WorldWideScience

Sample records for current science education

  1. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  2. Urban Science Education: Examining Current Issues through a Historical Lens

    Science.gov (United States)

    McLaughlin, Cheryl A.

    2014-01-01

    This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions.…

  3. Analysis of the Current Literature of Science Education.

    Science.gov (United States)

    Ayers, Jerry B.

    Presented is a study designed to analyze nine journals that contain substantial material devoted to the field of science education for the period 1970 through 1971: "American Journal of Physics,""Chemistry,""Journal of Chemical Education,""Journal of Research in Science Teaching,""Physics Today,""School Science and Mathematics,""Science and…

  4. Current Status of Regulatory Science Education in Faculties of Pharmaceutical Science in Japan.

    Science.gov (United States)

    Tohkin, Masahiro

    2017-01-01

     I introduce the current pharmaceutical education system in Japan, focusing on regulatory science. University schools or faculties of pharmaceutical science in Japan offer two courses: a six-year course for pharmacists and a four-year course for scientists and technicians. Students in the six-year pharmaceutical course receive training in hospitals and pharmacies during their fifth year, and those in the four-year life science course start research activities during their third year. The current model core curriculum for pharmaceutical education requires them to "explain the necessity and significance of regulatory science" as a specific behavior object. This means that pharmacists should understand the significance of "regulatory science", which will lead to the proper use of pharmaceuticals in clinical practice. Most regulatory science laboratories are in the university schools or faculties of pharmaceutical sciences; however, there are too few to conduct regulatory science education. There are many problems in regulatory science education, and I hope that those problems will be resolved not only by university-based regulatory science researchers but also by those from the pharmaceutical industry and regulatory authorities.

  5. Analysis of Current Information Education in Mainland China for Science and Technology Specialists.

    Science.gov (United States)

    Zhijian, Liang

    1990-01-01

    Discussion of the current state of affairs in the field of library and information science in China highlights the specialty of science and technology information science. The information education system and curriculum are described, illiteracy and attitudes toward information are discussed, and the need for continuing education is suggested.…

  6. Romanian Libray Science Distance Education. Current Context and Possible Solutions

    Directory of Open Access Journals (Sweden)

    Silvia-Adriana Tomescu

    2012-01-01

    We thought it would be very useful to propose a model of teaching, learning and assessment for distance higher librarianship tested on www.oll.ro, Open learning library platform to analyze the impact on students, and especially to test the effectiveness of teaching and assessing knowledge from distance. We set a rigorous approach that reflects the problems facing the Romanian LIS education system and emphasizes the optimal strategies that need to be implemented. The benefits of such an approach can and classified as: innovation in education, communicative facilities, and effective strategies for teaching library science.

  7. Library and Information Science Education in Greece: Institutional Changes and Current Issues

    Science.gov (United States)

    Moniarou-Papaconstantinou, Valentini; Tsatsaroni, Anna

    2008-01-01

    This paper considers the historical development of Library and Information Science (LIS) Education in Greece, in order to understand its current position within the field of higher education, and to assess its future prospects. In particular, in tracing changes that LIS Education as an institution has undergone, it argues that institutional…

  8. Bioinformatics: Current Practice and Future Challenges for Life Science Education

    Science.gov (United States)

    Hack, Catherine; Kendall, Gary

    2005-01-01

    It is widely predicted that the application of high-throughput technologies to the quantification and identification of biological molecules will cause a paradigm shift in the life sciences. However, if the biosciences are to evolve from a predominantly descriptive discipline to an information science, practitioners will require enhanced skills in…

  9. STEM: A Focus for Current Science Education Reforms

    Directory of Open Access Journals (Sweden)

    Robert E. Yager

    2015-01-01

    Full Text Available The definition of STEM (Science, Technology, Engineering, and Mathematics reforms remains unclear. STEM is not like a scientific term where scientists choose to replace a series of complex observations with a new word. Even with more and more money being spent to support STEM reforms in all K-12 classrooms, we continue to not have accurate ideas of what STEM efforts are and/or what they could/should accomplish. Some STEM changes have been proposed and considered for use in several statewide efforts across the United States. But, to what end? Will major funding improve the personal “doing” of science for all students and at all grade levels?

  10. An analysis of the current crises in the discipline of science education

    Science.gov (United States)

    Yager, Robert E.; Bybee, Rodger; Gallagher, James J.; Renner, John W.

    Demographic information concerning the thirty-five largest graduate centers for science education was collected. The information verified the decrease in the average number of graduates, number of faculty members, external support for special projects in such centers for science education. Programs have remained static over the twenty-year period. Faculty members at the institutions are stable and possess similar backgrounds; research interests of the faculty members vary and do not represent major commitments for many. When perceptions of discipline problems are studied, lack of agreement concerning goals and objectives are most frequently cited. This is followed by perceived lack of vision and leadership in the profession. Other perceived problems include public and parental apathy toward science and science education, limited budgets and facilities, and limited dialogue among professionals and the public. Science educators have proposed solutions to discipline problems as further evidence of crisis. The most common solutions proposed include (1) development of a theory base for the discipline, (2) structuring of a rationale for the discipline, (3) greater financial and public support, and (4) improved programs, including inservice education.As a view of the future is provided, the central issue emerges regarding the absence of goals in science education that are relevant to contemporary priorities in science, society, and education. Suggestion is made that failure to correct this deficiency will result in further deterioration in all areas of the current crisis.

  11. Current Periodicals in Physical Education and the Sport Sciences.

    Science.gov (United States)

    Crase, Darrell

    1985-01-01

    This comprehensive list of resources for student and professionals in physical education and sport includes journals of national and international scope. Most are refereed by scholars recognized for their expertise. Others are not refereed in the usual sense but are recognized broadly as authoritative sources. (MT)

  12. Implications for Science and Mathematics Education of Current Philosophies of Education.

    Science.gov (United States)

    Hopkins, Richard L.

    1981-01-01

    Differing philosophies of education associated with John Dewey, Robert Maynard Hutchins, Jerome Bruner, and A. S. Neill are outlined. Implications of each philosophy for mathematics and science teaching are suggested. (MP)

  13. Implications for Science and Mathematics Education of Current Philosophies of Education.

    Science.gov (United States)

    Hopkins, Richard L.

    1981-01-01

    Differing philosophies of education associated with John Dewey, Robert Maynard Hutchins, Jerome Bruner, and A. S. Neill are outlined. Implications of each philosophy for mathematics and science teaching are suggested. (MP)

  14. Graduate education of library science in China:Current status and recommendations for improvement

    Institute of Scientific and Technical Information of China (English)

    KE; Ping; WANG; Ping; TANG; Chengxiu

    2008-01-01

    More than twenty years ago,Wuhan University and Nanjing University offered library science(LS)graduate programs.Since then,LS graduate education has been growing quickly in many aspects.At the same time,however,LS graduate education was also facing enormous challenges stemming from the dynamic development and wide applications of information technologies into the pedagogical arena of teaching and learning at all levels.Social evolution also made it necessary for LS educators to re-examine once again their graduate education model,curricular composition,educational philosophy and educational missions.In analyzing the present situation of LS graduate education in China,this paper focuses on the following issues:1)Growing size of LS graduate education(quantity and quality);2)educational objectives,including research direction and placement for graduates;3)structure of knowledge and curricular construction;4)conditions of administering a library school of high quality and 5)the management of teaching resources.The keystone of this paper is to pinpoint where current library science curricular deficiencies are lying.It is hoped that more serious scholarly discussions and perhaps also even concerted efforts among LS scholars and library practioners may be evoked in having the graduate education system of library and information science thoroughly realigned for the informational needs of the 21stcentury.

  15. A Review of Research on Metacognition in Science Education: Current and Future Directions

    Science.gov (United States)

    Zohar, Anat; Barzilai, Sarit

    2013-01-01

    The goal of this study is to map the current state of research in the field of metacognition in science education, to identify key trends, and to discern areas and questions for future research. We conducted a systematic analysis of 178 studies published in peer-reviewed journals in the years 2000-2012 and indexed in the ERIC database. The…

  16. A Review of Research on Metacognition in Science Education: Current and Future Directions

    Science.gov (United States)

    Zohar, Anat; Barzilai, Sarit

    2013-01-01

    The goal of this study is to map the current state of research in the field of metacognition in science education, to identify key trends, and to discern areas and questions for future research. We conducted a systematic analysis of 178 studies published in peer-reviewed journals in the years 2000-2012 and indexed in the ERIC database. The…

  17. Some interrelationships between constructivist models of learning and current neurobiological theory, with implications for science education

    Science.gov (United States)

    Anderson, O. Roger

    Recent advances in the neurosciences have begun to elucidate how some fundamental mechanisms of nervous system activity can explain human information processing and the acquisition of knowledge. Some of these findings are consistent with a cognitive view of constructivist models of learning and provide additional theoretical support for constructivist applications to science education reform. Current thought at the interface between neurocognitive research and constructivist philosophy is summarized here and discussed in a context of implications for scientific epistemology and conceptual change processes in science education.

  18. Life satisfaction, health, self-evaluation and sexuality in current university students of sport sciences, education and natural sciences

    Directory of Open Access Journals (Sweden)

    Martin Sigmund

    2014-12-01

    Full Text Available Background: Lifestyle and health of an individual are influenced by many factors; a significant factor is life satisfaction. Life satisfaction is understood as a multidimensional construct closely related to the area of personal wellbeing and quality of life. Life satisfaction in university students represents one of the determinants of good health, high motivation for studying, work productivity, satisfactory interpersonal relationships and overall healthy lifestyle. Objective: The main objective of the present study is to identify and compare the level of overall life satisfaction and selected components of health, self-evaluation and sexuality in current university students with respect to their study specialization. Methods: The study included a total of 522 students from Palacký University. These were students from the Faculty of Physical Culture (n = 118, Faculty of Education (n = 218 and Faculty of Science (n = 186. In terms of age, the study focused on young adults aged 19 to 26. To assess the current level of life satisfaction, the research study used a standardized psychodiagnostic tool - Life Satisfaction Questionnaire (LSQ. The used diagnostic methods are fully standardized and contain domestic normative values. Statistical result processing was conducted using the Statistica programme v10.0. Results: The highest level of overall life satisfaction was revealed in university students of sport sciences. In comparison with the students of education and students of natural sciences the difference is significant. Satisfaction with health among the students of sport sciences is significantly higher than in the students of education (p ≤ .001; d = 0.53 and the students of natural sciences (p ≤ .05; d = 0.38. Similar results were found in the area of satisfaction with own person and self-evaluation, where the values of the students of sport sciences were significantly higher compared with the students of education (p

  19. Why We Should No Longer Only Repair, Polish and Iron Current Computer Science Educations.

    Science.gov (United States)

    Gruska, Jozef

    1993-01-01

    Describes shortcomings of computer science/engineering education and explains a new focus on informatics. Highlights include simulation, visualization, algorithmization, design of information processing models, parallel computing, a history of informatics, informatics versus physics and mathematics, and implications for education. (51 references)…

  20. The Development and Current Status of Library and Information Science Education in Japan

    Directory of Open Access Journals (Sweden)

    Kuang-hua Chen

    2001-12-01

    Full Text Available Library and information science (LIS education of Japan has been established in the early 20th century, but destroyed during the World War II. Thanks to the help provided by the United States, the LIS education revived. However, it influenced a lot, especially the thoughts of public librarianship in the Library Law of Japan. At present, 8 universities offer formal LIS degree program and over 200 universities or colleges offer LIS courses as qualifications for public librarians. This article will introduce the curriculum designs, full-time faculty, and program characteristics of Library and Information Science in Japan. [Article content in Chinese

  1. CURRENT RELATIONS BETWEEN RUSSIA AND CHINA IN THE DOMAIN OF SCIENCE AND EDUCATION

    Directory of Open Access Journals (Sweden)

    Alfia R. Kasimova

    2013-01-01

    Full Text Available The article deals with Russian-Chinese relations in Science and Education from the 90th years of XX century. Their development is investigated in relation to the political and socio-economic situations in both countries. The author focuses on a number of aspects in the scientific and educational ties requiring in-depth analysis and priority interests of Russia, as well as the huge potential of Russian-Chinese relations in this sphere.

  2. Current State of Web Sites in Science Education--Focus on Atomic Structure.

    Science.gov (United States)

    Tuvi, Inbal; Nachmias, Rafi

    2001-01-01

    Explores to what extent the web's advanced graphical tools and computational power are implemented in science education. Focuses on the pedagogical and technological characteristics of web sites attempting to teach the subject of atomic structure. (Contains 33 references.) (Author/YDS)

  3. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    Science.gov (United States)

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  4. Disturbingly Weak: The Current State of Financial Management Education in Library and Information Science Curricula

    Science.gov (United States)

    Burger, Robert H.; Kaufman, Paula T.; Atkinson, Amy L.

    2015-01-01

    Financial management skills are necessary for responsible library management. In light of the profession's current emphasis on financial literacy, the authors posed four questions: (1) to what extent are library and information science schools providing courses in financial management for their graduates; (2) what is the quality and quantity of…

  5. Citizenship and Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1982-01-01

    Discusses purposes and policies of science education, including present growth trends and the resulting problems of human ecological scarcity, global nature of these problems, and the need for a global response to alter current trends. Emphasizes the role of science/technology in the amelioration of global problems. (Author/JN)

  6. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  7. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  8. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  9. An analysis of current and former mathematics and science teacher education program participants' perceptions for quality assurance

    Science.gov (United States)

    Williams-Duncan, Omah Makebbe

    State curriculum and professional standards characterize the level of proficiency pre-service teachers must attain to be prepared to teach in Texas classrooms. Teacher education programs are being scrutinized for their ability to help pre-service teachers reach a level of proficiency commensurate with these state standards. This dissertation presents an understanding of a teacher education program's quality via analysis of its current student teacher and former student perceptions. There are two participant groups in this study - current student teachers (n=11) and former students (n=78) from one program called, aggieTEACH, a traditional baccalaureate secondary mathematics and science teacher education program. Of the current student teachers and former students participating in this study, 77.5% (n = 69) were female, 21.3% (n = 19) were male and 1.1% (n = 1) did not disclose their gender; additionally, 80.9% (n = 72) identify as white or Caucasian, 9% (n = 8) identify as Hispanic, 7.8% (n = 7) identifying as African American, Asian, or other, and 2.2% (n = 2) decided not to disclose their race. This mixed methods study reveals participant's agreement and confidence levels in mentoring, confidence, TEP quality, and program characteristics of aggieTEACH. The researcher used principal components analysis, exploratory factor analysis, and content analysis to review secondary data from administered web-based surveys. The surveys have Likert-scaled, single-response items and open-ended response items. Specific survey items were identified per categories called (a) mentoring, (b) confidence, (c) TEP quality, and (d) program characteristics. The mentoring scale yielded an alpha of .903. The confidence subscale yielded an alpha .951. The quality items yielded an alpha .881 and the characteristics items yielded an alpha of .919. Significant differences occurred between current student teacher and former student participants' agreement and confidence levels about the teacher

  10. Globalisation and science education: Rethinking science education reforms

    Science.gov (United States)

    Carter, Lyn

    2005-05-01

    Like Lemke (J Res Sci Teach 38:296-316, 2001), I believe that science education has not looked enough at the impact of the changing theoretical and global landscape by which it is produced and shaped. Lemke makes a sound argument for science education to look beyond its own discourses toward those like cultural studies and politics, and to which I would add globalisation theory and relevant educational studies. Hence, in this study I draw together a range of investigations to argue that globalisation is indeed implicated in the discourses of science education, even if it remains underacknowledged and undertheorized. Establishing this relationship is important because it provides different frames of reference from which to investigate many of science education's current concerns, including those new forces that now have a direct impact on science classrooms. For example, one important question to investigate is the degree to which current science education improvement discourses are the consequences of quality research into science teaching and learning, or represent national and local responses to global economic restructuring and the imperatives of the supranational institutions that are largely beyond the control of science education. Developing globalisation as a theoretical construct to help formulate new questions and methods to examine these questions can provide science education with opportunities to expand the conceptual and analytical frameworks of much of its present and future scholarship.

  11. Development of online instructional resources for Earth system science education: An example of current practice from China

    Science.gov (United States)

    Dong, Shaochun; Xu, Shijin; Lu, Xiancai

    2009-06-01

    Educators around the world are striving to make science more accessible and relevant to students. Online instructional resources have become an integral component of tertiary science education and will continue to grow in influence and importance over the coming decades. A case study in the iterative improvement of the online instructional resources provided for first-year undergraduates taking " Introductory Earth System Science" at Nanjing University in China is presented in this paper. Online instructional resources are used to conduct a student-centered learning model in the domain of Earth system science, resulting in a sustainable online instructional framework for students and instructors. The purpose of our practice is to make Earth system science education more accessible and exciting to students, changing instruction from a largely textbook-based teacher-centered approach to a more interactive and student-centered approach, and promoting the integration of knowledge and development of deep understanding by students. Evaluation on learning performance and learning satisfaction is conducted to identify helpful components and perception based on students' learning activities. The feedbacks indicate that the use of online instructional resources has positive impacts on mitigating Earth system science education challenges, and has the potential to promote deep learning.

  12. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents eight separate articles on science education. Topic areas addressed include: an inservice course in primary science; improving physics teaching; reducing chemistry curriculum; textbook readability measures; school-industry link for introductory engineering; local education authority initiatives in primary school science; and "Winnie…

  13. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  14. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... or representations of knowledge in digital and physical science environments, Use and design of new types of models or tools for scientific inquiry and innovation education....... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  15. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  16. Literacy, science, and science education

    Science.gov (United States)

    McVittie, Janet Elizabeth

    In examining the connections between literacy, science and science education, I laid out a number of questions. For example, what sorts of literate tools might facilitate writing to learn, and do children who are just becoming literate use these tools? I then examined the writing of children in science class in an attempt to determine if their writing can indeed facilitate their learning. The results of this research could help teachers make decisions about the use of writing in the learning of science. The kinds of literate tools I identified as being potentially helpful were transitionals---those words or grammatical devices which demonstrate how ideas are connected. Also, I suggested that data tables, sentences and paragraphs were also useful for students to learn. I found that grade 5/6 students used a wide range of literate tools, but that they were much more competent with those tools which were both oral and literate than those which could only be used for writing (punctuation, sentences, paragraphs, and data tables). When I attempted to determine if the children used their writing to learn, I found very little evidence that this was certainly so. However, there was some evidence that paragraphs had the potential to create a "dialogue" between student writing and thinking, so the students could make more explicit connections between science ideas. Lastly, I noticed certain gender difference in the classroom. Because of this, I contrasted the writing of the girls with the writing of the boys. I learned the girls were generally much more capable writers than the boys. More interesting, however, was that the girls generally attempted to explain their science concepts in different ways than did the boys. The girls were more likely to rely on their own reasoning, whereas the boys were more likely to persist in using culturally created science explanations. The research findings have important implications for analyzing students' learning and for finding ways to

  17. Science Education through Informal Education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-01-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins (EJ1102247). In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal…

  18. Science Education Research vs. Physics Education Research: A Structural Comparison

    OpenAIRE

    Akarsu, Bayram

    2011-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and trends (e.g. current research ideas) within PER.

  19. Educational science meets simulation.

    Science.gov (United States)

    Pasquale, Susan J

    2015-03-01

    With the increased use of simulation to teach the knowledge and skills demanded of clinical practice, toward the achievement of optimal patient care outcomes, it becomes increasingly important that clinician educators have fundamental knowledge about educational science and its applications to teaching and learning. As the foremost goal of teaching is to facilitate learning, it is essential that the simulation experience be oriented to the learning process. In order for this to occur, is it necessary for the clinician educator to understand the fundamentals of educational science and theories of education such that they can apply them to teaching and learning in an environment focused on medical simulation. Underscoring the rationale for the fundamentals of educational science to be applied to the simulation environment, and to work in tandem with simulation, is the importance that accurate and appropriate information is retained and applied toward establishing competence in essential practice-based skills and procedures.

  20. Cognitive Science and Education.

    Science.gov (United States)

    Glaser, Robert

    1988-01-01

    States that renewed research on the processes of learning and teaching is necessary if all children are expected to meet high standards of educational performance. Discusses cognitive science, a federation of psychology, linguistics, and computer science which offers a reconceptualization of the nature of the learning process and new approaches to…

  1. Library and Information Science Education in Japan.

    Science.gov (United States)

    Kim, Yong Won

    1998-01-01

    Reviews the historical background and current trends of library- and information science-education in Japan. Analyzes the various types of curriculum and the teaching staff of these institutions, while identifying factors influencing library and information-science education. Mentions present issues of the education system and discusses future…

  2. Science education through informal education

    Science.gov (United States)

    Kim, Mijung; Dopico, Eduardo

    2016-06-01

    To develop the pedagogic efficiency of informal education in science teaching, promoting a close cooperation between institutions is suggested by Monteiro, Janerine, de Carvalho, and Martins. In their article, they point out effective examples of how teachers and educators work together to develop programs and activities at informal education places such as science museums. Their study explored and discussed the viability and relevancy of school visits to museums and possibilities to enhance the connection between students' visits in informal contexts and their learning in schools. Given that students learn science by crossing the boundaries of formal and informal learning contexts, it is critical to examine ways of integrated and collaborative approach to develop scientific literacy to help students think, act and communicate as members of problem solving communities. In this forum, we suggest the importance of students' lifeworld contexts in informal learning places as continuum of Monteiro, Janerine, de Carvalho, and Martins' discussion on enhancing the effectiveness of informal learning places in science education.

  3. Educational Experiences in Oceanography through Hands-On Involvement with Surface Drifters: an Introduction to Ocean Currents, Engineering, Data Collection, and Computer Science

    Science.gov (United States)

    Anderson, T.

    2015-12-01

    The Northeast Fisheries Science Center's (NEFSC) Student Drifters Program is providing education opportunities for students of all ages. Using GPS-tracked ocean drifters, various educational institutions can provide students with hands-on experience in physical oceanography, engineering, and computer science. In building drifters many high school and undergraduate students may focus on drifter construction, sometimes designing their own drifter or attempting to improve current NEFSC models. While learning basic oceanography younger students can build drifters with the help of an educator and directions available on the studentdrifters.org website. Once drifters are deployed, often by a local mariner or oceanographic partner, drifter tracks can be visualised on maps provided at http://nefsc.noaa.gov/drifter. With the lesson plans available for those interested in computer science, students may download, process, and plot the drifter position data with basic Python code provided. Drifter tracks help students to visualize ocean currents, and also allow them to understand real particle tracking applications such as in search and rescue, oil spill dispersion, larval transport, and the movement of injured sea animals. Additionally, ocean circulation modelers can use student drifter paths to validate their models. The Student Drifters Program has worked with over 100 schools, several of them having deployed drifters on the West Coast. Funding for the program often comes from individual schools and small grants but in the future will preferably come from larger government grants. NSF, Sea-Grant, NOAA, and EPA are all possible sources of funding, especially with the support of multiple schools and large marine education associations. The Student Drifters Program is a unique resource for educators, students, and scientists alike.

  4. Creationism, Evolution, and Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eugenie C. (National Center for Science Education)

    2005-06-22

    Many topics in the curriculum of American schools are controversial, but perhaps the one with the longest tenure is evolution. Three arguments are made against evolution: that it is allegedly weak science ('evolution is a theory in crisis'); that it is incompatible with religion; and that it is only 'fair' to 'balance' evolution with creationism. Regardless of the appropriateness of their application to science education, all three of the arguments are made to try to restrict the teaching of evolution. Variants of the fairness argument such as balancing evolution with 'scientific alternatives to evolution' or balancing evolution with 'arguments against evolution' have in fact become the current predominant antievolutionist strategy. Current events in the creationism/evolution controversy will be reviewed, and suggestions made for how to promote sound science education in the schools.

  5. Five Aspects of Current Trends in German Library Science

    Science.gov (United States)

    Steierwald, Ulrike

    2006-01-01

    The specialisation Library Science at the Hochschule Darmstadt/University of Applied Science Darmstadt is the newest academic program in Germany for the higher education of librarians. Five current trends in library science in Germany reflect the new "Darmstadt Model": (1) The delimitation of a specific professional field…

  6. Five Aspects of Current Trends in German Library Science

    Science.gov (United States)

    Steierwald, Ulrike

    2006-01-01

    The specialisation Library Science at the Hochschule Darmstadt/University of Applied Science Darmstadt is the newest academic program in Germany for the higher education of librarians. Five current trends in library science in Germany reflect the new "Darmstadt Model": (1) The delimitation of a specific professional field "library" is obsolete, so…

  7. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rashkin, Samuel [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huelman, Pat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  8. Guidelines for Building Science Education

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Cheryn E.; Rashkin, Samuel; Huelman, Pat

    2015-03-11

    The U.S. Department of Energy’s (DOE) residential research and demonstration program, Building America, has triumphed through 20 years of innovation. Partnering with researchers, builders, remodelers, and manufacturers to develop innovative processes like advanced framing and ventilation standards, Building America has proven an energy efficient design can be more cost effective, healthy, and durable than a standard house. As Building America partners continue to achieve their stretch goals, they have found that the barrier to true market transformation for high performance homes is the limited knowledge-base of the professionals working in the building industry. With dozens of professionals taking part in the design and execution of building and selling homes, each person should have basic building science knowledge relevant to their role, and an understanding of how various home components interface with each other. Instead, our industry typically experiences a fragmented approach to home building and design. After obtaining important input from stakeholders at the Building Science Education Kick-Off Meeting, DOE created a building science education strategy addressing education issues preventing the widespread adoption of high performance homes. This strategy targets the next generation and provides valuable guidance for the current workforce. The initiative includes: • Race to Zero Student Design Competition: Engages universities and provides students who will be the next generation of architects, engineers, construction managers and entrepreneurs with the necessary skills and experience they need to begin careers in clean energy and generate creative solutions to real world problems. • Building Science to Sales Translator: Simplifies building science into compelling sales language and tools to sell high performance homes to their customers. • Building Science Education Guidance: Brings together industry and academia to solve problems related to

  9. Humanizing science education

    Science.gov (United States)

    Donnelly, James F.

    2004-09-01

    This paper argues that the diverse curriculum reform agendas associated with science education are strongly and critically associated with the educational characteristics of the humanities. The article begins with a survey of interpretations of the distinctive contribution which the humanities make to educational purposes. From this survey four general characteristics of the humanities are identified: an appeal to an autonomous self with the right and capacity to make independent judgements and interpretations; indeterminacy in the subject matter of these judgements and interpretations; a focus on meaning, in the context of human responses, actions, and relationships, and especially on the ethical, aesthetic, and purposive; and finally, the possibility of commonality in standards of judgement and interpretation, under conditions of indeterminacy. Inquiry and science technology and society (STS) orientated curriculum development agendas within science education are explored in the light of this analysis. It is argued that the four characteristics identified are central to the educational purposes of these and other less prominent modes of curriculum development in science, though not unproblematically so. In the light of this discussion the prognosis and challenges for science curriculum development are explored.

  10. Science Education Research vs. Physics Education Research: A Structural Comparison

    Science.gov (United States)

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  11. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  12. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  13. Initiating New Science Partnerships in Rural Education: STEM Graduate Students Bring Current Research into 7th-12th Grade Science Classrooms

    Science.gov (United States)

    Radencic, S.; Dawkins, K. S.; Jackson, B. S.; Walker, R. M.; Schmitz, D.; Pierce, D.; Funderburk, W. K.; McNeal, K.

    2014-12-01

    Initiating New Science Partnerships in Rural Education (INSPIRE), a NSF Graduate K-12 (GK-12) program at Mississippi State University, pairs STEM graduate students with local K-12 teachers to bring new inquiry and technology experiences to the classroom (www.gk12.msstate.edu). The graduate fellows prepare lessons for the students incorporating different facets of their research. The lessons vary in degree of difficulty according to the content covered in the classroom and the grade level of the students. The focus of each lesson is directed toward the individual research of the STEM graduate student using inquiry based designed activities. Scientific instruments that are used in STEM research (e.g. SkyMaster weather stations, GPS, portable SEM, Inclinometer, Soil Moisture Probe, Google Earth, ArcGIS Explorer) are also utilized by K-12 students in the activities developed by the graduate students. Creativity and problem solving skills are sparked by curiosity which leads to the discovery of new information. The graduate students work to enhance their ability to effectively communicate their research to members of society through the creation of research linked classroom activities, enabling the 7-12th grade students to connect basic processes used in STEM research with the required state and national science standards. The graduate students become respected role models for the high school students because of their STEM knowledge base and their passion for their research. Sharing enthusiasm for their chosen STEM field, as well as the application techniques to discover new ideas, the graduate students stimulate the interests of the classroom students and model authentic science process skills while highlighting the relevance of STEM research to K-12 student lives. The measurement of the student attitudes about science is gathered from pre and post interest surveys for the past four years. This partnership allows students, teachers, graduate students, and the public to

  14. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-10-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field has not been explored. Romanticism was not only an obvious historical period, but a particular state of mind with its own extraordinary emotional sensitivity towards nature. It is especially the latter which we hope to revisit and reclaim for science education. After discussing several key historical contributions, we describe nine characteristics of `Romantic Science' in order to focus on six ideas/possibilities that we believe hold much value for transforming current science education: (1) the emotional sensitivity toward nature, (2) the centrality of sense experience, (3) the importance of "holistic experience", (4) the importance of the notions of mystery and wonder, (5) the power of science to transform people's outlook on the natural world, and (6) the importance of the relationship between science and philosophy. It is argued that in view of a pragmatist/utilitarian conception of school science prevalent today the aforementioned ideas (especially the notion of wonder and the poetic/non-analytical mode of knowledge), can provide food for thought for both science teachers and researchers seeking to work out an aesthetic conception, one that complements current approaches such as inquiry science and conceptual change.

  15. INCREASING ACHIEVEMENT AND HIGHER-EDUCATION REPRESENTATION OF UNDER-REPRESENTED GROUPS IN SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS FIELDS: A REVIEW OF CURRENT K-12 INTERVENTION PROGRAMS.

    Science.gov (United States)

    Valla, Jeffrey M; Williams, Wendy M

    2012-01-01

    The under-representation of women and ethnic minorities in Science, Technology, Engineering, and Mathematics (STEM) education and professions has resulted in a loss of human capital for the US scientific workforce and spurred the development of myriad STEM educational intervention programs. Increased allocation of resources to such programs begs for a critical, prescriptive, evidence-based review that will enable researchers to develop optimal interventions and administrators to maximize investments. We begin by providing a theoretical backdrop for K-12 STEM programs by reviewing current data on under-representation and developmental research describing individual-level social factors undergirding these data. Next, we review prototypical designs of these programs, highlighting specific programs in the literature as examples of program structures and components currently in use. We then evaluate these interventions in terms of overall effectiveness, as a function of how well they address age-, ethnicity-, or gender-specific factors, suggesting improvements in program design based on these critiques. Finally, program evaluation methods are briefly reviewed and discussed in terms of how their empirical soundness can either enable or limit our ability to delineate effective program components. "Now more than ever, the nation's changing demographics demand that we include all of our citizens in science and engineering education and careers. For the U.S. to benefit from the diverse talents of all its citizens, we must grow the pipeline of qualified, underrepresented minority engineers and scientists to fill positions in industry and academia."-Irving P. McPhail..

  16. Biofield Science: Current Physics Perspectives.

    Science.gov (United States)

    Kafatos, Menas C; Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D

    2015-11-01

    This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe.

  17. Science education standards

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, B.

    1994-12-31

    This paper describes the National Science Education Standards that are being developed at the National Research Council. The Standards are being developed for the following areas: content, teaching, assessment, program, and system. The national science standards will call for the kind of science that provides both an understanding of the basic concepts needed for success in our high technology society, and the acquisition of process skills, or the ability to proceed step by step to solve a practical problem. Science should become a core subject like reading, writing and math in grades K-12. At all levels, the material taught should be interesting, both to students and to teachers. The profession of science teaching must become an attractive one, which is possible to do well without superhuman effort. The scientific community must accept responsibility for achieving these goals.

  18. Rural Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Intress, C. [New Mexico Museum of Natural History and Science, Albuquerque, NM (United States)

    1994-12-31

    The Rural Science Education Project is an outreach program of the New Mexico Museum of Natural History and Science with the goal of helping rural elementary schools improve science teaching and learning by using local natural environmental resources. This program is based on the assumption that rural schools, so often described as disadvantaged in terms of curricular resources, actually provide a science teaching advantage because of their locale. The natural environment of mountains, forests, ponds, desert, or fields offers a context for the study of scientific concepts and skills that appeals to many youngsters. To tap these resources, teachers need access to knowledge about the rural school locality`s natural history. Through a process of active participation in school-based workshops and field site studies, teachers observe and learn about the native flora, fauna, geology, and paleontology of their community. In addition, they are exposed to instructional strategies, activities, and provided with materials which foster experimential learning. This school-museum partnership, now in its fifth year, has aided more than 800 rural teachers` on-going professional development. These educators have, in turn, enhanced science education throughout New Mexico for more than 25,000 students.

  19. Issues in Science Education: Changing Purposes of Science Education.

    Science.gov (United States)

    Williamson, Stan

    This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…

  20. Science Education and the Science-Technology-Society (S-T-S) Theme.

    Science.gov (United States)

    Bybee, Rodger W.

    1987-01-01

    Aims to clarify the relationship between science education and the science-technology-society (STS) theme and to develop a justification for the inclusion of the STS theme. Examines the current debate over definitions in science education, and provides an historical perspective of science education's purpose as a social institution. (TW)

  1. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  2. The Importance of Place in Indigenous Science Education

    Science.gov (United States)

    Sutherland, Dawn; Swayze, Natalie

    2012-01-01

    In this issue of Cultural Studies of Science Education, Mack and colleagues (Mack et al. "2011") seek to identify the necessary components of science education in Indigenous settings. Using a review of current research in informal science education in Indigenous settings, along with personal interviews with American educators engaged in…

  3. The Importance of Place in Indigenous Science Education

    Science.gov (United States)

    Sutherland, Dawn; Swayze, Natalie

    2012-01-01

    In this issue of Cultural Studies of Science Education, Mack and colleagues (Mack et al. "2011") seek to identify the necessary components of science education in Indigenous settings. Using a review of current research in informal science education in Indigenous settings, along with personal interviews with American educators engaged in these…

  4. Science and Society - Problems, issues and dilemmas in science education

    CERN Multimedia

    2001-01-01

    Next in CERN's series of Science and Society speakers is Jonathan Osborne, Senior Lecturer in Science Education at King's College London. On Thursday 26 April, Dr Osborne will speak in the CERN main auditorium about current issues in science education in the light of an ever more science-based society. Jonathan Osborne, Senior Lecturer in Science Education at King's College London. Does science deserve a place at the curriculum high table of each student or is it just a gateway to a set of limited career options in science and technology? This question leads us to an important change in our ideas of what science education has been so far and what it must be. Basic knowledge of science and technology has traditionally been considered as just a starting point for those who wanted to build up a career in scientific research. But nowadays, the processes of science, the analysis of risks and benefits, and a knowledge of the social practices of science are necessary for every citizen. This new way of looking at s...

