WorldWideScience

Sample records for current resistance welding

  1. Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents

    Institute of Scientific and Technical Information of China (English)

    S.; Jack; HU

    2008-01-01

    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis-tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  2. Magnetohydrodynamic behaviors in a resistance spot weld nugget Under different welding currents

    Institute of Scientific and Technical Information of China (English)

    LI YongBing; LIN ZhongQin; S. Jack HU; CHEN GuanLong

    2008-01-01

    Magnetohydrodynamic behaviors in a resistance spot weld nugget under different welding currents are investigated based on a multiphysics coupled numerical model, which incorporates phase change and variable electrical contact resis- tances at faying surface and electrode-workpiece contact surface. The patterns of the flow field and thermal field at the end of the welding phase under different welding currents are obtained. The evolutions of fluid flow and heat transfer during the whole welding process are also revealed systematically. The analysis results are also compared with a traditional electrothermal coupled model to obtain the quantitative effects of the magnetohydrodynamic behaviors on the resistance spot weld nugget formation.

  3. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052

    Institute of Scientific and Technical Information of China (English)

    Li Yongqiang; Zhao Xihua; Zhao He; Cao Haipeng; Zhao Huanling

    2008-01-01

    The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding(LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0.8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.

  4. Effect of welding current on strength and microstructure in resistance spot welding of AZ31 Mg alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Yarong; Zhang Zhongdian; Feng Jicai

    2007-01-01

    In this paper, resistance spot welding were performed on 1mm-thickness magnesium AZ31B plates. The effect of welding current on the microstructure and tensile shear force was investigated. It was found that the welding current governed the nugget growth, and the nugget could not form if current levels were insufficient. The nugget revealed a homogeneous, equiaxed, fine-grained structure, which consisted of non-equilibrium microstructure of α-phase dendrites surrounded by eutectic mixtures of α and β (Mg17Al12) in the grain boundaries. With increasing welding current, the size of grains in nugget would be more smaller and uniform, and the width of plastic rings would be larger. Tensile shear tests showed that tensile shear force of the joints increased with increasing welding current when the welding current was smaller than 17 000 A.The maximum tensile shear force was up to 1980 N.

  5. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  6. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling......Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...

  7. Effect of Welding Current and Time on the Microstructure, Mechanical Characterizations, and Fracture Studies of Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel

    Science.gov (United States)

    Kianersi, Danial; Mostafaei, Amir; Mohammadi, Javad

    2014-09-01

    This article aims at investigating the effect of welding parameters, namely, welding current and welding time, on resistance spot welding (RSW) of the AISI 316L austenitic stainless steel sheets. The influence of welding current and welding time on the weld properties including the weld nugget diameter or fusion zone, tensile-shear load-bearing capacity of welded materials, failure modes, energy absorption, and microstructure of welded nuggets was precisely considered. Microstructural studies and mechanical properties showed that the region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. Electron microscopic studies indicated different types of delta ferrite in welded nuggets including skeletal, acicular, and lathy delta ferrite morphologies as a result of nonequilibrium phases, which can be attributed to a fast cooling rate in the RSW process. These morphologies were explained based on Shaeffler, WRC-1992, and pseudo-binary phase diagrams. The optimum microstructure and mechanical properties were achieved with 8-kA welding current and 4-cycle welding time in which maximum tensile-shear load-bearing capacity or peak load of the welded materials was obtained at 8070 N, and the failure mode took place as button pullout with tearing from the base metal. Finally, fracture surface studies indicated that elongated dimples appeared on the surface as a result of ductile fracture in the sample welded in the optimum welding condition.

  8. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    Science.gov (United States)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  9. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  10. Challenges to Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    This report originates from the compulsory defense during my Ph.D. study at the Technical University of Denmark. Resistance welding is an old and well-proven technology. Yet the emergence of more and more new materials, new designs, invention off new joining techniques, and more stringent...... requirement in quality have imposed challenges to the resistance welding. More some research and development have to be done to adapt the old technology to the manufacturing industry of the 21st century. In the 1st part of the report, the challenging factors to the resistance welding are reviewed. Numerical...... simulation of resistance welding has been under development for many years. Yet it is no easy to make simulation results reliable and accurate because of the complexity of resistance welding process. In the 2nd part of the report numerical modeling of resistance welding is reviewed, some critical factors...

  11. Thermomechanical Modelling of Resistance Welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi

    2007-01-01

    The present paper describes a generic programme for analysis, optimization and development of resistance spot and projection welding. The programme includes an electrical model determining electric current and voltage distribution as well as heat generation, a thermal model calculating heat...

  12. A cooperative control strategy of resistance spot welding process by combining the constant current control with the DRC method

    Institute of Scientific and Technical Information of China (English)

    Li Guizhong; Wang Changzheng; Kong Meng; Guo Caiguang

    2009-01-01

    The modeling control method based on the dynamic resistance characteristics of good nuggets, that is the DRC method, is an improvement on the dynamic resistance threshold method for the quality control of resistance spot welding. But there is still a control blind area in the initial four cycles. For this reason, the quality of every weld nugget could not be fully ensured. Thus a new fuzzy cooperative control method is put forward. It uses a multi-information time-control mechanism by combining the constant current control technology with the DRC method in a relay way. This whole-process control strategy has led to a good control effect and produced the dual-identicul results in the weld nugget quality and the welding time.

  13. Numerical methods in simulation of resistance welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A.F.; Zhang, Wenqi

    2015-01-01

    Finite element simulation of resistance welding requires coupling betweenmechanical, thermal and electrical models. This paper presents the numerical models and theircouplings that are utilized in the computer program SORPAS. A mechanical model based onthe irreducible flow formulation is utilized...... a resistance welding point of view, the most essential coupling between the above mentioned models is the heat generation by electrical current due to Joule heating. The interaction between multiple objects is anothercritical feature of the numerical simulation of resistance welding because it influences...

  14. Characterization of electrical properties of resistance welding machines

    Institute of Scientific and Technical Information of China (English)

    Wu Pei; Shao Yingli; Wenqi Zhang; Niels Bay

    2008-01-01

    Due to the individual electrical and mechanical characteristics of resistance welding machines, choice of the right machine and welding parameters for an optimized production is often difficult. This is especially the case in projection welding of complex joints. In this paper, a new approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle and the conduction angle of silicon controlled rectifiers with the aid of a series of proof resistances. The model predicts the weld current and the conduction angle (or heat setting) at each set current, when the workpiece resistance is given.

  15. Characteristics of Welding Crack Defects and Failure Mode in Resistance Spot Welding of DP780 Steel

    Institute of Scientific and Technical Information of China (English)

    Xiao-pei WANG; Yong-qiang ZHANG; Jian-bin JU; Jian-qiang ZHANG; Jian-wei YANG

    2016-01-01

    The mechanical properties of welded joints in resistance spot welding of DP780 steel were tested,and three dif-ferent types of welding cracks in welded joints were investigated by optical microscopy,scanning electron microscopy and electron back-scattered diffraction.Finally,the failure mode of the welded joints in shear tensile test was dis-cussed.It is found the shear tensile strength of welded joints can be greatly improved by adding preheating current or tempering current.The surface crack in welded joint is intergranular fracture,while the inner crack in welded joint is transgranular fracture,and the surface crack on the edge of the electrode imprint can be improved by adding prehea-ting current or tempering current.The traditional failure mode criterion advised by American Welding Society is no longer suitable for DP780 spot welds and the critical nugget size suggested by Pouranvari is overestimated.

  16. Optimization of the pulsed current gas tungsten arc welding (PCGTAW) parameters for corrosion resistance of super duplex stainless steel (UNS S32760) welds using the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Yousefieh, M., E-mail: m.yousefieh@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Shamanian, M., E-mail: shamanian@cc.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Saatchi, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2011-01-21

    Research highlights: > Among the four factors and three levels tested, it was concluded that the pulse current had the most significant effect on the pitting potential and the background current had the next most significant effect. The effects of pulse frequency and % on time are less important when compared to the other factors. > The percentage contributions of the pulse current, the background current, % on time, and pulse frequency to the corrosion resistance are 66.28%, 25.97%, 2.71% and 5.04%, respectively. > The optimum conditions within the selected parameter values were found as the second level of pulse current (120 A), second level of background current (60 A), third level of % on time (80%) and third level of pulse frequency (5 Hz). > The confirmation test was carried out at optimum working conditions. Pitting potential was increased to 1.06 V{sub SCE} by setting the control factors. Predicted (1.04 V{sub SCE}) and observed (1.06 V{sub SCE}) pitting potential values are close to each other, which are the highest values obtained in the present study. - Abstract: In the present work, a design of experiment (DOE) technique, the Taguchi method, has been used to optimize the pulsed current gas tungsten arc welding (PCGTAW) parameters for the corrosion resistance of super duplex stainless steel (UNS S32760) welds. A L{sub 9} (3{sup 4}) orthogonal array (OA) of Taguchi design which involves nine experiments for four parameters (pulse current, background current, % on time, pulse frequency) with three levels was used. Corrosion resistance in 3.5%NaCl solution was evaluated by anodic polarization tests at room temperature. Analysis of variance (ANOVA) is performed on the measured data and S/N (signal to noise) ratios. The higher the better response category was selected to obtain optimum conditions. The optimum conditions providing the highest pitting potential were estimated. The optimum conditions were found as the second level of pulse current (120 A

  17. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side......, as another application, the proposed method is used to measure the faying surface contact resistance....

  18. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    Through years, the dynamic resistance across the electrodes has been used for weld quality estimation and contact resistance measurement. However, the previous methods of determining the dynamic resistance were mostly based on measuring the voltage and current on the secondary side...... of the transformer in resistance welding machines, implying defects from induction noise and interference with the leads connected to the electrodes for measuring the voltage. In this study, the dynamic resistance is determined by measuring the voltage on the primary side and the current on the secondary side......, as another application, the proposed method is used to measure the faying surface contact resistance....

  19. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  20. Measurement of dynamic resistance in resistance spot welding

    Institute of Scientific and Technical Information of China (English)

    Wu Pei; Lü Jiaheng; Wenqi Zhang; Niels Bay

    2007-01-01

    The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in-process system without any wires connected to electrodes.

  1. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...... is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in...

  2. Measurement of Dynamic Resistance in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Wu, Pei; Lu, J.; Zhang, Wenqi

    2007-01-01

    The conventional methods of determining the dynamic resistance were mostly done by measuring the voltage and current at secondary side of transformer in resistance welding machines, in which the measuring set-up normally interferes with the movement of electrode, and the measuring precision...... is influenced by inductive noise caused by the high welding current. In this study, the dynamic resistance is determined by measuring the voltage at primary side and current at secondary side. This increases the accuracy of measurement because of higher signal-noise ratio, and allows to apply to in...

  3. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India)], E-mail: visvabalu@yahoo.com; Ravisankar, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India); Reddy, G. Madhusudhan [Metal Joining Section, Defence Metallurgical Research Laboratory, Kanchanbag (P.O.), Hyderabad 560058 (India)

    2007-06-25

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility.

  4. Testing and Modeling of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Song, Quanfeng

    As a part of the efforts towards a professional and reliable numerical tool for resistance welding engineers, this Ph.D. project is dedicated to refining the numerical models related to the interface behavior. An FE algorithm for the contact problems in resistance welding has been developed...... together two or three cylindrical parts as well as disc-ring pairs of dissimilar metals. The tests have demonstrated the effectiveness of the model. A theoretical and experimental study is performed on the contact resistance aiming at a more reliable model for numerical simulation of resistance welding....... The model currently employed is evaluated. It is found that the model may underestimate the constriction resistance because it is based on the assumption of continual contact area. A new model is proposed on the constriction resistance in resistance welding. A parametric study is performed on the contact...

  5. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding

    Science.gov (United States)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn

    2017-09-01

    Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.

  6. Resistance welding equipment manufacturing capability for exports

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, V.S.; Raju, Y.S.; Somani, A.K.; Setty, D.S.; Rameswara Raw, A.; Hermantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderbad (India)

    2010-07-01

    Indian Pressurised Heavy Water Reactor (PHWR) fuel bundle is fully welded and is unique in its design. Appendage welding, end closure welding, and end plate welding is carried out using resistance welding technique. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. Nuclear Fuel Complex (NFC), an industrial unit is established in Hyderabad, under the aegis of the Dept of Atomic Energy to manufacture fuel for Pressurised Heavy Water Reactors. From inception, NFC has given importance for self-reliance and indigenization with respect to manufacturing process and equipment. Sintering furnaces, centreless grinders, appendage-welding machines, end-closure welding equipment and end-plate welding equipments, which were initially imported, are either indigenized or designed and manufactured in house. NFC has designed, manufactured a new appendage-welding machine for manufacturing 37 element fuel bundles. Recently NFC has bagged an order from IAEA through international bidding for design, manufacture, supply, erection and commissioning of end-closure welding equipment. The paper gives in detail the salient features of these welding equipment. (author)

  7. Expulsion characterization in resistance spot welding by means of a hardness mapping technique

    Institute of Scientific and Technical Information of China (English)

    H.Ghazanfari; M.Naderi

    2014-01-01

    Expulsion is an undesired event during resistance spot welding because the weld quality deteriorates. It is the ejection of molten metal from the weld nugget which usually occurs due to applying a high current for a short welding time. Expulsion has a significant impact on the final yield strength of the weld, thus the detection and characterization of expulsion events is significant for the quality assurance of resistance spot welds. In this study, hardness mapping, using a scanning hardness machine, was used as a quality assurance technique for re-sistance spot welding. Hardness tests were conducted on a resistance spot welded sample to prepare a hardness map. The test results showed good correlation between the hardness map and metallographic cross sections. The technique also provided further fundamental understand-ing of the resistance spot welding process, especially regarding the occurrence of expulsion in the nugget.

  8. Research Activities at IPT, DTU on Resistance Projection Welding

    DEFF Research Database (Denmark)

    Bay, Niels

    2000-01-01

    Resistance welding processes and among these especially the resistance projection welding is considered an industrially strategic process with increasing applications as alternative to other welding processes, soldering, brazing and mechanical assembling. This is due to increasing requirements as...

  9. Resistance Welding of Advanced Materials and Micro Components

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard

    presented problems. Simulation of two- and three sheet spot welding of advanced high strength steels DP600 and TRIP700 did generally agree well with experimental observations. Microstructure characterisation revealed that martensite was the main constituent in the final weld. By using empirical formulae......, thermal, electrical and metallurgical effects all signifcantly in uencing the process. Modelling is further complicated when down-scaling the process for welding micro components or when welding new advanced high strength steels in the automotive industry. The current project deals with three main themes...... resistance is addressed both theoretically and experimentally. Secondly the consequences of downscaling the process is investigated experimentally and discussed in relation to simulation of the process. Finally resistance welding of advanced high strength steels is addressed aimed at improving the simulation...

  10. On-line evaluating on quality of mild steel joints in resistance spot welding

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method was developed to realize quality evaluation on every weld-spot in resistance spot welding based on information processing of artificial intelligent. Firstly, the signals of welding current and welding voltage, as information source, were synchronously collected. Input power and dynamic resistance were selected as monitoring waveforms. Eight characteristic parameters relating to weld quality were extracted from the monitoring waveforms. Secondly, tensile-shear strength of the spot-welded joint was employed as evaluating target of weld quality. Through correlation analysis between every two parameters of characteristic vector, five characteristic parameters were reasonably selected to found a mapping model of weld quality estimation. At last, the model was realized by means of the algorithms of Radial Basic Function neural network and sample matrixes. The results showed validations by a satisfaction in evaluating weld quality of mild steel joint on-line in spot welding process.

  11. Resistance spot welding and weldbonding of advanced high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.; Gaul, H.; Rethmeier, M. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany). Div. V.5 ' ' Safety of Joined Components' ' ; Thommes, H.; Hahn, O. [Paderborn Univ. (Germany). Fakultaet fuer Maschinenbau

    2010-11-15

    The resistance spot welding procedure is one of the most important joining techniques in lightweight car body shell mass production. Especially for newly developed high strength multiphase steels, also called advanced high strength steels (AHSS), and ultra high strength steels (UHSS), this joining technique has more advantages than other thermal and mechanical joining procedures for thin steel sheets. Additionally, the technique of adhesive bonding and its combination with the technique of resistance spot welding called weldbonding becomes more and more important. One of the targets of the contribution is to show the influence of joined advanced high strength steels on the process reliability for both the resistance spot welding process and the weldbonding process. Based on welding current ranges and on results of electrode wear tests, statements concerning the resistance spot weldability of some special AHSS will be given. The mechanical behaviour of spot welded and weldbonded joints for different AHSS will be studied. Furthermore, some statements regarding the fracture behaviour, the hardness and the fatigue behaviour of both spot welded and weldbonded joints for different AHSS will be given. Finally, some results on the mechanical properties of spot welded and weldbounded joints under corrosive attacks with be discussed. (orig.)

  12. A new measurement method for the dynamic resistance signal during the resistance spot welding process

    Science.gov (United States)

    Wang, Lijing; Hou, Yanyan; Zhang, Hongjie; Zhao, Jian; Xi, Tao; Qi, Xiangyang; Li, Yafeng

    2016-09-01

    To measure the dynamic resistance signal during the resistance spot welding process, some original work was carried out and a new measurement method was developed. Compared with the traditional method, using the instantaneous electrode voltage and welding current at peak current point in each half cycle, the resistance curve from the newly proposed method can provide more details of the dynamic resistance changes over time. To test the specific performance of the proposed method, a series of welding experiments were carried out and the tensile shear strengths of the weld samples were measured. Then, the measurement error of the proposed method was evaluated. Several features were extracted from the dynamic resistance curves. The correlations between the extracted features and weld strength were analyzed and the results show that these features are closely related to the weld strength and they can be used for welding quality monitoring. Moreover, the dynamic resistance curve from the newly proposed method can also be used to monitor some abnormal welding conditions.

  13. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  14. Nucleus geometry and mechanical properties of resistance spot welded coated–uncoated DP automotive steels

    Indian Academy of Sciences (India)

    Ibrahim Sevim; Fatih Hayat; Mustafa Kemal Kulekci

    2013-11-01

    In this study, mechanical properties of resistance spot welding of DP450 and DP600, galvanized and ungalvanized automotive sheets have been investigated. The specimens have been joined by resistance spot welding at different weld currents and times. Welded specimens have been examined for their mechanical, macrostructure and microstructure properties. Depending on the weld current and time, effects of zinc coating on tensile properties, microhardness values as well as microstructure nugget geometry and nucleus size ratio have been investigated. X-ray diffraction analysis has been used to investigate the phase that formed at the joint interface. Result of the experiment show that nugget diameter, indentation depth and tensile load-bearing capacity are affected by weld parameters. Coating prevents full joining at low parameters. Microhardness increased in heat-affected zone and weld metal.

  15. Optimizing the Pulsed Current Gas Tungsten Arc Welding Parameters

    Institute of Scientific and Technical Information of China (English)

    M. Balasubramanian; V. Jayabalan; V. Balasubramanian

    2006-01-01

    The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries,because of its low density (4.5 g/cm3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA)welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach.

  16. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  17. Induced electromagnetic stirring behavior in a resistance spot weld nugget

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A multi-physics hybrid numerical model,which couples electric,magnetic,thermal and flow fields,was used to investigate electromagnetic stirring behavior in a resistance spot weld nugget.The differences of two kinds of different excitation inputs,i.e.,a sinusoidal current and its root-mean-square(RMS) value,were studied to examine if they could produce equivalent electromagnetic stirring effects in the weld nugget.Research showed that the two types of current inputs could produce almost identical fluid flow and heat transfer patterns and consistent evolution of flow and thermal fields in the nugget.At the end of the welding cycles,the maximum flow velocity and temperature between the two inputs differed by 11.6% and 0.3%,respectively.Therefore,the RMS current can be assumed to produce an approximately equivalent electromagnetic stirring effect with the sinusoidal current,and can be used in the future research to greatly improve the solution efficiency of the electromagnetic stirring behavior in the resistance spot weld nugget.

  18. Influence of Welding Current and Focal Position on the Resonant Absorption of Laser Radiation in a TIG Welding Arc

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.

    The work presents the influence of welding current and focal position on the resonant absorption of diode laser radiation in a TIG welding arc. The laser beam is guided perpendicular to the electrical arc to avoid an interaction with the electrodes. Laser power measurements have shown a reduction of the measured laser power up to 18% after passing the electrical arc. This reduction results from the interaction of argon shielding gas atoms and laser radiation at 810.4 nm and 811.5 nm. The interaction is strongly affected by the adjusted welding current and the adjustment of the laser beam and the electrical arc. Lowering the welding current or shifting the laser beam out of the centerline of the electrical arc reduces the ionization probability. An increased ionization is necessary to decrease the resistance of the electrical arc.

  19. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels;

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements...

  20. Note: Resistance spot welding using a microgripper

    Science.gov (United States)

    Hwang, G.; Podrzaj, P.; Hashimoto, H.

    2013-10-01

    Interest in thin-film nanostructures as building blocks for nanoelectronics and nanoelectromechanical systems (NEMS) is increasing. Resistance spot welding (RSW) on a nano or micro scale can play a significant role; similar to that of its macro counterpart for forming connections in device assembly processes. This Note presents a novel micron scale RSW technique using a microgripper as mobile spot welding electrodes to assemble ultra-thin film nanostructures. As an example, assembly of three-dimensional helical nanobelt (HNB) based device was successfully demonstrated using the proposed system. The spot-welding process was fully monitored by the built-in capacitive micro force sensor of the microgripper. Experiments show that RSW, using the microgripper, provides a stable electrical contact with sufficient mechanical strength for the construction of devices such as HNB based devices demonstrated here.

  1. Metallography of Battery Resistance Spot Welds

    Science.gov (United States)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  2. Resistance Spot Welding with Middelfrequency-Inverter Weling Gun

    DEFF Research Database (Denmark)

    Rasmussen, Mogens H.

    The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun......The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun...

  3. Resistance Spot Welding with Middelfrequency-Inverter Weling Gun

    DEFF Research Database (Denmark)

    Rasmussen, Mogens H.

    The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun......The paper presents the results of investigations concerning the process stability and weldability lobes for uncoated sheets of 1.0 mm thickness when performing resistance spot welding with a middlefrequency-inverter welding gun...

  4. Improving resistance welding of aluminum sheets by addition of metal powder

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al-Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    . The improvement obtained is shown to be due to the development of a secondary bond in the joint beside the weld nugget increasing the total weld area. The application of powder additive is especially feasible, when using welding machines with insufficient current capacity for producing the required nugget size......In order to ensure good quality joints between aluminum sheets by resistance spot welding, a new approach involving the addition of metal powder to the faying surfaces before resistance heating is proposed. Three different metal powders (pure aluminum and two powders corresponding to the alloys AA......2024 and AA7075) are investigated for the resistance spot welding of AA1050 aluminum sheets of three different thicknesses. Microstructural and mechanical analysis demonstrates that significant improvement in weld bead morphology and strength are obtained with the addition of metal powder...

  5. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India)], E-mail: visvabalu@yahoo.com; Ravisankar, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbag (P.O), Hyderabad 560 058 (India)

    2008-07-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit.

  6. Optimization design of resistance spot welding parameters of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Lang Bo; Sun Daqian; Wu Qiong; Xuan Zhaozhi

    2008-01-01

    By means of the quadratic regression combination design process, the regression equations of nugget diameter and tensile shear load of spot welded joint were established. Effects of welding parameters on the nugget diameter and the tensile shear load were investigated. The results show that effect of welding current on nugget diameter is the most evident. And higher welding current will result in bigger nugget diameter. Besides, interaction effect of electrode force and welding current on tensile shear load is the most evident compared with others. The optimum welding parameters corresponding to the maximum of tensile shear load have been obtained by programming using Matlab software, which is 4.7kN electrode force, 28kA welding current and 4 cycle welding time. Under the condition of the optimum welding parameters, the joint having no visible defects can be obtained, nugget diameter and tensile shear load being 6.8mm and 3 256N, respectively.

  7. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in

  8. Investigation and control of factors influencing resistance upset butt welding.

    NARCIS (Netherlands)

    Kerstens, N.F.H.

    2010-01-01

    The purpose of this work is to investigate the factors influencing the resistance upset butt welding process to obtain an understanding of the metal behaviour and welding process characteristics, so that new automotive steels can be welded with reduced development time and fewer failures in producti

  9. Resistance Welding of Thermoplastic Composites: Process and Performance

    OpenAIRE

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as welding. Resistance welding has been regarded as one of the most promising welding techniques owing to the low energy consumption, simplicity of welding operation and capability for scaling up. Previou...

  10. An analysis of the dynamic resistance and the instantaneous energy of the CO2 arc welding process

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenmin; Xue Jiaxiang; Dong Fei; Yang Guohua; Lu Xiaoming

    2007-01-01

    A self-developed welding dynamic arc wavelet analyzer was adopted to analyze and assess the welding process of two CO2 arc welding machines. The experimental results indicate that the instantaneous energy can reflect the influence of the welding current and voltage on dynamic arc characteristic synthetically. Through calculating and analyzing the instantaneous energy, the energy during arc ignition and short circuit in CO2 welding process can be confirmed rationally, thus the foundation for the accurate design and control of the welding current and voltage can be provided. By reducing the ripple disturbance of the dynamic resistance, avoiding peak current and voltage waveform,and enhancing the transition frequency of short circuit suitably, the stability of the welding arc and the weld appearance can be improved.

  11. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  12. Testing and Modeling of Machine Properties in Resistance Welding

    DEFF Research Database (Denmark)

    Wu, Pei

    electrode force, and the time of stabilizing does not depend on the level of the force. An additional spring mounted in the welding head improves the machine touching behavior due to a soft electrode application, but this results in longer time of oscillation of the electrode force, especially when......The objective of this work has been to test and model the machine properties including the mechanical properties and the electrical properties in resistance welding. The results are used to simulate the welding process more accurately. The state of the art in testing and modeling machine properties...... in resistance welding has been described based on a comprehensive literature study. The present thesis has been subdivided into two parts: Part I: Mechanical properties of resistance welding machines. Part II: Electrical properties of resistance welding machines. In part I, the electrode force in the squeeze...

  13. Use Of Dynamic Resistance And Dynamic Energy To Compare Two Resistance Spot Welding Equipments For Automotive Industry In Zinc Coated And Uncoated Sheets.

    Directory of Open Access Journals (Sweden)

    Márcio Batista

    2013-01-01

    Full Text Available Resistance spot welding is a fabrication process highly used in the structures assembly. This fact evidences the importance of this welding process control, due to its efficiency, productivity speediness and straightforward simple automation. This work aimed to study the weldability of zinc coated and uncoated steel sheets for automotive industry, comparing the performance of two welding equipments with two current outputkinds: alternating current (AC and medium frequency direct current (DC. The welding parameters were kept constant: 260 kgf (force, 150 ms (time and 7.0 kA (welding current, based upon an optimization parameters methodology. The joints were characterized using optical metallography (spot diameter, indentation depth and weld penetration depth, mechanical tensile-shear tests and electrical measurements: contact electrical resistance, dynamic resistance and dynamic energy. The results showed that welding in medium frequency direct current was more efficient in generating heat in zinc coated sheets and uncoated sheets than alternating current equipment. In welding using AC and DC equipments in zinc coated sheets, the spot weld time formation was 25ms longer than uncoated steel sheets spot weld time. The burn of zinc during welding did not damage the spot weld formation with AC or DC equipments. The electrical contact resistance increased with the roughnessand also presented 52% higher in uncoated sheets than in zinc coated sheets. Finally, the increase in dynamicresistance and dynamic energy augmented the spot weld diameter for both welding equipments. As a final conclusion, the medium frequency direct current equipment presented better results than wave alternating current

  14. Pulse current gas metal arc welding characteristics, control and applications

    CERN Document Server

    Ghosh, Prakriti Kumar

    2017-01-01

    This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.

