动特征.首先,考虑了引导磁场恒定且与电场有不同方向时对粒子加速的影响.在这种情况下,Bz方向的改变直接改变了电子的运动轨迹,使其沿着不同的路径离开电流片.在Bz和Ez同向时,高能电子的pitch-angle接近于180°.然而,当2者反向时,高能电子的pitch-angle接近0°.引导磁场的取向只是使电场有选择地对不同区域的电子进行加速,不会最终影响电子的能量分布,最终得到的能谱是普遍的幂率谱E-γ.在典型的日冕条件下, γ大约等于2.9.进一步的研究表明γ的大小依赖于引导磁场及磁重联电场的强弱,以及电流片的尺度.随后,也研究了包含多个X-点和O-点电流片中被加速粒子的运动特征.结果表明X-点和O-点的存在使得粒子被束缚在加速区并获得最大的加速,而且最终的能谱具有多幂率谱的特征.%The kinematic characteristic of electrons after acceleration by a super-Dreicer electric field Ez is investigated in the reconnecting current sheet (RCS) with a guiding magnetic field Bz by simulations of testing particles. Firstly, the influence of the different directions of the electric filed on the acceleration of particles, changing the trajectories of electrons, is discussed when assuming the magnetic field as a constant. If Bz parallels to Ez, the pitch-angle of accelerated electrons is close to 180°; If Bz anti-parallels to Ez, the pitch-angle is close to 0°. The different directions of the guiding magnetic field lead to different regions where electrons are accelerated by the electric field but will not change the final energy distribution of electrons-in form of a power-law distribution E-γ. γ approx-imates to 2.9 in typical coronal conditions. Further research indicates that γ depends on the strength of both the guiding field and

  19. Numerical Study About the Nonlinear Instability of the Sweet-Parker Thin Current Sheet With Shearing Flows%有剪切速度的Sweet-Parker薄电流片在非线性阶段的不稳定性研究

    Institute of Scientific and Technical Information of China (English)

    倪蕾; 杨志良

    2011-01-01

    以HarrisSheet作为初始条件,使用数值模拟的方法,研究了二级磁岛不稳定重联的一些性质.在模拟中随着初始扰动的加入,HarrisSheet将演化到非线性阶段,形成更薄的有剪切速度的电流片,并伴有一级磁岛产生.当Lundquist数大于或等于10^5时,非均匀剪切速度的Sweet-Parker电流片开始不稳定,并有二级磁岛出现.不稳定Sweet—Parker电流片对应的临界长宽比为65.Lundquist数越大,演化形成的Sweet—Parker电流片越薄,更多的二级磁岛将出现,且沿电流片两边向外喷出%In this paper, numerical simulation results of nonlinear Plasmoid instabilities are presented. A two dimensional incompressible MHD code is used to calculate the results. The adaptive mesh refinement and MPI techniques are enable in this code. Harris sheets are used as the initial equilibrium conditions and small perturbations of the current density are applied to make the system unstable. Sequences of plasmoid instability processses for different Lundquist numbers have been studied. The Harris sheets will always evolve in to thinner Sweet-Parker current sheets with shearing flows in the early stage. As the Lundquist number S 〉/10^5, the Sweet-Parker thin current sheets are unstable and secondary islands appear. The critical aspect ratio for the unstable Sweet-Parker thin current sheet is around 65. The larger the Lundquist number is, the thinner the Sweet-Parker sheet, and the more secondary islands appear. These secondary islands are ejected out along the current sheet, grow bigger with time and coalesce with each other in the later stage. The reconnection rate of the current sheet has been increased a lot due to secondary instabilities. The peak reeonnection rates in each reconneetion processes for different Lundquist number are picked about to study the relationship between the Lundquist number and the reconnection rate, which has been found no longer scales with

  20. Evolution/Creationism Controversy: Analysis of Past and Current Policies in Public Schools and the Practice of Allowing Students to Opt Out of Learning Evolution Concepts

    Science.gov (United States)

    Speake, Jacquelyn Hoffmann

    2011-07-01

    Recent anti-evolution legislation, in the form of Academic Freedom bills, has been introduced in many state legislatures over the last three years. The language in the proposed Academic Freedom bills may allow different interpretations of what can be taught in the science classrooms, and possibly spur parents to take advantage of their perceived parental rights to request their child be opted-out of class when the scientific theory of evolution is taught. Five research questions guided the analysis of participant responses to questions and perception statements focusing on secondary school administrators' actions, perceptions, and awareness as they relate to their decision to allow or not allow a student to opt out of academics, specifically evolution, through the collection of data using a web-based survey. Opt out policies are typically invoked to excuse students from activities to which they or their parents may have religious objections (Scott & Branch, 2008). Florida statutes allow parents to opt out their child from human sexuality and animal dissection. The population consisted of 281 Florida public secondary school administrators, who were divided into two subgroups based on whether they have allowed or would allow a student to opt out of evolution, or have not allowed or would not allow a student to opt out of class when the scientific theory of evolution is taught. Results found that over 70% of the administrators who completed the survey have allowed or would allow parents to opt out their child from learning about the scientific theory of evolution. There was a significant relationship between the decision to allow opt out and the following variables: (a) Free and Reduced Lunch population, (b) grade level served, (c) support for teaching evolution and alternative theories, and (d) the perception that parent rights supersede state statute requiring students to learn evolution. In Florida, any scientific concept that is based on empirical evidence is

  1. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  2. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  3. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  4. Tidal current-induced formation——storm-induced change——tidal current-induced recovery——Interpretation of depositional dynamics of formation and evolution of radial sand ridges on the Yellow Sea seafloor

    Institute of Scientific and Technical Information of China (English)

    张长宽; 张东生; 张君伦; 王震

    1999-01-01

    The results of simulated tidal current field, wave field and storm-induced current field are employed to interpret the depositional dynamic mechanism of formation and evolution of the radial sand ridges on the Yellow Sea seafloor. The anticlockwise rotary tidal wave to the south of Shandong Peninsula meets the following progressive tidal wave from the South Yellow Sea, forming a radial current field outside Jianggang. This current field provides a necessary dynamic condition for the formation and existence of the radial sand ridges on the Yellow Sea seafloor. The results of simulated "old current field (holocene)" show that there existed a convergent-divergent tidal zone just outside the palaeo-Yangtze River estuary where a palaeo-underwater accumulation was developed. The calculated results from wave models indicate that the wave impact on the topography, under the condition of high water level and strong winds, is significant. The storm current induced by typhoons landing in the Yangtze River estuary

  5. Cluster multi-point observations of the magnetotail plasma sheet

    Science.gov (United States)