  5. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    2015-01-01

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  6. Augmented Reality for Science Education

    DEFF Research Database (Denmark)

    Brandt, Harald; Nielsen, Birgitte Lund; Georgsen, Marianne

    Augmented reality (AR) holds great promise as a learning tool. So far, however, most research has looked at the technology itself – and AR has been used primarily for commercial purposes. As a learning tool, AR supports an inquiry-based approach to science education with a high level of student...... involvement. The AR-sci-project (Augmented Reality for SCIence education) addresses the issue of applying augmented reality in developing innovative science education and enhancing the quality of science teaching and learning....

  7. Is Religious Education Compatible with Science Education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-01-01

    Addresses the problem of the compatibility of science and religion, and its bearing on science and religious education, challenges the popular view that science and religion are compatible or complementary. Discusses differences at the doctrinal, metaphysical, methodological, and attitudinal levels. Argues that religious education should be kept…

  8. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swenson, Hakon

    2015-01-01

    and challenges related to AR enhancing student learning in science in lower secondary school were identified by expert science teachers, ICT designers and science education researchers from four countries in a Delphi survey. Findings were condensed in a framework to categorize educational AR designs....

  9. Computer Science Education in China.

    Science.gov (United States)

    Yun-Lin, Su

    1988-01-01

    Describes the history of computer science departments at universities in China. Educational principles that characterize Chinese computer science education are discussed, selection of students for universities is described, and curricula for both undergraduate and graduate computer science studies are outlined. (LRW)

  10. Computer Science Education in China.

    Science.gov (United States)

    Yun-Lin, Su

    1988-01-01

    Describes the history of computer science departments at universities in China. Educational principles that characterize Chinese computer science education are discussed, selection of students for universities is described, and curricula for both undergraduate and graduate computer science studies are outlined. (LRW)

  11. Environmental Education: New Era for Science Education.

    Science.gov (United States)

    Taskin, Ozgur

    This paper presents the history of environmental education with regard to major issues, theories, and goals; environmental education in science education curriculum; and inquiry-based approaches. An example for environmental education curriculum content and an example inquiry laboratory for environmental education are included. (KHR)

  12. Education in space science

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  13. Scientists Interacting With University Science Educators

    Science.gov (United States)

    Spector, B. S.

    2004-12-01

    about eighteen hours in a natural science. Their doctorates in science education include in-depth understanding of how people construct basic science concepts and ways to mitigate conceptions not consistent with current science. They have learned ways to transform scientific information to various audiences enabling learners to construct meaningful understanding of science phenomena, the nature of science, and its historical and philosophical underpinnings. Lessons learned from current and past innovations will be presented.

  14. Antonio Gramsci, Education and Science

    Science.gov (United States)

    Balampekou, Matina; Floriotis, Georgis

    2012-01-01

    This paper explores how the ideas of a great political thinker and philosopher Antonio Gramsci, are relevant to education and science and to critical science education. One of the main points in Gramsci's analysis is the social value and impact of certain aspects of the superstructure. He understands that education is a means which can be used for…

  15. Nevada Underserved Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  16. Earth Science Education in Sudan

    Science.gov (United States)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  17. Reconceptualising inquiry in science education

    Science.gov (United States)

    Bevins, Stuart; Price, Gareth

    2016-01-01

    Decades of discussion and debate about how science is most effectively taught and learned have resulted in a number of similar but competing inquiry models. These aim to develop students learning of science through approaches which reflect the authenticity of science as practiced by professional scientists while being practical and manageable within the school context. This paper offers a collection of our current reflections and suggestions concerning inquiry and its place in science education. We suggest that many of the current models of inquiry are too limited in their vision concerning themselves, almost exclusively, with producing a scaffold which reduces the complex process of inquiry into an algorithmic approach based around a sequence of relatively simple steps. We argue that this restricts students' experience of authentic inquiry to make classroom management and assessment procedures easier. We then speculate that a more integrated approach is required through an alternative inquiry model that depends on three dimensions (conceptual, procedural and personal) and we propose that it will be more likely to promote effective learning and a willingness to engage in inquiry across all facets of a students' school career and beyond.

  18. Science Education in Bhutan: Issues and challenges

    Science.gov (United States)

    Childs, Ann; Tenzin, Wangpo; Johnson, David; Ramachandran, Kiran

    2012-02-01

    Science education in a developing country is pivotal in the developmental process. Bhutan, like other developing countries, places great importance in institutionalising a relevant and challenging science curriculum for all of its school-aged children. A number of factors have made the review of the science curriculum in Bhutan a priority including international debates about scientific literacy and the changing time and needs of Bhutanese society and its students. This article reports on the findings of a study to investigate the present status and challenges of the current science curriculum from interviews with teachers, students, and other key stakeholders such as higher education lecturers and employers. The study also draws on observations of science classes and key curriculum documents. This study was conducted as a prelude to the major science curriculum reform prioritised in the government's 10th Five Year Plan (2008-2012) in order to provide a research informed perspective for science curriculum development. The findings from the research are reported here and show a number of positive issues in science education including good student motivation in lower classes. Challenges are identified including issues of teacher development, resourcing, and fragmentation and discontinuity in the current curriculum. These issues and challenges are discussed in the light of literature on science education in developing countries.

  19. [Educational science, 'the hardest science of all'].

    Science.gov (United States)

    van Tartwijk, J; Driessen, E W; van der Vleuten, C P M; Wubbels, T

    2012-06-01

    Educational research not only showed that student characteristics are of major importance for study success, but also that education does make a difference. Essentially, teaching is about stimulating students to invest time in learning and to use that time as effectively as possible. Assessment, goal-orientated work, and feedback have a major effect. The teacher is the key figure. With the aim to better understand teaching and learning, educational researchers usefindingsfrom other disciplines more and more often. A pitfall is to apply the findings of educational research without taking into consideration the context and the specific characteristics of students and teachers. Because of the large number offactors that influence the results ofeducation, educational science is referred as 'the hardest science of all'.

  20. Gender Equity in Science Education

    Science.gov (United States)

    Hall, Johanna R.

    2011-01-01

    The dearth of females in high-level science courses and professions is a well-documented phenomenon in modern society. Inequality in science instruction is a crucial component to the under representation of females in science. This paper provides a review of current literature published concerning gender inequality in K-12 science instruction.…

  1. Desettling Expectations in Science Education

    Science.gov (United States)

    Bang, M.; Warren, B.; Rosebery, A. S.; Medin, D.

    2012-01-01

    Calls for the improvement of science education in the USA continue unabated, with particular concern for the quality of learning opportunities for students from historically nondominant communities. Despite many and varied efforts, the field continues to struggle to create robust, meaningful forms of science education. We argue that "settled…

  2. Blended Learning Improves Science Education.

    Science.gov (United States)

    Stockwell, Brent R; Stockwell, Melissa S; Cennamo, Michael; Jiang, Elise

    2015-08-27

    Blended learning is an emerging paradigm for science education but has not been rigorously assessed. We performed a randomized controlled trial of blended learning. We found that in-class problem solving improved exam performance, and video assignments increased attendance and satisfaction. This validates a new model for science communication and education.

  3. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1987

    1987-01-01

    Provides perspectives and background information on selected aspects of science instruction. Addresses concerns related to physics teaching, academic assessment, problem-solving, integrated science, readability, college science for pre-nursing students, and a graded assessment scheme. (ML)

  4. Science Education After Dainton

    Science.gov (United States)

    Keohane, Kevin

    1969-01-01

    The Dainton committee indicated that science must not be directed simply at the committed students. Curriculum changes, including those related to teaching science as a unity, could have a profound effect in making science more attractive and relevant. (JK)

  5. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  6. Multicultural Science Education and Curriculum Materials

    Science.gov (United States)

    Atwater, Mary M.

    2010-01-01

    This article describes multicultural science education and explains the purposes of multicultural science curricula. It also serves as an introductory article for the other multicultural science education activities in this special issue of "Science Activities".

  7. Multiculturalism, universalism, and science education

    Science.gov (United States)

    Stanley, William B.; Brickhouse, Nancy W.

    Multiculturalists have recently raised a number of important challenges to the school curriculum, including whose knowledge are we teaching? and who benefits and loses by existing approaches to the curriculum? In this article we examine a number of issues in this debate that are of primary importance to science educators. These issues include: (1) problems with the universalist account of the nature of science that has been the most powerful defense against multiculturalism; (2) an examination of some historical cases that illuminate the consequences of maintaining a universalist perspective on science; and (3) an argument for a multicultural perspective on scientific knowledge. These issues are examined in the context of a national science education reform in which there is considerable consensus that the science curriculum should include teaching about the nature of science. We argue that the nature of science taught in school should reflect a multicultural perspective on scientific knowledge.

  8. Business involvement in science education

    Energy Technology Data Exchange (ETDEWEB)

    Winter, P. [General Atomics, San Diego, CA (United States)

    1995-12-31

    Science and math education in grades K through 12 directly affects America`s ability to meet tomorrow`s challenges. If America is to stay competitive in the world, we will need highly qualified scientists and engineers in industry and government and at universities. Jobs of the future will require greater technical and mathematical literacy than jobs of the past. Our goal is both to improve the quality of science education and to encourage more students to pursue science careers. General Atomics, a privately held research and development company, has joined the growing list of businesses that are committed to helping educators prepare students to meet these challenges.

  9. Preparing informal science educators perspectives from science communication and education

    CERN Document Server

    2017-01-01

    This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, ...

  10. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    of science and mathematics education in the current information society and provides insight essential for developing possibilities to improve science and mathematics education in universities all around the world. The uniquely broad treatment offered by University Science and Mathematics Education......More than ever, our time is characterized by rapid changes in the organization and the production of knowledge. This movement is deeply rooted in the evolution of the scientific endeavor, as well as in the transformation of the political, economic and cultural organization of society It is also...... clear that the transformation of knowledge outside universities has implied a change in the routes that research in mathematics, science and technology has taken in the last decades. In this context, it is difficult to avoid considering seriously the challenges that such a complex and uncertain social...

  11. Is religious education compatible with science education?

    Science.gov (United States)

    Mahner, Martin; Bunge, Mario

    1996-04-01

    This paper tackles a highly controversial issue: the problem of the compatibility of science and religion, and its bearing on science and religious education respectively. We challenge the popular view that science and religion are compatible or even complementary. In order to do so, we give a brief characterization of our conceptions of science and religion. Conspicuous differences at the doctrinal, metaphysical, methodological and attitudinal level are noted. Regarding these aspects, closer examination reveals that science and religion are not only different but in fact incompatible. Some consequences of our analysis for education as well as for education policy are explored. We submit that a religious education, particularly at an early age, is an obstacle to the development of a scientific mentality. For this and other reasons, religious education should be kept away from public schools and universities. Instead of promoting a religious world view, we should teach our children what science knows about religion, i.e., how science explains the existence of religion in historical, biological, psychological and sociological terms.

  12. Problems with German Science Education

    Science.gov (United States)

    Riess, Falk

    The main problems of science (especially physics) teaching in Germany are students'' lack of interest and motivation in the subject, their poor understanding of scientific concepts, ideas, methods,and results, and their lack of comprehension of the social, political, and epistemological role of science. These circumstances result in a growing `scientific illiteracy'' of the population and adecline in democratic quality concerning decision making processes about scientific and technological projects. One means of improving this situation lies in the use of history and philosophy of science in science teaching. School science curricula and textbooks neglect almost completely the importance of history and philosophy of science. In this paper, the main empirical results concerning motivation and knowledge are given. Some examples from science curricula and textbooks are presented, and some of the few reform projects in Germany are listed. As a consequence a compensatory program is proposed in order to create the prerequisites for raising science education in Germany to an international standard.

  13. Science education in a multiscience perspective

    Science.gov (United States)

    Ogawa, Masakata

    The effects of the multiculturalism movement have emerged, especially in the West, in the form of multicultural science education. Multiculturalism can be a powerful and significant tool to reflect on science education and to improve classroom practices. However, this article argues that a multiscience perspective on science education affords richer implications for reflection and practice. A multiscience perspective recognizes the existence of various types of science at play in all science classrooms, especially personal science, indigenous science, and Western modem science.

  14. Constructivism, Education, Science, and Technology

    Science.gov (United States)

    Boudourides, Moses A.

    2003-01-01

    The purpose of this paper is to present a brief review of the various streams of constructivism in studies of education, society, science and technology. It is intended to present a number of answers to the question (what really is constructivism?) in the context of various disciplines from the humanities and the sciences (both natural and…

  15. Science Education in Arab States: Bright Future or Status Quo?

    Science.gov (United States)

    Dagher, Zoubeida R.; BouJaoude, Saouma

    2011-01-01

    This paper describes the current state of science education in Arab states and anticipates some of the challenges faced by those states as they reform their science education. After discussing problems of illiteracy, access and quality we provide contextual information about the structure of the educational systems and describe recent efforts to…

  16. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  17. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  18. Science Education and Worldview

    Science.gov (United States)

    Keane, Moyra

    2008-01-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative…

  19. Science in early childhood education

    DEFF Research Database (Denmark)

    Broström, Stig

    2015-01-01

    Based on an action research project with 12 preschools in a municipality north of Copenhagen the article investigates and takes a first step in order to create a preschool science Didaktik. The theoretical background comprises a pedagogical/didactical approach based on German critical constructive...... Bildung Didaktik, and a learning approach based on a Vygotskian cultural-historical activity theory. A science-oriented dynamic contextual didactical model was developed as a tool for educational thinking and planning. The article presents five educational principles for a preschool science Didaktik...

  20. Knowledge, Belief, and Science Education

    Science.gov (United States)

    Ferreira, Tiago Alfredo S.; El-Hani, Charbel N.; da Silva-Filho, Waldomiro José

    2016-10-01

    This article intends to show that the defense of "understanding" as one of the major goals of science education can be grounded on an anti-reductionist perspective on testimony as a source of knowledge. To do so, we critically revisit the discussion between Harvey Siegel and Alvin Goldman about the goals of science education, especially where it involves arguments based on the epistemology of testimony. Subsequently, we come back to a discussion between Charbel N. El-Hani and Eduardo Mortimer, on the one hand, and Michael Hoffmann, on the other, striving to strengthen the claim that rather than students' belief change, understanding should have epistemic priority as a goal of science education. Based on these two lines of discussion, we conclude that the reliance on testimony as a source of knowledge is necessary to the development of a more large and comprehensive scientific understanding by science students.

  1. Science Identity in Informal Education

    Science.gov (United States)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated

  2. RECONCILE THE RELIGION AND SCIENCE EDUCATION MANAGEMENT IN ISLAM

    Directory of Open Access Journals (Sweden)

    Syamsul Kurniawan

    2015-06-01

    Full Text Available This research is aimed to reconcile science and religion, and to seek its relevance in the management of non-dichotomous Islamic education.In addition, this research departs from the researcher’s anxiety in response to the dichotomous thought between religion and science which in turn manifests in the separation of science and religion in the history of Islamic education management. This results in the current Islamic education that suffers a setback in the development of science. Therefore, in the management of Islamic education, reintegration needs to be done without any dichotomy between religion and science.

  3. Trends in Computational Science Education

    Science.gov (United States)

    Landau, Rubin

    2002-08-01

    Education in computational science and engineering (CSE) has evolved through a number of stages, from recognition in the 1980s to its present early growth. Now a number of courses and degree programs are being designed and implemented at both the graduate and undergraduate levels, and students are beginning to receive degrees. This talk will discuss various aspects of this development, including the impact on faculty and students, the nature of the job market, the intellectual content of CSE education, and the types of programs and degrees now being offered. Analytic comparisons will be made between the content of Physics degrees versus those of other disciplines, and reasons for changes should be apparent. This talk is based on the papers "Elements of Computational Science Education" by Osman Yasar and Rubin Landau, and "Computational Science Education" by Charles Swanson.

  4. Scientific Literacy and Thailand Science Education

    Science.gov (United States)

    Yuenyong, Chokchai; Narjaikaew, Pattawan

    2009-01-01

    Education and political leaders worldwide are increasingly placing emphasis on developing scientific literacy. This also is the case in Thailand with science education influenced by educational reform in 1999, in which the goals of science education are shaped by the notion of scientific literacy. Thai science education emphasizes the scientific…

  5. Education science and biological anthropology.

    Science.gov (United States)

    Krebs, Uwe

    2014-01-01

    This contribution states deficits and makes proposals in order to overcome them. First there is the question as to why the Biological Anthropology--despite all its diversifications--hardly ever deals with educational aspects of its subject. Second it is the question as to why Educational Science neglects or even ignores data of Biological Anthropology which are recognizably important for its subject. It is postulated that the stated deficits are caused by several adverse influences such as, the individual identity of each of the involved single sciences; aspects of the recent history of the German Anthropology; a lack of conceptual understanding of each other; methodological differences and, last but not least, the structure of the universities. The necessity to remedy this situation was deduced from two groups of facts. First, more recent data of the Biological Anthropology (e.g. brain functions and learning, sex specificity and education) are of substantial relevance for the Educational Science. Second, the epistemological requirements of complex subjects like education need interdisciplinary approaches. Finally, a few suggestions of concrete topics are given which are related to both, Educational Science and Biological Anthropology.

  6. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  7. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    2013-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  8. Diversity and Equity in Science Education: Research, Policy, and Practice. Multicultural Education Series

    Science.gov (United States)

    Lee, Okhee; Buxton, Cory A.

    2010-01-01

    Two leading science educators provide a comprehensive, state-of-the-field analysis of current trends in the research, policy, and practice of science education. This book offers valuable insights into why gaps in science achievement among racial, ethnic, cultural, linguistic, and socioeconomic groups persist, and points toward practical means of…

  9. The Case for Improving U.S. Computer Science Education

    Science.gov (United States)

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  10. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  11. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  12. [Museums, science, and education: new challenges].

    Science.gov (United States)

    Valente, Maria Esther; Cazelli, Sibele; Alves, Fátima

    2005-01-01

    The article discusses how the social role of science museums is shaped by scientific and technological endeavor, society's demands, and educational issues, above all in negotiations with a museum's audiences. The text also analyzes the trajectory taken by Brazil's science museums in their process of consolidation and the changes current society has imposed on these institutes. Communication has become the center of the discussion on museum culture, particularly in that it adjusts the educational aspect according to the conception of social practices, which are deemed fundamental resources. Lastly, the article examines the incorporation of the ideas of 'risk' and 'uncertainty', produced by science, into this new way of thinking about museums, which values the public and the communication processes.

  13. Blogs: Applications in Science Education

    Science.gov (United States)

    Brownstein, Erica; Klein, Robert

    2006-01-01

    Blogs are reshaping our political, social, and cultural environment. Education is affected by blogs because of their potential for learning and teaching, and also their risks. This article elaborates a set of rules for evaluating and implementing blogs in teaching college science. (Contains 5 figures.)

  14. The Utopia of Science Education

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    In this forum I expand on the ideas I initially presented in "Extending the purposes of science education: addressing violence within socio-economic disadvantaged communities" by responding to the comments provided by Matthew Weinstein, Francis Broadway and Sheri Leafgren. Focusing on their notion of utopias and superheroes, I ask us to reconsider…

  15. Artificial intelligence and science education

    Science.gov (United States)

    Good, Ron

    Artificial intelligence (AI) is defined and related to intelligent computer-assisted instruction (ICAI) and science education. Modeling the student, the teacher, and the natural environment are discussed as important parts of ICAI and the concept of microworlds as a powerful tool for science education is presented. Optimistic predictions about ICAI are tempered with the complex, persistent problems of: 1) teaching and learning as a soft or fuzzy knowledge base, 2) natural language processing, and 3) machine learning. The importance of accurate diagnosis of a student's learning state, including misconceptions and naive theories about nature, is stressed and related to the importance of accurate diagnosis by a physician. Based on the cognitive science/AI paradigm, a revised model of the well-known Karplus/Renner learning cycle is proposed.

  16. Food science instruction in undergraduate dietetic education.

    Science.gov (United States)

    Deskins, B B; Spicher, C B

    1989-09-01

    To assess the current status of food science instruction in undergraduate dietetic education, a survey was conducted of those persons responsible for teaching this subject in 267 Plan IV and 65 Coordinated Undergraduate Programs. Responses were received from 155 institutions offering a total of 177 programs. Factors examined included the number and academic background of faculty members teaching food science, the structure of the first course in food science, the structure of advanced food science courses required or offered to undergraduate dietetic students, and perceived adequacy of course content. Fifty-eight percent of the respondents had or were candidates for doctoral degrees, and 37% had master's degrees. The results indicated that although all programs offered a beginning course in food science, the required prerequisites and level of difficulty of subject matter varied. Fifty-three percent of the programs required at least one advanced food science course. More than 95% of both beginning and advanced courses are structured to include both lecture and laboratory. Although a majority of respondents indicated satisfaction with the adequacy of course content currently being offered, many made recommendations for improvements. Other concerns included difficulty in locating textbooks and other suitable instructional materials, isolation from others teaching food science, and a lack of standards for content to be included in basic and advanced courses.

  17. Administrators' perspectives of support for elementary science education

    Science.gov (United States)

    Hanegan, Nikki Notias

    This investigation examines administrators' perspectives of support for elementary science education through naturalistic inquiry methodologies. Determining how administrators, as instructional leaders, define and demonstrate support for innovative reform in one curriculum area, specifically in science, has a direct impact on teacher effectiveness to implement change and new curricula into classrooms. Six major areas of current literature were reviewed for this study. They were (1) the need for Elementary Science Education, (2) the current status of Elementary Science Education, (3) the need for science professional development, (4) key components for effective professional development implementation, (5) leadership for elementary science education, and (6) administrative support. These critical issues were selected to deepen the understanding and purpose of this study. As a result of emergent interviews, five major themes developed from this study. They are: (1) knowledge of science instruction and implementation, (2) demonstration of administrative leadership to promote science education, (3) providing necessary resources or materials, (4) providing professional development opportunities, and (5) fostering teacher leadership for science instruction. These themes are discussed with supporting evidence from respondent interviews and verified through teacher interviews, newsletters, web sites, school observations, or curriculum sources. Administrative support for elementary science education is defined as action taken to ascertain that students are receiving quality science instruction. Chapter Five includes a discussion on the effectiveness of managers versus leaders in science education reform. Administrators need more direct involvement and participation in professional development aimed at science education to develop leadership skills, science content knowledge, and tools necessary to develop leaders for future district and school planning to implement science

  18. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  19. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-01-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be…

  20. Rethinking Science Education: Meeting the Challenge of "Science for All"

    Science.gov (United States)

    Millar, Robin

    2012-01-01

    This article presents the author's Presidential Address delivered to the Association for Science Education Annual Conference, University of Liverpool, January 2012. "Science for all" has been an aspiration of the Association for Science Education and the organisations from which it evolved for almost a century. It has, however, proved an elusive…

  1. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  2. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  3. Leadership, Responsibility, and Reform in Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1993-01-01

    Regards leadership as central to the success of the reform movement in science education. Defines leadership and introduces a model of leadership modified from the one developed by Edwin Locke and his associates. Provides an overview of the essential qualities of leadership occurring in science education. Discusses reforming science education and…

  4. Innovation in Science Education - World-Wide.

    Science.gov (United States)

    Baez, Albert V.

    The purpose of this book is to promote improvements in science education, world-wide, but particularly in developing countries. It is addressed to those in positions to make effective contributions to the improvement of science education. The world-wide role of science education, the goals of innovative activities, past experience in efforts to…

  5. Diversity and equity in science education research, policy, and practice

    CERN Document Server

    Lee, Okhee

    2010-01-01

    Provides a comprehensive, state-of-the-field analysis of current trends in the research, policy, and practice of science education. It offers valuable insights into why gaps in science achievement among racial, ethnic, cultural, linguistic, and socioeconomic groups persist, and points toward practical means of narrowing or eliminating these gaps. Lee and Buxton examine instructional practices, science-curriculum materials, assessment, teacher education, school organization, and home-school connections.

  6. The National Centers for Ocean Sciences Education Excellence Network: Building Bridges Between Ocean Scientists and Science Education

    Science.gov (United States)

    Scowcroft, G.; Hotaling, L. A.

    2009-12-01

    Since 2002 the National Centers for Ocean Sciences Education Excellence (COSEE) Network, funded by the National Science Foundation with support from the National Oceanic and Atmospheric Administration, has worked to increase the understanding of the ocean and its relevance to society. The Network is currently comprised of twelve Centers located throughout the United States and a Central Coordinating Office. COSEE focuses on innovative activities that transform and broaden participation in the ocean science education enterprise. A key player in the national ocean literacy movement, COSEE’s objectives are to develop partnerships between ocean scientists and educators and foster communication and coordination among ocean science education programs nationwide. COSEE has grown into the nation's most comprehensive ocean science and education network with over 200 partners, including universities and research institutions, community colleges, school districts, informal science education institutions, and state/federal agencies. Each Center is a consortium of one or more ocean science research institutions, informal science education organizations, and formal education entities. The mission of the National COSEE Network is to engage scientists and educators to transform ocean sciences education. Center activities include the development of catalytic partnerships among diverse institutions, the integration of ocean science research into high-quality educational materials, and the establishment of pathways that enable ocean scientists to interact with educators, students, and the public. In addition to the work and projects implemented locally and regionally by the Centers, Network-level efforts occur across Centers, such as the national promotion of Ocean Literacy Principals and encouragement of our nation’s youth to pursue ocean related areers. This presentation will offer several examples of how the National COSEE Network is playing an important and evolving role in

  7. Rocket Science 101 Interactive Educational Program

    Science.gov (United States)

    Armstrong, Dennis; Funkhouse, Deborah; DiMarzio, Donald

    2007-01-01

    To better educate the public on the basic design of NASA s current mission rockets, Rocket Science 101 software has been developed as an interactive program designed to retain a user s attention and to teach about basic rocket parts. This program also has helped to expand NASA's presence on the Web regarding educating the public about the Agency s goals and accomplishments. The software was designed using Macromedia s Flash 8. It allows the user to select which type of rocket they want to learn about, interact with the basic parts, assemble the parts to create the whole rocket, and then review the basic flight profile of the rocket they have built.

  8. Extending the Purposes of Science Education: Addressing Violence within Socio-Economic Disadvantaged Communities

    Science.gov (United States)

    Castano, Carolina

    2012-01-01

    Current discourses about science education show a wide concern towards humanisation and a more socio-cultural perspective of school science. They suggest that science education can serve diverse purposes and be responsive to social and environmental situations we currently face. However, these discourses and social approaches to science education…

  9. Tutorial Instruction in Science Education

    Directory of Open Access Journals (Sweden)

    Rhea Miles

    2015-06-01

    Full Text Available The purpose of the study is to examine the tutorial practices of in-service teachers to address the underachievement in the science education of K-12 students. Method: In-service teachers in Virginia and North Carolina were given a survey questionnaire to examine how they tutored students who were in need of additional instruction. Results: When these teachers were asked, “How do you describe a typical one-on-one science tutorial session?” the majority of their responses were categorized as teacher-directed. Many of the teachers would provide a science tutorial session for a student after school for 16-30 minutes, one to three times a week. Respondents also indicated they would rely on technology, peer tutoring, scientific inquiry, or themselves for one-on-one science instruction. Over half of the in-service teachers that responded to the questionnaire stated that they would never rely on outside assistance, such as a family member or an after school program to provide tutorial services in science. Additionally, very few reported that they incorporated the ethnicity, culture, or the native language of ELL students into their science tutoring sessions.

  10. Trends in Information Science Education.

    Science.gov (United States)

    Fosdick, Howard

    1984-01-01

    Surveys were performed in 1977 and 1982 to determine trends in graduate library and information science instruction in five main course categories: library automation, information storage and retrieval, systems analysis, interactive computer systems, and programing. Results of analyses of school course catalogs are compared and current trends are…

  11. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  12. Between understanding and appreciation. Current science communication in Denmark

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  13. Nanotechnology and Nanoscale Science: Educational challenges

    Science.gov (United States)

    Jones, M. Gail; Blonder, Ron; Gardner, Grant E.; Albe, Virginie; Falvo, Michael; Chevrier, Joel

    2013-06-01

    Nanotechnology has been touted as the next 'industrial revolution' of our modern age. In order for successful research, development, and social discourses to take place in this field, education research is needed to inform the development of standards, course development, and workforce preparation. In addition, there is a growing need to educate citizens and students about risks, benefits, and social and ethical issues related to nanotechnology. This position paper describes the advancements that have been made in nanoscale science and nanotechnology, and the challenges that exist to educate students and the public about critical nanoscience concepts. This paper reviews the current research on nanotechnology education including curricula, educational programs, informal education, and teacher education. Furthermore, the unique risks, benefits and ethics of these unusual technological applications are described in relation to nanoeducation goals. Finally, we outline needed future research in the areas of nanoscience content, standards and curricula, nanoscience pedagogy, teacher education, and the risks, benefits, and social and ethical dimensions for education in this emerging field.

  14. Effecting change in elementary school science education

    Energy Technology Data Exchange (ETDEWEB)

    Parravano, C.

    1994-12-31

    The mission of the Merck Institute for Science Education is to improve the quality of science education during the formative years of kindergarten through eighth grade. To accomplish this mission, the Institute has three primary goals: Transform the teaching of science to communicate the excitement and relevance of science; Reform the education of teachers to instill in tomorrow`s teachers an understanding and appreciation of science; and Create a consensus on the importance of elementary science education among leaders in education, business, and science. Merck has made a minimum ten year commitment of funding and resources to the Institute. The Institute will work very closely with faculty, administration, and community leaders in target school districts to enhance science education in the elementary grades of their schools. Once the Institute`s goals have been achieved in these initial partner districts, the Institute will replicate its programs in other districts.

  15. Democratizing science and technology education: Perspectives from the philosophy of education

    Science.gov (United States)

    Pierce, Clayton Todd

    This study examines conceptualizations of science and technology and their relation to ideas of democratic education in the history of philosophy of education. My genealogical analysis begins by tracing the anti-democratic emergence of ideas and values of science and technology that have evolved through ancient and modern periods within the philosophy of education and continue to shape the ways science and technology are understood and treated in educational settings. From my critical engagement with Plato's Republic and Rousseau's Emile, I argue that anti-democratic structures and values have been embedded in philosophy of education through Plato's educational theory of techne and Rousseau's pedagogical theory that involves science and technology as important educational force. Following this theme, I analyze the work of John Dewey and Herbert Marcuse and their shared project for democratizing science and technology through education. Through a critical comparison of both theorists' models, I suggest that each provides positive legacies for philosophy of education to draw upon in rethinking the intersection of science, technology, and education: a strong model for understanding public problems associated with a highly technological and scientific society and a reconstructive framework for values and sensibilities that demands a new value relationship to be developed between humans and science and technology. Finally, I situate my critique and assessment of this history in the philosophy of education within the current science and technology education reform movement in the United States. I claim that the official models of science and technological literacy and inquiry, as constructed by the National Academy of Sciences and a host of governmental policies, shape science and technology education with a decidedly neo-liberal focus and purpose. In response to this anti-democratic movement I offer an alternative position that utilizes a counter-epistemology to the

  16. Science and Religion: Implications for Science Educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-01-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western…

  17. "Science ... is doing something dangerous" : an international perspective on science education and teaching

    OpenAIRE

    Gillian Elaine Bieniek

    2011-01-01

    Science education and teaching is currently under worldwide scrutiny. Results from international studies, as well as from individual country’s own findings, have highlighted the need for such attention. Also, many countries are experiencing difficulties including a decreasing enthusiasm for science amongst students, a decline in the number of students pursuing careers in the field of Science, Technology, Engineering and Mathematics (STEM), and a shortage of science teachers. Furthermore, scie...

  18. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-08-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on education changed; you may think of quite different schools of philosophy, from Marxist or positivist to such exotic but at some places influential philosophic positions like that of Rudolph Steiner; of course, you may limit the subject to special fields like epistemology, theory of scientific methodology, or, what has become fashionable recently, sociology of knowledge which may have a considerable bearing on physics teaching (Collins and Shapin 1983; Jung 1985). Again we may think of the topic treated by a philosopher, a scientist, an educationalist, a teacher, which would mean quite a difference. I am trying here to speak as an educationalist, with the physics teacher in mind: this is my vocational perspective as someone who educates physics teachers. Of course, our main concern is the contribution of science, especially physics, to general education, which integrates many of the special topics mentioned. Philosophy of science comes in because it is not at all clear what science and physics is, and what of it should be taught, and how such chosen parts should be taught. I also take this opportunity to give an idea of the longstanding tradition of this discussion in Germany, connected with names like Wagenshein, Litt, Heisenberg and many others.

  19. If Multicultural Science Education Standards' Existed, What Would They Look Like?

    Science.gov (United States)

    Ferguson, Robert

    2008-12-01

    The intersection between science teacher education and multiculturalism has produced a considerable amount of research in the science education community. This paper suggests, according to current science teacher preparation literature, an initial set of multicultural science education standards for science methods course instructors of preservice teachers: dialogic conversation, authentic activities, reflexivity, ability, committed practice, and knowing. Included in the discussion of each standard is an activity or lesson that a science methods course instructor can implement.

  20. Spatial Thinking in Atmospheric Science Education

    Science.gov (United States)

    McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.