  15. Effect of welding speed and electrode extension on the approximate entropy of welding current in short-circuiting GMAW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the phase space reconstruction of welding current in short-circuiting transfer arc welding under carbon dioxide, the approximate entropy of welding current and its standard deviation have been calculated and analyzed at different welding speeds and different electrode extensions respectively. The experimental and calculated results show that at a certain arc voltage, wire feeding rate and gas flow rate, welding speed and electrode extension have significant effects not only on the approximate entropy of welding current, but also on the stability of welding process. Further analysis proves that when the welding speed and electrode extension are in an appropriate range respectively, the welding current approximate entropy attains maximum and its standard deviation minimum. Just under such circumstances, the welding process is in the most stable state.

  16. SORPAS – The Professional Software for Simulation of Resistance Welding

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2002-01-01

    Based on long time engineering research and dedicated collaborations with industry, the professional welding software, SORPAS, has been developed for simulation of resistance projection and spot welding processes applying the powerful finite element method (FEM). In order to make the software...... directly usable by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn...... applied in industries including automotive, electronics and other metal processing industries as well as welding equipment manufacturers....

  17. Microstructural refinement of weld fusion zones in {alpha}-{beta} titanium alloys using pulsed current welding

    Energy Technology Data Exchange (ETDEWEB)

    Sundaresan, S.; Janaki Ram, G.D. [Indian Inst. of Technol., Chennai (India). Dept. of Metallurgical Engineering; Madhusudhan Reddy, G. [Defence Metallurgical Research Lab., Hyderabad (India)

    1999-04-01

    Pulsing of the welding current is one approach for refining the fusion zone grain structure in {alpha}-{beta} titanium alloy welds. This paper reports work in which gas tungsten-arc welds were produced in two {alpha}-{beta} titanium alloys under a variety of conditions including direct current (d.c.) pulsing and alternating current (a.c.) pulsing. The results show that, while d.c. pulsing did also refine the weld metal {beta} grain structure, the effect of a.c. pulsing was much greater. Current pulsing enhances fluid flow, reduces temperature gradients and causes a continual change in the weld pool size and shape. These effects, which are believed to be responsible for refining the solidification structure, are much stronger in a.c. pulsing than in d.c. pulsing. The observed grain refinement was shown to result in an appreciable increase in fusion zone tensile ductility. Post-weld heat treatment improved ductility both in pulsed and unpulsed welds, but pulsed welds showed greater tensile elongation even in the heat treated condition. (orig.) 27 refs.

  18. Optimizing pulsed current micro plasma arc welding parameters to ...

    African Journals Online (AJOL)

    user

    Pulsed current MPAW involves cycling the welding current at selected regular frequency. ..... At high pulse, the vibration amplitude and temperature oscillation induced on .... received his Masters Degree from JNTU Hyderabad, India in 2002.

  19. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal–me...

  20. FATIGUE WELDING JOINT RESISTANCE OF MINING DUMP TRUCK BEARING CONSTRUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Rakitsky

    2010-01-01

    Full Text Available The paper investigates a possibility to apply European norms on designing of welded constructions for frames of heavy-load mining dump trucks. Comparison of results concerning tests of welding joint specimen made of local steel with recommended standards of fatigue curves is executed in the paper. The paper reveals that while forecasting resource of automotive constructions with the accepted practical accuracy it is possible to use generalized fatigue resistance characteristics of standard welding joints. 

  1. Multi objective Taguchi optimization approach for resistance spot welding of cold rolled TWIP steel sheets

    Science.gov (United States)

    Tutar, Mumin; Aydin, Hakan; Bayram, Ali

    2017-08-01

    Formability and energy absorption capability of a steel sheet are highly desirable properties in manufacturing components for automotive applications. TWinning Induced Plastisity (TWIP) steels are, new generation high Mn alloyed steels, attractive for the automotive industry due to its outstanding elongation (%40-45) and tensile strength (~1000MPa). So, TWIP steels provide excellent formability and energy absorption capability. Another required property from the steel sheets is suitability for manufacturing methods such as welding. The use of the steel sheets in the automotive applications inevitably involves welding. Considering that there are 3000-5000 welded spots on a vehicle, it can be interpreted that one of the most important manufacturing method is Resistance Spot Welding (RSW) for the automotive industry. In this study; firstly, TWIP steel sheet were cold rolled to 15% reduction in thickness. Then, the cold rolled TWIP steel sheets were welded with RSW method. The welding parameters (welding current, welding time and electrode force) were optimized for maximizing the peak tensile shear load and minimizing the indentation of the joints using a Taguchi L9 orthogonal array. The effect of welding parameters was also evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results.

  2. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    Science.gov (United States)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  3. Identification of Mechanical parameters for Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is simulated. The mathematical models for characterizing the mechanical...... to the complexities and differences of machine constructions. In this paper, a method of identifying the machine mechanical parameters based on the measured data is presented no matter how the machine construction and what types of machine are. The computations are implemented in MATLAB....

  4. Identification of Mechanical parameters for Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is simulated. The mathematical models for characterizing the mechanical...... to the complexities and differences of machine constructions. In this paper, a method of identifying the machine mechanical parameters based on the measured data is presented no matter how the machine construction and what types of machine are. The computations are implemented in MATLAB....

  5. Corrosion resistance of «tube – tubesheet» weld joint obtained by friction welding

    Directory of Open Access Journals (Sweden)

    RIZVANOV Rif Garifovich

    2017-08-01

    Full Text Available Shell-and-tube heat exchangers are widely applied for implementation of various processes at ventures of fuel and energy complex. Cost of production and reliability of heat exchangers of this type is to a wide extent determined by corresponding characteristics of tube bundle, «tube – tubesheet» is its typical joint in particular when welding operations are used in order to attach tubes to tubesheet in addition to expansion. When manufacturing such equipment of heat-resistant chrome-bearing or chromium-molybdenum steels including steel 15H5M, the process of fixed joint manufacturing gets significantly more complicated and costly due to the necessity to use thermal treatment before, during and after welding (this problem is particularly applicable for manufacturing of large-size equipment. One of the options to exclude thermal treatment from manufacturing process is to use «non-arc» welding methods – laser welding, explosion welding as well as friction welding. Use of each of the welding methods mentioned above during production of heat-exchange equipment has its process challenges and peculiarities. This article gives a comparative analysis of weld structure and distribution of electrode potentials of welded joints and parent metal of the joints simulating welding of tube to tubesheet of steel 15H5M using the following welding methods: shielded manual arc welding, tungsten-arc inert-gas welding and friction welding. Comparative analysis of macro- and microstructures of specific zones of the studied welded joints showed that the joints produced by arc welding methods do not exhibit evident inhomogeneity of the structure after application of thermal treatment which is explained by the correctness of thermal treatment. Joints obtained via friction welding are characterized by structural inhomogeneity of the welded joint zone metal microstructure. The ultra-fine-grained structure obtained as a result of friction welding makes it possible to

  6. Weldability and Monitoring of Resistance Spot Welding of Q&P and TRIP Steels

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2016-11-01

    Full Text Available This work aims at investigating the spot weldability of a new advanced Quenching and Partitioning (Q&P steel and a Transformation Induced Plasticity (TRIP steel for automotive applications by evaluating the effects of the main welding parameters on the mechanical performance of their dissimilar spot welds. The welding current, the electrode tip voltage and the electrical resistance of sheet stack were monitored in order to detect any metal expulsion and to evaluate its severity, as well as to clarify its effect on spot strength. The joint strength was assessed by means of shear and cross tension tests. The corresponding fracture modes were determined through optical microscopy. The welding current is the main process parameter that affects the weld strength, followed by the clamping force and welding time. Metal expulsion can occur through a single large expulsion or multiple expulsions, whose effects on the shear and cross tension strength have been assessed. Longer welding times can limit the negative effect of an expulsion if it occurs in the first part of the joining process. The spot welds exhibit different fracture modes according to their strengths. Overall, a proper weldability window for the selected process parameters has been determined to obtain sound joints.

  7. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system...... characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds......., it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  8. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...... characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds....

  9. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip ...... a central cavity is formed and one where smaller pits are formed randomly across the electrode face. The influence of these two types of surface pits on the nugget size are investigated using the FE code SORPAS, revealing ring welds and undersized weld nuggets....

  10. Process Simulation of Resistance Weld Bonding and Automotive Light-weight Materials

    DEFF Research Database (Denmark)

    Zhang, Wenqi; Chergui, Azeddine; Nielsen, Chris Valentin

    and predicting welding process window, for weld planning with optimal welding parameter settings, and for modeling microstructures and hardness distribution after welding. Latest developments have been made on simulation of resistance welding with nonconductive materials for applications in weld bonding......This paper presents the latest developments in numerical simulation of resistance welding especially with the new functions for simulation of microstructures, weld bonding and spot welding of new light-weight materials. The fundamental functions in SORPAS® are built on coupled modeling...... of mechanical, electrical, thermal and metallurgical processes, which are essential for simulation of resistance welding process to predict the welding results and evaluate the weldability of materials. These functions have been further extended with new functions for optimization of welding process parameters...

  11. Erosion resistance of Fe-C-Cr weld surfacing layers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fe-C-Cr weld surfacing layers with different compositions and microstructures can be obtained by submerged arc welding with welding wire of the low carbon steel and high alloy bonded flux. With the increase of Cr and C in the layers the microstructures are changed from hypoeutectoid steel, hypereutectoid steel to hypoeutectic iron and hypereutectic iron. When the weld surfacing layers belong to the alloyed cast irons the erosion resistance can be raised with the eutectic increase and the austenite decrease. Good erosion resistance can be obtained when the proportion of the primary carbides is within 10 %. The experimental results lay a foundation to make double-metal percussive plates by surfacing wear resistant layers on the substrates of the low carbon steels.

  12. Study and Applications of Dynamic Resistance Profiles During Resistance Spot Welding of Coated Hot-Stamping Steels

    Science.gov (United States)

    Ighodaro, Osayande Lord-Rufus; Biro, Elliot; Zhou, Y. Norman

    2017-02-01

    This work compares the role of press hardened steel coating type (Al-Si and GA) on resistance spot welding by analyzing the dynamic resistance curves measured during the weld cycles of the respective materials. It was seen that the dynamic resistance profiles for GA- and Al-Si-coated steels are similar. But the GA specimens exhibited higher resistance than Al-Si-coated specimens in the as-received condition, while the Al-Si-coated specimens exhibited higher resistance after hot stamping. From the early stages of the dynamic resistance profiles, data were obtained and applied for computing the values of components of resistances associated with the different coatings since each coating exhibits characteristic value at the early stages. The results revealed that at the start of the welding cycle, the resistance of the electrode/sheet interface was significantly higher than that of the faying surface or the bulk resistance regardless of whether the steel was Al-Si- or GA-coated. The possible uses of these resistance values in studying welding current requirement and electrode tip life were discussed.

  13. A Shape Optimization Study for Tool Design in Resistance Welding

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Bendsøe, Martin P.; Hattel, Jesper Henri

    2009-01-01

    the objective is to prolong the life-time of the electrodes. Welding parameters like current, time and electrode shape parameters are selected to be the design variables while constraints are chosen to ensure a high quality of the welding. Surrogate models based on a Kriging approximation has been used in order...

  14. Metallographic Characteristics of Stainless Steel Overlay Weld with Resistance to Hydrogen-Induced Disbonding : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 3)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant

    1986-01-01

    The metallographic characteristics of the disbanding resistant stainless steel overlay weld were studied and compared with those of the conventional overlay weld. It was found that the first layer overlay weld metal of the disbanding resistant overlay weld consisted of austenite and martensite after regular post-weld heat treatment. A coarse planar grain, which strongly affects the disbanding resistance of over-lay welds, scarcely existed in the disbanding resistant overlay weld. A higher wel...

  15. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  16. Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    DEFF Research Database (Denmark)

    Al Naimi, Ihsan K.; Al Saadi, Moneer H.; Daws, Kasim M.

    2015-01-01

    Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld...

  17. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    Science.gov (United States)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  18. Probing Pulsed Current Gas Metal Arc Welding for Modified 9Cr-1Mo Steel

    Science.gov (United States)

    Krishnan, S.; Kulkarni, D. V.; De, A.

    2015-04-01

    Modified 9Cr-1Mo steels are commonly welded using gas tungsten arc welding process for its superior control over the rate of heat input and vaporization loss of the key alloying elements although the rate electrode deposition remains restricted. Recent developments in pulsed current gas metal arc welding have significantly improved its ability to enhance the rate of electrode deposition with a controlled heat input rate while its application for welding of modified 9Cr-1Mo steels is scarce. The present work reports a detailed experimental study on the pulsed current gas metal arc welding of modified 9Cr-1Mo steels. The effect of the shielding gas, welding current, and speed on the weld bead profile, microstructure and mechanical properties are examined. The results show that the pulsed current gas metal arc welding with appropriate welding conditions can provide acceptable bead profile and mechanical properties in welds of modified 9Cr-1Mo steels.

  19. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    Science.gov (United States)

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  20. SORPAS – The Professional Software for Simulation of Resistance Welding

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2002-01-01

    directly usable by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn...... and process optimization. After simulation, the dynamic process parameters are graphically displayed. The distributions of temperature, current, stress and deformation in the materials are displayed in color, which can be animated like slow-motion video. The software has been extensively verified and today...... and easily operate and utilize the software. With the user-friendly facilities for flexible geometric design of work pieces and electrodes as well as process parameter settings similar to real machine parameter settings, the software has been readily applied in industry for supporting product development...

  1. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  2. Simulation on Dynamic Characteristic of Negative Resistance Arc in Pulsed TIG Welding

    Institute of Scientific and Technical Information of China (English)

    YANG Lijun; HAN Pengbo; DONG Tianshun; ZHANG Jian; XU Licheng

    2007-01-01

    A mathematical model is established on the basis of the physical characteristic of the negative resistance arc when a low current of 0-50 A is applied in pulsed TIG welding. The simulation model converted from the mathematical model is run in MATLAB environment, and the discussion is focused on the way the peak current ranging from 29 A to 50 A and the time constant of arc in the span of 0.003-0.006 s influence the simulating results and the dynamic characteristic. The simulating data are close to that of welding experiments and correspond to the theoretical conclusion.

  3. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Nick den Uijl; Joop Pauwelussen

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the

  4. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Uijl, Nick den; Pauwelussen, Joop

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the stee

  5. Clopidogrel Resistance: Current Issues

    Directory of Open Access Journals (Sweden)

    NS Neki

    2016-05-01

    Full Text Available Antiplatelet agents are mainly used in the prevention and management of atherothrombotic complications. Dual antiplatelet therapy, combining aspirin and clopidogrel, is the standard care for patients having acute coronary syndromes or undergoing percutaneous coronary intervention according to the current ACC/AHA and ESC guidelines. But in spite of administration of dual antiplatelet therapy, some patients develop recurrent cardiovascular ischemic events especially stent thrombosis which is a serious clinical problem. Antiplatelet response to clopidogrel varies widely among patients based on ex vivo platelet function measurements. Clopidogrel is an effective inhibitor of platelet activation and aggregation due to its selective and irreversible blockade of the P2Y12 receptor. Patients who display little attenuation of platelet reactivity with clopidogrel therapy are labeled as low or nonresponders or clopidogrel resistant. The mechanism of clopidogrel resistance remains incompletely defined but there are certain clinical, cellular and genetic factors including polymorphisms responsible for therapeutic failure. Currently there is no standardized or widely accepted definition of clopidogrel resistance. The future may soon be realised in the routine measurement of platelet activity in the same way that blood pressure, cholesterol and blood sugar are followed to help guide the therapy, thus improving the care for millions of people. This review focuses on the methods used to identify patients with clopidogrel resistance, the underlying mechanisms, metabolism, clinical significance and current therapeutic strategies to overcome clopidogrel resistance. J Enam Med Col 2016; 6(1: 38-46

  6. Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds

    Energy Technology Data Exchange (ETDEWEB)

    Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin

    2006-04-01

    The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.

  7. Transport currents measured in ring samples: test of superconducting weld

    Science.gov (United States)

    Zheng, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Veal, B. W.; Olsson, B.; Koshelev, A.; Hull, J.; Crabtree, G. W.

    2001-02-01

    The critical current densities in bulk melt-textured YBa 2Cu 3O x and across superconducting “weld” joints are measured using scanning Hall probe measurements of the trapped magnetic field in ring samples. With this method, critical current densities are obtained without the use of electrical contacts. Large persistent currents are induced in ring samples at 77 K, after cooling in a 3 kG field. These currents can be determined from the magnetic field they produce. At 77 K a supercurrent exceeding 2000 A (about 10 4 A/cm 2) was induced in a 2 cm diameter ring; this current produces a magnetic field exceeding 1.5 kG in the bore of the ring. We demonstrate that when a ring is cut, and the cut is repaired by a superconducting weld, the weld joint can transmit the same high supercurrent as the bulk.

  8. 29 CFR 1910.255 - Resistance welding.

    Science.gov (United States)

    2010-07-01

    ..., including 2-post and 4-post weld presses. (8) Safety pins. On large machines, four safety pins with plugs... equipped with a hood to control flying flash. In cases of high production, where materials may contain a film of oil and where toxic elements and metal fumes are given off, ventilation shall be provided in...

  9. Spot Welding Parameter Optimization to Improve Weld Characteristics for Dissimilar Metals

    OpenAIRE

    Aravinthan Arumugam; MohdAmizi Nor

    2015-01-01

    Abstract Resistance spot welding is a process which is widely used in the automotive industry to join steel parts of various thicknesses and types. The current practice in the automotive industry in determining the welding schedule which will be used in the welding process is based on welding table or experiences. This however may not be the optimum welding schedule that will give the best spot weld quality. This work concentrates on the parameter optimization when spot welding steels with di...

  10. Microstructure and Property Relationships in Resistance Spot Weld between 7114 Interstitial Free Steel and 304 Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Ahmet Hasanba(s)o(g)lu; Ramazan Ka(c)ar

    2006-01-01

    Due to the differences in physical, chemical and mechanical properties of the base metals, the resistance spot welding of dissimilar materials is generally more challenging than that of similar materials. The influence of the primary welding parameters affecting the heat input such as peak current on the morphology, microhardness,and tensile shear load bearing capacity of dissimilar welds between 304 grades austenitic and 7114 grade interstitial free steel has been investigated in this study. The optimum welding parameters producing maximum joint strength were established at a peak current of 9 kA, where the electrode force is kept 6×10-5 Pa and weld time is kept constant 17 cycles, respectively. The primary cause of weakening the weldment is identified as the excessive grain growing region of heat affected zone (HAZ) in case of 7114 grade interstitial free steel.

  11. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    Science.gov (United States)

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  12. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William

    2014-01-01

    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r...

  13. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  14. Contact Modelling in Resistance Welding, Part II: Experimental Validation

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Contact algorithms in resistance welding presented in the previous paper are experimentally validated in the present paper. In order to verify the mechanical contact algorithm, two types of experiments, i.e. sandwich upsetting of circular, cylindrical specimens and compression tests of discs...... with a solid ring projection towards a flat ring, are carried out at room temperature. The complete algorithm, involving not only the mechanical model but also the thermal and electrical models, is validated by projection welding experiments. The experimental results are in satisfactory agreement...

  15. Eddy current testing system for bottom mounted instrumentation welds

    Directory of Open Access Journals (Sweden)

    Kobayashi Noriyasu

    2015-01-01

    Full Text Available The capability of eddy current testing (ECT for the bottom mounted instrumentation (BMI weld area of reactor vessel in a pressurized water reactor was demonstrated by the developed ECT system and procedure. It is difficult to position and move the probe on the BMI weld area because the area has complexly curved surfaces. The space coordinates and the normal vectors at the scanning points were calculated as the scanning trajectory of probe based on the measured results of surface shape on the BMI mock-up. The multi-axis robot was used to move the probe on the mock-up. Each motion-axis position of the robot corresponding to each scanning point was calculated by the inverse kinematic algorithm. In the mock-up test, the probe was properly contacted with most of the weld surfaces. The artificial stress corrosion cracking of approximately 6 mm in length and the electrical-discharge machining slit of 0.5 mm in length, 1 mm in depth and 0.2 mm in width given on the weld surface were detected. From the probe output voltage, it was estimated that the average probe tilt angle on the surface under scanning was 2.6°.

  16. Influence of Welding Current and Joint Design on the Tensile Properties of SMAW Welded Mild Steel Joints Prof. Rohit Jha1 , Dr. A.K. Jha

    Directory of Open Access Journals (Sweden)

    Prof. Rohit Jha

    2014-06-01

    Full Text Available Present study includes welding characteristics of weldment with respect to different types of weld design and welding current. Mild steel plates of 6mm were welded using different joint designs. Single V, Double V and Flat surfaces were joined by Shielded Metal Arc Welding process. Welding current was varied in all the cases. Mechanical properties such as ultimate tensile strength, yield strength and percentage elongation were evaluated. Results indicated that the single V joint design depict maximum UTS in comparison to other welding joints and also weld properties of joints (weldment increases to some extent up-to a particular current level, after which the strength decreases. Welding current also affect the welding speed.

  17. Development of a suitable weld geometry for pressure resistance welding of the leader test assembly (LTA's) 16NGF fuel assembly fuel rod at Angra-1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Fabio da Silva; Silva, Josue Ribeiro, E-mail: fabiojunqueira@inb.gov.br, E-mail: josueribeiro@inb.gov.br [Industrias Nucleares do Brasil (GEPRDN/INB), Rio de Janeiro, RJ (Brazil). Gerencia do Produto

    2013-07-01

    The purpose of this work is to develop suitable weld geometry for pressure resistance welding of the zircaloy-4 end plug to the special zirconium alloy cladding tube, Ø 9,14mm, for demonstration at Angra-1 Nuclear Plant. Weld geometry development was carried out in two steps: at the first one, the influence caused by the variation of the welding process key parameters, the axial compression strength of the end plug against the cladding tube, projection of the cladding tube into the welding chamber and the welding current have been evaluated; at the second step, the influence of the variation of end-plug weld geometry area was checked. For the combination of welding parameters, the technique of factorial design was used. Results from mechanical and metallographic tests have indicated a strong and direct influence of weld geometry dimensional variation on the weld mechanical resistance, and a modest influence in relation to the range of key parameters used to carry out tests. (author)

  18. Analytical Solution for Model-Based Dynamic Power Factor Measurement in AC Resistance Spot Welding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of welding transformer circuit model, a new measuring method was proposed. This method measures the peak angle of the welding current, and then calculates the dynamic power factor in each half-wave.An artificial neural network is trained and used to generate simulation data for the analytical solution, i.e. a highorder binary polynomial, which can be easily adopted to calculate the power factor online. The tailored sensing and computing system ensures that the method possesses a real-time computational capacity and satisfying accuracy. A DSP-based resistance spot welding monitoring system was developed to perform ANN computation. The experimental results suggest that this measuring method is feasible.

  19. Mechanical Properties of Stainless Steel Overlay Weld with Resistance to Hydrogen-Induced Disbonding : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 2)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; Kazuaki, MANO; The Japan Steel Works, Ltd., Muroran Plant

    1986-01-01

    The mechanical properties of the disbanding resistant stainless steel overlay weld were studied and compared with those of the conventional overlay weld. It was found that the mechanical properties of the disbanding resistant overlay weld were almost equal to those of the conventional overlay weld, whereas the residual sites in through-thickness direction at the bond between the first layer weld metal and the base metal was smaller than t/.al of the conventional overlay weld. This low residua...

  20. 3D Modeling and Testing of Contact Problems in Resistance Welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin

    A generic, electro-thermo-mechanically coupled finite element program is developed for three-dimensional simulation of resistance welding. The developed computer program has reached a level of a complete standalone software that can be utilized as a tool in the analysis of resistance welding...... of resistance welding processes, which cover a wide range of spot welding and projection welding applications. Three-dimensional simulation of spot welding enables the analysis of critical effects like electrode misalignment and shunt effects between consecutive spots. A single-sided spot welding case involving...... experiment by a Japanese company that proposed the case. Another industrial case, by a German company, is joining of micro components. The joining is based on mechanical locking, and the deformation is accommodated by resistance heating, which at the same time is used to melt a polymer coating locally...

  1. Research of the Resistance of Contact Welding Joint of R65 Type Rail

    Directory of Open Access Journals (Sweden)

    Kęstutis Dauskurdis

    2015-03-01

    Full Text Available In the article the R65 type rail joints that were welded by resistance welding are analysed. Survey methodology of the research consists of the following parts: visual inspection of welded joint, ultrasonic rail inspection, hardness test of upper part of the rail, fusion area research, the measurement hardness test of heat-softened area, the measurement microhardness test, microstructure research of the welded joint, impact strength experiments, chemical analysis of welded joint, wheel-rail interaction research using the finite element method (FEM. The results of the research are analysed and the quality of weld is evaluated. The conclusion is based on the results of this research.

  2. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  3. The application of statistically designed experiments to resistance spot welding

    Science.gov (United States)

    Hafley, Robert A.; Hales, Stephen J.

    1991-01-01

    State-of-the-art Resistance Spot Welding (RSW) equipment has the potential to permit realtime monitoring of operations through advances in computerized process control. In order to realize adaptive feedback capabilities, it is necessary to establish correlations among process variables, welder outputs, and weldment properties. The initial step toward achieving this goal must involve assessment of the effect of specific process inputs and the interactions among these variables on spot weld characteristics. This investigation evaluated these effects through the application of a statistically designed experiment to the RSW process. A half-factorial, Taguchi L sub 16 design was used to understand and refine a RSW schedule developed for welding dissimilar aluminum-lithium alloys of different thickness. The baseline schedule had been established previously by traditional trial and error methods based on engineering judgment and one-factor-at-a-time studies. A hierarchy of inputs with respect to each other was established, and the significance of these inputs with respect to experimental noise was determined. Useful insight was gained into the effect of interactions among process variables, particularly with respect to weldment defects. The effects of equipment related changes associated with disassembly and recalibration were also identified. In spite of an apparent decrease in equipment performance, a significant improvement in the maximum strength for defect-free welds compared to the baseline schedule was achieved.

  4. Wear Resistance Analysis of A359/SiC/20p Advanced Composite Joints Welded by Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    O. Cuevas Mata

    Full Text Available Abstract Advancement in automotive part development demands new cost-effective materials with higher mechanical properties and improved wear resistance as compared to existing materials. For instance, Aluminum Matrix Composites (AMC shows improved mechanical properties as wear and abrasion resistance, high strength, chemical and dimensional stability. Automotive industry has focused in AMC for a variety of applications in automotive parts in order to improve the fuel economy, minimize vehicle emissions, improve design options, and increase the performance. Wear resistance is one of the most important factors in useful life of the automotive components, overall in those components submitted to mechanical systems like automotive brakes and suspensions. Friction Stir Welding (FSW rises as the most capable process to joining AMC, principally for the capacity to weld without compromising their ceramic reinforcement. The aim of this study is focused on the analysis of wear characteristics of the friction-stir welded joint of aluminum matrix reinforced with 20 percent in weight silicon carbide composite (A359/SiC/20p. The experimental procedure consisted in cut samples into small plates and perform three welds on these with a FSW machine using a tool with 20 mm shoulder diameter and 8 mm pin diameter. The wear features of the three welded joints and parent metal were analyzed at constant load applying 5 N and a rotational speed of 100 rpm employing a Pin-on - Disk wear testing apparatus, using a sapphire steel ball with 6 mm diameter. The experimental results indicate that the three welded joints had low friction coefficient compared with the parent metal. The results determine that the FSW process parameters affect the wear resistance of the welded joints owing to different microstructural modifications during welding that causes a low wear resistance on the welded zone.