    Henderson, Paul David

    This thesis presents observations of the terrestrial magnetotail plasma sheet made by the European Space Agency Cluster mission. The Cluster mission is composed of four identical spacecraft, the first such multi-spacecraft mission, and enables, for the first time, the disambiguation of time versus space phenomena. Using the data from 2003, when the spacecraft were at their smallest average separation to date, many small-scale processes, both microphysical and macrophysical, are investigated. In the first study presented, two small flux ropes, a possible signature of multiple X-line reconnection, are investigated. By the development and utilisation of various multi-spacecraft methods, the currents and magnetic forces internal and external to the flux ropes, as well as the internal structure of the flux ropes, are investigated. In addition, a theory of their early evolution is suggested. In the second study presented, various terms of the generalised Ohm's law for a plasma are determined, including, for the first time, the divergence of the full electron pressure tensor, during the passage past the spacecraft of an active reconnection X-line. It is found that the electric field contribution from the divergence of the electron pressure tensor is anti-correlated with the contribution from the Hall term in the direction normal to the neutral sheet. In addition, further signatures of reconnection are quantified, such as parallel electric field generation and Hall quadrupolar magnetic field and current systems. In the final study presented, the anti-correlation between the divergence of the electron pressure tensor and Hall terms is investigated further. It is found that the anti-correlation is general, appearing in the direction normal to the neutral sheet because of a cross tail current. In a simple magnetohydrostatic treatment, a force balance argument leads to the conclusion that the gradient of the anti-correlation is a function of the ratio of the electron to ion

  6. On sea level - ice sheet interactions

    Science.gov (United States)

    Gomez, Natalya Alissa

    This thesis focuses on the physics of static sea-level changes following variations in the distribution of grounded ice and the influence of these changes on the stability and dynamics of marine ice sheets. Gravitational, deformational and rotational effects associated with changes in grounded ice mass lead to markedly non-uniform spatial patterns of sea-level change. I outline a revised theory for computing post-glacial sea-level predictions and discuss the dominant physical effects that contribute to the patterns of sea-level change associated with surface loading on different timescales. I show, in particular, that a large sea-level fall (rise) occurs in the vicinity of a retreating (advancing) ice sheet on both short and long timescales. I also present an application of the sea-level theory in which I predict the sea-level changes associated with a new model of North American ice sheet evolution and consider the implications of the results for efforts to establish the sources of Meltwater Pulse 1A. These results demonstrate that viscous deformational effects can influence the amplitude of sea-level changes observed at far-field sea-level sites, even when the time window being considered is relatively short (≤ 500 years). Subsequently, I investigate the feedback of sea-level changes on marine ice-sheet stability and dynamics by coupling a global sea-level model to ice-sheet models of increasing complexity. To begin, I incorporate gravitationally self-consistent sea-level changes into an equilibrium marine ice-sheet stability theory to show that the sea-level changes have a stabilizing influence on ice-sheet retreat. Next, I consider the impact of the stabilizing mechanism on the timescale of ice-sheet retreat using a 1D dynamic coupled ice sheet - sea level model. Simulations with the coupled model, which incorporate viscoelastic deformation of the solid Earth, show that local sea-level changes at the grounding line act to slow, and in some cases, halt

  7. Thermoforming of foam sheet

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud M.

    1997-01-01

    Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw t

  8. Mechanics of Sheeting Joints

    Science.gov (United States)

    Martel, S. J.

    2015-12-01

    Physical breakdown of rock across a broad scale spectrum involves fracturing. In many areas large fractures develop near the topographic surface, with sheeting joints being among the most impressive. Sheeting joints share many geometric, textural, and kinematic features with other joints (opening-mode fractures) but differ in that they are (a) discernibly curved, (b) open near the topographic surface, and (c) form subparallel to the topographic surface. Where sheeting joints are geologically young, the surface-parallel compressive stresses are typically several MPa or greater. Sheeting joints are best developed beneath domes, ridges, and saddles; they also are reported, albeit rarely, beneath valleys or bowls. A mechanism that accounts for all these associations has been sought for more than a century: neither erosion of overburden nor high lateral compressive stresses alone suffices. Sheeting joints are not accounted for by Mohr-Coulomb shear failure criteria. Principles of linear elastic fracture mechanics, together with the mechanical effect of a curved topographic surface, do provide a basis for understanding sheeting joint growth and the pattern sheeting joints form. Compressive stresses parallel to a singly or doubly convex topographic surface induce a tensile stress perpendicular to the surface at shallow depths; in some cases this alone could overcome the weight of overburden to open sheeting joints. If regional horizontal compressive stresses, augmented by thermal stresses, are an order of magnitude or so greater than a characteristic vertical stress that scales with topographic amplitude, then topographic stress perturbations can cause sheeting joints to open near the top of a ridge. This topographic effect can be augmented by pressure within sheeting joints arising from water, ice, or salt. Water pressure could be particularly important in helping drive sheeting joints downslope beneath valleys. Once sheeting joints have formed, the rock sheets between

  9. Cell sheet engineering

    Directory of Open Access Journals (Sweden)

    Masayuki Yamato

    2004-05-01

    Full Text Available We have developed ‘cell sheet engineering’ in order to avoid the limitations of tissue reconstruction using biodegradable scaffolds or single cell suspension injection. Our concept is tissue reconstruction, not from single cells, but from cell sheets. Cell sheets are prepared using temperature-responsive culture dishes. Temperature-responsive polymers are covalently grafted onto the dishes, allowing various types of cells to adhere and proliferate at 37°C. The cells spontaneously detach when the temperature is reduced below 32°C without the need for proteolytic enzymes. The confluent cells are noninvasively harvested as single, contiguous cell sheets with intact cell-cell junctions and deposited extracellular matrix (ECM. We have used these harvested cell sheets for various tissue reconstructions, including ocular surfaces, periodontal ligaments, cardiac patches, and bladder augmentation.

  10. Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network

    Directory of Open Access Journals (Sweden)

    Marchetto A

    2014-04-01

    Full Text Available Current state and temporal evolution of the chemical composition of atmospheric depositions in forest areas of the CONECOFOR network. Since 1997, atmospheric deposition was sampled and analyzed in the permanent plots of the Italian network for the evaluation of forest health (CONECOFOR, under the coordination of the Italian Forest Service. This paper presents the results of the activity carried out in 2009, when the EU-funded LIFE+ “FutMon” project allowed to extend the sampling network to 22 sites. Long-term trends will also be evaluated for the sampling sites with the longest time series. The sampling of open field bulk deposition was performed in a clearance close to the CONECOFOR permanent plots, while throughfall deposition and stemflow (in beech stand, only were sampled in the plot. Deposition samples were collected weekly and sent to the laboratories, where they were analyzed for pH, conductivity, major ions, and total carbon and nitrogen. Most measured variables showed a strong geographical gradient. For example, nitrogen deposition was relatively high in the Po plain (where the emissions of nitrogen oxides and ammonia are the highest and surrounding hills, reaching 10-20 kgN ha-1 y-1 in the open field and 13-25 kgN ha-1 y-1 in the throughfall. Sulphate deposition also showed a marked geographical gradient. Deposition of marine aerosol also had an important impact on the chemical composition of atmospheric deposition in Italy, together with the episodic deposition of Saharan dust, which showed a marked gradient, with highest values in the southernmost plots. Trend analysis was carried out on 10 sites running since the beginning of the program. A general negative trend in sulphate concentration was detected, paralleled in most plots by a positive trend in deposition pH, in good agreement with the strong reduction in the emission of sulphur dioxide recorded in the last decades. Nitrogen concentration also showed a significant decrease