    2016-12-01

    Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple

  1. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  2. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  3. Historical Approaches in German Science Education

    Science.gov (United States)

    Heering, Peter

    2014-01-01

    Particularly in the second half of the 20th century, historical approaches became relevant in science education. This development can at least in part be explained with the growing awareness of the importance to address Nature of Science aspects in science education. In comparison to the international publications, some particularities can be…

  4. Persuasion and Attitude Change in Science Education.

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    1992-01-01

    Persuasion is presented as it may be applied by science educators in research and practice. The orientation taken is that science educators need to be acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness as a mechanism for developing and changing science-related attitudes. (KR)

  5. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-03-05

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education.

  6. Earth Science Education in Zimbabwe

    Science.gov (United States)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  7. The Mystery in Science: A Neglected Tool for Science Education

    Science.gov (United States)

    Papacosta, Pangratios

    2008-01-01

    Of the many valuable tools available to science education, the mystery in science is the one that is most ignored, underused, or misunderstood. whenever it is used, it is only as mere entertainment or as an attention grabber. In this article, the author discusses how the mystery in science can improve student attitudes, generate a life-long…

  8. Education for Computational Science and Engineering

    CERN Document Server

    Grcar, Joseph F

    2011-01-01

    Computational science and engineering (CSE) embodies President Obama's challenge for the future, "ours to win." For decades, CSE has been misunderstood to require massive computers, whereas breakthroughs in CSE have historically been the mathematical programs of computing rather than the machines themselves. Whether scientists and engineers become inventors who make these breakthroughs depends on circumstances and their educations. The USA currently has the largest CSE professorate, but the data suggest this prominence is ephemeral. Just one-third of the universities with very high research activity have formal programs for CSE education, and many smaller countries with strong manufacturing sectors have more CSE educators per capita. Considering the contributions that CSE has made which enable all manner of commercial, consumer, medical, military, and scientific devices and the associated industries, the future appears to be ours to lose.

  9. Discovering Science Education in the USA

    Science.gov (United States)

    Teaching Science, 2014

    2014-01-01

    Science is amazing for many reasons. One of them is its immeasurable size as a subject, and the breadth of its application. From nanotech to astrophysics, from our backyards to the global arena, science links everything and everyone on Earth. Our understanding of science--and science education--needs to be just as diverse and all-encompassing.…

  10. Understanding current causes of women's underrepresentation in science.

    Science.gov (United States)

    Ceci, Stephen J; Williams, Wendy M

    2011-02-22

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings.

  11. Reconceptualizing the Nature of Science for Science Education

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-03-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach (FRA), originally developed by Irzik and Nola (International handbook of research in history, philosophy and science teaching. Springer, Dordrecht, pp 999-1021, 2014) in which they view science as a cognitive-epistemic and as an institutional-social system. The conceptual basis of the expanded FRA is described and justified in this article based on a detailed account published elsewhere (Erduran and Dagher in Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Springer, Dordrecht, 2014a). The expanded FRA provides a useful framework for organizing science curriculum and instruction and gives rise to generative visual tools that support the implementation of a richer understanding of and about science. The practical implications for this approach have been incorporated into analysis of curriculum policy documents, curriculum implementation resources, textbook analysis and teacher education settings.

  12. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research Grant Programs; Notice Inviting Applications... support education research and special education research. The Director takes this action under the...

  13. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  14. Between understanding and appreciation. Current science communication in Denmark

    OpenAIRE

    Kristian Hvidtfelt Nielsen.

    2005-01-01

    In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of sci...

  15. The role of science education in education for the environment

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, A.M.

    Although it is commonly believed that environmental education requires input from several disciplines, including science, there is little evidence that science education has made a successful contribution to the preservation of the environment. Some of the literature relating science and environmental education is reviewed. The belief that environmental education should focus on the development of attitudes as its major goal is probably the most pervasive position in the literature. (29 references)

  16. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  17. University Science and Mathematics Education in Transition

    DEFF Research Database (Denmark)

    Skovsmose, Ole; Valero, Paola; Christensen, Ole Ravn

    configuration poses to scientific knowledge, to universities and especially to education in mathematics and science. Traditionally, educational studies in mathematics and science education have looked at change in education from within the scientific disciplines and in the closed context of the classroom...... clear that the transformation of knowledge outside universities has implied a change in the routes that research in mathematics, science and technology has taken in the last decades. In this context, it is difficult to avoid considering seriously the challenges that such a complex and uncertain social...... of educational, cultural, administrative and ideological views and practices that permeate and constitute science and mathematics education in universities today. University Science and Mathematics Education in Transition contributes to an understanding of the multiple aspects and dimensions of the transition...

  18. Communicating Ocean Sciences College Courses: Science Faculty and Educators Working and Learning Together

    Science.gov (United States)

    Halversen, C.; Simms, E.; McDonnell, J. D.; Strang, C.

    2011-12-01

    As the relationship between science and society evolves, the need for scientists to engage and effectively communicate with the public about scientific issues has become increasingly urgent. Leaders in the scientific community argue that research training programs need to also give future scientists the knowledge and skills to communicate. To address this, the Communicating Ocean Sciences (COS) series was developed to teach postsecondary science students how to communicate their scientific knowledge more effectively, and to build the capacity of science faculty to apply education research to their teaching and communicate more effectively with the public. Courses are co-facilitated by a faculty scientist and either a K-12 or informal science educator. Scientists contribute their science content knowledge and their teaching experience, and educators bring their knowledge of learning theory regarding how students and the public make meaning from, and understand, science. The series comprises two university courses for science undergraduate and graduate students that are taught by ocean and climate scientists at approximately 25 universities. One course, COS K-12, is team-taught by a scientist and a formal educator, and provides college students with experience communicating science in K-12 classrooms. In the other course, COSIA (Communicating Ocean Sciences to Informal Audiences), a scientist and informal educator team-teach, and the practicum takes place in a science center or aquarium. The courses incorporate current learning theory and provide an opportunity for future scientists to apply that theory through a practicum. COS addresses the following goals: 1) introduce postsecondary students-future scientists-to the importance of education, outreach, and broader impacts; 2) improve the ability of scientists to communicate science concepts and research to their students; 3) create a culture recognizing the importance of communicating science; 4) provide students and

  19. Research Methodologies in Science Education: Qualitative Data.

    Science.gov (United States)

    Libarkin, Julie C.; Kurdziel, Josepha P.

    2002-01-01

    Introduces the concepts and terminology of qualitative research methodologies in the context of science education. Discusses interviewing, observing, validity, reliability, and confirmability. (Author/MM)

  20. Reforming Science and Mathematics Education

    Science.gov (United States)

    Lagowski, J. J.

    1995-09-01

    Since 1991, the National Science Foundation has signed cooperative agreements with 26 states to undertake ambitious and comprehensive initiatives to reform science, mathematics, and technology education. Collectively, those agreements are known as the State Systemic Initiatives (SSI's). Two complimentary programs, The Urban and Rural Systemic Initiatives (USI's and RSI's), address similar reforms in the nation's largest cities and poorest rural areas. The SSI Program departs significantly from past NSF practice in several ways. The funding is for a longer term and is larger in amount, and the NSF is taking a more activist role, seeking to leverage state and private funds and promote the coordination of programs within states. The Initiatives also have a stronger policy orientation than previous NSF programs have had. The NSF strategy is a reflection of the growing and widely held view that meaningful reforms in schools are most likely to be achieved through state initiatives that set clear and ambitious learning goals and standards; align all of the available policy levers in support of reform; stimulate school-level initiatives; and mobilize human and financial resources to support these changes. Two premises underlie systemic reform: (1) all children can meet significantly higher standards if they are asked to do so and given adequate opportunities to master the content, and (2) state and local policy changes can create opportunities by giving schools strong and consistent signals about the changes in practice and performance that are expected. Because this is an enormous investment of Federal resources that is intended to bring about deep, systemic improvement in the nation's ability to teach science and mathematics effectively, the NSF has contracted with a consortium of independent evaluators to conduct a review of the program. The first of the SSI's were funded in 1991, sufficiently long ago to begin to formulate some initial impressions of their impact. Take

  1. Science Education Futures: "Great Potential. Could Do Better. Needs to Try Harder"

    Science.gov (United States)

    Aubusson, Peter; Panizzon, Debra; Corrigan, Deborah

    2016-01-01

    Reviews of science education consistently suggest that there is (another) crisis. They express concern with the status quo and suggest directions that science education might take. In this context, science educators need to consider the current state of play, the needs of generations in a world to come and the characteristics of future science…

  2. Educational Technology Classics: The Science Teacher and Educational Technology

    Science.gov (United States)

    Harbeck, Richard M.

    2015-01-01

    The science teacher is the key person who has the commitment and the responsibility for carrying out any brand of science education. All of the investments, predictions, and expressions of concern will have little effect on the accomplishment of the broad goals of science education if these are not reflected in the situations in which learning…

  3. CURRENT STATE OF HISTORIC AND EDUCATIONAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Magsumov Timur Albertovich

    2013-05-01

    Full Text Available In this paper we analyze the results of development of national historic and educational research at the turn of the XXth century; pinpoint obvious success and indicate problems and contradictory areas; give grounding to the development model of the XXth century Russian pedagogy; make suggestions on the strategy and tactics of further development of historic and educational science and suggest areas for further research. They are ‘new social history’ of education, professional education and teacher training, personified microhistory and history of local educational environment, genesis of didactic principles, ethno-pedagogy, country school, pedagogical diagnostics, Orthodox religious education, contemporary history of foreign pedagogy, pedagogical futurology. We prove the need in reassessment of certain studies’ viability. We draw the conclusion that historic and educational knowledge determines areas and instruments to understand the problems of educational issues, their roots and realize the existence of ways to solve them.

  4. Dr. Albert Carr--Science Educator 1930-2000

    Science.gov (United States)

    Lopez, Leslie

    2013-01-01

    The very first issue of "Educational Perspectives" was published in October of 1962. Dr. Albert Carr wrote one of the inaugural essays on the topic of current developments in science education, and he went on to write several other articles for the journal. This article shares why Dr. Albert Carr's colleagues remember him for his…

  5. Mainstreaming ESd into Science teacher Education Courses:

    African Journals Online (AJOL)

    2007-12-11

    Dec 11, 2007 ... ESD in the context of mathematics and science teacher education. ... effective pedagogical approaches, teacher education, teaching ..... concepts do not add any value to the students' personal lives (Open-response text).

  6. Current trends of surface science and catalysis

    CERN Document Server

    Park, Jeong Young

    2014-01-01

    Including detail on applying surface science in renewable energy conversion, this book covers the latest results on model catalysts including single crystals, bridging "materials and pressure gaps", and hot electron flows in heterogeneous catalysis.

  7. Research facility access & science education

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, S.P. [Univ. of Texas, Arlington, TX (United States); Teplitz, V.L. [Southern Methodist Univ., Dallas, TX (United States). Physics Dept.

    1994-10-01

    As Congress voted to terminate the Superconducting Super Collider (SSC) Laboratory in October of 1993, the Department of Energy was encouraged to maximize the benefits to the nation of approximately $2 billion which had already been expended to date on its evolution. Having been recruited to Texas from other intellectually challenging enclaves around the world, many regional scientists, especially physicists, of course, also began to look for viable ways to preserve some of the potentially short-lived gains made by Texas higher education in anticipation of {open_quotes}the SSC era.{close_quotes} In fact, by November, 1993, approximately 150 physicists and engineers from thirteen Texas universities and the SSC itself, had gathered on the SMU campus to discuss possible re-uses of the SSC assets. Participants at that meeting drew up a petition addressed to the state and federal governments requesting the creation of a joint Texas Facility for Science Education and Research. The idea was to create a facility, open to universities and industry alike, which would preserve the research and development infrastructure and continue the educational mission of the SSC.

  8. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  9. Science education in a secular age

    Science.gov (United States)

    Long, David E.

    2013-03-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education in a secular age. Enjoining Raia within the framework of Charles Taylor's A Secular Age, I task the science education community to consider the broad strokes of science, religious faith, and the complexity of modernity in its evolving, hybridized forms. Building upon anthropological approaches to science education research, I articulate a framework to more fully account for who, globally, is a Creationist, and what this means for our views of ethically responsive science education.

  10. The Nature of Science and Science Education: A Bibliography

    Science.gov (United States)

    Bell, Randy; Abd-El-Khalick, Fouad; Lederman, Norman G.; Mccomas, William F.; Matthews, Michael R.

    Research on the nature of science and science education enjoys a long history, with its origins in Ernst Mach's work in the late nineteenth century and John Dewey's at the beginning of the twentieth century. As early as 1909 the Central Association for Science and Mathematics Teachers published an article - A Consideration of the Principles that Should Determine the Courses in Biology in Secondary Schools - in School Science and Mathematics that reflected foundational concerns about science and how school curricula should be informed by them. Since then a large body of literature has developed related to the teaching and learning about nature of science - see, for example, the Lederman (1992)and Meichtry (1993) reviews cited below. As well there has been intense philosophical, historical and philosophical debate about the nature of science itself, culminating in the much-publicised Science Wars of recent time. Thereferences listed here primarily focus on the empirical research related to the nature of science as an educational goal; along with a few influential philosophical works by such authors as Kuhn, Popper, Laudan, Lakatos, and others. While not exhaustive, the list should prove useful to educators, and scholars in other fields, interested in the nature of science and how its understanding can be realised as a goal of science instruction. The authors welcome correspondence regarding omissions from the list, and on-going additions that can be made to it.

  11. Educational Technology: Effective Leadership and Current Initiatives

    Science.gov (United States)

    Courville, Keith

    2011-01-01

    (Purpose) This article describes the basis for effective educational technology leadership and a few of the current initiatives and impacts that are a result of the aforementioned effective leadership. (Findings) Topics addressed in this paper include: (1) the role of the educational technology leader in an educational setting; (2) an examination…

  12. San Diego Science Alliance Education Outreach Activities

    Science.gov (United States)

    Blue, Anne P.

    1996-11-01

    The General Atomics Science Education Outreach Activities as well as those of several other San Diego area institutions led to the formation in 1994 of the San Diego Science Alliance. The Science Alliance is a consortium of science-related industries, institutions of research and higher education, museums, medical health networks, and science competitions in support of K-12 science education. Some Alliance accomplishments include printing over 4000 resource catalogs for teachers, workshops presented by over 20 of their business members at the San Diego Science Education Conference, and hosting of 3 eight-week courses for teachers. The Alliance provides an important forum for interaction between schools and teachers and local industries and institutions. The Science Alliance maintains a World Wide Web Home Page at elvbf http://www.cerf.net/sd_science/. General Atomics' role in the San Diego Science Alliance will be presented.(Presented by Patricia S. Winter for the General Atomics Science Education Groups and San Diego Science Alliance.)

  13. Current Issues of Engineering Education under Globalized Society

    Science.gov (United States)

    Kim, Kwang Sun

    A global world has recently expedited the international collaboration and network among engineering education societies including their scholars. The current issues of engineering education societies have been raised and discussed and those are various topics such as accreditation issues, current trends in engineering and technology education, government policies, innovations, program and project based learning, social sciences in engineering and technology education, university-industry joint programs, human resource development and engineering education, university linkage with K-12, role of engineering education in sustainable development, and the others. Among the variety of issues and topics, the hottest topic is relating to “innovations” of engineering education system. The innovative direction of engineering education in Korea has been reported along with that of USA, whose role has been one of major parts in innovation for the global engineering education system. The recent survey by IFEES (International Federation of Engineering Education Societies) has also been analyzed to consider the current three biggest challenges of global engineering education societies.

  14. Symposium 1: Challenges in science education and popularization of Science

    Directory of Open Access Journals (Sweden)

    Ildeo de Castro Moreira

    2014-08-01

    Full Text Available Science education and popularization of science are important elements for social inclusion. The Brazil exhibits strong inequalities regarding the distribution of wealth, access to cultural assets and appropriation of scientific and technological knowledge. Each Brazilian should have the opportunity to acquire a basic knowledge of science and its operation that allow them to understand their environment and expand their professional opportunities. However, the overall performance of Brazilian students in science and math is bad. The basic science education has, most often, few resources and is discouraging, with little appreciation of experimentation, interdisciplinarity and creativity. Beside the shortage of science teachers, especially teachers with good formation, predominate poor wage and working conditions, and deficiencies in instructional materials and laboratories. If there was a significant expansion in access to basic education, the challenge remains to improve their quality. According to the last National Conference of STI, there is need of a profound educational reform at all levels, in particular with regard to science education. Already, the popularization of science can be an important tool for the construction of scientific culture and refinement of the formal teaching instrument. However, we still lack a comprehensive and adequate public policy to her intended. Clearly, in recent decades, an increase in scientific publication occurred: creating science centers and museums; greater media presence; use of the internet and social networks; outreach events, such as the National Week of CT. But the scenario is shown still fragile and limited to broad swathes of Brazilians without access to scientific education and qualified information on CT. In this presentation, from a general diagnosis of the situation, some of the main challenges related to education and popularization of science in the country will address herself.

  15. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    Science.gov (United States)

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  16. The Nature of Science in Science Education: An Introduction

    Science.gov (United States)

    McComas, William F.; Almazroa, Hiya; Clough, Michael P.

    After providing a definition of the nature of science (NOS) for science education, we argue that a pragmatic consensus exists regarding NOS topics most important for a scientifically literate society. Hence, NOS instruction should take a more prominent role in the science curriculum. While the relationship between a teacher's NOS knowledge and their pedagogical decision-making is not straight- forward, we maintain that a complex interplay does exist. While more science coursework and research experience have been suggested to improve science teachers' understanding of NOS, neither approach is empirically supported. However, explicit attempts at NOS instruction in science teacher education have been effective. This article, which is an abridged version of one appearing in McComas (1998), concludes with the suggestion of a desired state for NOS instruction.Hence, it is vital that science teachers and their students gain an understanding of the nature of science, a hybrid field blending aspects of various social studies of science such as the history, sociology and philosophy of science with research from the cognitive science into a rich and useful description of what science is and how it functions.

  17. Modern Engineering : Science and Education

    CERN Document Server

    2016-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2014 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  18. Mediated Modeling in Science Education

    Science.gov (United States)

    Halloun, Ibrahim A.

    2007-08-01

    Following two decades of corroboration, modeling theory is presented as a pedagogical theory that promotes mediated experiential learning of model-laden theory and inquiry in science education. Students develop experiential knowledge about physical realities through interplay between their own ideas about the physical world and particular patterns in this world. Under teacher mediation, they represent each pattern with a particular model that they develop through a five-phase learning cycle, following particular modeling schemata of well-defined dimensions and rules of engagement. Significantly greater student achievement has been increasingly demonstrated under mediated modeling than under conventional instruction of lecture and demonstration, especially in secondary school and university physics courses. The improved achievement is reflected in more meaningful understanding of course materials, better learning styles, higher success rates, lower attrition rates and narrower gaps between students of different backgrounds.

  19. Building Ocean Learning Communities: A COSEE Science and Education Partnership

    Science.gov (United States)

    Robigou, V.; Bullerdick, S.; Anderson, A.

    2007-12-01

    The core mission of the Centers for Ocean Sciences Education Excellence (COSEE) is to promote partnerships between research scientists and educators through a national network of regional and thematic centers. In addition, the COSEEs also disseminate best practices in ocean sciences education, and promote ocean sciences as a charismatic interdisciplinary vehicle for creating a more scientifically literate workforce and citizenry. Although each center is mainly funded through a peer-reviewed grant process by the National Science Foundation (NSF), the centers form a national network that fosters collaborative efforts among the centers to design and implement initiatives for the benefit of the entire network and beyond. Among these initiatives the COSEE network has contributed to the definition, promotion, and dissemination of Ocean Literacy in formal and informal learning settings. Relevant to all research scientists, an Education and Public Outreach guide for scientists is now available at www.tos.org. This guide highlights strategies for engaging scientists in Ocean Sciences Education that are often applicable in other sciences. To address the challenging issue of ocean sciences education informed by scientific research, the COSEE approach supports centers that are partnerships between research institutions, formal and informal education venues, advocacy groups, industry, and others. The COSEE Ocean Learning Communities, is a partnership between the University of Washington College of Ocean and Fishery Sciences and College of Education, the Seattle Aquarium, and a not-for-profit educational organization. The main focus of the center is to foster and create Learning Communities that cultivate contributing, and ocean sciences-literate citizens aware of the ocean's impact on daily life. The center is currently working with volunteer groups around the Northwest region that are actively involved in projects in the marine environment and to empower these diverse groups

  20. Finding Science in the School Body: Reflections on Transgressing the Boundaries of Science Education and the Social Studies of Science

    Science.gov (United States)

    Weinstein, Matthew

    2008-01-01

    This paper examines the framings that the fields of the social studies of science and science education use for each other. It is shown that the social studies of science frames science education as passive and timeless. Science education frames science studies as a set of representations to better capture how science works. The paper then…

  1. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  2. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  3. Global Reproduction and Transformation of Science Education

    Science.gov (United States)

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  4. Information Search Process in Science Education.

    Science.gov (United States)

    McNally, Mary Jane; Kuhlthau, Carol C.

    1994-01-01

    Discussion of the development of an information skills curriculum focuses on science education. Topics addressed include information seeking behavior; information skills models; the search process of scientists; science education; a process approach for student activities; and future possibilities. (Contains 15 references.) (LRW)

  5. Library Education in Information Science: Present Trends

    Science.gov (United States)

    Fosdick, Howard

    1978-01-01

    Discussed are present trends in library education in information science, as based on a survey of course offerings found in library school catalogs. The courses offered are divided into five basic categories, and new directions in library education for information science are discussed. Recommendations for improvement of curricula are included.…

  6. Should Science and Arts Education Be Separated?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China’s practice of separating science and arts education has a long and complicated history. Back in the early 1950s, China decided to adopt the Soviet Union’s practice of separating science and arts education into two systems, the upshot of which was many universities finding themselves divided into

  7. Convergence between science and environmental education

    NARCIS (Netherlands)

    Wals, A.E.J.; Brody, M.; Dillon, J.; Stevenson, R.B.

    2014-01-01

    Urgent issues such as climate change, food scarcity, malnutrition, and loss of biodiversity are highly complex and contested in both science and society (1). To address them, environmental educators and science educators seek to engage people in what are commonly referred to as sustainability challe

  8. Developing Intercultural Science Education in Ecuador

    Science.gov (United States)

    Schroder, Barbara

    2008-01-01

    This article traces the recent development of intercultural science education in Ecuador. It starts by situating this development within the context of a growing convergence between Western and indigenous sciences. It then situates it within the larger historical, political, cultural, and educational contexts of indigenous communities in Ecuador,…

  9. Enhancing science education in the elementary schools

    CERN Document Server

    Cole, M W; Cole, Milton W.; Zembal-Saul, Carla

    2002-01-01

    This article describes some collaborative activities of the authors, aimed at improving science education in elementary schools. These include curriculum enhancement, development of new apparatus (a wind tunnel), science-education web site contributions and production of a film about the physics of flight. The output of these projects is intended to be generally accessible or reproducible.

  10. Science and the Ideals of Liberal Education

    Science.gov (United States)

    Carson, Robert N.

    This article examines the influence of mathematics and science on the formation of culture. It then examines several definitions of liberal education, including the notion that languages and fields of study constitute the substrate of articulate intelligence. Finally, it examines the linkages between science, scientific culture, liberal education, and democracy, and proposes that science cannot be taught merely as a body of facts and theories, but must be presented to students as integral with cultural studies. The use of a contextualist approach to science education is recommended.

  11. Constructivism in Science and Science Education: A Philosophical Critique

    Science.gov (United States)

    Nola, Robert

    This paper argues that constructivist science education works with an unsatisfactory account of knowledge which affects both its account of the nature of science and of science education. The paper begins with a brief survey of realism and anti-realism in science and the varieties of constructivism that can be found. In the second section the important conception of knowledge and teaching that Plato develops in the Meno is contrasted with constructivism. The section ends with an account of the contribution that Vico (as understood by constructivists), Kant and Piaget have made to constructivist doctrines. Section three is devoted to a critique of the theory of knowledge and the anti-realism of von Glaserfeld. The final section considers the connection, or lack of it, between the constructivist view of science and knowledge and the teaching of science.

  12. Science, Education, and the Ideology of "How"

    Science.gov (United States)

    Lang, Charles

    2010-01-01

    The aim of this work is to relate discussions of ideology and science within the Radical Science movement of the 1960s-1980s with present conversations on the integration of biology, psychology, and education. The argument is that an ideological analysis yields useful direction with respect to how a learning science might develop and how we might…

  13. Science, Education, and the Ideology of "How"

    Science.gov (United States)

    Lang, Charles

    2010-01-01

    The aim of this work is to relate discussions of ideology and science within the Radical Science movement of the 1960s-1980s with present conversations on the integration of biology, psychology, and education. The argument is that an ideological analysis yields useful direction with respect to how a learning science might develop and how we might…

  14. Science Education: From Separation to Integration

    Science.gov (United States)

    Linn, Marcia C.; Gerard, Libby; Matuk, Camillia; McElhaney, Kevin W.

    2016-01-01

    Advances in technology, science, and learning sciences research over the past 100 years have reshaped science education. This chapter focuses on how investigators from varied fields of inquiry who initially worked separately began to interact, eventually formed partnerships, and recently integrated their perspectives to strengthen science…

  15. Hermeneutics and science education: An introduction

    Science.gov (United States)

    Eger, Martin

    1992-12-01

    This paper is a programmatic sketch of a line of theoretical investigation in the philosophy of science education. The basic idea is that philosophical hermeneutics is an appropriate framework for science education in most of its aspects. A brief discussion is given of hermeneutics in general, of the version of it developed by H. G. Gadamer, and of the reasons for its relevance to science and to the problem of meaning in science education. A key element in this approach is the suggestion that each science be biewed as a language. Arguments against the appropriateness of hermeneutics to natural science are also discussed. One application of the theory to ongoing educational research — ‘misconceptions’ — is specifically treated.

  16. Building a Regional Science Education Infrastructure: The Accomplishments of the Sanford Science Education Center

    Science.gov (United States)

    Inverness Research, 2016

    2016-01-01

    For the past five years, the education and outreach effort of the Sanford Underground Research Facility has been supported by a grant from the National Science Foundation (NSF) to plan, develop, prototype, and prioritize the suite of educational outreach activities of the lab. Now known as the Sanford Science Education Center (SSEC), education and…

  17. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  18. Hermeneutics of Science and Multi-Gendered Science Education

    Science.gov (United States)

    Ginev, Dimitri Jordan

    2008-01-01

    In this paper, I consider the relevance of the view of cognitive existentialism to a multi-gendered picture of science education. I am opposing both the search for a particular feminist standpoint epistemology and the reduction of philosophy of science to cultural studies of scientific practices as championed by supporters of postmodern political…

  19. Informal Science: Family Education, Experiences, and Initial Interest in Science

    Science.gov (United States)

    Dabney, Katherine P.; Tai, Robert H.; Scott, Michael R.

    2016-01-01

    Recent research and public policy have indicated the need for increasing the physical science workforce through development of interest and engagement with informal and formal science, technology, engineering, and mathematics experiences. This study examines the association of family education and physical scientists' informal experiences in…

  20. Astrobites: Engaging Undergraduate Science Majors with Current Astrophysical Research

    Science.gov (United States)

    Zevin, Michael; Astrobites

    2017-01-01

    Astrobites is a graduate-student organization that publishes an online astrophysical literature blog (astrobites.com). The purpose of the site is to make current astrophysical research accessible to and exciting for undergraduate physical science majors and astronomy enthusiasts, and the site now hosts an archive of over 1300 posts summarizing recent astrophysical research. In addition, Astrobites presents posts on career guidance, practical 'how-to' articles, conference summaries, and astronomy news. Astrobites has an average of more than 1000 pageviews per day and reaches not only its target audience of undergraduates, but also graduate students and professionals within astronomy, astronomy enthusiasts, and educators. As we enter our seventh year of successful blogging, we share here the most up-to-date summary of our organization, readership, and growth.

  1. French Neo-Colonial Influence on Moroccan Language Education Policy: A Study of Current Status of Standard Arabic in Science Disciplines

    Science.gov (United States)

    Zakhir, Marouane; O'Brien, Jason L.

    2017-01-01

    This paper reports the findings of a study on the attitudes of teachers and students regarding the language policy of the Moroccan educational system. Its primary goal is to explain the gap existing between the policy of Arabisation (i.e., the official adoption and utilization of Standard Arabic) and its practical implementation in science…

  2. Understanding current causes of women's underrepresentation in science

    Science.gov (United States)

    Williams, Wendy M.

    2011-01-01

    Explanations for women's underrepresentation in math-intensive fields of science often focus on sex discrimination in grant and manuscript reviewing, interviewing, and hiring. Claims that women scientists suffer discrimination in these arenas rest on a set of studies undergirding policies and programs aimed at remediation. More recent and robust empiricism, however, fails to support assertions of discrimination in these domains. To better understand women's underrepresentation in math-intensive fields and its causes, we reprise claims of discrimination and their evidentiary bases. Based on a review of the past 20 y of data, we suggest that some of these claims are no longer valid and, if uncritically accepted as current causes of women's lack of progress, can delay or prevent understanding of contemporary determinants of women's underrepresentation. We conclude that differential gendered outcomes in the real world result from differences in resources attributable to choices, whether free or constrained, and that such choices could be influenced and better informed through education if resources were so directed. Thus, the ongoing focus on sex discrimination in reviewing, interviewing, and hiring represents costly, misplaced effort: Society is engaged in the present in solving problems of the past, rather than in addressing meaningful limitations deterring women's participation in science, technology, engineering, and mathematics careers today. Addressing today's causes of underrepresentation requires focusing on education and policy changes that will make institutions responsive to differing biological realities of the sexes. Finally, we suggest potential avenues of intervention to increase gender fairness that accord with current, as opposed to historical, findings. PMID:21300892

  3. Concepts of matter in science education

    CERN Document Server

    Sevian, Hannah

    2013-01-01

    Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenomena, chemical structure and bonding, quantum chemistry and the history and philosophy of science relating to the particulate nature of matter. The book will benefit a wide audience including classroom practitioners and student teachers at every educational level, teacher educators and researchers in science education.

  4. Current tools and techniques in library science

    CERN Document Server

    Ralhan, Punit

    2009-01-01

    The book undertakes a comprehensive look at the trend of information explosion in library science throughout the ages with the aid of technology, and the contemporary tools in the field. The trend of library policy is clearly towards the ideal of making all information available without delay to all people. Because of technological progress, however, the difficulties of accomplishing this goal is formidable and growing.

  5. Science, Worldviews and Education: An Introduction

    Science.gov (United States)

    Matthews, Michael R.

    2009-06-01

    This special issue of Science & Education deals with the theme of ‘Science, Worldviews and Education’. The theme is of particular importance at the present time as many national and provincial education authorities are requiring that students learn about the Nature of Science (NOS) as well as learning science content knowledge and process skills. NOS topics are being written into national and provincial curricula. Such NOS matters give rise to questions about science and worldviews: What is a worldview? Does science have a worldview? Are there specific ontological, epistemological and ethical prerequisites for the conduct of science? Does science lack a worldview but nevertheless have implications for worldviews? How can scientific worldviews be reconciled with seemingly discordant religious and cultural worldviews? In addition to this major curricular impetus for refining understanding of science and worldviews, there are also pressing cultural and social forces that give prominence to questions about science, worldviews and education. There is something of an avalanche of popular literature on the subject that teachers and students are variously engaged by. Additionally the modernisation and science-based industrialisation of huge non-Western populations whose traditional religions and beliefs are different from those that have been associated with orthodox science, make very pressing the questions of whether, and how, science is committed to particular worldviews. Hugh Gauch Jr. provides a long and extensive lead essay in the volume, and 12 philosophers, educators, scientists and theologians having read his paper, then engage with the theme. Hopefully the special issue will contribute to a more informed understanding of the relationship between science, worldviews and education, and provide assistance to teachers who are routinely engaged with the subject.

  6. Teacher education professionals as partners in health science outreach.

    Science.gov (United States)

    Houtz, Lynne E; Kosoko-Lasaki, Omofolasade; Zardetto-Smith, Andrea M; Mu, Keli; Royeen, Charlotte B

    2004-01-01

    Medical school and other health science outreach programs to educate and recruit precollege students always have relied on successful collaborative efforts. Creighton University shares the value, significance, and strategies of involving teacher education professionals in several of its current outreach programs, including HPPI, Brains Rule! Neuroscience Expositions, and HHMI Build a Human Project. The education department partner serves as an essential team member in the development, implementation, assessment, and dissemination of these projects to promote science and mathematics achievement and interest in medical careers. Specific examples and mistakes to avoid are included.

  7. Hanford`s innovations for science education

    Energy Technology Data Exchange (ETDEWEB)

    Carter, D. [Westinghouse Hanford Company, Richland, WA (United States)

    1996-12-31

    In recognition of declining science literacy in the United States and a projected shortfall of scientists, engineers and technologists to address environmental problems nationally and internationally during the 21st century, Westinghouse Hanford Company has launched several innovative science education projects at the US Department of Energy Hanford Site. The Hanford Site is very rich in resources that can be brought to bear on the problem: world-class technical experts, state of the art facilities and equipment, and the largest environmental laboratory in the world. During the past two years, several innovative science education initiatives have been conceived and pursued at the secondary education level including the International Academy for the Environment (residential high school with an environmental theme), Environmental BATTmobile Program (mobile middle school science education program), and Multicultural Experiences in Math and Science (education program based on cultural contributions to math and science). Hanford scientists, engineers and administrators have worked with the education community (K-12 and college-university) to develop innovative approaches to science education.

  8. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  9. Trends of Science Education Research: An Automatic Content Analysis

    Science.gov (United States)

    Chang, Yueh-Hsia; Chang, Chun-Yen; Tseng, Yuen-Hsien

    2010-01-01

    This study used scientometric methods to conduct an automatic content analysis on the development trends of science education research from the published articles in the four journals of "International Journal of Science Education, Journal of Research in Science Teaching, Research in Science Education, and Science Education" from 1990 to 2007. The…

  10. Science education needs a multilevel approach.

    Science.gov (United States)

    von Arx, Matthias; Labudde, Peter

    2012-01-01

    Triggered by an increasing consensus on the importance of science education for the economy and society as a whole, in recent years, a growing number of educational programs, initiatives and projects have been launched by various players (from educational policy makers over teacher education institutions to industry). Many of these initiatives have a direct or indirect link to molecular sciences. In this article, we develop a two-dimensional framework which can be used as a guideline in the classification and discussion of existing projects as well as in the planning and design of future initiatives. The framework incorporates three organizational levels or groups of persons and the two very central fields of objectives 'knowledge and skills' and 'motivation and interest'. On the basis of this framework, we discuss four projects in which our science and technology education center has been involved, with respect to their influence on the knowledge, skills and interest of pupils, teachers and school administration representatives in science.