  5. A Method for Identifying the Mechanical Parameters in Resistance Spot Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is stimulated. The mathematical models for characterizing the mechanical...... and differences of machine constructions. In this paper, a method of identifying the machine mechanical parameters based on measured data is presented, which is independent on the construction and the type of machines. The computations are implemented in MATLAB....

  6. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  7. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    Science.gov (United States)

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  8. Design and Implementation of Software for Resistance Welding Process Simulations

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2003-01-01

    by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn and easily operate...... and utilize the software. All industrial users, including welding engineers from DaimlerChrysler, Volkswangen, PSA Peugeot Citroen, VOLVO, Siemens, ABB and so on, have started using the software just after taking a one-day training course. With the user-friendly facilities for flexible geometric design...... of work pieces and electrodes as well as process parameter settings similar to real machine settings, the software has been readily applied in industry for supporting product development and process optimization. After simulation, the dynamic process parameters are graphically displayed. The distributions...

  9. Design and Implementation of Software for Resistance Welding Process Simulations

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    2003-01-01

    by engineers and technicians in industry, all of the important parameters in resistance welding are considered and automatically implemented into the software. With the specially designed graphic user interface for Windows, engineers (even without prior knowledge of FEM) can quickly learn and easily operate...... and utilize the software. All industrial users, including welding engineers from DaimlerChrysler, Volkswangen, PSA Peugeot Citroen, VOLVO, Siemens, ABB and so on, have started using the software just after taking a one-day training course. With the user-friendly facilities for flexible geometric design...... of work pieces and electrodes as well as process parameter settings similar to real machine settings, the software has been readily applied in industry for supporting product development and process optimization. After simulation, the dynamic process parameters are graphically displayed. The distributions...

  10. Simulation of droplet transfer process and current waveform control of CO2 arc welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A simulation system used in the arc welding short-circuit transfer process and current waveform control process was developed in this paper. The simulation results are basically consistent with welding technical experiments. The simulation system can be used to simulate and test the current waveform control parameters with welding variables. By this simulation system, the influence regularities of the current waveform control parameters in the CO2 arc welding droplet short-circuit transfer process can be got. Moreover, the basic mode of real-time current waveform control can be also established by the simulation testing.

  11. Weldability of thin sheet metals by small-scale resistance spot welding using high-frequency inverter and capacitor-discharge power supplies

    Science.gov (United States)

    Zhou, Y.; Dong, S. J.; Ely, K. J.

    2001-08-01

    An investigation has been conducted of the weldability of 0.2-mm-thick sheet aluminum, brass, and copper in small-scale resistance spot welding using a high-frequency inverter and a capacitor-discharge power supply. The results have been compared to those of previous investigations using a line-frequency alternating current power supply. The effects of electrode materials and process parameters on joint strength, nugget diameter, weld-metal expulsion and electrode-sheet sticking were studied. This work has also provided practical guidelines for selection of power supplies, process parameters (welding current/pulse energy, welding time/pulse width, electrode forces, etc.) and electrode materials for small-scale resistance spot welding of thin sheet aluminum, brass and copper.

  12. Tensile Characteristics of Bond of Stainless Steel Overlay Weld after Absorption of Hydrogen : Study on a Stainless Steel Overlay Welding Process for Superior Resistance to Disbonding (Report 4)

    OpenAIRE

    Akiyoshi, FUJI; Etsuo, KUDO; Tomoyuki, TAKAHASHI; The Japan Steel Works, Ltd., Muroran Plant

    1987-01-01

    The tensile characteristics of the bond of the disbanding-resistant overlay weld after absorption of hydrogen were studied and compared with those of the conventional overlay weld. It was found that the tensile strength of the bond of the conventional overlay weld was lower than that of the disbanding-resistant overlay weld. This is due to existence of the coarse planar grains in first layer overlay weld metal adjacent to the bond. The coarse planar grains strongly reduce the resistance to hy...

  13. Characterization of Microstructure and Mechanical Properties of Resistance Spot Welded DP600 Steel

    Directory of Open Access Journals (Sweden)

    Ali Ramazani

    2015-09-01

    Full Text Available Resistance spot welding (RSW as a predominant welding technique used for joining steels in automotive applications needs to be studied carefully in order to improve the mechanical properties of the spot welds. The objectives of the present work are to characterize the resistance spot weldment of DP600 sheet steels. The mechanical properties of the welded joints were evaluated using tensile-shear and cross-tensile tests. The time-temperature evolution during the welding cycle was measured. The microstructures observed in different sites of the welds were correlated to thermal history recorded by thermocouples in the corresponding areas. It was found that cracks initiated in the periphery region of weld nuggets with a martensitic microstructure and a pull-out failure mode was observed. It was also concluded that tempering during RSW was the main reason for hardness decrease in HAZ.

  14. Effect of welding current and voltage on the mechanical properties of wrought (6063 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Oladele Isiaka Oluwole

    2010-06-01

    Full Text Available This work was carried out to investigate the effect of welded joints on the mechanical properties of wrought (6063 aluminium alloy. The study revealed the influence of current and voltage on the welded joint as well as the mechanical properties of the alloy. The alloy samples were welded together by metal inert gas welding process at varying values of current and voltage after which mechanical tests were performed on the welded samples. The microstructural examination of the various fusion zones obtained was carried out. Appreciable variations in the properties of the welded samples were observed due to changes in the microstructural features of the alloys. It was concluded that variation of current and voltage remarkably affect the mechanical properties of the wrought 6063 Aluminium alloy. As the voltage increases from 25 to 30 V, the ultimate tensile strengths and hardness values increases while the impact strengths decreases but the current did not show such trend.

  15. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  16. Spot Welding Parameter Optimization to Improve Weld Characteristics for Dissimilar Metals

    Directory of Open Access Journals (Sweden)

    Aravinthan Arumugam

    2015-01-01

    Full Text Available Abstract Resistance spot welding is a process which is widely used in the automotive industry to join steel parts of various thicknesses and types. The current practice in the automotive industry in determining the welding schedule which will be used in the welding process is based on welding table or experiences. This however may not be the optimum welding schedule that will give the best spot weld quality. This work concentrates on the parameter optimization when spot welding steels with dissimilar thickness and type using Grey Based Taguchi Method. The experimentation in this work used a L9 orthogonal array with three factors with each factor having three levels. The three factors used are welding current weld time and electrode force. The three weld characteristics that were optimized are weld strength weld nugget diameter and weld indentation. The analysis of variance ANOVA that was carried out showed that welding current gave the most significant contribution in the optimum welding schedule. The comparison test that was carried out to compare the current welding schedule and the optimum welding schedule showed distinct improvement in the increase of weld diameter and weld strengthas well as decrease in electrode indentation.

  17. Influence of temperature on strength and failure mechanisms of resistance welded thermoplastic composites joints

    NARCIS (Netherlands)

    Koutras, N.; Fernandez Villegas, I.; Benedictus, R.

    2015-01-01

    In this work, the effect of temperature exposure on the strength of resistance welded joints is analysed. Glass fibre polyphenylene sulphide (GF/PPS) laminates were joined using the resistance welding technique and a stainless steel metal mesh as the heating element. Single lap shear tests at temper

  18. Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel%Comparing Properties of Adhesive Bonding, Resistance Spot Welding, and Adhesive Weld Bonding of Coated and Uncoated DP 600 Steel

    Institute of Scientific and Technical Information of China (English)

    Fatih Hayat

    2011-01-01

    Zinc coated dual phase 600 steel (DP 600 grade) was investigated, utilisation of which has gradually increased with each passing day in the automotive industry. The adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) ioints of the zinc coated DP 600 steel were investigated. Additionally, the zinc coating was removed using HCL acid in order to investigate the effect of the coating. The microstructure, tensile shear strengths, and fracture properties of adhesive bonding (AB), resistance spot welding (RSW), and adhesive weld bonding (AWB) joints of the coated and uncoated DP 600 steel were compared. In addition, a mechani cal-electrical-thermal coupled model in a finite element analysis environment was utilised. The thermal profile phe nomenon was calculated by simulating this process. The results of the tensile shear test indicated that the tensile load bearing capacity (TLBC) values of the coated specimens among the three welding methods were higher than those of the uncoated specimens. Additionally, the tensile strength of the AWB joints of the coated and uncoated specimens was higher than that of the AB and RSW joints. It was determined that the fracture behaviours and the deformation caused were different for the three welding methods.

  19. Corrosion Resistance of Synergistic Welding Process of Aluminium Alloy 6061 T6 in Sea Water

    Directory of Open Access Journals (Sweden)

    Kharia Salman Hassan

    2014-12-01

    Full Text Available This work involves studying corrosion resistance of AA 6061T6 butt welded joints using Two different welding processes, tungsten inert gas (TIG and a solid state welding process known as friction stir welding, TIG welding process carried out by using Rolled sheet of thickness6mm to obtain a weld joint with dimension of (100, 50, 5 mm using ER4043 DE (Al Si5 as filler metal and argon as shielding gas, while Friction stir welding process carried out using CNC milling machine with a tool of rotational speed 1000 rpm and welding speed of 50mm/min to obtain the same butt joint dimensions. Also one of weld joint in the same dimensions subjected to synergistic weld process TIG and FSW weld process at the same previous weld conditions. All welded joints were tested by X-ray radiography and Faulty pieces were excluded. The joints without defects used to prepare many specimens for Corrosion test by the dimensions of (15*15*3 mm according to ASTM G71-31. Specimens subjected to micro hardness and microstructure test. Corrosion test was achieved by potential at scan rate( +1000 ,-1000mv/sec to estimate corrosion parameters by extrapolator Tafle method after polarized ±100 mv around open circuit potential,in seawater (3.5%NaCl at a temperature of 25°C. From result which obtained by Tafel equation. It was found that corrosion rate for TIG weld joint was higher than the others but synergistic weld process contributed in improving TIG corrosion resistance by a percentage of 14.3%. and FSW give the lest corrosion rate comparing with base metal.

  20. Contact Modelling in Resistance Welding, Part I: Algorithms and Numerical Verification

    DEFF Research Database (Denmark)

    Song, Quanfeng; Zhang, Wenqi; Bay, Niels

    2006-01-01

    Finite element analysis of resistance welding involves the contact problems between different parts. The contact problem in resistance welding includes not only mechanical contact but also thermal and electrical contact. In this paper a contact model based on the penalty method is developed for s...... for simulation of resistance spot and projection welding. After a description of the algorithms several numerical examples are presented to validate the mechanical contact algorithm.......Finite element analysis of resistance welding involves the contact problems between different parts. The contact problem in resistance welding includes not only mechanical contact but also thermal and electrical contact. In this paper a contact model based on the penalty method is developed...

  1. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  2. Comparison of the pulsed MIG welding process for different median current

    Institute of Scientific and Technical Information of China (English)

    Wen Yuanmei; Xue Jiaxiang; Yao Ping; Huang Shisheng

    2009-01-01

    Based on the high speed video system with electrical signals collecting and wavelet analyzing, the welding processes under three different median currents with the same median time were detected. The experimental results show that, when the median current is higher, the input peak energy is lower. And the droplet transfer is almost in spray mode. The welding process is the stablest.

  3. Effect of weld on design of steel moment-resisting connection reinforced with steel plates

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; LI Yong

    2005-01-01

    The foreign experimental and FEM research of steel moment-resisting connection reinforced with steel plates are introduced. The effect of weld on the connection design is studied in two ways including weld detail and geometrical detail of steel plates contrast to the reference drawing of connection design in China. The research shows that the weld plays an important role in the design of connections. The welds connecting reinforced plates and beam/ column flange and the plate geometry have direct influence on the performance of the connections reinforced with plates. The study is helpful to the application of design of steel moment-resisting connection with steel plates.

  4. Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film

    Institute of Scientific and Technical Information of China (English)

    闫久春; 王晓林; 秦明; 赵新英; 杨士勤

    2004-01-01

    Weldability of polyetheretherketone(PEEK) with polyetherimide(PEI) is tested. And carbon fiber reinforced PEEK laminates are resistance welded using stainless steel mesh heating element. The effects of the welding time and welding pressure on the lap shear strength of joints are investigated. Results show that PEEK can heal with PEI well in welding condition and the lap shear strength of PEEK/CF(carbon fibre) joint increases linearly with welding time, but reaches a maximum value when welding pressure ranging from 0.3MPa to 0.5MPa with constant welding time. The fracture characteristics of surface are analyzed by SEM techniques, and four types of fracture modes of lap shear joints are suggested.

  5. Effect of Welding Process on Intergranular Corrosion Resistance of 304 Stainless Steel Welded Joints%焊接工艺对304不锈钢焊接接头耐晶间腐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    姜爱华; 陈亮; 丁毅; 马立群

    2012-01-01

    采用草酸电解侵蚀法和HNO3-HF法研究了焊接电流对304不锈钢焊接接头耐晶间腐蚀性能的影响.研究结果表明:对于填充焊丝308L的焊接接头,耐晶间腐蚀性能随着焊接电流的增大而增强;对于自熔合的焊接接头,耐晶间腐蚀性能随着焊接电流的增大而减弱.%The effects of welding current on intergranular corrosion (IGC) resistance of 304 stainless steel welded joints were investigated by electrolytic oxalic acid etching method and HNO3-HF method. The experimental results show that the IGC resistance of filled welded joints improves with the increase of welding current. But the IGC resistance of self-fusion welded joints weakens with the increase of welding current.

  6. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  7. MICROSTRUCTURES AND OXIDATION RESISTANCE OF Fe3Al WELD OVERLAY

    Institute of Scientific and Technical Information of China (English)

    X.G.Min; X.Q.Yu; Y.S.Sun; J.R.Sun

    2001-01-01

    Using the Fe3Al electrode through manual arc surfacing (MAS),Fe3Al coatings havebeen deposited on the stainless steel substrate.The microstructures,hardness andoxidation resistance of the weld overlay have been investigated.The results show thatcrack-free overlays can be obtained when pre-heating of the substrate at 500℃ andpostweld heat treatment at 700℃ were used.Elements of Al,Cr,Ni etc.transferredbetween the substrate and the overlay,but this does not influence the microhardnessof the substrate and the Fe3Al overlay.Oxidation tests show that the Fe3Al overlayshave excellent oxidation resistance in comparison with the stainless steel substrate at800℃ and 900℃.

  8. Prediction of microsegregation and pitting corrosion resistance of austenitic stainless steel welds by modelling

    Energy Technology Data Exchange (ETDEWEB)

    Vilpas, M. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1999-07-01

    The present study focuses on the ability of several computer models to accurately predict the solidification, microsegregation and pitting corrosion resistance of austenitic stainless steel weld metals. Emphasis was given to modelling the effect of welding speed on solute redistribution and ultimately to the prediction of weld pitting corrosion resistance. Calculations were experimentally verified by applying autogenous GTA- and laser processes over the welding speed range of 0.1 to 5 m/min for several austenitic stainless steel grades. Analytical and computer aided models were applied and linked together for modelling the solidification behaviour of welds. The combined use of macroscopic and microscopic modelling is a unique feature of this work. This procedure made it possible to demonstrate the effect of weld pool shape and the resulting solidification parameters on microsegregation and pitting corrosion resistance. Microscopic models were also used separately to study the role of welding speed and solidification mode in the development of microsegregation and pitting corrosion resistance. These investigations demonstrate that the macroscopic model can be implemented to predict solidification parameters that agree well with experimentally measured values. The linked macro-micro modelling was also able to accurately predict segregation profiles and CPT-temperatures obtained from experiments. The macro-micro simulations clearly showed the major roles of weld composition and welding speed in determining segregation and pitting corrosion resistance while the effect of weld shape variations remained negligible. The microscopic dendrite tip and interdendritic models were applied to welds with good agreement with measured segregation profiles. Simulations predicted that weld inhomogeneity can be substantially decreased with increasing welding speed resulting in a corresponding improvement in the weld pitting corrosion resistance. In the case of primary austenitic

  9. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  10. Joining of the AMC Composites Reinforced with Ti3Al Intermetallic Particles by Resistance Butt Welding

    Directory of Open Access Journals (Sweden)

    Adamiak M.

    2016-06-01

    Full Text Available The introduction of new reinforcing materials continues to be investigated to improve the final behaviour of AMCs as well as to avoid some drawbacks of using ceramics as reinforcement. The present work investigates the structure, properties and ability of joining aluminium EN-AW 6061 matrix composite materials reinforced with Ti3Al particles by resistance butt welding as well as composite materials produced by mechanical milling, powder metallurgy and hot extrusion techniques. Mechanically milled and extruded composites show finer and better distribution of reinforcement particles, which leads to better mechanical properties of the obtained products. Finer microstructure improves mechanical properties of obtained composites. The hardness increases twice in the case of mechanically milled composites also, a higher reinforcement content results in higher particle dispersion hardening, for 15 wt.% of intermetallics reinforcement concentration composites reach about 400 MPa UTS. Investigation results of joints show that best hardness and tensile properties of joints can be achieved by altering soft conditions of butt welding process e.g. current flow time 1.2 s and current 1400 A. To improve mechanical properties of butt welding joints age hardening techniques can also be used.

  11. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: • The HAZ liquation crack during resistance spot welding of TWIP steel was examined. • Cracks were completely backfilled and healed with divorced eutectic secondary phase. • Co-segregation of C and Mn was detected in the cracked zone. • Heat input was the most influencing factor to initiate liquation crack. • Cracks have less/no significant effect on static tensile properties.

  12. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...

  13. Optimization Of Pulsed Current Parameters To Minimize Pitting Corrosion İn Pulsed Current Micro Plasma Arc Welded Aısı 304l Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kondapalli Siva Prasad

    2013-06-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. A Genetic Algorithm (GA was developed to optimize the process parameters for minimizing the pitting corrosion rates.

  14. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  15. A Method for Identifying the Mechanical Parameters in Resistance Spot Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is stimulated. The mathematical models for characterizing the mechanical...... dynamic responses are normally a few coupled differential equations which can be easily created according to the theories of kinematics and dynamics, however the problem is that the parameters contained in the equations are unavailable and hard to be determined directly due to the complexities...

  16. Microstructural characterization and hardness properties of electric resistance welding titanium joints for dental applications.

    Science.gov (United States)

    Ceschini, Lorella; Boromei, Iuri; Morri, Alessandro; Nardi, Diego; Sighinolfi, Gianluca; Degidi, Marco

    2015-06-01

    The electric resistance welding procedure is used to join a titanium bar with specific implant abutments in order to produce a framework directly in the oral cavity of the patient. This investigation studied the effects of the welding process on microstructure and hardness properties of commercially pure (CP2 and CP4) Ti components. Different welding powers and cooling procedures were applied to bars and abutments, normally used to produce the framework, in order to simulate the clinical intraoral welding procedure. The analyses highlighted that the joining process did not induce appreciable changes in the geometry of the abutments. However, because of unavoidable microstructural modifications in the welded zones, the hardness decreased to values lower than those of the unwelded CP2 and CP4 Ti grades, irrespective of the welding environments and parameters.

  17. Effect of Cr and Si Contents on Expulsion Phenomenon in Electric-Resistance Spot Welding of Advanced High-Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Jong-Pan; Kang, Chung-Yun [Pusan National University, Busan (Korea, Republic of)

    2015-06-15

    An expulsion phenomenon occurred during resistance spot welding of advanced high-strength steel sheets, and the effects of the Cr and Si contents on the expulsion limit current (C{sub E}xp) were investigated. The correlation between C{sub E}xp and the steel properties (e.g., resistivity, melting point, coefficient of thermal expansion, high-temperature yield-strength and viscosity), were evaluated, as were the qualities of the alloying elements. The C{sub E}xp decreased with increasing Si contents. This resulted in a narrow range of acceptable welding current, as well as poor suitability for spot welding. On the other hand, the effects of Cr-contents on the C{sub E}xp, and on the acceptable range of welding current were minimal (with content of 3 wt%). Thus, the suitability for spot welding was not affected by the Cr-Contents (at the experimental concentration). As Si-Contents increased, resistivity also increased and the melting point decreased. This resulted in easy melting of the base metal at a low welding current (low heat input) and in the rapid increase of the pressure due to the increased coefficient of expansion. However, the high-temperature yield-strength of the corona bond, which blocked the expulsion of the molten melt, also decreased. Consequently, the C{sub E}xp of steel containing additional Si was lower than that containing Cr.

  18. Optimization of Resistance Spot Weld Condition for Single Lap Joint of Hot Stamped 22MnB5 by Taking Heating Temperature and Heating Time into Consideration

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Seok; Kim, Byung Min; Park, Geun Hwan [Pusan National University, Busan (Korea, Republic of); Lim, Woo Seung [Keimyung University, Daegu (Korea, Republic of)

    2010-10-15

    In this study, optimization of the process parameters of the resistance spot welding of a sheet of aluminum-coated boron alloyed steel, 22MnB5, used in hot stamping has been performed by a Taguchi method to increase the strength of the weld joint. The process parameters selected were current, electrode force, and weld time. The heating temperature and heating time of 22MnB5 are considered to be noise factors. It was known that the variation in the thickness of the intermetallic compound layer between the aluminum-coated layer and the substrate, which influences on the formation of nugget, was generated due to the difference of diffusion reaction according to heating conditions. From the results of spot weld experiment, the optimum weld condition was determined to be when the current, electrode force, and weld time were 8kA, 4kN, and 18 cycles, respectively. The result of a test performed to verify the optimized weld condition showed that the tensile strength of the weld joint was over 32kN, which is considerably higher than the required strength, i.e., 23kN.

  19. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    Science.gov (United States)

    Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.

    2014-04-01

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  20. Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors

    Energy Technology Data Exchange (ETDEWEB)

    Pouranvari, M., E-mail: mpouranvari@yahoo.com [Young Researchers Club, Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Marashi, S.P.H. [Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} Interfacial to pullout failure mode transition for AHSS RSWs is studied. {yields} An analytical mode is proposed to predict failure mode of AHSS RSWs. {yields} Hardness characteristics of RSWs plays key role in the failure mode transition. - Abstract: Failure mode of resistance spot welds is a qualitative indicator of weld performance. Two major types of spot weld failure are pull-out and interfacial fracture. Interfacial failure, which typically results in reduced energy absorption capability, is considered unsatisfactory and industry standards are often designed to avoid this occurrence. Advanced High Strength Steel (AHSS) spot welds exhibit high tendency to fail in interfacial failure mode. Sizing of spot welds based on the conventional recommendation of 4t{sup 0.5} (t is sheet thickness) does not guarantee the pullout failure mode in many cases of AHSS spot welds. Therefore, a new weld quality criterion should be found for AHSS resistance spot welds to guarantee pull-out failure. The aim of this paper is to investigate and analyze the transition between interfacial and pull-out failure modes in AHSS resistance spot welds during the tensile-shear test by the use of analytical approach. In this work, in the light of failure mechanism, a simple analytical model is presented for estimating the critical fusion zone size to prevent interfacial fracture. According to this model, the hardness ratio of fusion zone to pull-out failure location and the volume fraction of voids in fusion zone are the key metallurgical factors governing type of failure mode of AHSS spot welds during the tensile-shear test. Low hardness ratio and high susceptibility to form shrinkage voids in the case of AHSS spot welds appear to be the two primary causes for their high tendency to fail in interfacial mode.

  1. Resistance welding. Four decades special meeting - review and outlook. Proceedings; Widerstandsschweissen. 4 Jahrzehnte Sondertagung - Rueckblick und Ausblick. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This volume includes 18 lectures on the subject of resistance welding. The subjects were: Resistance spot welding of glued and coated bodywork sheets: Connecting properties, technology and emission of dangerous materials; jointing process for producing tailor-made welded plates (tailored blanks); continuous welding of coated sheets using the example of fuel tanks for the car industry; experience with inverter technique in resistance spot-welding in bodywork blank construction; Fuzzy-classification - a method of quality assessment in resistance spot-welding; a quantitative expert system for resistance spot-welding; the determination of bearable cut sizes and structure stresses in spot-welded joints; the effect of phosphate layers on the suitability for spot-welding of fine sheets electrolytically refined and by immersion in melt; new bodywork materials require new welding systems - welding control for open networks, and medium frequency welding. (orig./MM) [Deutsch] Dieser Tagungsband enthaelt 18 Vortraege zum Thema Widerstandsschweissen. Die Themen waren (Auswahl): Widerstandspunktschweissen geklebter und beschichteter Karosseriebleche: Verbindungseigenschaften, Technologie und Gefahrstoffemission; Fuegeverfahren zur Erzeugung von massgeschneiderten, geschweissten Platinen (Tailored Blanks); Rollennahtschweissen beschichteter Bleche am Beispiel von Brennstofftanks fuer die Automobil-Industrie; Erfahrungen mit der Invertertechnik beim Widerstandspunktschweissen im Karosserierohbau; Fuzzy-Klassifikation - eine Methode zur Qualitaetsbewertung beim Widerstandspunktschweissen; ein quantitatives Expertensystem zum Widerstandspunktschweissen; Ermittlung ertragbarer Schnittgroessen und Strukturspannungen an Punktschweissverbindungen; Einfluss von Phosphatschichten auf die Punktschweisseignung elektrolytisch und schmelztauchveredelter Feinbleche; neue Karosseriewerkstoffe erfordern neue Schweisssysteme - Schweisssteuerungen fuer offene Netzwerke; Mittelfrequenzschweissen

  2. Effect of Pulsed Current TIG Welding Parameters on Pitting Corrosion Behaviour of AA6061 Aluminium Alloy

    Institute of Scientific and Technical Information of China (English)

    T. Senthil Kumar; V. Balasubramanian; M. Y. Sanavullah; S. Babu

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail.

  3. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  4. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  5. Multifrequency eddy-current inspection of seam weld in steel sheath

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Dodd, C.V.; Chitwood, L.D.

    1985-04-01

    Multifrequency eddy-current techniques were used to perform a continuous on-line inspection of the seam weld in the steel jacket for a superconducting cable. The inspection was required to detect both surface and internal weld flaws in the presence of a large, highly conductive central conductor. Raw eddy-current data were recorded on magnetic tape, and test properties such as discontinuity size and weld penetration were determined by mathematically fitting these data to coefficients developed with representative standards. A sophisticated computer-controlled scanning technique was applied, and a unique scanning device was developed to provide full coverage of the weld and heat-affected zone. The techniques used to develop this multifrequency eddy-current examination are described in this report along with the test equipment, test procedures, and computer programs.

  6. Corrosion resistance of the welded AISI 316L after various surface treatments

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2014-01-01

    Full Text Available The main aim of this work is to monitor the surface treatment impact on the corrosion resistance of the welded stainless steel AISI 316L to local corrosion forms. The excellent corrosion resistance of austenitic stainless steel is caused by the existence of stable, thin and well adhering passive layer which quality is strongly influenced by welding. Therefore surface treatment of stainless steel is very important with regard to its local corrosion susceptibility Surfaces of welded stainless steel were treated by various mechanical methods (grinding, garnet blasting. Surface properties were studied by SEM, corrosion resistance was evaluated after exposition tests in chlorides environment using weight and metalographic analysis. The experimental outcomes confirmed that the mechanical finishing has a significant effect on the corrosion behavior of welded stainless steel AISI 316L.

  7. Numerical analysis of transient keyhole shape in pulsed current plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    孙俊华; 武传松

    2014-01-01

    Based on the characteristics of“one keyhole in a pulse”in pulsed current plasma arc welding (PAW),the transient variation process ofweld pool in a pulse cycle is simulated through the establishment ofcorresponding heat source model.And considering the effects ofgravitational force,plasma arc pressure and surface tension on the weld pool surface,the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calculated weld fusion line is in good agreement with the experimental results.

