WorldWideScience

Sample records for current sensing atomic

  1. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Fumagalli, L; Ferrari, G; Sampietro, M; Casuso, I; MartInez, E; Samitier, J; Gomila, G

    2006-01-01

    Nanoscale capacitance imaging with attofarad resolution (∼1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale

  2. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, L [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Ferrari, G [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Sampietro, M [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Casuso, I [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); MartInez, E [Plataforma de Nanotecnologia, Parc Cientific de Barcelona, C/ Josep Samitier 1-5, 08028-Barcelona (Spain); Samitier, J [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); Gomila, G [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain)

    2006-09-28

    Nanoscale capacitance imaging with attofarad resolution ({approx}1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale.

  3. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  4. Conductivity of Langmuir-Blodgett films of a disk-shaped liquid-crystalline molecule-DNA complex studied by current-sensing atomic force microscopy

    Science.gov (United States)

    Nayak, Alpana; Suresh, K. A.

    2008-08-01

    We have studied the electrical conductivity in monolayer films of an ionic disk-shaped liquid-crystal molecule, pyridinium tethered with hexaalkoxytriphenylene (PyTp), and its complex with DNA by current-sensing atomic force microscopy (CS-AFM). The pure PyTp and PyTp-DNA complex monolayer films were first formed at the air-water interface and then transferred onto conducting substrates by the Langmuir-Blodgett (LB) technique to study the nanoscale electron transport through these films. The conductive tip of CS-AFM, the LB film, and the metal substrate form a nanoscopic metal-LB film-metal (M-LB-M) junction. We have measured the current-voltage (I-V) characteristics for the M-LB-M junction using CS-AFM and have analyzed the data quantitatively. We find that the I-V curves fit well to the Fowler-Nordheim (FN) model, suggesting electron tunneling to be a possible mechanism for electron transport in our system. Further, analysis of the I-V curves based on the FN model yields the barrier heights of PyTp-DNA complex and pure PyTp films. Electron transport studies of films of ionic disk-shaped liquid-crystal molecules and their complex with DNA are important from the point of view of their applications in organic electronics.

  5. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  6. Current Capability of Atomic Structure Theory

    International Nuclear Information System (INIS)

    Kim, Yong Ki

    1993-01-01

    Current capability of atomic structure theory is reviewed, and advantages, disadvantages and major features of popular atomic structure codes described. Comparisons between theoretical and experimental data on transition energies and lifetimes of excited levels are presented to illustrate the current capability of atomic structure codes.

  7. A new ion sensing deep atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  8. Current perspective on remote sensing

    International Nuclear Information System (INIS)

    Goodman, R.H.

    1992-01-01

    Surveillance and tracking of oil spills has been a feature of most spill response situations for many years. The simplest and most direct method uses visual observations from an aircraft and hand-plotting of the data on a map. This technique has proven adequate for most small spills and for responses in fair weather. As the size of the spill increases or the weather deteriorates, there is a need to augment visual aerial observations with remote sensing methods. Remote sensing and its associated systems are one of the most technically complex and sophisticated elements of an oil spill response. During the past few years, a number of initiatives have been undertaken to use contemporary electronic and computing systems to develop new and improved remote sensing systems

  9. Continuous measurement of an atomic current

    Science.gov (United States)

    Laflamme, C.; Yang, D.; Zoller, P.

    2017-04-01

    We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.

  10. Current NASA Earth Remote Sensing Observations

    Science.gov (United States)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin; hide

    2011-01-01

    This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.

  11. Sensing Current and Forces with SPM

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Y.; Maier, Sabine; Hendriksen, Bas; Salmeron, Miquel

    2010-07-02

    Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are well established techniques to image surfaces and to probe material properties at the atomic and molecular scale. In this review, we show hybrid combinations of AFM and STM that bring together the best of two worlds: the simultaneous detection of atomic scale forces and conduction properties. We illustrate with several examples how the detection of forces during STM and the detection of currents during AFM can give valuable additional information of the nanoscale material properties.

  12. Ionization current sensing; Jonstroem-maetning

    Energy Technology Data Exchange (ETDEWEB)

    Aengeby, Jakob; Goeras, Anders; Nytomt, Jan [Hoerbiger Control Systems AB, Aamaal, (Sweden)

    2012-05-15

    Ion current measurements give information on the combustion in the cylinders of an internal combustion engine in run time, cycle by cycle. Ion sense has been used in gasoline engines for many years for detection of knock and misfire, combustion stability and for air to fuel ratio estimation. However, the use of ion sense in industrial gas engines has been limited, despite the potential of ion sense. The objective with the project is to investigate which combustion process information that can be retrieved using ion sense applied to industrial lean burn engines using pre-chambers for the ignition in which case the spark plug is encapsulated in the pre-chamber. Experiments show that ion current measured in the pre-chamber can successfully be used to retrieve information from the in-cylinder combustion process. It is possible to detect misfire and to some extent knock. It is also possible to optimize the ignition and hence minimize emissions and optimize the performance by using the ion current measured in the pre- chamber. A statistical signal processing approach to use more than one ion current feature in the estimation of combustion parameters was evaluated on a heavy duty gas engine. By using more than one feature the performance of in cylinder air to fuel ratio estimation was improved.

  13. Sensing technology current status and future trends

    CERN Document Server

    Mukhopadhyay, Subhas; Jayasundera, Krishanthi; Bhattacharyya, Nabarun

    2014-01-01

    This book is written for academic and industry professionals working in the field of sensing, instrumentation and related fields, and is positioned to give a snapshot of the current state of the art in sensing technology, particularly from the applied perspective.  The book is intended to give a broad overview of the latest developments, in addition to discussing the process through which researchers go through in order to develop sensors, or related systems, which will become more widespread in the future.  

  14. 'Atomic Bremsstrahlung': Retrospectives, current status and perspectives

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2006-01-01

    We describe here the 'Atomic bremsstrahlung' (AB)-emission of continuous spectrum electromagnetic radiation, which is generated in collisions of particles that have internal deformable structure that includes positively and negatively charged constituents. The deformation of one or both colliding partners induces multiple, mainly dipole, time-dependent electrical moments that become a source of radiation. The history of AB invention is presented and its unusual in comparison to ordinary bremsstrahlung (OB) properties, are discussed. As examples, fast electron atom, non-relativistic and relativistic collisions are considered. Attention is given to ion-atom and atom-atom collisions. Specifics of 'elastic' and 'inelastic' (i.e. radiation accompanied by destruction of collision partners) AB will be mentioned. Attention will be given to possible manifestation of AB in nature and in some exotic systems, for instance scattering of electrons upon muonic hydrogen. Some cooperative effects connected to AB will be considered. New classical schemes similar to AB will be presented

  15. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  16. Current ideas on ion-atom collisions

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1975-09-01

    A survey is given of recent developments in the understanding of ion-atom collisions, with particular emphasis on processes leading to ion-induced X-rays. The inner-shell Coulomb ionization phenomena are discussed at some length, with stress on the near-quantitative picture that appears to emerge from simple-minded models. The phenomenon of Pauli excitations and the formation of quasi-molecules leading to united atom phenomena are qualitatively reviewed together with a brief mention of target recoil effects and electron capture processes. Selected background phenomena of importance in interpreting experiments are touched upon, such as various types of bremsstrahlung production. Implications of the recently-discovered interplay between Coulomb-induced processes and united atom phenomena are especially mentioned. It is suggested that this branch of collision physics is now (1975) reaching a point where new notions and more advanced and unifying models are greatly needed. (auth)

  17. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  18. Streaming current of a rotary atomizer for energy harvesting

    NARCIS (Netherlands)

    Nguyen, Trieu; de Boer, Hans L.; Tran, T.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    We present the experimental results of an energy conversion system based on a rotary atomizer and the streaming current phenomenon. The advantage of using a rotary atomizer instead of a channel or membrane micropore as in conventional pressure-driven approached is that the centrifugal force exerted

  19. The influence of nuclear risk sense to atomic industry's public relation

    International Nuclear Information System (INIS)

    Biryukova, P.; Kazakevich, Yu.

    2001-01-01

    The goal of this report is estimation of the influence of sensing of nuclear risk to atomic industry's public relation. In this report the reasons of the negative relation to nuclear energetic owing to inadequate sensing of the risk dealing with this fields have been represented. (authors)

  20. Eddy Current Sensing of Torque in Rotating Shafts

    Science.gov (United States)

    Varonis, Orestes J.; Ida, Nathan

    2013-12-01

    The noncontact torque sensing in machine shafts is addressed based on the stress induced in a press-fitted magnetoelastic sleeve on the shaft and eddy current sensing of the changes of electrical conductivity and magnetic permeability due to the presence of stress. The eddy current probe uses dual drive, dual sensing coils whose purpose is increased sensitivity to torque and decreased sensitivity to variations in distance between probe and shaft (liftoff). A mechanism of keeping the distance constant is also employed. Both the probe and the magnetoelastic sleeve are evaluated for performance using a standard eddy current instrument. An eddy current instrument is also used to drive the coils and analyze the torque data. The method and sensor described are general and adaptable to a variety of applications. The sensor is suitable for static and rotating shafts, is independent of shaft diameter and operational over a large range of torques. The torque sensor uses a differential eddy current measurement resulting in cancellation of common mode effects including temperature and vibrations.

  1. Current development of UAV sense and avoid system

    Science.gov (United States)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  2. Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.

    Science.gov (United States)

    Freites, J Alfredo; Tobias, Douglas J

    2015-06-01

    Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.

  3. Remote sensing of ocean currents using ERTS imagery

    Science.gov (United States)

    Maul, G. A.

    1973-01-01

    Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.

  4. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    Science.gov (United States)

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  5. Gravity sensing using Very Long Baseline Atom Interferometry

    Science.gov (United States)

    Schlippert, D.; Wodey, E.; Meiners, C.; Tell, D.; Schubert, C.; Ertmer, W.; Rasel, E. M.

    2017-12-01

    Very Long Baseline Atom Interferometry (VLBAI) has applications in high-accuracy absolute gravimetry, gravity-gradiometry, and for tests of fundamental physics. Thanks to the quadratic scaling of the phase shift with increasing free evolution time, extending the baseline of atomic gravimeters from tens of centimeters to meters puts resolutions of 10-13g and beyond in reach.We present the design and progress of key elements of the VLBAI-test stand: a dual-species source of Rb and Yb, a high-performance two-layer magnetic shield, and an active vibration isolation system allowing for unprecedented stability of the mirror acting as an inertial reference. We envisage a vibration-limited short-term sensitivity to gravitational acceleration of 1x10-8 m/s-2Hz-1/2 and up to a factor of 25 improvement when including additional correlation with a broadband seismometer. Here, the supreme long-term stability of atomic gravity sensors opens the route towards competition with superconducting gravimeters. The operation of VLBAI as a differential dual-species gravimeter using ultracold mixtures of Yb and Rb atoms enables quantum tests of the universality of free fall (UFF) at an unprecedented level of <10-13, potentially surpassing the best experiments to date.

  6. Atomic emission and atomic fluorescence spectroscopy in the direct current plasma

    International Nuclear Information System (INIS)

    Hendrick, M.S.

    1985-01-01

    The Direct Current Plasma (DCP) was investigated as a source for Atomic Emission (AE) and Atomic Fluorescence Spectrometry (AFS). The DCP was optimized for AE analyses using simplex optimization and Box-Behnken partial factorial experimental design, varying argon flows, and plasma position. Results were compared with a univariate search carried out in the region of the simplex optimum. Canonical analysis demonstrated that no true optimum exists for sensitivity, precision, or drift. A stationary ridge, where combinations of conditions gave comparable instrumental responses, was found. The DCP as an excitation source for AFS in a flame was used for diagnostic studies of the DCP. Moving the aerosol introduction tube behind the DCP with respect to the flame improved the characteristics of the DCP as a narrow line source, although self-absorption was observed at high concentrations of metal salt solutions in the DCP. Detection limits for Cd, Co, Cr, Cu, Fe, Mg, Mn, Zn, and Ni were in the low ng/mL region. Theoretical expressions for scatter correction with a two-line technique were derived, although no correction was necessary to achieve accurate results for standard reference materials

  7. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  8. Current trends in electrochemical sensing and biosensing of DNA methylation.

    Science.gov (United States)

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Experiments with Rydberg atoms on a current-carrying atom chip

    NARCIS (Netherlands)

    Cisternas San Martín, N.V.

    2018-01-01

    On one side, atom-chip experiments have demonstrated to be a versatile tool to study quantum physics in cold atoms systems. On the other side, Rydberg atoms have exaggerated properties that makes them good candidates to study quantum information and quantum simulations protocols. In this thesis both

  10. Force, current and field effects in single atom manipulation

    NARCIS (Netherlands)

    Braun, K.-F.; Hla, S.; Pertaya, N.; Soe, W.H.; Flipse, C.F.J.; Rieder, K.

    2003-01-01

    We present a detailed investigation of the manipulation of Ag and Au atoms with a STM tip on the Ag(111) surface at 5K. The interpretation of the feed-back loop signal gives a precise picture of the movement of the atom during manipulation. The threshold tunnelling resistance and tip-height to move

  11. A novel self-sensing technique for tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Michael G.; Moheimani, S. O. Reza [The University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  12. Current trend of malignant neoplasms among atomic bomb survivors

    International Nuclear Information System (INIS)

    Hamada, Tadao

    1984-01-01

    A survey was made on 7,589 admitted patients and 1,965 autopsy cases. The overall incidence of malignant neoplasms tended to decrease in the group exposed to atomic bomb within 2 km in autopsy cases and to increase in admitted patients. The incidence of pulmonary cancer tended to increase in both autopsy cases and admitted patients. The incidence of gastric cancer tended to increase up to 1975, and thereafter tended to decrease. The incidence of liver cancer tended to increase in both autopsy cases and admitted patients, which was marked in males. The incidence of leukemia was high in the group exposed to atomic bomb within 2 km in autopsy cases, and in the group within 1 km and the group which entered the city after the explosion in admitted patients. The incidence of malignant lymphoma tended to decrease, and the incidence of carcinoma of the colon tended to gradually increase in both autopsy cases and admitted patients. The incidence of multiple carcinomas tended to increase in both atomic bomb exposed group and non-exposed group, being higher in atomic bomb group than in non-exposed group. The incidence of breast cancer became constant since 1970. The incidence of carcinoma of the thyroid gland tended to decrease, although it was high in the group exposed near the explosion. (Namekawa, K.)

  13. Current trend of atomic energy development in Japan - 2

    International Nuclear Information System (INIS)

    Cho, M.; Yang, M. H.; Yun, S. W.

    1999-01-01

    The atomic energy power generation is recognized to be important to solve the problems of the competitive relations among the Asian developing countries due to the increasing dependency on the crude oil produced in the Middle East and the insecurity of transport route of the oil. The reorganization and inauguration of JNC(former PNC) has been carried out for the development of liquid metal reactor and related fuel cycle technology as the national development project to prevent the global green house effect and to continue the economic development. The construction of light water reactor, the utilization of plutonium in light water reactor and the enrichment and reprocessing of spent fuel of light water reactor are classified as proven technologies which will be covered by the industry. The government will lead to the environment favorable for introduction of the atomic energy and will monitor the situation. The specifics of atomic energy development project and the development system for the 21th century will be contained in the long term atomic energy development plan which will be completed by 2000 and the reorganization operation has been initiated. (author). 41 refs., 5 tabs., 30 figs

  14. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor.

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A J; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-05-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom-based spin sensor that changes the sensor's spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface.

  15. Current radiation protection activities of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Webb, G.A.M.

    1996-01-01

    The International Atomic Energy Agency (IAEA) program of the Radiation Safety Section is described in this paper. The Section has two main components: (1) the development of consensus safety documentation and (2) the use of that documentation as the basis for assisting countries to deal safely with their applications of radiation and radioactivity. Main activities of the section are listed for each of these components. Activities include documentation, coordinated research programs, and assistance to developing countries. 14 tabs

  16. Current trend of atomic energy development in Japan- I

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Manne; Yang, M. H.; Yoon, S. W.; Choi, M. J.; Kim, S. M.; Choi, Y. M

    1998-01-01

    After hundreds of meeting including the round table meeting on the atomic energy development policy, their conclusions were as follows: 1. The competitive nuclear fuel cycle should be completed. 2. In order to achieve above objective, the development of fast breeder reactor must be continued, and the utilization of JOYO and MONJU, and the international cooperation are highly recommended. 3. The PNC should focus on the development of the fast breeder reactor and the related fuel cycle and the management of high level radioactive waste. PNC, which had been working on too many projects, must be reformed to a slim and more efficient organization. Although there was a regret that the proposals were prepared in a short time to meet the due date for the budget bill of 1988, the Japanese government will seriously consider their proposal and take several administrative measures such as the revision of the related laws for the realization of their proposals. (author).

  17. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    Science.gov (United States)

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  18. Current-induced dynamics in carbon atomic contacts

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads

    2011-01-01

    voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...... be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system. © 2011 Lü et al....... carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...

  19. Current-induced atomic dynamics, instabilities, and Raman signals

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per

    2012-01-01

    We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Joule...... heating, current-induced forces including the nonconservative wind force, dissipative frictional forces, and an effective Lorentz-type force due to the Berry phase of the nonequilibrium electrons. Using a generic two-level molecular model, we highlight the importance of both current-induced forces...... and Joule heating for the stability of the system. We compare the impact of the different forces, and the wide-band approximation for the electronic structure on our result. We examine the current-induced instabilities (excitation of runaway "waterwheel" modes) and investigate the signature...

  20. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  1. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  2. Airborne Optical Remote Sensing of Ocean Surface Current Variability

    Science.gov (United States)

    Anderson, S. P.; Zuckerman, S.; Stuart, G.

    2016-02-01

    Accurate and timely knowledge of open ocean surface currents are needed for a variety of engineering and emergency missions, as well as for improving scientific understanding of ocean dynamics. This paper presents surface current observations from a new airborne current measurement capability called the Remote Ocean Current Imaging System (ROCIS). ROCIS exploits space-time processing of airborne ocean wave imagery to produce real-time maps of surface currents every 1 km along the flight track. Post-processing of the data allows for more in depth sensitivity studies than can be undertaken with the real-time measurements alone, providing swaths of current retrievals at higher spatial resolutions. Currents can be calculated on scales down to 100 m, across swaths 3 km wide, along the entire flight path. Here, we report on results for multiple ROCIS data collection flights over the Gulf of Mexico conducted in 2012, 2014 and 2015. We show comparisons to in situ current measurements, explore performance as a function of altitude, dwell, wind speed, and wave height, and discuss sources of error. We present examples of current retrievals revealing mesoscale and submesoscale variability. Lastly, we present horizontal kinetic energy spectra from select flights covering a range of spatial scales from hundreds of meters to hundreds of kilometers.

  3. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  4. Can pervasive sensing address current challenges in global healthcare?

    Directory of Open Access Journals (Sweden)

    Louis Atallah

    2012-03-01

    Full Text Available Important challenges facing global healthcare include the increase in the number of people affected by escalating healthcare costs, chronic and infectious diseases, the need for better and more affordable elderly care and expanding urbanisation combined with air and water pollution. Recent advances in pervasive sensing technologies have led to miniaturised sensor networks that can be worn or integrated within the living environment without affecting a person’s daily patterns. These sensors promise to change healthcare from snapshot measurements of physiological parameters to continuous monitoring enabling clinicians to provide guidance on a daily basis. This article surveys several of the solutions provided by these sensor platforms from elderly care to neonatal monitoring and environmental mapping. Some of the opportunities available and the challenges facing the adoption of such technologies in large-scale epidemiological studies are also discussed.

  5. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  6. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  7. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  8. Terrestrial ring current - from in situ measurements to global images using energetic neutral atoms

    International Nuclear Information System (INIS)

    Roelof, E.C.; Williams, D.J.

    1988-01-01

    Electrical currents flowing in the equatorial magnetosphere, first inferred from ground-based magnetic disturbances, are carried by trapped energetic ions. Spacecraft measurements have determined the spectrum and composition of those currents, and the newly developed technique of energetic-neutral-atom imaging allows the global dynamics of that entire ion population to be viewed from a single spacecraft. 71 references

  9. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  10. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  11. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  12. Josephson current at atomic scale: Tunneling and nanocontacts using a STM

    International Nuclear Information System (INIS)

    Rodrigo, J.G.; Crespo, V.; Vieira, S.

    2006-01-01

    Using a scanning tunneling microscope, STM, with a superconducting tip, we have measured the Josephson current in atomic size tunnel junctions and contacts with a small number of quantum channels of conduction. We analyze our results in terms of the Ivanchenko and Zil'berman model for phase diffusion. The effect of the thermal energy and the electromagnetic environment on the Josephson current is discussed in terms of the transmissions of the individual quantum channels. These results suppose an initial step to the control of Scanning Josephson Spectroscopy at atomic level

  13. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  14. How can we probe the atom mass currents induced by synthetic gauge fields?

    Science.gov (United States)

    Paramekanti, Arun; Killi, Matthew; Trotzky, Stefan

    2013-05-01

    Ultracold atomic fermions and bosons in an optical lattice can have quantum ground states which support equilibrium currents in the presence of synthetic magnetic fields or spin orbit coupling. As a tool to uncover these mass currents, we propose using an anisotropic quantum quench of the optical lattice which dynamically converts the current patterns into measurable density patterns. Using analytical calculations and numerical simulations, we show that this scheme can probe diverse equilibrium bulk current patterns in Bose superfluids and Fermi fluids induced by synthetic magnetic fields, as well as detect the chiral edge currents in topological states of atomic matter such as quantum Hall and quantum spin Hall insulators. This work is supported by NSERC of Canada and the Canadian Institute for Advanced Research.