  11. Untapped Potential: The Status of Middle School Science Education in California. Strengthening Science Education in California

    Science.gov (United States)

    Hartry, Ardice; Dorph, Rena; Shields, Patrick; Tiffany-Morales, Juliet; Romero, Valeria

    2012-01-01

    Despite the expressed need for high-quality science education, very little research has been conducted on what middle school science learning opportunities look like in practice. This study was conducted in support of "Strengthening Science Education in California", a research, policy, and communications initiative. Partners in this…

  12. Identifying Teacher Needs for Promoting Education through Science as a Paradigm Shift in Science Education

    Science.gov (United States)

    Holbrook, J.; Rannikmae, M.; Valdmann, A.

    2014-01-01

    This paper identifies an "education through science" philosophy for school science teaching at the secondary level and determines its interrelationship with approaches to student acquisition of key educational competences and the identification of teacher needs to promote meaningful learning during science lessons. Based on the…

  13. Beyond Nature of Science: The Case for Reconceptualising "Science" for Science Education

    Science.gov (United States)

    Erduran, Sibel

    2014-01-01

    In this paper, I argue that contemporary accounts of nature of science (NoS) are limited in their depiction of "science" and that new perspectives are needed to broaden their characterisation and appeal for science education. In particular, I refer to the role of interdisciplinary characterisations of science in informing the theory and…

  14. Current Approaches in Implementing Citizen Science in the Classroom.

    Science.gov (United States)

    Shah, Harsh R; Martinez, Luis R

    2016-03-01

    Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K-12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.

  15. Current Approaches in Implementing Citizen Science in the Classroom

    Directory of Open Access Journals (Sweden)

    Harsh R. Shah

    2015-12-01

    Full Text Available Citizen science involves a partnership between inexperienced volunteers and trained scientists engaging in research. In addition to its obvious benefit of accelerating data collection, citizen science has an unexplored role in the classroom, from K–12 schools to higher education. With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies in a fragmented educational system. The integration of traditional and innovative pedagogical methods to reform our educational system is therefore imperative in order to provide practical experiences in scientific inquiry, critical thinking, and problem solving for school-age individuals. Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community.

  16. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  17. 75 FR 65305 - National Board for Education Sciences

    Science.gov (United States)

    2010-10-22

    ... National Board for Education Sciences AGENCY: Department of Education, Institute of Education Sciences... proposed agenda of an upcoming meeting of the National Board for Education Sciences. The notice also..., Designated Federal Official, National Board for Education Sciences, 555 New Jersey Ave., NW., Room 602...

  18. Reconceptualising Inquiry in Science Education

    Science.gov (United States)

    Bevins, Stuart; Price, Gareth

    2016-01-01

    Decades of discussion and debate about how science is most effectively taught and learned have resulted in a number of similar but competing inquiry models. These aim to develop students learning of science through approaches which reflect the authenticity of science as practiced by professional scientists while being practical and manageable…

  19. Out-of-school science-teaching preparation for elementary teacher-education students

    Science.gov (United States)

    Jung, Maura Lobos

    This quasi-longitudinal ethnographic research examined the elementary teacher-education science teaching training at two out-of-school science sites (a science museum and nature center). Elementary teacher-education students who were required to teach about 30 hours of science reported learning hands-on teaching methods, presentation skills, classroom management and confidence to teach science from having taught at an out-of-school science institution. To a smaller degree, teacher-education students experienced an increase in scientific knowledge. Practicing teachers who once had science teaching training at the out-of-school sites claim the experience had a direct influence on their current science teaching practices. A majority of the practicing teachers in the study incorporated what they learned from the out-of-school teaching into their current teaching. A science attitude survey revealed significantly higher science attitudes from having had the out-of-school science teaching experience compared to those that did not. The significant growth found in science efficacy could not be attributed to the out-of-school science teaching experience. Teacher-education students enrolled in science methods courses who had an out-of-school science teaching experience and those who did not both experienced significant science efficacy growth. Elementary teacher-education students who had science majors or minors had significantly higher science attitudes and science efficacy as compared to those without science backgrounds. Collaborations between teacher-education programs and out-of-school settings and other science institutions promoting literacy in science should be encouraged and studied. Suggestions for restructuring the ways in which science and science methods are taught to elementary teacher-education students and other suggestions for improving science teaching are discussed.

  20. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  1. Toward the sociopolitical in science education

    Science.gov (United States)

    Tolbert, Sara; Bazzul, Jesse

    2017-06-01

    In this paper, we explore how Jacques Rancière's (The ignorant schoolmaster: five lessons in intellectual emancipation. Stanford University Press, Stanford, 1991) notions of radical equality and dissensus reveal horizons for activism and sociopolitical engagement in science education theory, research, and practice. Drawing on Rochelle Gutiérrez' (J Res Math Educ 44(1):37-68, 2013a. doi: 10.5951/jresematheduc.44.1.0037; J Urban Math Educ 6(2):7-19, b) "sociopolitical turn" for mathematics education, we identify how the field of science education can/is turning from more traditional notions of equity, achievement and access toward issues of systemic oppression, identity and power. Building on the conversation initiated by Lorraine Otoide who draws from French philosopher Jacques Rancière to experiment with a pedagogy of radical equality, we posit that a sociopolitical turn in science education is not only imminent, but necessary to meet twenty-first century crises.

  2. Toward the sociopolitical in science education

    Science.gov (United States)

    Tolbert, Sara; Bazzul, Jesse

    2016-07-01

    In this paper, we explore how Jacques Rancière's (The ignorant schoolmaster: five lessons in intellectual emancipation. Stanford University Press, Stanford, 1991) notions of radical equality and dissensus reveal horizons for activism and sociopolitical engagement in science education theory, research, and practice. Drawing on Rochelle Gutiérrez' (J Res Math Educ 44(1):37-68, 2013a. doi: 10.5951/jresematheduc.44.1.0037; J Urban Math Educ 6(2):7-19, b) "sociopolitical turn" for mathematics education, we identify how the field of science education can/is turning from more traditional notions of equity, achievement and access toward issues of systemic oppression, identity and power. Building on the conversation initiated by Lorraine Otoide who draws from French philosopher Jacques Rancière to experiment with a pedagogy of radical equality, we posit that a sociopolitical turn in science education is not only imminent, but necessary to meet twenty-first century crises.

  3. Developing a Global Perspective in/for Science Teacher Education: The Case of Pollination

    Science.gov (United States)

    Reis, Giuliano

    2014-01-01

    Science educators at all levels continuously struggle to keep pace with the rapidly developing understanding of the causes and potential solutions to current environmental issues while also trying to enthuse a new generation of passionate and knowledgeable scientists. However, how can future science teachers make science education more attractive…

  4. Developing a Global Perspective in/for Science Teacher Education: The Case of Pollination

    Science.gov (United States)

    Reis, Giuliano

    2014-01-01

    Science educators at all levels continuously struggle to keep pace with the rapidly developing understanding of the causes and potential solutions to current environmental issues while also trying to enthuse a new generation of passionate and knowledgeable scientists. However, how can future science teachers make science education more attractive…

  5. Tanzania post-colonial educational system and perspectives on secondary science education, pedagogy, and curriculum: A qualitative study

    Science.gov (United States)

    Wandela, Eugenia L.

    The development of technology and innovation in any country depends on a strong investment in science education from the lower to the upper levels of education. In most of the Sub-Saharan African nations, science education curriculum and teaching still faces many issues and problems that are inhibiting the growth of technology and innovation in these nations. In order to address these issues, an interpretive qualitative study that aims to examine how Tanzanian secondary science educators perceive secondary science education was conducted in the summer of 2013. The purpose of this study is to investigate problems and educational issues that might be limiting the growth of science, technology, and innovation in the Tanzanian society. Additionally, this research investigates the impacts of the colonial legacy that relates to language, politics, and economics, as they affect science education in Tanzania secondary schools. This study focuses on the governmental four-year ordinary level secondary science education; it took place in Dar-es-Salaam, Tanzania. The researcher interviewed nine secondary science educators: three secondary science teachers and six secondary science education administrators. The researcher also conducted classroom observations. The data results from both interview and classroom observations were contextualized with data from existing documentation on Tanzanian secondary science education and data from previous research. The emergent themes from the study indicate that most of the problems and issues that are currently facing secondary science education are historically connected to the impact of the colonization period in 19th and 20th centuries. This study suggests that in order to improve science education in Tanzanian society, the people, especially the elites, need to break away from an "Orientalist" mindset and start integrating the Tanzanian culture and science into the still existing Eurocentric science curriculum. In addition, the

  6. The science of geomagnetically induced currents

    Science.gov (United States)

    Pulkkinen, A.

    2012-12-01

    Geomagnetically induced currents (GIC) phenomenon impacting long conductor systems on the ground can be considered as the end link of chain of complex physical processes comprising the Sun-Earth system. In this paper I briefly review the current status of our understanding of the physics of GIC and novel applications enabled by the new understanding. More specifically, I will demonstrate how we can follow the chain of physical processes from the solar corona down to the upper mantle of the Earth and to GIC. Further, I will show how state-of-the-art models enable predictive modeling of the entire chain of complex processes. The potential for severe societal consequences has been driving recent increasing interest in extreme GIC events. I will show how we have addressed the issue by generating 100-year GIC event scenarios. These scenarios are of substantial power grid industry interest and have been fed directly into further engineering analyses. I will review the results of our of 100-year geomagnetically induced current scenarios work and discuss some of the future directions in the field.

  7. Working Alongside Scientists. Impacts on Primary Teacher Beliefs and Knowledge About Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-05-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the impact on teacher beliefs about science and science education of a programme where 26 New Zealand primary (elementary) teachers worked fulltime for 6 months alongside scientists, experiencing the nature of work in scientific research institutes. During the 6 months, teachers were supported, through a series of targeted professional development days, to make connections between their experiences working with scientists, the curriculum and the classroom. Data for the study consisted of mid- and end-of-programme written teacher reports and open-ended questionnaires collected at three points, prior to and following 6 months with the science host and after 6 to 12 months back in school. A shift in many teachers' beliefs was observed after the 6 months of working with scientists in combination with curriculum development days; for many, these changes were sustained 6 to 12 months after returning to school. Beliefs about the aims of science education became more closely aligned with the New Zealand curriculum and its goal of developing science for citizenship. Responses show greater appreciation of the value of scientific ways of thinking, deeper understanding about the nature of scientists' work and the ways in which science and society influence each other.

  8. Life science teachers' decision making on sex education

    Science.gov (United States)

    Gill, Puneet Singh

    The desires of young people and especially young bodies are constructed at the intersections of policies that set the parameters of sex education policies, the embodied experiences of students in classrooms, and the way bodies are discussed in the complex language of science. Moreover, more research points to the lack of scientifically and medically accurate information about sex education. Through this research, I hope to extend the discussion about sex education to life science classrooms, where youth can discuss how sex occurs according to scientific concepts and processes. However, science classrooms are caught in a double bind: They maintain positivist methods of teaching science while paying little attention to the nature of science or the nature and function of science that offer explanations of scientific phenomena. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive frameworks that shaped these decisions. I also analyzed the ways that these relationships functioned to produce certain truths, or discourses. The current trends in research concerning SSI are pointing to understanding how controversial issues are framed according to personal philosophies, identities, and teaching approaches. If we can understand science teachers' inner aspects as they relate to sexuality education, we can also understand the deep-seeded motivations behind how these specific issues are being taught. In science classrooms where a discussion of the body is part of the curriculum, specific discourses of the body and sex/sexuality are excluded. In this study, I describe how science teachers made decisions about what to include or not include about sexuality in a life science classroom and the discursive practices that shaped these decisions.

  9. Math/science education action conference report

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    On October 8--10, 1989, the US Department of Energy, the Lawrence Hall of Science, and the Lawrence Berkeley Laboratory sponsored a Math/Science Education Action Conference in Berkeley, California. The conference was co-chaired by Admiral James D. Watkins, Secretary of Energy, and Dr. Glenn T. Seaborg Chairman of the Lawrence Hall of Science. Nearly 250 scientists, educators, business executives, and government leaders came together to develop a concrete plan of action for restructuring and revitalizing mathematics and science education. Their target was to improve education for an entire cohort of children--the Class of 2007, the children born this school year--and their governing principle was one of collaboration, both between Federal agencies, and between public and private sectors. The report of the conference co-chairmen and participants is provided in this document. 41 figs.

  10. Global reproduction and transformation of science education

    Science.gov (United States)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  11. Catalyzing Effective Science Education: Contributions from the NASA Science Education and Public Outreach Forums

    Science.gov (United States)

    Smith, Denise A.; Bartolone, L.; Eisenhamer, B.; Lawton, B. L.; Schultz, G. R.; Peticolas, L.; Schwerin, T.; Shipp, S.; Astrophysics E/PO Community, NASA; NASA Astrophysics Forum Team

    2013-06-01

    Advancing scientific literacy and strengthening the Nation’s future workforce through stimulating, informative, and effective learning experiences are core principles of the NASA Science Mission Directorate (SMD) education and public outreach (E/PO) program. To support and coordinate its E/PO community in offering a coherent suite of activities and experiences that effectively meet the needs of the education community, NASA SMD has created four Science Education and Public Outreach Forums (Astrophysics, Planetary Science, Heliophysics, Earth Science). Forum activities include: professional development to raise awareness of the existing body of best practices and educational research; analysis and cataloging of SMD-funded education materials with respect to AAAS Benchmarks for Science Literacy; Working Groups that assemble needs assessment and best practices data relevant to Higher Education, K-12 Formal Education, and Informal Science Education audiences; and community collaborations that enable SMD E/PO community members to develop new partnerships and to learn and share successful strategies and techniques. This presentation will highlight examples of Forum and community-based activities related to astronomy education and teacher professional development, within the context of the principles articulated within the NRC Framework for K-12 Science Education and the Next Generation Science Standards. Among these are an emerging community of practice for K-12 educators and online teacher professional development and resources that incorporate misconception research and authentic experiences with NASA Astrophysics data.

  12. Current Challenges to Teacher Education in Denmark

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen; Rasmussen, Palle

    2010-01-01

    and other subjects. But the university colleges are not part of the regular university sector, so teacher education is still generally separated from the research-based university tradition. Currently this fact is much debated. Two main types of arguments are being put forward for relocating teacher......Until recently, teacher education in Denmark for primary and lower secondary school (the Folkeskole) was organised in separate teacher training colleges. During the last ten years two comprehensive reforms of the system of medium cycle higher education have been implemented, first the act...... on centres of higher education in year 2000 and later the act on university colleges in 2008. These reforms have fundamentally changed the organisation of teacher education. Teacher education programs are now located in university colleges which also run programs in social work, daycare pedagogy, nursing...

  13. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  14. Philosophy of Education and Other Educational Sciences

    Science.gov (United States)

    Howe, Kenneth R.

    2014-01-01

    This article largely agrees with John White's characterizations of the relationships among philosophy of education, philosophy more generally, and the conventional world. It then extends what White identifies as the fundamental problem that should now be occupying philosophy of education--the irreconcilable opposition between education for…

  15. Rural Science Education: Valuing Local Knowledge

    Science.gov (United States)

    Avery, Leanne M.

    2013-01-01

    Whether playing outdoors or working on the farm, rural children acquire science and engineering skills throughout their daily lives. Although 11.4 million children in the United States grow up in rural areas, compared to 14.6 million in urban areas, relatively little attention is given to rural science education. This article demonstrates that…

  16. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  17. ACSES, An Automated Computer Science Education System.

    Science.gov (United States)

    Nievergelt, Jurg; And Others

    A project to accommodate the large and increasing enrollment in introductory computer science courses by automating them with a subsystem for computer science instruction on the PLATO IV Computer-Based Education system at the University of Illinois was started. The subsystem was intended to be used for supplementary instruction at the University…

  18. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  19. Russian Science and Education: Problems and Prospects

    Science.gov (United States)

    Lebedev, S. A.

    2014-01-01

    Higher education in Russia is not able to provide the science personnel and research that the country needs for its future economic well-being. Urgent changes are needed to improve the situation, not least among them being significant increases in the salaries of scientists, bringing Russian science into line with world standards of scientific…

  20. Science Education in a Secular Age

    Science.gov (United States)

    Long, David E.

    2013-01-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education…

  1. Pseudoscience, the Paranormal, and Science Education.

    Science.gov (United States)

    Martin, Michael

    1994-01-01

    Given the widespread acceptance of pseudoscientific and paranormal beliefs, this article suggests that science educators need to seriously consider the problem of how these beliefs can be combated. Proposes teaching science students to critically evaluate the claims of pseudoscience and the paranormal. (LZ)

  2. Women in science: Current advances and challenges in Belarus

    Science.gov (United States)

    Tashlykova-Bushkevich, Iya I.

    2015-12-01

    Women constitute 49% of all natural scientists in Belarus. However, fewer than 18% of Belarusian natural scientists who hold a doctor of science degree are women. The proportion of women decreases with increasing rank at universities and institutes in Belarus. Gender imbalance at the level of full professor is striking at just 17.5% women, and illuminates the vertical segregation of women in the natural sciences. This report reviews the positions of women in science in Belarus to draw out current advances and challenges encountered by female scientists in the former socialist country. New statistical data are broken down by gender and aimed at advancing the general agenda for women in science.

  3. Computers in Education and Education in Computer Science

    Directory of Open Access Journals (Sweden)

    José Luis SIERRA-RODRÍGUEZ

    2015-12-01

    Full Text Available Selection of the extended papers related to Computers in Education and Computer Science Education topics presented at the sixteenth edition of the International Symposium on Computers in Education (SIIE 2014, held between 12 and 14 November 2014 in Logroño, La Ri-oja, Spain.

  4. Reforming Science Education: Part II. Utilizing Kieran Egan's Educational Metatheory

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    This paper is the second of two parts and continues the conversation which had called for a shift in the conceptual focus of science education towards philosophy of education, with the requirement to develop a discipline-specific “philosophy” of science education. In Part I, conflicting conceptions of science literacy were identified with disparate “visions” tied to competing research programs as well as school-based curricular paradigms. The impasse in the goals of science education and thereto, the contending views of science literacy, were themselves associated with three underlying fundamental aims of education (knowledge-itself; personal development; socialization) which, it was argued, usually undercut the potential of each other. During periods of “crisis-talk” and throughout science educational history these three aims have repeatedly attempted to assert themselves. The inability of science education research to affect long-term change in classrooms was correlated not only to the failure to reach a consensus on the aims (due to competing programs and to the educational ideologies of their social groups), but especially to the failure of developing true educational theories (largely neglected since Hirst). Such theories, especially metatheories, could serve to reinforce science education’s growing sense of academic autonomy and independence from socio-economic demands. In Part II, I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general, and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science.

  5. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  6. Interdisciplinary Science Research and Education

    Science.gov (United States)

    MacKinnon, P. J.; Hine, D.; Barnard, R. T.

    2013-01-01

    Science history shows us that interdisciplinarity is a spontaneous process that is intrinsic to, and engendered by, research activity. It is an activity that is done rather than an object to be designed and constructed. We examine three vignettes from the history of science that display the interdisciplinary process at work and consider the…

  7. Culture Matters in Science Education

    Science.gov (United States)

    Pang, Valerie Ooka; Lafferty, Karen Elizabeth; Pang, Jennifer M.; Griswold, Joan; Oser, Rick

    2014-01-01

    On the Saturday before Halloween, hundreds of students and their parents went from booth to booth participating in science activities at an annual Fall Festival and Learning Fair. The Fall Festival and Learning Fair is a valuable annual partnership where culturally relevant teaching engages each child in hands-on, standards-based science lessons.…

  8. Results of a Research Evaluating Quality of Computer Science Education

    Science.gov (United States)

    Záhorec, Ján; Hašková, Alena; Munk, Michal

    2012-01-01

    The paper presents the results of an international research on a comparative assessment of the current status of computer science education at the secondary level (ISCED 3A) in Slovakia, the Czech Republic, and Belgium. Evaluation was carried out based on 14 specific factors gauging the students' point of view. The authors present qualitative…

  9. Science Teachers' Perception on Multicultural Education Literacy and Curriculum Practices

    Science.gov (United States)

    Huang, Hsiu-Ping; Cheng, Ying-Yao; Yang, Cheng-Fu

    2017-01-01

    This study aimed to explore the current status of teachers' multicultural education literacy and multicultural curriculum practices, with a total of 274 elementary school science teachers from Taitung County as survey participants. The questionnaire used a Likert-type four-point scale which content included the teachers' perception of…

  10. Marxism in Vygotskian Approaches to Cultural Studies of Science Education

    Science.gov (United States)

    Lima, Paulo, Jr.; Ostermann, Fernanda; Rezende, Flavia

    2014-01-01

    In this paper we initially address the main categories of Marxism, illustrating how Vygotsky has appropriated them as mediational meta-theoretical tools for building concepts for his psychological approach. In order to investigate the influence of Marxism in cultural studies of science education, we make an account of how current research,…

  11. Current status of family intervention science.

    Science.gov (United States)

    Diamond, G; Siqueland, L

    2001-07-01

    reductions of oppositional and antisocial behavior. Clinical programs that treat these populations without using a family-based intervention as at least a component of a treatment package are seriously ignoring the findings of contemporary intervention science. Programs of research by Henggeler, Szapocznik, and Liddle demonstrate similarly impressive results for substance abusing adolescents. Although preliminary results from the Dennis et al study suggest that various treatment approaches may benefit this population. Family interventions have had less success in reducing ADHD symptoms, yet these psychosocial treatments have been essential in reducing much of the family and school behavior problems associated with this disorder. Many investigators would agree that a combined medication and family treatment approach may be the treatment of choice for children with ADHD. In fact, many studies across various disorders suggest that patients respond best to comprehensive treatment packages, of which a family treatment is at least one component. Although the data are promising, many challenges lie ahead. Although collectively many family intervention studies exist, many disorders lack enough rigorous and large-scale investigations to make any strong conclusions. Kazdin argues that sample sizes of 150 are essential to detect significant differences between active treatments, and few of the reviewed studies include these kinds of patient numbers. Furthermore, not enough committed and sophisticated family treatment researchers have carried out some of the major studies. For example, the Brent study on depression and the Barkley study of ADHD, although testing family approaches, lacked well-developed and published treatment manuals, a demonstration of the necessary expertise to supervise these treatments, and data about training and adherence to these models. Although the absence of expertise limits investigator allegiance biases, treatment development and modification are essential

  12. Population Health Science: A Core Element of Health Science Education in Sub-Saharan Africa.

    Science.gov (United States)

    Hiatt, Robert A; Engmann, Natalie J; Ahmed, Mushtaq; Amarsi, Yasmin; Macharia, William M; Macfarlane, Sarah B; Ngugi, Anthony K; Rabbani, Fauziah; Walraven, Gijs; Armstrong, Robert W

    2017-04-01

    Sub-Saharan Africa suffers an inordinate burden of disease and does not have the numbers of suitably trained health care workers to address this challenge. New concepts in health sciences education are needed to offer alternatives to current training approaches.A perspective of integrated training in population health for undergraduate medical and nursing education is advanced, rather than continuing to take separate approaches for clinical and public health education. Population health science educates students in the social and environmental origins of disease, thus complementing disease-specific training and providing opportunities for learners to take the perspective of the community as a critical part of their education.Many of the recent initiatives in health science education in sub-Saharan Africa are reviewed, and two case studies of innovative change in undergraduate medical education are presented that begin to incorporate such population health thinking. The focus is on East Africa, one of the most rapidly growing economies in sub-Saharan Africa where opportunities for change in health science education are opening. The authors conclude that a focus on population health is a timely and effective way for enhancing training of health care professionals to reduce the burden of disease in sub-Saharan Africa.

  13. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide strat...

  14. On the Reconstruction of Educational Science

    Science.gov (United States)

    Fritzell, Christer

    2006-01-01

    Ever since its formative years in the USA a century ago, the discipline of education has taken an uneasy stand on its own "scientific" status, not least with regard to the basic issue of the relationships between theory and practice. When a science of education was introduced as a panacea for rational planning in the fields of schooling and…

  15. Catalyzing curriculum evolution in graduate science education.

    Science.gov (United States)

    Gutlerner, Johanna L; Van Vactor, David

    2013-05-09

    Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training.

  16. Current states and perspectives of Czech educational research

    Directory of Open Access Journals (Sweden)

    Tomáš Janík

    2010-06-01

    Full Text Available The aim of the review study is to evaluate the current state of Czech educationalresearch and to offer possibilities of its further development. The paper has threeparts. In the first part, the author presents the context of the topic: the current changesin the financing of research and development in the Czech Republic; the avoiding ofthe term (social science is discussed along with the issue of institutional financing ofresearch and the various presently up-to-date methodologies of quality assessment inresearch. In the second part, the author analyses the current state of Czech educationalresearch – previous analyses of J. Pr°ucha, J. Mareš and E. Walterová and those carriedout by the Educational Research Centre are briefly summarised. In the third part, possibilitiesof further development of Czech educational research are offered. Developinga knowledge base of educational sciences is used as an example. First the nature andsubject of knowledge that is produced by research is analysed, then the difference betweenpedagogical research and research in education is discussed. Towards the end,relevant approaches are discussed along with research areas and types of knowledgeacquired by research.

  17. An international comparison of the science education priorities of ...

    African Journals Online (AJOL)

    South African Journal of Higher Education ... An international comparison of the science education priorities of science teachers, lecturers and students in two ... to utilise better science teaching methods; and to acquire more resources for ...

  18. The feasibility of educating trainee science teachers in issues of science and religion

    Science.gov (United States)

    Poole, Michael

    2016-06-01

    This article reflects on Roussel De Carvalho's paper `Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom'. It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher education project more manageable.

  19. Plagiarism challenges at Ukrainian science and education

    Directory of Open Access Journals (Sweden)

    Denys Svyrydenko

    2016-12-01

    Full Text Available The article analyzes the types and severity of plagiarism violations at the modern educational and scientific spheres using the philosophic methodological approaches. The author analyzes Ukrainian context as well as global one and tries to formulate "order of the day" of plagiarism challenges. The plagiarism phenomenon is intuitively comprehensible for academicians but in reality it has a very complex nature and a lot of manifestation. Using approaches of ethics, philosophical anthropology, philosophy of science and education author formulates the series of recommendation for overcoming of plagiarism challenges at Ukrainian science and education.

  20. Interactions of Economics of Science and Science Education: Investigating the Implications for Science Teaching and Learning

    Science.gov (United States)

    Erduran, Sibel; Mugaloglu, Ebru Z.

    2013-01-01

    In recent years, there has been upsurge of interest in the applications of interdisciplinary perspectives on science in science education. Within this framework, the implications of the so-called "economics of science" is virtually an uncharted territory. In this paper, we trace a set of arguments that provide a dialectic engagement with…

  1. Rhetoric and Reality: Science Teacher Educators' Views and Practice Regarding Science Process Skills

    Science.gov (United States)

    Molefe, Leonard; Stears, Michèle

    2014-01-01

    The importance of teaching science process skills in science education is well documented in the literature. Yet the issue of process skills had also been associated with debates on validity of a process approach to science education. This research was conducted to explore views of science teacher educators in initial teacher education programmes…

  2. Educating teachers in Switzerland – reform and current situation

    Directory of Open Access Journals (Sweden)

    Barbara Wiśniewska-Paź

    2011-11-01

    Full Text Available Educating teachers in the scope of higher (non-academic education sector has been a relatively new phenomenon in Switzerland. Until the end of the 90's, when Higher Pedagogical Schools were established, teachers had been educated at teaching seminars.Establishment of Higher Pedagogical Schools gave rise to a thorough reform in educating teachers in Switzerland, which aimed at improving the quality of work and professionalism of the teachers through science-oriented education (similar to the university education, and at establishing international and all-Swiss system of acknowledging diplomas received in particular canton institutions of higher education. This system makes it possible for the graduates to commence work at schools/ kindergarten departments not only in a canton of their choice, but also in a country chosen by them. At present, 12 000 students study in higher pedagogical schools, which constitutes 7% of all students in both (academic and non-academic sectors of higher education. This article describes current situation of this type of universities in Switzerland, their location, specializations, availability issues, duration of the studies and also the number of students (including percentage of foreigners, as well as the issues of prestige of the profession of a teacher, average age of the personnel in relation to education levels, degree of feminization of the profession and the demands.

  3. Accomplishing the Visions for Teacher Education Programs Advocated in the National Science Education Standards

    Science.gov (United States)

    Akcay, Hakan; Yager, Robert

    2010-10-01

    The purpose of this study was to investigate the advantages of an approach to instruction using current problems and issues as curriculum organizers and illustrating how teaching must change to accomplish real learning. The study sample consisted of 41 preservice science teachers (13 males and 28 females) in a model science teacher education program. Both qualitative and quantitative research methods were used to determine success with science discipline-specific “Societal and Educational Applications” courses as one part of a total science teacher education program at a large Midwestern university. Students were involved with idea generation, consideration of multiple points of views, collaborative inquiries, and problem solving. All of these factors promoted grounded instruction using constructivist perspectives that situated science with actual experiences in the lives of students.

  4. Implementing the Current Science and Citizenship Mandates: A Learning Theory Analysis and Set of Recommendations

    Directory of Open Access Journals (Sweden)

    Lisa Erikson

    2009-01-01

    Full Text Available Problem statement: The purpose of this research was to use learning theory to analyze the relationships between current views of citizenship, citizenship education, science and science education to develop a reasonably coherent and integrated view and approach to science and citizenship mandates that can be successfully implemented in our schools. Approach: The three models of citizenship education currently competing for dominance in our schools were: The national forging approach, the global education approach and the deliberative democratic approach. Results: Our conclusion was that it was only the use of the nation forging approach (teaching a common core of foundational knowledge and skills in both citizenship and science education at the elementary school level that was going to foster and help students develop the cognitive schemas and reasoning skills that are the necessary prerequisites for the Deliberative democracy approach. Conclusion: If and when students do develop the high level of knowledge and reasoning ability required to engage in deliberative democracy approach, possibly at the secondary level of schooling, then the DDA approach will, most definitely, foster and help students develop the common core cultural and deliberative skills and values that will, in turn, then allow the global education approach, with its multicultural (or rather more differentiated, nuanced and subtle if fuzzy views, to be pursued at the post-secondary level, producing informed and deliberative citizens for this country and the world. The implications of these analyses, findings and conclusions were discussed.

  5. Current Trends in Higher Education Technology: Simulation

    Science.gov (United States)

    Damewood, Andrea M.

    2016-01-01

    This paper is focused on how technology in use changes over time, and the current trend of simulation technology as a supported classroom technology. Simulation-based training as a learning tool is discussed within the context of adult learning theories, as is the technology used and how today's higher education technology administrators support…

  6. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  7. Science and Common Sense: Perspectives from Philosophy and Science Education

    DEFF Research Database (Denmark)

    Green, Sara

    2016-01-01

    that to clarify the relation between common sense and scientific reasoning, more attention to the cognitive aspects of learning and doing science is needed. As a step in this direction, I explore the potential for cross-fertilization between the discussions about conceptual change in science education...... knowledge, distinguished by an increase in systematicity. On the other, he argues that scientific knowledge often comes to deviate from common sense as science develops. Specifically, he argues that a departure from common sense is a price we may have to pay for increased systematicity. I argue...... and philosophy of science. Particularly, I examine debates on whether common sense intuitions facilitate or impede scientific reasoning. While arguing that these debates can balance some of the assumptions made by Hoyningen-Huene, I suggest that a more contextualized version of systematicity theory could...

  8. Conversations about Science Education: A Retrospective of Science Education Research in "CJSTME"

    Science.gov (United States)

    Pegg, Jerine; Wiseman, Dawn; Brown, Carol

    2015-01-01

    This review focuses on science education contributions to the "Canadian Journal of Science, Mathematics and Technology Education" (CJSMTE) from January 2001 through December 2014. Through a combination of content and citation analysis, we examine the journal as a location for conversations around specific themes and broader ideas related…

  9. Basic sciences curriculum in medical education

    Directory of Open Access Journals (Sweden)

    RITA REZAEE

    2013-01-01

    Full Text Available Introduction: Traditional methods are generally used for teaching basic science courses at Shiraz Medical School. Such courses are taught during the first and second years of a seven-year medical program. The goal of this study was to analyze teachers and students’ perceptions of basic science teaching in medical education. Methods: A descriptive cross-sectional study was conducted at the college of medicine of Shiraz University of Medical Sciences. Results: Regarding the students’ viewpoints, 71.4% reported that curriculum content in basic sciences was enough and had good relevance. 59.2% of students believed the objectives of basic sciences curriculum were clear. Conclusion: The burden of teaching basic sciences ranges from sustaining interest to clinical relevance. It is expected that medical schools will continuously monitor what works and what does not work with their curricula and make the necessary adaptations as required.

  10. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  11. Science communication in India: current situation, history and future developments

    OpenAIRE

    Mazzonetto Marzia

    2005-01-01

    Nowadays, India is experiencing a widespread diffusion of science communication activities. Public institutions, non-governmental organisations and a number of associations are busy spreading scientific knowledge not only via traditional media but also through specific forms of interaction with a varied public. This report aims to provide a historical overview of the diffusion of science communication in India, illustrating its current development and its future prospects.

  12. Sputnik's Impact on Science Education in America

    Science.gov (United States)

    Holbrow, Charles H.