  11. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  12. Algebra task & drill sheets

    CERN Document Server

    Reed, Nat

    2011-01-01

    For grades 3-5, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets

  13. Reply to comment on "A simple model for the short-time evolution of near-surface current and temperature profiles"

    CERN Document Server

    Jenkins, A D; Jenkins, Alastair D.; Ward, Brian

    2005-01-01

    This is our response to a comment by Walter Eifler on our paper `A simple model for the short-time evolution of near-surface current and temperature profiles' (arXiv:physics/0503186, accepted for publication in Deep-Sea Research II). Although Eifler raises genuine issues regarding our model's validity and applicability, we are nevertheless of the opinion that it is of value for the short-term evolution of the upper-ocean profiles of current and temperature. The fact that the effective eddy viscosity tends to infinity for infinite time under a steady wind stress may not be surprising. It can be interpreted as a vertical shift of the eddy viscosity profile and an increase in the size of the dominant turbulent eddies under the assumed conditions of small stratification and infinite water depth.

  14. Eddy current thickness measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Gary J.; Sinclair, Frank; Soskov, Alexander; Buff, James S.

    2015-06-16

    A sheet of a material is disposed in a melt of the material. The sheet is formed using a cooling plate in one instance. An exciting coil and sensing coil are positioned downstream of the cooling plate. The exciting coil and sensing coil use eddy currents to determine a thickness of the solid sheet on top of the melt.

  15. HRSA Data Fact Sheets

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health Resources and Services Administration (HRSA) Data Fact Sheets provide summary data about HRSA’s activities in each Congressional District, County, State,...

  16. Pharmacogenomics Fact Sheet

    Science.gov (United States)

    ... incorporate genomic results into medical care. Other NIGMS Fact Sheets Related Links Up to top This page last reviewed on September 28, 2017 Social Media Links Bookmark & Share Free Subscriptions Twitter Facebook ...

  17. Respirator Fact Sheet

    Science.gov (United States)

    ... have expiration dates that should be checked before purchase. Also, over time your mask can get old ... Respirator Fact Sheet [PDF - 706 KB] Follow NIOSH Facebook Flickr Pinterest Twitter YouTube NIOSH Homepage NIOSH A- ...

  18. In operando neutron diffraction study of the temperature and current rate-dependent phase evolution of LiFePO4 in a commercial battery

    Science.gov (United States)

    Sharma, N.; Yu, D. H.; Zhu, Y.; Wu, Y.; Peterson, V. K.

    2017-02-01

    In operando NPD data of electrodes in lithium-ion batteries reveal unusual LiFePO4 phase evolution after the application of a thermal step and at high current. At low current under ambient conditions the LiFePO4 to FePO4 two-phase reaction occurs during the charge process, however, following a thermal step and at higher current this reaction appears at the end of charge and continues into the next electrochemical step. The same behavior is observed for the FePO4 to LiFePO4 transition, occurring at the end of discharge and continuing into the following electrochemical step. This suggests that the bulk (or the majority of the) electrode transformation is dependent on the battery's history, current, or temperature. Such information concerning the non-equilibrium evolution of an electrode allows a direct link between the electrode's functional mechanism that underpins lithium-ion battery behavior and the real-life operating conditions of the battery, such as variable temperature and current, to be made.

  19. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.

  20. 2013 social balance sheet

    OpenAIRE

    Pierrette Heuse

    2014-01-01

    The transposition into national law of Directive 2013/34/EU on the annual financial statements of companies, expected by no later than July 2015, could alter the statistical obligations on small firms in connection with the filing of their annual accounts. In any case, the social balance sheet can no longer form an integral part of their accounts. Nevertheless, it contains original information whose usefulness is highlighted, on the basis of the social balance sheets for 2012, by examining th...

  1. Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail

    Institute of Scientific and Technical Information of China (English)

    LU Xing-Qiang; MA Zhi-Wei

    2009-01-01

    Current dynamic processes in realistic magnetotail geometry are studied by Hall magnetohydrodynamic (MHD)simulations under various driven conditions and Hall effects. Associated with the external driving force, a thin current sheet with a broad extent is built up in the near-Earth magnetotail. The time evolution for the formation of the current sheet comprises two phases: slow growth and a fast impulsive phase before the near-Earth disruption of the current sheet resulting from the fast magnetic reconnection. The simulation results indicate that as the external driving force increases, the site and the tailward speed of the near-Earth current disruption region are closer to the Earth and faster, respectively. Whether the near-Earth disruption of the current sheet takes place or not is mainly controlled by Hall effects. It is found that there is no sudden disruption of the current sheet in the near-Earth region if the ion inertial length is below di = 0.04.

  2. Analysis of crease-wrinkle interaction for thin sheets

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Kyeong Sik [Chungbuk National University, Cheongju (Korea, Republic of); Jenkins, Christopher H. [Montana State University, Bozeman (United States)

    2012-03-15

    In this paper, geometrically non-linear post-buckling analyses were performed to study the effect of sheet thickness, deployment angle, and load ratio on the crease-wrinkle interaction. A square sheet configuration with a single transverse crease was modeled using thin shell elements. The analysis proceeded by initially providing a realistic deployed state of a creased membrane sheet. Then an uneven corner loading was applied to introduce wrinkling. The effects of the induced anisotropy from the crease on the fine-scale detail of the wrinkle evolution, as a function of sheet thickness, loading, and crease deployment angle were systematically investigated. Significant differences were found in sheet compliance and crease-wrinkle interaction as these parameters were varied.

  3. Quaternary clay mineralogy in the northern South China Sea (ODP Site 1146)--Implications for oceanic current transport and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei(刘志飞); Alain Trentesaux; Steven C. Clemens; WANG Pinxian(汪品先)

    2003-01-01

    Measurement of clay mineralogy at ODP Site 1146 in the northern South China Sea (SCS) indicates that illite, chlorite, and kaolinite contents increased during glacials and smectite content increased during interglacials. The smectite/(illite+chlorite) ratio and the smectite abundance were determined as mineralogical indicators for the East Asian monsoon evolution. At a 10 ka timescale, prevailing southeasterly surface oceanic currents during interglacials transported more smectite from the south and east areas to the north, showing a strengthened summer monsoon circulation, whereas dominated counter-clockwise surface currents during glacials carried more illite and chlorite from Taiwan as well as from the Yangtze River via the Luzon Strait to the northern SCS, indicating a strongly intensified winter monsoon. Based on a 100 ka timescale, a linear correlation between the smectite/(illite+chlorite) ratio and the sedimentation rate reflects that the winter monsoon has prevailed in the northern SCS in the intervals 2000-1200 ka and 400-0 ka and the summer monsoon did the same in the interval 1200-400 ka. The evolution of the summer monsoon provides an almost linear response to the summer insolation of Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

  4. Evolution of the structural and optical properties of silver oxide films with different stoichiometries deposited by direct-current magnetron reactive sputtering

    Institute of Scientific and Technical Information of China (English)

    Zhao Meng-Ke; Liang Yan; Gao Xiao-Yong; Chen Chao; Chen Xian-Mei; Zhao Xian-Wei

    2012-01-01

    Nitrogen doping of silver oxide (AgχO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgχO film is a p-type semiconductor with poor conductivity.In this work,a series of AgχO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios (FRs) of nitrogen to O2.Evolutions of the structure,the reflectivity,and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry,respectively.The specular transmissivity and the specular reflectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film.The nitrogen does not play the role of an acceptor dopant in the film deposition.