  15. Feedback control of persistent-current oscillation based on the atomic-clock technique

    Science.gov (United States)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  16. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    DEFF Research Database (Denmark)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.

    2017-01-01

    scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 10(7) times larger than steady-state currents in conventional STM are used to image...... terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.......Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz...

  17. IEDA [Intelligent Eddy Current Data Analysis] helps make sense of eddy current data [steam generators

    International Nuclear Information System (INIS)

    Clark, R.

    1989-01-01

    The increasing sophistication of eddy current signal interpretation in steam generator tubing has improved capabilities, but has also made the process of analysis more complex and time consuming. Westinghouse has developed an intelligent computerised tool - the IEDA (Intelligent Eddy Current Data Analysis) system, to lighten the load on analysts. Since 1985, 44 plants have been inspected with IEDA, representing over 400,000 tubes. The system has provided a repeatability and a consistency not achieved by human operators. (U.K.)

  18. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  19. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  20. Neutral currents and parity breakdown in atomic transitions: three proposed experiments

    International Nuclear Information System (INIS)

    Bloom, S.D.

    1976-01-01

    This paper describes three proposed experiments for observing the breakdown of parity in atomic transitions due to the exchange of neutral, parity-violating currents arising from some of the new gauge models (e.g., the Weinberg model) for the weak interaction. The experiments are based on exploiting a suggestion, by Bouchiat and Bouchiat, that modern laser technology be utilized to produce intense, monochromatic, and polarized photon beams with which to excite forbidden atomic transitions of the basic form parallel ns 1 / 2 broken bracket → parallel n's 1 / 2 broken bracket. The asymmetries (of the order of 10 -4 ) in the de-exitation processes then signal the presence of the parity-violating components due to the neutral currents. In all three experiments suggested here, the use of multiple (uncollimated)atomic beams as targets forms a basic part, and their advantages over a temperature-equilibrium vapor are described. The first experiment uses 55 Cs atomic beams as a target; the second uses 37 Rb in conjunction with a superstrong magnetic field (approximately 80 kG); the third uses 81 Tl and requires frequency doubling of the exciting laser beam. All three experiments appear to be quite feasible, and, given the requisite equipment (much of which is or soon will be commercially available), they could yield definitive results in a period of a few months

  1. Wireless current sensing by near field induction from a spin transfer torque nano-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Algarin, J. M.; Waks, E., E-mail: edowaks@umd.edu [Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland, College Park, Maryland 20742 (United States); Weinberg, I. N. [Weinberg Medical Physics LLC, Bethesda, Maryland 20817 (United States); Chen, Y.-J.; Krivorotov, I. N. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Katine, J. A. [HGST Research Center, San Jose, California 95135 (United States); Shapiro, B. [Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Systems Research (ISR), University of Maryland, College Park, Maryland 20742 (United States)

    2016-06-13

    We demonstrate that spin transfer torque nano-oscillators (STNO) can act as wireless sensors for local current. The STNO acts as a transducer that converts weak direct currents into microwave field oscillations that we detect using an inductive coil. We detect direct currents in the range of 300–700 μA and report them wirelessly to a receiving induction coil at distances exceeding 6.5 mm. This current sensor could find application in chemical and biological sensing and industrial inspection.

  2. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  3. Modulation of periodic field on the atomic current in optical lattices with Landau–Zener tunneling considered

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jie-Yun, E-mail: jyyan@bupt.edu.cn; Wang, Lan-Yu, E-mail: lan_yu_wang@163.com

    2016-09-01

    We investigate the atomic current in optical lattices under the presence of both constant and periodic external field with Landau–Zener tunneling considered. By simplifying the system to a two-band model, the atomic current is obtained based on the Boltzmann equations. We focus on three situations to discuss the influence of the Landau–Zener tunneling and periodic field on the atomic current. Numerical calculations show the atomic transient current would finally become the stable oscillation, whose amplitude and average value can be further adjusted by the periodic external field. It is concluded that the periodic external field could provide an effective modulation on the atomic current even when the Landau–Zener tunneling probability has almostly become a constant.

  4. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    International Nuclear Information System (INIS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-01-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  5. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oyoshi, K., E-mail: oyoshi.keiji@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2010-11-15

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  6. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

    DEFF Research Database (Denmark)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias

    2012-01-01

    the attoclock technique4 to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the inclusion of Stark shifts5, 6 and report on multi-electron effects......In the research area of strong-laser-field interactions and attosecond science1, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics1, 2, 3. Here we use...... clearly identified by comparing results in argon and helium atoms. Our combined theory and experiment allows us to single out the geometry of the inherently one-dimensional tunnelling problem, through an asymptotic separation of the full three-dimensional problem. Our findings have implications for laser...

  7. Energy-minimum sub-threshold self-timed circuits using current-sensing completion detection

    DEFF Research Database (Denmark)

    Akgun, O. C.; Rodrigues, J. N.; Sparsø, Jens

    2011-01-01

    This study addresses the design of self-timed energy-minimum circuits, operating in the sub-VT domain and a generic implementation template using bundled-data circuitry and current sensing completion detection (CSCD). Furthermore, a fully decoupled latch controller was developed, which integrates......V. Spice simulations indicate a gain of 52.58% in throughput because of asynchronous operation. By trading the throughput improvement, energy dissipation is reduced by 16.8% at the energy-minimum supply voltage....

  8. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  9. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    OpenAIRE

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high volta...

  10. Charge Exchange Contribution to the Decay of the Ring Current, Measured by Energetic Neutral Atoms (ENAs)

    Science.gov (United States)

    Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.

    2001-01-01

    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.

  11. Angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei

    International Nuclear Information System (INIS)

    1986-03-01

    The project dealt with angular correlation experiments for the study of giant multipole resonances and currents of the second kind in atomic nuclei. Both partial projects were worked in the period of the report. (orig.) [de

  12. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  13. Force and light tuning vertical tunneling current in the atomic layered MoS2.

    Science.gov (United States)

    Li, Feng; Lu, Zhixing; Lan, Yann-Wen; Jiao, Liying; Xu, Minxuan; Zhu, Xiaoyang; Zhang, Xiankun; Wu, Hualin; Qi, Junjie

    2018-07-06

    In this work, the vertical electrical transport behavior of bilayer MoS 2 under the coupling of force and light was explored by the use of conductive atomic force microscopy. We found that the current-voltage behavior across the tip-MoS 2 -Pt junction is a tunneling current that can be well fitted by a Simmons approximation. The transport behavior is direct tunneling at low bias and Fowler-Nordheim tunneling at high bias, and the transition voltage and tunnel barrier height are extracted. The effect of force and light on the effective band gap of the junction is investigated. Furthermore, the source-drain current drops surprisingly when we continually increase the force, and the dropping point is altered by the provided light. This mechanism is responsible for the tuning of tunneling barrier height and width by force and light. These results provide a new way to design devices that take advantage of ultrathin two-dimensional materials. Ultrashort channel length electronic components that possess tunneling current are important for establishing high-efficiency electronic and optoelectronic systems.

  14. Effect of current and atomized grain size distribution on the solidification of Plasma Transferred Arc coatings

    Directory of Open Access Journals (Sweden)

    Danielle Bond

    2012-10-01

    Full Text Available Plasma Transferred Arc (PTA is the only thermal spray process that results in a metallurgical bond, being frequently described as a hardfacing process. The superior properties of coatings have been related to the fine microstructures obtained, which are finer than those processed under similar heat input with welding techniques using wire feedstock. This observation suggests that the atomized feedstock plays a role on the solidification of coatings. In this study a model for the role of the powders grains in the solidification of PTA coatings is put forward and discussed. An experiment was setup to discuss the model which involved the deposition of an atomized Co-based alloy with different grain size distributions and deposition currents. X ray diffraction showed that there were no phase changes due to the processing parameters. Microstructure analysis by Laser Confocal Microscopy, dilution with the substrate steel and Vickers microhardness were used the characterized coatings and enriched the discussion confirming the role of the powdered feedstock on the solidification of coatings.

  15. Frequency shift, damping, and tunneling current coupling with quartz tuning forks in noncontact atomic force microscopy

    Science.gov (United States)

    Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian

    2016-09-01

    A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.

  16. Current status of research and development at Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    2015-01-01

    This paper introduces the current state and future prospects of Japan Atomic Energy Agency, with a focus on the main achievements of the research and development as of November FY2014. The items of research and development are as follows; (1) research and development related to measures for the accident of Fukushima Daiichi Nuclear Power Station, (2) technological assistance for ensuring safety in the research and development and utilization of nuclear power, (3) research science related to the research and development and utilization of nuclear power, (4) practical application of FBR cycle, (5) technological development related to back-end measures, (6) research and development of technological system to retrieve nuclear fusion energy, and (7) common projects (computational science / engineering / research, technological development and policy assistance on nuclear non-proliferation and nuclear security, and various activities such as dissemination of the fruits of research and development, human resource development, and technological cooperation). (A.O.)

  17. Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation

    Directory of Open Access Journals (Sweden)

    Morley O. Stone

    2011-06-01

    Full Text Available Zinc oxide field effect transistors (ZnO-FET, covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels.

  18. Room-temperature current blockade in atomically defined single-cluster junctions

    Science.gov (United States)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  19. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    Science.gov (United States)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  20. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification.

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-07-10

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response.

  1. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Science.gov (United States)

    Mota, Lia Toledo Moreira; Mota, Alexandre de Assis; Coiado, Lorenzo Campos

    2015-01-01

    Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%), which leads to a linear output response. PMID:26184208

  2. Non-Destructive Current Sensing for Energy Efficiency Monitoring in Buildings with Environmental Certification

    Directory of Open Access Journals (Sweden)

    Lia Toledo Moreira Mota

    2015-07-01

    Full Text Available Nowadays, buildings environmental certifications encourage the implementation of initiatives aiming to increase energy efficiency in buildings. In these certification systems, increased energy efficiency arising from such initiatives must be demonstrated. Thus, a challenge to be faced is how to check the increase in energy efficiency related to each of the employed initiatives without a considerable building retrofit. In this context, this work presents a non-destructive method for electric current sensing to assess implemented initiatives to increase energy efficiency in buildings with environmental certification. This method proposes the use of a sensor that can be installed directly in the low voltage electrical circuit conductors that are powering the initiative under evaluation, without the need for reforms that result in significant costs, repair, and maintenance. The proposed sensor consists of three elements: an air-core transformer current sensor, an amplifying/filtering stage, and a microprocessor. A prototype of the proposed sensor was developed and tests were performed to validate this sensor. Based on laboratory tests, it was possible to characterize the proposed current sensor with respect to the number of turns and cross-sectional area of the primary and secondary coils. Furthermore, using the Least Squares Method, it was possible to determine the efficiency of the air core transformer current sensor (the best efficiency found, considering different test conditions, was 2%, which leads to a linear output response.

  3. Sensing of silver nanoparticles on/in endothelial cells using atomic force spectroscopy.

    Science.gov (United States)

    Kolodziejczyk, Agnieszka; Jakubowska, Aleksandra; Kucinska, Magdalena; Wasiak, Tomasz; Komorowski, Piotr; Makowski, Krzysztof; Walkowiak, Bogdan

    2018-05-10

    Endothelial cells, due to their location, are interesting objects for atomic force spectroscopy study. They constitute a barrier between blood and vessel tissues located deeper, and therefore they are the first line of contact with various substances present in blood, eg, drugs or nanoparticles. This work intends to verify whether the mechanical response of immortalized human umbilical vein endothelial cells (EA.hy926), when exposed to silver nanoparticles, as measured using force spectroscopy, could be effectively used as a bio-indicator of the physiological state of the cells. Silver nanoparticles were characterized with transmission electron microscopy and dynamic light scattering techniques. Tetrazolium salt reduction test was used to determine cell viability after treatment with silver nanoparticles. An elasticity of native cells was examined in the Hanks' buffer whereas fixed cells were softly fixed with formaldehyde. Additional aspect of the work is the comparative force spectroscopy utilizing AFM probes of ball-shape and conical geometries, in order to understand what changes in cell elasticity, caused by SNPs, were detectable with each probe. As a supplement to elasticity studies, cell morphology observation by atomic force microscopy and detection of silver nanoparticles inside cells using transmission electron microscopy were also performed. Cells exposed to silver nanoparticles at the highest selected concentrations (3.6 μg/mL, 16 μg/mL) are less elastic. It may be associated with the reorganization of the cellular cytoskeleton and the "strengthening" of the cell cortex caused by presence of silver nanoparticles. This observation does not depend on cell fixation. Agglomerates of silver nanoparticles were observed on the cell membrane as well as inside the cells. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Morphology and current-voltage characteristics of nanostructured pentacene thin films probed by atomic force microscopy.

    Science.gov (United States)

    Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y

    2001-09-01

    Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.

  5. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  6. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Guijun Yang

    2017-06-01

    Full Text Available Phenotyping plays an important role in crop science research; the accurate and rapid acquisition of phenotypic information of plants or cells in different environments is helpful for exploring the inheritance and expression patterns of the genome to determine the association of genomic and phenotypic information to increase the crop yield. Traditional methods for acquiring crop traits, such as plant height, leaf color, leaf area index (LAI, chlorophyll content, biomass and yield, rely on manual sampling, which is time-consuming and laborious. Unmanned aerial vehicle remote sensing platforms (UAV-RSPs equipped with different sensors have recently become an important approach for fast and non-destructive high throughput phenotyping and have the advantage of flexible and convenient operation, on-demand access to data and high spatial resolution. UAV-RSPs are a powerful tool for studying phenomics and genomics. As the methods and applications for field phenotyping using UAVs to users who willing to derive phenotypic parameters from large fields and tests with the minimum effort on field work and getting highly reliable results are necessary, the current status and perspectives on the topic of UAV-RSPs for field-based phenotyping were reviewed based on the literature survey of crop phenotyping using UAV-RSPs in the Web of Science™ Core Collection database and cases study by NERCITA. The reference for the selection of UAV platforms and remote sensing sensors, the commonly adopted methods and typical applications for analyzing phenotypic traits by UAV-RSPs, and the challenge for crop phenotyping by UAV-RSPs were considered. The review can provide theoretical and technical support to promote the applications of UAV-RSPs for crop phenotyping.

  7. Medical Dosimetric Registry of Russian Atomic Industry Employees: Current Status and Perspectives

    International Nuclear Information System (INIS)

    Ilyin, L. A.; Kiselev, M. F.; Panfilov, A. P.; Kochetkov, O. A.; Ivanov, A. A.; Grinev, M. P.; Soloviev, V. Y.; Semenov, V. G.; Tukov, A. R.; Koshuurnikova, N. A.; Takhauov, R. M.; Melnikov, G. Y.

    2004-01-01

    Epidemiological studies of nuclear industry personnel contain the significant abilities to assess the prolonged radiation exposure effects in the human health. The clarification of these assessments and following improvements of the scientific justification of radiation regulation require the expansion of factual basis of the research currently, Branch Medical Dosimetric Registry (BMDR) of atomic industry and nuclear power employees is under the development in Russian to compose a number of regional registries. This work is coordinated by the State Research Center- Institute of Biophysics (Moscow). The first phase of this project was devoted to the forming of the regional registry of Mayak PA employees (Ozersk, South Uranl region). the employee registries of Siberian Chemical Plant (SCP, Seversk, Tomsk region) and Mountain Chemical Plant (MCP, Zheleznogorsk, Krasnoyarsk region) are at the finalization. At later phases, BMDR will be added by the information on other enterprises and on operating NPP too. The paper describes the structure, general issues of the forming and current status of BMDR. The comparison of major BMDR features versus LSS registry (which is the one of basic components for international radiation protection recommendations and current radiation protection standards) demonstrates that BMDR information can be more preferable to assess the significance of the man made radiation at high and intermediate dose ranges. Particularly, the number of employees (20-40 year age range) exposed to doses specific to detectable radiation health effects (above 2000 mSv) is almost ten times more than that for LSS cohort. Besides, the health monitoring was elaborated since the employment start point (Whereas, since year 5 for LSS cohort). BMDR dose records were measured (against LSS reconstructed doses) and the employee exposure duration was equal to years and decade (alternatively to momentary exposure recorded in LSS). BMDR data quantity and quality correspond to

  8. Airborne remote sensing of ultraviolet-absorbing aerosols during the NASA ATom, SEAC4RS and DC3 campaigns

    Science.gov (United States)

    Hall, S. R.; Ullmann, K.; Commane, R.; Crounse, J. D.; Daube, B. C.; Diskin, G. S.; Dollner, M.; Froyd, K. D.; Katich, J. M.; Kim, M. J.; Madronich, S.; Murphy, D. M.; Podolske, J. R.; Schwarz, J. P.; Teng, A.; Weber, R. J.; Weinzierl, B.; Wennberg, P. O.; Sachse, G.; Wofsy, S.

    2017-12-01

    Spectrally resolved up and down-welling actinic flux was measured from the NASA DC-8 aircraft by the Charged-coupled device Actinic Flux Spectroradiometers (CAFS) during recent campaigns including ATom, DC3 and SEAC4RS. The primary purpose is retrieval of 40 photolysis frequencies to complement the in situ chemistry. However, the spectra also provide the opportunity to examine absorption trends in the UV where few other measurements exist. In particular, absorption by brown (BrC) and black (BC) carbon aerosols result in characteristic UV signatures. A new technique exploits the spectral changes to detect the presence of these aerosols for qualitative, real-time, remote sensing of biomass burning (BB). The data may prove useful for examination of the evolution of BrC, including chemical processing and hygroscopic growth. The induced UV changes also feed back to the photolysis frequencies affecting the chemistry. Further work will determine the robustness of the technique and if quantitative spectral absorption retrievals are possible.

  9. The influence of atomic disordering on the critical currents in A15 superconductors near Hsub(c1)

    International Nuclear Information System (INIS)

    Faehnle, M.; Kronmueller, H.

    1976-01-01

    By a model calculation based on the Labbe-Friedel-van-Reuth model of A15 superconductors it is shown that atomic disordering in Nb 3 Sn reduces significantly the critical current densities, jsub(c), in materials with large pinning effects. (author)

  10. The influence of nuclear risk sense to atomic industry's public relation

    International Nuclear Information System (INIS)

    Biryukova, P.; Kazakevich, Y.

    2000-01-01

    It is possible to judge this ona South Ural example about how important it is to inform people on the authentic risk connected with nuclear energy production. Because of the lack of information, the catastrophe of MAYAK plant resulted in the steadfast radio-phobia of the majority of inhabitants living in the polluted territory and the formation of radio.phobia in some inhabitants living in the clean territory. The syndromes of radio-phobia, including an increase in fear and stress, have lowered the physical and mental capacity for work in juvenile aged children already. The population is sufficiently informed about the current radiation situation, the degree of contaminated territory around their residencies, and how relocating can help in reducing radiation damage and risk. In radioactive contaminated territories, the population expresses social pessimism and an increase in critical attitude towards authorities and organizations. The public role of offering risk evaluation must be increased. Without it, the people will express their unwillingness to be exposed to any force, including the risks from a nucleus, because it will not provide reliable and objective information. (authors)

  11. Effect of etching current density on microstructure and NH3-sensing properties of porous silicon with intermediate-sized pores

    International Nuclear Information System (INIS)

    Li, Mingda; Hu, Ming; Zeng, Peng; Ma, Shuangyun; Yan, Wenjun; Qin, Yuxiang

    2013-01-01

    In this work, porous silicon with intermediate-sized pores (intermediate–PS) was prepared by using galvanostatic electrochemical etching method and the effect toward sensing response characteristics of NH 3 gas was also studied. The morphology and surface chemical bonds of intermediate–PS were characterized by using field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The results showed the intermediate–PS microstructure can be significantly modulated by the etching current density. Moreover, the freshly prepared intermediate–PS surface could achieve reliable passivation after storage in ethanol. Furthermore, the gas-sensing measurements of the intermediate–PS sensors were carried out versus different concentrations of NH 3 . The PS sensor exhibited good NH 3 -sensing performances at room temperature owing to its unique microstructure features, including large specific surface area and highly ordered pore channels. In addition, the conceivable pore formation mechanism as well as gas sensing mechanism was also discussed

  12. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains.

    Science.gov (United States)

    Sabater, Carlos; Untiedt, Carlos; van Ruitenbeek, Jan M

    2015-01-01

    This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a 'Berry force'. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  13. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    Directory of Open Access Journals (Sweden)

    Carlos Sabater

    2015-12-01

    Full Text Available This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose.

  14. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  15. Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Aronniemi, Mikko; Saino, J.; Lahtinen, J.

    2008-01-01

    In this work we investigate an iron oxide thin film grown with atomic layer deposition for a gas sensor application. The objective is to characterize the structural, chemical, and electrical properties of the film, and to demonstrate its gas-sensitivity. The obtained scanning electron microscopy and atomic force microscopy results indicate that the film has a granular structure and that it has grown mainly on the glass substrate leaving the platinum electrodes uncovered. X-ray diffraction results show that iron oxide is in the α-Fe 2 O 3 (hematite) phase. X-ray photoelectron spectra recorded at elevated temperature imply that the surface iron is mainly in the Fe 3+ state and that oxygen has two chemical states: one corresponding to the lattice oxygen and the other to adsorbed oxygen species. Electric conductivity has an activation energy of 0.3-0.5 eV and almost Ohmic current-voltage dependency. When exposed to O 2 and CO, a typical n-type response is observed

  16. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    Science.gov (United States)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  17. 'Atomic Bremsstrahlung': Retrospectives, current status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel) and Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation)]. E-mail: Amusia@vms.huji.ac.il

    2006-10-15

    We describe here the 'Atomic bremsstrahlung' (AB)-emission of continuous spectrum electromagnetic radiation, which is generated in collisions of particles that have internal deformable structure that includes positively and negatively charged constituents. The deformation of one or both colliding partners induces multiple, mainly dipole, time-dependent electrical moments that become a source of radiation. The history of AB invention is presented and its unusual in comparison to ordinary bremsstrahlung (OB) properties, are discussed. As examples, fast electron atom, non-relativistic and relativistic collisions are considered. Attention is given to ion-atom and atom-atom collisions. Specifics of 'elastic' and 'inelastic' (i.e. radiation accompanied by destruction of collision partners) AB will be mentioned. Attention will be given to possible manifestation of AB in nature and in some exotic systems, for instance scattering of electrons upon muonic hydrogen. Some cooperative effects connected to AB will be considered. New classical schemes similar to AB will be presented.