    2007-04-01

    The launch of Sputnik, the world's first artificial Earth orbiting satellite, by the Soviet Union on October 4, 1957 was a triggering event. Before Sputnik pressure had been rising to mobilize America's intellectual resources to be more effective and useful in dealing with the Cold War. Sputnik released that pressure by stirring up a mixture of American hysteria, wounded self-esteem, fears of missile attacks, and deep questioning of the intellectual capabilities of popular democratic society and its educational system. After Sputnik the federal government took several remarkable actions: President Eisenhower established the position of Presidential Science Advisor; the House and the Senate reorganized their committee structures to focus on science policy; Congress created NASA -- the National Aeronautics and Space Agency -- and charged it to create a civilian space program; they tripled funding for the National Science Foundation to support basic research but also to improve science education and draw more young Americans into science and engineering; and they passed the National Defense Education Act which involved the federal government to an unprecedented extent with all levels of American education. I will describe some pre-Sputnik pressures to change American education, review some important effects of the subsequent changes, and talk about one major failure of change fostered by the national government.

  13. 75 FR 5771 - Institute of Education Sciences; Overview Information; Education Research and Special Education...

    Science.gov (United States)

    2010-02-04

    ... Institute of Education Sciences; Overview Information; Education Research and Special Education Research...'s FY 2011 competitions for grants to support education research and special education research. The... evaluation of State and local education programs and policies. The National Center for Special Education...

  14. Data Curation Education Grounded in Earth Sciences and the Science of Data

    Science.gov (United States)

    Palmer, C. L.

    2015-12-01

    This presentation looks back over ten years of experience advancing data curation education at two Information Schools, highlighting the vital role of earth science case studies, expertise, and collaborations in development of curriculum and internships. We also consider current data curation practices and workforce demand in data centers in the geosciences, drawing on studies conducted in the Data Curation Education in Research Centers (DCERC) initiative and the Site-Based Data Curation project. Outcomes from this decade of data curation research and education has reinforced the importance of key areas of information science in preparing data professionals to respond to the needs of user communities, provide services across disciplines, invest in standards and interoperability, and promote open data practices. However, a serious void remains in principles to guide education and practice that are distinct to the development of data systems and services that meet both local and global aims. We identify principles emerging from recent empirical studies on the reuse value of data in the earth sciences and propose an approach for advancing data curation education that depends on systematic coordination with data intensive research and propagation of current best practices from data centers into curriculum. This collaborative model can increase both domain-based and cross-disciplinary expertise among data professionals, ultimately improving data systems and services in our universities and data centers while building the new base of knowledge needed for a foundational science of data.

  15. Outdoor Education and Science Achievement

    Science.gov (United States)

    Rios, José M.; Brewer, Jessica

    2014-01-01

    Elementary students have limited opportunities to learn science in an outdoor setting at school. Some suggest this is partially due to a lack of teacher efficacy teaching in an outdoor setting. Yet the research literature indicates that outdoor learning experiences develop positive environmental attitudes and can positively affect science…

  16. Enhancing Science Education through Art

    Science.gov (United States)

    Merten, Susan

    2011-01-01

    Augmenting science with the arts is a natural combination when one considers that both scientists and artists rely on similar attitudes and values. For example, creativity is often associated with artists, but scientists also use creativity when seeking a solution to a problem or creating a new product. Curiosity is another common trait shared…

  17. Science education crisis: Problems, solutions discussed

    Science.gov (United States)

    Wolcott, John

    Public concern about the state of science education in America at the pre-college and college levels is widespread, triggered largely by the perception that we are losing ground in the global economy. Science, and particularly technology, are seen as our most likely sources of recovery. For those who recall the public reaction to the launching of Sputnik by Russia in 1957, the present mood is similar, if somewhat less intense.AGU members are in a unique position to influence debate about the science education crisis. Many of us, either as experts in some subset of physical science issues, as teachers at the college level, or even as parents observing our children's experiences in elementary or secondary school classrooms, may offer insight to this debate.

  18. Homi Jehangir Bhabha: Remembering a Scientist and Celebrating His Contributions to Science, Technology, and Education in India

    Science.gov (United States)

    Vaidya, Sheila

    2010-01-01

    The focus of this paper is on the current developments in science education occurring in the posthumously built Homi Bhabha Centre for Science Education in Mumbai and to offer context for various indigenous developments that are shaping science education in India today. In this paper, I describe the story of Homi Bhabha and his rich legacy of…

  19. Situated Learning in Computer Science Education

    Science.gov (United States)

    Ben-Ari, Mordechai

    2004-06-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software development, but it is not directly applicable to other CS communities, especially those that deal with non-CS application areas. Nevertheless, situated learning can inform CS education by analyzing debates on curriculum and pedagogy within this framework. CS educators should closely examine professional CS communities of practice and design educational activities to model the actual activities of those communities.

  20. Innovations in Ocean Sciences Education at the University of Washington

    Science.gov (United States)

    Robigou, V.

    2003-12-01

    A new wave of education collaborations began when the national science education reform documents (AAAS Project 2061 and National Science Education Standards) recommended that scientific researchers become engaged stakeholders in science education. Collaborations between research institutions, universities, nonprofits, corporations, parent groups, and school districts can provide scientists original avenues to contribute to education for all. The University of Washington strongly responded to the national call by promoting partnerships between the university research community, the K-12 community and the general public. The College of Ocean and Fishery Sciences and the School of Oceanography spearheaded the creation of several innovative programs in ocean sciences to contribute to the improvement of Earth science education. Two of these programs are the REVEL Project and the Marine Science Student Mobility (MSSM) program that share the philosophy of involving school districts, K-12 science teachers, their students and undergraduate students in current, international, cutting-edge oceanographic research. The REVEL Project (Research and Education: Volcanoes, Exploration and Life) is an NSF-funded, professional development program for middle and high school science teachers that are determined to use deep-sea research and seafloor exploration as tools to implement inquiry-based science in their classrooms, schools, and districts, and to share their experiences with their communities. Initiated in 1996 as a regional program for Northwest science educators, REVEL evolved into a multi-institutional program inviting teachers to practice doing research on sea-going research expeditions. Today, in its 7th year, the project offers teachers throughout the U. S. an opportunity to participate and contribute to international, multidisciplinary, deep-sea research in the Northeast Pacific ocean to study the relationship between geological processes such as earthquakes and

  1. Science Teachers’ Views about the Science Fair at Primary Education Level

    OpenAIRE

    Hasan Said TORTOP

    2013-01-01

    Science fair is an environment where students present their scientific research projects. Opinions of science teachers who participated as a mentor in science fair are important for determining of the science fair quality and its contribution of science education. The aim of study was to determine science teachers’ views about the science fair at primary education level in Turkey. In this qualitative study, seven science teachers who worked in A city in Turkey were interviewed regarding a nat...

  2. Science Education and Education for Citizenship and Sustainable Development

    Science.gov (United States)

    Johnston, Ronald

    2011-01-01

    In the United Kingdom (UK) and Europe, the need for education for sustainable development and global citizenship has recently been emphasised. This emphasis has arguably found its major home in the social studies in higher education. Concurrently, there has been a decline in interest in "the sciences" as evidenced by a reduction in the…

  3. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  4. How can science education foster students' rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  5. National Earth Science Teachers Association Achievements in Earth Science Education Leadership

    Science.gov (United States)

    Passow, M. J.; Johnson, R. M.; Pennington, P.; Herrold, A.; Holzer, M.; Ervin, T.; Hall, B.

    2008-12-01

    The National Earth Science Teachers Association (NESTA) continues its 25-year-long effort to advance geoscience education at all levels. NESTA especially employs multiple approaches to provide leadership, support, and resources to teachers so that all K - 12 students may receive a quality Earth and Space Science education. NESTA presents Share-a-thons, Earth and Space Science Resources Days, lectures, Rock and Mineral Raffles, field experiences, and social events that foster networking at national and regional science education conferences. Our quarterly journal,The Earth Scientist,provides quality classroom activities as well as background science information and news of opportunities of value to classroom teachers and their students. Recent issues have focused on the International Polar Year, professional development in the Earth Sciences, and recent advances in astronomy. These have included contributions from classroom and university educators and researchers. NESTA's web site, www.nestanet.org, provides timely information about upcoming events and opportunities, links to useful resources for geoscience teachers, access to the current and archived journals, and organizational information. A revised website, supported by an NSF grant, will be unveiled before the next NSTA National Conference on Science Education. These are supplemented by a monthly E-News and special "e-blasts". NESTA's leadership engages in frequent teleconferences to keep current with organizational planning. Among other accomplishments during the past year, NESTA revitalized our State contact network, identifying a member in almost every state plus some Canadian Provinces. This network will help disseminate information from NESTA, as well as provide feedback on issues of importance to members around the country. NESTA leaders and members interact with other national geoscience education organizations, including NAGT, GSA, AGI, AMS, and the Triangle Coalition. NESTA representatives also serve

  6. Science Teachers' Views about the Science Fair at Primary Education Level

    Science.gov (United States)

    Tortop, Hasan Said

    2013-01-01

    Science fair is an environment where students present their scientific research projects. Opinions of science teachers who participated as a mentor in science fair are important for determining of the science fair quality and its contribution of science education. The aim of study was to determine science teachers' views about the science fair at…

  7. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  8. What Is "Agency"? Perspectives in Science Education Research

    Science.gov (United States)

    Arnold, Jenny; Clarke, David John

    2014-01-01

    The contemporary interest in researching student agency in science education reflects concerns about the relevance of schooling and a shift in science education towards understanding learning in science as a complex social activity. The purpose of this article is to identify problems confronting the science education community in the development…

  9. Current Realities and Future Possibilities: Language and science literacy—empowering research and informing instruction

    Science.gov (United States)

    Yore, Larry D.; Treagust, David F.

    2006-02-01

    In this final article, we briefly review and synthesize the science and language research and practice that arose from the current literature and presentations at an international conference, referred to as the first “Island Conference”. We add to the synthesis of the articles the conference deliberations and on-going discussions of the field and also offer our views as to how such contributions can take place. These central issues—the definition of science literacy; the models of learning, discourse, reading, and writing and their underlying pedagogical assumptions; the roles of discourse in doing, teaching, and learning science; and the demands on teacher education and professional development in the current reforms in language and science education—provide points of departure for discussion of four possible new considerations to research in this field of endeavour that could contribute to a broader and productive scholarship and deeper and enriched understanding of both teaching and learning. These considerations, each from well-established fields of research literature, are the need to develop support for a contemporary view of science literacy, the role of metacognition in science learning generally, the role of multiple representations in knowledge building and science literacy, and the need for more focused teacher education and professional development programmes.

  10. Analogies in science education: contributions and challenges

    Directory of Open Access Journals (Sweden)

    Maria da Conceição Duarte

    2005-03-01

    Full Text Available An analogy is a comparison between domains of knowledge that have similarities at the levels of characteristics and relationships. Several authors highlight the importance of this tool in the teaching and learning of difficult scientific concepts. Nevertheless, some problems associated to the use of analogies have been found. This paper aims at contributing to a better understanding of the use of analogies in science education, by means of a review of the state of art regarding this matter. It will take into account its contribution to science education as well as the challenges to further research

  11. Lonergan's Theory of Cognition, Constructivism and Science Education

    Science.gov (United States)

    Roscoe, Keith

    2004-01-01

    Recent research literature in science education, science curriculum documents, and science methods texts have been highly influenced by constructivist views of how students learn science. But the widespread and often uncritical acceptance of constructivism in science education does not reflect the heated debate between constructivists and…

  12. Modern Romanian Library Science Education

    Directory of Open Access Journals (Sweden)

    Elena Tîrziman

    2015-01-01

    Full Text Available Library and Information Science celebrates 25 years of modern existence. An analysis of this period shows a permanent modernisation of this subject and its synchronisation with European realities at both teaching and research levels. The evolution of this subject is determined by the dynamics of the field, the quick evolution of the information and documenting trades in close relationship with science progress and information technologies. This major ensures academic training (Bachelor, Master, and Doctor and post-graduation studies and is involved in research projects relevant for the field and the labour market. Exigencies of the information-related trades and the appearance of new jobs are challenges for this academic major.

  13. Philosophy of Science and Education

    Science.gov (United States)

    Jung, Walter

    2012-01-01

    This is a vast and vague topic. In order to do justice to it one has to write a book or maybe more than one. For it can be understood in quite different ways and on different levels. For example you may think mainly of the historical aspect, that is how philosophy of science developed in the last hundred or so years and how its influence on…

  14. Misrecognition and science education reform

    Science.gov (United States)

    Brandt, Carol B.

    2012-09-01

    In this forum, I expand upon Teo and Osborne's discussion of teacher agency and curriculum reform. I take up and build upon their analysis to further examine one teacher's frustration in enacting an inquiry-based curriculum and his resulting accommodation of an AP curriculum. In this way I introduce the concept of misrecognition (Bourdieu and Passeron 1977) to open up new ways of thinking about science inquiry and school reform.

  15. Education Sciences: Towards a Theoretical Rebirth Beyond Reductionisms

    Directory of Open Access Journals (Sweden)

    Maria FORMOSINHO

    2013-11-01

    Full Text Available In order to clarify the directions that Education Sciences may take in the near future we start by discussing the current epistemological predicament of Education, and then articulate this discussion with an assessment of the impact of some major determinant external factors. We proceed by presenting the thread of Modernity in the configurations of educational reason and the impact of the inner fracture of reason fostered by Postmodernity, which leads us to conclude with the epistemic and normative requirements for theorizing Education. To avoid reductionism, we propose a triangular metatheory that should be able to account for the irreducible complexity of education. It presents a three-dimensional field where Education Sciences comprise, firstly, a hermeneutic and speculative dimension, cultivated by philosophy and oriented towards the setting of values and goals for the action, secondly, a descriptive and explanatory dimension, common to other Social Sciences, and thirdly an operational and technological dimension which surpasses the mere technical rationality confined to the selection of means and operationalization of goals, and therefore is in search of an intersubjective agreement that builds a consensus on the deontological normativity that regulates the activity of the professional educator, in its role of free agent and as a resource for action and change.

  16. Science academy statements on water, health, and science education

    Science.gov (United States)

    Showstack, Randy

    2011-05-01

    Several days prior to the Group of 8 (G8) summit of nations on 26-27 May in Deauville, France, science academies from those nations and five others issued joint statements calling for the governments to take actions regarding water and health as well as science education. The water and health statement indicates that nearly 3 billion people will be living in water-scarce countries by 2050 and that 2.6 billion already lack access to proper sanitation and nearly 900 million lack access to a clean water supply. The statement calls for developing basic infrastructure for sanitation, promoting education to change the behavior of populations regarding water supply, funding research and development to identify pathogens, and improving water management and hygiene standards, among other measures.

  17. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2017-03-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  18. Rural science education as social justice

    Science.gov (United States)

    Eppley, Karen

    2016-12-01

    What part can science education play in the dismantling of obstacles to social justice in rural places? In this Forum contribution, I use "Learning in and about Rural Places: Connections and Tensions Between Students' Everyday Experiences and Environmental Quality Issues in their Community"(Zimmerman and Weible 2016) to explicitly position rural education as a project of social justice that seeks full participatory parity for rural citizens. Fraser's (2009) conceptualization of social justice in rural education requires attention to the just distribution of resources, the recognition of the inherent capacities of rural people, and the right to equal participation in democratic processes that lead to opportunities to make decisions affecting local, regional, and global lives. This Forum piece considers the potential of place-based science education to contribute to this project.

  19. Putting the scientist in science education

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J.P. [Argonne National Lab., IL (United States)

    1994-12-31

    A personal account is given of some of the ways scientists could get involved in science education at the local level. Being employed at a National Laboratory such as Argonne presents a myriad of opportunities and programs involving the educational community. There have been basically, three areas of involvement at present, through our Division of Educational Programs (DEP), through initiatives presented, in conjunction with the Argonne Chapter of Sigma Xi and a volunteer effort with the Museum of Science and Industry of Chicago, Scientists, and School Program. Some descriptions of these efforts will be outlined from a personal perspective, and hopefully a measure of the impact gained by the scientists` involvement in the education process.

  20. Danish and German students’ reflections and recommendations to changes in their science education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Ahrenkiel, Linda; Michelsen, Claus

    situation in science education. The seminar was studied as a case study and data was collected by the use of questionnaires, videotaping, student presentations, field notes and interviews with some of the participants. The focus on the findings is on the students’ motives for changing their current......We here present a case study on students’ reflections and recommendations on their everyday science education. These recommendations come from a minority group seldom heard in science education, namely those students who are already engaged in science and science education. In November 2010...... a seminar was held in Sankelmark, Schleswig-Holstein, Germany. 29 upper secondary students from 4 schools (2 Danish and 2 German) attended the seminar in order to prepare some recommendations to take home to their own school. The students were asked to describe their current situation in science education...

  1. Excavating silences and tensions of agency|passivity in science education reform

    Science.gov (United States)

    Rivera Maulucci, Maria S.

    2010-12-01

    I reflect on studies by Rodriguez and Carlone, Haun-Frank, and Kimmel to emphasize the ways in which they excavate silences in the science education literature related to linguistic and cultural diversity and situating the problem of reform in teachers rather than contextual factors, such as traditional schooling discourses and forces that serve to marginalize science. I propose that the current push for top-down reform and accountability diminishes opportunities for receptivity, learning with and from students in order to transform teachers' practices and promote equity in science education. I discuss tensions of agency and passivity in science education reform and argue that attention to authentic caring constitutes another silence in the science education literature. I conclude that the current policy context positions teachers and science education researchers as tempered radicals struggling against opp(reg)ressive reforms and that there is a need for more studies to excavate these and other silences.

  2. On the Road to Science Education for Sustainability?

    Science.gov (United States)

    Albe, Virginie

    2013-01-01

    In this paper I discuss three issues relevant to the ideas introduced by Colucci-Gray, Perazzone, Dodman and Camino (2012) in their three-part paper on epistemological reflections and educational practice for science education for sustainability: (1) social studies of science for science education, (2) education for sustainability or sustainable…

  3. Investigating science teachers' beliefs about science and science teaching: Struggles in implementing science education reform in Saudi Arabia

    Science.gov (United States)

    Al-Abdulkareem, Saleh A. M.

    The purposes of this quantitative, descriptive study were to investigate Saudi science teachers' beliefs about science and science teaching, and to determine how do Saudi science teachers view educational reform in science and how do they view change in education. In addition, the study sought to establish whether Saudi science teachers would be able to participate in implementing science education reform in Saudi Arabia. A questionnaire was used to collect data, addressing personal characteristics of the participant, teachers' beliefs about science and nature, about school science, about teacher - student relations in the classroom, and environmental factors affecting teaching science. Finally, the questionnaire ended with three open-ended questions about teacher's belief regarding: science and nature, teaching science, and reforming science curriculum. The sample was 329, consisting of 298 science teachers and 31 supervisors. The data were analyzed using SPSS (Statistical Package for the Social Studies). The data are analyzed and reported in percentages, means, standard deviations, and frequencies. The responses to open-ended questions were analyzed using the qualitative method. The responses were categorized in subsets using the coding method. Based on the review of the literature and the findings of this research, it was apparent that differences exist between teachers' beliefs about science and teaching and their teaching methods. Although Saudi science teachers presented inquiry-based views about science, nature, and teaching science, they do not practice these views in science class. The findings of the study imply that educational reform in science education must simultaneously address all the components of an educational system and the concept of systemic reform, as will as the need for a standards-based learning system and establishing Benchmarks for science in Saudi education. The conclusions of the study indicated that a curriculum reform project needs

  4. Questioning Two Myths in Computer Science Education

    OpenAIRE

    2014-01-01

    Part 1: Key Competencies for Educating ICT Professionals; International audience; This paper examines two statements regarding computer science as a discipline and its theoretical basis. We shall demonstrate how those statements are questionable and in addition they tend to hide the real root-causes of some significant educational issues. Those statements are very popular in the scientific community and have noteworthy negative effect on the researchers who frequently double their efforts and...

  5. The current status of forensic science laboratory accreditation in Europe.

    Science.gov (United States)

    Malkoc, Ekrem; Neuteboom, Wim

    2007-04-11

    Forensic science is gaining some solid ground in the area of effective crime prevention, especially in the areas where more sophisticated use of available technology is prevalent. All it takes is high-level cooperation among nations that can help them deal with criminality that adopts a cross-border nature more and more. It is apparent that cooperation will not be enough on its own and this development will require a network of qualified forensic laboratories spread over Europe. It is argued in this paper that forensic science laboratories play an important role in the fight against crime. Another, complimentary argument is that forensic science laboratories need to be better involved in the fight against crime. For this to be achieved, a good level of cooperation should be established and maintained. It is also noted that harmonization is required for such cooperation and seeking accreditation according to an internationally acceptable standard, such as ISO/IEC 17025, will eventually bring harmonization as an end result. Because, ISO/IEC 17025 as an international standard, has been a tool that helps forensic science laboratories in the current trend towards accreditation that can be observed not only in Europe, but also in the rest of the world of forensic science. In the introduction part, ISO/IEC 17025 states that "the acceptance of testing and calibration results between countries should be facilitated if laboratories comply with this international standard and if they obtain accreditation from bodies which have entered into mutual recognition agreements with equivalent bodies in other countries using this international standard." Furthermore, it is emphasized that the use of this international standard will assist in the harmonization of standards and procedures. The background of forensic science cooperation in Europe will be explained by using an existing European forensic science network, i.e. ENFSI, in order to understand the current status of forensic

  6. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swensen, Hakon

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...

  7. Augmented Reality in Science Education

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Brandt, Harald; Swenson, Hakon

    2015-01-01

    Augmented reality (AR) holds great promise as a learning tool. However, most extant studies in this field have focused on the technology itself. The poster presents findings from the first stage of the AR-sci project addressing the issue of applying AR for educational purposes. Benefits...

  8. 青少年科技教育研究的现状与思考%On Current Situation of Teenager Science and Technology Education Research and Its Reflection

    Institute of Scientific and Technical Information of China (English)

    林美玉; 于新惠; 王杰

    2011-01-01

    青少年科技教育研究的目的是揭示青少年科技教育的基本原理、特色和规律,为青少年科技教育的可持续发展提供支撑。通过分析发现,我国科技教育研究机构建设处于初始阶段,缺乏综合学术性研究专刊,理论研究仍处在观念层面,实践研究多处于经验积累层面。需要运用系统科学的方法对科技教育进行研究,开发出分层次、分模块、有效协调、高效发展的科技教育研究创新系统。%Purpose of teenager science and technology education research is to reveal the basic principles,characteristics and laws of teenager science and technology education to provide support for its sustainable development.Through analysis,it is found that research institutions of science and technology education are in the initial stages of construction,professional academic journals are not available,theoretical research is still on the concept level,and the practice study is mainly based on the accumulation of experience.Science and technology education research needs a systematic and scientific approach to establish a creative system of different levels,modules,effective coordination and efficient development.

  9. Cartography and Geographic Information Science in Current Contents

    OpenAIRE

    Nedjeljko Frančula

    2009-01-01

    The Cartography and Geographic Information Science (CaGIS) journal was published as The American Cartographer from 1974 to 1989, after that as Cartography and Geographic Information System, and since then has been published with its current name. It is published by the Cartography and Geographic Information Society, a member of the American Congress on Surveying and Mapping.

  10. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  11. The Philosophical and Sociological Foundations of Science Education: The Demythologizing of School Science

    Science.gov (United States)

    Smolicz, J. J.; Nunan, E. E.

    1975-01-01

    Examines the relationships and interactions between the image of science, the philosophy of science, and the philosophy of science education. Investigates the fragmentation in science and the effects of this fragmentation upon providing educationists with a theoretical support in science education. (GS)

  12. The Feasibility of Educating Trainee Science Teachers in Issues of Science and Religion

    Science.gov (United States)

    Poole, Michael

    2016-01-01

    This article reflects on Roussel De Carvalho's paper "Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalized science classroom" (EJ1102211). It then offers suggestions for making some of the ambitious goals of the science-and-religion components of the science initial teacher…

  13. Current Situation and Discussion on the Construction of Popular Science Education Resources in University Museum%高校博物馆科普教育资源建设现状与探讨

    Institute of Scientific and Technical Information of China (English)

    李树强

    2016-01-01

    高校博物馆是教育系统开展科普活动最为重要的科普基础设施之一,如何促进高校博物馆科普资源建设对提升我国科技创新能力具有重要意义。本文总结了“十二五”期间我国高校博物馆科普教育资源建设的现状、存在的主要问题及导致这些问题的主要原因,提出了“十三五”期间提升高校博物馆科普能力的政策建议。%University Museum is one of the most important scientific infrastructure for education system, and how to promote the construction of science popularization resources is of great significance to improve the ability of science and technology innovation in our country. This paper summarizes the"Twelfth Five Year Plan"period, the present situation of our country Uni-versity Museum of science education resources construction, the existing main problems and main causes of these problems, and puts forward the"Thirteenth Five Year Plan"to enhance the University Museum of science popularization ability of policy recommendations.

  14. Understanding adolescent student perceptions of science education

    Science.gov (United States)

    Ebert, Ellen Kress

    This study used the Relevance of Science Education (ROSE) survey (Sjoberg & Schreiner, 2004) to examine topics of interest and perspectives of secondary science students in a large school district in the southwestern U.S. A situated learning perspective was used to frame the project. The research questions of this study focused on (a) perceptions students have about themselves and their science classroom and how these beliefs may influence their participation in the community of practice of science; (b) consideration of how a future science classroom where the curriculum is framed by the Next Generation Science Standards might foster students' beliefs and perceptions about science education and their legitimate peripheral participation in the community of practice of science; and (c) reflecting on their school science interests and perspectives, what can be inferred about students' identities as future scientists or STEM field professionals? Data were collected from 515 second year science students during a 4-week period in May of 2012 using a Web-based survey. Data were disaggregated by gender and ethnicity and analyzed descriptively and by statistical comparison between groups. Findings for Research Question 1 indicated that boys and girls showed statistically significant differences in scientific topics of interest. There were no statistical differences between ethnic groups although. For Research Question 2, it was determined that participants reported an increase in their interest when they deemed the context of the content to be personally relevant. Results for Research Question 3 showed that participants do not see themselves as youthful scientists or as becoming scientists. While participants value the importance of science in their lives and think all students should take science, they do not aspire to careers in science. Based on this study, a need for potential future work has been identified in three areas: (a) exploration of the perspectives and

  15. How a Deweyan science education further enables ethics education

    Science.gov (United States)

    Webster, Scott

    2008-09-01

    This paper questions the perceived divide between ‘science’ subject matter and ‘moral’ or ‘ethical’ subject matter. A difficulty that this assumed divide produces is that science teachers often feel that there needs to be ‘special treatment’ given to certain issues which are of an ethical or moral nature and which are ‘brought into’ the science class. The case is made in this article that dealing with ethical issues in the science class should not call for a sensitivity that is beyond the expertise of the science teacher. Indeed it is argued here that science teachers in particular have a great deal to offer in enabling ethics education. To overcome this perceived divide between science and values it needs to be recognised that the educative development of learners is both scientific and moral. I shall be using a Deweyan perspective to make the case that we as science teachers can overcome this apparent divide and significantly contribute to an ethics education of our students.

  16. Regulatory Science in Professional Education.

    Science.gov (United States)

    Akiyama, Hiroshi

    2017-01-01

     In the field of pharmaceutical sciences, the subject of regulatory science (RS) includes pharmaceuticals, food, and living environments. For pharmaceuticals, considering the balance between efficacy and safety is a point required for public acceptance, and in that balance, more importance is given to efficacy in curing disease. For food, however, safety is the most important consideration for public acceptance because food should be essentially free of risk. To ensure food safety, first, any hazard that is an agent in food or condition of food with the potential to cause adverse health effects should be identified and characterized. Then the risk that it will affect public health is scientifically analyzed. This process is called risk assessment. Second, risk management should be conducted to reduce a risk that has the potential to affect public health found in a risk assessment. Furthermore, risk communication, which is the interactive exchange of information and opinions concerning risk and risk management among risk assessors, risk managers, consumers, and other interested parties, should be conducted. Food safety is ensured based on risk analysis consisting of the three components of risk assessment, risk management, and risk communication. RS in the field of food safety supports risk analysis, such as scientific research and development of test methods to evaluate food quality, efficacy, and safety. RS is also applied in the field of living environments because the safety of environmental chemical substances is ensured based on risk analysis, similar to that conducted for food.

  17. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  18. State infrastructure support for science education reform

    Energy Technology Data Exchange (ETDEWEB)

    Buccino, A.

    1994-12-31

    Discussing state infrastructure support for science education reform is a little daunting. At the state level, there is simply nothing comparable to the federal establishment. There are state science academies, but they generally do not have the stature and influence of the National Academy of Sciences. In large states like California, governors may have formally designated science advisors, but there are no agencies comparable to NSF of NASA or the Defense Department, owing to the national character of the mission of these agencies. Although science and mathematics education has been pronounced a major national concern, some states do not agree. For example, some states did not bother to apply for a Statewide Systematic Initiative project, and at least one state declined to do so because its governor did not think his state needed it. We need to come to grips with standard-based education and support commitment to it and to its implementation. The central issue here is state and local implementation of the leadership coming from the federal government and expressed in Goals 2000 and Pathways to Excellence.

  19. Science Education and Religion in the Post-Darwin Era: An Historical Perspective

    Science.gov (United States)

    Prince, Tiffany

    2009-01-01

    This article is part of the author's current research into science teachers' perspectives on the theory of evolution and its teaching in the classroom. Anti-evolutionary views have recently become very prominent in the context of science education, with almost one third of science teachers in the United Kingdom agreeing that creationism should be…

  20. Results of a Research Evaluating Quality of Computer Science Education

    Directory of Open Access Journals (Sweden)

    Ján ZÁHOREC

    2012-10-01

    Full Text Available The paper presents the results of an international research on a comparative assessment of the current status of computer science education at the secondary level (ISCED 3A in Slovakia, the Czech Republic, and Belgium. Evaluation was carried out based on 14 specific factors gauging the students' point of view. The authors present qualitative findings from the following nine analyzed factors: the popularity of computer science/informatics as a subject, the potential of using knowledge gained by studying informatics at school in everyday life, the attractiveness and demands of the curriculum content, the clarity and attractiveness of teacher presentation of the subject matter to students, the engagement of tasks solved while studying informatics, the degree of comprehensibility of informatics textbooks, and the usability of knowledge acquired in school for solving practical problems. Based on the results, the authors identify the strengths and weaknesses of computer science education in the observed countries.

  1. The Impact of Television on Science Education

    Science.gov (United States)

    Cohen, David

    1970-01-01

    Reviews literature on effectiveness of educational television (ETV) and reports trends in ETV utilization by Victorian secondary school science teachers. Discusses potential improvements in ETV utilization using electronic video recording devices, feedback to the television teachers, and identification of effective ETV techniques. (AL)

  2. Science Education, Integral Inquiry, Transformation and Possibility

    Science.gov (United States)

    Stack, Sue

    2013-01-01

    This paper is written in response to Nancy Davis's article "Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives." I use Integral Theory as a framing for this response to explore how it might offer different perspectives and ways of inquiring into Nancy's paper. This process highlights…

  3. An Ethically Ambitious Higher Education Data Science

    Science.gov (United States)

    Stevens, Mitchell L.

    2014-01-01

    The new data sciences of education bring substantial legal, political, and ethical questions about the management of information about learners. This piece provides a synoptic view of recent scholarly discussion in this domain and calls for a proactive approach to the ethics of learning research.

  4. Situated Learning in Computer Science Education

    Science.gov (United States)

    Ben-Ari, Mordechai

    2004-01-01

    Sociocultural theories of learning such as Wenger and Lave's situated learning have been suggested as alternatives to cognitive theories of learning like constructivism. This article examines situated learning within the context of computer science (CS) education. Situated learning accurately describes some CS communities like open-source software…

  5. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  6. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  7. New Biological Sciences, Sociology and Education

    Science.gov (United States)

    Youdell, Deborah

    2016-01-01

    Since the Human Genome Project mapped the gene sequence, new biological sciences have been generating a raft of new knowledges about the mechanisms and functions of the molecular body. One area of work that has particular potential to speak to sociology of education, is the emerging field of epigenetics. Epigenetics moves away from the mapped…

  8. Psychology's Role in Mathematics and Science Education

    Science.gov (United States)

    Newcombe, Nora S.; Ambady, Nalini; Eccles, Jacquelynne; Gomez, Louis; Klahr, David; Linn, Marcia; Miller, Kevin; Mix, Kelly

    2009-01-01

    Improving mathematics and science education in the United States has been a matter of national concern for over half a century. Psychology has a vital role to play in this enterprise. In this article, the authors review the kinds of contributions that psychology can make in four areas: (a) early understanding of mathematics, (b) understanding of…

  9. How Can Science Education Foster Students' Rooting?

    Science.gov (United States)

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  10. Science Education, Integral Inquiry, Transformation and Possibility

    Science.gov (United States)

    Stack, Sue

    2013-01-01

    This paper is written in response to Nancy Davis's article "Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives." I use Integral Theory as a framing for this response to explore how it might offer different perspectives and ways of inquiring into Nancy's paper. This process highlights…

  11. Population Education in Science: Some Sample Lessons.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    This science teacher's manual contains nine sample population education lessons adapted from materials produced in several countries in Asia and Oceania. Activities are designed for lower primary through high school students. Included are class discussions, small group activities, and a role-playing situation. Food chains, human dependence upon…

  12. Current and future directions of DNA in wildlife forensic science.

    Science.gov (United States)

    Johnson, Rebecca N; Wilson-Wilde, Linzi; Linacre, Adrian

    2014-05-01

    Wildlife forensic science may not have attained the profile of human identification, yet the scale of criminal activity related to wildlife is extensive by any measure. Service delivery in the arena of wildlife forensic science is often ad hoc, unco-ordinated and unregulated, yet many of those currently dedicated to wildlife conservation and the protection of endangered species are striving to ensure that the highest standards are met. The genetic markers and software used to evaluate data in wildlife forensic science are more varied than those in human forensic identification and are rarely standardised between species. The time and resources required to characterise and validate each genetic maker is considerable and in some cases prohibitive. Further, issues are regularly encountered in the construction of allelic databases and allelic ladders; essential in human identification studies, but also applicable to wildlife criminal investigations. Accreditation and certification are essential in human identification and are currently being strived for in the forensic wildlife community. Examples are provided as to how best practice can be demonstrated in all areas of wildlife crime analysis and ensure that this field of forensic science gains and maintains the respect it deserves. This review is aimed at those conducting human identification to illustrate how research concepts in wildlife forensic science can be used in the criminal justice system, as well as describing the real importance of this type of forensic analysis.