  5. Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS2, and direct correlation to Pt hydrogen evolution reaction kinetics

    Science.gov (United States)

    Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-05-01

    The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis.The recent surge in interest in the utilisation of transition metal dichalcogenides for the hydrogen evolution reaction (HER), as well as the long-standing problem of sulfur poisoning suffered by the established Pt HER electrocatalyst, motivated us to examine the impacts of sulfur poisoning on both emergent and current electrocatalysts. Through a comparative study between MoS2 and Pt/C on the effects of sulfur poisoning, we demonstrate that MoS2 is not invulnerable to poisoning. Additionally, using X-ray photoelectron spectroscopy, correlations have also been established between the atomic percentages of Pt-S bonds and normalised HER parameters e.g. Tafel slope and potential at -10 mA cm-2. These findings are of high importance for potential hydrogen evolution catalysis. Electronic supplementary information (ESI) available: Survey scan XPS spectra, HER LSV curves and surface atomic compositions of poisoned and unpoisoned Pt/C and MoS2 nanoparticles. See DOI: 10.1039/c5nr01378j

  6. Testing the hypothesis on cognitive evolution of modern humans' learning ability: current status of past-climatic approaches.

    Science.gov (United States)

    Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi

    2014-05-01

    The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.

  7. Computing Electric Currents in the Martian Ionosphere Using Magnetometer Data from the Mars Atmospheric Volatile EvolutioN (MAVEN) Spacecraft

    Science.gov (United States)

    Fogle, A. L.

    2015-12-01

    Mars does not have a global magnetic field like Earth does. However, due to solar wind and interplanetary magnetic field (IMF) interactions, electric currents are induced which create an induced magnetosphere. As MAVEN passes through the ionosphere of Mars, the magnetometer on board continuously measures the induced magnetic field in the ionosphere. Using Ampere's Law (∇ × B = µ0j) along with these measurements of the induced magnetic field, we can quantify the electric currents in the ionosphere. We are particularly interested in magnetic field profiles that have a radial component that is less than or equal to 5 nanoteslas in magnitude. By only using measurements where the radial component of the magnetic field satisfies the aforementioned condition and assuming that there are no horizontal gradients in the magnetic field, we will calculate horizontal currents in the ionosphere. Using these calculated currents, we will analyze altitudinal variations in magnitude and direction of the currents. Measuring these horizontal currents can give us insights into how the solar wind and IMF can affect the upper atmosphere of Mars. For example, induced electric currents can cause Joule heating in the atmosphere, which can potentially modify its neutral dynamics.

  8. Safety advice sheets

    CERN Multimedia

    HSE Unit

    2013-01-01

    You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…?   The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.

  9. The evolution of a mountain road network from its original use during the First World War to meeting today’s forestry needs: current management

    Directory of Open Access Journals (Sweden)

    Raffaele Cavalli

    2012-12-01

    Full Text Available In some mountain areas of northeastern Italy, the present forest road network has been partially developed using the previous military road network built during the First World War (WW I. The current management of the areas of forest considers the road network essential to provide access for forestry activities, but also to increase the value of recreational activities and tourism related to the historical importance of this area. The aim of the study was to investigate the technical evolution of a mountain road network from the beginning of the last century to today. The research consisted in a preliminary reconnaissance of the original road network using the WW I military maps, a further reconnaissance using the technical maps dated to the 1960s, and the survey of the current road network through the differential global positioning system (D-GPS. The study also aimed to evaluate the current condition of the original road network according to the use made of it today in order to highlight how building standards influenced its evolution in terms of transportation systems and traffic management.

  10. State Civic Education Requirements. CIRCLE Fact Sheet

    Science.gov (United States)

    Godsay, Surbhi; Henderson, Whitney; Levine, Peter; Littenberg-Tobias, Josh

    2012-01-01

    This fact sheet summarizes state requirements related to civic education, which means learning about citizenship, government, law, current events, and related topics. Civic education is most directly addressed in courses labeled "civics," "government," or "U.S. government." Social studies is a broader category that…

  11. Energy information sheets

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-02

    The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.

  12. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...... as Dansgaard-Oeschger (DO) events would add to our knowledge of the climatic system and – hopefully – enable better forecasts. Likewise, to forecast possible future sea level rise it is crucial to correctly model the large ice sheets on Greenland and Antarctica. This project is divided into two parts...

  13. Production (information sheets)

    NARCIS (Netherlands)

    2007-01-01

    Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P Unce

  14. Burns Fact Sheet

    Science.gov (United States)

    ... and Answers page . Share Print E-mail House Image Highlight Header Learn More Highlight Body Other NIGMS Fact Sheets Related Links Up to top This page last reviewed on April 06, 2016 Social Media Links Bookmark & Share Free Subscriptions Twitter Facebook YouTube ...

  15. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  16. SILICON CARBIDE DATA SHEETS

    Science.gov (United States)

    These data sheets present a compilation of a wide range of electrical, optical and energy values for alpha and beta- silicon carbide in bulk and film...spectrum. Energy data include energy bands, energy gap and energy levels for variously-doped silicon carbide , as well as effective mass tables, work

  17. Pseudomonas - Fact Sheet

    OpenAIRE

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  18. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopei [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China); Tang, Guoyi; Kuang, Jie; Li, Xiaohui [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhu, Jing, E-mail: jzhu@tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084 (China)

    2014-08-26

    The effect of electroplastic rolling (ER) on the mechanical properties, microstructure and texture in the AZ31 magnesium alloy strips has been investigated by tensile testing and electron back scattered diffraction (EBSD) methods. It is shown that the mechanical properties, microstructure, and texture are highly current frequency-dependent. Best mechanical properties are obtained from the 500 Hz ER specimen by carrying out tensile tests for all the rolled strips. Besides, the frequencies of twin boundaries, which are reduced to the minimum at 500 Hz, vary with the current frequency. Moreover, it can be seen from the calculated (0001) and (101{sup ¯}0) pole figures that texture evolved into an obvious off-basal texture, and non-basal slip systems are activated under 500 Hz. The mechanisms of twinning growth and texture evolution in AZ31 magnesium alloy strips during ER are considered to be responsible for the experimental results.