  18. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Science.gov (United States)

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  19. Current status of antiproton impact ionization of atoms and molecules: theoretical and experimental perspectives

    DEFF Research Database (Denmark)

    Kirchner, Tom; Knudsen, Helge

    2011-01-01

    Experimental and theoretical progress in the field of antiproton-impact-induced ionization of atoms and molecules is reviewed. We describe the techniques used to measure ionization cross sections and give an overview of the experimental results supplemented by tables of all existing data. An atte......Experimental and theoretical progress in the field of antiproton-impact-induced ionization of atoms and molecules is reviewed. We describe the techniques used to measure ionization cross sections and give an overview of the experimental results supplemented by tables of all existing data...

  20. Atomic clocks: A brief history and current status of research in India

    Indian Academy of Sciences (India)

    2014-02-19

    Feb 19, 2014 ... Time and Frequency Division, CSIR-National Physical Laboratory, .... gen atoms, for example, which travel at a speed of about 1600 m/s at ..... sition card (DAQ) and real-time processing of the data on a LabVIEW platform.

  1. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  2. Current trends in court rulings on matters of the Atomic Energy Law

    International Nuclear Information System (INIS)

    Degenhart, C.

    1989-01-01

    Today's Atomic energy law is at a high development level and offers increased legal safety at a point of time when the extension of nuclear energy has been largely concluded in the FRG. The procedural constellation of third-party objections in characteristic of the development of the atomic energy law. Principal objections to the peaceful use of nuclear energy have been largely disproved by court rulings. Residual risks of this technology are to be accepted as 'socially adequate basic burdens'. 'Abandonment' of nuclear energy is not precluded by the structure of Atomic Energy Law Standards but is mainly a political question to be answered by the executive. In future, legal issues of nuclear waste disposal, fuel cycle and assessment of new plant types will dominate the discussion. Verification and certification of waste disposal should not be demanded in the stage of plant approval, however, should safe disposal prove to be infeasible, nuclear energy use may well have to be re-assessed legally. (orig.) [de

  3. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG

    Science.gov (United States)

    Trumpis, Michael; Insanally, Michele; Zou, Jialin; Elsharif, Ashraf; Ghomashchi, Ali; Sertac Artan, N.; Froemke, Robert C.; Viventi, Jonathan

    2017-04-01

    Objective. High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. Approach. We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. Main results. The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 d. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. Significance. We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but

  4. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  5. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  6. Current and emerging operational uses of remote sensing in Swedish forestry

    Science.gov (United States)

    Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>

    2007-01-01

    Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...

  7. Current Issues and Trends in Multidimensional Sensing Technologies for Digital Media

    Science.gov (United States)

    Nagata, Noriko; Ohki, Hidehiro; Kato, Kunihito; Koshimizu, Hiroyasu; Sagawa, Ryusuke; Fujiwara, Takayuki; Yamashita, Atsushi; Hashimoto, Manabu

    Multidimensional sensing (MDS) technologies have numerous applications in the field of digital media, including the development of audio and visual equipment for human-computer interaction (HCI) and manufacture of data storage devices; furthermore, MDS finds applications in the fields of medicine and marketing, i.e., in e-marketing and the development of diagnosis equipment.

  8. Current mapping of low-energy (120 eV) helium and hydrogen irradiated tungsten by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Endo, Takashi [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Bi, Zhenghua; Yan, Weibin [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Ohnuki, Somei [Nano-micro Materials Analysis Laboratory, Hokkaido University, Sapporo (Japan); Yang, Qi; Ni, Weiyuan [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian (China)

    2017-04-01

    Both conductive atomic force microscopy (CAFM) and transmission electron microscopy have been used to characterize the defects or He bubbles in low-energy (120 eV) H and He irradiated tungsten (W). By a comparative study, we find that the current mapping from CAFM is very sensitive in the detection of nanometer-sized defects in low-energy H and He irradiated W. Our calculation confirms that the resistance change in H and He irradiated W is strongly affected by the distance between atomic force microscopy tip and defects/He bubbles. CAFM can accurately detect defects/He bubbles in the W surface layer, however, it is infeasible to measure them in the deep layer (>20 nm), especially due to the existence of defects in the surface layer.

  9. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  10. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  11. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends. Chapter 3

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2014-01-01

    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.

  12. Current studies on the decommissioning materials recycling at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Fujiki, K.; Nakamura, H.

    1993-01-01

    Rational treatment of a large volume of solid wastes resulting from the reactor dismantling is a key to success to carry out the decommissioning smoothly. From this viewpoint, the Japan Atomic Energy Research Institute (JAERI) has been conducting development of the recycling technology for metal waste and an investigation study on the rational recycling system for the dismantling wastes recycling. With respect to the development of the recycling technology, series of melting tests using non-contaminated metals, metal waste dismantled from JPDR or imitated waste using radioisotopes have been conducted. The basic characteristics of the radionuclides transport behavior during the melting have been understood. In the investigation study on the rational recycling system, a scenario of recycling the wastes was developed based on the amount of waste arising from decommissioning nuclear power plants, and necessary processing facilities were examined, and safety and economy of the process were evaluated

  13. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance.

    Science.gov (United States)

    Wang, Mengxing; Cai, Wenlong; Cao, Kaihua; Zhou, Jiaqi; Wrona, Jerzy; Peng, Shouzhong; Yang, Huaiwen; Wei, Jiaqi; Kang, Wang; Zhang, Youguang; Langer, Jürgen; Ocker, Berthold; Fert, Albert; Zhao, Weisheng

    2018-02-14

    Perpendicular magnetic tunnel junctions based on MgO/CoFeB structures are of particular interest for magnetic random-access memories because of their excellent thermal stability, scaling potential, and power dissipation. However, the major challenge of current-induced switching in the nanopillars with both a large tunnel magnetoresistance ratio and a low junction resistance is still to be met. Here, we report spin transfer torque switching in nano-scale perpendicular magnetic tunnel junctions with a magnetoresistance ratio up to 249% and a resistance area product as low as 7.0 Ω µm 2 , which consists of atom-thick W layers and double MgO/CoFeB interfaces. The efficient resonant tunnelling transmission induced by the atom-thick W layers could contribute to the larger magnetoresistance ratio than conventional structures with Ta layers, in addition to the robustness of W layers against high-temperature diffusion during annealing. The critical switching current density could be lower than 3.0 MA cm -2 for devices with a 45-nm radius.

  14. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pasquale Tripodi

    2018-04-01

    Full Text Available Increasing the ability to investigate plant functions and structure through non-invasive methods with high accuracy has become a major target in plant breeding and precision agriculture. Emerging approaches in plant phenotyping play a key role in unraveling quantitative traits responsible for growth, production, quality, and resistance to various stresses. Beyond fully automatic phenotyping systems, several promising technologies can help accurately characterize a wide range of plant traits at affordable costs and with high-throughput. In this review, we revisit the principles of proximal and remote sensing, describing the application of non-invasive devices for precision phenotyping applied to the protected horticulture. Potentiality and constraints of big data management and integration with “omics” disciplines will also be discussed.

  15. Remote sensing of atomic oxygen: Some observational difficulties in the use of the forbidden O I λ 1173-angstrom and O I λ 1641-angstrom transitions

    International Nuclear Information System (INIS)

    Erdman, P.W.; Zipf, E.C.

    1987-01-01

    Recent sounding rocket and satellite studies suggest that simultaneous measurements of the O I λ989-angstrom and λ1,304-angstrom resonance lines and of the forbidden λ1,172.6-angstrom and λ1641.3-angstrom transitions which also originate from the 3s'3D degree and 3s 3S degree states would form the basis of a useful remote sensing technique for measuring the O I density and optical of a planetary or stellar atmosphere. Because the λ1,172.6-angstrom and λ1641.3-angstrom emissions are weak lines and are emitted in a wavelength region rich in spectral features, it is important to determine whether typical flight instruments can make measurements with sufficient spectral purity so that the remote sensing observations will yield accurate results. We have made a detailed, high-resolution study of the far ultraviolet emission features in the regions surrounding the atomic oxygen transitions at λ1,172.6-angstrom and λ1,641.3-angstrom. These spectra, which were excited by electron impact on O 2 and N 2 , are presented in an attempt to display some potential sources of interference in aeronomical measurements of these O I lines. Both atomic and molecular emissions are found, and the spectral resolution necessary to make unambiguous measurements is discussed

  16. The Influence of Mother-Daughter Relationships on Women's Sense of Self and Current Role Choices.

    Science.gov (United States)

    Sholomskas, Diane; Axelrod, Rosalind

    1986-01-01

    Investigates the relationship of women's current role choices, role satisfaction, and self-esteem to their perceptions of the earlier relationship with their mothers and to their perceptions of their mothers' role choices and role satisfaction. (Author/ABB)

  17. Non-contact current and voltage sensing method using a clamshell housing and a ferrite cylinder

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael

    2016-04-26

    A method of measurement using a detachable current and voltage sensor provides an isolated and convenient technique for to measuring current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  18. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application.

    Science.gov (United States)

    Chatterjee, Prasenjit; Chow, Hwang-Cherng; Feng, Wu-Shiung

    2016-08-30

    This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET) under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T(-1)), which is very effective as compared to other previously reported works for a single device.

  19. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  20. NODC Standard Format Coastal Ocean Wave and Current (F181) Data from the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE) (1980) (NODC Accession 0014202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains time series coastal ocean wave and current data collected during the Atlantic Remote Sensing Land/Ocean Experiment (ARSLOE). ARSLOE was...

  1. Atomic structures of the rare-earths and actinides via relativistic current- and spin-density functional theory

    International Nuclear Information System (INIS)

    Higuchi, M.; Onuki, Y.; Osaka Univ., Toyonaka; Hasegawa, A.

    1998-01-01

    A new single-particle equation of the Kohn-Sham-Dirac type is derived from a relativistic current- and spin-density functional theory (RCSDFT), and is here applied to the calculations of the atomic structures of the rare-earth elements. Both the relativistic effects and the magnetic effects are taken into account on an equal footing, and the numerical calculation is carried out by modifying the method of Cortona et al. Because of the presence of the effective magnetic field, the degeneracies in all orbits are completely resolved like the Zeeman splittings. Total spin and orbital angular momenta over all the occupied states are shown to agree reasonably well with the Hund's rules for the rare-earth ions. (orig.)

  2. NASA's Current and Next Generation Coastal Remote Sensing Missions and Coral Reef Projects.

    Science.gov (United States)

    Guild, Liane S.

    2015-01-01

    The LLILAS Faculty Research Initiative presents a two-day symposium, Caribbean Coral Reefs at Risk. This international symposium examines the current state and future of coral reef conservation efforts throughout the Caribbean from the perspective of government agencies, nongovernment organizations, and academia.

  3. Bi-directional high-side current sense circuit for switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Bruun, Erik; Andersen, Michael A. E.

    2014-01-01

    In order to control a power supply using piezoelectric transformer, AC current in the transformer ne eds to be measured. Due to the control strategy it is necessary to measure amplitude, phase angle and zero crossing of this c urrent. In some applications there is common ground between pri mary...

  4. Stratospheric Joule heating by lightning continuing current inferred from radio remote sensing

    DEFF Research Database (Denmark)

    Fullekrug, M.; Ignaccolo, M.; Kuvshinov, A.

    2006-01-01

    to ground deposits electrical energy into the stratosphere resulting from quasi-static ( Joule) heating. The energy deposition is dominated by the lightning continuing current, and it is similar to 10(-5) J/m(3) at 30 km height. It is speculated that the initiation of blue jets and gigantic jets...

  5. Smart Sensing System for Early Detection of Bone Loss: Current Status and Future Possibilities

    Directory of Open Access Journals (Sweden)

    Nasrin Afsarimanesh

    2018-02-01

    Full Text Available Bone loss and osteoporosis is a serious health problem worldwide. The impact of osteoporosis is far greater than many other serious health problems, such as breast and prostate cancers. Statistically, one in three women and one in five men over 50 years of age will experience osteoporotic fractures in their life. In this paper, the design and development of a portable IoT-based sensing system for early detection of bone loss have been presented. The CTx-I biomarker was measured in serum samples as a marker of bone resorption. A planar interdigital sensor was used to evaluate the changes in impedance by any variation in the level of CTx-I. Artificial antibodies were used to introduce selectivity to the sensor for CTx-I molecule. Artificial antibodies for CTx-I molecules were created using molecular imprinted polymer (MIP technique in order to increase the stability of the system and reduce the production cost and complexity of the assay procedure. Real serum samples collected from sheep blood were tested and the result validation was done by using an ELISA kit. The PoC device was able to detect CTx-I concentration as low as 0.09 ng/mL. It exhibited an excellent linear behavior in the range of 0.1–2.5 ng/mL, which covers the normal reference ranges required for bone loss detection. Future possibilities to develop a smart toilet for simultaneous measurement of different bone turnover biomarkers was also discussed.

  6. Surface soil moisture retrievals from remote sensing: Current status, products & future trends

    Science.gov (United States)

    Petropoulos, George P.; Ireland, Gareth; Barrett, Brian

    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth's land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today's world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space.

  7. Simplified tunnelling current calculation for MOS structures with ultra-thin oxides for conductive atomic force microscopy investigations

    International Nuclear Information System (INIS)

    Frammelsberger, Werner; Benstetter, Guenther; Stamp, Richard; Kiely, Janice; Schweinboeck, Thomas

    2005-01-01

    As charge tunnelling through thin and ultra-thin silicon dioxide layers is regarded as the driving force for MOS device degradation the determination and characterisation of electrically week spots is of paramount importance for device reliability and failure analysis. Conductive atomic force microscopy (C-AFM) is able to address this issue with a spatial resolution smaller than the expected breakdown spot. For the determination of the electrically active oxide thickness in practice an easy to use model with sufficient accuracy and which is largely independent of the oxide thickness is required. In this work a simplified method is presented that meets these demands. The electrically active oxide thickness is determined by matching of C-AFM voltage-current curves and a tunnelling current model, which is based on an analytical tunnelling current approximation. The model holds for both the Fowler-Nordheim tunnelling and the direct tunnelling regime with one single tunnelling parameter set. The results show good agreement with macroscopic measurements for gate voltages larger than approximately 0.5-1 V, and with microscopic C-AFM measurements. For this reason arbitrary oxides in the DT and the FNT regime may be analysed with high lateral resolution by C-AFM, without the need of a preselection of the tunnelling regime to be addressed

  8. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  9. Atom Interferometry for Dark Contents of the Vacuum Searches

    Energy Technology Data Exchange (ETDEWEB)

    Burrow, O. [Liverpool U.; Carroll, A. [Liverpool U.; Chattopadhyay, S. [Northern Illinois U.; Coleman, J. [Liverpool U.; Elertas, G. [Teddington, Natl. Phys. Lab; Heffer, J. [Liverpool U.; Metelko, C. [Liverpool U.; Moore, R. [Teddington, Natl. Phys. Lab; Morris, D. [Liverpool U.; Perl, M. [SLAC; Ralph, J. [Liverpool U.; Tinsley, J. [Teddington, Natl. Phys. Lab

    2017-05-25

    A cold atom interferometer is being developed using 85Rb atoms towards a search for the dark contents of the vacuum, and as a test stand for inertial sensing applications. Here we outline the current status of the experiment and report the observation of Ramsey interference fringes in the apparatus.

  10. Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes

    Science.gov (United States)

    Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.

    2017-12-01

    Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds

  11. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities.

    Science.gov (United States)

    Gomez, Carles; Paradells, Josep

    2015-09-10

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  12. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities

    Directory of Open Access Journals (Sweden)

    Carles Gomez

    2015-09-01

    Full Text Available Urban Automation Networks (UANs are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  13. Leakage current analysis for dislocations in Na-flux GaN bulk single crystals by conductive atomic force microscopy

    Science.gov (United States)

    Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.

    2018-04-01

    The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.

  14. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    Science.gov (United States)

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  15. Spatial-Temporal Variations of Turbidity and Ocean Current Velocity of the Ariake Sea Area, Kyushu, Japan Through Regression Analysis with Remote Sensing Satellite Data

    OpenAIRE

    Yuichi Sarusawa; Kohei Arai

    2013-01-01

    Regression analysis based method for turbidity and ocean current velocity estimation with remote sensing satellite data is proposed. Through regressive analysis with MODIS data and measured data of turbidity and ocean current velocity, regressive equation which allows estimation of turbidity and ocean current velocity is obtained. With the regressive equation as well as long term MODIS data, turbidity and ocean current velocity trends in Ariake Sea area are clarified. It is also confirmed tha...

  16. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  17. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    Science.gov (United States)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  18. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  19. International Conference 'Current Problems in Nuclear Physics and Atomic Energy'. May 29 - Jun 03 2006. Book of Abstracts

    International Nuclear Information System (INIS)

    Vyshnevskyi, I.M.

    2006-01-01

    The collective processes in atomic nuclei, nuclear reactions and processes with exotic nuclei, rare nuclear processes, relativistic nuclear physics, neutron physics, physics of nuclear reactors, problems of atomic energy and reactors of the future, applied nuclear physics and technique of experiments was discussed in this conference

  20. Interplay between switching driven by the tunneling current andatomic force of a bistable four-atom Si quantum dot

    Czech Academy of Sciences Publication Activity Database

    Yamazaki, S.; Maeda, K.; Sugimoto, Y.; Abe, M.; Zobač, Vladimír; Pou, P.; Rodrigo, L.; Mutombo, Pingo; Perez, R.; Jelínek, Pavel; Morita, S.

    2015-01-01

    Roč. 15, č. 7 (2015), 4356-4363 ISSN 1530-6984 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : atomic manipulation * atomic switch * Si quantum dot * scanning tunneling microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 13.779, year: 2015

  1. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  2. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D., E-mail: t.anthopoulos@ic.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2016-05-21

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGO{sub X}) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGO{sub X} (1–3 monolayers-thick) and AgNWs exhibit sheet resistances of ∼100–1000 kΩ/□ and 100–900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGO{sub X}/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGO{sub X} networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGO{sub X}/AgNWs' networks, rGO{sub X} flakes are found to form conductive “bridges” between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGO{sub X}/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  3. The law governing power generation and the atomic energy law in Japan, with special regard to the current situation in the energy sector

    International Nuclear Information System (INIS)

    Fujiwara, J.

    1984-01-01

    This contribution characterises Japanese legislation on power generation and supply, goes into detail with regard to the current Atomic Energy Law within the framework of the overall legal concept governing power supply, and presents an outlook on future developments. A table summarizes the main problems in this field. (orig./HSCH) [de

  4. Current-voltage curves of atomic-sized transition metal contacts: An explanation of why Au is ohmic and Pt is not

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Brandbyge, Mads; Hansen, K.

    2002-01-01

    We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...

  5. Temperature, pressure, and density of electron, atom and ion, in the breaking arc of silver-cadmium contacts used in medium current region

    International Nuclear Information System (INIS)

    Aida, Teizo

    1979-01-01

    Wear of silver-cadmium contacts at the time of breaking was studied. The materials of the contacts were silver-cadmium alloy and silver-cadmium oxide sinter. The spectra of arc discharge generated at the time of breaking contact were analyzed with a monochromator photo multiplier. The ratio of the densities of cadmium and silver atoms in the arc can be estimated from the observed intensities of spectrum lines. The electron density is obtained from the arc current density. The proportion of the cadmium atoms in the arc was about 30 percent. The densities of silver atoms and cadmium atoms can be estimated by the principle of thermal ionization equilibrium. The ion densities were also estimated. The partial pressures of silver and cadmium atoms in the arc can be obtained from the Boyle-Charles' law. A formula which gives the number of atoms liberated from the surfaces of contacts at the time of breaking was given by Boddy et al. (Kato, T.)

  6. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  7. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    Science.gov (United States)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  8. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  9. 4. International Conference on Current Problems in Nuclear Physics and Atomic Energy (NPAE-Kyiv2012). Proceedings. Part I and Part II

    International Nuclear Information System (INIS)

    Vyshnevskyi, Ivan M.

    2012-01-01

    Such wide area of topics, discussed during the Conference, is closely connected with the interests of our country to develop the fundamental research in the field of nuclear physics, which is the base of nuclear energy. The purpose of the Conference was to bring together scientists to share their knowledge in the current problems in nuclear physics and atomic energy. consideration of the spherical ground-state proton emitters, while nuclear deformations are supposed to be further included by standard way

  10. Tumor radiosensitizers - current status of development of various approaches: Report of an International Atomic Energy Agency meeting

    DEFF Research Database (Denmark)

    Horsman, Michael Robert; Bohm, Lothar; Margison, Geoffrey P.