  8. Welding control parameters simulation of high-frequency electric resistance welded pipe based on ANSYS%基于ANSYS的高频直缝焊管主要控制参数模拟

    Institute of Scientific and Technical Information of China (English)

    何世权; 刘飞; 樊丁; 徐德怀; 田禾

    2011-01-01

    基于高频直缝焊管的焊接温度是影响高频直缝焊管焊缝质量的首要因素,为提高高频直缝焊管的质量,重点研究了在高频感应加热中,高频焊接的主要控制参数焊接速度、焊接电流和焊管厚度对高频直缝焊管焊缝温度场的影响.依据高频焊接过程中的热源方程,利用ANSYS有限元热分析模块,建立适当的线热源模型,编写APDL程序.通过对3个主要控制参数的调节,得到在不同参数条件下的高频焊管焊缝温度场的分布云图,发现沿着高频焊管运动方向焊缝处温度是均匀递减的.在其中一组参数一定的状态下,对金洲集团Φ219 mm高频焊接机组的焊缝温度场进行测温,结果发现模拟温度场与实际温度场基本一致.%Welding temperature is the key factor for the quality of straight-line welded seam of high-frequency electric resistance welded pipe. To improve weld quality of high-frequency electric resistance weld ( HFW) pipe,the effects of the main control parameters of welding speed,welding current and pipe thickness on weld quality were discussed for the high-frequency induction heating process. According to the heat equation of high-frequency induction heating process, the proper model of line heat source was established to obtain APDL program based on the thermal analysis module of ANSYS finite element. By adjusting three main control parameters, the welding temperature contour plot was achieved for various parameters. The temperature at welded seam is decreased uniformly at HFW motion direction. With a set of parameters for Φ219 mm high-frequency welding machine of Jinzhou Company, the temperature of temperature field on welding seam was mearured. The results show that the simulation temperature field is consistent with actual temperature field .

  9. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils

    Science.gov (United States)

    Hong, Hyun Uk; Lee, Jong Bong; Choi, Ho Jin

    2009-02-01

    The optimization of electric resistance welding (ERW) conditions was studied to improve the resistance to hydrogen induced cracking (HIC) at the bondline in small diameter API X60 ERW pipes fabricated with slit coils. The results show that HIC is initiated preferentially at the elongated Si, Mn and Al-rich oxide inclusions, normally known as a penetrator on the bondline. However, no evidence was found of any centerline segregation effect. The HIC ratio increases with the fraction of penetrators at the bondline, regardless of the degrees of center segregation. Furthermore, for a satisfactory level of HIC resistance, the fraction of penetrators must be less than 0.03 % and most of the penetrators should be circular-shaped. The design of experimental (DOE) method was used to determine the optimum ERW condition for minimization of the penetrator ratio. Finally, guideline is suggested for the optimum ERW condition for achieving excellent HIC resistance.

  10. Welding.

    Science.gov (United States)

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  11. Process Parameter Optimization of the Pulsed Current Argon Tungsten Arc Welding of Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    M.Balasubramanian; V.Jayabalan; V.Balasubramanian

    2008-01-01

    The selection of process parameters for obtaining optimal tensile properties in the pulsed current gas tungsten arc welding is presented. The tensile properties include ultimate tensile strength, yield strength and notch tensile strength. All these characteristics are considered together in the selection of process parameters by modified taguchi method to analyse the effect of each welding process parameter on tensile properties. Experimental results are furnished to illustrate the approach.

  12. Prediction of the quality of resistance welds by computer based color image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pechersky, M.J.; Zeoli, K.A.; Kestin, P.A.

    1992-01-01

    This report discusses experiments which have been completed to correlate the quality of electric resistance pinch welds with an automated computer analysis of the weld surface. The pinch welds were performed on small diameter stainless steel tubes after they were annealed in air at several different temperatures to form an oxide layer on the weld surfaces. The images of the tube bore were collected with a borescope, stored in a computer and analyzed. The analysis consisted of computing a parameter which gave a representation of the color integrated over the inspected region. This color parameter was then used to rank the tubes in order of their relative oxidation level. Once this was performed the tubes were welded and low magnification metallography was performed on the welds. It was found that the color analysis gave a perfect correlation with the oxidation levels and that the weld quality was inversely proportional to the amount of oxidation. It was also shown that the color analysis was robust in the sense that the sorting was independent of the borescope illumination level over a large range for both oxidized and unoxidized stems. Thus the color parameter chosen was an excellent predictor of the weld quality.

  13. Prediction of the quality of resistance welds by computer based color image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pechersky, M.J.; Zeoli, K.A.; Kestin, P.A.

    1992-11-01

    This report discusses experiments which have been completed to correlate the quality of electric resistance pinch welds with an automated computer analysis of the weld surface. The pinch welds were performed on small diameter stainless steel tubes after they were annealed in air at several different temperatures to form an oxide layer on the weld surfaces. The images of the tube bore were collected with a borescope, stored in a computer and analyzed. The analysis consisted of computing a parameter which gave a representation of the color integrated over the inspected region. This color parameter was then used to rank the tubes in order of their relative oxidation level. Once this was performed the tubes were welded and low magnification metallography was performed on the welds. It was found that the color analysis gave a perfect correlation with the oxidation levels and that the weld quality was inversely proportional to the amount of oxidation. It was also shown that the color analysis was robust in the sense that the sorting was independent of the borescope illumination level over a large range for both oxidized and unoxidized stems. Thus the color parameter chosen was an excellent predictor of the weld quality.

  14. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    Science.gov (United States)

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  15. An improved method to spot-weld difficult junctions

    Science.gov (United States)

    Ferrenz, Elizabeth E.; Amare, Andinet; Arumainayagam, Christopher R.

    2001-12-01

    Recent advances in spot-welding technology such as high frequency direct current inverter welders provide an improved and reproducible method to spot-weld difficult junctions. The importance of removing the oxide layers on metal surfaces, accurately delivering the weld pulse profile, and controlling the force applied to the materials during the welding process are discussed in the context of resistance spot-welding a molybdenum crystal to a tantalum loop and attaching a tungsten-rhenium thermocouple to the crystal.

  16. Numerical Modeling of Electrode Degradation During Resistance Spot Welding Using CuCrZr Electrodes

    Science.gov (United States)

    Gauthier, Elise; Carron, Denis; Rogeon, Philippe; Pilvin, Philippe; Pouvreau, Cédric; Lety, Thomas; Primaux, François

    2014-05-01

    Resistance spot welding is a technique widely used by the automotive industry to assemble thin steel sheets. The cyclic thermo-mechanical loading associated with the accumulation of weld spots progressively deteriorates the electrodes. This study addresses the development of a comprehensive multi-physical model that describes the sequential deterioration. Welding tests achieved on uncoated and Zn-coated steel sheets are analyzed. Finite element analysis is performed using an electrical-thermal-metallurgical model. A numerical experimental design is carried out to highlight the main process parameters and boundary conditions which affect electrode degradation.

  17. Numerical simulation on temperature field for resistance spot welding of non-equal thickness stainless steel

    Institute of Scientific and Technical Information of China (English)

    王春生; 陈勇; 韩凤武; 陆培德; 姜中辉

    2003-01-01

    An axisymmetric finite element model is developed to simulate the temperature field of resistant spot welding according to the process characters of nugget formation of non-equal stainless steel sheets. A simulation method of the interaction of electrical and thermal factors is presented. The spot welding process of nugget formation is simulated using hard and soft welding technique norms. The heating characters of soft and hard norms determine the differences in the process of nugget formation and determine the finally shape and offset of nugget. Experimental verification shows that the model prediction agrees well with the practical.

  18. Delayed hydride cracking properties of the endplate resistance welds of CANDU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Shek, G.K.; Wasiluk, B.S., E-mail: Gordon.Shek@kinectrics.com [Kinectrics Inc., Toronto, Ontario (Canada); Freire-Canosa, J. [Nuclear Waste Management Organization, Toronto, Ontario (Canada); Lampman, T. [AMEC NSS, Toronto, Ontario (Canada)

    2010-07-01

    In order to assess the susceptibility of CANDU fuel bundles endplate resistance welds to Delayed Hydride Cracking (DHC) during long term dry storage, the threshold stress intensity factor (KIH) and crack velocity of DHC in endplate welds of three unirradiated fuel bundles were determined. The three bundles tested covered the 28-element and 37-element designs and two Canadian manufacturers. The range of KIH values and DHC velocities obtained from the endplate welds of the three bundles are consistent with previous results obtained from a 37-element bundle produced by one of the manufacturers. (author)

  19. The interfacial structure of plated copper alloy resistance spot welded joint

    Science.gov (United States)

    Wu, Jingwei; Zhai, Guofu; Chen, Qing; Wang, Jianqi; Ren, Gang

    2008-09-01

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  20. The interfacial structure of plated copper alloy resistance spot welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwei [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China); Harbin Institute of Technology, 150001 Harbin (China)], E-mail: jingweiwu.hit@gmail.com; Zhai Guofu [Harbin Institute of Technology, 150001 Harbin (China); Chen Qing; Wang Jianqi; Ren Gang [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China)

    2008-09-15

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  1. A study of process induced voids in resistance welding of thermoplastic composites

    OpenAIRE

    Shi, H.; Fernandez Villegas, I.; Bersee, H.E.N.

    2015-01-01

    Void formation in resistance welding of woven fabric reinforced thermoplastic composites was investigated. Void contents were measured using optical microscopy and digital image process. Un-even void distributions were observed in the joints, and more voids were found in the middle of the joints than the edges. A higher welding pressure was shown to help reduce the void generation. The mechanisms of void formation, in particular fibre de-compaction induced voids and residual moisture induced ...

  2. Three-dimensional transient thermoelectric currents in deep penetration laser welding of austenite stainless steel

    Science.gov (United States)

    Chen, Xin; Pang, Shengyong; Shao, Xinyu; Wang, Chunming; Xiao, Jianzhong; Jiang, Ping

    2017-04-01

    The existence of thermoelectric currents (TECs) in workpieces during the laser welding of metals has been common knowledge for more than 15 years. However, the time-dependent evolutions of TECs in laser welding remain unclear. The present study developed a novel three-dimensional theoretical model of thermoelectric phenomena in the fiber laser welding of austenite stainless steel and used it to observe the time-dependent evolutions of TECs for the first time. Our model includes the complex physical effects of thermal, electromagnetic, fluid and phase transformation dynamics occurring at the millimeter laser ablated zone, which allowed us to simulate the TEC, self-induced magnetic field, Lorentz force, keyhole and weld pool behaviors varying with the welding time for different parameters. We found that TECs are truly three-dimensional, time-dependent, and uneven with a maximum current density of around 107 A/m2 located at the liquid-solid (L/S) interface near the front or bottom part of the keyhole at a laser power of 1.5 kW and a welding speed of 3 m/min. The TEC formed three-dimensional circulations moving from the melting front to solidification front in the solid part of workpiece, after which the contrary direction was followed in the liquid part. High frequency oscillation characteristics (2.2-8.5 kHz) were demonstrated in the TEC, which coincides with that of the keyhole instability (2.0-5.0 kHz). The magnitude of the self-induced magnetic field and Lorentz force can reach 0.1 mT and 1 kN/m3, respectively, which are both consistent with literature data. The predicted results of the weld dimensions by the proposed model agree well with the experimental results. Our findings could enhance the fundamental understanding of thermoelectric phenomena in laser welding.

  3. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Chen, D.L., E-mail: dchen@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Liu, L.; Mori, H.; Zhou, Y. [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2012-03-01

    Highlights: Black-Right-Pointing-Pointer Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. Black-Right-Pointing-Pointer Adhesive promotes the formation of intermetallic compounds during weld bonding. Black-Right-Pointing-Pointer In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. Black-Right-Pointing-Pointer Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. Black-Right-Pointing-Pointer Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn{sub 2} and Mg{sub 7}Zn{sub 3} in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and

  4. Mechanism of selective corrosion in electrical resistance seam welded carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Fajardo, Pedro; Godinez Salcedo, Jesus; Gonzalez Velasquez, Jorge L. [Instituto Politecnico Nacional, Mexico D.F., (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas. Dept. de Ingenieria Metalurgica

    2009-07-01

    In this investigation the studies of the mechanism of selective corrosion in electrical resistance welded (ERW) carbon steel pipe was started. Metallographic characterizations and evaluations for inclusions were performed. The susceptibility of ERW pipe to selective corrosion in sea water (NACE 1D182, with O{sub 2} or CO{sub 2} + H{sub 2}S) was studied by the stepped potential Potentiostatic electrochemical test method in samples of 1 cm{sup 3} (ASTM G5) internal surface of the pipe (metal base-weld). The tests were looking for means for predicting the susceptibility of ERW pipe to selective corrosion, prior to placing the pipeline in service. Manganese sulfide inclusions are observed deformed by the welding process and they are close to the weld centerline. A slight decarburization at the weld line is observed, and a distinct out bent fiber pattern remains despite the post-weld seam annealing. The microstructure of the weld region consists of primarily polygonal ferrite grains mixed with small islands of pearlite. It is possible to observe the differences of sizes of grain of the present phases in the different zones. Finally, scanning electron microscopic observation revealed that the corrosion initiates with the dissolution of MnS inclusions and with small crack between the base metal and ZAC. (author)

  5. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  6. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    simulated numerically and together with the material carbon equivalent, austenization temperatures and the thermal history the simulations were used to estimate the resulting post weld hardness using the commercial FE code SORPAS. The hardness of the welds of dissimilar materials was estimated......In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  7. Embedded Artificial Neuval Network-Based Real-Time Half-Wave Dynamic Resistance Estimation during the A.C. Resistance Spot Welding Process

    Directory of Open Access Journals (Sweden)

    Liang Gong

    2013-01-01

    Full Text Available Online monitoring of the instantaneous resistance variation during the A.C. resistance spot welding is of paramount importance for the weld quality control. On the basis of the welding transformer circuit model, a new method is proposed to measure the transformer primary-side signal for estimating the secondary-side resistance in each 1/4 cycle. The tailored computing system ensures that the measuring method possesses a real-time computational capacity with satisfying accuracy. Since the dynamic resistance cannot be represented via an explicit function with respect to measurable parameters from the primary side of the welding transformer, an offline trained embedded artificial neural network (ANN successfully realizes the real-time implicit function calculation or estimation. A DSP-based resistance spot welding monitoring system is developed to perform ANN computation. Experimental results indicate that the proposed method is applicable for measuring the dynamic resistance in single-phase, half-wave controlled rectifier circuits.

  8. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard

    2010-01-01

    diameter with increasing weld number at different weld settings. Furthermore a method for measuring the worn tip diameter in a fast and robust manner is developed. The method relies on a well-known technique for capturing the electrode tip area by the use of carbon imprints and a new developed image......-processing program written in MatLab. Very fine agreement between the present experimental results and previously published wear data is achieved. Finally the pitted areas on the electrode tip are analyzed using MatLab and an optical 3D surface measurement device. Two types of pitting are characterized. One where...

  9. Influence of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel welding joints

    Science.gov (United States)

    Zhang, Zhiqiang; Jing, Hongyang; Xu, Lianyong; Han, Yongdian; Zhao, Lei; Zhang, Jianli

    2017-02-01

    The influences of microstructure and elemental partitioning on pitting corrosion resistance of duplex stainless steel joints welded by gas tungsten arc welding (GTAW) and flux-cored arc welding (FCAW) with different shielding gas compositions were studied by optical microscopy, electron backscatter diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron probe microanalysis, and potentiostatic and potentiodynamic polarization methods The adding 2% N2 in shielding gas facilitated primary austenite formation in GTAW weld metal (WM) and suppressed Cr2N precipitation in GTAW weld root. In the HAZ, the banded microstructure disappeared while the coarse ferrite grains maintained same orientation as the banded ferrite in the BM. In the WM, the ferrite had one single orientation throughout a grain, whereas several families of austenite appeared. The austenite both in BM and WM enriched in Ni and nitro`gen, while Cr and Mo were concentrated in the ferrite and thus no element showed clear dendritic distribution in the WM (ER2209 and E2209T1). In addition, the secondary austenite had higher Ni content but lower Cr and Mo content than the primary austenite. The N2-supplemented shielding gas promoted nitrogen solid-solution in the primary and secondary austenite. Furthermore, the secondary austenite had relatively lower pitting resistance equivalent number (PREN) than the ferrite and primary austenite, thereby resulting in its preferential corrosion. The Cr2N precipitation led to relatively poor resistance to pitting corrosion in three HAZs and pure Ar shielding GTAW weld root. The N2-supplemented shielding gas improved pitting corrosion resistance of GTAW joint by increasing PREN of secondary austenite and suppressing Cr2N precipitation. In addition, the FCAW WM had much poorer resistance to pitting corrosion than the GTAW WM due to many O-Ti-Si-Mn inclusions. In the BM, since the austenite with lower PREN compared

  10. The Influence of Modes of Deposition of Coatings on the Corrosion Resistance of Welded Joints of Steels in Acidic Media;

    Science.gov (United States)

    Saraev, Yu N.; Bezborodov, V. P.; Selivanov, Y. V.

    2016-08-01

    In this work, effect of welding on corrosion of welded joints of austenitic steel 12KH18N10T. It is shown that the use of pulsed - arc welding steel 12KH18N10T allows you to create a protective coating with dispersed structure with less thermal impact on the zone of the welded joint. Coating is of such structure allows 1.5 to 6 times to reduce the corrosion rate of welded joints of steel 12KH18N10T in active chemical environments. Pulse the process of deposition of coatings on welded joint of steels can be effectively used for the protection against corrosion in the repair of equipment of chemical industry. The results obtained can be recommended for use when welding a protective corrosion - resistant coatings on working surfaces of equipment of chemical productions.

  11. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Duran, C.; Triess, E.; Herbsleb, G.

    1986-09-01

    When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in high frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.

  12. Resistance Welding of Thermoplastic Composites: Process and Performance

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    Compared to thermoset composites, thermoplastic composites are drawing more and more attention by aircraft industries not only due to their excellent material properties but also due to their potentials to reduce cycle time and structure cost by using low-cost manufacturing technologies such as weld

  13. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for

  14. Study on the resistance spot welding technology of 22MnMoB hot stamping quenched steel

    Institute of Scientific and Technical Information of China (English)

    Feng Yi; Ma Mingtu; Hua Fuan; Zhang Junping; Song Leifeng; Jin Qingsheng

    2014-01-01

    In this paper,the spot welding technology of a new kind of 22MnMoB hot stamping quenched steel sheet was systematically studied by power frequency spot welder. Through a series of technology and test exper-iments,we have obtained the optimal spot welding technological parameter condition. According to the results, the relations among spot welding technological parameter,welding nugget,mechanical property and fracture mode were discussed. The effects of all the welding parameters such as welding current,welding time and elec-trode force on the quality of joint can be boiled down to one thing-the diameter of welding nugget. The experi-mental results showed that welding nugget diameter determines the mechanical property of spot welding joint and the relation between welding nugget diameter and the mechanical property of joint presents a kind of linear mathematic representation. There are two typical fracture models of 22MnMoB hot stamping quenched steel sheet,i.e.,interfacial fracture and nugget pullout. Other than mild steel or normal high strength steel,in the shearing tensile test,hot stamping quenched steel has a great tendency to fail in interfacial mode due to the ef-fects of high strength matrix structure,welding soft zone and the porosity level of fusion zone.

  15. A study of process induced voids in resistance welding of thermoplastic composites

    NARCIS (Netherlands)

    Shi, H.; Fernandez Villegas, I.; Bersee, H.E.N.

    2015-01-01

    Void formation in resistance welding of woven fabric reinforced thermoplastic composites was investigated. Void contents were measured using optical microscopy and digital image process. Un-even void distributions were observed in the joints, and more voids were found in the middle of the joints tha

  16. Artificial neural networks for prediction of quality in resistance spot welding; Redes neuronales artificiales para la prediccion de la calidad en soldadura por resistencia por puntos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, O.; Lopez, M.; Martin, F.

    2006-07-01

    An artificial neural network is proposed as a tool for predicting from three parameters (weld time, current intensity and electrode sort) if the quality of a resistance spot weld reaches a certain level or not. The quality is determined by cross tension testing. The fact of reaching this quality level or not is the desired output that goes with each input of the artificial neural network during its supervised learning. The available data set is made up of input/desired output pairs and is split randomly into a training subset (to update synaptic weight values) and a validation subset (to avoid overfitting phenomenon by means of cross validation). (Author) 44 refs.

  17. Optimization of Fusion Zone Grain Size, Hardness, and Ultimate Tensile Strength of Pulsed Current Microplasma Arc Welded AISI 304L Sheets Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Kondapalli

    2014-01-01

    Full Text Available Austenitic stainless steel sheets have gathered wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance, such as metal bellows used in expansion joints in aircraft, aerospace, and petroleum industry. In case of single pass welding of thinner sections of this alloy, Pulsed Current Microplasma Arc Welding (PCMPAW was found beneficial due to its advantages over the conventional continuous current process. The quality of welded joint depends on the grain size, hardness, and ultimate tensile strength, which have to be properly controlled and optimized to ensure better economy and desirable mechanical characteristics of the weld. This paper highlights the development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to grain size, and ultimate tensile strength in PCMPAW of AISI 304L sheets. The experiments were conducted based on a five-factor, five-level central composite rotatable design matrix. A genetic algorithm (GA was developed to optimize the process parameters for achieving the desired grain size, hardness, and ultimate tensile strength.

  18. Effect of Some Overlay Welding Regime With Longitudinal Magnetic Field on Hardness, Phase Composition And Welded Layer Wear By Arc Method With Flux Metal Wire

    Science.gov (United States)

    Nosov, D. G.; Peremitko, V. V.; Barashkin, M. H.

    2016-08-01

    The paper defines the range of overlay welding current, frequencies and induction of a longitudinal magnetic field that enhance the wear resistance of welded layer additing the flux. The conditions of their mutual influence on the process of structure formation are stated as well as the mathematical models linking the overlay welding current, frequency and induction of a longitudinal magnetic field with hardness, wear resistance and phase composition of the welded layer, the use of which will allow to determine the welding modes to provide the necessary properties of the weld metal.

  19. Quality monitoring of resistance spot welding based on electrode displacement characteristics analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Pengxian; ZHANG Hongjie; CHEN Jianhong; MA Yuezhou

    2007-01-01

    A new method is developed to monitor joint quality based on the information collection and process in spot welding.First,twelve parameters related to weld quality are mined from electrode displacement signal on the basis of different phases of nugget formation marked by simultaneous dynamic resistance signal.Second,through correlation analysis of the parameters and taking tensile-shear strength of the spot-welded joint as evaluation target,different characteristic parameters are reasonably selected.At the same time,linear regression,nonlinear regression and radial basis function (RBF) neural network models are set up to evaluate weld quality between the selected parameters and tensileshear strength.Finally,the validity of the proposed models is certified.Results show that all of the models can be used to monitor joint quality.For the RBF neural network model,which is more effective for monitoring weld quality than the others,the average error validated is 2.88% and the maximal error validated is under 10%.

  20. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  1. Current concepts in glucocorticoid resistance.

    Science.gov (United States)

    Yang, Nan; Ray, David W; Matthews, Laura C

    2012-09-01

    Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.

  2. Resistance to AHAS inhibitor herbicides: current understanding.

    Science.gov (United States)

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  3. Pulsed Current Gas Metal Arc Welding under Different Shielding and Pulse Parameters; Part 2: Behaviour of Metal Transfer

    National Research Council Canada - National Science Library

    Ghosh, P. K; Dorn, Lutz; Devakumaran, K; Hofmann, F

    2009-01-01

    ...) of pulsed current gas metal arc welding (P-GMAW) using mild steel filler wire have been studied with respect to change in pulse parameters under different gas shieldings of Ar+2%CO2 and Ar+18%CO2...

  4. Wear resistance of laser cladding and plasma spray welding layer on stainless steel surface

    Institute of Scientific and Technical Information of China (English)

    Xinlin Wang(王新林); Shihong Shi(石世宏); Qiguang Zheng(郑启光)

    2004-01-01

    The effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal, on wear resistance is studied, A 5-kW transverse flowing CO2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the spoiled rate of products with laser clad layers was lower and the rate of finished products was higher. Their microstructure is extremely fine. They have close texture and small size grain. Their dilution resulting from the compositions of the base metal and thermal effect on base metal are less. The hardness, toughness,and strength of the laser cladding layers are higher. Wear tests show that the laser layers have higher properties of anti-friction, anti-scour and high-temperature sliding strike. The wear resistance of laser clad layers are about one time higher than that of plasma spray welding layer.

  5. Modeling of Thermo-Electro-Mechanical Manufacturing Processes Applications in Metal Forming and Resistance Welding

    CERN Document Server

    Nielsen, C V; Alves, L M; Bay, N; Martins, P A F

    2013-01-01

    Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding provides readers with a basic understanding of the fundamental ingredients in plasticity, heat transfer and electricity that are necessary to develop and proper utilize computer programs based on the finite element flow formulation.   Computer implementation of a wide range of theoretical and numerical subjects related to mesh generation, contact algorithms, elasticity, anisotropic constitutive equations, solution procedures and parallelization of equation solvers is comprehensively described.   Illustrated and enriched with selected examples obtained from industrial applications, Modeling of Thermo-Electro-Mechanical Manufacturing Processes with Applications in Metal Forming and Resistance Welding works to diminish the gap between the developers of finite element computer programs and the professional engineers with expertise in industrial joining technologies by metal forming and resista...

  6. Study on the measure to improve the arc stabilization in smaller current welding for the variable polarity GTAW power source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variable polarity power source which incorporates a constant current power and a secondary inverter does not need special apparatus for stabilizing arc. The pulse for stabilizing arc is created by the circuit structure itself. The paper analyzes the principle of acquiring the pulse, provides the better method to improve the arc stabilization under smaller welding current. Test shows the arc is highly stable , and the process has no high-frequency electromagnetic interference, which is suitable for automatic welding case.

  7. In vitro toxicity evaluation of silver soldering, electrical resistance, and laser welding of orthodontic wires.

    Science.gov (United States)

    Sestini, Silvia; Notarantonio, Laura; Cerboni, Barbara; Alessandrini, Carlo; Fimiani, Michele; Nannelli, Pietro; Pelagalli, Antonio; Giorgetti, Roberto

    2006-12-01

    The long-term effects of orthodontic appliances in the oral environment and the subsequent leaching of metals are relatively unknown. A method for determining the effects of various types of soldering and welding, both of which in turn could lead to leaching of metal ions, on the growth of osteoblasts, fibroblasts, and oral keratinocytes in vitro, is proposed. The effects of cell behaviour of metal wires on osteoblast differentiation, expressed by alkaline phosphatase (ALP) activity; on fibroblast proliferation, assayed by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenil)-2H-tetrazolium-phenazine ethosulphate method; and on keratinocyte viability and migration on the wires, observed by scanning electron microscopy (SEM), were tested. Two types of commercially available wires normally used for orthodontic appliances, with a similar chemical composition (iron, carbon, silicon, chromium, molybdenum, phosphorus, sulphur, vanadium, and nitrogen) but differing in nickel and manganese content, were examined, as well as the joints obtained by electrical resistance welding, traditional soldering, and laser welding. Nickel and chromium, known as possible toxic metals, were also examined using pure nickel- and chromium-plated titanium wires. Segments of each wire, cut into different lengths, were added to each well in which the cells were grown to confluence. The high nickel and chromium content of orthodontic wires damaged both osteoblasts and fibroblasts, but did not affect keratinocytes. Chromium strongly affected fibroblast growth. The joint produced by electrical resistance welding was well tolerated by both osteoblasts and fibroblasts, whereas traditional soldering caused a significant (P < 0.05) decrease in both osteoblast ALP activity and fibroblast viability, and prevented the growth of keratinocytes in vitro. Laser welding was the only joining process well tolerated by all tested cells.