  19. Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding; Einfluss des Einsatzes von Dauerstrom und Impulsstrom auf die Mikrostrukturentwicklung bei durch das WIG-Schweissverfahren gefuegtem rostfreiem Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Durgutlu, Ahmet; Findik, Tayfun; Guelenc, Behcet [Gazi Univ., Ankara (Turkey). Dept. of Metallurgy and Materials Engineering; Cevik, Bekir [Duezce Univ. (Turkey). Dept. of Welding Technology; Kaya, Yakup; Kahraman, Nizamettin [Karabuek Univ. (Turkey). Dept. of Manufacturing Engineering

    2015-07-01

    In this study, AISI 316L series austenitic stainless steel sheets were joined by tungsten inert gas welding method in continuous and pulsed currents. Regarding microstructural investigation and hardness values of weld metal, samples were welded to investigate the effect of current type on grain structures of weld metal. Results showed that samples welded by using pulsed current had considerable different properties compared to the samples welded by using continuous current. While the weld metals of joinings obtained by using continuous current displayed a coarse-grained and columnar structure, weld metals obtained by using pulsed current had a finer-grained structure. It was also found that hardness values of samples, which were welded with continuous and pulsed current, were quite different.

  20. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  1. Ice Sheet Thermomety Using Wideband Radiometry

    Science.gov (United States)

    Jezek, K. C.; Johnson, J.; Durand, M. T.; Aksoy, M.; Tsang, L.; Wang, T.; Tan, S.; Macelloni, G.; Brogioni, M.; Drinkwater, M. R.

    2014-12-01

    There are good correlations between L-band brightness temperature data from the ESA Soil Moisture and Ocean Salinity mission and the thickness and surface temperature of the Antarctic Ice Sheet. These data along with independent, radiative-transfer modeling-studies suggest that it is possible to estimate the internal, physical temperatures of ice sheets to some, perhaps great, depth. Such a measurement is necessary to improve ice sheet models which rely on temperature-dependent deformation rates within the body of the ice sheet. In this paper we review our most recent modeling which now includes the effect of layering in near surface firn. We go on to compare L-band satellite data with modeled brightness temperatures at several sites in Greenland and Antarctica where physical temperature has been measured. We show the brightness temperature response over the band 0.5 to 2 GHz including the influence of basal-water on the low frequency range of this band. We conclude by summarizing our current design of an ultra-wide-band radiometer intended to make ice sheet thermometry measurements. We plan to deploy the airborne instrument in Greenland in two years' time.

  2. Anthropogenic climate change and the Greenland ice sheet

    Science.gov (United States)

    Mikolajewicz, U.; Vizcaíno, M.; Rodehacke, C.; Ziemen, F.

    2012-04-01

    In the standard CMIP5 simulations the ice sheets are kept fixed. Only few groups have been able to perform CMIP5 simulations with interactively coupled ice sheet models. Beside its importance for the future evolution of global mean sea level, the Greenland ice sheet also has the potential to strongly affect deep water formation, especially in the Labrador Sea, but also in the Nordic Seas. Here we present a set of simulations with two interactively coupled ice sheet models, which allows to assess the uncertainty arising from both the ice sheet model as well as the coupling technique. The climate model ECHAM5/MPIOM is coupled interactively to two different ice sheet models using two different coupling strategies. The ice sheet models are a Greenland set-up of SICOPOLIS with 10 km horizontal resolution and a northern hemisphere set-up of PISM with a horizontal resolution of 20 km. The coupling is done either with a simple positive degree days approach or a mass-balance scheme calculating the surface melting with an energy-balance scheme. The atmospheric forcing is applied directly to the ice sheet model without flux correction or anomaly coupling, which avoids inconsistencies between the models. The resulting net mass loss rates for the Greenland ice sheet in a 1-percent-scenario capped at 4x preindustrial atmospheric CO2 concentrations show a considerable dependence on both ice sheet model and coupling technique. The resulting differences in atmospheric climate, however, are small within the first centuries and restricted to the immediate vicinity of Greenland. The feedbacks between atmosphere, ocean and the Greenland ice sheet are studied in a series of sensitivity experiments, where individual feedbacks were suppressed. It turns out that the future development of the Atlantic overturning and its associated heat transport are quite important for the future evolution of the Greenland ice sheet: The stronger the Atlantic overturning remains, the stronger the mass loss

  3. Fast Light-Sheet Scanner

    Science.gov (United States)

    Hunter, William W., Jr.; Humphreys, William M., Jr.; Bartram, Scott M.

    1995-01-01

    Optomechanical apparatus maintains sheet of pulsed laser light perpendicular to reference axis while causing sheet of light to translate in oscillatory fashion along reference axis. Produces illumination for laser velocimeter in which submicrometer particles entrained in flow illuminated and imaged in parallel planes displaced from each other in rapid succession. Selected frequency of oscillation range upward from tens of hertz. Rotating window continuously shifts sheet of light laterally while maintaining sheet parallel to same plane.

  4. Formation and evolution of the modem warm current system in the East China Sea and the Yellow Sea since the last deglaciation

    Institute of Scientific and Technical Information of China (English)

    LI Tiegang; NAN Qingyun; JIANG Bo; SUN Rongtao; ZHANG Deyu; LI Qing

    2009-01-01

    To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDPI02, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modem Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modem warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BE and synchronously the modem TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus,the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC,indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr

  5. Low Back Pain Fact Sheet

    Science.gov (United States)

    ... Low Back Pain Fact Sheet You are here Home » Disorders » Patient & Caregiver Education » Fact Sheets Low Back Pain Fact Sheet What ... reduction among workers using lumbar support belts, many companies that have ... training and ergonomic awareness programs. The reported injury reduction ...

  6. The Physics of Ice Sheets

    Science.gov (United States)

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  7. Models for polythermal ice sheets and glaciers

    Science.gov (United States)

    Hewitt, Ian J.; Schoof, Christian

    2017-02-01

    Polythermal ice sheets and glaciers contain both cold ice and temperate ice. We present two new models to describe the temperature and water content of such ice masses, accounting for the possibility of gravity- and pressure-driven water drainage according to Darcy's law. Both models are based on the principle of energy conservation; one additionally invokes the theory of viscous compaction to calculate pore water pressure, and the other involves a modification of existing enthalpy gradient methods to include gravity-driven drainage. The models self-consistently predict the evolution of temperature in cold ice and of water content in temperate ice. Numerical solutions are described, and a number of illustrative test problems are presented, allowing comparison with existing methods. The suggested models are simple enough to be incorporated in existing ice-sheet models with little modification.