    2006-01-01

    PURPOSE: The International Atomic Energy Agency (IAEA) held a Technical Meeting of Consultants to (1) discuss a selection of relatively new agents, not those well-established in clinical practice, that operated through a variety of mechanisms to sensitize tumors to radiation and (2) to compare...... and contrast their tumor efficacy, normal tissue toxicity, and status of development regarding clinical application. The aim was to advise the IAEA as to which developing agent or class of agents would be worth promoting further, by supporting additional laboratory research or clinical trials...... and for clinical trials that would be suitable for industrialized countries, as well as trials that were considered more appropriate for developing countries.PURPOSE: The International Atomic Energy Agency (IAEA) held a Technical Meeting of Consultants to (1) discuss a selection of relatively new agents, not those...

  11. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    Science.gov (United States)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  12. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    International Nuclear Information System (INIS)

    Vikas

    2011-01-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field (B) of strength up to 10 11 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schroedinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >10 9 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >10 9 G, the conventional TD-DFT based approach differs 'dynamically' from the CDFT based approach under similar computational constraints. (author)

  13. Demand specifying variables and current ventilation rate requirements with respect to the future use of voc sensing for dcv control

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    be also taken into account in the ventilation control. Recent development in gas sensing technology resulted in a new generation of relatively cheap and practically applicable sensors that can offer measurements of some of the pollutants mentioned above – mainly Volatile Organic Compounds (VOC......Demand Controlled Ventilation (DCV) is a well established principle to provide a certain indoor environmental quality, defined both in the terms of air quality and thermal comfort. This is accomplished by adjusting the supplied airflow rate according to a certain demand indicator, which......). This seems to bring a new dimension into the control of DCV systems. This paper is a contribution to the workshop on utilization of VOC sensing technology used for DCV control. The aim of the paper is to provide a short review of different types of demand variables used to control DCV systems and summarize...

  14. Assessment of current atomic scale modelling methods for the investigation of nuclear fuels under irradiation: Example of uranium dioxide

    International Nuclear Information System (INIS)

    Bertolus, M.; Freyss, M.; Krack, M.; Devanathan, R.

    2015-01-01

    We focus here on the assessment of the description of interatomic interactions in uranium dioxide using, on the one hand, electronic structure methods, in particular in the Density Functional Theory (DFT) framework, and on the other hand, empirical potential methods. These two types of methods are complementary, the former enabling results to be obtained from a minimal amount of input data and further insight into the electronic and magnetic properties to be achieved, while the latter are irreplaceable for studies where a large number of atoms need to be considered. We consider basic properties as well as specific ones, which are important for the description of nuclear fuel under irradiation. These are especially energies, which are the main data passed on to higher scale models. For this exercise, we limit ourselves to uranium dioxide (UO 2 ) because of the extensive amount of studies available on this system. (authors)

  15. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  16. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  17. Tumor radiosensitizers-current status of development of various approaches: Report of an International Atomic Energy Agency meeting

    International Nuclear Information System (INIS)

    Horsman, Michael R.; Bohm, Lothar; Margison, Geoffrey P.; Milas, Luka; Rosier, Jean-Francois; Safrany, Geza; Selzer, Edgar; Verheij, Marcel; Hendry, Jolyon H.

    2006-01-01

    Purpose: The International Atomic Energy Agency (IAEA) held a Technical Meeting of Consultants to (1) discuss a selection of relatively new agents, not those well-established in clinical practice, that operated through a variety of mechanisms to sensitize tumors to radiation and (2) to compare and contrast their tumor efficacy, normal tissue toxicity, and status of development regarding clinical application. The aim was to advise the IAEA as to which developing agent or class of agents would be worth promoting further, by supporting additional laboratory research or clinical trials, with the eventual goal of improving cancer control rates using radiotherapy, in developing countries in particular. Results: The agents under discussion included a wide, but not complete, range of different types of drugs, and antibodies that interfered with molecules in cell signaling pathways. These were contrasted with new molecular antisense and gene therapy strategies. All the drugs discussed have previously been shown to act as tumor cell radiosensitizers or to kill hypoxic cells present in tumors. Conclusion: Specific recommendations were made for more preclinical studies with certain of the agents and for clinical trials that would be suitable for industrialized countries, as well as trials that were considered more appropriate for developing countries

  18. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se2 thin films investigated by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Shin, R.H.; Jo, W.; Kim, D.W.; Yun, Jae Ho; Ahn, S.

    2011-01-01

    Electrical transport properties on polycrystalline Cu(In,Ga)Se 2 (CIGS) (Ga/(In+Ga) ∼35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  19. Local current-voltage behaviors of preferentially and randomly textured Cu(In,Ga)Se{sub 2} thin films investigated by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, R.H.; Jo, W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Kim, D.W. [Ewha Womans University, Department of Physics, Seoul (Korea, Republic of); Ewha Womans University, Department of Chemistry and Nanosciences, Seoul (Korea, Republic of); Yun, Jae Ho; Ahn, S. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2011-09-15

    Electrical transport properties on polycrystalline Cu(In,Ga)Se{sub 2} (CIGS) (Ga/(In+Ga) {approx}35%) thin films were examined by conductive atomic force microscopy. The CIGS thin films with a (112) preferential or random texture were deposited on Mo-coated glass substrates. Triangular pyramidal grain growths were observed in the CIGS thin films preferentially textured to the (112) planes. Current maps of the CIGS surface were acquired with a zero or non-zero external voltage bias. The contrast of the images on the grain boundaries and intragrains displayed the conduction path in the materials. Local current-voltage measurements were performed to evaluate the charge conduction properties of the CIGS thin films. (orig.)

  20. Effect of current compliance and voltage sweep rate on the resistive switching of HfO2/ITO/Invar structure as measured by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Wu, You-Lin; Liao, Chun-Wei; Ling, Jing-Jenn

    2014-01-01

    The electrical characterization of HfO 2 /ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO 2 surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO 2 /ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  1. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated

    Science.gov (United States)

    Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio

    2017-10-01

    Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.

  2. A dual-path, current-sensing resistor-free boost LED driver with fast PWM dimming

    International Nuclear Information System (INIS)

    Zhou Minchao; Lü Danzhu; Cheng Lin; Hong Zhiliang; Liu, Bill Yang

    2013-01-01

    A boost LED driver featuring a high PWM dimming ratio and optimized efficiency is presented. This LED driver, which has a low dropout voltage and is able to drive 3–7 LEDs in series with constant output current and fast PWM dimming, provides an alternative technique for brightness adjustment. A dual-path control scheme with automatic switching and state maintenance is proposed. Meanwhile, a cascode current mirror structure is applied with the output transistor multiplexed as an LED PWM dimming transistor. Implemented in 0.5 μm 25 V BCD process, the measurement results show that a voltage conversion range of 5 V input to 6–24 V output with constant output current is obtained. With automatically switching dual-path control and an optimized current mirror, the response time during PWM dimming is reduced to as low as 240 ns and the efficiency keeps above 89% over a wide PWM dimming ratio - 250 mA output current. (semiconductor integrated circuits)

  3. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  4. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  5. Remote sensing of surface currents in the Fraser River plume with the SeaSonde HF radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.; Hardy, J.S.; Tinis, S.E.

    1994-09-01

    The SeaSonde 12.5-MHz radar system was deployed to measure surface currents in the Juan de Fuca Strait in July 1992. Reliable data were obtained from the two radars installed, and successful trials were conducted with the Infosat satellite link to transmit data from the remote site. Data recovery from the SeaSonde was generally good, with maximum ranges varying from 15 km to over 30 km. Sea echo return strength at both radars was correlated with wind, consistent with lower Bragg scattering at lower wind speeds. A simple surface current forecasting algorithm, based on decomposing the signal into tidal and residual bands, was examined. It was found that tides account for the greatest portion of currents in the study area, and could be forecasted out to 48 h with 1-2 d of input data. The nonpredictable, fluctuating part of the current signal was isolated and its statistics were calculated. The algorithm tests showed that the SeaSonde data can be used to measure and predict the slowly varying tidal and mean flow velocities, as well as the random part of the signal, both of which are important in oil spill modelling. Surface flow patterns and time-series data from the SeaSonde measurements, and from a three-dimensional hydrodynamic model, were compared from an oil spill modelling perspective. In general, surface flow patterns from the model were smoother than those observed. The differences were most noticeable in the cross-channel direction. The radar data indicate that a flow-dependent eddy viscosity formulation, with coefficients calibrated to reproduce the features observed with the radar, would improve agreement and yield a good model for data assimilation. 21 refs., 478 figs., 3 tabs

  6. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    International Nuclear Information System (INIS)

    Alvarez, J; Boutchich, M; Kleider, J P; Teraji, T; Koide, Y

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm −1 ). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices. (paper)

  7. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD.

    Science.gov (United States)

    Mitchell, Anthea L; Rosenqvist, Ake; Mora, Brice

    2017-12-01

    Forest degradation is a global phenomenon and while being an important indicator and precursor to further forest loss, carbon emissions due to degradation should also be accounted for in national reporting within the frame of UN REDD+. At regional to country scales, methods have been progressively developed to detect and map forest degradation, with these based on multi-resolution optical, synthetic aperture radar (SAR) and/or LiDAR data. However, there is no one single method that can be applied to monitor forest degradation, largely due to the specific nature of the degradation type or process and the timeframe over which it is observed. The review assesses two main approaches to monitoring forest degradation: first, where detection is indicated by a change in canopy cover or proxies, and second, the quantification of loss (or gain) in above ground biomass (AGB). The discussion only considers degradation that has a visible impact on the forest canopy and is thus detectable by remote sensing. The first approach encompasses methods that characterise the type of degradation and track disturbance, detect gaps in, and fragmentation of, the forest canopy, and proxies that provide evidence of forestry activity. Progress in these topics has seen the extension of methods to higher resolution (both spatial and temporal) data to better capture the disturbance signal, distinguish degraded and intact forest, and monitor regrowth. Improvements in the reliability of mapping methods are anticipated by SAR-optical data fusion and use of very high resolution data. The second approach exploits EO sensors with known sensitivity to forest structure and biomass and discusses monitoring efforts using repeat LiDAR and SAR data. There has been progress in the capacity to discriminate forest age and growth stage using data fusion methods and LiDAR height metrics. Interferometric SAR and LiDAR have found new application in linking forest structure change to degradation in tropical forests

  8. Biogeography of the Oceans: a Review of Development of Knowledge of Currents, Fronts and Regional Boundaries from Sailing Ships in the Sixteenth Century to Satellite Remote Sensing

    Science.gov (United States)

    Priede, Imants G.

    2014-06-01

    currents, fronts and eddies, which are often the focus of high biological productivity. Direct tracking of animals using satellite-based systems has helped resolve the biological function of such features and indeed animals instrumented in this way have helped the study of such features in three dimensions, including depths beyond the reach of conventional satellite remote sensing. Patterns of surface productivity detected by satellite remote sensing are reflected in deep sea life on the sea floor at abyssal depths >3,000 m. Satellite remote sensing has played a major role in overcoming the problems of large spatial scales and variability in ocean dynamics and is now an essential tool for monitoring global change.

  9. Effect of atomic layer deposition temperature on current conduction in Al{sub 2}O{sub 3} films formed using H{sub 2}O oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Matsumura, Daisuke [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kawarada, Hiroshi, E-mail: kawarada@waseda.jp [Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-Tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2016-08-28

    To develop high-performance, high-reliability gate insulation and surface passivation technologies for wide-bandgap semiconductor devices, the effect of atomic layer deposition (ALD) temperature on current conduction in Al{sub 2}O{sub 3} films is investigated based on the recently proposed space-charge-controlled field emission model. Leakage current measurement shows that Al{sub 2}O{sub 3} metal-insulator-semiconductor capacitors formed on the Si substrates underperform thermally grown SiO{sub 2} capacitors at the same average field. However, using equivalent oxide field as a more practical measure, the Al{sub 2}O{sub 3} capacitors are found to outperform the SiO{sub 2} capacitors in the cases where the capacitors are negatively biased and the gate material is adequately selected to reduce virtual dipoles at the gate/Al{sub 2}O{sub 3} interface. The Al{sub 2}O{sub 3} electron affinity increases with the increasing ALD temperature, but the gate-side virtual dipoles are not affected. Therefore, the leakage current of negatively biased Al{sub 2}O{sub 3} capacitors is approximately independent of the ALD temperature because of the compensation of the opposite effects of increased electron affinity and permittivity in Al{sub 2}O{sub 3}. By contrast, the substrate-side sheet of charge increases with increasing ALD temperature above 210 °C and hence enhances the current of positively biased Al{sub 2}O{sub 3} capacitors more significantly at high temperatures. Additionally, an anomalous oscillatory shift of the current-voltage characteristics with ALD temperature was observed in positively biased capacitors formed by low-temperature (≤210 °C) ALD. This shift is caused by dipoles at the Al{sub 2}O{sub 3}/underlying SiO{sub 2} interface. Although they have a minimal positive-bias leakage current, the low-temperature-grown Al{sub 2}O{sub 3} films cause the so-called blisters problem when heated above 400 °C. Therefore, because of the absence of blistering, a 450

  10. Comparative Study on Assimilating Remote Sensing High Frequency Radar Surface Currents at an Atlantic Marine Renewable Energy Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available A variety of data assimilation approaches have been applied to enhance modelling capability and accuracy using observations from different sources. The algorithms have varying degrees of complexity of implementation, and they improve model results with varying degrees of success. Very little work has been carried out on comparing the implementation of different data assimilation algorithms using High Frequency radar (HFR data into models of complex inshore waters strongly influenced by both tides and wind dynamics, such as Galway Bay. This research entailed implementing four different data assimilation algorithms: Direct Insertion (DI, Optimal Interpolation (OI, Nudging and indirect data assimilation via correcting model forcing into a three-dimensional hydrodynamic model and carrying out detailed comparisons of model performances. This work will allow researchers to directly compare four of the most common data assimilation algorithms being used in operational coastal hydrodynamics. The suitability of practical data assimilation algorithms for hindcasting and forecasting in shallow coastal waters subjected to alternate wetting and drying using data collected from radars was assessed. Results indicated that a forecasting system of surface currents based on the three-dimensional model EFDC (Environmental Fluid Dynamics Code and the HFR data using a Nudging or DI algorithm was considered the most appropriate for Galway Bay. The largest averaged Data Assimilation Skill Score (DASS over the ≥6 h forecasting period from the best model NDA attained 26% and 31% for east–west and north–south surface velocity components respectively. Because of its ease of implementation and its accuracy, this data assimilation system can provide timely and useful information for various practical coastal hindcast and forecast operations.

  11. Intelligent hand-portable proliferation sensing system

    International Nuclear Information System (INIS)

    Dieckman, S.L.; Bostrom, G.A.; Waterfield, L.G.; Jendrzejczyk, J.A.; Ahuja, S.; Raptis, A.C.

    1997-01-01

    Argonne National Laboratory, with support from DOE's Office of Nonproliferation and National Security, is currently developing an intelligent hand-portable sensor system. This system is designed specifically to support the intelligence community with the task of in-field sensing of nuclear proliferation and related activities. Based upon pulsed laser photo-ionization time-of-flight mass spectrometry technology, this novel sensing system is capable of quickly providing a molecular or atomic analysis of specimens. The system is capable of analyzing virtually any gas phase molecule, or molecule that can be induced into the gas phase by (for example) sample heating. This system has the unique advantages of providing unprecedented portability, excellent sensitivity, tremendous fieldability, and a high performance/cost ratio. The system will be capable of operating in a highly automated manner for on-site inspections, and easily modified for other applications such as perimeter monitoring aboard a plane or drone. The paper describes the sensing system

  12. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO₂ Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A

    2018-03-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  13. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rachel L. Wilson

    2018-03-01

    Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  14. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  15. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  16. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  17. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  18. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    Directory of Open Access Journals (Sweden)

    Mateusz Śmietana

    2013-11-01

    Full Text Available This work presents an application of thin aluminum oxide (Al2O3 films obtained using atomic layer deposition (ALD for fine tuning the spectral response and refractive-index (RI sensitivity of long-period gratings (LPGs induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device’s RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  19. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  20. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  1. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    properties are an important indicator for sensing. In search of a better understanding of these systems Zhang et al from Southern Illinois University inspect the role of Joule heating, exothermal reactions and heat dissipation in gas sensing using nanowires [7]. The mechanisms behind electrical chemical sensors are also further scrutinized in a kinetics study by Joan Ramon Morante from the University of Barcelona in Spain. 'In spite of the growing commercial success many basic issues remain still open and under discussion limiting the broad use of this technology,' he explains. He discusses surface chemical reaction kinetics and the experimental results for different representative gas molecules to gain an insight into the chemical to electrical transduction mechanisms taking place [8]. Perhaps one of the most persistent targets in sensing research is increasing the sensitivity. Gauging environmental health issues around the commercial use of nanomaterials places high demands on low-level detection and spurred a collaboration of researchers in the UK, Croatia and Canada to look into the use of particle-impact voltammetry for detecting nanoparticles in environmental media [9]. At the University of Illinois Urbana-Champaign in the US, researchers have applied wave transform analysis techniques to the oscillations of an atomic force microscopy cantilever and tailored a time-frequency-domain filter to identify the region of highest vibrational energy [10]. The approach allows them to improve the signal to noise ratio by a factor 32 on current high-performance devices. In addition, researchers in Korea report how doping NiO nanofibres can improve the sensitivity to a number of gases, including ethanol, where the response was enhanced by as much as a factor of 217.86 [11]. Biomedicine is one of the largest industries for the application of nanotechnology in sensing. Demonstrating the state of the art, researchers in China use silicon wafers decorated with gold nanoparticles for

  2. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  3. Atomic and Molecular Interactions

    International Nuclear Information System (INIS)

    2002-01-01

    The Gordon Research Conference (GRC) on Atomic and Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field

  4. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  5. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  6. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  7. Nanomedicine photoluminescence crystal-inspired brain sensing approach

    Science.gov (United States)

    Fang, Yan; Wang, Fangzhen; Wu, Rong

    2018-02-01

    Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.

  8. High data-rate atom interferometers through high recapture efficiency

    Science.gov (United States)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  9. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  10. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  11. Hyperspectral sensing of forests

    Science.gov (United States)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  12. LIGO sensing system performance

    CERN Document Server

    Landry, M

    2002-01-01

    The optical sensing subsystem of a LIGO interferometer is described. The system includes two complex interferometric sensing schemes to control test masses in length and alignment. The length sensing system is currently employed on all LIGO interferometers to lock coupled cavities on resonance. Auto-alignment is to be accomplished by a wavefront-sensing scheme which automatically corrects for angular fluctuations of the test masses. Improvements in lock stability and duration are noted when the wavefront auto-alignment system is employed. Preliminary results from the commissioning of the 2 km detector in Washington are shown.

  13. Advanced Remote Sensing Research

    Science.gov (United States)

    Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna

    2008-01-01

    'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).

  14. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  15. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  16. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  17. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  18. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  19. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  20. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  1. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities

    International Nuclear Information System (INIS)

    Resano, M.; Flórez, M.R.; García-Ruiz, E.

    2013-01-01

    This work examines the capabilities and limitations of commercially available high-resolution continuum source atomic absorption spectrometry instrumentation for multi-line monitoring, discussing in detail the possible strategies to develop multi-element methodologies that are truly simultaneous, or else sequential, but from the same sample aliquot. Moreover, the simultaneous monitoring of various atomic or molecular lines may bring other important analytical advantages, such as: i) expansion of the linear range by monitoring multiplets; ii) improvements in the limit of detection and in precision by summing the signals from different lines of the same element or molecule; iii) simple correction for matrix-effects by selecting a suitable internal standard; or iv) accurate mathematical correction of spectral overlaps by simultaneous monitoring of free lines of the interfering molecule or element. This work discusses how authors have made use of these strategies to develop analytical methodologies that permit the straightforward analysis of complex samples. - Highlights: • HR CS AAS potential for simultaneous multi-line monitoring is critically examined. • Strategies to develop simultaneous multi-element methods are discussed. • Other benefits of multi-line monitoring (e.g., use of an IS or LSBC) are highlighted. • Selected examples from the literature are discussed in detail

  2. The terms 'current scientific knowledge', and 'precautionary measures to provide protection' in the provisions governing the licensing procedure under the Atomic Energy Act

    International Nuclear Information System (INIS)

    Renneberg, W.

    1986-01-01

    Under the Atomic Energy Act, a licence may be granted for a nuclear installation provided that 'every precaution which is necessary in the light of existing scientific knowledge and technology has been taken to provide adequate protection against damage due to the erection or operation of the installation' (section 7, sub-sec. (2), no. 3 of the Atomic Energy Act). This condition can be split off into two specific problem fields, and for each a rather unspecific legal concept is to be more exactly defined. The author explains the technique of the law hitherto applied in the weighting and evaluation of hazards and risks and comes to the conclusion that the technique adopted has been subject to pre-legal appraisals: the result in terms of the law is not the final step in the process of legal evaluation, but quite to the contrary, the legal technique applied has been derived from the wanted result. This, the author says, is a crisis of legitimation of the law. (HSCH) [de

  3. Optical coupling of cold atoms to a levitated nanosphere

    Science.gov (United States)

    Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew

    2017-04-01

    Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.

  4. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  5. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  6. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  7. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  8. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  9. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  10. Effects of adsorbed pyridine derivatives and ultrathin atomic-layer-deposited alumina coatings on the conduction band-edge energy of TiO2 and on redox-shuttle-derived dark currents.

    Science.gov (United States)

    Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T

    2013-01-15

    Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

  11. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  12. Development of microsecond generators with plasma current interrupting switch in I.V. Kurchatov Institute of Atomic Energy. Frequency operation of generators

    International Nuclear Information System (INIS)

    Babykin, V.M.; Chikin, R.V.; Dolgachev, G.I.; Golovanov, Yu.P.; Kovalev, Yu.I.; Ushakov, A.G.; Zakatov, L.P.