  8. Antibiotic resistance: A current epilogue.

    Science.gov (United States)

    Dodds, David R

    2017-06-15

    The history of the first commercial antibiotics is briefly reviewed, together with data from the US and WHO, showing the decrease in death due to infectious diseases over the 20th century, from just under half of all deaths, to less than 10%. The second half of the 20th century saw the new use of antibiotics as growth promoters for food animals in the human diet, and the end of the 20th century and beginning of the 21st saw the beginning and rapid rise of advanced microbial resistance to antibiotics. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. High-frequency power supply for making electro-resistance-welded tubes. Denhokanyo koshuha dengen

    Energy Technology Data Exchange (ETDEWEB)

    Konno, M. (Meidensha Corp., Tokyo (Japan))

    1991-12-27

    This paper introduces the current status of the Meidensha Corporation mainly on parts of a large-capacity electron-tube type high-frequency power supply for making electro-resistance-weld tubes (RFG). The company produces RFGs with oscillation output ranging from 65 to 1300 kW. The company uses oscillation tubes made by Nippon Electric Company for an oscillation output of 400 kW or lower, and those made by Siemens for above 400 kW. A water-cooled cylindrical capacitor, which has a unit capacity about five times as much of a disk type porcelain capacitor, enables constructing a compact tank circuit. The output from the oscillator driving power supply is adjusted by a thyristor AC control on the primary side of a positive transformer. The positive transformer (TF) adopts water cooling type for 100 kW or lower, and oil-filled self-cooling type for above 100 kW. The DC high-voltage power supply uses the power of the primary side of the positive TF which is controlled by a thyrisctor AC controller, and subjected to a three-face full-wave rectification using high-voltage silicon diodes. The oscillation tube, which operates on thermal electrons is heated to a prescribed temperature, of which value is controlled by the cathode heating power supply voltage. The voltage adjustment uses a constant voltage transformers system. 1 fig., 2 tabs.

  10. High Temperature Corrosion studies on Pulsed Current Gas Tungsten Arc Welded Alloy C-276 in Molten Salt Environment

    Science.gov (United States)

    Manikandan, M.; Arivarasu, M.; Arivazhagan, N.; Puneeth, T.; Sivakumar, N.; Murugan, B. Arul; Sathishkumar, M.; Sivalingam, S.

    2016-09-01

    Alloy C-276 is widely used in the power plant environment due to high strength and corrosion in highly aggressive environment. The investigation on high- temperature corrosion resistance of the alloy C-276 PCGTA weldment is necessary for prolonged service lifetime of the components used in corrosive environments. Investigation has been carried out on Pulsed Current Gas Tungsten Arc Welding by autogenous and different filler wires (ERNiCrMo-3 and ERNiCrMo-4) under molten state of K2SO4-60% NaCl environment at 675oC under cyclic condition. Thermogravimetric technique was used to establish the kinetics of corrosion. Weight gained in the molten salt reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. PCGTA ERNiCrMo-3 shows the higher parabolic constant compared to others. The scale formed on the weldment samples upon hot corrosion was characterized by using X-ray diffraction, SEM and EDAX analysis to understand the degradation mechanisms. From the results of the experiment the major phases are identified as Cr2O3, Fe2O3, and NiCr2O4. The result showed that weld fabricated by ERNiCrMo-3 found to be more prone to degradation than base metal and ERNiCrMo-4 filler wire due to higher segregation of alloying element of Mo and W in the weldment

  11. Study for the electric arc of alternative current at the single phase welding machine using the Matlab/Simulink environment

    Science.gov (United States)

    Baciu, I.; Ghiormez, L.; Vasar, C.

    2017-01-01

    In this paper is presented a mathematical model of the electric arc for an alternative current welding machine of low power. The electric arc model is based on dividing the voltage-current characteristic of the electric arc in many functioning zones. For the model of the entire welding machine are used real parameters as the ones of the proper welding machine. The voltage and current harmonics spectrum that is obtained during the welding process is presented. Also, the waveforms for the current and voltage of the electric arc plotted against time and the voltage-current characteristic of the electric arc are illustrated. The electric arc is considered as being supplied by alternative voltage from the electrical power network using a single phase transformer which has the output voltage of 80 volts. The model of the welding machine is developed in Simulink and the variations of some parameters of the electric arc are obtained by modifying of them in a Matlab function. Also, in this paper is presented the total harmonic distortion for the voltage and current of the electric arc obtained during simulation of the welding machine.

  12. Complete inspection of friction stir welds in aluminum using ultrasonic and eddy current arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lamarre, A.; Dupuis, O. [R/D Tech, Quebec, Quebec (Canada)]. E-mail: andre.lamarre@rd-tech.com; olivier.dupuis@rd-tech.com; Moles, M. [R/D Tech, Mississauga, Ontario (Canada)]. E-mail: Michael.moles@rd-tech.com

    2006-07-15

    Ultrasonic phased-array offers tremendous advantages for the inspection of Friction stir welds (FSW), a new method of joining metals using a solid state bonding process. Phased array ultrasonics can reliably detect all internal volumetric defects in FSW, such as cracks, inclusion, porosity and lack-of-penetration. Spot-focused beams improve detection, inspection angles can be optimized electronically and electronic scan of the beam normal to the welds gives rapid one-line scan inspection to assure full coverage. Furthermore, a technique using ultrasonic attenuation measurements shows the presence or absence of conditions for forming kissing bonds (or entrapped oxide defects). Also, eddy current arrays can be used for surface inspection, and can help to detect tight kissing bonds. Using all three approaches, the overall detection capability of kissing bonds is high. (author)

  13. Investigation of the fatigue and short-term mechanical properties of 13% chromium steel and titanium alloys after welding or treatment with high-frequency currents as applied to steam-turbine blades

    Science.gov (United States)

    Gonserovskii, F. G.; Nikitin, V. I.; Silevich, V. M.; Simin, O. N.

    2008-02-01

    We present the results of a study on comparing the structural strength of rotor blades made of stainless 13% chromium steels for their design versions in which wear-resistant straps made of cast VZK stellite are soldered or welded on the blade inlet edges. It is shown that treatment of VT6 alloy with high-frequency currents increases the endurance limit of the zone subjected to strengthening and makes the alloy more resistant to erosion. The worn blades of a 48-T4 titanium alloy repaired with the use of welding technologies have operational characteristics at least as good as those of newly manufactured ones.

  14. Fatigue lifetime of steel weldments with high resistance, rough welding, repaired by welding and hammered; Duree de vie en fatigue d'assemblages soudes en acier de construction a haute resistance, bruts de soudage, repares par soudage et marteles

    Energy Technology Data Exchange (ETDEWEB)

    Braid, J.E.M. [Materials Technology Laboratory, Ottawa (Canada); Bell, R. [Mechanical and Aerospace Engineering, Carlton University, Ottawa (Canada); Militaru, D.V. [Centre for Surface Transportation Technology, Ottawa (Canada)

    1999-09-01

    It has been shown in literature that the propagation velocity of fatigue cracks and that the ratio da/dN are relatively independent of the elasticity limit. In order to better use high resistance steels solicited in fatigue, it is necessary to improve the fatigue resistance of weldments: better design and/or post-welding treatments. The improvements obtained by grinding, TIG-refusion, shot-blasting and hammering are indicated. The most part of this study concerns the fatigue resistance of longitudinal welds on rough T assembling, repaired by welding and hammered or not. The steel test pieces are of 350 MPa (specification CSA G 4021350WT) and of 550 MPa (specification HY80). The two steels have the same behavior in fatigue at the rough-welding state. The used repair method restore the initial fatigue characteristics of the rough-welding state. Compared with the rough-welding state, the hammering improves the fatigue resistance of steel weldments (550 MPa) of 175%. (O.M.)

  15. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    Science.gov (United States)

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  16. Microstructural studies and crystallographic orientation of different zones and δ-hydrides in resistance welded Zircaloy-4 sheets

    Science.gov (United States)

    Kiran Kumar, N. A. P.; Szpunar, Jerzy. A.; He, Zhang

    2011-07-01

    The cold worked stress relieved (CWSR) Zircaloy-4 sheet used as endplate in nuclear fuel bundle is resistance welded with an endcap in argon environment. Later the welded sample is hydrided in a gaseous atmosphere at 400 °C. Optical microscopy (OM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were used to examine the morphology and crystal orientation of the hydrides. The microstructural changes in different areas of the weld zone, heat affected zone (HAZ) and the as-received zone were analyzed using EBSD technique. Optical examination showed complete random morphological orientation of hydrides and predominantly basket-weave structure in the weld zone, with very few colonies of parallel plate structures. Variant selection for α-phase formation inside prior β-grains was identified at the weld centre. As we move from the weld centre to the as-received zone, the variant selection is found to be less probable. The δ-hydride platelets at the weld zone were always found to be growing perpendicular to the α-colonies having angular difference of 60-63° and follow (0 0 0 1) α-Zr//{1 1 1}δ-ZrH 1.5 orientation relationship with the zirconium matrix. Proposed description of complex distribution of hydrides and alloy microstructure at the weld and heat affected zone will contribute to a better understanding of mechanisms of failure of fuel cladding in various types of nuclear reactors.

  17. Equivalent Resistance in Pulse Electric Current Sintering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The sintering resistance for conductive TiB2 and non-conductive Al2O3 as well as empty die during pulse current sintering were investigated in this paper.Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions.It is found that the current paths for conductive are different from those for non-conductive materials.For non-conductive materials,sintering resistances are influenced by powder sizes and heating rates,which indicates that pulse current has some interaction with non-conductive powders.For conductive TiB2,sintering resistances are influenced by heating rates and ball-milling time,which indicates the effect of powders activated by spark.

  18. Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation

    Energy Technology Data Exchange (ETDEWEB)

    Pouranvari, M., E-mail: mpouranvari@yahoo.com [Young Researchers Club, Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of); Marashi, S.P.H.; Safanama, D.S. [Mining and Metallurgical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} Interfacial to pullout failure mode transition for AHSS RSWs is experimentally studied. {yields} Relation between failure mode and metallurgical factors of AHSS RSW is studied. {yields} HAZ softening reduces FZ size require to ensure pullout failure. {yields} HAZ softening enhances energy absorption capability of AHSS RSW. {yields} Good agreement between model prediction and experimental results was observed. - Abstract: The objective of this paper is to investigate and analyze the transition criteria from interfacial to pullout failure mode in AHSS resistance spot welds during the tensile-shear test by the use of both experimental and analytical approaches. Spot welds were made on three dual phase steel grades including DP600, DP780 and DP980. A low strength drawing quality special killed (DQSK) steel and AISI 304 austenitic stainless steel were also tested as a baseline for comparison. The microstructure and mechanical strength of the welds were characterized using metallographic techniques and the tensile-shear testing. Correlations among critical fusion zone (FZ) size required to ensure the pullout failure mode, weld microstructure and weld hardness characteristics were developed. It was found that critical FZ size increases in the order of DQSK, DP600, DP980, DP780 and AISI304. No direct relationship was found between the tensile strength of the base metal and the critical FZ size. It was concluded that low hardness ratio of FZ to pullout failure location and high susceptibility to form shrinkage voids are two primary reasons for high tendency of AHSS to fail in interfacial mode. HAZ softening can improve RSW mechanical performance in terms of load bearing capacity and energy absorption capability. This phenomenon promotes PF mode at smaller FZ sizes. This fact can explain smaller critical FZ size measured for DP980 in comparison with DP780. The results obtained from the model were compared to the experimental results and the literature

  19. Microstructure and Fracture Morphology in the Welding Zone of T91 Heat-resisting Steel Used in Power Station

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Microstructure performance in the welding zone of T91 heat-resistant steel under the condition of TIG welding wasresearched by means of metallography, X-ray diffraction and scanning electron microscope (SEM). Experimentalresults indicated that microstructure of T91 weld metal was austenite + a little amount of δ ferrite when using TGS-9cb filler wire. Substructure inside the austenite grain was crypto-crystal lath martensite, on which some Cr23C6blocky carbides were distributed. The maximum hardness (HRC44) in the welding zone is near the fusion zone. Thereexisted no obvious softening zone in the heat-affected zone (HAZ). For T91 steel tube of φ63 mmx5 mm, whenincreasing welding heat input (E) from 4.8 kJ/cm to 12.5 kJ/cm, fracture morphology in the fusion zone and theHAZ changed from dimple fracture into quasi-cleavage fracture (QC). Controlling the welding heat input of about9.8 kJ/cm is suitable in the welding of T91 heat-resistant steel.

  20. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  1. Numerical Simulation of Current Density Distribution in Keyhole Double-Sided Arc Welding

    Institute of Scientific and Technical Information of China (English)

    Junsheng SUN; Chuansong WU; Min ZHANG; Houxiao WANG

    2004-01-01

    In the double-sided arc welding system (DSAW) composing of PAW+TIG arcs, the PAW arc is guided by the TIG arc so that the current mostly flows through the direction of the workpiece thickness and the penetration is greatly improved. To analyze the current density distribution in DSAW is beneficial to understanding of this process.Considering all kinds of dynamic factors acting on the weldpool, this paper discusses firstly the surface deformation of the weldpool and the keyhole formation in PAW+TIG DSAW process on the basis of the magnetohydrodynamic theory and variation principles. Hence, a model of the current density distribution is developed. Through numerical simulation, the current density distribution in PAW+TIG DSAW process is quantitatively analyzed. It shows that the minimal radius of keyhole formed in PAW+TIG DSAW process is 0.5 mm and 89.5 percent of current flows through the keyhole.

  2. MICROSTRUCTURE AND FATIGUE PROPERTIES OF DISSIMILAR SPOT WELDED JOINTS OF AISI 304 AND AISI 1008

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2013-06-01

    Full Text Available Carbon steel and stainless steel composites are being more frequently used for applications requiring a corrosion resistant and attractive exterior surface and a high strength structural substrate. Spot welding is a potentially useful and efficient jointing process for the production of components consisting of these two materials. The spot welding characteristics of weld joints between these two materials are discussed in this paper. The experiment was conducted on dissimilar weld joints using carbon steel and 304L (2B austenitic stainless steel by varying the welding currents and electrode pressing forces. Throughout the welding process; the electrical signals from the strain sensor, current transducer and terminal voltage clippers are measured in order to understand each and every millisecond of the welding process. In doing so, the dynamic resistances, heat distributions and forging forces are computed for various currents and force levels within the good welds’ regions. The other process controlling parameters, particularly the electrode tip and weld time, remained constant throughout the experiment. The weld growth was noted for the welding current increment, but in the electrode force increment it causes an adverse reaction to weld growth. Moreover, the effect of heat imbalance was clearly noted during the welding process due to the different electrical and chemical properties. The welded specimens finally underwent tensile, hardness and metallurgical testing to characterise the weld growth.

  3. Influence of the post-weld surface treatment on the corrosion resistance of the duplex stainless steel 1.4062

    Science.gov (United States)

    Rosemann, P.; Müller, C.; Baumann, O.; Modersohn, W.; Halle, T.

    2017-03-01

    The duplex stainless steel 1.4062 (X2CrNiN22-2) is used as alternative material to austenitic stainless steels in the construction industry. The corrosion resistance of welded seams is influenced by the base material, the weld filler material, the welding process and also by the final surface treatment. The scale layer next to the weld seam can be removed by grinding, pickling, electro-polished or blasting depending on the application and the requested corrosion resistance. Blasted surfaces are often used in industrial practice due to the easier and cheaper manufacturing process compared to pickled or electro-polished surfaces. Furthermore blasting with corundum-grain is more effective than blasting with glass-beads which also lower the process costs. In recent years, stainless steel surfaces showed an unusually high susceptibility to pitting corrosion after grinding with corundum. For this reason, it is now also questioned critically whether the corrosion resistance is influenced by the applied blasting agent. This question was specifically investigated by comparing grinded, pickled, corundum-grain- and glass-bead-blasted welding seams. Results of the SEM analyses of the blasting agents and the blasted surfaces will be presented and correlated with the different performed corrosion tests (potential measurement, KorroPad-test and pitting potential) on welding seams with different surface treatments.

  4. SPOT WELDING QUALITY FUZZY CONTROL SYSTEM BASED ON MULTISENSOR INFORMATION FUSION

    Institute of Scientific and Technical Information of China (English)

    CHANG Yunlong; SU Hang; LIN Bin; YANG Xu

    2007-01-01

    The multisensor information fusion technology is adopted for real time measuring the four Parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy Controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multisensor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.

  5. Effects of X-rays Radiation on AISI 304 Stainless Steel Weldings with AISI 316L Filler Material: A Study of Resistance and Pitting Corrosion Behavior

    Directory of Open Access Journals (Sweden)

    Francisco Javier Cárcel-Carrasco

    2016-04-01

    Full Text Available This article investigates the effect of low-level ionizing radiation, namely X-rays, on the micro structural characteristics, resistance, and corrosion resistance of TIG-welded joints of AISI 304 austenitic stainless steel made using AISI 316L filler rods. The welds were made in two different environments: natural atmospheric conditions and a closed chamber filled with inert argon gas. The influence of different doses of radiation on the resistance and corrosion characteristics of the welds is analyzed. Welded material from inert Ar gas chamber TIG showed better characteristics and lesser irradiation damage effects.

  6. Case Study Regarding the Design of a Direct Current Electromagnet for the MIG Welding of Metallic Materials Part I: Description of the Welding Methods and Preliminary Calculus of the Electromagnet

    OpenAIRE

    2016-01-01

    The paper refers to the design of a direct current electromagnet, located on the head of a swan neck welding gun of a MIG welding equipment and used for magnetising the rotation space of two additional electric arches, in order to preheat the electrode wire and of the protective gas, partially turned into plasma jet. One describes the MIG welding method in which the electromagnet is used as well as its preliminary calculus.

  7. Case Study Regarding the Design of a Direct Current Electromagnet for the MIG Welding of Metallic Materials Part I: Description of the Welding Methods and Preliminary Calculus of the Electromagnet

    Directory of Open Access Journals (Sweden)

    Tudorel Ene

    2016-10-01

    Full Text Available The paper refers to the design of a direct current electromagnet, located on the head of a swan neck welding gun of a MIG welding equipment and used for magnetising the rotation space of two additional electric arches, in order to preheat the electrode wire and of the protective gas, partially turned into plasma jet. One describes the MIG welding method in which the electromagnet is used as well as its preliminary calculus.

  8. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    Science.gov (United States)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  9. Optimizing pulsed current gas tungsten arc welding parameters of AA6061 aluminium alloy using Hooke and Jeeves algorithm

    Institute of Scientific and Technical Information of China (English)

    S. BABU; T. SENTHIL KUMAR; V. BALASUBRAMANIAN

    2008-01-01

    Though the preferred welding process to weld aluminium alloy is frequently constant current gas tungsten arc welding (CCGTAW), it resulted in grain coarsening at the fusion zone and heat affected zone(HAZ). Hence, pulsed current gas tungsten arc welding(PCGTAW) was performed, to yield finer fusion zone grains, which leads to higher strength of AA6061 (Al-Mg-Si) aluminium alloy joints. In order to determine the most influential control factors which will yield minimum fusion zone grain size and maximum tensile strength of the joints, the traditional Hooke and Jeeves pattern search method was used. The experiments were carried out based on central composite design with 31 runs and an algorithm was developed to optimize the fusion zone grain size and the tensile strength of pulsed current gas tungsten arc welded AA6061 aluminium aUoy joints. The results indicate that the peak current (Ip) and base current (IB) are the most significant parameters, to decide the fusion zone grain size and the tensile strength of the AA6061 aluminum alloy joints.

  10. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  11. Corrosion resistance and microstructure of alloy 625 weld overlay on ASTM A516 grade 70

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Mohammad J. [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Petroleum Engineering Dept.; Ketabchi, Mostafa [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Mining and Metallurgical Engineering Dept.

    2016-02-01

    Nickel-based alloys are a crucial class of materials because of their excellent corrosion resistance. In the present study, single layer and two layers alloy 625 weld overlays were deposited by GTAW process on A516 grade 70 carbon steel. The dilution in terms of Fe, Ni, Mo and Nb content was calculated in 30 points of weld overlay. Microstructure observations showed that alloy 625 had austenitic structure with two types of Laves and NbC secondary phases. The uniform and pitting corrosion resistance of alloy 625 weld overlay as casted and as forged were evaluated in accordance with ASTM G48-2011 standard at different temperatures to determine the weight loss and critical pitting temperature. For achieving a better comparison, samples from alloy 625 as casted and as forged were tested under the same conditions. The results point out that single layer alloy 625 weld overlay is not suitable for chloride containing environments, two layers alloy 625 weld overlay and alloy 625 as casted have acceptable corrosion resistance and almost the same critical pitting temperature. Alloy 625 as forged has the best corrosion resistance and the highest critical pitting temperature among all test specimens. Also, the corrosion behavior was evaluated in accordance with ASTM G28 standard. The corrosion rate of single layer weld overlay was unacceptable. The average corrosion rate of two layers weld overlay and in casted condition were 35.82 and 33.01 mpy, respectively. [German] Nickellegierungen sind aufgrund ihres exzellenten Korrosionswiderstandes eine bedeutende Werkstoffklasse. In der diesem Beitrag zugrunde liegenden Studie wurden mittels WIG-Schweissens ein- und zweilagige Schweissplattierungen auf den Kohlenstoffstahl A516 (Grade 70) aufgebracht. Die Vermischung in Form des Fe-, Ni-, Mo- und Nb-Gehaltes wurde an 30 Punkten der Schweissplattierungen berechnet. Die mikrostrukturellen Untersuchungen ergaben, dass die Legierung 625 eine austenitische Struktur mit zwei Arten von

  12. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  13. Analysis of Effect of Welding Currents on Welding Pool Size During TIG Spot Welding By Using SYSWELD Software%基于SYSWELD分析焊接电流对TIG点焊熔池尺寸的影响

    Institute of Scientific and Technical Information of China (English)

    徐火青; 凌泽民; 李金阁; 句孝飞

    2012-01-01

    基于SYSWELD数值模拟软件对铝制冷凝器进出口接头TIG点焊进行数值模拟,研究了不同焊接电流对其熔池形貌的影响.模拟中充分考虑了材料热物理性能的非线性,及对流、辐射等边界条件对焊接温度场的影响,并运用HSF校正工具对热源各项参数进行了校核.研究结果表明:在其他焊接参数一定时,随着焊接电流的增大,焊点熔深增加,且熔深尺寸为工程实践制定焊接工艺提供了参考.%Based on software SYSWELD, the import and export joint of aluminum condenser during TIG spot welding was simulated, and the effects of different welding currents on the morphology of the welding pool were studied. The simulation fully considered the nonlinear of the material thermal physical properties, and the influence of convection, radiation and boundary conditions on the welding temperature field. The heat resource parameters were calibrated by HSF tools. The results show that, with invariable parameters, the welding pool's depth size increases as the current augments. In addition, the size provides a reference to set down the welding process in practice.

  14. Effect of electromagnetic interaction during fusion welding of AISI 2205 duplex stainless steel on the corrosion resistance

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.

    2017-02-01

    The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.

  15. Toward Improving the Type IV Cracking Resistance in Cr-Mo Steel Weld Through Thermo-Mechanical Processing

    Science.gov (United States)

    Shassere, Benjamin A.; Yamamoto, Yukinori; Babu, Sudarsanam Suresh

    2016-05-01

    Detailed microstructure characterization of Grade 91 (Modified 9Cr-1Mo, ASTM A387) steel subjected to a thermo-mechanical treatment process was performed to rationalize the cross-weld creep properties. A series of thermo-mechanical processing in the austenite phase region, followed by isothermal aging at temperatures at 973 K to 1173 K (700 °C to 900 °C), was applied to the Grade 91 steel to promote precipitation kinetics of MX (M: Nb and V, X: C and N) in the austenite matrix. Detailed characterization of the base metals after standard tempering confirmed the presence of fine MX dispersion within the tempered martensitic microstructure in steels processed at/and above 1073 K (800 °C). Relatively low volume fraction of M23C6 precipitates was observed after processing at 1073 K (800 °C). The cross-weld creep strength after processing was increased with respect to the increase of MX dispersion, indicating that these MX precipitates maintained during weld thermal cycles in the fine-grained heat-affected zone region and thereby contribute to improved creep resistant of welds in comparison to the welds made with the standard "normalization and tempering" processes. The steels processed in this specific processing condition showed improved cross-weld creep resistance and sufficient room temperature toughness. The above data are also analyzed based on existing theories of creep deformation based on dislocation climb mechanism.

  16. Electrical-thermal interaction simulation for resistance spot welding nugget process of mild steel and stainless steel

    Institute of Scientific and Technical Information of China (English)

    王春生; 韩凤武; 陆培德; 赵熹华; 陈勇; 邱冬生

    2002-01-01

    A three-dimensional finite difference electrical-thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.

  17. 3D modelling of plug failure in resistance spot welded shear-lab specimens (DP600-steel)

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2008-01-01

    are based on uni-axial tensile testing of the basis material, while the modelled tensile response of the shear-lab specimens is compared to experimental results for the case of a ductile failure near the heat affected zone (HAZ). A parametric study for a range of weld diameters is carried out, which makes......Ductile plug failure of resistance spot welded shear-lab specimens is studied by full 3D finite element analysis, using an elastic-viscoplastic constitutive relation that accounts for nucleation and growth of microvoids to coalescence (The Gurson model). Tensile properties and damage parameters...... it possible to numerically relate the weld diameter to the tensile shear force (TSF) and the associated displacement, u (TSF) , respectively. Main focus in the paper is on modelling the localization of plastic flow and the corresponding damage development in the vicinity of the spot weld, near the HAZ...

  18. Numerical and experimental analysis of resistance projection welding of square nuts to sheets

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Martins, Paulo A.F.

    2014-01-01

    materials and applications require a new level of understanding of the process by combining finite element modelling and experimentation. This paper draws from the challenge of developing a three-dimensional computer program for electro-thermo-mechanical modeling of resistance welding and presents, as far......, reliability and validity of the theoretical and numerical developments. Numerical simulations support the evaluation of the experiments by providing detailed information on the process like the initial heating location and the following temperature development, and allowing to analyze the weldability...

  19. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  20. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    Directory of Open Access Journals (Sweden)

    Brytan Z.

    2016-06-01

    Full Text Available This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature.

  1. Microstructure, Mechanical Property and Corrosion Resistance Property of Cr26Mo3.5 Super Ferritic Stainless Joints by P-TIG and Laser Welding

    Institute of Scientific and Technical Information of China (English)

    胡绳荪; 庞杰; 申俊琦; 伍文勇; 刘腊腊

    2016-01-01

    The characteristics of microstructure, mechanical property and corrosion behavior of Cr26Mo3.5 super stainless steel joints by pulse tungsten inert gas(P-TIG)welding and laser welding were investigated. The results indicate that the widths of the center equiaxed grain zone(EGZ)and the columnar grain zone(CGZ)increase with the increase of heat input in both welding processes. The precipitates of Nb and Ti carbides and nitrides are formed in the weld metal(WM)and the heat affected zone(HAZ). The joints by laser welding show better tensile and cor-rosion resistance properties than those by P-TIG welding due to the heat concentration and lower heat input. The tensile strength and elongation increase with the decrease of heat input, and the fracture mode of the joints turns into ductile-brittle mixed fracture from ductile fracture when the welding method turns into P-TIG welding from laser welding. Moreover, the corrosion resistance of all joints declines slightly with the increase of heat input. Hence, laser welding is more suitable for welding Cr26Mo3.5 super stainless steel in engineering applications.