  13. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  14. Investigating Relationships among Pre-Service Science Teachers' Conceptual Knowledge of Electric Current, Motivational Beliefs and Self-Regulation

    Science.gov (United States)

    Inaltun, Hüseyin; Ates, Salih

    2015-01-01

    The purpose of this study is to examine relationships among pre-service science teachers' conceptual knowledge of electric current, motivational beliefs, and self-regulation. One hundred and twenty-seven students (female = 107, male = 20) enrolled in the science education program of a public university in Ankara participated the study. A concept…

  15. Beyond Evolution: Addressing Broad Interactions Between Science and Religion in Science Teacher Education

    Science.gov (United States)

    Shane, Joseph W.; Binns, Ian C.; Meadows, Lee; Hermann, Ronald S.; Benus, Matthew J.

    2016-03-01

    Science and religion are two indisputably profound and durable cultural forces with a complex history of interaction. As ASTE members are aware, these interactions often manifest themselves in classrooms and in the surrounding communities. In this essay, we encourage science teacher educators to broaden their perspectives of science-religion interactions so that they may better assist pre- and in-service science teachers with addressing topics such as the age and origins of the universe and biological evolution in an appropriate manner. We first introduce some foundational scholarship into the historical interactions between science and religion as well as current efforts to maintain healthy dialogue between perspectives that are frequently characterized as innately in conflict with or mutually exclusive of one another. Given that biological evolution is the dominant science-religion issue of our day, in particular in the USA, we next summarize the origins and strategies of anti-evolution movements via the rise and persistence of Christian Fundamentalism. We then summarize survey and qualitative sociological research indicating disparities between academic scientists and the general public with regard to religious beliefs to help us further understand our students' worldviews and the challenges they often face in campus-to-classroom transitions. We conclude the essay by providing resources and practical suggestions, including legal considerations, to assist science teacher educators with their curriculum and outreach.

  16. Leadership styles in interdisciplinary health science education.

    Science.gov (United States)

    Sasnett, Bonita; Clay, Maria

    2008-12-01

    The US Institute of Medicine recommends that all health professionals should deliver patient-centered care as members of interdisciplinary health science teams. The current application of the Bolman and Deal Leadership model to health sciences provides an interesting point of reference to compare leadership styles. This article reviews several applications of that model within academic health care and the aggregate recommendations for leaders of health care disciplines based on collective findings.

  17. Enhancing the "Science" in Elementary Science Methods: A Collaborative Effort between Science Education and Entomology.

    Science.gov (United States)

    Boardman, Leigh Ann; Zembal-Saul, Carla; Frazier, Maryann; Appel, Heidi; Weiss, Robinne

    Teachers' subject matter knowledge is a particularly important issue in science education in that it influences instructional practices across subject areas and at different grade levels. This paper provides an overview of efforts to develop a unique elementary science methods course and related field experience through a partnership between…

  18. Radiation risk and science education

    Energy Technology Data Exchange (ETDEWEB)

    Eijkelhof, H.M.C. [Utrecht Univ. (Netherlands). Centre for Science and Mathematics Education

    1996-12-31

    Almost everywhere the topic of radioactivity is taught in the physics or chemistry classes of secondary schools. The question has been raised whether the common approach of teaching this topic would contribute to a better understanding of the risks of ionising radiation: and, if the answer is negative, how to explain and improve this situation? In a Dutch research programme which took almost ten years, answers to this question have been sought by means of analyses of newspaper reports, curriculum development, consultation with radiation experts, physics textbook analysis, interviews and questionnaires with teachers and pupils, class observations and curriculum development. Th main results of this study are presented and some recommendations given for science teaching and for communication with the public in general as regards radiation risk. (author).

  19. Persuasion and attitude change in science education

    Science.gov (United States)

    Koballa, Thomas R., Jr.

    Many strategies used to induce the occurrence of desirable science-related beliefs, attitudes, and behaviors involve the use of persuasive messages. Science educators need to become acquainted with persuasion in the context of social influence and learning theory to be able to evaluate its usefulness in the science education milieu. Persuasion is the conscious attempt to bring about a jointly developed mental state common to both source and receiver through the use of symbolic cues, and it can be distinguished from other forms of social influence. Propaganda is a type of persuasion directed toward a mass audience. Coercion relies on reinforcement control, whereas persuasion is prompted by information. Brainwashing involves coercive techniques used to obtain cooperation and compliance. Persuasion and instruction are much alike; both require conscious cognitive activity by the recipient and involve communication which includes giving arguments and evidence for the purpose of getting someone to do something or to believe something.Persuasion research is anchored in learning theory. Early efforts were based on information processing. Studies following an information process approach focused on the effect of the variables harbored within the question Who says what in which channel to whom with what effect? on belief and attitude change. Cognitive processing and social exchange approaches to persuasion represent extensions to information process. Cognitive processing is concerned specifically with how people personally process the arguments presented in a persuasive message. Social exchange emphasizes the interchange that takes place between the message source and recipient. These approaches seem to be fruitful areas for future persuasion research in science education.Science educators' unfamiliarity with persuasion research stems from the fact that it is largely reported in the social psychology literature and has not been integrated into a framework familiar to

  20. Radiation safety education for laboratory animal science.

    Science.gov (United States)

    Emrich, J; Lambert, K

    2000-08-01

    Students enrolled in the laboratory animal science graduate program at MCP Hahnemann University seek to gain entrance to veterinary school or to manage an animal facility within an academic institution, pharmaceutical or biotechnology company conducting biomedical research. Ongoing interaction between faculty in the radiation oncology, radiation safety, and lab animal science disciplines revealed an acute need for radiation safety education for laboratory animal science students who will likely interact with researchers either designing and writing protocols for animal studies using radiation or radioactive materials, or veterinary staff who will use sources of radiation to diagnose and/or treat possible animal injuries and diseases. A core course in the Radiation Sciences graduate program was modified to address the needs of these students, instructing them in radiation safety, detection and counting instrumentation, and radiation biology. These fundamental areas were integrated to help the students gain a sound, basic knowledge of radiation and radioactive materials used in biomedical research.

  1. Serious computer games in computer science education

    Directory of Open Access Journals (Sweden)

    Jože Rugelj

    2015-11-01

    Full Text Available The role and importance of serious computer games in contemporary educational practice is presented in this paper as well as the theoretical fundamentals that justify their use in different forms of education. We present a project for designing and developing serious games that take place within the curriculum for computer science teachers’ education as an independent project work in teams. In this project work students have to use their knowledge in the field of didactics and computer science to develop games. The developed game is tested and evaluated in schools in the framework of their practical training. The results of the evaluation can help students improve their games and verify to which extent specified learning goals have been achieved.

  2. Understandings of Current Environmental Issues: Turkish Case Study in Six Teacher Education Colleges

    Science.gov (United States)

    Cakir, Mustafa; Irez, Serhat; Dogan, Ozgur Kivilcan

    2010-01-01

    The purpose of this study is to profile future science teachers' understandings of current environmental issues in the context of an education reform in Turkey. Knowledge base and understandings of elementary and secondary prospective science teachers about biodiversity, carbon cycle, global warming and ozone layer depletion were targeted in the…

  3. A History of Soil Science Education in the United States

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.

  4. Health science center faculty attitudes towards interprofessional education and teamwork.

    Science.gov (United States)

    Gary, Jodie C; Gosselin, Kevin; Bentley, Regina

    2017-10-12

    The attitudes of faculty towards interprofessional education (IPE) and teamwork impact the education of health professions education (HPE) students. This paper reports on a study evaluating attitudes from health professions educators towards IPE and teamwork at one academic health science center (HSC) where modest IPE initiatives have commenced. Drawing from the results of a previous investigation, this study was conducted to examine current attitudes of the faculty responsible for the training of future healthcare professionals. Survey data were collected to evaluate attitudes from HSC faculty, dentistry, nursing, medicine, pharmacy and public health. In general, positive HSC faculty attitudes towards interprofessional learning, education, and teamwork were significantly predicted by those affiliated with the component of nursing. Faculty development aimed at changing attitudes and increasing understanding of IPE and teamwork are critical. Results of this study serve as an underpinning to leverage strengths and evaluate weakness in initiating IPE.

  5. Theme: The Role of Science in the Agricultural Education Curriculum.

    Science.gov (United States)

    Agricultural Education Magazine, 2002

    2002-01-01

    Thirteen theme articles discuss integration of science and agriculture, the role of science in agricultural education, biotechnology, agriscience in Tennessee and West Virginia, agriscience and program survival, modernization of agricultural education curriculum, agriscience and service learning, and biotechnology websites. (SK)

  6. Informal science education: lifelong, life-wide, life-deep.

    Science.gov (United States)

    Sacco, Kalie; Falk, John H; Bell, James

    2014-11-01

    Informal Science Education: Lifelong, Life-Wide, Life-Deep Informal science education cultivates diverse opportunities for lifelong learning outside of formal K-16 classroom settings, from museums to online media, often with the help of practicing scientists.

  7. Editorial: Special Issue (SI): International Conference on Science Education (ICSE)

    Science.gov (United States)

    Liu, Xiufeng; Zhang, BaoHui

    2014-04-01

    In the context of science education globalization, the International Conference on Science Education was held in Nanjing, China, in October 2012. The purpose of this conference was to provide a forum for science education researchers from China and from the rest of the world to exchange research ideas and best practices in science education. A call for papers for a special issue of the Journal of Science Education and Technology was made to all conference participants, and a set of six articles was resulted from a standard peer review process. This set of six articles provides a snapshot of research in China and in some other countries, and represents a dialogue between Chinese science education researchers and science education researchers from other countries. We call for more exchange and collaboration in science education between China and the rest of the world.

  8. Defining integrated science education and putting it to test

    OpenAIRE

    Maria Åström

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subjectspecific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students’ science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i. e. Science education and science taught as Biology, Chem...

  9. Encountering science education's capacity to affect and be affected

    Science.gov (United States)

    Alsop, Steve

    2016-09-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science education. These discussions are framed by desires to transcend traditional epistemic boundaries and practices. The article concludes offering some associated ambiguities and tensions involved.

  10. Marxism in Vygotskian approaches to cultural studies of science education

    Science.gov (United States)

    Lima Junior, Paulo; Ostermann, Fernanda; Rezende, Flavia

    2014-09-01

    In this paper we initially address the main categories of Marxism, illustrating how Vygotsky has appropriated them as mediational meta-theoretical tools for building concepts for his psychological approach. In order to investigate the influence of Marxism in cultural studies of science education, we make an account of how current research, sustained by Vygotsky's original and successor theories, has been appropriating meta-theoretical categories of dialectical materialism. Once we identified Cultural Studies of Science Education as a journal that would probably concentrate papers that follow these perspectives, we decided to take it as the context of this study. In the process of selecting the corpus to be reviewed from the editions published from 2006 to 2011, we have found that 16 % of the articles that matched keywords denoting frameworks related to the Vygotskian tradition developed and appropriated the categories of dialectical materialism. The quality and originality of contemporary development of CHAT denote that this framework has been playing a very important role in recent expansion of Vygotskian approaches to research in science education. Among the papers that we considered to develop and appropriate Vygotskian frameworks, incompletion in the appropriation of meta-theoretical categories of dialectical materialism and the misusage of dialectics intertwined with dialogism were highlighted. Our findings suggest that overcoming these limitations can enhance political analysis of sociocultural phenomena in the context of science education. It also represents a strengthening of the role of dialectical materialism in expanding sociocultural perspectives toward a better articulation between individual and institutional-centered analyses.

  11. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  12. Science Education & Advocacy: Tools to Support Better Education Policies

    Science.gov (United States)

    O'Donnell, Christine; Cunningham, B.; Hehn, J. G.

    2014-01-01

    Education is strongly affected by federal and local policies, such as testing requirements and program funding, and many scientists and science teachers are increasingly interested in becoming more engaged with the policy process. To address this need, I worked with the American Association of Physics Teachers (AAPT) --- a professional membership society of scientists and science teachers that is dedicated to enhancing the understanding and appreciation of physics through teaching --- to create advocacy tools for its members to use, including one-page leave-behinds, guides for meeting with policymakers, and strategies for framing issues. In addition, I developed a general tutorial to aid AAPT members in developing effective advocacy strategies to support better education policies. This work was done through the Society for Physics Students (SPS) Internship program, which provides a range of opportunities for undergraduates, including research, education and public outreach, and public policy. In this presentation, I summarize these new advocacy tools and their application to astronomy education issues.

  13. Teacher Leaders in Research Based Science Education

    Science.gov (United States)

    Rector, T. A.; Jacoby, S. H.; Lockwood, J. F.; McCarthy, D. W.

    2001-12-01

    NOAO facilities will be used in support of ``Teacher Leaders in Research Based Science Education" (TLRBSE), a new Teacher Retention and Renewal program that will be funded through the National Science Foundation's Directorate for Education and Human Resources. The goal of TLRBSE is to provide professional development for secondary teachers of mathematics and science in an effort to support novice teachers beginning their careers as well as to motivate and retain experienced teachers. Within the context of astronomy, TLRBSE will develop master teachers who will mentor a second tier of novice teachers in the exemplary method of research-based science education, a proven effective teaching method which models the process of inquiry and exploration used by scientists. Participants will be trained through a combination of in-residence workshops at Kitt Peak National Observatory and the National Solar Observatory, a distance-learning program during the academic year, interaction at professional meetings and mentor support from teacher leaders and professional astronomers. A total of 360 teachers will participate in the program over five years.

  14. Mario Bunge, Systematic Philosophy and Science Education: An Introduction

    Science.gov (United States)

    Matthews, Michael R.

    2012-10-01

    Mario Bunge was born in Argentina in 1919 and is now in his mid-90s. He studied atomic physics and quantum mechanics with Guido Beck (1903-1988), an Austrian refugee and student of Heisenberg. Additionally he studied modern philosophy in an environment that was a philosophical backwater becoming the first South American philosopher of science to be trained in science. His publications in physics, philosophy, psychology, sociology and the foundations of biology, are staggering in number, and include a massive 8-volume Treatise on Philosophy. The unifying thread of his scholarship is the constant and vigorous advancement of the Enlightenment Project, and criticism of cultural and academic movements that deny or devalue the core planks of the project: namely its naturalism, the search for truth, the universality of science, the value of rationality, and respect for individuals. At a time when specialisation is widely decried, and its deleterious effects on science, philosophy of science, educational research and science teaching are recognised, and at a time when `grand narratives' are thought both undesirable and impossible—it is salutary to appraise the fruits of one person's pursuit of the `Big' scientific and philosophical picture or grand narrative. In doing so this special issue brings together philosophers, physicists, biologists, sociologists, logicians, cognitive scientists, economists and mathematicians to examine facets of Mario Bunge's systematic philosophy and to appraise its contribution to important issues in current philosophy and, by implication, education.

  15. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    , and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating......Research into ways of improving the initial education and continuing professional development of science teachers is closely related to both common and unique strands. The field is complex since science teachers teach at different educational levels, are often educated in different science subjects...

  16. Hermeneutics of science and multi-gendered science education

    Science.gov (United States)

    Ginev, Dimitri Jordan

    2008-11-01

    In this paper, I consider the relevance of the view of cognitive existentialism to a multi-gendered picture of science education. I am opposing both the search for a particular feminist standpoint epistemology and the reduction of philosophy of science to cultural studies of scientific practices as championed by supporters of postmodern political feminism. In drawing on the theory of gender plurality and the conception of dynamic objectivity, the paper suggests a way of treating the nexus between the construction of gender within the interrelatedness of scientific practices and the constitution of particular objects of inquiry. At stake is the notion of characteristic hermeneutic situation which proves to be helpful in designing a multi-gendered pedagogy as well.

  17. Forensic Science and the Internet - Current Utilization and Future Potential.

    Science.gov (United States)

    Chamakura, R P

    1997-12-01

    The Internet has become a very powerful and inexpensive tool for the free distribution of knowledge and information. It is a learning and research tool, a virtual library without borders and membership requirements, a help desk, and a publication house providing newspapers with current information and journals with instant publication. Very soon, when live audio and video transmission is perfected, the Internet (popularly referred to as the Net) also will be a live classroom and everyday conference site. This article provides a brief overview of the basic structure and essential components of the Internet. A limited number of home pages/Web sites that are already made available on the Net by scientists, laboratories, and colleges in the forensic science community are presented in table forms. Home pages/Web sites containing useful information pertinent to different disciplines of forensic science are also categorized in various tables. The ease and benefits of the Internet use are exemplified by the author's personal experience. Currently, only a few forensic scientists and institutions have made their presence felt. More participation and active contribution and the creation of on-line searchable databases in all specialties of forensic science are urgently needed. Leading forensic journals should take the lead and create on-line searchable indexes with abstracts. Creating Internet repositories of unpublished papers is an idea worth looking into. Leading forensic science institutions should also develop use of the Net to provide training and retraining opportunities for forensic scientists.

  18. Encountering Science Education's Capacity to Affect and Be Affected

    Science.gov (United States)

    Alsop, Steve

    2016-01-01

    What might science education learn from the recent affective turn in the humanities and social sciences? Framed as a response to Michalinos Zembylas's article, this essay draws from selected theorizing in affect theory, science education and science and technology studies, in pursuit of diverse and productive ways to talk of affect within science…

  19. Library exhibits and programs boost science education

    Science.gov (United States)

    Dusenbery, Paul B.; Curtis, Lisa

    2012-05-01

    Science museums let visitors explore and discover, but for many families there are barriers—such as cost or distance—that prevent them from visiting museums and experiencing hands-on science, technology, engineering, and mathematics (STEM) learning. Now educators are reaching underserved audiences by developing STEM exhibits and programs for public libraries. With more than 16,000 outlets in the United States, public libraries serve almost every community in the country. Nationwide, they receive about 1.5 billion visits per year, and they offer their services for free.

  20. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  1. Special Education Teachers' Nature of Science Instructional Experiences

    Science.gov (United States)

    Mulvey, Bridget K.; Chiu, Jennifer L.; Ghosh, Rajlakshmi; Bell, Randy L.

    2016-01-01

    Special education teachers provide critical science instruction to students. However, little research investigates special education teacher beliefs and practices around science in general or the nature of science and inquiry in particular. This investigation is a cross-case analysis of four elementary special education teachers' initial…

  2. (W)rapping relationships between science education and globalisation

    Science.gov (United States)

    Gough, Annette

    2011-03-01

    This essay reviews the contribution of Rowhea Elmesky in this volume, to the field of research in science education, and places it in the context of the juncture of youth disengagement with science, multicultural education and globalisation, with an underlay of a historical context and critiques of science education from feminist and postcolonial perspectives.

  3. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  4. Inside versus outside the Science Classroom: Examining the Positionality of Two Female Science Teachers at the Boundaries of Science Education

    Science.gov (United States)

    Teo, Tang Wee

    2015-01-01

    The third wave feminist studies in science education take the stance that science teaching is political and that social change is possible through interrogating power inequalities and decentering science to balance out power. For science educators, this means developing an awareness of "positionality," which I define here as a…

  5. Obama Announces Science Education Goal at White House Science Fair

    Science.gov (United States)

    Showstack, Randy

    2012-02-01

    With student participants in the second annual White House Science Fair as a backdrop, President Barack Obama announced on 7 February programs to help prepare new math and science teachers and to meet a new goal of having 1 million more U.S. college graduates in science, technology, engineering, and math (STEM) over the next decade than there would be at the current graduation rate. That goal is outlined in a report entitled “Engage to excel,” by the President's Council of Advisors on Science and Technology (PCAST), released the same day. Obama also announced several other initiatives, including a $22 million private-sector investment, led by the Carnegie Corporation of New York, to invest in STEM teacher training. After he toured the science fair projects, Obama said the science fair students “inspire” him. “What impresses me so much is not just how smart you are, but it's the fact that you recognize you've got a responsibility to use your talents in service of something bigger than yourselves,” he said. What these young people are doing is “going to make a bigger difference in the life of our country over the long term than just about anything,” adding, “We've got to emphasize how important this is and recognize these incredible young people who are doing that that I couldn't even imagine thinking about at fifth grade or eighth grade or in high school.”

  6. The Higher Education Clearinghouse for Space Sciences

    Science.gov (United States)

    Dalton, H.; Cobabe-Ammann, E. A.; Shipp, S. S.

    2011-12-01

    The Higher Education Clearinghouse (HECl) is a searchable database of undergraduate classroom materials for faculty teaching planetary sciences and solar and space physics at both the introductory and upper division levels. Modeled after the highly successful SERC clearinghouse for geosciences assets, HECl was designed for easy submission of classroom assets - from homeworks and computer interactives to laboratories and demonstrations. All materials are peer-reviewed before posting, and authors adhere to the Creative Commons Attribution (CC BY). HECl materials are automatically cross-posted to other digital libraries (e.g., ComPADRE) and virtual higher education communities (e.g., Connexions). In addition to classroom materials, HECl provides news and information about educational research and best practices, funding opportunities, and ongoing efforts and collaborations for undergraduate education.

  7. Publishing Opportunities in Educational Communications, Technology, and Library Science Journals and Magazines.

    Science.gov (United States)

    Clemente, Rebecca; And Others

    1990-01-01

    Presents in tabular form a summary of publishing requirements, guidelines, and suggestions from 59 current educational communications, technology, and library science journals and magazines to serve as a reference to potential contributors. (Three references) (LRW)

  8. Democratic Constructivist Science Education: Enabling Egalitarian Literacy and Self-actualization.

    Science.gov (United States)

    Bencze, John Lawrence

    2000-01-01

    Provides a model for curriculum development using constructivism to help democratize science education. Illustrates how to put this model into practice, focusing on: (1) expressing current conceptions; (2) sharing and learning new conceptions; and (3) applying and testing conceptions. (CMK)

  9. A Family Resemblance Approach to the Nature of Science for Science Education

    Science.gov (United States)

    Irzik, Gurol; Nola, Robert

    2011-01-01

    Although there is universal consensus both in the science education literature and in the science standards documents to the effect that students should learn not only the content of science but also its nature, there is little agreement about what that nature is. This led many science educators to adopt what is sometimes called "the consensus…

  10. Malaysian Teacher Trainees' Practices on Science and the Relevance of Science Education for Sustainability

    Science.gov (United States)

    Nair, Subadrah Madhawa; Mohamed, Abdul Rashid; Marimuthu, Nagamah

    2013-01-01

    Purpose: The purpose of this paper is to investigate the practice of teacher trainees on science and the relevance of science education. The study focuses on teacher trainees' practice on science teaching and its relevance to understanding science education. Design/methodology/approach: The study employed a survey method using questionnaires. The…

  11. Research Education of New Scientists: Implications for Science Teacher Education

    Science.gov (United States)

    Feldman, Allan; Divoll, Kent; Rogan-Klyve, Allyson

    2009-01-01

    This study examined an interdisciplinary scientific research project to understand how graduate and undergraduate honors students learn to do science. It was found that the education of the students occurs as part of an apprenticeship. The apprenticeship takes place in research groups. In general, research groups are structured in two ways:…

  12. The art and science of interprofessional education.

    Science.gov (United States)

    Graybeal, Clay; Long, Richard; Scalise-Smith, Dale; Zeibig, Elizabeth

    2010-01-01

    Interprofessional education (IPE) is increasingly accepted as a core element of health professions education. Its primary function is to prepare health professions students to engage in and deliver interprofessional, team-based healthcare, with the ultimate goal of improving the health and well-being of patients and clients. This paper summarizes findings from 10 interviews with institutional leaders in the field. The goal was to discover core themes than contribute to the art and science of IPE. Thematic challenges and successes are reviewed, and recommendations are provided for further research and for those interested in developing or improving IPE in their own institutions.

  13. Science Education Futures: "Great Potential. Could Do Better. Needs to Try Harder"

    Science.gov (United States)

    Aubusson, Peter; Panizzon, Debra; Corrigan, Deborah

    2016-04-01

    Reviews of science education consistently suggest that there is (another) crisis. They express concern with the status quo and suggest directions that science education might take. In this context, science educators need to consider the current state of play, the needs of generations in a world to come and the characteristics of future science education. The research reported in this paper uses a futures methodology informed by the Delphi technique and scenario thinking. Four science education futures scenarios were constructed over an extended period of consultation. These were particularly influenced by discussion arising from an Australasian Science Education Research Association (ASERA) forum on science education futures. They were presented to a panel of ASERA professors to stimulate consideration of and commentary on the future of science education. The focus in interviews was on identifying and discussing elements of the scenarios that were desirable and likely. Analysis of data indicates divergence on some features of the future and compromise on others. This paper presents the scenarios and findings from interviews with the panel. We highlight key prospects for science education and propose areas for development if we are to produce a future that is designed rather than merely a compromise that arises by default.

  14. Creating opportunities for science PhDs to pursue careers in high school education.

    Science.gov (United States)

    Doyle, Kari M H; Vale, Ronald D

    2013-11-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K-12 education, a recent National Research Council report (Successful K-12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K-12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.

  15. Emotions, Aesthetics and Wellbeing in Science Education

    DEFF Research Database (Denmark)

    2017-01-01

    This internationally edited collection on emotions, aesthetics, and wellbeing emerged following an exploratory research workshop held in Luxembourg associated with the journal Cultural Studies of Science Education (CSSE). The workshop was entitled ‘Innovation and collaboration in cultural studies...... of science education: Towards an international research agenda.’ Authors were invited to articulate the theoretical and philosophical underpinnings of their research, offering empirical elaborations to illustrate applications of these conceptual and methodological foundations. An outcome...... of this international collaboration is the rich and diverse range of perspectives represented in this collection. This book will serve as a useful reference for those seeking to study emotions, aesthetics and wellbeing, and others who wish to develop deeper engagement with theoretical and philosophical traditions...

  16. Computer Applications in Health Science Education.

    Science.gov (United States)

    Juanes, Juan A; Ruisoto, Pablo

    2015-09-01

    In recent years, computer application development has experienced exponential growth, not only in the number of publications but also in the scope or contexts that have benefited from its use. In health science training, and medicine specifically, the gradual incorporation of technological developments has transformed the teaching and learning process, resulting in true "educational technology". The goal of this paper is to review the main features involved in these applications and highlight the main lines of research for the future. The results of peer reviewed literature published recently indicate the following features shared by the key technological developments in the field of health science education: first, development of simulation and visualization systems for a more complete and realistic representation of learning material over traditional paper format; second, portability and versatility of the applications, adapted for an increasing number of devices and operative systems; third, increasing focus on open source applications such as Massive Open Online Course (MOOC).

  17. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  18. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  19. Implementing the Next Generation Science Standards: Impacts on Geoscience Education

    Science.gov (United States)

    Wysession, M. E.

    2014-12-01

    This is a critical time for the geoscience community. The Next Generation Science Standards (NGSS) have been released and are now being adopted by states (a dozen states and Washington, DC, at the time of writing this), with dramatic implications for national K-12 science education. Curriculum developers and textbook companies are working hard to construct educational materials that match the new standards, which emphasize a hands-on practice-based approach that focuses on working directly with primary data and other forms of evidence. While the set of 8 science and engineering practices of the NGSS lend themselves well to the observation-oriented approach of much of the geosciences, there is currently not a sufficient number of geoscience educational modules and activities geared toward the K-12 levels, and geoscience research organizations need to be mobilizing their education & outreach programs to meet this need. It is a rare opportunity that will not come again in this generation. There are other significant issues surrounding the implementation of the NGSS. The NGSS involves a year of Earth and space science at the high school level, but there does not exist a sufficient workforce is geoscience teachers to meet this need. The form and content of the geoscience standards are also very different from past standards, moving away from a memorization and categorization approach and toward a complex Earth Systems Science approach. Combined with the shift toward practice-based teaching, this means that significant professional development will therefore be required for the existing K-12 geoscience education workforce. How the NGSS are to be assessed is another significant question, with an NRC report providing some guidance but leaving many questions unanswered. There is also an uneasy relationship between the NGSS and the Common Core of math and English, and the recent push-back against the Common Core in many states may impact the implementation of the NGSS.

  20. Science and Technology Education for the Middle Years: Frameworks for Curriculum and Instruction.

    Science.gov (United States)

    Bybee, Rodger W.; And Others

    In the rising tide of reports proclaiming the need to reform various aspects of education, middle level education has been frequently overlooked. The Study Panel on Curriculum and Instruction of the National Center for Improving Science Education recognizes the critical development that occurs during early adolescence and the current reform toward…

  1. Developing Science Education Policies: How Far Is It Evidence-Based?

    Science.gov (United States)

    Oversby, John; McGregor, Deb

    2012-01-01

    Construction of science education policy is, for most practising educators, somewhat shrouded in mist. Policies are currently conveyed by the present Secretary of State with responsibility for education through presentations of governmental papers and curricular documents. While it may seem strange that a politician can be elected one day, and…

  2. Science education for teachers of primary schools

    Science.gov (United States)

    Křížová, Michaela; Maněnová, Martina

    2017-01-01

    It is necessary to catch the interest in subject of science and forming of concepts in physics already at primary schools. We will present the summary of results of questionnaire survey, which was given to the pre-service teachers of primary schools in the Faculty of education, University of Hradec Králové and further concept of the subjects, which seemed very suitable for the preparation of pre-service teachers of the children of younger school age. Teaching, which contains not only theoretical explanation of the physical processes with emphasis on connection with our daily experience. But especially the topics for practical activities appropriate at primary schools, can lead to motivation of children and development of their science knowledge and even motoric skills. We will introduce examples of practical teaching and themes for the experiments with simple material, which could be suitably included in teaching of science on the primary school.

  3. Merging University Students into K-12 Science Education Reform

    Science.gov (United States)

    2002-01-01

    consider the effects of outreach programs on university science students. Improved communication in science , increased enrollment in science courses as a...education side. Improved communication in science , increased enrollment in science courses as a result of adding an outreach component to traditional

  4. Breathing fresh life into life science education.

    Science.gov (United States)

    Martin, Cyrus

    2014-12-15

    In the US, higher education in the life sciences is being overhauled. There is now a move both to change the way we teach biology students, emphasizing more engaging approaches, and to clearly define what it is a student should know. And for advanced degrees, there is a push to prepare students for a range of possible career paths, not just the tenure track. Cyrus Martin reports.

  5. Lunar and Planetary Science XXXV: Education Programs Demonstrations

    Science.gov (United States)

    2004-01-01

    Reports from the session on Education Programs Demonstration include:Hands-On Activities for Exploring the Solar System in K-14; Formal Education and Informal Settings;Making Earth and Space Science and Exploration Accessible; New Thematic Solar System Exploration Products for Scientists and Educators Engaging Students of All Ages with Research-related Activities: Using the Levers of Museum Reach and Media Attention to Current Events; Astronomy Village: Use of Planetary Images in Educational Multimedia; ACUMEN: Astronomy Classes Unleashed: Meaningful Experiences for Neophytes; Unusual Guidebook to Terrestrial Field Work Studies: Microenvironmental Studies by Landers on Planetary Surfaces (New Atlas in the Series of the Solar System Notebooks on E tv s University, Hungary); and The NASA ADS: Searching, Linking and More.

  6. The Denali Earth Science Education Project

    Science.gov (United States)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  7. Professional preferences of students in physical education and sport sciences

    Directory of Open Access Journals (Sweden)

    Jerónimo García Fernández

    2013-01-01

    Full Text Available The actual context has enhanced job opportunities in the field of sport in order to respond to the current market demand. Thus, Physical Education and Sport Science graduates who begin to do differents jobs to the traditional ones but relate to their study field. The aim of this study was to guess which are the job preferences of the students of Physical Education and Sport Science of Seville University by gender and age doing the second cycle of their college degree and determine if there are significant differences. A descriptive analysis was carried out, using a questionnaire based on several researches, it was related to professional opportunities in sport sciences. The sample was of 118 students which represented 40.7% of the overall registered students. Results shown that sport management is the most preferable professional opportunity for women and men of the total sample, following in second place by teaching in secondary school for people older than 25 years of both sexes and teaching in primary school for the younger than 25 years. These findings announce changes in occupational trends in sports, to be taken into account in the framework of the European higher education (Degree of Science in Sport and Physical Activity, own US Masters and Official, lifelong learning programs....

  8. Current status of educational services in higher agricultural education in Ukraine

    Directory of Open Access Journals (Sweden)

    A. S. Cobets’

    2016-07-01

    Full Text Available Perspective directions of integration state policy of Ukraine Higher Education  into the European educational space and steps of implementation are determined. It is analysed the current state of higher agricultural education and integration current state policy of Ukraine Higher Education into the European educational space which allowed to identify problems and highlighted areas for further development. It is considered that it is necessary to establish cooperation in the triangle «production ­ educationscience», extend the impact of scientists and experts on the content of  educational sector, come educational standards to needs and challenges of the real economy, as upgrades of industry standards for higher education, forming curricula, new teaching methods. Professionals training is possible only in a simulation of modern production principles, including the European Union. It is necessary to strengthen the position of agricultural universities as international educational and scientific centers in the framework of the European educational space. This refers to the practice and teaching students abroad, teachers training, participation in international programs, joint research. Ukrainian agricultural education system has competitive advantages despite the general neglect and can be considered unique in the educational market, it has conditions for the creation and testing of innovative products for different agro­climatic zones within a region. This provides the results of knowledge­based real conditions of agricultural production. Among the weaknesses of the education system it is possible to note a lack of cooperation with employers, lack of logistical and information and communication resources, mismatch of modern innovative designs and high technologies. It is therefore necessary to overcome the gap between the content of education and the real needs of innovation economy. In general, you need to ensure long­term practice

  9. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  10. Science Education for Democratic Citizenship through the Use of the History of Science

    Science.gov (United States)

    Kolsto, Stein Dankert

    2008-01-01

    Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today's post-academic science differs from academic science in the past, making the history of academic science…

  11. Reconceptualizing the Nature of Science for Science Education: Why Does it Matter?

    Science.gov (United States)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-01-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school…

  12. Science Education for Democratic Citizenship through the Use of the History of Science

    Science.gov (United States)

    Kolsto, Stein Dankert

    2008-01-01

    Scholars have argued that the history of science might facilitate an understanding of processes of science. Focusing on science education for citizenship and active involvement in debates on socioscientific issues, one might argue that today's post-academic science differs from academic science in the past, making the history of academic science…

  13. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  14. The Implications for Science Education of Heidegger's Philosophy of Science

    Science.gov (United States)

    Shaw, Robert

    2013-01-01

    Science teaching always engages a philosophy of science. This article introduces a modern philosophy of science and indicates its implications for science education. The hermeneutic philosophy of science is the tradition of Kant, Heidegger, and Heelan. Essential to this tradition are two concepts of truth, truth as correspondence and truth as…

  15. Online Higher Education in the Natural Sciences

    Science.gov (United States)

    Pearson, Karen; Liddicoat, Joseph

    2013-04-01

    Online courses in higher education allow traditional and non-traditional students to complete course work in all disciplines with great flexibility. Courses in the Natural Sciences are no exception because the online environment allows students to collapse time and space; to access a course anywhere; to get immediate feedback, tutoring and coaching; and to receive real-time interaction between themselves and the instructor. This presentation will highlight successful examples of course content from the areas of astronomy, environmental, and earth and physical sciences. Content examples will focus on helping students use their 'environment' as part of the laboratory experience in courses traditionally thought of as lecture and laboratory courses. These examples will include real and virtual field trips, use of multimedia content, collaboration between students and faculty to design and conduct experiments and field work, and modifications to traditional lecture methods for the online environment. Dr. Karen Pearson former director of Online-Learning and Academic Technologies and Professor Science and Mathematics at the Fashion Institute of Technology (SUNY) and Dr. Joseph Liddicoat will focus on how courses in the Natural Sciences can be delivered in the online environment while maintaining high academic standards and not losing the "hands" on experience students need while completing a laboratory science course as part of a liberal arts curriculum.