    1993-01-01

    This paper is a follow up to previously published work on microsecond plasma current interrupting switches (PCIS), which has been conducted in the I.V. Kurchatov Inst. Here the authors present some information on the practical implementation of such devices, and provide an overview of new research facilities

  13. Time-sensitive remote sensing

    CERN Document Server

    Lippitt, Christopher; Coulter, Lloyd

    2015-01-01

    This book documents the state of the art in the use of remote sensing to address time-sensitive information requirements. Specifically, it brings together a group of authors who are both researchers and practitioners, who work toward or are currently using remote sensing to address time-sensitive information requirements with the goal of advancing the effective use of remote sensing to supply time-sensitive information. The book addresses the theoretical implications of time-sensitivity on the remote sensing process, assessments or descriptions of methods for expediting the delivery and improving the quality of information derived from remote sensing, and describes and analyzes time-sensitive remote sensing applications, with an emphasis on lessons learned. This book is intended for remote sensing scientists, practitioners (e.g., emergency responders or administrators of emergency response agencies), and students, but will also be of use to those seeking to understand the potential of remote sensing to addres...

  14. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  15. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  16. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  17. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  18. Leakage current conduction mechanisms and electrical properties of atomic-layer-deposited HfO2/Ga2O3 MOS capacitors

    Science.gov (United States)

    Zhang, Hongpeng; Jia, Renxu; Lei, Yuan; Tang, Xiaoyan; Zhang, Yimen; Zhang, Yuming

    2018-02-01

    In this paper, current conduction mechanisms in HfO2/β-Ga2O3 metal-oxide-semiconductor (MOS) capacitors under positive and negative biases are investigated using the current-voltage (I-V) measurements conducted at temperatures from 298 K to 378 K. The Schottky emission is dominant under positively biased electric fields of 0.37-2.19 MV cm-1, and the extracted Schottky barrier height ranged from 0.88 eV to 0.91 eV at various temperatures. The Poole-Frenkel emission dominates under negatively biased fields of 1.92-4.83 MV cm-1, and the trap energy levels are from 0.71 eV to 0.77 eV at various temperatures. The conduction band offset (ΔE c) of HfO2/β-Ga2O3 is extracted to be 1.31  ±  0.05 eV via x-ray photoelectron spectroscopy, while a large negative sheet charge density of 1.04  ×  1013 cm-2 is induced at the oxide layer and/or HfO2/β-Ga2O3 interface. A low C-V hysteresis of 0.76 V, low interface state density (D it) close to 1  ×  1012 eV-1 cm-2, and low leakage current density of 2.38  ×  10-5 A cm-2 at a gate voltage of 7 V has been obtained, suggesting the great electrical properties of HfO2/β-Ga2O3 MOSCAP. According to the above analysis, ALD-HfO2 is an attractive candidate for high voltage β-Ga2O3 power devices.

  19. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  20. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  1. High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell

    Science.gov (United States)

    Mohebpour, Mohammad Ali; Saffari, Mohaddeseh; Soleimani, Hamid Rahimpour; Tagani, Meysam Bagheri

    2018-03-01

    To be able to increase the efficiency of perovskite solar cells which is one of the most substantial challenges ahead in photovoltaic industry, the structural and optical properties of perovskite CH3NH3PbI3-xBrx for values x = 1-3 have been studied employing density functional theory (DFT). Using the optical constants extracted from DFT calculations, the amount of light reflectance and ideal current density of a simulated single-junction perovskite solar cell have been investigated. The results of DFT calculations indicate that adding halogen bromide to CH3NH3PbI3 compound causes the relocation of energy bands in band structure which its consequence is increasing the bandgap. In addition, the effect of increasing Br in this structure can be seen as a reduction in lattice constant, refractive index, extinction and absorption coefficient. As well, results of the simulation suggest a significant current density enhancement as much as 22% can be achieved by an optimized array of Platinum nanoparticles that is remarkable. This plan is able to be a prelude for accomplishment of solar cells with higher energy conversion efficiency.

  2. Stanford polarized atomic beam target

    International Nuclear Information System (INIS)

    Mavis, D.G.; Dunham, J.S.; Hugg, J.W.; Glavish, H.F.

    1976-01-01

    A polarized atomic beam source was used to produce an atomic hydrogen beam which was in turn used as a polarized proton target. A target density of 2 x 10'' atoms/cm 3 and a target polarization of 0.37 without the use of rf transitions were measured. These measurements indicate that a number of experiments are currently feasible with a variety of polarized target beams

  3. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  4. THE IDEA IS TO USEMODIS IN CONJUNCTION WITH THE CURRENT LIMITED LANDSAT CAPABILITY, COMMERCIAL SATELLITES, ANDUNMANNED AERIAL VEHICLES (UAV), IN A MULTI-STAGE APPROACH TO MEET EPA INFORMATION NEEDS.REMOTE SENSING OVERVIEW: EPA CAPABILITIES, PRIORITY AGENCY APPLICATIONS, SENSOR/AIRCRAFT CAPABILITIES, COST CONSIDERATIONS, SPECTRAL AND SPATIAL RESOLUTIONS, AND TEMPORAL CONSIDERATIONS

    Science.gov (United States)

    EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...

  5. Nonlinear Jaynes–Cummings model for two interacting two-level atoms

    International Nuclear Information System (INIS)

    Santos-Sánchez, O de los; González-Gutiérrez, C; Récamier, J

    2016-01-01

    In this work we examine a nonlinear version of the Jaynes–Cummings model for two identical two-level atoms allowing for Ising-like and dipole–dipole interplays between them. The model is said to be nonlinear in the sense that it can incorporate both a general intensity-dependent interaction between the atomic system and the cavity field and/or the presence of a nonlinear medium inside the cavity. As an example, we consider a particular type of atom-field coupling based upon the so-called Buck–Sukumar model and a lossless Kerr-like cavity. We describe the possible effects of such features on the evolution of some quantities of current interest, such as atomic excitation, purity, concurrence, the entropy of the field and the evolution of the latter in phase space. (paper)

  6. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  7. Transition probabilities for atoms

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1980-01-01

    Current status of advanced theoretical methods for transition probabilities for atoms and ions is discussed. An experiment on the f values of the resonance transitions of the Kr and Xe isoelectronic sequences is suggested as a test for the theoretical methods

  8. Closed-Form Solutions of the Thomas-Fermi in Heavy Atoms and the Langmuir-Blodgett in Current Flow ODEs in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Efstathios E. Theotokoglou

    2015-01-01

    Full Text Available Two kinds of second-order nonlinear, ordinary differential equations (ODEs appearing in mathematical physics are analyzed in this paper. The first one concerns the Thomas-Fermi (TF equation, while the second concerns the Langmuir-Blodgett (LB equation in current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.

  9. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    Science.gov (United States)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  10. Atomic processes, cross sections, and reaction rates necessary for modelling hydrogen-negative-ion sources and identification of optimum H- current densities

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two-chamber hydrogen negative-ion-source system subject to the beam-line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first-chamber asymptote, there exists a spatially-dependent maximum negative-ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen-based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications

  11. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  12. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  13. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  14. Number-unconstrained quantum sensing

    Science.gov (United States)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  15. Remote sensing in meteorology, oceanography and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Cracknell, A P [ed.

    1981-01-01

    Various aspects of remote sensing are discussed. Topics include: the EARTHNET data acquisition, processing, and distribution facility the design and implementation of a digital interactive image processing system geometrical aspects of remote sensing and space cartography remote sensing of a complex surface legal aspects of remote sensing remote sensing of pollution, dust storms, ice masses, and ocean waves and currents use of satellite images for weather forecasting. Notes on field trips and work-sheets for laboratory exercises are included.

  16. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  17. Atoms stories

    International Nuclear Information System (INIS)

    Radvanyi, P.; Bordry, M.

    1988-01-01

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  18. Atomic physics

    International Nuclear Information System (INIS)

    Held, B.

    1991-01-01

    This general book describes the change from classical physics to quantum physics. The first part presents atom evolution since antiquity and introduces fundamental quantities and elements of relativity. Experiments which have contributed to the evolution of knowledge on matter are analyzed in the second part. Applications of wave mechanics to the study of matter properties are presented in the third part [fr

  19. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  20. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  1. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  2. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  3. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  4. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  5. Sensing of RNA viruses

    DEFF Research Database (Denmark)

    Jensen, Søren; Thomsen, Allan Randrup

    2012-01-01

    pathogen-associated molecular patterns have emerged in great detail. This review presents an overview of our current knowledge regarding the receptors used to detect RNA virus invasion, the molecular structures these receptors sense, and the involved downstream signaling pathways.......Our knowledge regarding the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of RNA virus has been rapidly growing over the last decade. Descriptions of the receptors involved and the molecular mechanisms they employ to sense viral...

  6. Global Cropland Area Database (GCAD) derived from Remote Sensing in Support of Food Security in the Twenty-first Century: Current Achievements and Future Possibilities

    Science.gov (United States)

    Teluguntla, Pardhasaradhi G.; Thenkabail, Prasad S.; Xiong, Jun N.; Gumma, Murali Krishna; Giri, Chandra; Milesi, Cristina; Ozdogan, Mutlu; Congalton, Russ; Tilton, James; Sankey, Temuulen Tsagaan; Massey, Richard; Phalke, Aparna; Yadav, Kamini

    2015-01-01

    The precise estimation of the global agricultural cropland- extents, areas, geographic locations, crop types, cropping intensities, and their watering methods (irrigated or rainfed; type of irrigation) provides a critical scientific basis for the development of water and food security policies (Thenkabail et al., 2012, 2011, 2010). By year 2100, the global human population is expected to grow to 10.4 billion under median fertility variants or higher under constant or higher fertility variants (Table 1) with over three quarters living in developing countries, in regions that already lack the capacity to produce enough food. With current agricultural practices, the increased demand for food and nutrition would require in about 2 billion hectares of additional cropland, about twice the equivalent to the land area of the United States, and lead to significant increases in greenhouse gas productions (Tillman et al., 2011). For example, during 1960-2010 world population more than doubled from 3 billion to 7 billion. The nutritional demand of the population also grew swiftly during this period from an average of about 2000 calories per day per person in 1960 to nearly 3000 calories per day per person in 2010. The food demand of increased population along with increased nutritional demand during this period (1960-2010) was met by the “green revolution” which more than tripled the food production; even though croplands decreased from about 0.43 ha/capita to 0.26 ha/capita (FAO, 2009). The increase in food production during the green revolution was the result of factors such as: (a) expansion in irrigated areas which increased from 130 Mha in 1960s to 278.4 Mha in year 2000 (Siebert et al., 2006) or 399 Mha when you do not consider cropping intensity (Thenkabail et al., 2009a, 2009b, 2009c) or 467 Mha when you consider cropping intensity (Thenkabail et al., 2009a; Thenkabail et al., 2009c); (b) increase in yield and per capita food production (e.g., cereal production

  7. Characterisation of recently retrieved aerial photographs of Ethiopia (1935-1941) and their fusion with current remotely sensed imagery for retrospective geomorphological analysis

    Science.gov (United States)

    Nyssen, Jan; Gebremeskel, Gezahegne; Mohamed, Sultan; Petrie, Gordon; Seghers, Valérie; Meles Hadgu, Kiros; De Maeyer, Philippe; Haile, Mitiku; Frankl, Amaury

    2013-04-01

    8281 assemblages of aerial photographs (APs) acquired by the 7a Sezione Topocartografica during the Italian occupation of Ethiopia (1935-1941) have recently been discovered, scanned and organised. The oldest APs of the country that are known so far were taken in the period 1958-1964. The APs of the 1930s were analysed for their technical characteristics, scale, flight lines, coverage, use in topographic mapping, and potential future uses. The APs over Ethiopia in 1935-1941 are presented as assemblages on approx. 50 cm x 20 cm cardboard tiles, each holding a label, one nadir-pointing photograph flanked by two low-oblique photographs and one high-oblique photograph. The four APs were exposed simultaneously and were taken across the flight line; the high-oblique photograph is presented alternatively at left and at right; there is approx. 60% overlap between subsequent sets of APs. One of Santoni's glass plate multi-cameras was used, with focal length of 178 mm, flight height at 4000-4500 m a.s.l., which results in an approximate scale of 1:11 500 for the central photograph and 1:16 000 to 1:18 000 for the low-oblique APs. The surveyors oriented themselves with maps of Ethiopia at 1:400 000 scale, compiled in 1934. The flights present a dense AP coverage of Northern Ethiopia, where they were acquired in the context of upcoming battles with the Ethiopian army. Several flights preceded the later advance of the Italian army southwards towards the capital Addis Ababa. Further flights took place in central Ethiopia for civilian purposes. As of 1936, the APs were used to prepare highly detailed topographic maps at 1:100 000 scale. These APs (1935-1941) together with APs of 1958-1964, 1994 and recent high-resolution satellite imagery are currently being used in spatially explicit change studies of land cover, land management and (hydro)geomorphology in Ethiopia over a time span of almost 80 years, the first results of which will be presented.

  8. Exotic atoms

    International Nuclear Information System (INIS)

    Kunselman, R.

    1993-01-01

    The experiments use a solid hydrogen layer to form muonic hydrogen isotopes that escape into vacuum. The method relies on transfer of the muon from protium to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections, and may be emitted from the surface of the layer. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes. A target has been constructed which exploits muonic atom emission in order to learn more about the energy dependence of transfer and muon molecular formation

  9. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    2014-01-01

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  10. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  11. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  12. Atomically resolved tissue integration.

    Science.gov (United States)

    Karlsson, Johan; Sundell, Gustav; Thuvander, Mattias; Andersson, Martin

    2014-08-13

    In the field of biomedical technology, a critical aspect is the ability to control and understand the integration of an implantable device in living tissue. Despite the technical advances in the development of biomaterials, the elaborate interplay encompassing materials science and biology on the atomic level is not very well understood. Within implantology, anchoring a biomaterial device into bone tissue is termed osseointegration. In the most accepted theory, osseointegration is defined as an interfacial bonding between implant and bone; however, there is lack of experimental evidence to confirm this. Here we show that atom probe tomography can be used to study the implant-tissue interaction, allowing for three-dimensional atomic mapping of the interface region. Interestingly, our analyses demonstrated that direct contact between Ca atoms and the implanted titanium oxide surface is formed without the presence of a protein interlayer, which means that a pure inorganic interface is created, hence giving experimental support to the current theory of osseointegration. We foresee that this result will be of importance in the development of future biomaterials as well as in the design of in vitro evaluation techniques.

  13. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  14. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  15. Current Trends in Nuclear and Radiation Sensing

    International Nuclear Information System (INIS)

    McHugh, Harold R.; Quam, William

    2009-01-01

    This paper provides a brief overview of radiation detector history, a summary of the present state of the art, and some speculation on future developments in this field. Trends in the development of radiation detectors over the years are analyzed. Rapid progress in detection technology was experienced between WWII and the 1970s. Since then, fewer dramatic improvements have been seen. The authors speculate about the reasons for this trend and where the technology might take us in the next 20 years. Requirements for radiation detection equipment have changed drastically since 9/11; this demand is likely to accelerate detector development in the near future

  16. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  17. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  18. Atomic memory access hardware implementations

    Science.gov (United States)

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  19. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  20. The optical model in atomic physics

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1978-01-01

    The optical model for electron scattering on atoms has quite a short history in comparison with nuclear physics. The main reason for this is that there were insufficient data. Angular distribution for elastic and some inelastic scattering have now been measured for the atoms which exist in gaseous form at reasonable temperatures, inert gases, hydrogen, alkalies and mercury being the main ones out in. The author shows that the optical model makes sense in atomic physics by considering its theory and recent history. (orig./AH) [de

  1. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  2. Current limiter circuit system

    Science.gov (United States)

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  3. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  4. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  5. Atomic energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1978-01-01

    Development of nuclear science in India, particularly the research and development work at the Bhabha Atomic Research Centre (BARC), Bombay, is described. Among the wide range of materials developed for specific functions under rigorous conditions are nuclear pure grade uranium, zirconium and beryllium, and conventional materials like aluminium, carbon steel and stainless steels. Radioisotopes are produced and used for tracer studies in various fields. Various types of nuclear gauges and nuclear instruments are produced. Radiations have been used to develop new high yielding groundnut mutants with large kernals. The sterile male technique for pest control and radiosterilization technique to process potatoes, onions and marine foods for storage are ready for exploitation. Processes and equipment have been developed for production of electrolytic hydrogen, electrothermal phosphorus and desalinated water. Indigenously manufactured components and materials are now being used for the nuclear energy programme. Indian nuclear power programme strategy is to build heavy water reactors and to utilise their byproduct plutonium and depleted uranium to feed fast breeder reactors which will produce more fissile material than burnt. Finally a special mention has been made of the manpower development programme of the BARC. BARC has established a training school in 1957 giving advanced training in physics, chemistry and various branches of engineering and metallurgy

  6. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  7. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  8. Atomic and Molecular Manipulation of Chemical Interactions

    National Research Council Canada - National Science Library

    Ho, Wilson

    2007-01-01

    .... In effect, the goal is to carry out chemical changes by manipulating individual atoms and molecules to induce different bonding geometry and to create new interactions with their environment. These studies provide the scientific basis for the advancement of technology in catalysis, molecular electronics, optics, chemical and biological sensing, and magnetic storage.

  9. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  10. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  11. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  12. Kite Aerial Photography as a Tool for Remote Sensing

    Science.gov (United States)

    Sallee, Jeff; Meier, Lesley R.

    2010-01-01

    As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…

  13. Development of atomic spectroscopy technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Cha, Hyung Ki; Song, Kyu Seok; Yang, Ki Ho; Baik, Dae Hyun; Lee, Young Joo; Yi, Jong Hoon; Jeong, Do Young; Jeong, Eui Chang; Yoo, Byung Duk; Cha, Byung Heon; Kim, Seong Ho; Nam, Seong Mo; Kim, Sun Kuk; Lee, Byung Cheol; Choi, Hwa Lim; Ko, Dok Yung; Han, Jae Min; Rho, Si Pyo; Lim, Chang Hwan; Choi, An Seong

    1992-12-01

    This project is aimed for the 'Development of extraction and separation techniques for stable isotopes by atomic laser spectroscopy technique'. The project is devided by two sub-projects. One is the 'Development of the selective photoionization technology' and the other is 'Development of ultrasensitive spectroscopic analysis technololgy'. This year studies on Hg and Yb, both of which have 7 isotopes, have been performed and, as a result, it was proved that specific isotopes of these elements could be selectively extracted. In addition study on plasma extraction technique, development of atomizers, design of electron gun have been the result of the project in 1992. In second sub-project trace determination of Pb has been performed with laser resonance ionization spectroscopy. As a result 20 picogram of detection limit has been obtained. In addition to these results, design of high sensitive laser induced fluorescence detection system as well as remote sensing DIAL system have been done. (Author)

  14. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  15. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  16. Remote Sensing

    Indian Academy of Sciences (India)

    Resonance – Journal of Science Education. Current Issue : Vol. 23, Issue 3 · Current Issue Volume 23 | Issue 3. March 2018. Home · Volumes & Issues · Categories · Special Issues · Search · Editorial Board · Information for Authors · Subscription ...

  17. Sensing our Environment: Remote sensing in a physics classroom

    Science.gov (United States)

    Isaacson, Sivan; Schüttler, Tobias; Cohen-Zada, Aviv L.; Blumberg, Dan G.; Girwidz, Raimund; Maman, Shimrit

    2017-04-01

    Remote sensing is defined as data acquisition of an object, deprived physical contact. Fundamentally, most remote sensing applications are referred to as the use of satellite- or aircraft-based sensor technologies to detect and classify objects mainly on Earth or other planets. In the last years there have been efforts to bring the important subject of remote sensing into schools, however, most of these attempts focused on geography disciplines - restricting to the applications of remote sensing and to a less extent the technique itself and the physics behind it. Optical remote sensing is based on physical principles and technical devices, which are very meaningful from a theoretical point of view as well as for "hands-on" teaching. Some main subjects are radiation, atom and molecular physics, spectroscopy, as well as optics and the semiconductor technology used in modern digital cameras. Thus two objectives were outlined for this project: 1) to investigate the possibilities of using remote sensing techniques in physics teaching, and 2) to identify its impact on pupil's interest in the field of natural sciences. This joint project of the DLR_School_Lab, Oberpfaffenhofen of the German Aerospace Center (DLR) and the Earth and Planetary Image Facility (EPIF) at BGU, was conducted in 2016. Thirty teenagers (ages 16-18) participated in the project and were exposed to the cutting edge methods of earth observation. The pupils on both sides participated in the project voluntarily, knowing that at least some of the project's work had to be done in their leisure time. The pupil's project started with a day at EPIF and DLR respectively, where the project task was explained to the participants and an introduction to remote sensing of vegetation was given. This was realized in lectures and in experimental workshops. During the following two months both groups took several measurements with modern optical remote sensing systems in their home region with a special focus on flora

  18. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  19. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  20. Push-Pull Laser-Atomic Oscillator

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Happer, W.

    2007-01-01

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs

  1. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  2. Atomic Power | Taylor | Zede Journal

    African Journals Online (AJOL)

    Zede Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3 (1968) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Atomic Power. D Taylor. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT ...

  3. Transition from LEDCOP to ATOMIC

    International Nuclear Information System (INIS)

    Magee, N.H.; Abdallah, J.; Colgan, J.; Hakel, P.; Kilcrease, D.P.; Mazevet, S.; Sherrill, M.E.; Fontes, C.J.; Zhang, H.