  2. Current Understandings of Plant Nonhost Resistance.

    Science.gov (United States)

    Lee, Hyun-Ah; Lee, Hye-Young; Seo, Eunyoung; Lee, Joohyun; Kim, Saet-Byul; Oh, Soohyun; Choi, Eunbi; Choi, Eunhye; Lee, So Eui; Choi, Doil

    2017-01-01

    Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  3. Effect of continuous and pulsed currents on microstructural evolution of stainless steel joined by TIG welding; Einfluss des Einsatzes von Dauerstrom und Impulsstrom auf die Mikrostrukturentwicklung bei durch das WIG-Schweissverfahren gefuegtem rostfreiem Stahl

    Energy Technology Data Exchange (ETDEWEB)

    Durgutlu, Ahmet; Findik, Tayfun; Guelenc, Behcet [Gazi Univ., Ankara (Turkey). Dept. of Metallurgy and Materials Engineering; Cevik, Bekir [Duezce Univ. (Turkey). Dept. of Welding Technology; Kaya, Yakup; Kahraman, Nizamettin [Karabuek Univ. (Turkey). Dept. of Manufacturing Engineering

    2015-07-01

    In this study, AISI 316L series austenitic stainless steel sheets were joined by tungsten inert gas welding method in continuous and pulsed currents. Regarding microstructural investigation and hardness values of weld metal, samples were welded to investigate the effect of current type on grain structures of weld metal. Results showed that samples welded by using pulsed current had considerable different properties compared to the samples welded by using continuous current. While the weld metals of joinings obtained by using continuous current displayed a coarse-grained and columnar structure, weld metals obtained by using pulsed current had a finer-grained structure. It was also found that hardness values of samples, which were welded with continuous and pulsed current, were quite different.

  4. Historical overview on Vacuum suitable Welding and fatigue resistance in Research Devices

    CERN Document Server

    Wolf, Martin

    2015-01-01

    New inventions change the approach of vacuum suitable welding for research purpose. With orbital welding, laser welding and robot welding the possibilities increase to fabricate larger vessels more accurately. Despite this development there is still no perfect understanding on how to avoid virtual leaks and how to make such joints suitable for dynamic stress. By recalling its historical development, it is apparent how welding mistakes began occurring systematically and how to avoid them. With ASDEX-Upgrade as an example, it is shown how the attempt to conduct vacuum suitable welding has decreased the fatigue strength. ITER could repeat the mistakes of ASDEX-Upgrade even for unwanted welding (accidental fusing of joints).

  5. Corrosion Resistance and Mechanical Properties of TIG and A-TIG Welded Joints of Lean Duplex Stainless Steel S82441 / 1.4662

    OpenAIRE

    Brytan Z.; Niagaj J.

    2016-01-01

    This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal) and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and afte...

  6. An Approach to Maximize Weld Penetration During TIG Welding of P91 Steel Plates by Utilizing Image Processing and Taguchi Orthogonal Array

    Science.gov (United States)

    Singh, Akhilesh Kumar; Debnath, Tapas; Dey, Vidyut; Rai, Ram Naresh

    2016-06-01

    P-91 is modified 9Cr-1Mo steel. Fabricated structures and components of P-91 has a lot of application in power and chemical industry owing to its excellent properties like high temperature stress corrosion resistance, less susceptibility to thermal fatigue at high operating temperatures. The weld quality and surface finish of fabricated structure of P91 is very good when welded by Tungsten Inert Gas welding (TIG). However, the process has its limitation regarding weld penetration. The success of a welding process lies in fabricating with such a combination of parameters that gives maximum weld penetration and minimum weld width. To carry out an investigation on the effect of the autogenous TIG welding parameters on weld penetration and weld width, bead-on-plate welds were carried on P91 plates of thickness 6 mm in accordance to a Taguchi L9 design. Welding current, welding speed and gas flow rate were the three control variables in the investigation. After autogenous (TIG) welding, the dimension of the weld width, weld penetration and weld area were successfully measured by an image analysis technique developed for the study. The maximum error for the measured dimensions of the weld width, penetration and area with the developed image analysis technique was only 2 % compared to the measurements of Leica-Q-Win-V3 software installed in optical microscope. The measurements with the developed software, unlike the measurements under a microscope, required least human intervention. An Analysis of Variance (ANOVA) confirms the significance of the selected parameters. Thereafter, Taguchi's method was successfully used to trade-off between maximum penetration and minimum weld width while keeping the weld area at a minimum.

  7. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications

    Science.gov (United States)

    Field, Kevin G.; Gussev, Maxim N.; Yamamoto, Yukinori; Snead, Lance L.

    2014-11-01

    Ferritic-structured Fe-Cr-Al alloys are being developed and show promise as oxidation resistant accident tolerant light water reactor fuel cladding. This study focuses on investigating the weldability and post-weld mechanical behavior of three model alloys in a range of Fe-(13-17.5)Cr-(3-4.4)Al (wt.%) with a minor addition of yttrium using modern laser-welding techniques. A detailed study on the mechanical performance of bead-on-plate welds using sub-sized, flat dog-bone tensile specimens and digital image correlation (DIC) has been carried out to determine the performance of welds as a function of alloy composition. Results indicated a reduction in the yield strength within the fusion zone compared to the base metal. Yield strength reduction was found to be primarily constrained to the fusion zone due to grain coarsening with a less severe reduction in the heat affected zone. For all proposed alloys, laser welding resulted in a defect free weld devoid of cracking or inclusions.

  8. Dynamic simulation of resistance spot welding of zinc-coated steels

    Institute of Scientific and Technical Information of China (English)

    Wang Lu; Wang Min; Lu Fenggui

    2006-01-01

    A model was developed to simulate the temperature distribution and nugget formation during resistance spot welding ( RSW) of zinc-coated steels. It employs a coupled thermal-electrical-mechanical analysis simulating the dynamic RSW process. Temperature-dependent thermal-electrical-mechanical material properties were considered including contact-resistance.The contact area was determined from a coupled thermal-mechanical analysis. A layer of transition elements was used to represent the change of contact area by killing or activating elements. The heat generation and temperature field were computed in a coupled thermal-electrical model. All these analyses were solved using the commercial finite element method ( FEM) based on ANSYS code, and some advanced functions were used by writing a paragraph of codes by the authors.Compared with the results from only coupled thermal-electrical model in which contact area was uniform during the whole process, the result matches better to the experimental results.

  9. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  10. Comparative Study on Joint Properties of Boron Steel by Laser Welding and Resistance Spot Welding%热成形硼钢激光焊接与电阻点焊接头性能对比研究

    Institute of Scientific and Technical Information of China (English)

    李海宾; 陈铠; 肖荣诗; 陈树君

    2012-01-01

    An ultra-high strength boron steel was welded using CO2 laser welding system and intermediate frequency inverter & servo spot welding gun system, then the joint shear strength and micro-hardness were tested, microstructure was also observed. The results showed that the two welding methods can also obtain well-formed welded joints, the microstructure of weld metal is martensite, micro-hardness is equivalent to the base metal, the martensite obtained by laser welding is more fine than that obtained by resistance spot welding, and laser welding joints have got higher shear strength.%分别采用CO2激光焊接系统和中频伺服电阻点焊设备,对超高强度热成形硼钢进行了焊接试验,测试了接头的抗剪切强度和显微硬度,观察了焊缝显微组织.结果表明:两种焊接方式均能获得成形良好的焊接接头,焊缝组织基本为马氏体,显微硬度与母材相当,激光焊缝的马氏体组织明显更细化、抗剪切强度也更高.

  11. Resistance Upset Welding of ODS Steel Fuel Claddings—Evaluation of a Process Parameter Range Based on Metallurgical Observations

    Directory of Open Access Journals (Sweden)

    Fabien Corpace

    2017-08-01

    Full Text Available Resistance upset welding is successfully applied to Oxide Dispersion Strengthened (ODS steel fuel cladding. Due to the strong correlation between the mechanical properties and the microstructure of the ODS steel, this study focuses on the consequences of the welding process on the metallurgical state of the PM2000 ODS steel. A range of process parameters is identified to achieve operative welding. Characterizations of the microstructure are correlated to measurements recorded during the welding process. The thinness of the clad is responsible for a thermal unbalance, leading to a higher temperature reached. Its deformation is important and may lead to a lack of joining between the faying surfaces located on the outer part of the join which can be avoided by increasing the dissipated energy or by limiting the clad stick-out. The deformation and the temperature reached trigger a recrystallization phenomenon in the welded area, usually combined with a modification of the yttrium dispersion, i.e., oxide dispersion, which can damage the long-life resistance of the fuel cladding. The process parameters are optimized to limit the deformation of the clad, preventing the compactness defect and the modification of the nanoscale oxide dispersion.

  12. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Duflou, J.; Leacock, A.; Micari, F.; Hagenah, H.

    2015-01-01

    A material model is developed that predicts the plastic behaviour of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  13. Identification of plasticity model parameters of the heat-affected zone in resistance spot welded martensitic boron steel

    NARCIS (Netherlands)

    Eller, Tom; Greve, L; Andres, M.T.; Medricky, M; Meinders, Vincent T.; van den Boogaard, Antonius H.; Merklein, M.

    2014-01-01

    A material model is developed that predicts the plastic behavior of fully hardened 22MnB5 base material and the heat-affected zone (HAZ) material found around its corresponding resistance spot welds (RSWs). Main focus will be on an accurate representation of strain fields up to high strains, which

  14. Data characteristics of resistance spot welding of aluminum and mild steel%铝合金和低碳钢的电阻点焊数据特征

    Institute of Scientific and Technical Information of China (English)

    冀春涛; 邓黎鹏

    2013-01-01

    研究了电阻点焊过程中不同条件下的电极位移和电极压力的数据特征.试验设备为170 W逆变直流点焊机.采用多通道高速数据采集系统采集电极位移和压力数据,用MATLAB进行数据分析,比较了5182铝合金和低碳钢的点焊行为特征.结果表明,当熔核长大到一定程度后,铝合金熔核膨胀速率不会像低碳钢那样达到零值,且电极力会出现一个峰值,该峰值预示着熔核已经达到了足够的尺寸.%The behaviors of electrode displacement and e-lectrode force during resistance spot welding under various conditions, such as different weld currents and different electrode forces, were investigated in this paper. The welding experiments were conducted with a 170 W MFDC spot welder. Data were collected via a multi-channel high speed data acquisition system, and were analyzed with MATLAB. The behaviors of 5182 aluminum alloy and mild steel in resistance spot welding were compared. The results showed that nugget expansion rate did not reach zero for aluminum alloy but it did for mild steel when the nugget grew to a certain size. An electrode force peak was detected, which indicated that the nugget size was already sufficient.

  15. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304 during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    Directory of Open Access Journals (Sweden)

    Reddy Sreenivasulu

    2014-12-01

    Full Text Available Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial mode is unacceptable due to its low load carrying and energy absorption capability. Strength tests with different static loading were performed in, to reveal the failure mechanisms for the lap-shear geometry and the cross-tension geometry. Based on the literature survey performed, venture into this work was amply motivated by the fact that a little research work has been conducted to joining of dissimilar materials like non ferrous to ferrous. Most of the research works concentrated on joining of different materials like steel to steel or aluminium alloy to aluminium alloy by resistance spot welding. In this work, an experimental study on the resistance spot weldability of aluminium alloy (Al 6063 and austenitic stainless steel (AISI304 sheets, which are lap joined by using a pedestal type resistance spot welding machine. Welding was conducted using a 45-deg truncated cone copper electrode with 10-mm face diameter. The weld nugget diameter, force estimation under lap shear test and T – peel test were investigated using digital type tensometer attached with capacitive displacement transducer (Mikrotech, Bangalore, Model: METM2000ER1. The results shows that joining of Al 6063 and AISI 304 thin sheets by RSW method are feasible for automotive structural joints where the loads are below 1000N act on them, it is observed that by increasing the spots per unit length, then the joint with standing strength to oppose failure is also increased linearly incase of

  16. Welding of Materials for Energy Applications

    Science.gov (United States)

    DuPont, John N.; Babu, Suresh; Liu, Stephen

    2013-07-01

    Materials will play a critical role in power generation from both new and existing plants that rely on coal, nuclear, and oil/gas as energy supplies. High efficiency power plants are currently being designed that will require materials with improved mechanical properties and corrosion resistance under conditions of elevated temperature, stress, and aggressive gaseous environments. Most of these materials will require welding during initial fabrication and plant maintenance. The severe thermal and strain cycles associated with welding can produce large gradients in microstructure and composition within the heat-affected and fusion zones of the weld, and these gradients are commonly accompanied by deleterious changes to properties. Thus, successful use of materials in energy applications hinges on the ability to understand, predict, and control the processing-microstructure-property relations during welding. This article highlights some of the current challenges associated with fusion welding of materials for energy applications.

  17. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  18. Study on surface nanocrystallization and resisting H2S stresscorrosion properties of pressure vessel steel welding joints

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Many efforts were spent on the homogenization of microstructure and property of welding joints. A new surface nanocrystallization technique named Supersonic Particles Bombarding(SSPB) can be used for this purpose. Two kinds of pressure vessel steel welding joints, 16MnR and 0Cr18Ni9Ti, were chosen to be treated by SSPB. Transmission electron microscopy was introduced to examine the surface microstructure. And their ability to resist H2 S stress corrosion was enhanced significantly after the SSPB treatment. The mechanism for the results were analyzed as well.

  19. Researches concerning the ultasonic energy influence on the resistence to the abrasive wear of loaded welded parts

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2013-01-01

    Full Text Available The researches presented in the paper refer to the effect of ultrasounds propagation in the liquid metal bath on the process of transferring the additive material through the electric arch and on the crystallization process, and all these effects are analyzed for loaded welded parts solicited at the abrasive wear. All these influences are conferred to these two basic phenomena due to the ultrasounds propagation in liquid environments, namely, ultra-acoustic cavitation and acceleration of the diffusion process. The results concerns the resistance to the wear obtained for the loaded parts through manual welding with electric arch and classically covered electrode and ultrasonically activated.

  20. Multidrug-resistant breast cancer: current perspectives

    Directory of Open Access Journals (Sweden)

    Martin HL

    2014-01-01

    Full Text Available Heather L Martin,1 Laura Smith,2 Darren C Tomlinson11BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK; 2Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UKAbstract: Breast cancer is the most common cancer in women worldwide, and resistance to the current therapeutics, often concurrently, is an increasing clinical challenge. By understanding the molecular mechanisms behind multidrug-resistant breast cancer, new treatments may be developed. Here we review the recent advances in this understanding, emphasizing the common mechanisms underlying resistance to both targeted therapies, notably tamoxifen and trastuzumab, and traditional chemotherapies. We focus primarily on three molecular mechanisms, the phosphatidylinositide 3-kinase/Akt pathway, the role of microRNAs in gene silencing, and epigenetic alterations affecting gene expression, and discuss how these mechanisms can interact in multidrug resistance. The development of therapeutics targeting these mechanisms is also addressed.Keywords: PI3K/Akt, epigenetics, miRNA, ER, HER2, triple negative

  1. Dynamic Strength Evaluations for Self-Piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin; Khaleel, Mohammad A.

    2007-10-01

    This paper summarizes the dynamic joint strength evaluation procedures and the measured dynamic strength data for thirteen joint populations of self-piercing rivets (SPR) and resistance spot welds (RSW) joining similar and dissimilar metals. A state-of-the-art review of the current practice for conducting dynamic tensile/compressive strength tests in different strain rate regimes is first presented, and the generic issues associated with dynamic strength test are addressed. Then, the joint strength testing procedures and fixture designs used in the current study are described, and the typical load versus displacement curves under different loading configurations are presented. Uniqueness of the current data compared with data in the open literature is discussed. The experimental results for all the joint populations indicate that joint strength increases with increasing loading rate. However, the strength increase from 4.47m/s (10mph) to 8.94m/s (20mph) is not as significant as the strength increase from static to 4.47m/s. It is also found that with increasing loading velocity, displacement to failure decreases for all the joint samples. Therefore, “brittleness” of the joint sample increases with impact velocity. Detailed static and dynamic strength data and the associated energy absorption levels for all the samples in the thirteen joint populations are also included.

  2. Effects of Alloying Elements on Microstructure and Erosion Resistance of Fe-C-Cr Weld Surfacing Layer

    Institute of Scientific and Technical Information of China (English)

    Daqian SUN; Wenquan WANG; Zhaozhi XUAN; Yue XU; Zhenfeng ZHOU

    2003-01-01

    Effects of alloying elements on microstructure and erosion resistance of Fe-C-Cr weld surfacing layer have been studied. The experimental results show that increasing C and Cr content favors improving the erosion resistance of the layer, and the excessive C and Cr result in decreasing the erosion resistance at 90 deg. erosion. That Mo, Nb or Ti improves the erosion resistance of Fe-C-Cr weld surfacing layer is mainly attributed to increasing the amount of M7C3 and forming fine NbC or TiC in austenite matrix, but the excessive Mo, Nb or Ti is unfavorable. The addition of Mo, Nb and Ti in proper combination possesses stronger effect on improving the erosion resistance and the erosion resistance (εA) of Fe-C-Cr weld surfacing layer with fine NbC, TiC and M7C3 distributing uniformly in austenite matrix obviously increases to 2.81 at 15 deg. erosion and 2.88 at 90 deg. erosion when the layer composition is 3.05C, 20.58Cr, 1.88Mo, 2.00Nb and 1.05Ti (in wt pct).

  3. Microstructure and pitting corrosion resistance of AA2219 Al–Cu alloy friction stir welds – Effect of tool profile

    Directory of Open Access Journals (Sweden)

    Ch Venkata Rao

    2015-06-01

    Full Text Available AA2219 Al–Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness. Fabrication of components used for defence always involves welding. Even though the mechanical properties of the base metal are better, but the alloy suffers from poor mechanical and corrosion properties during fusion welding. To overcome the problems of fusion welding, friction stir welding (FSW is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the friction stir weld. In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminium–copper alloy was studied. Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile. Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW. It was found that the microstructure changes, such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones. Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone (TMAZ and heat affected zone (HAZ.

  4. Numerical Simulation on Interfacial Creep Failure of Dissimilar Metal Welded Joint between HR3C and T91 Heat-Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianqiang; TANG Yi; ZHANG Guodong; ZHAO Xuan; GUO Jialin; LUO Chuanhong

    2016-01-01

    The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic (HR3C) and martensitic heat-resistant steel (T91) are simulated by FEM at 873 K and under inner pressure of 42.26 MPa. The results show that the maximum principal stress and von Mises equivalent stress are quite high in the vicinity of weld/T91 interface, creep cavities are easy to form and expand in the weld/T91 interface. There are two peaks of equivalent creep strains in welded joint, and the maximum equivalent creep strain is in the place 27-32 mm away from the weld/T91 interface, and there exists creep constrain region in the vicinity of weld/T91 interface. The high stress triaxiality peak is located exactly at the weld/T91 interface. Accordingly, the weld/T91 interface is the weakest site of welded joint. Therefore, using stress triaxiality to describe creep cavity nucleation and expansion and crack development is reasonable for the dissimilar metal welded joint between austenitic and martensitic steel.

  5. The Effect of Ultrasonic Impact Treatment on the Fatigue Resistance of Friction Stir Welded Panels

    Science.gov (United States)

    Rodopoulos, C. A.; Pantelakis, Sp. G.; Papadopoulos, M. P.

    2009-12-01

    In this work, the results of an experimental study for assessing the effects of Ultrasonic Impact Treatment on the fatigue resistance of Friction Stir Welded aluminum alloy panels are presented. Although the significant compressive residual stress introduced on the material by ultrasonic impact treatment (UIT) was expected to cause retardation in the crack growth rate, this was only noted at low initial Δ Κ values. At high Δ Κ values, the effect of UIT practically diminishes. The phenomenon was attributed to the relaxation/redistribution of the residual stresses with fatigue damage. This provides an alarming situation where damage tolerance design relies on models where only the initial residual stress profile is taken into account without knowledge of the potential re-distribution of the residual stresses caused by the fatigue damage accumulation. The findings of this work also indicate that any FCG tests performed can only be considered as case-specific and conclusions can only be drawn for the case studied.

  6. A MULTI-COUPLED FINITE ELEMENT ANALYSIS OF RESISTANCE SPOT WELDING PROCESS

    Institute of Scientific and Technical Information of China (English)

    Hou Zhigang; Wang Yuanxun; Li Chunzhi; Chen Chuanyao

    2006-01-01

    A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis(FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis.The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.

  7. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    Science.gov (United States)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  8. Optimization of parameters and study of joint microstructure of resistance spot welding of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Yarong; Zhang Zhongdian; Li Dongqing

    2006-01-01

    Experimental investigations on the DC spot welding of Mg alloy AZ31B are presented. Experiments are carried out to study the influence of spot welding parameters (electrode force, welding heat input and welding time) on the tensile shear load and the diameter of nugget, based on an orthogonal test and analysis method. The optimum parameters are as follows:electrode force is 2 000 N, welding heat input is 80% and welding time is 6 cycles. The microstructure of spot weld is single fine equiaxed crystals in the nugget, of which the structure is β-Mg17Al12 precipitated on α-Mg boundaries induced by nonequilibrium freezing. And the surface condition of the workpiece has great influence on the joint quality.

  9. Fatigue Crack Growth Rate and Fracture Resistance of Heat Affected Zone of Stainless Steel Narrow Gap Welds

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Jung; Kim, Min U; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of); Cho, Sun Young [Korea Laboratory Engineering System, Daejeon (Korea, Republic of); Yang, Jun Seog [KEPCO, Daejeon (Korea, Republic of)

    2011-05-15

    In nuclear power plants, the automated narrow gap welding (NGW) technique has been widely used in joining stainless steel pipes in primary coolant system. As the primary system pipes are subjected to various transients during plant operation, cracks could initiate and propagate that would cause accidents. To prevent the cracking from developing into sudden failure in the primary system, leak-before-break (LBB) design concept has been developed and applied to many nuclear power plants. Meanwhile, to apply the LBB design, mechanical properties of the structural materials of piping systems should be evaluated, especially at weld zone and heat affected zone (HAZ), because mechanical properties within those regions show considerable scatter and spatial differences. In this study, fatigue crack grow rate (FCGR) and fracture resistance of base metal, weld zone, and HAZ of type 316L stainless steel narrow gap welds were performed at plant operating temperature (315 .deg. C) and room temperature. In particular, FCGR and fracture resistance of HAZ were evaluated in detail and compared to those of base metal

  10. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub project 1 - Ex-serviced parent metal and virgin weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Weilin Zang

    2006-10-15

    Many existing power generating and process plants, where low alloy heat resistant CrMo(V) steels are extensively used for critical components, have exceeded their design lifetime of usually 100,000 hours. Assessment of residual lifetime and extension of economic life by weld repair have become increasingly important and attractive. This project aims at i) performing weld repair and determining the degree of mismatching, ii) evaluating the creep properties of weld repairs, iii) analysing creep behaviour of weld repair and providing necessary data for further reliable simulations of weld repair creep behaviour in long term service, and iv), simulating and assessing lifetime and creep damage evolution of weld repair. Weld repair using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables has been carried out in a service-exposed 10 CrMo 9 10 pipe. Creep specimens have been extracted from the service-exposed 10 CrMo 9 10 parent metal (PM), from the virgin 10 CrMo 9 10 weld metal (WM), from the virgin 13 CrMo 4 4 WM as well as from the virgin 15 Mo 3 WM. Iso-thermal uniaxial creep tests have been performed at 540 deg C in air. Pre- and post-metallography are carried out on the selected samples. FEM simulations using obtained creep data are executed. Pre-test metallography shows normal and acceptable weld repairs at given welding conditions. Creep tests demonstrate that the virgin 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 WMs have apparently longer creep lifetime than the service-exposed CrMo 9 10 PM at higher stresses than 110 MPa. Among the weld metals, the longest creep lifetime is found in 10 CrMo 9 10. Higher creep strength and lower creep strain rate in the weld metals indicate an overmatch weld. At 95 MPa, however, lifetime of 13 CrMo 4 4 WM is surprisingly short (factors which may shorten lifetime are discussed and one more test will start to verify creep strength at low stress) and tests are still running for other two weld metals. More results regarding low stress

  11. Recent Corrosion Research Trends in Weld Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Tae; Kil, Sang Cheol [Korea Institute of Science and Technology Information, Seoul (Korea, Republic of); Hwang, Woon Suk [Inha University, Incheon (Korea, Republic of)

    2007-04-15

    The increasing interest in the corrosion properties of weld joints in the corrosive environment is placing stringent demands on the manufacturing techniques and performance requirements, and the manufacture employs the high quality and efficiency welding process to produce welds. Welding plays an important role in the fabrication of chemical plants, nuclear power plant, ship construction, and this has led to an increasing attention to the corrosion resistant weld joints. This paper covers recent technical trends of welding technologies for corrosion resistance properties including the COMPENDEX DB analysis of welding materials, welding process, and welding fabrications

  12. Assessment of weld quality of aerospace grade metals by using ultrasonic matrix phased array technology

    Science.gov (United States)

    Na, Jeong K.; Gleeson, Sean T.

    2014-03-01

    Advantages of two dimensional electronic ultrasonic beam focusing, steering and scanning with the matrix phased array (MPA) technology has been used to visualize the conditions of resistance spot welds in auto vehicle grade advanced high strength steel carbon steels nondestructively. Two of the commonly used joining techniques, resistance spot welding and resistance seam welding, for thin aerospace grade plates made of aluminum, titanium, and stainless steels have also been inspected with the same MPA NDE system. In this study, a detailed discussions of the current MPA based ultrasonic real time imaging methodology has been made followed by some of the NDT results obtained with various welded test coupons.

  13. The ultrasonic testing of the spot welded different steel sheets

    Directory of Open Access Journals (Sweden)

    M. Vural

    2006-08-01

    Full Text Available Purpose: Purpose of this paper is to investigate the applicability of spot welded different steel sheets toultrasonic testing, because resistance spot welding of the steel sheets is widely used in the car bodies andtransport fields and ultrasonic testing is a good way to evaluate the fatique life of the spot welds.Design/methodology/approach: Methodology of this paper is that two different steel sheets (AISI 304 typeaustenitic stainless steel sheet and Galvanized steel sheet were welded to each other by using resistance spotwelding. Some pre-welding tests were made to obtain suitable and optimum weld nugget diameter; and thewelding current vs. nugget diameter curve were obtained. By using this curve and kepting constant weldingparameters such as current, electrode pressure, weld time, etch., fully identical four spot welded specimenshaving 5 mm (±0.2 nugget diameter were obtained. The specimens and nugget diameters were tested by usinga special ultrasonic test apparatus which is designed for spot welded joints.Findings: Findings are that after the first ultrasonic tests, the four identical spot welded sheets which have AISI304 – Galvanized steel sheet combination were subjected to the fatigue test in four different number of cycles.There is no any rupture or fracture in spot welded joints after fatigue tests. The spot welded specimens subjectedto fatigue test were tested in ultrasonic test apparatus to observe the variation in the weld nugget and joint. Theultrasonic test results before fatigue and after fatigue were compared with each other; and the decreasing of theweld nugget diameter were observed while increasing the number of cycles. The results were shown in figuresand discussed.Research limitations/implications: Spot welding of different steel sheets forms different microstructures whichrespond different values to ultrasonic testing. Evaluation of these responses are quiet difficult.Practical implications: Only a few spot welds can be

  14. Contribution to the Study of Effects of Surface State of Welded Joints in Stainless Steel Upon Resistance Towards Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    Juraga, I.

    2007-01-01

    Full Text Available Successful corrosion resistance of stainless steels is based on their natural ability of passivation, i.e. formation of film of chromium oxides that prevents corrosion in many environments. Any nonuniformity of surface layers may be initial spot for corrosion processes and damages. In this contribution, beside real corrosion damages occurred in practice, results of testing of pitting corrosion resistance of weld beads made applying TIG process on AISI 316L steel grade are presented. SEM and EDX testing, as well as electrochemical corrosion testing confirmed adverse effects of heat tints zones upon corrosion resistance of stainless steels.