  8. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  9. Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies

    Energy Technology Data Exchange (ETDEWEB)

    Loebel, U. [University Medical Center Hamburg-Eppendorf, Department of Diagnostic and Interventional Neuroradiology, Hamburg (Germany); St. Jude Children' s Research Hospital, Department of Diagnostic Imaging, Memphis, TN (United States); Hwang, S.; Edwards, A.; Patay, Z. [St. Jude Children' s Research Hospital, Department of Diagnostic Imaging, Memphis, TN (United States); Li, Y.; Li, X. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); Broniscer, A. [St. Jude Children' s Research Hospital, Department of Oncology, Memphis, TN (United States); University of Tennessee Health Science Center, Department of Pediatrics, Memphis, TN (United States)

    2016-10-15

    Based on clinical observations, we hypothesized that in infiltrative high-grade brainstem neoplasms, such as diffuse intrinsic pontine glioma (DIPG), longitudinal metabolic evaluation of the tumor by magnetic resonance spectroscopy (MRS) may be more accurate than volumetric data for monitoring the tumor's biological evolution during standard treatment. We evaluated longitudinal MRS data and corresponding tumor volumes of 31 children with DIPG. We statistically analyzed correlations between tumor volume and ratios of Cho/NAA, Cho/Cr, and NAA/Cr at key time points during the course of the disease through the end of the progression-free survival period. By the end of RT, tumor volume had significantly decreased from the baseline (P <.0001) and remained decreased through the last available follow-up magnetic resonance imaging study (P =.007632). However, the metabolic profile of the tumor tissue (Cho/Cr, NAA/Cr, and Cho/NAA ratios) did not change significantly over time. Our data show that longitudinal tumor volume and metabolic profile changes are dissociated in patients with DIPG during progression-free survival. Volume changes, therefore, may not accurately reflect treatment-related changes in tumor burden. This study adds to the existing body of evidence that the value of conventional MRI metrics, including volumetric data, needs to be reevaluated critically and, in infiltrative tumors in particular, may not be useful as study end-points in clinical trials. We submit that advanced quantitative MRI data, including robust, MRS-based metabolic ratios and diffusion and perfusion metrics, may be better surrogate markers of key end-points in clinical trials. (orig.)

  10. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    Science.gov (United States)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  11. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  12. New aspects of plasma sheet dynamics - MHD and kinetic theory

    Directory of Open Access Journals (Sweden)

    H. Wiechen

    Full Text Available Magnetic reconnection is a process of fundamental importance for the dynamics of the Earth's plasma sheet. In this context, the development of thin current sheets in the near-Earth plasma sheet is a topic of special interest because they could be a possible cause of microscopic fluctuations acting as collective non-idealness from a macroscopic point of view. Simulations of the near-Earth plasma sheet including boundary perturbations due to localized inflow through the northern (or southern plasma sheet boundary show developing thin current sheets in the near-Earth plasma sheet about 810 RE tailwards of the Earth. This location is largely independent from the localization of the perturbation. The second part of the paper deals with the problem of the macroscopic non-ideal consequences of microscopic fluctuations. A new model is presented that allows the quantitative calculation of macroscopic non-idealness without considering details of microscopic instabilities or turbulence. This model is only based on the assumption of a strongly fluctuating, mixing dynamics on microscopic scales in phase space. The result of this approach is an expression for anomalous non-idealness formally similar to the Krook resistivity but now describing the macroscopic consequences of collective microscopic fluctuations, not of collisions.

    Key words. Magnetospheric physics (plasma sheet · Space plasma physics (kinetic and MHD theory; magnetic reconnection

  13. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    Science.gov (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  14. Reducing slide sheet injury.

    Science.gov (United States)

    Varcin-Coad, Lynn

    2008-12-01

    Slide sheets are often stated to be the cause of hand and forearm injuries. While there are many other possible reasons injuries to nursing staff, carer and client occur, the most important linking factors relating to musculoskeletal disorders and manual handling of people is the ongoing inappropriateness or lack of suitably designed and equipped work areas. As physiotherapist Lynn Varcin-Coad writes, staff are bearing the brunt of inefficiencies of design and lack of high order risk control.

  15. Monitoring southwest Greenland's ice sheet melt with ambient seismic noise.

    Science.gov (United States)

    Mordret, Aurélien; Mikesell, T Dylan; Harig, Christopher; Lipovsky, Bradley P; Prieto, Germán A

    2016-05-01

    The Greenland ice sheet presently accounts for ~70% of global ice sheet mass loss. Because this mass loss is associated with sea-level rise at a rate of 0.7 mm/year, the development of improved monitoring techniques to observe ongoing changes in ice sheet mass balance is of paramount concern. Spaceborne mass balance techniques are commonly used; however, they are inadequate for many purposes because of their low spatial and/or temporal resolution. We demonstrate that small variations in seismic wave speed in Earth's crust, as measured with the correlation of seismic noise, may be used to infer seasonal ice sheet mass balance. Seasonal loading and unloading of glacial mass induces strain in the crust, and these strains then result in seismic velocity changes due to poroelastic processes. Our method provides a new and independent way of monitoring (in near real time) ice sheet mass balance, yielding new constraints on ice sheet evolution and its contribution to global sea-level changes. An increased number of seismic stations in the vicinity of ice sheets will enhance our ability to create detailed space-time records of ice mass variations.

  16. Full Stokes finite-element modeling of ice sheets using a graphics processing unit

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2016-12-01

    Thermo-mechanical simulation of ice sheets is an important approach to understand and predict their evolution in a changing climate. For that purpose, higher order (e.g., ISSM, BISICLES) and full Stokes (e.g., Elmer/Ice, http://elmerice.elmerfem.org) models are increasingly used to more accurately model the flow of entire ice sheets. In parallel to this development, the rapidly improving performance and capabilities of Graphics Processing Units (GPUs) allows to efficiently offload more calculations of complex and computationally demanding problems on those devices. Thus, in order to continue the trend of using full Stokes models with greater resolutions, using GPUs should be considered for the implementation of ice sheet models. We developed the GPU-accelerated ice-sheet model Sainō. Sainō is an Elmer (http://www.csc.fi/english/pages/elmer) derivative implemented in Objective-C which solves the full Stokes equations with the finite element method. It uses the standard OpenCL language (http://www.khronos.org/opencl/) to offload the assembly of the finite element matrix on the GPU. A mesh-coloring scheme is used so that elements with the same color (non-sharing nodes) are assembled in parallel on the GPU without the need for synchronization primitives. The current implementation shows that, for the ISMIP-HOM experiment A, during the matrix assembly in double precision with 8000, 87,500 and 252,000 brick elements, Sainō is respectively 2x, 10x and 14x faster than Elmer/Ice (when both models are run on a single processing unit). In single precision, Sainō is even 3x, 20x and 25x faster than Elmer/Ice. A detailed description of the comparative results between Sainō and Elmer/Ice will be presented, and further perspectives in optimization and the limitations of the current implementation.

  17. Subglacial lake and meltwater flow predictions of the last North American and European Ice Sheets

    Science.gov (United States)

    Livingstone, S. J.; Clark, C. D.; Tarasov, L.