    2004-01-01

    This paper discusses the development of the ATOMIC code, a new low to mid Z opacity code, which will replace the current Los Alamos low Z opacity code LEDCOP. The ATOMIC code is based on the FINE code, long used by the Los Alamos group for spectral comparisons in local thermodynamic equilibrium (LTE) and for non-LTE calculations, both utilizing the extensive databases from the atomic physics suite of codes based on the work of R.D. Cowan. Many of the plasma physics packages in LEDCOP, such as line broadening and free-free absorption, are being transferred to the new ATOMIC code. A new equation of state (EOS) model is being developed to allow higher density calculations than were possible with either the FINE or LEDCOP codes. Extensive modernization for both ATOMIC and the atomic physics code suites, including conversion to Fortran 90 and parallelization, are underway to speed up the calculations and to allow the use of expanded databases for both the LTE opacity tables and the non-LTE calculations. Future plans for the code will be outlined, including considerations for new generation opacity tables.

  4. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  5. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  6. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  7. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  8. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  9. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.

    Science.gov (United States)

    Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi

    2018-02-01

    Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  11. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  12. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  13. Relativistic atomic physics at the SSC

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance

  14. Complete experiments in electron-atom collisions

    International Nuclear Information System (INIS)

    Anderson, N.; Bartschat, K.

    1996-01-01

    This paper addresses the advances up to the present in complete electron-atom collision experiments. The aim is to present a series of key examples for fundamental scattering processes, together with the experimental techniques that have been used. The purpose is not a full presentation of all processes studied, nor of all data that have been accumulated; rather, it is to select examples of the most recent theoretical and experimental results that will enable the reader to assess the present level of achievement. We hope that the power of this approach will become evident along the way, in the sense that it provides an efficient framework for a systematic, and complete test of the current theoretical understanding. In addition, it may produce specific recipes for ways to select experimental geometries that most efficiently test theoretical predictions, and it may reveal connections between apparently unrelated observables from often very different and highly sophisticated experiments, thus providing valuable consistency checks. The presentation is structured in the following way. To begin with, a general analysis of scattering amplitude properties concludes in a recipe for determination of the number of independent parameters necessary to define a complete experiment for a given process. We then proceed to analyze in a systematic way a string of specific cases of elastic and inelastic collisions, with gradually increasing levels of sophistication. Finally, we comment on directions in which future studies could fruitfully be pursued. 77 refs., 53 figs

  15. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  16. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  17. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  18. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  19. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  20. Bioinspired Infrared Sensing Materials and Systems.

    Science.gov (United States)

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  2. Atom counting with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Kutschera, Walter

    1995-01-01

    A brief review of the current status and some recent applications of accelerator mass spectrometry (AMS) are presented. Some connections to resonance ionization mass spectroscopy (RIS) as the alternate atom counting method are discussed

  3. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  4. Natural and artificial atoms for quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Buluta, Iulia; Ashhab, Sahel; Nori, Franco, E-mail: fnori@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan)

    2011-10-15

    Remarkable progress towards realizing quantum computation has been achieved using natural and artificial atoms as qubits. This paper presents a brief overview of the current status of different types of qubits. On the one hand, natural atoms (such as neutral atoms and ions) have long coherence times, and could be stored in large arrays, providing ideal 'quantum memories'. On the other hand, artificial atoms (such as superconducting circuits or semiconductor quantum dots) have the advantage of custom-designed features and could be used as 'quantum processing units'. Natural and artificial atoms can be coupled with each other and can also be interfaced with photons for long-distance communications. Hybrid devices made of natural/artificial atoms and photons may provide the next-generation design for quantum computers.

  5. Lasers, light-atom interaction

    International Nuclear Information System (INIS)

    Cagnac, B.; Faroux, J.P.

    2002-01-01

    This book has a double purpose: first to explain in a way as simple as possible the interaction processes occurring between atoms and light waves, and secondly to help any scientist that needs further information to improve his knowledge of lasers. The content of this book has been parted into 3 more or less independent sections: 1) effect of an electromagnetic field on a 2-quantum state system, 2) operating mode of lasers in the framework of transition probabilities, and 3) calculation of the emitted wave. Einstein's phenomenological hypothesis has led to probability equations called rate equations, these equations do not give a true representation of the interaction process at the scale of the atom but this representation appears to be true on an average over a large population of atoms. Only quantum mechanics can describe accurately the light-atom interaction but at the cost of a far higher complexity. In the first part of the book quantum mechanics is introduced and applied under 2 simplifying hypothesis: -) the atom system has only 2 non-degenerate states and -) the intensity of the light wave is high enough to involve a large population of photons. Under these hypothesis, Rabi oscillations, Ramsey pattern and the splitting of Autler-Townes levels are explained. The second part is dedicated to the phenomenological model of Einstein that gives good results collectively. In the third part of the book, Maxwell equations are used to compute field spatial distribution that are currently found in experiments involving lasers. (A.C.)

  6. Electron transport in NH3/NO2 sensed buckled antimonene

    Science.gov (United States)

    Srivastava, Anurag; Khan, Md. Shahzad; Ahuja, Rajeev

    2018-04-01

    The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH3/NO2 molecules sensing and qualities of interaction between NH3/NO2 gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH3/NO2 molecules.

  7. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  8. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  9. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  10. Theory of atomic spectral emission intensity

    International Nuclear Information System (INIS)

    Yngstroem, S.

    1989-02-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics and statistical physics. It is argued that the formulation of the theory provides a very good example of the manner in which quantum logic transforms into common sense logic. The theory is strongly supported by experimental evidence. (author) (16 refs.)

  11. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  12. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  13. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  14. Generation of Bell, NOON and W states via atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Rameez-ul; Saif, Farhan [Department of Electronics, Quaid-i-Azam University, Islamabad (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-02-14

    We propose atom interferometric techniques for the generation of Bell, NOON and W states of an electromagnetic field in high-Q cavities. The fundamental constituent of these techniques is off-resonant Bragg diffraction of atomic de Broglie waves. We show good success probabilities for these schemes under the currently available experimental environment of atom interferometry.

  15. Remote Sensing of Environmental Pollution

    Science.gov (United States)

    North, G. W.

    1971-01-01

    Environmental pollution is a problem of international scope and concern. It can be subdivided into problems relating to water, air, or land pollution. Many of the problems in these three categories lend themselves to study and possible solution by remote sensing. Through the use of remote sensing systems and techniques, it is possible to detect and monitor, and in some cases, identify, measure, and study the effects of various environmental pollutants. As a guide for making decisions regarding the use of remote sensors for pollution studies, a special five-dimensional sensor/applications matrix has been designed. The matrix defines an environmental goal, ranks the various remote sensing objectives in terms of their ability to assist in solving environmental problems, lists the environmental problems, ranks the sensors that can be used for collecting data on each problem, and finally ranks the sensor platform options that are currently available.

  16. The RPA Atomization Energy Puzzle.

    Science.gov (United States)

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  17. Quantum-mechanical transport equation for atomic systems.

    Science.gov (United States)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  18. Mode synthesizing atomic force microscopy and mode-synthesizing sensing

    Science.gov (United States)

    Passian, Ali; Thundat, Thomas George; Tetard, Laurene

    2013-05-17

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  19. Physics through the 1990s: Atomic, molecular, and optical physics

    International Nuclear Information System (INIS)

    1986-01-01

    This report was prepared by the Panel on Atomic, Molecular, and Optical Physics of the Physics Survey Committee in response to its charge to describe the field, to characterize the recent advances, and to identify the current frontiers of research. Some of the areas discussed are: atomic structure, atomic dynamics, accelerator-based atomic physics, molecular photoionization and electron-molecule scattering, astrophysics, laser spectroscopy, atmospheric physics, plasma physics, and applications

  20. Atomic energy review

    International Nuclear Information System (INIS)

    1971-01-01

    The ATOMIC ENERGY REVIEW (AER), a periodical started in 1963 in accordance with the recommendation made by the Scientific Advisory Committee, is now preparing for its tenth year of publication. The journal appears quarterly (ca 900 pages/year) and occasionally has special issues and supplements. From 1963 to 1971 AER developed into an important international high-standard scientific journal which keeps scientists in Member States informed on progress in various fields of nuclear energy. The Agency's specific role of helping 'developing countries to further their science and education' is reflected in the publication policy of the journal. The subject scope of AER, which was determined at the journal's inception, is very broad. It covers topics in experimental and theoretical physics, nuclear electronics and equipment, physics and technology of reactors and reactor materials and fuels, radio-chemistry, and industrial, medical and other uses of radioisotopes. In other words, almost any subject related to the peaceful application of nuclear energy can qualify for inclusion. Specifically, at any particular time the selection criteria for topics are influenced by the Agency's current programme and interests. AER carries comprehensive review articles, critical state-of-the-art and current awareness surveys, and reports on the important meetings organized or sponsored by the Agency. The following four subsections gradually became necessary to do justice to this variety of material: 'Reviews' proper, 'Current Research and Development', 'Special Item' and 'Conferences and Symposia'. Apart from the conference reports, one hundred and twenty-five reviews, almost all of which were published in English to make them accessible to a wide public, have so far been published

  1. Mach-Zehnder atom interferometer inside an optical fiber

    Science.gov (United States)

    Xin, Mingjie; Leong, Wuiseng; Chen, Zilong; Lan, Shau-Yu

    2017-04-01

    Precision measurement with light-pulse grating atom interferometry in free space have been used in the study of fundamental physics and applications in inertial sensing. Recent development of photonic band-gap fibers allows light for traveling in hollow region while preserving its fundamental Gaussian mode. The fibers could provide a very promising platform to transfer cold atoms. Optically guided matter waves inside a hollow-core photonic band-gap fiber can mitigate diffraction limit problem and has the potential to bring research in the field of atomic sensing and precision measurement to the next level of compactness and accuracy. Here, we will show our experimental progress towards an atom interferometer in optical fibers. We designed an atom trapping scheme inside a hollow-core photonic band-gap fiber to create an optical guided matter waves system, and studied the coherence properties of Rubidium atoms in this optical guided system. We also demonstrate a Mach-Zehnder atom interferometer in the optical waveguide. This interferometer is promising for precision measurements and designs of mobile atomic sensors.

  2. Atomic Energy Law with ordinances. 9. ed.

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The revised edition of the text is due to a variety of major changes in, and amendments to, the German Atomic Energy Law. This book includes the current version of the Atomic Energy Law which has been changed several times, the 1982-version of the ordinace concerning procedures laid down in the Atomic Energy Law, the 1976 radiation protection ordinance together with recent amendments, the 1973 X-ray ordinance, the 1977 financial security ordinance laid down in the Atomic Energy Law, the 1981 ordinance concerning costs, the ordinance concerning performance in anticipation of ultimate disposal. The book is a compilation of the basic Atomic Energy Law which is needed mostly for imminent practical requirements. (orig./HSCH) [de

  3. The hydrogen atom and Bateman functions

    International Nuclear Information System (INIS)

    Yaacob, K.B.

    1988-01-01

    The radial equations for the multi-dimensional hydrogen atom are reexamined using a integral representation of the equations that is found to be connected to the Schrodinger equation for the one-dimensional hydrogen atom. Application of the integral representation solution to the one-dimensional hydrogen atom leads to the conclusive proof that, contrary to current acceptance, the states of the one-dimensional hydrogen atom are non-degenerate. The integral representation was originally developed by Bateman (1931) and was later generalized by several workers. Based on these later works it is possible to apply the method to find the second solutions to the radial equations for the three and two-dimensional hydrogen atoms. The solutions are expressible in terms of the associated Laguerre polynomials and except for the phase factor, are similar to the first solutions. (author)

  4. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  5. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  6. Atom Wavelike Nature Solved Mathematically

    Science.gov (United States)

    Sven, Charles

    2010-03-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  7. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  8. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  9. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  10. Stimulated transitions in resonant atom Majorana mixing

    Science.gov (United States)

    Bernabéu, José; Segarra, Alejandro

    2018-02-01

    Massive neutrinos demand to ask whether they are Dirac or Majorana particles. Majorana neutrinos are an irrefutable proof of physics beyond the Standard Model. Neutrinoless double electron capture is not a process but a virtual Δ L = 2 mixing between a parent A Z atom and a daughter A ( Z - 2) excited atom with two electron holes. As a mixing between two neutral atoms and the observable signal in terms of emitted two-hole X-rays, the strategy, experimental signature and background are different from neutrinoless double beta decay. The mixing is resonantly enhanced for almost degeneracy and, under these conditions, there is no irreducible background from the standard two-neutrino channel. We reconstruct the natural time history of a nominally stable parent atom since its production either by nature or in the laboratory. After the time periods of atom oscillations and the decay of the short-lived daughter atom, at observable times the relevant "stationary" states are the mixed metastable long-lived state and the non-orthogonal short-lived excited state, as well as the ground state of the daughter atom. We find that they have a natural population inversion which is most appropriate for exploiting the bosonic nature of the observed atomic transitions radiation. Among different observables of the atom Majorana mixing, we include the enhanced rate of stimulated X-ray emission from the long-lived metastable state by a high-intensity X-ray beam: a gain factor of 100 can be envisaged at current XFEL facilities. On the other hand, the historical population of the daughter atom ground state can be probed by exciting it with a current pulsed optical laser, showing the characteristic absorption lines: the whole population can be excited in a shorter time than typical pulse duration.

  11. Introduction to remote sensing

    CERN Document Server

    Cracknell, Arthur P

    2007-01-01

    Addressing the need for updated information in remote sensing, Introduction to Remote Sensing, Second Edition provides a full and authoritative introduction for scientists who need to know the scope, potential, and limitations in the field. The authors discuss the physical principles of common remote sensing systems and examine the processing, interpretation, and applications of data. This new edition features updated and expanded material, including greater coverage of applications from across earth, environmental, atmospheric, and oceanographic sciences. Illustrated with remotely sensed colo

  12. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  13. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  14. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  15. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  16. Sense of moving

    DEFF Research Database (Denmark)

    Christensen, Mark Schram; Grünbaum, Thor

    2017-01-01

    In this chapter, we assume the existence of a sense of “movement activity” that arises when a person actively moves a body part. This sense is usually supposed to be part of sense of agency (SoA). The purpose of the chapter is to determine whether the already existing experimental paradigms can...

  17. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  18. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  19. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  20. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    Energy Technology Data Exchange (ETDEWEB)

    Dolotov, S.K.; Evstigneev, S.A.; Luk' yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    1976-07-01

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal.

  1. Removal of foreign atoms from a metal surface bombarded with fast atomic particles

    International Nuclear Information System (INIS)

    Dolotov, S.K.; Evstigneev, S.A.; Luk'yanov, S.Yu.; Martynenko, Yu.V.; Chicherov, V.M.

    A metal surface coated with foreign atoms was irradiated with periodically repeating ion current pulses. The energy of the ions bombarding the target was 20 to 30 keV, and inert gas ions were used. A study of the time dependences of the current of the dislodged foreign atoms showed that the rate of their removal from the target surface is determined by the sputtering coefficient of the substrate metal

  2. A miniature magnetic waveguide for cold atoms

    International Nuclear Information System (INIS)

    Key, M.G.

    2000-09-01

    This thesis presents the first demonstration of a guide for cold atoms based on a miniature structure of four current-carrying wires. The four wires are embedded within a hollow silica fibre. Atoms are guided along the centre of a fifth hole on the axis of the fibre by the Stern-Gerlach force. A vapour cell Magneto Optical Trap (MOT), formed 1 cm above the mouth of the waveguide is the source of cold 85 Rb atoms. After cooling the atoms to 25 μK in optical molasses they fall under the influence of gravity through a magnetic funnel into the waveguide. After propagating for 2 cm, the atoms are reflected by the field of a small pinch coil wound around the base of the guide. The atoms then travel back up the fibre and out into the funnel, where they can be imaged either in fluorescence or by recapturing in the MOT. A video sequence of atoms falling into the guide and re-emerging after reflection from the pinch coil graphically illustrates the operation of the guide. The coupling efficiency and transverse temperature of the atoms is measured experimentally and in a Monte-Carlo simulation. We find an optimum coupling efficiency of 12% and we measure the spatial extent of the cloud within the fibre to be of order 100 μm. We find good agreement between experimental data and results from the numerical simulation. We have also been able to observe different thresholds for the reflection of different positive m F levels. In another experiment we are able to trap the atoms in an elongated Ioffe trap for up to two seconds, increasing the distance over which the atoms are guided. We are able to guide the atoms over distances of 40 cm with a loss rate indistinguishable from the free space loss rate. (author)

  3. Mobile quantum sensing with spins in optically trapped nanodiamonds

    Science.gov (United States)

    Awschalom, David D.

    2013-03-01

    The nitrogen-vacancy (NV) color center in diamond has emerged as a powerful, optically addressable, spin-based probe of electromagnetic fields and temperature. For nanoscale sensing applications, the NV center's atom-like nature enables the close-range interactions necessary for both high spatial resolution and the detection of fields generated by proximal nuclei, electrons, or molecules. Using a custom-designed optical tweezers apparatus, we demonstrate three-dimensional position control of nanodiamonds in solution with simultaneous optical measurement of electron spin resonance (ESR)[3]. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the ESR spectra from the ground-state spin transitions. Accounting for the random dynamics of the trapped nanodiamonds, we model the ESR spectra observed in an applied magnetic field and estimate the dc magnetic sensitivity based on the ESR line shapes to be 50 μT/√{ Hz }. We utilize the optically trapped nanodiamonds to characterize the magnetic field generated by current-carrying wires and ferromagnetic structures in microfluidic circuits. These measurements provide a pathway to spin-based sensing in fluidic environments and biophysical systems that are inaccessible to existing scanning probe techniques, such as the interiors of living cells. This work is supported by AFOSR and DARPA.

  4. Optical ferris wheel for ultracold atoms

    Science.gov (United States)

    Franke-Arnold, S.; Leach, J.; Padgett, M. J.; Lembessis, V. E.; Ellinas, D.; Wright, A. J.; Girkin, J. M.; Ohberg, P.; Arnold, A. S.

    2007-07-01

    We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓө) modes with different ℓ indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.

  5. Lepton g-2 and PNC in atoms

    International Nuclear Information System (INIS)

    Sandars, P.G.H.

    1977-01-01

    A review is given of the present status of two fields: lepton g-2, and PNC in atoms. Most emphasis is put on the search for PNC in atoms. Current and proposed experiments are listed and their likely sensitivity assessed. A more detailed description of the optical rotation experiments is given and the implication of the failure to see any PNC effect at the expected level is discussed. (orig.) [de

  6. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  7. Cold atoms near surfaces: designing potentials by sculpturing wires

    International Nuclear Information System (INIS)

    Della Pietra, Leonardo; Aigner, Simon; Hagen, Christoph vom; Lezec, Henri J; Schmiedmayer, Joerg

    2005-01-01

    The magnetic trapping potentials for atoms on atom chips are determined by the current flow pattern in the chip wires. By modifying the wire shape using focused ion beam nano-machining we can design specialized current flow patterns and therefore micro-design the magnetic trapping potentials. We give designs for a barrier, a quantum dot, and a double well or double barrier and show preliminary experiments with ultra cold atoms in these designed potentials

  8. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  9. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  10. The Kelvin-Thomson atom

    International Nuclear Information System (INIS)

    Walton, A.J.

    1977-01-01

    The contributions made by Kelvin and later by J.J. Thomson to the 'current-bun' model of the atom are discussed. It is felt that the model is worth retaining as a didactic aid since it serves as a good example around which to hang a discussion of modelling as well as providing good examples of the application of Coulomb's and Gauss's laws. The structure of atoms containing up to six electrons is examined using an analysis based on this model. It is shown that it is possible to have a mechanically stable arrangement of up to six electrons located within a sphere of uniform positive charge. With up to three electrons the arrangement is coplanar with the centre of the sphere. (U.K.)

  11. A microscope for mapping-out in the atomic region

    International Nuclear Information System (INIS)

    1985-01-01

    The lastest development of the tunnel microscope is described, which enables the structure of individual atoms on various surfaces (gold, silicon, graphite) to be made visible in the sense of a topological profile of the surface. The technical features and operation of the microscope are described in detail. The use of 3 piezo-electric elements for vertical and horizontal positioning of the sensor tip gives an accuracy sufficient to exhibit the electron cloud forming the outer boundary of each atom. Images of gold, silicon, oxygen and carbon atoms have been produced and show structures previously unknown. Revolutionary spin-offs can be expected in various disciplines. (L.M.W.)

  12. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong

    2011-01-01

    We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)

  13. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  14. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  15. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  16. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  17. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  18. Atom lithography of Fe

    NARCIS (Netherlands)

    Sligte, te E.; Smeets, B.; van der Stam, K.M.R.; Herfst, R.W.; Straten, van der P.; Beijerinck, H.C.W.; Leeuwen, van K.A.H.

    2004-01-01

    Direct write atom lithography is a technique in which nearly resonant light is used to pattern an atom beam. Nanostructures are formed when the patterned beam falls onto a substrate. We have applied this lithography scheme to a ferromagnetic element, using a 372 nm laser light standing wave to

  19. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  20. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  1. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  2. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  3. Zeeman atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Loos-Vollebregt, M.T.C. de.