  15. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    Science.gov (United States)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) –Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  16. Friction welding of a nickel free high nitrogen steel: influence of forge force on microstructure, mechanical properties and pitting corrosion resistance

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Hazra

    2014-01-01

    Full Text Available In the present work, nickel free high nitrogen austenitic stainless steel specimens were joined by continuous drive friction welding process by varying the amount of forge (upsetting force and keeping other friction welding parameters such as friction force, burn-off, upset time and speed of rotation as constant at appropriate levels. The joint characterization studies include microstructural examination and evaluation of mechanical (micro-hardness, impact toughness and tensile and pitting corrosion behaviour. The integrity of the joint, as determined by the optical microscopy was very high and no crack and area of incomplete bonding were observed. Welds exhibited poor Charpy impact toughness than the parent material. Toughness for friction weld specimens decreased with increase in forge force. The tensile properties of all the welds were almost the same (irrespective of the value of the applied forge force and inferior to those of the parent material. The joints failed in the weld region for all the weld specimens. Weldments exhibited lower pitting corrosion resistance than the parent material and the corrosion resistance of the weld specimens was found to decrease with increase in forge force.

  17. Effects of nitrogen and pulsed mean welding current in AISI 316 austenitic stainless steel solidification cracks; Efecto del nitrogeno y la corriente media pulsada de soldadura en la formacion de grietas de solidificacion en aceros inoxidables AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, R. E.; Braga, E.; Fals, H. C.

    2002-07-01

    An analysis of the influence of nitrogen concentration in the weld zone and the pulsed mean welding current in the solidification crack formation is presented in this paper. The AISI 316L austenitic stainless steel was employed as the metal base. The welding was done using CC+ pulsed flux cored are welding process and AWS E316L wire type. The tests were conducted using CO{sub 2} shielding gas with four different nitrogen levels (0,5; 10 and 15%) in order to induce different nitrogen weld metal concentrations. The pulsed mean welding current was varied in three levels and the. Transvarestraint tangential strain test was fixed of 5%. The results showed that the solidification cracking decreased as the pulsed mean welding current increase. It was also verified that an increase of the weld zone nitrogen level was associated with a decrease in both the total length of solidification crack and the amount of {delta} ferrite. (AUthor) 20 refs.

  18. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  19. Finite Element and Experimental Study of Shunting in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Seyyedian Choobi, M.; Nielsen, C. V.; Bay, N.

    2015-01-01

    conducted to investigate the effect of shunting on nugget size in spot welding of HSLA steel sheets. Different cases with different spacing between weld spots have been examined. The nugget sizes have been measured by metallographic examination and have been compared with 3D finite element simulations....... The results of this study revealed that the shunt effect becomes negligible when the minimum weld spacing is about six times the electrode diameter. The results showed that the weld nugget diameter is more sensitive to shunt effect than the nugget height....

  20. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Lukasz; Morgiel, Jerzy [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow (Poland); Mars, Krzysztof; Godlewska, Elzbieta [Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow (Poland)

    2017-02-15

    The freestanding Ni(V)/Al multilayer foil was applied as a filler material in order to join Ti6Al4V alloy with the use of reactive resistance welding (RRW) technique. Present investigations, performed with the use of transmission electron microscopy (TEM) method, allowed to show that an application of high current (I = 400 A for 2 min in vacuum conditions ∝10{sup -1} mbar) transformed the Ni(V)/Al multilayers into fine grain (<300 nm) NiAl phase. It also showed that the RRW process led to the formation of firm connection with nanoporosity limited only to the original contact plane between base material and the foil. Simultaneously, the formation of a narrow strip of crystallites of Ti{sub 3}Al intermetallic phase elongated along the joint line (average size of ∝200 nm) was observed. The base material was separated from the joint area by a layer of up to ∝2 μm thickness of nearly defect free α-Ti and β-Ti grains from a heat affected zone (HAZ). The performed experiment proved that Ni(V)/Al multilayer could serve as a filler material for joining of Ti6Al4V alloys even without additional solder layer. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  2. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    Science.gov (United States)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  3. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Michael

    2016-04-04

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO{sub 2} emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized

  4. Manganese Content Control in Weld Metal During MAG Welding

    Science.gov (United States)

    Chinakhov, D. A.; Chinakhova, E. D.; Sapozhkov, A. S.

    2016-08-01

    The influence of the welding current and method of gas shielding in MAG welding on the content of manganese is considered in the paper. Results of study of the welded specimens of steels 45 when applying welding wire of different formulas and different types of gas shielding (traditional shielding and double-jet shielding) are given. It is found that in MAG welding the value of the welding current and the speed of the gas flow from the welding nozzle have a considerable impact on the chemical composition of the weld metal. The consumable electrode welding under double-jet gas shielding provides the directed gas-dynamics in the welding area and enables controlling the electrode metal transfer and the chemical composition of a weld.

  5. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    Science.gov (United States)

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-06-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding.

  6. Single-sided sheet-to-tube spot welding investigated by 3D numerical simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Chergui, Azeddine; Zhang, Wenqi

    The single-sided resistance spot welding process is analyzed by a 3D numerical study of sheet-to-tube joining. Finite element simulations are carried out in SORPAS® 3D. Two levels of electrode force and five levels of welding current are simulated. The overall effects of changing current and force...

  7. Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    Kamran Amini; Farhad Gharavi

    2016-01-01

    The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min. Corrosion behavior of the parent alloy (PA), the heat affected zone (HAZ), and the weld nugget zone (WNZ) of the joints were studied in 3.5% (mass fraction) aerated aqueous NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min. However, the value of corrosion rate in the weldments is lower than that in the PA. Additionally, the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ. On the contrary, the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed. The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases. The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy. With increasing the welding speed, the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region. In the HAZ region, in addition to the pits in the corroded area, some cracks can be seen around the corroded areas, which confirms that intergranular corrosion is formed in this area. The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions. Crystallographic pits are observed within the weld regions.

  8. The Electrochemical Investigation of the Corrosion Rates of Welded Pipe ASTM A106 Grade B

    Directory of Open Access Journals (Sweden)

    Trinet Yingsamphancharoen

    2016-08-01

    Full Text Available The aim of this work was to investigate the corrosion rate of welded carbon steel pipe (ASTM (American Society for Testing and Materials A106 Grade B by GTAW under the currents of 60, 70, and 80 A. All welded pipes satisfied weld procedure specifications and were verified by a procedure qualification record. The property of used materials was in agreement with the ASME standard: section IX. The welded pipe was used for schematic model corrosion measurements applied in 3.5 wt % NaCl at various flow rates and analyzed by using the electrochemical technique with Tafel’s equation. The results showed the correlation between the flow rate and the corrosion rate of the pipe; the greater the flow rate, the higher corrosion rate. Moreover, the welded pipe from the welding current of 70 A exhibited higher tensile strength and corrosion resistance than those from currents of 60 and 80 A. It indicated that the welding current of 70 A produced optimum heat for the welding of A106 pipe grade B. In addition, the microstructure of the welded pipe was observed by SEM. The phase transformation and crystallite size were analyzed by XRD and Sherrer’s equation. The results suggested that the welding current could change the microstructure and phase of the welded pipe causing change in the corrosion rate.

  9. Instructional Guidelines. Welding.

    Science.gov (United States)

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  10. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  11. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    Science.gov (United States)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2016-12-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  12. Molten Pool Behavior and Mechanical Properties of Pulsed Current Double-Sided Synchronization GTA Welded Fe-18Cr-17Mn-Ni-N

    Science.gov (United States)

    Qiang, Wei; Wang, Kehong; Feng, Yuehai; Chen, Jiahe

    2017-02-01

    Double-sided synchronization vertical gas tungsten arc welding (DSSVW) procedure was used to weld high-nitrogen low-nickel stainless steel Fe-18Cr-17Mn-Ni-N without groove and filler wire. First, the molten pool behaviors and appearances of pulsed current DSSVW (PC-DSSVW) and constant current DSSVW (CC-DSSVW) were comparatively analyzed. The periodic variation occurs in the width of both the anode region of the arc and the molten pool tail during PC-DSSVW, while the contact angle first increases and then decreases, and both the width of the anode region and the length of arc plume increase progressively in CC-DSSVW. It is found that the weld appearance of PC-DSSVW is superior to that of CC-DSSVW. Second, the forces of the DSSVW molten pool were analyzed. The result indicates that the molten pool of the DSSVW procedure is in a state of unstable equilibrium, and it will easily lose balance after being disturbed, resulting in the asymmetrical weld or hump bead. Third, the PC-DSSVW experiments at various welding speeds were conducted to study the influence of welding speed on the weld profile, microstructure, tensile strength and impact toughness. Furthermore, the solidification mode of Fe-18Cr-17Mn-Ni-N was predicted to help determine the microstructure of the welded joint. Results indicate that the weld width, weld reinforcement and melting area all increase with decreasing welding speed, and Fe-18Cr-17Mn-Ni-N solidifies as A mode. The microstructure of the base metal (BM) and heat-affected zone (HAZ) is equiaxed austenite and that of the fusion zone (FZ) is austenite dendrite with some chromium carbides dispersed in the grain boundary; with decreasing welding speed, grains become coarse. The maximum tensile strength (UTS) and elongation of PC-DSSVW joint are 860 MPa and 8.1%, and the elongation decreases dramatically with decreasing welding speed. The impact toughness decreases substantially compared to the BM, achieving 48.2% of the BM.

  13. Alternating-Polarity Arc Welding

    Science.gov (United States)

    Schwinghamer, R. J.

    1987-01-01

    Brief reversing polarity of welding current greatly improves quality of welds. NASA technical memorandum recounts progress in art of variable-polarity plasma-arc (VPPA) welding, with emphasis on welding of aluminum-alloy tanks. VPPA welders offer important advantages over conventional single-polarity gas/tungsten arc welders.

  14. Antibacterial resistance: Current problems and possible solutions

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2005-03-01

    Full Text Available Antimicrobial resistance is a natural biological phenomenon of response of microbes to the selective pressure of an antimicrobial drug. Resistance may be inherent, which explains the phenomenon of opportunistic infection or acquired. Concern about the resistance increased in the late 1990′s and since then, many governmental and agency reports have been published regarding the agricultural use of antibacterials, advising less use of antibacterials, appropriate choice of antibacterials and regimens, prevention of cross-infection and development of new antibacterials. The emergence of multidrug resistant strains of Gram-negative bacteria (Pseudomonas, Klebsiella, Enterobacter, Acinetobacter, Salmonella species and Gram-positve organisms (Staphylococcus, Enterococcus, Streptococcus species is the more worrisome in the present therapeutic scenario. Multidrug - resistant tuberculosis is another serious public health problems. Resistance to some agents can be overcome by modifying the dosage regimens (e.g., using high-dose therapy or inhibiting the resistance mechanism (e.g., beta-lactamase inhibitors, whereas other mechanisms of resistance can only be overcome by using an agent from a different class. It is urgently required to ban the sale of antibiotics without prescription, to use antibiotics more judiciously in hospitals by intensive teaching of the principles of the use of antibiotics and to establish better control measures for nosocomial infections. Thus, it is highly recommended that practicing physicians should become aware of the magnitude of existing problem of antibacterial resistance and help in fighting this deadly threat by rational prescribing.

  15. Mechanics model of additional longitudinal force transmission between bridges and continuously welded rails with small resistance fasteners

    Institute of Scientific and Technical Information of China (English)

    徐庆元; 周小林; 曾志平; 杨小礼

    2004-01-01

    A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement among the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.

  16. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  17. Influence of residual stress on the HIC resistance of high frequency induction welded pipes with regard to process-specific influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Krageloh, Joachim; Brauer, Holger; Bosch, Christoph [Salzgitter Mannesmann Line Pipe GmbH, (Germany)

    2010-07-01

    The industry needs to meet growing demand for pipes with high resistance to sour service conditions. Salzgitter Mannesmann Line Pipe is developing new product ranges of high frequency induction (HFI) welded pipes. This study investigated the influence of residual stress on the resistance of HFI welded pipes to HIC with focus on process-specific influencing factors. Four materials with different strengths were tested. Three of them were not manufactured for sour service and so were sure to show significant HIC damage during the tests. The specimens were studied using the cross-sectioning method for longitudinal and circumferential residual stress. A four-point-bend test in line with ADTM G 39 was also done to determine the HIC resistance of the pipe specimens. The results provide a characteristic HIC value and crack area ratio, CAR. This study showed that residual stress induced by HFI welding of pipes has no negative impact on resistance to HIC.

  18. Effects of Welding Processes on Microstructure and Corrosion Resistance of Weld Metal of Corrosion Resistant Ship Plate Steel DH36%焊接工艺对 DH36耐蚀船板钢焊缝金属组织与耐蚀性能的影响

    Institute of Scientific and Technical Information of China (English)

    隋志强; 齐彦昌; 王军丽; 马成勇

    2016-01-01

    Corrosion resistant ship plate steels DH36 were welded by using submerged-arc welding,flux cored wire CO 2 gas shielded welding and shielded metal arc welding processes,and then corrosion experiments were carried out in the simulated environment around bottom plates of cargo oil tanks,the effects of welding processes on microstructure and corrosion resistance of weld metals were studied.The results show that under three welding processes,microstructure of the weld metals consisted predominantly of acicular ferrite,ferrite side-plate and proeutectoid ferrite.Compared with shielded metal arc welding and gas shielded welding,the weld metal prepared by submerged-arc welding had the best corrosion resistance,this due to the decrease of proeutectoid ferrite caused by higher heat input.Under three welding processes,the size and distribution of inclusion in weld metal were similar,and there was no obvious difference in the effects of inclusion on corrosion property of weld metal.%分别采用埋弧焊、药芯焊丝 CO 2气体保护焊和焊条电弧焊工艺对 DH36耐蚀船板钢进行对接焊,然后在模拟油船货油舱下底板的腐蚀环境中进行腐蚀试验,研究了焊接工艺对焊缝金属组织和耐蚀性能的影响。结果表明:在3种焊接工艺下,焊缝金属的组织均主要由先共析铁素体、侧板条铁素体和针状铁素体组成;与焊条电弧焊和气体保护焊相比,采用埋弧焊得到的焊缝金属的耐蚀性能最优,这源于埋弧焊较高的热输入导致针状体素体数量减少;在三种焊接工艺下,焊缝金属中夹杂物的尺寸、分布均相似,它们对焊缝金属耐蚀性能的影响基本相同。

  19. Current resistance issues in anti- microbial therapy

    African Journals Online (AJOL)

    the reasons why antimicrobial therapy prescribed for the treatment of respiratory tract ... may not be confined to a single antibiotic, but may affect multiple antimicrobial classes. ..... of Antimicrobial Resistance: Guidelines for the prevention of ...

  20. Resistant hypertension: Current status, future challenges

    Directory of Open Access Journals (Sweden)

    Niloofar Hajizadeh

    2014-01-01

    Full Text Available Resistant hypertension in adolescents is increasing in frequency and is increasingly recognized as having significant short- and long-term health consequences. It may be seen in up to 30% of all hypertensive patients cared for. Adolescents with resistant hypertension are at higher cardiovascular (CV risk due to a long history of severe hypertension complicated by other CV risk factors such as obesity. Common causes of resistant hypertension include primary aldosteronism, sleep apnea, diabetes and chronic kidney disease. Careful blood pressure (BP measurement and thorough evaluation of patients with sustained BP elevation should make a possible early diagnosis of resistant hypertension. Successful treatment requires identification and reversal of life-style factors contributing to treatment resistant and diagnosis and appropriate treatment of causes of hypertension. Improved pharmacologic therapies may offer the potential for preventing or at least ameliorating early CV disease. This review highlights these and other important issues in the evaluation and management of adolescents with resistant hypertension and provides practical guidance to the practitioners involved in caring for such patients.

  1. Demands on and testing of resistance welding for HDPE pipes. Status and prospects of codes, frequent errors; Anforderungen und Pruefung von Heizwendelschweissverbindungen fuer Rohre aus PE-HD. Stand und Aussicht der Richtlinien, haeufige Fehler

    Energy Technology Data Exchange (ETDEWEB)

    Langlouis, Winfried; Baudrit, Benjamin; Behr, Heinz; Bastian, Martin [SKZ, Wuerzburg (Germany)

    2009-01-15

    Resistance welding (RW) of pipes and pipeline elements has been an established process, permitting construction of reliable and durable piping systems, for many decades. Up to now, however, there have been no standardized requirements for performance in shear and peeling tests. This gap has now been closed, and a comprehensive DVS code covering resistance welding from the training stage, via welding parameters, up to and including inspection, is now available. (orig.)

  2. On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis

    Science.gov (United States)

    Afshari, D.; Sedighi, M.; Karimi, M. R.; Barsoum, Z.

    2013-12-01

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  3. Research on High Frequency Inverter Resistance Spot Welding Power Supply Base on DSP%基于DSP的高频逆变电阻点焊电源的研究

    Institute of Scientific and Technical Information of China (English)

    曾敏; 魏良红; 马成; 曹彪

    2011-01-01

    微型零件的焊接要求焊接电源有较高的控制精度和良好的动态特性,必须提高电源设备的精密性和稳定性以提高焊接质量.因此,设计出基于数字信号处理器(Digital signal processing,DSP)的高频逆变电阻点焊电源.该电源以DSPIC30F6010A为控制核心,逆变主电路采用有限双极性的控制方式,通过调节脉冲宽度调制(Pulse width modulation,PWM)占空比来实现对输出电流的调节.调节控制中使用限制增量的比例积分(Proportion integration,PI)调节,以保证PWM调节的控制精度,并通过改变PI参数来得到3段焊接电流,实现焊接电流的精确调节.介绍电源控制系统的组成部分、有限双极性的工作原理,详述数字PWM的生成以及数字PI调节的方法,并通过试验进行验证.在试验中检测逆变电路的驱动电压波形,并获得设置不同参数时稳定输出的电压、电流波形.结果表明,该电源控制系统稳定可靠,具有较高的控制精度和较快的响应速度.焊接产品性能优良,达到了预期的焊接工艺要求.%The welding of micro-components requires the welding power source to have high control accuracy and excellent dynamic characteristics. The precision and stability of the resistance spot welding power must be promoted so that the welding quality can be improved. Therefore, the high frequency inverter resistance spot welding power supply based on DSP is designed. dsPIC30F6010A is the control core of the power. The limited bipolar control scheme is used in the main inverter circuit. PWM is adopted to adjust welding current features. Limited Increment Form PI is also used in the control system to improve the precision of PWM control. The PI parameters are changed continuously to produce three-segment current, so the welding current can be precisely adjusted. The components of the power control system and the working principle of the limited bipolar control are introduced. The digital PWM

  4. Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.

    Science.gov (United States)

    Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira

    2011-12-01

    This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.

  5. Monitoring and intelligent control of electrode wear based on a measured electrode displacement curve in resistance spot welding

    Science.gov (United States)

    Zhang, Y. S.; Wang, H.; Chen, G. L.; Zhang, X. Q.

    2007-03-01

    Advanced high strength steels are being increasingly used in the automotive industry to reduce weight and improve fuel economy. However, due to increased physical properties and chemistry of high strength steels, it is difficult to directly substitute these materials into production processes currently designed for mild steels. New process parameters and process-related issues must be developed and understood for high strength steels. Among all issues, endurance of the electrode cap is the most important. In this paper, electrode wear characteristics of hot-dipped galvanized dual-phase (DP600) steels and the effect on weld quality are firstly analysed. An electrode displacement curve which can monitor electrode wear was measured by a developing experimental system using a servo gun. A neuro-fuzzy inference system based on the electrode displacement curve is developed for minimizing the effect of a worn electrode on weld quality by adaptively adjusting input variables based on the measured electrode displacement curve when electrode wear occurs. A modified current curve is implemented to reduce the effects of electrode wear on weld quality using a developed neuro-fuzzy system.

  6. Effects of laser heat treatment on salt spray corrosion of 1Cr5Mo heat resistant steel welding joints

    Institute of Scientific and Technical Information of China (English)

    孔德军; 郭卫

    2015-01-01

    The surface of 1Cr5Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment (LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy (FESEM) and energy disperse spectroscopy (EDS), respectively, the polarization curves were measured on a PS-268A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.

  7. Optimization of pulsed current GTAW process parameters for sintered hot forged AISI 4135 P/M steel welds by simulated annealing and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Joby; Muthukumaran, S. [National Institute of Technology, Tamil Nadu (India)

    2016-01-15

    Abundant improvements have occurred in materials handling, especially in metal joining. Pulsed current gas tungsten arc welding (PCGTAW) is one of the consequential fusion techniques. In this work, PCGTAW of AISI 4135 steel engendered through powder metallurgy (P/M) has been executed, and the process parameters have been highlighted applying Taguchi's L9 orthogonal array. The results show that the peak current (Ip), gas flow rate (GFR), welding speed (WS) and base current (Ib) are the critical constraints in strong determinant of the Tensile strength (TS) as well as percentage of elongation (% Elong) of the joint. The practical impact of applying Genetic algorithm (GA) and Simulated annealing (SA) to PCGTAW process has been authenticated by means of calculating the deviation between predicted and experimental welding process parameters.

  8. Antibiotic resistance: current issues and future strategies

    Directory of Open Access Journals (Sweden)

    Giancarlo Scarafile

    2016-09-01

    Full Text Available The antibiotic resistance (antimicrobial resistance – AMR and the particular emergence of multi-resistant bacterial strains, is a problem of clinical relevance involving serious threats to public health worldwide. From early this decade, a lot of studies have demonstrated a significant increase in the rates of antibiotic resistance by bacterial pathogens responsible for nosocomial and community infections all over the world. The AMR leads to a reduced drug efficacy in the treatment options available and therefore, to an increase in mortality rates. The original causes of the phenomenon are: environmental factors which favor a mutation of the genetic bacterial inheritance, thereby inhibiting the active ingredient of the antibiotics; unsuitable administering of antibiotics in veterinary, incorrect taking both in hospitals and at home and, lately, lack of investments in the development of new drugs. The alarming epidemiological data prompted the World Health Organization (WHO in 2011 to coin the slogan "No action today, no cure tomorrow" in order to immediately implement a new strategy to improve the use of available drugs and to accelerate the introduction of new ones through a new phase of research involving private and public institutions. The European Union has stressed that the surveillance is considered an essential factor for an effective response to this problem but it has also highlighted that the results produced have been lower than expectations because of serious shortcomings such as lack of methodological standards, insufficient data sharing and no coordination among European countries. In Italy the situation is much more troubling; in fact, according to the Ministry of Health, 5000-7000 yearly deaths are deemed due to nosocomial infections, with an annual cost of more than 100 million €.These figures explain how the fight against infections is far from being won. The purpose of this review is to analyze the basic causes of the

  9. XRD and TEM analysis of microstructure in the welding zone of 9Cr–1Mo–V–Nb heat-resisting steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhou Bing; Feng Tao

    2002-06-01

    Under the condition of tungsten inert gas shielded welding (TIG) + shielded metal arc welding (SMAW) technology, the microstructure in the welding zone of 9Cr–1Mo–V–Nb (P91) heat-resisting steel is studied by means of X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The test results indicate that when the weld heat input () of TIG is 8.5 ∼ 11.7 kJ/cm and the weld heat input of SMAW is 13.3 ∼ 21.0 kJ/cm, the microstructure in the weld metal is composed of austenite and a little amount of ferrite. The substructure of austenite is crypto–crystal martensite, which included angle. There are some spot precipitates in the martensite base. TEM analysis indicates that the fine structure in the heat-affected zone is lath martensite. There are some carbides (lattice constant, 1.064 nm) at the boundary of grain as well as inside the grain, most of which are Cr23C6 and a little amount of (Fe, Me)23C6.

  10. 电阻点焊电动机支架断裂失效分析%Fracture failure analysis of resistance spot welding motor bracket

    Institute of Scientific and Technical Information of China (English)

    王亚婷; 徐越兰; 刘敏; 李文健

    2011-01-01

    分析了电阻点焊电动机支架高频振动破坏试样的失效原因.通过焊材成分分析、断口形貌分析和微观金相组织分析,结果表明,固定电动机支架发生断裂的原因是由于焊接工艺不当所致.因此在焊接过程中应该适当改变焊接工艺参数,调整焊接规范.%Fracture failure analysis was made on resistance spot welding motor bracket test specimens which were destroyed by the high-frequency vibration.Component analysis of weld materials, macroscopic analysis of fracture morphology and microscopic analysis of the microstructure show that the reason why the fixed motor bracket was broken was due to improper welding.Therefore, during the welding process the welding parameters should be changed appropriately, and the welding conditions should be adjusted too.

  11. Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets

    Institute of Scientific and Technical Information of China (English)

    Kondapalli Siva Prasad; Chalamalasetti Srinivasa Rao; Damera Nageswara Rao

    2012-01-01

    The paper focuses on developing mathematical models to predict grain size and ultimate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy.Four factors,five levels,central composite rotatable design matrix is used to optimize the number of experiments.The mathematical models have been developed by response surface method.The adequacy of the models is checked by analysis of variance technique.By using the developed mathematical models,grain size and ultimate tensile strength of the joints can be predicted with 99%0 confidence level.Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld ioints.

  12. Current Status of Early Blight Resistance in Tomato: An Update.

    Science.gov (United States)

    Adhikari, Pragya; Oh, Yeonyee; Panthee, Dilip R

    2017-09-21

    Early blight (EB) is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila), as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL) conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS) and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.

  13. Current Status of Early Blight Resistance in Tomato: An Update

    Directory of Open Access Journals (Sweden)

    Pragya Adhikari

    2017-09-01

    Full Text Available Early blight (EB is one of the dreadful diseases of tomato caused by several species of Alternaria including Alternaria linariae (which includes A. solani and A. tomatophila, as well as A. alternata. In some instances, annual economic yield losses due to EB have been estimated at 79%. Alternaria are known only to reproduce asexually, but a highly-virulent isolate has the potential to overcome existing resistance genes. Currently, cultural practices and fungicide applications are employed for the management of EB due to the lack of strong resistant cultivars. Resistance sources have been identified in wild species of tomato; some breeding lines and cultivars with moderate resistance have been developed through conventional breeding methods. Polygenic inheritance of EB resistance, insufficient resistance in cultivated species and the association of EB resistance with undesirable horticultural traits have thwarted the effective breeding of EB resistance in tomato. Several quantitative trait loci (QTL conferring EB resistance have been detected in the populations derived from different wild species including Solanum habrochaites, Solanum arcanum and S. pimpinellifolium, but none of them could be used in EB resistance breeding due to low individual QTL effects. Pyramiding of those QTLs would provide strong resistance. More research is needed to identify additional sources of useful resistance, to incorporate resistant QTLs into breeding lines through marker-assisted selection (MAS and to develop resistant cultivars with desirable horticultural traits including high yielding potential and early maturity. This paper will review the current understanding of causal agents of EB of tomato, resistance genetics and breeding, problems associated with breeding and future prospects.

  14. DESIGN NOTE: A very high output resistance current source

    Science.gov (United States)

    Hayatleh, K.; Terzopoulos, N.; Hart, B. L.

    2007-01-01

    The vertical stacking of two identical sub-circuits—improved versions of a bipolar transistor configuration proposed by Baxandall and Swallow—driven by dual output current mirrors, facilitates the design of a current generator producing a direct current of 1 mA with an incremental output resistance exceeding 200 GΩ.

  15. Application of new GMAW welding methods used in prefabrication of P92 (X10CrWMoVNb9-2) pipe butt welds

    Energy Technology Data Exchange (ETDEWEB)

    Urzynicok, Michal [Boiler Elements Factory ' ZELKOT' , Koszecin (Poland); Kwiecinski, Krzysztof; Slania, Jacek [Instytut Spawalnictwa, Gliwice (Poland); Szubryt, Marian [TUEV Nord, Katowice (Poland)

    2010-07-01

    Welding of collector pipes, flat heads, dished ends and connector pipes performed with high temperature and creep-resistant steels most often has been performed using TIG process combined with MMA processes. Progress in MAG process and availability of high quality filler materials (solid wires) enables welding of the above connections also using this method. In order to prove its efficiency, this article presents the results of related tests. The range of tests was similar to that applied during the qualification of welding technology. The investigation also involved microscopic and fractographic examinations. The results reveal that welding with new methods such as GMAW is by no means inferior to a currently applied MMA method yet the time of the process is shorter by 50%. The article present the world's first known positive results in welding of P92 grade steel using GMAW welding method. (orig.)