    2012-04-01

    There is increasing recognition that subglacial lakes act as key components within the ice sheet system, capable of influencing ice-sheet topography, ice volume and ice flow. The subglacial water systems themselves are recognised as being both active and dynamic, with large discharges of meltwater capable of flowing down hydrological pathways both between lakes and to the ice-sheet margins. At present, much glaciological research is concerned with the role of modern subglacial lake systems in Antarctica. Another approach to the exploration of subglacial lakes involves identification of the geological record of subglacial lakes that once existed beneath ice sheets of the last glaciation. Investigation of such palaeo-subglacial lakes offers significant advantages because we have comprehensive information about the bed properties, they are much more accessible and we can examine and sample the sediments with ease. If we can find palaeo-subglacial lakes then we have the potential to advance understanding with regard to the topographic context and hydrological pathways that the phenomena form a part of; essentially we gain spatial and sedimentological information in relation to investigations of contemporary subglacial lakes and lose out on the short-time dynamics. In this work we present predictions of palaeo-subglacial lakes and meltwater drainage pathways under the former European and North American ice sheets during the last glaciation. We utilise data on the current topography and seafloor bathymetry, and elevation models of the ice and ground surface topography (interpolated to a 5 km grid) to calculate the hydraulic potential surface at the ice-sheet bed. Meltwater routing algorithms and the flooding of local hydraulic minima allow us to predict subglacial channels and lakes respectively. Given that specific ice-surface and bed topographies are only known from modelled outputs, and thus contain significant uncertainty, we utilise many such outputs to examine

  18. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation, Eddy County, New Mexico inferred by comparison to settling and sorting experiments

    Science.gov (United States)

    Motanated, Kannipa; Tice, Michael M.

    2016-05-01

    Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co

  19. A three-phase model proposal for the evolution of scientific communication: from first print periodicals to current electronic communication system

    Directory of Open Access Journals (Sweden)

    Patrícia Bertin

    Full Text Available Scientific communication has undergone deep transformations, since the emergence of Internet. Aiming to provide further thought on the evolution of scientific communication, this paper features a historical overview of the scientific communication advances over the last twenty years through a three-phase model for the evolution of the electronic journal and the preprints services, and presents Brazilian contemporary panorama for scientific communication. The three-phase model presented in this work is an adaptation of that one proposed by Tenopir et al. (2003 to describe the patterns of journal use by scientists since 1990. The early evolutionary phase followed the emergence of the first digital journals and the creation of repositories in the Web for publishing preliminary versions of scientific literature on the author’s initiative; by that time, most academics reproved electronic publishing initiatives. From 1996 and forward, in the consolidation phase, electronic journals were commonly identical to their print counterparts; the acceptance of the electronic format began to increase, and preprint services got underway in several disciplines. The advanced evolutionary phase started with the world discussion on open access to scientific information. The comparison of the current electronic journal with that viewed by enthusiasts in the first years of the 1990s shows that some aspects still remain to be improved in electronic formal and informal communication, towards effective dissemination of scientific information.

  20. The role of ice sheets in the pleistocene climate

    NARCIS (Netherlands)

    Oerlemans, J.

    1991-01-01

    Northern hemisphere ice sheets have played an important role in the climatic evolution of the Pleistocene. The characteristic time-scale of icesheet growth has the same order-of-magnitude as that for the orbital insolation variations. The interaction with the solid earth, the importance of the therm

  1. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  2. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  3. Design Rules for Oxygen Evolution Catalysis at Porous Iron Oxide Electrodes: A 1000-Fold Current Density Increase.

    Science.gov (United States)

    Haschke, Sandra; Pankin, Dmitrii; Petrov, Yuri; Bochmann, Sebastian; Manshina, Alina; Bachmann, Julien

    2017-09-22

    Nanotubular iron(III) oxide electrodes are optimized for catalytic efficiency in the water oxidation reaction at neutral pH. The nanostructured electrodes are prepared from anodic alumina templates, which are coated with Fe2 O3 by atomic layer deposition. Scanning helium ion microscopy, X-ray diffraction, and Raman spectroscopy are used to characterize the morphologies and phases of samples submitted to various treatments. These methods demonstrate the contrasting effects of thermal annealing and electrochemical treatment. The electrochemical performances of the corresponding electrodes under dark conditions are quantified by steady-state electrolysis and electrochemical impedance spectroscopy. A rough and amorphous Fe2 O3 with phosphate incorporation is critical for the optimization of the water oxidation reaction. For the ideal pore length of 17 μm, the maximum catalytic turnover is reached with an effective current density of 140 μA cm(-2) at an applied overpotential of 0.49 V. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population.

    Science.gov (United States)

    Pulido, Francisco; Berthold, Peter

    2010-04-20

    Global warming is impacting biodiversity by altering the distribution, abundance, and phenology of a wide range of animal and plant species. One of the best documented responses to recent climate change is alterations in the migratory behavior of birds, but the mechanisms underlying these phenotypic adjustments are largely unknown. This knowledge is still crucial to predict whether populations of migratory birds will adapt to a rapid increase in temperature. We monitored migratory behavior in a population of blackcaps (Sylvia atricapilla) to test for evolutionary responses to recent climate change. Using a common garden experiment in time and captive breeding we demonstrated a genetic reduction in migratory activity and evolutionary change in phenotypic plasticity of migration onset. An artificial selection experiment further revealed that residency will rapidly evolve in completely migratory bird populations if selection for shorter migration distance persists. Our findings suggest that current alterations of the environment are favoring birds wintering closer to the breeding grounds and that populations of migratory birds have strongly responded to these changes in selection. The reduction of migratory activity is probably an important evolutionary process in the adaptation of migratory birds to climate change, because it reduces migration costs and facilitates the rapid adjustment to the shifts in the timing of food availability during reproduction.

  5. Functional Evolution of Influenza Virus NS1 Protein in Currently Circulating Human 2009 Pandemic H1N1 Viruses.

    Science.gov (United States)

    Clark, Amelia M; Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-09-01

    In 2009, a novel H1N1 influenza virus emerged in humans, causing a global pandemic. It was previously shown that the NS1 protein from this human 2009 pandemic H1N1 (pH1N1) virus was an effective interferon (IFN) antagonist but could not inhibit general host gene expression, unlike other NS1 proteins from seasonal human H1N1 and H3N2 viruses. Here we show that the NS1 protein from currently circulating pH1N1 viruses has evolved to encode 6 amino acid changes (E55K, L90I, I123V, E125D, K131E, and N205S) with respect to the original protein. Notably, these 6 residue changes restore the ability of pH1N1 NS1 to inhibit general host gene expression, mainly by their ability to restore binding to the cellular factor CPSF30. This is the first report describing the ability of the pH1N1 NS1 protein to naturally acquire mutations that restore this function. Importantly, a recombinant pH1N1 virus containing these 6 amino acid changes in the NS1 protein (pH1N1/NSs-6mut) inhibited host IFN and proinflammatory responses to a greater extent than that with the parental virus (pH1N1/NS1-wt), yet virus titers were not significantly increased in cell cultures or in mouse lungs, and the disease was partially attenuated. The pH1N1/NSs-6mut virus grew similarly to pH1N1/NSs-wt in mouse lungs, but infection with pH1N1/NSs-6mut induced lower levels of proinflammatory cytokines, likely due to a general inhibition of gene expression mediated by the mutated NS1 protein. This lower level of inflammation induced by the pH1N1/NSs-6mut virus likely accounts for the attenuated disease phenotype and may represent a host-virus adaptation affecting influenza virus pathogenesis.IMPORTANCE Seasonal influenza A viruses (IAVs) are among the most common causes of respiratory infections in humans. In addition, occasional pandemics are caused when IAVs circulating in other species emerge in the human population. In 2009, a swine-origin H1N1 IAV (pH1N1) was transmitted to humans, infecting people then and up