    1980-01-01

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  4. Isotopes and atomic weights

    International Nuclear Information System (INIS)

    Zhang Qinglian

    1990-01-01

    A review of the chemical and mass spectrometric methods of determining the atomic weights of elements is presented. A, special discussion is devoted to the calibration of the mass spectrometer with highly enriched isotopes. It is illustrated by the recent work on europium. How to choose the candidate element for new atomic weight determination forms the last section of the article

  5. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  6. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  7. Tango, senses and sensuality

    Directory of Open Access Journals (Sweden)

    María de los Angeles Montes

    2014-11-01

    Full Text Available One of the most important contributions of the Peircean paradigm to semiotics consists in its opening the sign to development and modification. Sense, meaning, is no longer a static and fixed property. The Peircean paradigm allows us to wonder about how signs are interpreted, how they make sense in actual reception practices. The purpose of this paper is to address the problem of the relationship between appropriation practices (Montes, 2011 and significance processes from the analysis of an empirical case, observing how signs of sensuality are produced in the ballroom tango dance. Tango has earned international reputation mainly as a sensuality dance thanks to its spectacularization and subsequent mediatization. However, as I expect to demonstrate, at the moment of reception, people put those discourses in interaction with specific appropriation practices that shape very special interpretive habits. I will address the issue from an empirical investigation, especially focused on the production of interpretants (emotional, energetic, and logical, that is to say, looking back to the sign reception from the body to the mind. From a corpus of 25 focused interviews with people who got to know tango through mass media but that afterwards learnt to dance it as a social dance, it is my intention to show what sensuality means to them today, and how that current practice interacts with other external and previous discourses to produce interpretive habits. Finally, I wish to offer a theoretical reflection about the relationship between these three types of interpretants, their interaction with the discourse of the mass media and the place corporality has in the reception processes.

  8. Laser trapping of 21Na atoms

    International Nuclear Information System (INIS)

    Lu, Zheng-Tian.

    1994-09-01

    This thesis describes an experiment in which about four thousand radioactive 21 Na (t l/2 = 22 sec) atoms were trapped in a magneto-optical trap with laser beams. Trapped 21 Na atoms can be used as a beta source in a precision measurement of the beta-asymmetry parameter of the decay of 21 Na → 21 Ne + Β + + v e , which is a promising way to search for an anomalous right-handed current coupling in charged weak interactions. Although the number o trapped atoms that we have achieved is still about two orders of magnitude lower than what is needed to conduct a measurement of the beta-asymmetry parameter at 1% of precision level, the result of this experiment proved the feasibility of trapping short-lived radioactive atoms. In this experiment, 21 Na atoms were produced by bombarding 24 Mg with protons of 25 MeV at the 88 in. Cyclotron of Lawrence Berkeley Laboratory. A few recently developed techniques of laser manipulation of neutral atoms were applied in this experiment. The 21 Na atoms emerging from a heated oven were first transversely cooled. As a result, the on-axis atomic beam intensity was increased by a factor of 16. The atoms in the beam were then slowed down from thermal speed by applying Zeeman-tuned slowing technique, and subsequently loaded into a magneto-optical trap at the end of the slowing path. The last two chapters of this thesis present two studies on the magneto-optical trap of sodium atoms. In particular, the mechanisms of magneto-optical traps at various laser frequencies and the collisional loss mechanisms of these traps were examined

  9. Current lead thermal analysis code 'CURRENT'

    International Nuclear Information System (INIS)

    Yamaguchi, Masahito; Tada, Eisuke; Shimamoto, Susumu; Hata, Kenichiro.

    1985-08-01

    Large gas-cooled current lead with the capacity more than 30 kA and 22 kV is required for superconducting toroidal and poloidal coils for fusion application. The current lead is used to carry electrical current from the power supply system at room temperature to the superconducting coil at 4 K. Accordingly, the thermal performance of the current lead is significantly important to determine the heat load requirements of the coil system at 4 K. Japan Atomic Energy Research Institute (JAERI) has being developed the large gas-cooled current leads with the optimum condition in which the heat load is around 1 W per 1 kA at 4 K. In order to design the current lead with the optimum thermal performances, JAERI developed thermal analysis code named as ''CURRENT'' which can theoretically calculate the optimum geometric shape and cooling conditions of the current lead. The basic equations and the instruction manual of the analysis code are described in this report. (author)

  10. 7th International Conference on Sensing Technology

    CERN Document Server

    Mukhopadhyay, Subhas; Jayasundera, Krishanthi

    2015-01-01

    This book is written for academic and industry professionals working in the field of sensing, instrumentation and related fields, and is positioned to give a snapshot of the current state of the art in sensing technology, particularly from the applied perspective. The book is intended to give broad overview of the latest developments, in addition to discussing the process through which researchers go through in order to develop sensors, or related systems, which will become more widespread in the future.

  11. Magnetic conveyor belt for transporting and merging trapped atom clouds.

    Science.gov (United States)

    Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W

    2001-01-22

    We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

  12. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  13. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  14. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  15. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  16. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  17. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  18. Atom trap trace analysis

    International Nuclear Information System (INIS)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-01-01

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual 85 Kr and 81 Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10 -11 and 10 -13 , respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications

  19. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2014-01-01

    Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also pr...... as a convenient platform for researchers in compressed sensing aiming at obtaining a high degree of reproducibility of their research....

  20. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  1. REMOTE SENSING IN OCEANOGRAPHY.

    Science.gov (United States)

    remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and

  2. Safety philiosophies in technology-related law discussed for the example of atomic energy law

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1993-01-01

    In practice, legal ruling and its technical implementation stand isolated side by side. Taking the example of atomic energy law, the reasons for this situation and the significance of the deficit in the legal control of technology are examined. It is discussed how the controlling capacity of the law can be increased through the legal implementation of safety philosophies for technology. The paper deals with the problematic realtionship between technical and legal norms, with safety philosophies in the sense of mental approaches, safety concepts or safety postulates and their legal significance, and with the safety philosophy adhered to by the authorities and courts. The following learning processes in safety philosophy are described: new concepts of protection within the field of determinism, probabilistic safety concepts as well as concepts for the reduction of damage potential. Altogether it can be stated that the safety philosophy currently adhered to in Federal German licensing practice is not the only possible one; rather, that there are many different ways of conceptualizing, stipulating and checking technical safety. At least in the field of atomic energy law, this insight has a twofold significance: de lege lata there are several ways of operationalizing the licence requirements laid down in Article 7 of the Atomic Energy Law and the legally defined requirements for a licence withdrawal with the aid of technical licensing criteria. In all cases the legal wording is indeterminate and does not prescribe any specific safety philosophy. De lege ferenda it must be noted that amendments to the Atomic Energy Law entail a regularization of safety philosophy. This is a political necessity if the Atomic Energy Law is to be developed further and thus maintained as a modern security law. (orig.) [de

  3. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  4. Atoms-for-Peace: an uncertain future

    International Nuclear Information System (INIS)

    Hansen, O.

    1977-01-01

    The United States was the originator and a principal architect of Atoms-for-Peace. In his address to the United Nations General Assembly on December 8, 1953, President Eisenhower proposed a ''way by which the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life.'' He called for the creation of a new international agency and for the pooling of materials and technology to enhance the peaceful uses of atomic energy. The United States has contributed more than any other country to make this dream a reality. Today, the need to apply these same principles to assure mankind the peaceful benefits of the atom and to avoid nuclear war is more urgent than ever before. Now, however, Atoms-for-Peace may be a casualty of changing the U.S. nuclear policies. To place current developments in perspective, a brief review of the evolution of the program is presented

  5. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  6. Atomic energy control board. History backgrounder

    International Nuclear Information System (INIS)

    1986-10-01

    The Atomic Energy Control Board (AECB) is a regulatory agency set up by the Government of Canada under the Atomic Energy Control Act of 1946 to assist the Government in its efforts to make provision for the control and supervision of the development, application and use of atomic energy and to enable Canada to participate effectively in measures of international control of atomic energy. It is also responsible for the administration of the Nuclear Liability Act, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. An overview is presented of the AECB's evolution in chronological form, its major current activities, and some of the challenges expected in the next decade

  7. Intelligent environmental sensing

    CERN Document Server

    Mukhopadhyay, Subhas

    2015-01-01

    Developing environmental sensing and monitoring technologies become essential especially for industries that may cause severe contamination. Intelligent environmental sensing uses novel sensor techniques, intelligent signal and data processing algorithms, and wireless sensor networks to enhance environmental sensing and monitoring. It finds applications in many environmental problems such as oil and gas, water quality, and agriculture. This book addresses issues related to three main approaches to intelligent environmental sensing and discusses their latest technological developments. Key contents of the book include:   Agricultural monitoring Classification, detection, and estimation Data fusion Geological monitoring Motor monitoring Multi-sensor systems Oil reservoirs monitoring Sensor motes Water quality monitoring Wireless sensor network protocol  

  8. Optical Remote Sensing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Optical Remote Sensing Laboratory deploys rugged, cutting-edge electro-optical instrumentation for the collection of various event signatures, with expertise in...

  9. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  10. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    Gray, J.H.N.; Stoddart, D.L.; Sinclair, R.M.; Ezra, D.

    1985-01-01

    The House, in Committee, discussed the following matters in relation to the Atomic Energy Authority Bill; financing; trading; personnel conditions of employment; public relations; organization; research programmes; fuels; energy sources; information dissemination. (U.K.)

  11. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  12. Optics With Cold Atoms

    National Research Council Canada - National Science Library

    Hau, Lene

    2004-01-01

    .... And to test the novel atom sensor, we have built a moving-molasses magneto-optical trap in a geometry tailor-suited to the nanotube detector geometry, involving construction of a highly stable laser...

  13. Atomic Energy Control Regulations

    International Nuclear Information System (INIS)

    1992-01-01

    This is the consolidated text of the Atomic Energy Control Regulations of 17 March 1960, with amendments to 27 August 1992. The Regulations cover the licensing of nuclear facilities, radiation sources, including uranium mining, radiation protection questions, etc. (NEA)

  14. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  15. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  16. Atoms at work

    International Nuclear Information System (INIS)

    1982-07-01

    This illustrated booklet discusses the following: atoms; fission of uranium; nuclear power plants; reactor types; plutonium (formation, properties, uses); radioactive waste (fuel cycle, reprocessing, waste management); nuclear fusion; fusion reactors; radiation; radioisotopes and their uses. (U.K.)

  17. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  18. Atomic Interferometry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  19. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  20. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  1. Theory of atomic spectral emission intensity

    Science.gov (United States)

    Yngström, Sten

    1994-07-01

    The theoretical derivation of a new spectral line intensity formula for atomic radiative emission is presented. The theory is based on first principles of quantum physics, electrodynamics, and statistical physics. Quantum rules lead to revision of the conventional principle of local thermal equilibrium of matter and radiation. Study of electrodynamics suggests absence of spectral emission from fractions of the numbers of atoms and ions in a plasma due to radiative inhibition caused by electromagnetic force fields. Statistical probability methods are extended by the statement: A macroscopic physical system develops in the most probable of all conceivable ways consistent with the constraining conditions for the system. The crucial role of statistical physics in transforming quantum logic into common sense logic is stressed. The theory is strongly supported by experimental evidence.

  2. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  3. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  4. Harnessing the atom

    International Nuclear Information System (INIS)

    1999-01-01

    Splitting the atom has had a major impact on the history of the latter part of the 20th century. This film depicts the many benefits - and also drawbacks - of nuclear technology, and describes how the International Atomic Energy Agency performs its various tasks. It touches on challenges such as the choice between major energy sources, growing concerns about the global climate, and prospects for nuclear arms control and disarmament

  5. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  6. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  7. Manipulating atoms with photons

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, C.N.

    1998-01-01

    The article is a translation of the lecture delivered on the occasion of the 1997 Nobel Prize awarding ceremony. The physical mechanisms which allow manipulating of neutral atoms with laser photons are described. A remark is also made concerning several possible applications of ultra-cool atoms and streams of future research. The article is completed by Prof. Cohen-Tannoudji's autobiography. (Z.J.)

  8. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  9. Safeguards for the atom

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-10-15

    agreements. Agency is currently preparing a manual which will describe the methods of accounting , stock-taking, storehousing and measuring nuclear material that may be in various plants under Agency direction. The general principles for control of the hazards to health and safety at the plants due to radiation, radioactive contamination, criticality, or fire, will also be discussed. This manual is expected to become a valuable source book on internal safeguards procedures for all countries embarking on atomic energy programmes. France and the United States for the development of techniques for the non-destructive analysis of irradiated fuel elements

  10. Safeguards for the atom

    International Nuclear Information System (INIS)

    1959-01-01

    agreements. Agency is currently preparing a manual which will describe the methods of accounting , stock-taking, storehousing and measuring nuclear material that may be in various plants under Agency direction. The general principles for control of the hazards to health and safety at the plants due to radiation, radioactive contamination, criticality, or fire, will also be discussed. This manual is expected to become a valuable source book on internal safeguards procedures for all countries embarking on atomic energy programmes. France and the United States for the development of techniques for the non-destructive analysis of irradiated fuel elements

  11. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  12. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  13. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  14. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  15. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  16. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  17. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  18. Atomic phenomena in dense plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1981-03-01

    The following chapters are included: (1) the plasma environment, (2) perturbations of atomic structure, (3) perturbations of atomic collisions, (4) formation of spectral lines, and (5) dielectronic recombination

  19. Fault current limiter

    Science.gov (United States)

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  20. Sense and Sensibility

    NARCIS (Netherlands)

    Austen, Jane

    2005-01-01

    Two sisters of opposing temperament but who share the pangs of tragic love provide the subjects for Sense and Sensibility. Elinor, practical and conventional, the epitome of sense, desires a man who is promised to another woman. Marianne, emotional and sentimental, the epitome of sensibility, loses

  1. Mobile teleoperator remote sensing

    International Nuclear Information System (INIS)

    Hall, E.L.

    1986-01-01

    Sensing systems are an important element of mobile teleoperators and robots. This paper discusses certain problems and limitations of vision and other sensing systems with respect to operations in a radiological accident environment. Methods which appear promising for near-term improvements to sensor technology are described. 3 refs

  2. Deterministic Compressed Sensing

    Science.gov (United States)

    2011-11-01

    39 4.3 Digital Communications . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4 Group Testing ...deterministic de - sign matrices. All bounds ignore the O() constants. . . . . . . . . . . 131 xvi List of Algorithms 1 Iterative Hard Thresholding Algorithm...sensing is information theoretically possible using any (2k, )-RIP sensing matrix . The following celebrated results of Candès, Romberg and Tao [54

  3. Hyperspectral remote sensing

    CERN Document Server

    Eismann, Michael

    2012-01-01

    Hyperspectral remote sensing is an emerging, multidisciplinary field with diverse applications that builds on the principles of material spectroscopy, radiative transfer, imaging spectrometry, and hyperspectral data processing. This book provides a holistic treatment that captures its multidisciplinary nature, emphasizing the physical principles of hyperspectral remote sensing.

  4. Mapping sense(s) of place

    DEFF Research Database (Denmark)

    Skovse, Astrid Ravn; Hovy, Dirk; Johannsen, Anders Trærup

    2016-01-01

    , the question of how to tap into this constitutes a methodological challenge to researchers (Latham 2003, Hall 2009). This paper presents an experimental method aimed at eliciting data on sense of place and everyday mobility in a feasible and low-tech manner through the use of mental maps and mobility maps...... for answering questions about the relationship between places, speakers and linguistic practice....

  5. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  6. Stable and Selective Humidity Sensing Using Stacked Black Phosphorus Flakes.

    Science.gov (United States)

    Yasaei, Poya; Behranginia, Amirhossein; Foroozan, Tara; Asadi, Mohammad; Kim, Kibum; Khalili-Araghi, Fatemeh; Salehi-Khojin, Amin

    2015-10-27

    Black phosphorus (BP) atomic layers are known to undergo chemical degradation in humid air. Yet in more robust configurations such as films, composites, and embedded structures, BP can potentially be utilized in a large number of practical applications. In this study, we explored the sensing characteristics of BP films and observed an ultrasensitive and selective response toward humid air with a trace-level detection capability and a very minor drift over time. Our experiments show that the drain current of the BP sensor increases by ∼4 orders of magnitude as the relative humidity (RH) varies from 10% to 85%, which ranks it among the highest ever reported values for humidity detection. The mechanistic studies indicate that the operation principle of the BP film sensors is based on the modulation in the leakage ionic current caused by autoionization of water molecules and ionic solvation of the phosphorus oxoacids produced on moist BP surfaces. Our stability tests reveal that the response of the BP film sensors remains nearly unchanged after prolonged exposures (up to 3 months) to ambient conditions. This study opens up the route for utilizing BP stacked films in many potential applications such as energy generation/storage systems, electrocatalysis, and chemical/biosensing.

  7. 7th International Conference on Sensing Technology

    CERN Document Server

    Mukhopadhyay, Subhas; Jayasundera, Krishanthi

    2015-01-01

    This book contains a collection of selected works stemming from the 2013 International Conference on Sensing Technology (ICST), which was held in Wellington, New Zealand. The purpose of the book is to distill the highlights of the conference, and therefore track the latest developments in sensing technologies. The book contents are broad, since sensors can be applied in many different areas. Therefore the book gives a broad overview of the latest developments, in addition to discussing the process through which researchers go through in order to develop sensors, or related systems, which will become more widespread in the future.The book is written for academic and industry professionals working in the field of sensing, instrumentation and related fields, and is positioned to give a snapshot of the current state of the art in sensing technology, particularly from the applied perspective. 

  8. Metal oxide nanostructures as gas sensing devices

    CERN Document Server

    Eranna, G

    2016-01-01

    Metal Oxide Nanostructures as Gas Sensing Devices explores the development of an integrated micro gas sensor that is based on advanced metal oxide nanostructures and is compatible with modern semiconductor fabrication technology. This sensor can then be used to create a compact, low-power, handheld device for analyzing air ambience. The book first covers current gas sensing tools and discusses the necessity for miniaturized sensors. It then focuses on the materials, devices, and techniques used for gas sensing applications, such as resistance and capacitance variations. The author addresses the issues of sensitivity, concentration, and temperature dependency as well as the response and recovery times crucial for sensors. He also presents techniques for synthesizing different metal oxides, particularly those with nanodimensional structures. The text goes on to highlight the gas sensing properties of many nanostructured metal oxides, from aluminum and cerium to iron and titanium to zinc and zirconium. The final...

  9. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    International Nuclear Information System (INIS)

    Eronen, Tommi

    2011-01-01

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  10. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, Tommi [Department of Physics, University of Jyvaeskylae, FI-40014 University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  11. Atoms of Silence

    Science.gov (United States)

    Reeves, Hubert

    1985-09-01

    In the grand tradition of popular exposition, astrophysicist Hubert Reeves explains current scientific understanding of the deepest mysteries of the universe in terms that will excite, stimulate, and educate the nonscientific reader. When it was first published in France in 1981, this book quickly became a best-seller and was avidly embraced by the popular press. The reviewer for L'Express, for example, wrote that "Reeves turns astrophysics into an epic saga, a metaphysical fresco, a story in the fullest sense of the word. [He can do this] because he forgets to be a professor. Facing the sky, his eternal home, he recounts the titanic struggle of primordial forces that, over the course of billions of years, formed the cosmos and all it contains...." The book falls into three broad sections. The first explores the implications of the discovery that the universe does indeed have a history - that the night sky that so excites our wonder is not static but has both a beginning and an end. The second uncovers the layers of evolution that comprise that history, from the cosmic phase in the first few moments of the universe when energy first transformed itself into matter, to the biological phase when matter transformed itself into life. The third goes behind the scenes of the universal drama to examine such basic concepts as time, energy, and chance. Reeves' style is metaphorical, determinedly naive, and even slightly anthropomorphic. Music becomes a metaphor for all of the orderliness in the universe that might just as easily have been cosmic "noise" if there had been no guiding principles at work. To understand those guiding principles, and to gain a fuller appreciation of the music that they produce, is` the goal of this enlightening and poetic book. Hubert Reeves was born in Montreal and educated in Canada and the United States. Since 1966 he has been director of research at France's Centre National de la Recherche Scientifique while continuing research at the Centre d

  12. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  13. Coaxing shy particles into an atomic jar

    CERN Multimedia

    Hellemans, A

    2000-01-01

    A Dutch-American team claim they can produce anti-hydrogen atoms in far greater quantities than any other current method. They use rubidium ions to trap electrons by applying a pulsed electric field in a series of steps (1 page).

  14. Continuum states in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Garibotti, C.R. (Centro Atomico Bariloche and CONICET (Argentina)); Barrachina, R.O. (Centro Atomico Bariloche and CONICET (Argentina))

    1994-03-01

    We review the experimental and theoretical situation for ionization collisions of nude ions with neutral gas atoms, at intermediate and high impact energies. We consider particularly that part of the electron spectrum where emission is larger, corresponding to the joint action to the two ions. We discuss the evidence of this two-center interaction and how it is described by current theories. (orig.)

  15. Three-electrode self-actuating self-sensing quartz cantilever: design, analysis, and experimental verification.

    Science.gov (United States)

    Chen, C Julian; Schwarz, Alex; Wiesendanger, Roland; Horn, Oliver; Müller, Jörg

    2010-05-01

    We present a novel quartz cantilever for frequency-modulation atomic force microscopy (FM-AFM) which has three electrodes: an actuating electrode, a sensing electrode, and a ground electrode. By applying an ac signal on the actuating electrode, the cantilever is set to vibrate. If the frequency of actuation voltage closely matches one of the characteristic frequencies of the cantilever, a sharp resonance should be observed. The vibration of the cantilever in turn generates a current on the sensing electrode. The arrangement of the electrodes is such that the cross-talk capacitance between the actuating electrode and the sensing electrode is less than 10(-16) F, thus the direct coupling is negligible. To verify the principle, a number of samples were made. Direct measurements with a Nanosurf easyPPL controller and detector showed that for each cantilever, one or more vibrational modes can be excited and detected. Using classical theory of elasticity, it is shown that such novel cantilevers with proper dimensions can provide optimized performance and sensitivity in FM-AFM with very simple electronics.

  16. Laser trapping of radioactive francium atoms

    International Nuclear Information System (INIS)

    Sprouse, G.D.; Orozco, L.A.; Simsarian, J.E.; Shi, W.; Zhao, W.Z.