  16. Education for sustainable development - Resources for physics and sciences teachers

    Science.gov (United States)

    Miličić, Dragana; Jokić, Ljiljana; Blagdanić, Sanja; Jokić, Stevan

    2016-03-01

    With this article we would like to stress science teachers must doing practical work and communicate on the basis of scientific knowledge and developments, but also allow their students opportunity to discover knowledge through inquiry. During the last five years Serbian project Ruka u testu (semi-mirror of the French project La main á la pâte), as well as European FIBONACCI and SUSTAIN projects have offered to our teachers the wide-scale learning opportunities based on Inquiry Based Science Education (IBSE) and Education for Sustainable Development (ESD). Our current efforts are based on pedagogical guidance, several modules and experimental kits, the website, exhibitions, and trainings and workshops for students and teachers.

  17. Enlivening basic-science learning with current journal articles.

    Science.gov (United States)

    Beresford, W A

    1996-01-01

    Pre-clinical medical students are often unconvinced that the basic sciences are clinically valuable. Also, they are hesitant about formulating ideas on their own from non-textbook sources. First-year medical students taking histology or neurobiology were persuaded to consult articles from the current biomedical literature. I set brief short-answer and labeled-sketch questions well before the course theoretical examinations, where the answers counted toward the score. The answers could only be found by reading in articles made available in the laboratory. The articles were chosen to display basic-science knowledge in action in clinical contexts. The questions offer an additional curriculum that can be steered toward, for example, concerns of family practice, mechanisms of common diseases, and topics of fast-increasing clinical importance.

  18. Bridging the Gap Between Ocean Science and Education: Creating Effective Partnerships With Informal Science Education Centers

    Science.gov (United States)

    Peach, C.; Franks, S.; Helling, H.; Solomon, E.; Driscoll, N.; Babcock, J.

    2003-12-01

    Many scientists would describe an effective E&O partnership as one that did not take up too much of their time. The California Center for Ocean Sciences Education Excellence (CA COSEE), educators at the Ocean Institute (OI), Dana Point, and researchers at the Scripps Institution of Oceanography (SIO) have collaborated to develop a highly efficient, productive and rewarding approach to crafting scientist/educator partnerships. These efforts represent a new model for facilitated collaboration between informal science education and research partners. Each partner brings unique elements to this collaboration. The Ocean Institute's recently funded Sea Floor Science Exhibition represents an innovative approach to exhibits and programming for K-12 students and the public. The exhibits and programs are firmly grounded in the needs of the formal science education community (i.e. standards based), designed to be constructed/created on extremely short time frames (months), convertible for both public display and programming needs and easily updated. Scripps researchers, as well as those from other institutions, provide briefings on their ongoing research work, loan or donate equipment and instrumentation both for use and display, and in some cases provide research experiences for OI staff and students. CA-COSEE acts as the catalyst, identifying and engaging researchers from disciplines that are consistent with OI exhibit and program goals, serve as a liaison between newly introduced scientists and educators and facilitate the incorporation of E&O components in scientists research proposals, including funding for future exhibits. Using the example of the newest Sea Floor Science exhibit, "Slopes, Slides and Tsunamis!", we will describe the role each partner has played in creating this research based exhibit and program, the chronology of the process, and how this approach will provide the basis for a long-term, sustained partnership between the researchers and science

  19. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  20. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    Science.gov (United States)

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  1. Time for action: science education for an alternative future

    Science.gov (United States)

    Hodson, Derek

    2003-06-01

    Following a brief historical survey of the popular 'slogans' that have influenced science education during the past quarter century and a review of current international debate on scientific literacy and science pedagogy, the author takes the view that while much of value has been achieved, there is still considerable cause for concern and that it is time for action in two senses. First, it is time to take action on the school science curriculum because it no longer meets the needs, interests and aspirations of young citizens. Second, it is time for a science curriculum oriented toward sociopolitical action. The author argues that if current social and environmental problems are to be solved, we need a generation of scientifically and politically literate citizens who are not content with the role of 'armchair critic'. A particular concern in North America is the link between science education, economic globalization, increasing production and unlimited expansion - a link that threatens the freedom of individuals, the spiritual well-being of particular societies and the very future of the planet. The author's response is to advocate a politicized, issues-based curriculum focused on seven areas of concern (human health; food and agriculture; land, water and mineral resources; energy resources and consumption; industry; information transfer and transportation; ethics and social responsibility) and addressed at four levels of sophistication, culminating in preparation for sociopolitical action. The curriculum proposal outlined in the article is intended to produce activists: people who will fight for what is right, good and just; people who will work to re-fashion society along more socially-just lines; people who will work vigorously in the best interests of the biosphere. At the heart of this curriculum is a commitment to pursue a fundamental realignment of the values underpinning Western industrialized society. Achieving that goal is a formidable task - one that

  2. Moral Issues in Educational Praxis: A Perspective from "Pedagogiek" and "Didactiek" as Human Sciences in Continental Europe

    Science.gov (United States)

    Ax, Jan; Ponte, Petra

    2010-01-01

    In this paper we will define the object of study of "Pedagogiek", followed by a brief discussion about current trends in educational policy, teacher education and educational research. We refer here to the continental European "pedagogy as human science", or more precisely the "science of the child's upbringing" in the social context. Central in…

  3. Parental Engagement: Beyond Parental Involvement in Science Education

    Science.gov (United States)

    St. Louis, Kathleen

    This study critically analyzes parents' complex stories of engagement in school and science education. The purpose is not to essentialize parental involvement, but rather to understand the processes of parental involvement and push forward the current discourse on the engagement of low-income minority and immigrant parents in schools and specifically science education. Employing critical grounded theory methods over a four-year span, this study had three areas of focus. First, voices of marginalized parents in the context of various spaces within the school system are examined. Using a qualitative approach, informal, formal, and research spaces were explored along with how minority parents express voice in these various spaces. Findings indicate parents drew on capital to express voice differently in different spaces, essentially authoring new spaces or the type of engagement in existing spaces. Second, the values and beliefs of traditionally marginalized people, the Discourse of mainstream society, and how they can inform a third, more transformative space for parental engagement in science are considered. The voices of low-income, marginalized parents around science and parental engagement (i.e., first space) are contrasted with the tenets of major national science policy documents (i.e., second space). Findings indicate a disparity between the pathways of engagement for low-income parents and policymakers who shape science education. Third, methodological questions of responsibility and assumption in qualitative research are explored. The author's complex struggle to make sense of her positionality, responsibilities, and assumptions as a researcher is chronicled. Findings focused on insider/outsider issues and implications for culturally sensitive research are discussed. Finally, the implications for policy, teaching, and research are discussed.

  4. Project of international science-education center and integration problems of nano science education in far eastern region of Asia

    Energy Technology Data Exchange (ETDEWEB)

    Plusnin, N I; Lazarev, G I [Vladivostok State University of Economics and Service, 41 Gogolya Str., Vladivostok (Russian Federation)], E-mail: Nikolay.Plyusnin@vvsu.ru

    2008-03-15

    Some conception of international science-education center on nano science in Vladivostok is presented. The conception is based on internal and external prerequisites. Internal one is high intellectual potential of institutes of Russian Academy of Sciences and universities of Vladivostok and external one is need of countries of Far Eastern region of Asia in high level manpower. The conception takes into account a specific distribution of science and education potential between Russian Academy of Sciences and Russian universities and a specific their dislocation in Vladivostok. First specific dictates some similarity of organization structure and function of international science-education center to typical science-education center in Russia. But as for dislocation of the international science-education center in Vladivostok, it should be near dislocation of institutes of Far Eastern Brunch of Russian Academy of Sciences in Vladivostok, which are dislocated very compactly in suburb zone of Vladivostok.

  5. Closing the race and gender gaps in computer science education

    Science.gov (United States)

    Robinson, John Henry

    Life in a technological society brings new paradigms and pressures to bear on education. These pressures are magnified for underrepresented students and must be addressed if they are to play a vital part in society. Educational pipelines need to be established to provide at risk students with the means and opportunity to succeed in science, technology, engineering, and mathematics (STEM) majors. STEM educational pipelines are programs consisting of components that seek to facilitate students' completion of a college degree by providing access to higher education, intervention, mentoring, support infrastructure, and programs that encourage academic success. Successes in the STEM professions mean that more educators, scientist, engineers, and researchers will be available to add diversity to the professions and to provide role models for future generations. The issues that the educational pipelines must address are improving at risk groups' perceptions and awareness of the math, science, and engineering professions. Additionally, the educational pipelines must provide intervention in math preparation, overcome gender and race socialization, and provide mentors and counseling to help students achieve better self perceptions and provide positive role models. This study was designed to explorer the underrepresentation of minorities and women in the computer science major at Rowan University through a multilayered action research methodology. The purpose of this research study was to define and understand the needs of underrepresented students in computer science, to examine current policies and enrollment data for Rowan University, to develop a historical profile of the Computer Science program from the standpoint of ethnicity and gender enrollment to ascertain trends in students' choice of computer science as a major, and an attempt to determine if raising awareness about computer science for incoming freshmen, and providing an alternate route into the computer science

  6. Knowledge about Science in Science Education Research from the Perspective of Ludwik Fleck's Epistemology

    Science.gov (United States)

    Martins, André Ferrer Pinto

    2016-08-01

    The importance of knowledge about science is well established, and it has a long history in the area of science education. More recently, the specialized literature has highlighted the search for consensus in relation to what should be taught in this regard, that is, what should compose the science curricula of elementary and high school levels. Despite this effort, several criticisms made by researchers in this field have been targeted at this "consensus view," limiting the possibility of a true consensus. This work brings an epistemological framework—the epistemology of Ludwik Fleck (1896-1961)—to interpret the current state of research in this area concerning the search for consensus. In particular, Ludwik Fleck's notions of thought style; thought collective; active and passive connections; communication of thoughts within and between collectives (intracollective and intercollective communication); and esoteric and exoteric circles are presented and used for the characterization of our object.

  7. Basic science research and education: a priority for training and capacity building in developing countries.

    Science.gov (United States)

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  9. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  10. Expanding the Role of K-5 Science Instruction in Educational Reform: Implications of an Interdisciplinary Model for Integrating Science and Reading

    Science.gov (United States)

    Romance, Nancy R.; Vitale, Michael R.

    2012-01-01

    Addressed is the current practice in educational reform of reducing time for science instruction in favor of traditional reading/language arts instruction. In contrast, presented is an evidence-based rationale for increasing instructional time for K-5 science instruction as an educational reform initiative. Overviewed are consensus…

  11. Three Approaches to Gender Equity in Science Education

    Directory of Open Access Journals (Sweden)

    Astrid Sinnes

    2012-12-01

    Full Text Available In this article I use feminist critique of science as a point of departure to discuss different understandingsof how sex/gender impacts on pupils’ approaches to science education. I construct a theoreticalframework that shows three different approaches to increase gender equity in science education. Eachapproach is grounded in a distinct understanding of how sex/gender impacts pupils’ engagementin science education. The analytical frame that is developed thereby represents descriptions of threealternative ways to address gender inequity in science education. The framework shows how differentunderstandings of how sex/gender impact on pupils’ engagement in science education require distinctinitiatives to increase gender equity. The framework can be used in the planning and analysis ofhow gender initiatives work to address gender inequity in science education.

  12. Publishing in the Refereed International Journal of Astronomy & Earth Sciences Education JAESE

    Science.gov (United States)

    Slater, Timothy F.

    2015-08-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education- JAESE was first published in 2014. JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, EBSCO, ProQuest, and NASA SAO/ADS and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute in the United States, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and a Senior Scientist at the

  13. Science Student Teachers and Educational Technology: Experience, Intentions, and Value

    Science.gov (United States)

    Efe, Rifat

    2011-01-01

    The primary purpose of this study is to examine science student teachers' experience with educational technology, their intentions for their own use, their intentions for their students' use, and their beliefs in the value of educational technology in science instruction. Four hundred-forty-eight science student teachers of different disciplines…

  14. Some Aspects of Science Education in European Context

    Science.gov (United States)

    Naumescu, Adrienne Kozan; Pasca, Roxana-Diana

    2008-01-01

    Some up-to-date problems in science education in European context are treated in this paper. The characteristics of science education across Europe are presented. Science teachers' general competencies are underlined. An example of problem-solving as teaching method in chemistry is studied in knowledge based society. Transforming teacher…

  15. Flogging a Dead Horse: Pseudoscience and School Science Education

    Science.gov (United States)

    Vlaardingerbroek, Barend

    2011-01-01

    Pseudoscience is a ubiquitous aspect of popular culture which constitutes a direct challenge to science, and by association, to science education. With the exception of politically influential pseudosciences trying to impose themselves on official curricula such as creationism, science education authorities and professional organisations seem…

  16. Flogging a Dead Horse: Pseudoscience and School Science Education

    Science.gov (United States)

    Vlaardingerbroek, Barend

    2011-01-01

    Pseudoscience is a ubiquitous aspect of popular culture which constitutes a direct challenge to science, and by association, to science education. With the exception of politically influential pseudosciences trying to impose themselves on official curricula such as creationism, science education authorities and professional organisations seem…

  17. 2011 Joint Science Education Project: Research Experience in Polar Science

    Science.gov (United States)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  18. Meteorite Magazine: Promoting Science, Discovery, And Education

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, N. R.; Sears, H.; Sears, D.

    2006-09-01

    In late 2005, Larry and Nancy Lebofsky and Derek and Hazel Sears took over the editing and publishing of Meteorite magazine. We saw a great educational potential for the magazine. With a circulation over 600, the magazine reaches a broad readership: meteorite scientists, hunters, collectors, and enthusiasts. Unlike the professional journal of the Meteoritical Society, Meteoritics and Planetary Sciences, the articles in Meteorite range from scientific articles, reports from meteorite shows, and how to preserve meteorites to stories about searching for meteorites around the world. Meteorites are of interest to people. Asteroids, meteoroids, meteors, and meteorites are in many states' science standards. Yet, how many museums have meteorite collections with staff who know little about them? How many amateur astronomers, when seeing meteors or meteor showers, can explain how asteroids, comets, meteors, and meteorites are related and what they tell us about the formation of our Solar System? How many meteorite collectors are knowledgeable about how these objects are related to each other? How do we reach the broader community? Unlike the hundreds of amateur and school astronomy clubs, there are no meteorite clubs. While one can point out the wonders of the night sky and what can be seen through a telescope at star parties, there is no such thing as school meteorite hunting parties. The meteorite and planetary sciences communities working together can bring the excitement of meteorites and the science behind these fascinating objects to teachers, students, and museum and planetarium staff. We will present ideas for accomplishing this.

  19. The Kentucky Earth System Science Education Project

    Science.gov (United States)

    Whitworth, J. M.; Siewers, F. D.

    2003-12-01

    The Kentucky Earth Systems Education Project is a partnership between Western Kentucky University and Morehead State University to deliver the Earth Systems Science Alliance (ESSEA) courses via the Kentucky Virtual University to classroom teachers in Kentucky and beyond. One goal of the project has been to integrate the courses into the teacher preparation programs at both institutions, as well as providing professional development to practicing K-12 teachers. This presentation will highlight how team teaching courses with professors from different institutions at opposite ends of the state, as well as teaching in a different way, has brought new challenges and its own rewards. The instructors will present their own experiences and lessons learned that resulted in more effective ways of communicating and engaging students in the study of Earth Systems. They will also discuss how teaching strategies used in the course has changed their own teaching and student reactions to their online experience learning earth systems science.

  20. Nordic science and technology entrepreneurship education

    DEFF Research Database (Denmark)

    Warhuus, Jan P.; Basaiawmoit, Rajiv Vaid

    As a university discipline, entrepreneurship education (EEd) has moved from whether it can be taught, to what and how it should be taught (Kuratko 2005) and beyond the walls of the business school (Hindle 2007), where a need for a tailored, disciplinary approach is becoming apparent. Within science......, technology, engineering, and mathematics (STEM) EEd, tacit knowledge of what works and why is growing, while reflections to activate this knowledge are often kept local or reported to the EEd community as single cases, which are difficult compare and contrast for the purpose of deriving cross-case patterns......, findings, and knowledge. The objective of this paper is to decode this tacit knowledge within Nordic science and technology institutions, and use it to provide guidance for future EEd program designs and improvements....

  1. Engaging Latino audiences in informal science education

    Science.gov (United States)

    Bonfield, Susan B.

    Environment for the Americas (EFTA), a non-profit organization, developed a four-year research project to establish a baseline for Latino participation and to identify practical tools that would enable educators to overcome barriers to Latino participation in informal science education (ISE). Its national scope and broad suite of governmental and non-governmental, Latino and non-Latino partners ensured that surveys and interviews conducted in Latino communities reflected the cosmopolitan nature of the factors that influence participation in ISE programs. Information about economic and education levels, country of origin, language, length of residence in the US, and perceptions of natural areas combined with existing demographic information at six study sites and one control site provided a broader understanding of Latino communities. The project team's ability to work effectively in these communities was strengthened by the involvement of native, Spanish-speaking Latino interns in the National Park Service's Park Flight Migratory Bird Program. The project also went beyond data gathering by identifying key measures to improve participation in ISE and implementing these measures at established informal science education programs, such as International Migratory Bird Day, to determine effectiveness. The goals of Engaging Latino Audiences in Informal Science Education (ISE) were to 1) identify and reduce the barriers to Latino participation in informal science education; 2) provide effective tools to assist educators in connecting Latino families with science education, and 3) broadly disseminate these tools to agencies and organizations challenged to engage this audience in informal science education (ISE). The results answer questions and provide solutions to a challenge experienced by parks, refuges, nature centers, and other informal science education sites across the US. Key findings from this research documented low participation rates in ISE by Latinos, and that

  2. Exploring social networks of municipal science education stakeholders in Danish Science Municipalities

    DEFF Research Database (Denmark)

    von der Fehr, Ane

    development in the science and technology industry. Therefore, much effort has been invested to improve science education. The importance of school external stakeholders in development of education has been an increasingly emphasised, also in the field of science education. This has led to a growing focus...... on how conditions and structures in municipalities affect the development. Projects aiming at the municipal arena have thus been initiated and the Danish Science Municipality Project (SM project) was such a project. Part of the SM project was to create networks connecting different municipal stakeholder...... involved in science education development. These municipal science education networks (MSE networks) were identified as important for development of science education in the SM project. Therefore, it was a key interest to explore these networks in order to investigate how the central stakeholders affected...

  3. Science Education on the Internet: Conference for Developers of OnLine Curricula ''Learning Strategies for Science Education Websites''

    Energy Technology Data Exchange (ETDEWEB)

    Gesteland,Raymond F.; Dart, Dorothy S.; Logan,Jennifer; Stark, Louisa

    2000-09-01

    Internet-based science education programs are coming of age. Educators now look seriously to the Internet as a source of accessible classroom materials, and they are finding many high-quality online science programs. Beyond providing solid curriculum, these programs have many advantages. They provide materials that are far more current than what textbooks offer and are more accessible to disadvantaged and rural population. Students can engage in inquiry-based learning online through interactive and virtual activities, accessing databases, tracking nature occurrences in real time, joining online science communities and conversing with scientists.

  4. Perspectives of women of color in science-based education and careers. Summary of the conference on diversity in science

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Research on inequality or stratification in science and engineering tends to concentrate on black/white or male/female difference; very few studies have discussions of both race and gender. Consequently, very little is known about the exact course that women of color take in science-based education and employment or about the course that steers them out of science-based careers. Questions abound: What are the environmental factors that affect the choices in education and science-based careers of women of color? What has influenced women of color who currently are in science-based careers? Is critical mass important and, if so, what are the keys to increasing it? What recommendations can be made to colleges and universities, faculty members, employers, the federal government, women of color themselves, and to improve the conditions and numbers of women of color in science-based careers? These questions prompted the National Research Council`s Committee on Women in Science and Engineering (CWSE) to convene a conference on Diversity in Science: Perspectives on the Retention of Minority Women in Science, Engineering, and Health-Care Professions, held on October 21--23, 1995. Confronting the problem of the lack of knowledge about the journey of women of color in science-based education and career, the conference offered opportunities for these women to describe the paths that they have taken and to identify strategies for success. Their perspectives ground this report. For purposes of this document, women of color include women in the following racial or ethnic groups: Hispanics, African-Americans, Asian and Pacific Islanders, and American Indians and Alaskan Natives. Science-based careers include those in the physical sciences and mathematics, life sciences, social sciences, and engineering.

  5. Science Instructors' Perceptions of the Risks of Biotechnology: Implications for Science Education

    Science.gov (United States)

    Gardner, Grant Ean; Jones, M. Gail

    2011-01-01

    Developing scientifically literate students who understand the socially contextualized nature of science and technology is a national focus of science education reform. Science educators' perceptions of risks and benefits of new technologies (such as biotechnology) may shape their instructional approaches. This study examined the perceived risk of…

  6. Science IA (Agriscience). A Science Credit for Agriculture: Integrating Academic and Vocational Education.

    Science.gov (United States)

    Ricketts, Samuel C.

    Because college-bound students often had trouble fitting agricultural education courses into their schedules, and because science teachers rejected the idea of giving a science credit for 2 years of agricultural education, a new integrated course was created in Tennessee. It is now called Science IA (Agriscience). It is taught by a teacher with an…

  7. Effect of Teacher Education Program on Science Process Skills of Pre-Service Science Teachers

    Science.gov (United States)

    Yakar, Zeha

    2014-01-01

    Over the past three or more decades, many studies have been written about teacher education and the preparation of science teachers. Presented here is one which investigated the effectiveness of scientific process skills on pre-service science teachers of Pamukkale University Primary Science Teacher Education Program for four years. This study…

  8. Personal Health--Personalized Science: A New Driver for Science Education?

    Science.gov (United States)

    Roth, Wolff-Michael

    2014-01-01

    Since the 1950s, originating with and driven by the Sputnik shock, there have been tremendous efforts to improve science education. Over the past two decades, the initial focus on science content has been abandoned, at least among many science education researchers, in favor of socio-scientific issues. Yet even this social turn does not appear to…

  9. Symposium 1: Science Education in Brazil: advances and challenges

    Directory of Open Access Journals (Sweden)

    Tânia C. de Araújo-Jorge

    2014-08-01

    Full Text Available Science Education in Brazil: advances and challenges Tania C. de Araujo-Jorge and Marcus Vinicius Campos MatracaLab. of Innovations in Therapies, Education and Bioproducts, Instituto Oswaldo Cruz, Fiocruz-Rio, Brazil. In Brazil the consensus that education is essential for the growth of a development country is insufficient to cover the gap between desires, public policies and results, contrasting with countries like Korea and Japan. The international success of Brazilian experiences in social policies to reduce poverty reflects on a sustainable fall in the Gini index, but the PISA indicators for science education deserves impact measures. Besides, Education in Brazil came up among the priority claims in popular movements that exploded June 2013, leading governments and social actors to try to recover the lost time. In 2014 the Federal Congress should conclude discussions of the 2011-2020 Plan for National Education (PNE and a National Education Conference is organized for February 2014. Science Education is essential for industry and social innovation and all the players in this scene face challenges, especially scientists. How is it possible to improve science teaching at schools? At different education grades what is the relative role for improvement of science curriculum, science teacher formation, science practices in formal and non-formal education, public communication of science, and learning-cognition-teaching mechanisms/theories? What is the role of artscience fusion in science education culture? What are de priorities for research and test and for implementation at short time? How is it possible to integrate and to articulate efforts of scientists and teachers, and insert science thinking for creativity since the initial basic education, through in middle fundamental education, and attaining biology, physics and chemical teachers in high school and university levels? These are some of the present questions in post-graduate productions

  10. 77 FR 37891 - Notice of Proposed Information Collection Requests; Institute of Education Sciences; Education...

    Science.gov (United States)

    2012-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests; Institute of Education Sciences; Education... Feasibility Study (ELS:2002 FAFS) SUMMARY: The Education Longitudinal Study of 2002 (ELS:2002) is a...

  11. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  12. A Review of Empirical Evidence on Scaffolding for Science Education

    Science.gov (United States)

    Lin, Tzu-Chiang; Hsu, Ying-Shao; Lin, Shu-Sheng; Changlai, Maio-Li; Yang, Kun-Yuan; Lai, Ting-Ling

    2012-01-01

    This content analysis of articles in the Social Science Citation Index journals from 1995 to 2009 was conducted to provide science educators with empirical evidence regarding the effects of scaffolding on science learning. It clarifies the definition, design, and implementation of scaffolding in science classrooms and research studies. The results…

  13. Working Alongside Scientists: Impacts on Primary Teacher Beliefs and Knowledge about Science and Science Education

    Science.gov (United States)

    Anderson, Dayle; Moeed, Azra

    2017-01-01

    Current curriculum demands require primary teachers to teach about the Nature of Science; yet, few primary teachers have had opportunity to learn about science as a discipline. Prior schooling and vicarious experiences of science may shape their beliefs about science and, as a result, their science teaching. This qualitative study describes the…

  14. Initial teacher education and continuing professional development for science teachers

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry

    2011-01-01

    , and belong to various cultures, both educationally and socially. Section 1 presents a review of the research literature across these dimensions and looks at the knowledge, skills and competences needed for teaching science, specific issues within science teacher education, and strategies for educating...

  15. Emerging Trends in Science Education in a Dynamic Academic Environment

    Science.gov (United States)

    Avwiri, H. E.

    2016-01-01

    Emerging Trends in Science Education in a Dynamic Academic Environment highlights the changes that have occurred in science education particularly in institutions of higher learning in southern Nigeria. Impelled by the fact that most Nigerian Universities and Colleges of Education still adhere to the practices and teaching methodologies of the…

  16. ADS Labs: Supporting Information Discovery in Science Education

    Science.gov (United States)

    Henneken, E. A.

    2013-04-01

    The SAO/NASA Astrophysics Data System (ADS) is an open access digital library portal for researchers in astronomy and physics, operated by the Smithsonian Astrophysical Observatory (SAO) under a NASA grant, successfully serving the professional science community for two decades. Currently there are about 55,000 frequent users (100+ queries per year), and up to 10 million infrequent users per year. Access by the general public now accounts for about half of all ADS use, demonstrating the vast reach of the content in our databases. The visibility and use of content in the ADS can be measured by the fact that there are over 17,000 links from Wikipedia pages to ADS content, a figure comparable to the number of links that Wikipedia has to OCLC's WorldCat catalog. The ADS, through its holdings and innovative techniques available in ADS Labs, offers an environment for information discovery that is unlike any other service currently available to the astrophysics community. Literature discovery and review are important components of science education, aiding the process of preparing for a class, project, or presentation. The ADS has been recognized as a rich source of information for the science education community in astronomy, thanks to its collaborations within the astronomy community, publishers and projects like ComPADRE. One element that makes the ADS uniquely relevant for the science education community is the availability of powerful tools to explore aspects of the astronomy literature as well as the relationship between topics, people, observations and scientific papers. The other element is the extensive repository of scanned literature, a significant fraction of which consists of historical literature.

  17. Reforming Science Education: Part I. The Search for a Philosophy of Science Education

    Science.gov (United States)

    Schulz, Roland M.

    2009-04-01

    The call for reforms in science education has been ongoing for a century, with new movements and approaches continuously reshaping the identity and values of the discipline. The HPS movement has an equally long history and taken part in the debates defining its purpose and revising curriculum. Its limited success, however, is due not only to competition with alternative visions and paradigms (e.g. STS, multi-culturalism, constructivism, traditionalism) which deadlock implementation, and which have led to conflicting meanings of scientific literacy, but the inability to rise above the debate. At issue is a fundamental problem plaguing science education at the school level, one it shares with education in general. It is my contention that it requires a guiding “metatheory” of education that can appropriately distance itself from the dual dependencies of metatheories in psychology and the demands of socialization—especially as articulated in most common conceptions of scientific literacy tied to citizenship. I offer as a suggestion Egan’s cultural-linguistic theory as a metatheory to help resolve the impasse. I hope to make reformers familiar with his important ideas in general and more specifically, to show how they can complement HPS rationales and reinforce the work of those researchers who have emphasized the value of narrative in learning science. This will be elaborated in Part II of a supplemental paper to the present one. As a prerequisite to presenting Egan’s metatheory I first raise the issue of the need for a conceptual shift back to philosophy of education within the discipline, and thereto, on developing and demarcating true educational theories (essentially neglected since Hirst). In the same vein it is suggested a new research field should be opened with the express purpose of developing a discipline-specific “philosophy of science education” (largely neglected since Dewey) which could in addition serve to reinforce science education

  18. The emergence of thanatology and current practice in death education.

    Science.gov (United States)

    Fonseca, Luciana Mascarenhas; Testoni, Ines

    Thanatology is a recent field that contemplates death studies and employs an interdisciplinary approach to practice. This science emerged in a historical context marked by intense social, economic, and political changes that contributed to the concept of death being excluded from social life. This literature review aims to outline the history and evolution ofthanatology in Western society, delineating the contextual circumstances that led to its origin and drawing special attention to current works on death education. In our post-modern society, the call for studies in the field of thanatology appears to be increasing. However, although there have been significant contributions and promising research is underway, there are still many questions to be answered.

  19. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends essentially on…

  20. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    Science.gov (United States)

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  1. English for Scientific Purposes (EScP): Technology, Trends, and Future Challenges for Science Education

    Science.gov (United States)

    Liu, Gi-Zen; Chiu, Wan-Yu; Lin, Chih-Chung; Barrett, Neil E.

    2014-01-01

    To date, the concept of English for Specific Purposes has brought about a great impact on English language learning across various disciplines, including those in science education. Hence, this review paper aimed to address current English language learning in the science disciplines through the practice of computer-assisted language learning to…

  2. Global Climates--Past, Present, and Future. Activities for Integrated Science Education.

    Science.gov (United States)

    Henderson, Sandra, Ed.; And Others

    Designed for integration into existing science curriculum for grades 8-10, this curriculum uses a current environmental issue, climate change, as a vehicle for teaching science education. Instructional goals include: (1) familiarize students with scientific methods; (2) help students understand the role of uncertainty; (3) encourage students to…

  3. Educators Guide to Free Science Materials, 11th Annual Edition--1970.

    Science.gov (United States)

    Saterstrom, Mary Horkheimer; Renner, John W.

    This eleventh edition of the Educators Guide to Free Science Materials is devoted exclusively to free science materials, based on the cross-media approach. It is designed to provide a continuing means of identifying existing materials that are currently available. It is a complete, up-to-date, annotated schedule of selected free or inexpensive…

  4. Instructional Settings in Science for Students with Disabilities: Implications for Teacher Education

    Science.gov (United States)

    Vannest, Kimberly J.; Mason, Benjamin A.; Brown, Leanne; Dyer, Nicole; Maney, Shell; Adiguzel, Tufan

    2009-01-01

    Finding appropriate instructional settings in science for students with disabilities is challenging, and the range of services or placements used is currently unknown. This study identifies administrative structures, instructional settings, and special/general education teacher roles in teaching science to students with disabilities. A phone…

  5. Science initial teacher education and superdiversity: educating science teachers for a multi-religious and globalised science classroom

    Science.gov (United States)

    De Carvalho, Roussel

    2016-06-01

    Steven Vertovec (2006, 2007) has recently offered a re-interpretation of population diversity in large urban centres due to a considerable increase in immigration patterns in the UK. This complex scenario called superdiversity has been conceptualised to help illuminate significant interactions of variables such as religion, language, gender, age, nationality, labour market and population distribution on a larger scale. The interrelationships of these themes have fundamental implications in a variety of community environments, but especially within our schools. Today, London schools have over 300 languages being spoken by students, all of whom have diverse backgrounds, bringing with them a wealth of experience and, most critically, their own set of religious beliefs. At the same time, Science is a compulsory subject in England's national curriculum, where it requires teachers to deal with important scientific frameworks about the world; teaching about the origins of the universe, life on Earth, human evolution and other topics, which are often in conflict with students' religious views. In order to cope with this dynamic and thought-provoking environment, science initial teacher education (SITE)—especially those catering large urban centres—must evolve to equip science teachers with a meaningful understanding of how to handle a superdiverse science classroom, taking the discourse of inclusion beyond its formal boundaries. Thus, this original position paper addresses how the role of SITE may be re-conceptualised and re-framed in light of the immense challenges of superdiversity as well as how science teachers, as enactors of the science curriculum, must adapt to cater to these changes. This is also the first in a series of papers emerging from an empirical research project trying to capture science teacher educators' own views on religio-scientific issues and their positions on the place of these issues within science teacher education and the science classroom.