  6. EVOLUTION IN THE H I GAS CONTENT OF GALAXY GROUPS: PRE-PROCESSING AND MASS ASSEMBLY IN THE CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Kelley M. [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Astronomy, University of Cape Town, Rondebosch 7701 (South Africa); Wilcots, Eric M., E-mail: hess@ast.uct.ac.za, E-mail: ewilcots@astro.wisc.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-11-01

    We present an analysis of the neutral hydrogen (H I) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey α.40 data release allows us, for the first time, to study the H I properties of over 740 galaxy groups in the volume of sky common to the Sloan Digital Sky Survey (SDSS) and ALFALFA surveys. We assigned ALFALFA H I detections a group membership based on an existing magnitude/volume-limited SDSS Data Release 7 group/cluster catalog. Additionally, we assigned group ''proximity' membership to H I detected objects whose optical counterpart falls below the limiting optical magnitude—thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group H I mass. We find that only 25% of the H I detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and H I detections in groups as a function of parent dark matter halo mass to reveal strong evidence that H I is being processed in galaxies as a result of the group environment: as optical membership increases, groups become increasingly deficient of H I rich galaxies at their center and the H I distribution of galaxies in the most massive groups starts to resemble the distribution observed in comparatively more extreme cluster environments. We find that the lowest H I mass objects lose their gas first as they are processed in the group environment, and it is evident that the infall of gas rich objects is important to the continuing growth of large scale structure at the present epoch, replenishing the neutral gas supply of groups. Finally, we compare our results to those of cosmological simulations and find that current models cannot simultaneously predict the H I selected halo occupation distribution for both low and high mass halos.

  7. 国内汽车板的生产现状及对生产装备的需求%Domestic Current Status of Automobile Sheets and Demand on Production Equipment

    Institute of Scientific and Technical Information of China (English)

    黄彦峰; 范文斌; 孙立峰

    2014-01-01

    汽车板作为制造汽车用主要材料,应具备很好的刚性、成形性、耐蚀性、焊接性等特点。如今,消费者对汽车在安全、节能、耐用、外观等方面有了更高的要求,这其中,为了减重节能而大量采用高强度钢板和高强度变截面板,以及为提高耐蚀性而大量采用镀锌钢板等已成为汽车板今后发展的主要方向。与此相适应,用于生产汽车板的轧机生产线应具备更高的性能以适应生产高强钢的需要,而镀锌机组不但应具备生产高强度镀锌板的能力,而且应尽早实现电镀锌机组的国产化。%As a main material to build automobiles, the automobile sheet shall have high stiffness, formability, corrosion resistance and weldability. Today, customers have stricter requirement on the safety, energy-saving, service durability and appearance of automobiles. High-strength steel plates and high-strength variable cross-section steel plates used in a large amount to reduce the weight of automobiles and galvanized steel plates used in large amount to increase the corrosion resistance are main tendency of future automobile sheet development. For this purpose, the rolling mill to produce automobile sheets shall have suitable capacity to produce high-strength steel plates. The galvanizing plate mill shall not only have the capacity to produce high-strength galvanized plates but also be built independently by the builders in China.

  8. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  9. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  10. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  11. Monitoring ice sheet behavior from space

    Science.gov (United States)

    Bindschadler, Robert

    1998-02-01

    Satellite remote sensing has revolutionized ice sheet research. A variety of instruments sensitive to different parts of the electromagnetic spectrum take what the human eye detects as a flat, white desert and provide data sets rich in scientific information. Image-based maps of ice sheets are becoming commonplace and have become an integral component of field work. More than a pretty picture, the digital character of the satellite data from these instruments has become fundamental to the production of elevation, motion, accumulation, and reflectance data sets. Visible imagery shows the scientist a wealth of features that offer clues to the history and current behavior of the ice sheet. Radar and microwave imagery provide information from beneath the surface and have been used to estimate snow accumulation rates. Interferometry principles have recently been applied to measure surface topography and ice motion with unparalleled precision. Nonimaging instruments also keep a watchful eye, monitoring the ice sheet for indications of growth or shrinkage. Further expansion of the uses of satellite data is anticipated in the future.

  12. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    Science.gov (United States)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  13. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...

  14. Ice sheet systems and sea level change.

    Science.gov (United States)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  15. The Rapid Ice Sheet Change Observatory (RISCO)

    Science.gov (United States)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images

  16. Large-scale Modeling of the Greenland Ice Sheet on Long Timescales

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck

    the steady-state response of the Greenland ice sheet to a warmer climate. The threshold of irreversible decay was found to lie between a temperature increase of 4-5 K relative to present day when basal sliding was neglected in the ice-sheet model. Introducing basal sliding into the ice-sheet model shifted...... and climate model is included shows, however, that a Föhn effect is activated and hereby increasing temperatures inland and inhibiting further ice-sheet expansion into the interior. This indicates that colder than present temperatures are needed in order for the ice sheet to regrow to the current geometry...

  17. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  18. Floating Carpets and the Delamination of Elastic Sheets

    KAUST Repository

    Wagner, Till J. W.

    2011-07-22

    We investigate the deformation of a thin elastic sheet floating on a liquid surface and subject to a uniaxial compression. We show that at a critical compression the sheet delaminates from the liquid over a finite region forming a delamination "blister." This blistering regime adds to the wrinkling and localized folding regimes that have been studied previously. The transition from wrinkled to blistered states occurs when delamination becomes energetically favorable compared with wrinkling. We determine the initial blister size and the evolution of blister size with continuing compression before verifying our theoretical results with experiments at a macroscopic scale. © 2011 American Physical Society.

  19. Occurrence, formation and function of organic sheets in the mineral tube structures of Serpulidae (polychaeta, Annelida.

    Directory of Open Access Journals (Sweden)

    Olev Vinn

    Full Text Available A scanning electron microscopy study of organic sheets in serpulid tube mineral structures was carried out to discern their function, formation and evolution. The organic sheets may have some taxonomic value in distinguishing the two major clades of serpulids previously identified. The organic sheets in the mineral tube structure occur only in certain taxa belonging to clade A, but not all species in clade A have them. Organic sheets are best developed in genus Spirobranchus. One could speculate that organic sheets have evolved as an adaption to further strengthen the mechanical properties of the tubes in clade A, which contains serpulids with the most advanced mineral tube microstructures. The organic sheets are presumably secreted with at least some mineral phase.

  20. Fully coupled ice sheet-earth system model: How does the Greenlandic ice sheet interact in a changing climate

    Science.gov (United States)

    Rodehacke, C.; Mikolajewicz, U.; Vizcaino, M.

    2012-04-01

    As ice sheets belong to the slowest climate components, they are usually not interactively coupled in current climate models. Therefore, long-term climate projections are incomplete and only the consideration of ice sheet interactions allows tackling fundamental questions, such as how do ice sheets modify the reaction of the climate systems under