    1997-01-01

    The difficult problem of quickly slowing and cooling nuclear reaction products so that they can be injected into a laser trap has been solved by several groups and there are now strong efforts to work with the trapped atoms. The atoms are confined in the trap to a small spatial volume of the order of 1 mm 3 , but more importantly, they are also confined in velocity, which makes them an ideal sample for spectroscopic measurements with other lasers. We have recently trapped radioactive francium and have embarked on a program to further study the francium atom as a prelude to a test of the Standard Model analogous to previous work with Cs. Our sample of 3 min 210 Fr now contains over 20 000 atoms, and is readily visible with an ordinary TV camera. We work on-line with the accelerator, and continuously load the trap to replace losses due to decay and collisions with background gas. We have maintained a sample of Fr atoms in the trap for over 10 hours, with occasional adjustment of the trapping laser frequency to account for drifts. The proposed test of the Standard Model will require accurate calculation of its atomic properties. We are currently testing these calculations by measuring other predicted quantities. (orig.)

  17. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  18. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  19. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  20. Compilation of data from hadronic atoms

    International Nuclear Information System (INIS)

    Poth, H.

    1979-01-01

    This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de

  1. Sensing behaviour in healthcare design

    DEFF Research Database (Denmark)

    Thorpe, Julia Rosemary; Hysse Forchhammer, Birgitte; Maier, Anja

    2017-01-01

    We are entering an era of distributed healthcare that should fit and respond to individual needs, behaviour and lifestyles. Designing such systems is a challenging task that requires continuous information about human behaviour on a large scale, for which pervasive sensing (e.g. using smartphones...... specifically on activity and location data that can easily be obtained from smartphones or wearables. We further demonstrate how these are applied in healthcare design using an example from dementia care. Comparing a current and proposed scenario exemplifies how integrating sensor-derived information about...... user behaviour can support the healthcare design goals of personalisation, adaptability and scalability, while emphasising patient quality of life....

  2. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  3. US Atomic Energy Law

    International Nuclear Information System (INIS)

    1981-01-01

    This is a new volume follows in the series supplementing the volumes 11 and 12 published in 1965 and 1966, updating the collection of Federal Acts and Executive Orders of the President of the United States of America relating to atomic energy legislation. Since the publication of volumes 11 and 12, the US Atomic Energy Act of 1954 alone has been amended 25 times, mainly as a consequence of by the Nuclear Non-Proliferation Act and the Uranium Mill Tailings Radiation Control Act, both of 1978. The Atomic Energy Act of 1954 is supplemented by a selection of the most important Federal Acts, Executive Orders of the President and Resolutions of the Congress. (orig./HSCH) [de

  4. Atomic profits, no thanks

    International Nuclear Information System (INIS)

    Bartels, W.; Dietrich, K.; Moeller, H.; Speier, C.

    1980-01-01

    The authors deal with the following topics: The secret of nuclear energy; the atom programmes of Bonn; on some arguments of the present nuclear energy discussion; how socialist countries solve the problems of nuclear energy. From the socialist point of view they discuss sociological, ideological and moral reasons for a peaceful utilization of nuclear energy. Nevertheless they refuse Bonn's atom programme because the high finance's interests concerning profit and power make it a danger. The biggest danger is said to lie in the creation of a plutonium-industry and the militaristic abuse which would be connected with it. The socialist way of utilizing atomic energy is seen by them as a way with a high feeling of responsibility towards all people and towards a guaranteed energy supply. (HSCH) [de

  5. Controlling the atom

    International Nuclear Information System (INIS)

    Mazuzan, G.T.; Walker, J.S.

    1984-01-01

    The authors trace the early history of nuclear power regulation in the US. Focusing on the Atomic Energy Commission, they describe the role of other groups that figured in the development of regulatory policies, including the Congressional Joint Committee on Atomic Energy, other federal agencies, state governments, the nuclear industry, and scientific organizations. They consider changes in public perceptions of and attitudes toward atomic energy and the dangers of radiation exposure. The basic purpose of the book is to provide the Nuclear Regulatory Commission and the general public with information on the historical antecedents and background of regulatory issues so that there will be continuity in policy decisions. The book concludes with an annotated bibliography of selected references. 19 figures

  6. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  7. 102(ℎ/2π)k Large Area Atom Interferometers

    International Nuclear Information System (INIS)

    Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A.

    2011-01-01

    We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102(ℎ/2π)k). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.

  8. Atoms in Slovakia

    International Nuclear Information System (INIS)

    Danis, D.; Feik, K.; Florek, M.; Kmosena, J.; Chrapan, J.; Morovic, M.; Slugen, V.; Seliga, M.; Valovic, J.

    2006-01-01

    In this book the history of development of using of nuclear energy in the Slovak Republic as well as in the Czechoslovakia (before 1993 year) is presented. The aim of the book is to preserve the memory of the period when the creation and development of nuclear physics, technology, nuclear medicine, radioecology and energetics in Slovakia occurred - as witnessed by people who experienced this period and to adapt it to future generations. The Editorial board of the SNUS collected the views of 60 contributors and distinguished workers - Slovakian experts in nuclear science, education and technology. Calling upon a wide spectrum of experts ensured an objective historical description of the period. A huge amount of subjective views on recent decades were collected and supported by a wealth of photographic documentation. This created a synthesised reflection on the history of the 'atoms' in Slovakia. The book contains 15 tables, 192 black and white and 119 colour pictures from around the world and from places involved in the compilation of the study and with the study of atomic science in Slovakia. The main chapters are as follows: Atoms in the world, Atoms in Slovakia, Atoms in the educational system, Atoms in health services (Radiology, Nuclear medicine, Radiation protection, the Cyclotron centre of the Slovak Republic), Radioecology, Other applications of irradiation, Nuclear energetics (Electric energy in the second half of the 20 th century, NPP Bohunice, NPP Mochovce, the back-end of Nuclear energetics, Big names in Nuclear energetics in Slovakia), Chronology and an Appendix entitled 'Slovak companies in nuclear energetics'

  9. Positron-atom collisions

    International Nuclear Information System (INIS)

    Drachman, R.J.

    1984-01-01

    The past decade has seen the field of positron-atom collisions mature into an important sub-field of atomic physics. Increasingly intense positron sources are leading towards a situation in which electron and positron collision experiments will be on almost an equal footing, challenging theory to analyze their similarities and differences. The author reviews the advances made in theory, including dispersion theory, resonances, and inelastic processes. A survey of experimental progress and a brief discussion of astrophysical positronics is also included. (Auth.)

  10. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  11. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  12. Pulsed atomic soliton laser

    International Nuclear Information System (INIS)

    Carr, L.D.; Brand, J.

    2004-01-01

    It is shown that simultaneously changing the scattering length of an elongated, harmonically trapped Bose-Einstein condensate from positive to negative and inverting the axial portion of the trap, so that it becomes expulsive, results in a train of self-coherent solitonic pulses. Each pulse is itself a nondispersive attractive Bose-Einstein condensate that rapidly self-cools. The axial trap functions as a waveguide. The solitons can be made robustly stable with the right choice of trap geometry, number of atoms, and interaction strength. Theoretical and numerical evidence suggests that such a pulsed atomic soliton laser can be made in present experiments

  13. Smartphones for distributed multimode sensing: biological and environmental sensing and analysis

    Science.gov (United States)

    Feitshans, Tyler; Williams, Robert

    2013-05-01

    Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis

  14. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  15. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  16. Atomic layer deposition: prospects for solar cell manufacturing

    NARCIS (Netherlands)

    Kessels, W.M.M.; Hoex, B.; Sanden, van de M.C.M.

    2008-01-01

    Atomic layer deposition (ALD) is a thin film growth technology that is capable of depositing uniform and conformal films on complex, three-dimensional objects with atomic precision. ALD is a rapidly growing field and it is currently at the verge of being introduced in the semiconductor industry.

  17. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    Science.gov (United States)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  18. How Stakeholder Sensing and Anticipations Shape the Firm’s Strategic Response Capability

    DEFF Research Database (Denmark)

    Hallin, Carina Antonia; Andersen, Torben Juul; Ooi, Can-Seng

    We outline a strategic response capability framework drawing on cognitive neuroscience to explain stakeholder sensing and anticipations as essential input to environmental analysis. Stakeholders receive stimuli from ongoing interactions with the firm and thereby sense current environmental changes...

  19. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  20. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  1. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    Science.gov (United States)

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  2. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2017-02-01

    Full Text Available Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles.

  3. Remote Sensing Information Gateway

    Science.gov (United States)

    Remote Sensing Information Gateway, a tool that allows scientists, researchers and decision makers to access a variety of multi-terabyte, environmental datasets and to subset the data and obtain only needed variables, greatly improving the download time.

  4. Hyperspectral remote sensing

    National Research Council Canada - National Science Library

    Eismann, Michael Theodore

    2012-01-01

    ..., and hyperspectral data processing. While there are many resources that suitably cover these areas individually and focus on specific aspects of the hyperspectral remote sensing field, this book provides a holistic treatment...

  5. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  6. Atomic physics through astrophysics

    International Nuclear Information System (INIS)

    Dalgarno, A.

    1987-01-01

    Astronomical environments encompass an extreme range of physical conditions of temperature, density, pressure and radiation fields and unusual situations abound. In this lecture, the author describes some of the objects found in the Universe and discussed the atomic processes that occur. 45 references, 8 figures

  7. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  8. Deep diode atomic battery

    International Nuclear Information System (INIS)

    Anthony, T.R.; Cline, H.E.

    1977-01-01

    A deep diode atomic battery is made from a bulk semiconductor crystal containing three-dimensional arrays of columnar and lamellar P-N junctions. The battery is powered by gamma rays and x-ray emission from a radioactive source embedded in the interior of the semiconductor crystal

  9. Atoms in Astronomy.

    Science.gov (United States)

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  10. Atomic energy and you

    International Nuclear Information System (INIS)

    1975-01-01

    The film discusses the peaceful applications of atomic energy in agriculture, engineering, industry and medicine. Shows exploration, prospecting and mining of uraninum ores at Larap, Camarines Norte and the study of geographical conditions of the site for the proposed Nuclear Power Plant in Bataan

  11. Discovery and the atom

    International Nuclear Information System (INIS)

    1989-01-01

    ''Discovery and the Atom'' tells the story of the founding of nuclear physics. This programme looks at nuclear physics up to the discovery of the neutron in 1932. Animation explains the science of the classic experiments, such as the scattering of alpha particles by Rutherford and the discovery of the nucleus. Archive film shows the people: Lord Rutherford, James Chadwick, Marie Curie. (author)

  12. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  13. Experimental atomic physics

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.; Forester, J.P.; Liao, K.H.; Pegg, D.J.; Peterson, R.S.; Thoe, R.S.; Hayden, H.C.; Griffin, P.M.

    1976-01-01

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  14. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  15. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  16. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  17. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  18. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  19. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  20. Current understanding of the pseudospin symmetry in atomic nuclei

    International Nuclear Information System (INIS)

    Marcos, S; Niembro, R; Lopez-Quelle, M; Savushkin, L N

    2008-01-01

    We use the relativistic mean field framework to analyse the reliability of the explanation of the pseudospin symmetry (PSS) that has been accepted, quite generally, by the scientific community, in the last decade. We make a comparative analysis of the mechanisms responsible for the breaking of the spin and pseudospin symmetries that shows the different nature of these symmetries. We propose an explanation of the PSS, also valid in the nonrelativistic limit, in which the effect of the deviation of the single-particle central potential from a harmonic oscillator on the breaking of the degeneracy of pseudospin doublets is partially compansated by the effect of the spin-orbit interaction.

  1. Current status and perspectives of atomic energy development in Ukraine

    International Nuclear Information System (INIS)

    Kokhan, I.V.; Zeniuk, V.J.

    2000-01-01

    The share of the power produced by the NPPs during the last years is increasing constantly and had reached by the year of 1997 44,9%. During the last 15 years these were only nuclear power plants in Ukraine that had been put into operation. Comparing to the awful condition of the traditional power industries caused by the lack of the organic fuels (gas, black oil, coal), physical and moral deterioration of power plants and power transmission equipment, the functioning of the nuclear power industry is rather stable. (author)

  2. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  3. Atomic bomb injury: radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, C L; Cronkite, E P; Le Roy, G V; Warren, S

    1959-01-01

    This document contains 3 reports. In the first report, the clinical diagnosis and treatment of radiation syndrome in survivors of the atomic explosions in Hiroshima and Nagasaki are described. The syndrome of acute radiation injury is applied to the symptom complex, or diseased state, which results from exposure of the whole body to the initial nuclear radiation of an atomic bomb. It is applied to injuries of the skin and subcutaneous tissues resulting from x-radiation or from contact with radioactive material. Internal radiation injury may result from the selective deposition, such as in bone or thyroid, of radioactive material that has been inhaled or absorbed through the gastrointestinal tract or wounds. Radiation syndrome is classified as very severe, severe, and mild. In the second report, a brief discussion is presented on the question of genetic effects in atomic bomb survivors in Hiroshima and Nagasaki. In the third report, a study was carried out on 205 4-1/2 year old children who had been exposed to the atomic bomb blast during the first half of intra-uterine life. Correlation between head size and mental development of the child with distance from the hypocenter, symptoms of radiation effect and type of shielding of the mother is discussed. The conclusion drawn from the present study is that central nervous system defects can be produced in the fetus by atomic bomb radiation, provided that exposure occurs within approximately 1200 meters of the hypocenter and that no effective shielding, such as concrete, protects the fetus from direct irradiation.

  4. Effects of UV-Ozone Treatment on Sensing Behaviours of EGFETs with Al2O3 Sensing Film

    Directory of Open Access Journals (Sweden)

    Cuiling Sun

    2017-12-01

    Full Text Available The effects of UV-ozone (UVO treatment on the sensing behaviours of extended-gate field-effect transistors (EGFETs that use Al2O3 as the sensing film have been investigated. The Al2O3 sensing films are UVO-treated with various duration times and the corresponding EGFET sensing behaviours, such as sensitivity, hysteresis, and long-term stability, are electrically evaluated under various measurement conditions. Physical analysis is also performed to characterize the surface conditions of the UVO-treated sensing films using X-ray photoelectron spectroscopy and atomic force microscopy. It is found that UVO treatment effectively reduces the buried sites in the Al2O3 sensing film and subsequently results in reduced hysteresis and improved long-term stability of EGFET. Meanwhile, the observed slightly smoother Al2O3 film surface post UVO treatment corresponds to decreased surface sites and slightly reduced pH sensitivity of the Al2O3 film. The sensitivity degradation is found to be monotonically correlated with the UVO treatment time. A treatment time of 10 min is found to yield an excellent performance trade-off: clearly improved long-term stability and reduced hysteresis at the cost of negligible sensitivity reduction. These results suggest that UVO treatment is a simple and facile method to improve the overall sensing performance of the EGFETs with an Al2O3 sensing film.

  5. QED theory of multiphoton transitions in atoms and ions

    Science.gov (United States)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  6. Quantum many-body dynamics of ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Stefan

    2014-04-15

    number basis realized by a single-site detection. The analysis of the resulting quantum Zeno physics shows regimes for which the initial many-particle configurations are stabilized or destabilized, depending on the observation time interval and the interaction strength. In the second part, the measurement of the local current operator in an optical lattice is discussed. We propose a measurement protocol that combines single-site detection with already existing optical superlattices. The measurement outcomes can even be used to calculate spatial current-current correlations since the local currents are simultaneously measured at various positions. We illustrate the prospects of this new sensing method by a numerical study of the current statistics for interacting bosons in one and two dimensions. In the latter case, we discuss how the on-site interactions affect the equilibrium currents of bosons in an artificial magnetic field. We substantiate the feasibility of the protocol by considering possible error sources, restrictions in currently used single-site detection, and its applicability in experimental setups used to create artificial gauge fields.

  7. Quantum many-body dynamics of ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Kessler, Stefan

    2014-01-01

    number basis realized by a single-site detection. The analysis of the resulting quantum Zeno physics shows regimes for which the initial many-particle configurations are stabilized or destabilized, depending on the observation time interval and the interaction strength. In the second part, the measurement of the local current operator in an optical lattice is discussed. We propose a measurement protocol that combines single-site detection with already existing optical superlattices. The measurement outcomes can even be used to calculate spatial current-current correlations since the local currents are simultaneously measured at various positions. We illustrate the prospects of this new sensing method by a numerical study of the current statistics for interacting bosons in one and two dimensions. In the latter case, we discuss how the on-site interactions affect the equilibrium currents of bosons in an artificial magnetic field. We substantiate the feasibility of the protocol by considering possible error sources, restrictions in currently used single-site detection, and its applicability in experimental setups used to create artificial gauge fields.

  8. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Colla, M.; Gulley, R.; Uhlmann, L.; Hoogerland, M.D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Full text: Metastable helium in the 2 3 S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (2 3 S 1 - 2 3 P2 1 ) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He + or molecular He 2 + ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 2 3 S 1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  9. The production and investigation of cold antihydrogen atoms

    International Nuclear Information System (INIS)

    Pittner, H.

    2005-04-01

    This work reports on experiments in which antihydrogen atoms have been produced in cryogenic Penning traps from antiproton and positron plasmas by two different methods and on experiments that have been carried out subsequently in order to investigate the antihydrogen atoms. By the first method antihydrogen atoms have been formed during the process of positron cooling of antiprotons in so called nested Penning traps and detected via a field ionization method. A measurement of the state distribution has revealed that the antihydrogen atoms are formed in highly excited states. This suggests along with the high production rate that the antihydrogen atoms are formed by three-body recombination processes and subsequent collisional deexcitations. However current theory cannot yet account for the measured state distribution. Typical radii of the detected antihydrogen atoms lie in the range between 0.4 μm and 0.15 μm. The deepest bound antihydrogen atoms have radii below 0.1 μm.The kinetic energy of the weakest bound antihydrogen atoms has been measured to about 200 meV. By the second method antihydrogen atoms have been synthesized in charge-exchange processes. Lasers are used to produce a Rydberg cesium beam within the cryogenic Penning trap that collides with trapped positrons so that Rydberg positronium atoms are formed via charge-exchange reactions. The Rydberg positronium atoms that collide with nearby stored antiprotons form antihydrogen atoms in charge-exchange reactions. So far, 14±4 antihydrogen atoms have been detected background-free via a field-ionization method. The antihydrogen atoms produced via the two-step charge-exchange mechanism are expected to have a temperature of 4.2 K, the temperature of the antiprotons from which they are formed

  10. Neck of public acceptance of atomic energy in Japan

    International Nuclear Information System (INIS)

    Tawara, Soichiro.

    1978-01-01

    Discussion is lacking concerning the public acceptance of atomic energy in Japan. In case of the atomic powered ship Mutsu, an opponent says that the ship carries an atomic bomb, but a member of a support group says that the ship emits soft radiation like a hot spring. This is an example of discussion, and most of discussions are made under the political interest, instead of on the scientific base. In Japan, preparatory negotiations are required in advance to the decision making meeting in most cases. Therefore, most of substantial discussions are not public. Engineers in the nuclear industry can hardly express their opinion concerning the development of atomic energy. Most of the data for discussions are not original, but foreign data. Reasons for the development of atomic energy change case by case. It is necessary to consider that people will decide their opinion according to whether the responsible person is reliable or not. Some people oppose to atomic energy to find a new sense of value. Now, all people are requested to think and discuss the problem of atomic energy calmly. (Kato, T.)

  11. Satellite Remote Sensing in Offshore Wind Energy

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Astrup, Poul

    2013-01-01

    Satellite remote sensing of ocean surface winds are presented with focus on wind energy applications. The history on operational and research-based satellite ocean wind mapping is briefly described for passive microwave, scatterometer and synthetic aperture radar (SAR). Currently 6 GW installed...

  12. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  13. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  14. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates

    International Nuclear Information System (INIS)

    Joachim, C; Martrou, D; Gauthier, S; Rezeq, M; Troadec, C; Jie Deng; Chandrasekhar, N

    2010-01-01

    The scientific and technical challenges involved in building the planar electrical connection of an atomic scale circuit to N electrodes (N > 2) are discussed. The practical, laboratory scale approach explored today to assemble a multi-access atomic scale precision interconnection machine is presented. Depending on the surface electronic properties of the targeted substrates, two types of machines are considered: on moderate surface band gap materials, scanning tunneling microscopy can be combined with scanning electron microscopy to provide an efficient navigation system, while on wide surface band gap materials, atomic force microscopy can be used in conjunction with optical microscopy. The size of the planar part of the circuit should be minimized on moderate band gap surfaces to avoid current leakage, while this requirement does not apply to wide band gap surfaces. These constraints impose different methods of connection, which are thoroughly discussed, in particular regarding the recent progress in single atom and molecule manipulations on a surface.

  15. Ultra thin films for sensing and heating of microprobes

    NARCIS (Netherlands)

    Gaitas, A.

    2013-01-01

    This dissertation aims to advance the current state of cantilevers with integrated metal thermal and deflection sensing elements. Metallic sensing elements enable the use of alternative substrate materials (such as polymers), that tend to exhibit higher compliance properties and are more robust

  16. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  17. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  18. Electromagnetically induced grating with Rydberg atoms

    Science.gov (United States)

    Asghar, Sobia; Ziauddin, Qamar, Shahid; Qamar, Sajid

    2016-09-01

    We present a scheme to realize electromagnetically induced grating in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configuration where a strong standing-wave control field and a weak probe pulse are employed. The diffraction intensity is influenced by the strength of the probe intensity, the control field strength, and the van der Waals (vdW) interaction. It is noticed that relatively large first-order diffraction can be obtained for low-input intensity with a small vdW shift and a strong control field. The scheme can be considered as an amicable solution to realize the atomic grating at the microscopic level, which can provide background- and dark-current-free diffraction.

  19. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  20. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)