  6. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  7. Nursing education: current themes, puzzles and paradoxes.

    Science.gov (United States)

    Tanner, Christine A

    2007-01-01

    It would be tempting to declare that transformation of nursing education in the current context of faculty shortages and other scarce resources as Mission Impossible. But I believe that the opposite is true. It is my sense that the rapid changes in healthcare, the shifting population needs and the acute nursing shortage have catalyzed fundamental change, perhaps the most profound in the 50 year history of WIN. The first steps of that transformation are becoming increasingly apparent as nursing faculty begin to challenge their long-standing, taken-for-granted assumptions; as they set aside differences and their internecine warfare of the entry-into-practice debates; as they begin stronger and deeper collaborations with their clinical partners. We won't see the evidence of these changes in the literature for a while, because they are just getting started. There's not a lot to report yet. Here are some examples of the changes afoot: The Oregon Consortium for Nursing Education has resulted from unprecedented collaboration between community college and university faculty, with an eye to develop a standard, competency-based curriculum to prepare the "new" nurse, and to improve access to a seamless baccalaureate curriculum. The first students were enrolled in nursing courses in fall, 2006 on 8 campuses--the four campuses of OHSU and 4 community colleges, with additional community college campuses admitting students in '07 and '08. In this curriculum, fundamentals of nursing have been redefined as evidence-based practice, culturally sensitive and relationship-centered care, leadership and clinical judgment, with these concepts and others introduced early and spiraled throughout the curriculum. Through a 2-year faculty development program, faculty leaders in the OCNE partner programs have taken to heart the many lessons about learning, intentionally attending to content selection that will help reduce the volume while focusing on the most prevalent. Instructional approaches

  8. Current Challenges in Bilingual Education in Wales

    Science.gov (United States)

    Lewis, W. Gwyn

    2008-01-01

    In Wales, bilingual education in Welsh and English has an increasingly high profile and Wales shares international leadership of bilingual education policies and practices alongside other countries where bilingual education flourishes. Ever since the first designated Welsh-medium primary school was opened in 1939, Welsh-medium and bilingual…

  9. Science Teachers' Interpretations of Islamic Culture Related to Science Education versus the Islamic Epistemology and Ontology of Science

    Science.gov (United States)

    Mansour, Nasser

    2010-01-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first and…

  10. Science Teachers' Interpretations of Islamic Culture Related to Science Education versus the Islamic Epistemology and Ontology of Science

    Science.gov (United States)

    Mansour, Nasser

    2010-01-01

    The debate about Islam and science extends to a debate about the relationship between Islam and science education. In this paper, I explore Egyptian teachers' views of the relationship between science and religion within the Islamic context. Teachers' key vision of the relationship between science and religion was that "religion comes first…

  11. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whe

  12. Equity in Informal Science Education: Developing an Access and Equity Framework for Science Museums and Science Centres

    Science.gov (United States)

    Dawson, Emily

    2014-01-01

    Informal science education (ISE) is a popular pursuit, with millions of people visiting science museums, science centres, zoos, botanic gardens, aquaria, science festivals and more around the world. Questions remain, however, about how accessible and inclusive ISE practices are. This article reviews research on participation in ISE through the…

  13. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  14. The contribution of the Estonian Soil Sciences Society to the science, society and education

    Science.gov (United States)

    Rossner, Helis; Reintam, Endla; Astover, Alar; Shanskiy, Merrit

    2015-04-01

    Predecessor of todays Estonian Soil Science Society was Estonian Branch of All-Union Soil Society of Soil Scientist which acted from 1957 to 1991. In 1957-1964 Estonian Branch was leaded by prof. Osvald Hallik and in 1964-1991 by prof. Loit Reintam. After re-independence of Estonia in 1991 the society acted in informal way and was leaded by prof. L. Reintam. Non-profit organization "Estonian Soil Science Society" was officially (re)established in 10.23.2009. Estonian Soil Science Society (ESSS) is aimed to: • coordinate collaboration between institutions and individuals intrested of soil science, conservation and sustainable use of soils; • promoting soil science education and research, raising awareness of publicity on topics relating to soils in Estonia; • cooperation between local and foreign unions and associations. In recent years the ESSS had managed to reunite the number of soil scientist from different research institutions of Estonia and of related institutions. Also, the ESSS had provided numerous of materials based on later scientific findings. One of most important activity leaded by ESSS is the organizing Soil Day in Estonia with relevant seminar, where the speakers are sharing latest information with target group (researchers, teachers, policy makers, farmers, students etc.). In a frames of Soil Day the Soil of the Year is selected for Estonia. In 2015, the soil of the year is Leptosol. For current, International Year of the Soil ESSS had planned numerous activities to introduce the importance of soils to wider audience. In current presentation we would like to share the soil science researchers experience through- out the decades of soil science research in Estonia, show our latest findings and designed activities for the International Year of SOIL.

  15. [Medical education: between science and Bildungsroman].

    Science.gov (United States)

    Marion-Veyron, Régis; Bourquin, Céline; Saraga, Michael; Stiefel, Friedrich

    2016-02-10

    For many years, a major focus of interest has been the patient, in the context of a constantly changing society and increasingly complex medical practices. We propose to shift this focus on the physician, who is entangled in a similar, but less evident way. In these three articles, we explore, in succession, the lived experience of the contemporary physician, the ethos which brings together the medical community, and the education of the future physician, using research projects currently under way within the Service of Liaison Psychiatry at Lausanne University Hospital. The article hereunder is dedicated to the education and will examine the multiple and paradoxical expectations that punctuate it.

  16. African Journal of Educational Studies in Mathematics and Sciences

    African Journals Online (AJOL)

    African Journal of Educational Studies in Mathematics and Sciences. ... in Mathematics and Sciences (AJESMS) is an international publication for works of ... the world with the goings-on in research endeavours and original thoughts in these ...

  17. Heisenberg's Uncertainty Principle and Interpretive Research in Science Education.

    Science.gov (United States)

    Roth, Wolff-Michael

    1993-01-01

    Heisenberg's uncertainty principle and the derivative notions of interdeterminacy, uncertainty, precision, and observer-observed interaction are discussed and their applications to social science research examined. Implications are drawn for research in science education. (PR)

  18. Learning by Doing: Science Education at the Hamburg Observatory

    Science.gov (United States)

    Wolfschmidt, Gudrun

    2015-01-01

    In my contribution I would like to offer three different examples: the activities of the association "Förderverein Hamburger Sternwarte", science education in the "astronomy workshop", and the teaching of the history of science and technology for university students.

  19. Lean education an overview of current issues

    CERN Document Server

    Flumerfelt, Shannon; Kahlen, Franz-Josef

    2017-01-01

    This edited volume presents a structured approach to a new lean education curriculum, implemented for the education of engineers, managers, administrators as well as human resources developers. The authorship comprises professors and lecturers, trainers and practitioners who educate future professionals in Lean Thinking principles and tools. This edited book provides a platform for authors to share their efforts in building a Body of Knowledge (BoK) for Lean Education. The topical spectrum is state-of-the-art in this field, but the book also includes a glimpse into future developments. This is a highly informative and carefully presented book, providing valuable insight for scholars with an interest in Lean Education.

  20. When Nature of Science Meets Marxism: Aspects of Nature of Science Taught by Chinese Science Teacher Educators to Prospective Science Teachers

    Science.gov (United States)

    Wan, Zhi Hong; Wong, Siu Ling; Zhan, Ying

    2013-01-01

    Nature of science (NOS) is beginning to find its place in the science education in China. In a study which investigated Chinese science teacher educators' conceptions of teaching NOS to prospective science teachers through semi-structured interviews, five key dimensions emerged from the data. This paper focuses on the dimension, "NOS content…

  1. Science Education: From Kindergarten Through College (George B. Pegram Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, Bruce (U of California, San Francisco and Editor-in-Chief, Science Magazine)

    2010-09-14

    Alberts will draw on his two decades of experience in working with elementary and secondary teachers in San Francisco, where he launched a program that pairs college students and faculty with teachers from more than 80 percent of the children’s schools. He has also worked to develop the first national educational science curriculum standards for K-12 education. Currently, he serves as one of three U.S. Science Envoys to the Muslim world for President Obama; his mission includes providing help with science education at all levels through partnerships with U.S. institutions.

  2. Evaluation of Current Assessment Methods in Engineering Entrepreneurship Education

    Science.gov (United States)

    Purzer, Senay; Fila, Nicholas; Nataraja, Kavin

    2016-01-01

    Quality assessment is an essential component of education that allows educators to support student learning and improve educational programs. The purpose of this study is to evaluate the current state of assessment in engineering entrepreneurship education. We identified 52 assessment instruments covered in 29 journal articles and conference…

  3. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  4. Merging University Students into K?12 Science Education Reform

    Science.gov (United States)

    2007-11-02

    limited to the K–12 classrooms but were related to the broader issue of creating university- school partnerships as a strategy for science education reform...of interest to federal policymakers who are concerned with science education reform and the development of partnerships between universities and K–12...4. TITLE AND SUBTITLE Merging University Students into K?12 Science Education Reform Unclassified 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  5. Elementary science education: Dilemmas facing preservice teachers

    Science.gov (United States)

    Sullivan, Sherry Elaine

    Prospective teachers are involved in a process of induction into a culture of teaching that has rules, or codes of conduct for engaging in teaching practice. This same culture of teaching exists within a larger culture of schooling that also has values and norms for behaviors, that over time have become institutionalized. Teacher educators are faced with the challenging task of preparing preservice teachers to resolve dilemmas that arise from conflicts between the pressure to adopt traditional teaching practices of schooling, or to adopt inquiry-based teaching practices from their university methods classes. One task for researchers in teacher education is to define with greater precision what factors within the culture of schooling hinder or facilitate implementation of inquiry-based methods of science teaching in schools. That task is the focus of this study. A qualitative study was undertaken using a naturalistic research paradigm introduced by Lincoln and Guba in 1985. Participant observation, interviews, discourse analysis of videotapes of lessons from the methods classroom and written artifacts produced by prospective teachers during the semester formed the basis of a grounded theory based on inductive analysis and emergent design. Unstructured interviews were used to negotiate outcomes with participants. Brief case reports of key participants were also written. This study identified three factors that facilitated or hindered the prospective teachers in this research success in implementing inquiry-based science teaching in their field placement classrooms: (a) the culture of teaching/teacher role-socialization, (b) the culture of schooling and its resistance to change, and (c) the culture of teacher education, especially in regards to grades and academic standing. Some recommendations for overcoming these persistent obstacles to best practice in elementary science teaching include: (a) preparing prospective teachers to understand and cope with change

  6. SciNews: Incorporating Science Current Events in 21st Century Classrooms

    Science.gov (United States)

    DiMaggio, E.

    2011-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance is important for student learning and retention, especially in science where abstract concepts can often be incorrectly perceived as irrelevant. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the 2011 earthquake and tsunami in Japan), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief 'teachable moments'--when student interest is high--provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, I create pre-packaged current event materials for middle to high school teachers that align to state standards, and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15-30 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. I assemble materials within approximately one week of the regional or global science event, consisting of short slide shows, maps, videos, pictures, and real-time data. I use a listserv to send biweekly emails to subscribed instructors containing the current event topic and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach SciNews website (http://sese.asu.edu/teacher-resources) and are archived. Currently, 285 educators subscribe to the SciNews listserv, representing 36 states and 19 countries. In order to assess the effectiveness and usefulness of Sci

  7. Mapping the informal science education landscape: An exploratory study.

    Science.gov (United States)

    Falk, John H; Randol, Scott; Dierking, Lynn D

    2012-10-01

    This study investigated the informal science education (ISE) field to determine whether it currently functions as an effective community of practice. Research questions included: How do professionals describe and self-identify their practice, including what missions, goals and motivating factors influence their professional work? What challenges do they face and how are these resolved? Is participation in ISE activities perceived as core or peripheral to their work? Open-ended interviews were conducted with high-level representatives of 17 different ISE sub-communities; results were analyzed qualitatively. Findings showed this broad assortment of ISE sub-communities as not currently functioning as a cohesive community of practice. Although examples of shared practice and ways of talking were found, evidence of widespread, active relationship-building over time and coalescence around issues of common concern were absent. A current "map" of the ISE community is proposed and thoughts about how this map could alter in the future are suggested.

  8. (Post) Modern Science (Education): Propositions and Alternative Paths. Counterpoints: Studies in the Postmodern Theory of Education.

    Science.gov (United States)

    Weaver, John A., Ed.; Morris, Marla, Ed.; Appelbaum, Peter, Ed.

    This collection of essays offers new perspectives for science educators, curriculum theorists, and cultural critics on science education, French post-structural thought, and the science debates. This book contains chapters on the work of Bruno Latour, Michael Serres, and Jean Baudrillard plus chapters on postmodern approaches to science education…

  9. A Science Education that Promotes the Characteristics of Science and Scientists: Features of Science Teacher Preparation

    Directory of Open Access Journals (Sweden)

    Michael P. Clough

    2015-10-01

    Full Text Available The three prior articles in this series have addressed teaching students in a manner that instills in them habits of thinking and action that reflect the characteristics of science and scientists. Achieving this is an essential part of STEM education efforts and demands overt attention to goals like those appearing in Table 1. As has been made clear in the previous two articles in this series (Clough 2015 a & b, much is known about teaching that effectively promotes these goals. For instance, Minner, Levy and Century (2010 synthesized relevant research reported between 1984 and 2002 to determine what impact, if any, inquiry science instruction has on K-12 learning.

  10. Between understanding and appreciation. Current science communication in Denmark (Danish original version

    Directory of Open Access Journals (Sweden)

    Kristian Hvidtfelt Nielsen

    2005-12-01

    Full Text Available In this paper I use the concepts “understanding of science” and “appreciation of science” to analyze selected case studies of current science communication in Denmark. The Danish science communication system has many similarities with science communication in other countries: the increasing political and scientific interest in science communication, the co-existence of many different kinds of science communication, and the multiple uses of the concepts of understanding vs. appreciation of science. I stress the international aspects of science communication, the national politico-scientific context as well as more local contexts as equally important conditions for understanding current Danish science communication.

  11. 77 FR 17462 - Notice of Submission for OMB Review; Institute of Education Sciences; Quick Response Information...

    Science.gov (United States)

    2012-03-26

    ... Notice of Submission for OMB Review; Institute of Education Sciences; Quick Response Information System... Response Information System (QRIS) consists of the Fast Response Survey System (FRSS) and the Postsecondary Education Quick Information System (PEQIS). The QRIS currently conducts surveys under OMB generic...

  12. Opportunity from Crisis: A Common Agenda for Higher Education and Science, Technology and Innovation Policy Research

    Science.gov (United States)

    Jacob, Merle; Hellström, Tomas

    2014-01-01

    This paper makes a plea for the construction of a common agenda for higher education and science, technology and innovation (STI) policy research. The public higher education and research sector in all countries is currently in the grip of several challenges arising from increased accountability, internationalization and in some cases dwindling…

  13. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  14. CURRENT FRAMEWORK OF EDUCATIONAL DIGITAL BOOKS

    Directory of Open Access Journals (Sweden)

    Almeida, P.S

    2015-12-01

    Full Text Available The constant changes in society and the expansion of information and communication technologies present new challenges for all sectors, mainly in educational areas, where new forms of work are The constant changes in society and the expansion of information and communication technologies present new challenges for all sectors, mainly in educational areas, where new forms of work are

  15. Special Education in Arab Countries: Current Challenges

    Science.gov (United States)

    Hadidi, Muna S.; Al Khateeb, Jamal M.

    2015-01-01

    Arab countries have undertaken various measures to develop special education programmes and services over the last three decades; nevertheless, major challenges remain regarding the expansion of these programmes and services and improving their quality. "This article provides an update on disability and special education in Arab…

  16. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    OpenAIRE

    Mozafar Khazaei; Fatemeh Abasi; Mohammad Rasool Khazaei; Farshad Rahimi

    2014-01-01

    Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011) and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS). Methods: In this descriptive cr...

  17. PHYSICAL EDUCATION BETWEEN ART AND SCIENCE

    Directory of Open Access Journals (Sweden)

    Goran Šekeljić

    2011-08-01

    Full Text Available Physical Education has its own definition inside the system of anthropomorphological sciences. But, there is a question whether it is possible to explain the phenomenon of physical education only inside of the system of abstrct atitudes based on an objective observation of reality or it is (at least some of its parts are an activity which has for an object the stimulation of human senses, mind or spirit. In this essey we discuss, in a very subjective way, the matter which concerns the culture in order to define the position of physical education inside the art system. The word "art" can relate to the variety of subjects, feelings or activities. Because of it, the fragments of art can be defined as creative interpretations of indefinite concepts or ideas. Having in mind the fact that in a world of art it is not possible to define standards that determine the art itself, according to the criteria which are generally accepted, it is still possible to make connection between sport and art by some rational observation. This work can enter the history thanks to the initiative to accept the sport as an aspect of art

  18. Lonergan's Theory of Cognition, Constructivism and Science Education

    Science.gov (United States)

    Roscoe, Keith

    Recent research literature in science education, science curriculum documents, and science methods texts have been highly influenced by constructivist views of how students learn science. But the widespread and often uncritical acceptance of constructivism in science education does not reflect the heated debate between constructivists and realist science educators over its underlying philosophy, and the curricular and pedagogical implications of constructivism. This paper aims to show that Bernard Lonergan's theory of cognition can inform this debate by (a) suggesting ways to see the merit in the views of constructivists and realists and bridge the gap between them, (b) illustrating how Lonergan's thought can be brought to bear on science curriculum documents and teaching-learning resources for science teachers. Lonergan's Theory of Cognition suggests that human knowing is not a single operation, but a dynamic and integral whole whose parts are sensory experience, understanding, and judging.

  19. Danish and German students’ reflections and recommendations to changes in their science education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Ahrenkiel, Linda; Michelsen, Claus

    a seminar was held in Sankelmark, Schleswig-Holstein, Germany. 29 upper secondary students from 4 schools (2 Danish and 2 German) attended the seminar in order to prepare some recommendations to take home to their own school. The students were asked to describe their current situation in science education......, their imagined situation in science education and some proposals for getting them from their current situation to their imagined situation. As researchers we were focused not only on what, the students wanted to change and how they wanted to do it. We also focused on their motives for changing their current...... situation in science education. The seminar was studied as a case study and data was collected by the use of questionnaires, videotaping, student presentations, field notes and interviews with some of the participants. The focus on the findings is on the students’ motives for changing their current...

  20. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  1. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  2. Science Communication versus Science Education: The Graduate Student Scientist as a K-12 Classroom Resource

    Science.gov (United States)

    Strauss, Jeff; Shope, Richard E., III; Terebey, Susan

    2005-01-01

    Science literacy is a major goal of science educational reform (NRC, 1996; AAAS, 1998; NCLB Act, 2001). Some believe that teaching science only requires pedagogical content knowledge (PCK). Others believe doing science requires knowledge of the methodologies of scientific inquiry (NRC, 1996). With these two mindsets, the challenge for science educators is to create models that bring the two together. The common ground between those who teach science and those who do science is science communication, an interactive process that galvanizes dialogue among scientists, teachers, and learners in a rich ambience of mutual respect and a common, inclusive language of discourse . The dialogue between science and non-science is reflected in the polarization that separates those who do science and those who teach science, especially as it plays out everyday in the science classroom. You may be thinking, why is this important? It is vital because, although not all science learners become scientists, all K-12 students are expected to acquire science literacy, especially with the implementation of the No Child Left Behind Act of 2001 (NCLB). Students are expected to acquire the ability to follow the discourse of science as well as connect the world of science to the context of their everyday life if they plan on moving to the next grade level, and in some states, to graduate from high school. This paper posits that science communication is highly effective in providing the missing link for K-12 students cognition in science and their attainment of science literacy. This paper will focus on the "Science For Our Schools" (SFOS) model implemented at California State Univetsity, Los Angeles (CSULA) as a project of the National Science Foundation s GK-12 program, (NSF 2001) which has been a huge success in bridging the gap between those who "know" science and those who "teach" science. The SFOS model makes clear the distinctions that identify science, science communication, science

  3. Science education for sustainability, epistemological reflections and educational practices: from natural sciences to trans-disciplinarity

    Science.gov (United States)

    Colucci-Gray, Laura; Perazzone, Anna; Dodman, Martin; Camino, Elena

    2013-03-01

    In this three-part article we seek to establish connections between the emerging framework of sustainability science and the methodological basis of research and practice in science education in order to bring forth knowledge and competences for sustainability. The first and second parts deal with the implications of taking a sustainability view in relation to knowledge processes. The complexity, uncertainty and urgency of global environmental problems challenge the foundations of reductionist Western science. Within such debate, the proposal of sustainability science advocates for inter-disciplinary and inter-paradigmatic collaboration and it includes the requirements of post- normal science proposing a respectful dialogue between experts and non-experts in the construction of new scientific knowledge. Such a change of epistemology is rooted into participation, deliberation and the gathering of extended-facts where cultural framings and values are the hard components in the face of soft facts. A reflection on language and communication processes is thus the focus of knowledge practices and educational approaches aimed at sustainability. Language contains the roots of conceptual thinking (including scientific knowledge) and each culture and society are defined and limited by the language that is used to describe and act upon the world. Within a scenario of sustainability, a discussion of scientific language is in order to retrace the connections between language and culture, and to promote a holistic view based on pluralism and dialogue. Drawing on the linguistic reflection, the third part gives examples of teaching and learning situations involving prospective science teachers in action-research contexts: these activities are set out to promote linguistic integration and to introduce reflexive process into science learning. Discussion will focus on the methodological features of a learning process that is akin to a communal and emancipatory research process within

  4. NASA space life sciences research and education support program

    Science.gov (United States)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  5. Incorporating Science News Into Middle School Curricula: Current Events in the 21st Century Classroom

    Science.gov (United States)

    Dimaggio, E.

    2010-12-01

    Middle school students are instructed with the aid of textbooks, lectures, and activities to teach topics that satisfy state standards. However, teaching materials created to convey standard-aligned science concepts often leave students asking how the content relates to their lives and why they should be learning it. Conveying relevance, especially in science when abstract concepts can often be incorrectly perceived as irrelevant, is important for student learning and retention. One way to create an educational link between classroom content and everyday life is through the use of scientific current events. Students read, hear, and watch media coverage of natural events (such as the Haiti or Chile earthquakes in 2010), but do not necessarily relate the scientific information from media sources to classroom studies. Taking advantage of these brief ‘teachable moments’-when student interest is high- provides a valuable opportunity to make classroom-to-everyday life associations and to incorporate inquiry based learning. To address this need, we are creating pre-packaged current event materials for middle school teachers in Arizona that align to state standards and which are short, effective, and easy to implement in the classroom. Each lesson takes approximately 15 minutes to implement, allowing teachers time to facilitate brief but meaningful discussions. Materials are assembled within approximately one week of the regional or global science event (e.g., volcanic eruptions, earthquakes) and may include a short slide show, maps, videos, pictures, and real-time data. A listserv is used to send biweekly emails to subscribed instructors. The email contains the current event topic, specific Arizona science standards addressed, and a link to download the materials. All materials are hosted on the Arizona State University Education Outreach website and are archived. Early implementation efforts have been received positively by participating teachers. In one case

  6. Responsibility, Complexity Science and Education: Dilemmas and Uncertain Responses

    Science.gov (United States)

    Fenwick, Tara

    2009-01-01

    While complexity science is gaining interest among educational theorists, its constructs do not speak to educational responsibility or related core issues in education of power and ethics. Yet certain themes of complexity, as taken up in educational theory, can help unsettle the more controlling and problematic discourses of educational…

  7. Restructuring STM (Science, Technology, and Mathematics) Education for Entrepreneurship

    Science.gov (United States)

    Ezeudu, F. O.; Ofoegbu, T. O.; Anyaegbunnam, N. J.

    2013-01-01

    This paper discussed the need to restructure STM (science, technology, and mathematics) education to reflect entrepreneurship. This is because the present STM education has not achieved its aim of making graduates self-reliant. Entrepreneurship education if introduced in the STM education will produce graduate who can effectively manage their…

  8. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  9. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  10. French language space science educational outreach

    Science.gov (United States)

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  11. Conference Modern Engineering : Science and Education

    CERN Document Server

    2017-01-01

    This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.

  12. [Current and ideal stages of pharmaceutical education].

    Science.gov (United States)

    Sugihara, Takumichi

    2015-01-01

      Education in university is commonly based on active learning by the students themselves. Lectures, exercises, and training are major learning strategies in a university. Self-study is one of the methods of active learning and is considered to be a major part of the classes when calculating the credits. When the six-year pharmaceutical education program was started, degree of attitude education was increased dramatically. New learning strategies considered to be suitable for attitude education, such as small group discussion (SGD), World Café, team-based learning (TBL), and problem-based learning (PBL)-Tutorials, were introduced in the classes, and the students were very much attracted by these methods. Not only the tactics but also the skills and abilities of teachers are greatly influenced by using such strategies to realize efficient education. Therefore, the most important point becomes faculty development. The degree of learning and the satisfaction of the students are not always mutually related. The evaluation of learning strategies has become difficult because of ambiguous criteria. Whereas an integrated educational program of drug therapies stimulates the motivation for learning of the students, a well-designed program may ruin the delight in learning of students.

  13. UNH's Transforming Earth System Science Education (TESSE) Program

    Science.gov (United States)

    Varner, R. K.; Graham, K.; Bryce, J.; Finkel, L.; Froburg, E.; Hale, S. R.; Johnson, J.; von Damm, K.

    2008-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers who currently teach or plan to teach Earth science curricula. A key TESSE program goal is to foster the development of middle and high school students' ESS literacy by training teachers through an intensive summer institute, authentic research experiences, and an academic-year follow-up scientist-liaison program. The TESSE approach integrates inquiry-based teaching practices with ESS content, emphasizing both timescales and systems. Earth System Science Teaching 1 (ESST-1) is a course offered to in-service teachers in need of ESS content or interested in updating their traditional content background to include a systems approach and is also designed to provide teachers with the tools necessary to implement an inquiry- based approach to teaching Earth science. Time scale and system interactions significant in the Earth System are introduced through authentic research conducted during field trips, research experiences and via working with long-term datasets. ESST-1 teachers are also provided the opportunity to work with graduate fellows who act as scientist liaisons during the academic year, bringing research expertise and resources into the classroom. Earth System Science Teaching 2 (ESST-2) is a ten-day intensive research experience wherein in-service teachers pose their own research questions, collect and analyze samples and report their findings in a public forum. Pre-service science teachers in the TESSE program participate in an eight-week summer Research Immersion Experience (RIE) and participate with faculty, graduate fellows and in-service teachers in the two-week ESST-1 workshop. The goal of the RIE is to provide authentic research skills and with the goal of bringing research-based inquiry into these future teachers' classrooms. Pre-service teachers work

  14. Gendered education in a gendered world: looking beyond cosmetic solutions to the gender gap in science

    Science.gov (United States)

    Sinnes, Astrid T.; Løken, Marianne

    2014-06-01

    Young people in countries considered to be at the forefront of gender equity still tend to choose very traditional science subjects and careers. This is particularly the case in science, technology, engineering and mathematics subjects (STEM), which are largely male dominated. This article uses feminist critiques of science and science education to explore the underlying gendered assumptions of a research project aiming to contribute to improving recruitment, retention and gender equity patterns in STEM educations and careers. Much research has been carried out to understand this gender gap phenomenon as well as to suggest measures to reduce its occurrence. A significant portion of this research has focused on detecting the typical "female" and "male" interest in science and has consequently suggested that adjustments be made to science education to cater for these interests. This article argues that adjusting science subjects to match perceived typical girls' and boys' interests risks being ineffective, as it contributes to the imposition of stereotyped gender identity formation thereby also imposing the gender differences that these adjustments were intended to overcome. This article also argues that different ways of addressing gender issues in science education themselves reflects different notions of gender and science. Thus in order to reduce gender inequities in science these implicit notions of gender and science have to be made explicit. The article begins with an overview of the current situation regarding gender equity in some so- called gender equal countries. We then present three perspectives from feminist critiques of science on how gender can be seen to impact on science and science education. Thereafter we analyze recommendations from a contemporary research project to explore which of these perspectives is most prevalent.

  15. CONNECTIVISM IN SCIENCE EDUCATION WITH EMPHASIS ON INTERNATIONAL COLLABORATION

    Directory of Open Access Journals (Sweden)

    Eva Trnova

    2012-01-01

    Full Text Available The study presents the results of design-based research on the influence of connectivism on science education, with the emphasis on an international collaboration among/between teachers and students from different countries. Science and technology education is a very important part of culture as a knowledge background of society. Very fast ICT development strongly influences education. The pedagogical theory of connectivism was born as a response to this ICT development. Thus a need occurred to examine these connectivistic influences on science and technology education. This study presents a design-based research which is focussed on the following issues: identification of connectivistic factors and their influence on science education; creation of connectivistic educational methods; implementation of connectivistic educational methods into teaching/learning and teacher’s training. These methods were created within the frame of collaborative action research based on ICT which can be used as a vehicle for international collaboration with effective exploitation of ICT. The collaborative action research based on ICT was carried out by two collaborating teachers and their students in the Czech Republic and in Portugal. Concrete scenarios and strategic planning of the collaborative connectivistic teaching/learning are presented on the topic photosynthesis. Our design-based research results verify that implementation of connectivism in science education is reality. We identify the set of connectivistic factors which influence science education: selection of topic, selection of students, use of Information and Communication Technologies (ICT, collaboration schedule and elaboration of materials for teaching and learning. Connectivistic educational methods in science education are also presented. Connectivistic teaching/learning methods have a very positive influence on science education. This connectivistic approach can contribute to reducing the gap

  16. Basic Concepts of the Educational Science Sub-Discipline of Adult Education

    Science.gov (United States)

    Schneider, Kaethe

    2005-01-01

    In this study, a conceptual system is outlined for the educational science sub-discipline of adult education. Adults' attending instruction or not attending instruction is conceptually specified. Focusing as it does on a cardinal event of adult education, this represents a first step toward a system for the educational science sub-discipline of…

  17. Impact of constructivist pedagogy on science education

    Science.gov (United States)

    Chrishon-Ford, Grace E.

    This study focused on how constructivist pedagogy impacts science achievement of the fourth grade students in an elementary Department of Defense School. Constructivism is a learning or meaning-making theory that offers an explanation of the nature of knowledge and how human beings learn. The population of this study was two fourth grade classes in an elementary Department of Defense District School. Data collection was accomplished in four ways: (1) focus group interviews of students, (2) individual interviews of students selected from the focus groups, (3) interviews of teachers, and (4) unobtrusive observations of science instruction. A six-step process was followed to gain entry for this study. The steps were my university dissertation committee, Department of Defense Education Activity Research Study Request, Endorsement and Agreement form to the Headquarters Office, school superintendent, school principal, teacher participants, and the final step was to seek parental approval of the fourth graders involved in the study. The findings from this study were an increase of 47% test scores; 57% revealed experiments/projects and 64% working on the computers in groups were the fun things; 100% student interaction; 100% student attentativeness; and 70% using other resources. Implications have demonstrated that the traditional classroom can be converted if the teachers and administrators would buy into the approach that this project demonstrated. As an advocate of the constructivist model the case study demonstrated students do indeed respond to the constructivist theory. If approached in a positive manner, it could be done in any kind of school setting.

  18. On the way to a philosophy of science education

    Science.gov (United States)

    Schulz, Roland M.

    This Thesis argues the case that a philosophy of science education is required for improving science education as a research field as well as curriculum and teacher pedagogy. It seeks to re-think science education as an educational endeavor by examining why past reform efforts have been only partially successful, including why the fundamental goal of achieving scientific literacy after several "reform waves" has proven to be so elusive. The identity of such a philosophy is first defined in relation to the fields of philosophy, philosophy of science, and philosophy of education. Considering science education as a research discipline it is emphasized a new field should be broached with the express purpose of developing a discipline-specific "philosophy of science education" (largely neglected since Dewey). A conceptual shift towards the philosophy of education. is needed, thereto, on developing and demarcating true educational theories which could in addition serve to reinforce science education's growing sense of academic autonomy and independence from socio-economic demands. Two educational metatheories are contrasted, those of Kieran Egan and the Northern European Bildung tradition, to illustrate the task of such a philosophy. Egan's cultural-linguistic metatheory is presented for two primary purposes: it is offered as a possible solution to the deadlock of the science literacy conceptions within the discipline; regarding practice, examples are provided how it can better guide the instructional practice of teachers, specifically how it reinforces the work of other researchers in the History and Philosophy of Science (HPS) reform movement who value narrative in learning science. Considering curriculum and instruction, a philosophy of science education is conceptualized as a "second order" reflective capacity of the teacher. This notion is aligned with Shulman's idea of Pedagogical Content Knowledge. It is argued that for educators the nature of science learning

  19. Pre-Service Science Teachers' Perceptions of Mathematics Courses in a Science Teacher Education Programme

    Science.gov (United States)

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-01-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and…

  20. Space Plasma Science as a Motivator for Education & Outreach

    Science.gov (United States)

    Dusenbery, Paul

    1999-11-01

    Education and public outreach (EPO) continue to play an important role in how science is funded by the federal government. The plasma science community has a responsibility to share their exciting science with the American public. Bruce Alberts, president of the National Academy of Sciences, and Neal Lane, former head of NSF, are on record as strong advocates of scientists becoming more actively and effectively engaged in K-12 science education reform. In addition, research directorates of funding agencies like NASA and NSF are increasingly encouraging (and in some cases requiring) the integration of science and education and greater scientist involvement in EPO. How does plasma science and scientists fit into this broader political and social landscape? How well does the public understand our science and technology? Are there ways to effectively engage the public that provide good visibility for plasma science? These questions and more will be addressed in this talk. The Space Science Institute (SSI), a nonprofit organization in Colorado, provides national leadership in developing innovative ways to translate the activities and resources of space and earth science research into exciting and effective K-12 and museum education programs. SSI’s mission is to link its space science research enterprise with its education programs. SSI has active programs in curriculum and exhibit development and professional development for both scientists about education and for educators about science. I will share with you one exhibit project and one curriculum project whose goals are to raise public understanding of space plasmas and by extension all of plasma science.