  16. Model of Layered Weld Formation Under Narrow Gap Pulse Welding

    Science.gov (United States)

    Krampit, A. G.

    2016-04-01

    The model parameters of narrow gap pulse welding can be divided into input, internal and output ones. The breadth of gap, that is, clearance breadth between upright edges is one of key parameters securing high quality of a weld joint. The paper presents theoretical outcomes for the model of layered weld formation under narrow gap pulse welding. Based on these studies is developed model of processes, which occur in the weld pool under pulse grove welding. It comprises the scheme of liquid metal motion in the weld pool, scheme of fusion with the side edge and in the bottom part, and the scheme of welding current impulse effect on the structure of a weld joint.

  17. Ultrapulse welding: A new joining technique. [for automotive industry

    Science.gov (United States)

    Anderson, D. G.

    1972-01-01

    The ultrapulse process is a resistance welding process that utilizes unidirectional current of high magnitude for a very short time with a precisely controlled dynamic force pulse. Peak currents of up to 220,000 amperes for two to ten milliseconds are used with synchronized force pulses of up to nine thousand pounds. The welding current passing through the relatively high resistance of the interface between the parts that are being joined results in highly localized heating. Described is the UPW process as it applies to the automotive industry.

  18. Creep properties and simulation of weld repaired low alloy heat resistant CrMo and Mo steels at 540 deg C. Sub-project 2 - Ex-serviced 2.25Cr1M0 weld metal and cross weld repairs

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Storesund, Jan; Borggreen, Kjeld; Feilitzen, Carl von

    2007-12-15

    Weld repair has been carried out in an ex-serviced 10 CrMo 9 10 pipe by using 10 CrMo 9 10, 13 CrMo 4 4 and 15 Mo 3 consumables. Application of current welding procedure and consumables results in an over matched weld repair. This is verified by both creep tests and the creep simulations at even lower stresses than tested. Creep specimens have been extracted from ex-serviced 10 CrMo 9 10 parent metal (PM) and weld metal (WM), from virgin 10 CrMo 9 10 WM, from virgin 13 CrMo 4 4 WM, and from virgin 15 Mo 3 WM. In addition, cross weld specimens including weld metal, heat affected zone (HAZ) and parent metal have been taken from the ex-serviced 10 CrMo 9 10 weld joint, and from three weld repairs. In total, there are nine test series. The sequence of creep lifetime at 540 deg C at given stresses is; virgin 10 CrMo 9 10 weld metal > virgin 15 Mo 3 weld metal approx virgin 13 CrMo 4 4 weld metal approx ex-serviced 10 CrMo 9 10 weld metal >> ex-serviced 10 CrMo 9 10 parent metal > ex-serviced 10 CrMo 9 10 cross weld approx 10 CrMo 9 10 cross weld repair approx 13 CrMo 4 4 cross weld repair approx and 15 Mo 3 cross weld repair. All the series show good creep ductility. The ex-serviced 10 CrMo 9 10 parent metal shows a creep lifetime about one order of magnitude shorter than that for both the virgin parent metal and the ex-serviced 10 CrMo 9 10 weld metal, independent of stresses. Differences in creep lifetime among the ex-serviced 10 CrMo 9 10 cross weld and other cross weld repairs are negligible, simply because rupture always occurred in the ex-serviced 10 CrMo 9 10 parent metal, approximately 10 mm from HAZ, for all the cross welds. Necking is frequently observed in the ex-serviced 10 CrMo 9 10 parent metal at the opposite side of the fracture. Creep damage to a large and a small extend is found adjacent to the fracture and at the necking area, respectively. Other parts of the weld joint like weld metal and HAZ are damage-free, independent of stress, weld metal and

  19. 薄壁高频电阻焊管焊缝的爬波检测%Creeping Wave Testing for Weld of Thin-walled High-frequency Electric Resistance Welded Pipe

    Institute of Scientific and Technical Information of China (English)

    甘正红; 方晓东; 余国民; 余洋; 苏继权

    2014-01-01

    电阻焊管焊缝中易出现的缺陷有未熔合(冷焊)、裂纹、夹杂等,该类缺陷主要为沿焊缝延伸的面积型缺陷,采用超声检测。根据薄壁高频电阻焊管焊缝的缺陷特征,选用了超声爬波检测。阐述了超声爬波检测的原理、特点和工艺方法,设计了爬波检测专用探头和对比试块。实际检测结果表明,爬波检测是一种新型高效的检测方法,证明了爬波检测技术在薄壁电阻焊管焊缝检测中的可行性。%Some defects easily appear in weld of HFW pipe, such as incomplete fusion (cold welding), crack, inclusion etc. The above defects are mainly area type defects along weld extension. These defects can be detected by creeping wave testing according to defects characteristics of thin-walled high-frequency electric resistance welded pipe. In this article, it expatiated the detection principle, features and process method of the creeping wave testing method, designed the creeping wave testing special probe and the reference blocks. The practical detection results showed that the creeping wave testing is a new type of high efficient detection method, and the creeping wave detection technology feasibility in thin-walled high-frequency electric resistance welded pipe was proved.

  20. INVESTIGATING SPOT WELD GROWTH ON 304 AUSTENITIC STAINLESS STEEL (2 mm SHEETS

    Directory of Open Access Journals (Sweden)

    NACHIMANI CHARDE

    2013-02-01

    Full Text Available Resistance spot welding (RSW has revolutionized automotive industries since early 1970s for its mechanical assemblies. To date one mechanical assembly out five is welded using spot welding technology in various industries and stainless steel became very popular among common materials. As such this research paper analyses the spot weld growth on 304 austenitic stainless steels with 2mm sample sheets. The growth of a spot weld is primarily determined by its parameters such as current, weld time, electrode tip and force. However other factors such as electrode deformations, corrosions, dissimilar materials and material properties are also affect the weld growth. This paper is intended to analyze only the effects of nuggets growth due to the current and weld time increment with constant force and unchanged electrode tips. A JPC 75kVA spot welder was used to accomplish it and the welded samples were undergone tensile test, hardness test and metallurgical test to characterize the formation of weld nuggets.

  1. Experimental determination of the critical welding speed in high speed MAG welding

    Institute of Scientific and Technical Information of China (English)

    Hu Zhikun; Wu Chuansong

    2008-01-01

    In high speed MAG welding process, some weld formation defects may be encountered. To get good weld quality, the critical welding speed beyond which humping or undercutting weld bead can occur must be known for different conditions. In this research, high speed MAG welding tests were carried out to check out the effects of different factors on the critical welding speed. Through observing the weld bead profiles and the macrographs of the transverse sections of MAG welds, the occurrence tendency of humping weld was analyzed, and the values of critical welding speed were determined under different levels of welding current or voltage, and the effect of shielding gas compositions on the critical welding speed was also investigated.

  2. 基于添加Zn中间层的汽车用镁/铝异种金属电阻点焊工艺与性能研究%Study on Process and Properties of Mg/Al Dissimilar Metal Resistance Spot Welding for Automobile Based on Adding Zn Intermediate Layer

    Institute of Scientific and Technical Information of China (English)

    李敬福; 陈强

    2016-01-01

    Mg alloy and Al alloy were welded by resistance spot welding with adding Zn interlayer.The microstructure and properties of the welded joints were studied by metallographic microscope,scanning electron microscope and universal testing machine.The results show that both sides of the matrix metal react with Zn interlayer when spot welding of Mg alloy and Al alloy,and the addition of Zn can prevent the direct contaction of Mg and Al.The main phases on the aluminum fracture side are Al,MgZn2 and Al5Mg11Zn4,and the main phases of magnesium fracture side are Mg and MgZn2.The fracture occurs in the MgZn2 layer.With the increase of welding current or welding time,the shear force of the welded joints increases firstly and then decreases.The maximum value of shear force of welded joints is 4.93 kN under the welding current of 25 kA,welding time of 500 ms and welding pressure of 8 kN.%采用电阻点焊并添加Zn中间层对汽车用镁合金和铝合金进行焊接,通过金相显微镜、扫描电镜和万能试验机研究了焊接接头组织和性能.结果表明,添加Zn中间层后,汽车用镁合金和铝合金电阻点焊时两侧母材分别与Zn发生反应,Zn的加入阻止了镁铝的直接接触,铝侧断口主要物相为Al、MgZn2和Al5Mg11Zn4,镁侧断口主要物相为Mg、MgZn2,断裂发生在MgZn2处.随着焊接电流或焊接时间的增加,添加Zn中间层的汽车用镁/铝异种金属焊接接头拉剪力先增加后减小,焊接电流25 kA、焊接时间500 ms、焊接压力8kN时,接头拉剪力达到最大值4.93 kN.

  3. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  4. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  5. Current Threat of Triclabendazole Resistance in Fasciola hepatica.

    Science.gov (United States)

    Kelley, Jane M; Elliott, Timothy P; Beddoe, Travis; Anderson, Glenn; Skuce, Philip; Spithill, Terry W

    2016-06-01

    Triclabendazole (TCBZ) is the only chemical that kills early immature and adult Fasciola hepatica (liver fluke) but widespread resistance to the drug greatly compromises fluke control in livestock and humans. The mode of action of TCBZ and mechanism(s) underlying parasite resistance to the drug are not known. Due to the high prevalence of TCBZ resistance (TCBZ-R), effective management of drug resistance is now critical for sustainable livestock production. Here, we discuss the current status of TCBZ-R in F. hepatica, the global distribution of resistance observed in livestock, the possible mechanism(s) of drug action, the proposed mechanisms and genetic basis of resistance, and the prospects for future control of liver fluke infections using an integrated parasite management (IPM) approach.

  6. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  7. Explosive Welding of Pipes

    Science.gov (United States)

    Drennov, Oleg; Drennov, Andrey; Burtseva, Olga

    2013-06-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. Explosive welding of cylindrical surfaces is performed by launching of welded layer along longitudinal axis of construction. During this procedure, it is required to provide reliable resistance against radial convergent strains. The traditional method is application of fillers of pipe cavity, which are dense cylindrical objects having special designs. However, when connecting pipes consecutively in pipelines by explosive welding, removal of the fillers becomes difficult and sometimes impossible. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water (perturbations, which are moving in the axial direction with sound velocity, should not reach the layer end boundaries for 5-7 circulations of shock waves in the radial direction). Linear dimension of the water layer from the zone of pipe coupling along axis in each direction is >= 2R, where R is the internal radius of pipe.

  8. Use of Metallographic Analysis and Strength Testing to Improve Ultrasonic Phased-Array Evaluation of Resistance SPOT Welds

    Science.gov (United States)

    Hopkins, Deborah L.

    2008-02-01

    Results are summarized for a series of experiments in which one hundred spot welds were inspected using a high-frequency phased-array ultrasonic probe, and then sectioned, polished and etched to reveal the microstructure of the welds. The ultrasonic and metallographic results are analyzed in conjunction with the results of strength tests and the size of the weld buttons obtained from destructive tear-down of the welded samples.

  9. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  10. Cryogenic current comparators with optimum SQUID readout for current and resistance quantum metrology

    NARCIS (Netherlands)

    Bartolomé Porcar, María Elena

    2002-01-01

    This thesis describes the development of several systems based on the Cryogenic Current Comparator with optimum SQUID readout, for current and resistance metrology applications. the CCC-SQUID is at present the most accurate current comparator available. A (type I) CCC consists basically of a

  11. Quasi-static compression of electric resistance welded mild steel tubes with axial gradient-distributed microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengjie; Sun, Lei; Ma, Xudong [Harbin Institute of Technology, Weihai (China)

    2016-05-15

    This paper presents the deformation behavior and crash worthiness of electric resistance welded mild steel tubes with axial gradient microstructures in quasi-static compression. Three sets of tubes were prepared, and regions of each tube were Induction heated and directly quenched (IH-DQ). The effect of the length to diameter (L/D) ratio, and length of the IH-DQ region on crushing characteristics was investigated, and compared with untreated tubes. The compression tests revealed that improved energy absorption can be obtained in IHDQ tubes if the collapse is controlled by the formation of a concertina buckling mode. However, there was a tendency to produce mixed or Euler buckling modes as the ratio of L/D increased. Meanwhile, the results of the crush experiments and the FEM models showed that the heat-treatment process should be precisely controlled to produce the correct type of microstructure, and circumferential uniformity of microstructure distribution.

  12. Joining technologies for the 1990s: welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.D.; Stein, B.A.

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding. For individual titles see N86-11228 through N86-11255.

  13. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.D.; Stein, B.A.

    1986-01-01

    This book presents recent advances in joining technologies for the 1990s-welding, brazing, soldering, mechanical fastening, explosive welding, solid-state bonding, and adhesive bonding. A major consideration in the fabrication of any commercial, military, or space product is attachment systems which are safe and reliable. The subject matter covered includes technology developed in current research programs relevant to welding, bonding, and fastening of structural materials, for fabricating structures and mechanical systems use in the aerospace, automotive, and related industries. Specific topics include equipment, hardware and materials used when welding, brazing, and soldering; mechanical fastening; explosive welding; use of unique selected joining techniques; adhesive bonding; and nondestructive evaluation. ''The Factory of the Future'' is presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  14. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  15. Current state of herbicides in herbicide-resistant crops.

    Science.gov (United States)

    Green, Jerry M

    2014-09-01

    Current herbicide and herbicide trait practices are changing in response to the rapid spread of glyphosate-resistant weeds. Growers urgently needed glyphosate when glyphosate-resistant crops became available because weeds were becoming widely resistant to most commonly used selective herbicides, making weed management too complex and time consuming for large farm operations. Glyphosate made weed management easy and efficient by controlling all emerged weeds at a wide range of application timings. However, the intensive use of glyphosate over wide areas and concomitant decline in the use of other herbicides led eventually to the widespread evolution of weeds resistant to glyphosate. Today, weeds that are resistant to glyphosate and other herbicide types are threatening current crop production practices. Unfortunately, all commercial herbicide modes of action are over 20 years old and have resistant weed problems. The severity of the problem has prompted the renewal of efforts to discover new weed management technologies. One technology will be a new generation of crops with resistance to glyphosate, glufosinate and other existing herbicide modes of action. Other technologies will include new chemical, biological, cultural and mechanical methods for weed management. From the onset of commercialization, growers must now preserve the utility of new technologies by integrating their use with other weed management technologies in diverse and sustainable systems.

  16. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  17. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions

  18. Electrochemical behavior of YAG laser-welded NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-jun; YANG Da-zhi; LIU Xiao-peng

    2006-01-01

    Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linear and potentiodynamic polarization. The results indicate that the laser-welded NiTi alloy is less susceptible to pitting and crevice corrosion than the base metal, which is demonstrated by the increase in polarization resistance(Rp) and pitting potential(ψpit) and decrease in corrosion current density(Jcorr) and mean difference between ψpit and ψprot values. It is confirmed by scanning electron microscope micrographs that pits could be observed on the surface of base metal but not on the surface of laser-welded alloy after potentiodynamic tests. An improvement of corrosion resistance of laser-welded NiTi alloy could be attributed to almost complete dissolution of inclusions upon laser welding.

  19. Properties of thick welded joints on superheater collectors made from new generation high alloy martensitic creep-resisting steels for supercritical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzanski, Janusz; Zielinski, Adam [Institute for Ferrous Metallurgy, Gliwice (Poland); Pasternak, Jerzy [Boiler Engineering Company RAFAKO S.A., Raciborz (Poland)

    2010-07-01

    The continuously developing power generation sector, including boilers with supercritical parameters, requires applications of new creep-resistant steel grades for construction of boilers steam superheater components. This paper presents selected information, experience within the field of research and implementation of a new group of creep-resistant as X10CrMoVNb9-1(P91), X10CrWMoVNb9-2(P92) and X12CrCoWVNb12-2-2(VM12) grades, containing 9-12%Cr. During welding and examination process the results of mechanical properties, requested level for base material and welded joints, as well as: tensile strength, impact strength and technological properties have been evaluated. Additional destructive examinations, with evaluation of structure stability, hardness distribution, for base material and welded joints after welding, heat treatment, again process have been determined. Recommendations due to the implementation influence of operating parameters of the main boiler components are part of this paper. (orig.)

  20. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    Science.gov (United States)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  1. Investigation of residual stresses in welded joints of heat-resistant magnesium alloy ML10 after electrodynamic treatment

    Directory of Open Access Journals (Sweden)

    L.M. Lobanov

    2016-06-01

    Full Text Available In repair of aircraft structures of magnesium alloy ML10, the argon arc non-consumable electrode welding is used. In this case, the residual welding stresses occur in repair welds, being one of the causes for reducing the service characteristics of the restored products. Residual stresses arise as a result of welding. Post-weld heat treatment is used to reduce the residual stresses. The heat treatment, which occurs after welding, increases the cost of repair. This leads to the search for alternative methods to control the stressed state of welded joints, one of which is electrodynamic treatment, which reduces the level of residual stresses in repair welds, and as a consequence, the cost of the welding repair in restoring aircraft structures. It was found from the results of experiments carried out, that the electrodynamic treatment allows reduces the initial level of stresses in welded joints, reaching 120 MPa, to 30 MPa, and at definite geometric characteristics of the specimens forming the field of compressive stresses, the values of which are equal to –50 MPa. It is shown that the optimum distance between the zones of treatment, being 5 mm, provides the guaranteed covering the zones of electrodynamic effect and, as a consequence, the maximum efficiency of the electric dynamic treatment.

  2. Practical small-scale explosive seam welding

    Science.gov (United States)

    Bement, L. J.

    1983-01-01

    A small-scale explosive seam welding process has been developed that can significantly contribute to remote metal joining operations under hazardous or inaccessible conditions, such as nuclear reactor repair and assembly of structure in space. This paper describes this explosive seam welding process in terms of joining principles, variables, types of joints created, capabilities, and applications. Very small quantities of explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long-length, uniform, hermetically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The practicality of this process has been demonstrated by its current acceptance, as well as its capabilities that are superior in many applications to the universally accepted joining processes, such as mechanical fasteners, fusion and resistance welding, and adhesives. Previously announced in STAR as N83-24896

  3. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  4. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  5. 基于 DSP 的逆变交流电阻焊电源控制%Control of Power Source for AC Inverter Resistance Welding on the Basis of DSP

    Institute of Scientific and Technical Information of China (English)

    曹彪; 李海波; 庞少辉

    2015-01-01

    常用的工频电阻焊机输出不连续的类正弦交流波形,由于电流过零时间长,同等功率下电流峰值过大,造成焊接时工件加热不连续,易产生飞溅,针对上述问题,设计了一种基于数字信号处理器(DSP)的逆变交流控制系统。该系统以 DSP 为控制核心,包括信息检测、脉宽调制(PWM)输出控制、人机交互、输入输出(I /O)接口、故障检测等电路和相应的控制软件。系统采用 PWM控制方式调节焊接变压器的初级电压,实现了大范围电流调节条件下较为连续的输出;具有电流、电压、功率3种反馈控制模式和多种频率选择,在每半个周期内实现快速反馈调节,提高了控制精度,改善了交流电阻焊机的工艺适应性。%Single-phase AC resistance welder provides alternating current similar to sine-wave.Due to the long zero-crossing time and high peak current,welding heating becomes discontinuous and splash occurs easily.In order to solve these problems,a control system for AC resistance welding,which takes DSP(Digital Signal Processor)as the controlling core and is composed of information detection,PWM (Pulse Width Modulation)output control,human-computer interaction,I /O (Input/Output)interface and fault detection circuits,is developed,and the correspond-ing software is also designed to assure system function.By employing PWMcontrol to adjust the primary voltage of welding transformer,a relative continuous output in wide current range is ensured.The control system possesses three feedback control modes respectively in terms of current,voltage and power,provides several output frequen-cies,and implements quick and stable output control in half a period.Thus,both high control precision and adaptive welding process can be achieved.

  6. Development of the new physical method for real time spot weld quality evaluation using ultrasound

    Science.gov (United States)

    Chertov, Andriy M.

    Since the invention of resistance spot welding, the manufacturers have been concerned about the quality assurance of the joints. One of the most promising directions in quality inspection is the real time ultrasonic nondestructive evaluation. In such a system, the acoustic signals are sent through the spot weld during welding and then analyzed to characterize the quality of the joint. Many research groups are currently working to develop a reliable inspection method. In this dissertation the new physical method of resistance spot weld quality monitoring is presented. It differs from all other ultrasonic methods by the physical principles of inspection. The multilayered structure of the spot weld with varying physical properties is investigated with short pulses of longitudinal ultrasonic waves. Unlike other methods, the developed technology works in reflection mode. The waves bring back the information which, after careful analysis, can be used to evaluate the weld quality. The complex structure of the weldment modifies the waves in different ways which, makes it hard to accurately measure the physical properties of the weldment. The frequency-dependent attenuation of the sound, diffraction, and beam divergence - all contribute to the signal distraction. These factors are fully studied, and ways to minimize them are presented. After application of pattern recognition routines, the weld characteristics are submitted to fuzzy logic algorithm, and the weld is characterized. The current level of the system development allowed the installation of two prototype machines at one assembly plant. The technology is now under thorough evaluation for robustness and accuracy in an industrial environment.

  7. Laser welding and post weld treatment of modified 9Cr-1MoVNb steel.

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z. (Nuclear Engineering Division)

    2012-04-03

    Laser welding and post weld laser treatment of modified 9Cr-1MoVNb steels (Grade P91) were performed in this preliminary study to investigate the feasibility of using laser welding process as a potential alternative to arc welding methods for solving the Type IV cracking problem in P91 steel welds. The mechanical and metallurgical testing of the pulsed Nd:YAG laser-welded samples shows the following conclusions: (1) both bead-on-plate and circumferential butt welds made by a pulsed Nd:YAG laser show good welds that are free of microcracks and porosity. The narrow heat affected zone has a homogeneous grain structure without conventional soft hardness zone where the Type IV cracking occurs in conventional arc welds. (2) The laser weld tests also show that the same laser welder has the potential to be used as a multi-function tool for weld surface remelting, glazing or post weld tempering to reduce the weld surface defects and to increase the cracking resistance and toughness of the welds. (3) The Vicker hardness of laser welds in the weld and heat affected zone was 420-500 HV with peak hardness in the HAZ compared to 240 HV of base metal. Post weld laser treatment was able to slightly reduce the peak hardness and smooth the hardness profile, but failed to bring the hardness down to below 300 HV due to insufficient time at temperature and too fast cooling rate after the time. Though optimal hardness of weld made by laser is to be determined for best weld strength, methods to achieve the post weld laser treatment temperature, time at the temperature and slow cooling rate need to be developed. (4) Mechanical testing of the laser weld and post weld laser treated samples need to be performed to evaluate the effects of laser post treatments such as surface remelting, glazing, re-hardening, or tempering on the strength of the welds.

  8. Ferrous friction stir weld physical simulation

    Science.gov (United States)

    Norton, Seth Jason

    2006-04-01

    Traditional fusion welding processes have several drawbacks associated with the melting and solidification of metal. Weld defects associated with the solidification of molten metal may act as initiation sites for cracks. Segregation of alloying elements during solidification may cause local changes in resistance to corrosion. The high amount of heat required to produce the molten metal in the weld can produce distortion from the intended position on cooling. The heat from the electric arc commonly used to melt metal in fusion welds may also produce metal fumes which are a potential health hazard. Friction stir welding is one application which has the potential to make full thickness welds in a single pass, while eliminating fume, reducing distortion, and eliminating solidification defects. Currently the friction stir welding process is used in the aerospace industry on aluminum alloys. Interest in the process by industries which rely on iron and its alloys for structural material is increasing. While friction stir welding has been shown to be feasible with iron alloys, the understanding of friction stir welding process effects on these materials is in its infancy. This project was aimed to better that understanding by developing a procedure for physical simulation of friction stir welding. Friction stir weld material tracer experiments utilizing stainless steel markers were conducted with plates of ingot iron and HSLA-65. Markers of 0.0625" diameter 308 stainless steel worked well for tracing the end position of material moved by the friction stir welding tool. The markers did not produce measurable increases in the loading of the tool in the direction of travel. Markers composed of 0.25" diameter 304 stainless steel did not perform as well as the smaller markers and produced increased loads on the friction stir welding tool. The smaller markers showed that material is moved in a curved path around the tool and deposited behind the tool. Material near the surface

  9. Fluconazole resistance in Candida species: a current perspective

    Directory of Open Access Journals (Sweden)

    Berkow EL

    2017-07-01

    Full Text Available Elizabeth L Berkow, Shawn R Lockhart Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract: Candida albicans and the emerging non-albicans Candida spp. have significant clinical relevance among many patient populations. Current treatment guidelines include fluconazole as a primary therapeutic option for the treatment of these infections, but it is only fungistatic against Candida spp. and both inherent and acquired resistance to fluconazole have been reported. Such mechanisms of resistance include increased drug efflux, alteration or increase in the drug target, and development of compensatory pathways for producing the target sterol, ergosterol. While many mechanisms of resistance observed in C. albicans are also found in the non-albicans species, there are also important and unexpected differences between species. Furthermore, mechanisms of fluconazole resistance in emerging Candida spp., including the global health threat Candida auris, are largely unknown. In order to preserve the utility of one of our fundamental antifungal drugs, fluconazole, it is essential that we fully appreciate the manner by which Candida spp. manifest resistance to it. Keywords: Candida, fluconazole resistance, ERG11, drug efflux, ergosterol

  10. An embedded man-machine interface design of full digital resistance welding machine%一种嵌入式全数字化电阻焊机人机界面的设计

    Institute of Scientific and Technical Information of China (English)

    张振法; 王剑; 吴玉香; 田联房

    2012-01-01

    The design of man -machine interface was an important part of the full -digital high -current intermediate -frequency inverter resistance welding machine. For the development needs of current domestic welding machine, a visualization graphical man-machine interaction interface system was designed based on WinCE embedded operating system in the paper. The MFC of EVC++4.0 and SQLite database was used to overall development design and unified management of the welding machine data in the interface system, and it also could communicate with the lower machine DSP via RS232 or network. Extensive testing showed that the interface system could achieve user rights management, multiple welding controller management, basic specifications and parameter settings, spot control and real-time monitoring sampling etc. Also, it could be easy to operate and had powerful function and strong real-time. A new method was provided for the man-machine interface design of welding machine with embedded WinCE system.%人机交互界面设计是全数字化大电流中频逆变电阻焊机研究的一个重要组成部分.针对当前国内电焊机的发展需求,设计了一款基于WinCE嵌入式操作系统的可视化图形人杌交互界面系统.该界面系统采用EVC++4.0中的MFC进行总体开发设计,利用数椐库SQLite对焊机数据进行统一管理,并能通过RS232或网络与下位机DSP进行通信.通过大量的测试表明,界面能很好地实现焊机用户权限管理、多焊机控制器管理、基本规范与参数设置、打点控制及实时监控采样等功能,操作方便、功能强大、实时性强.采用嵌入式WinCE系统,为电焊杌人机界面的设计提供了一种新方法.

  11. Evaluation of the resistance of API 5L-X80 girth welds to sulphide stress corrosion cracking and hydrogen embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Forero, Adriana [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil); Ponciano, Jose A. [Universidade Federal do Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao em Engenharia; Bott, Ivani de S. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    2009-07-01

    The susceptibility of pipeline steels to stress corrosion cracking (SCC) depends on a series of factors ranging from the manufacture of the steel, the pipe fabrication and the assembly of the pipeline to the type of substances to be transported. The welding procedures adopted during the production and construction of the pipelines (field welding), can modify the properties of the base metal in the heat affected zone (HAZ), potentially rendering this region susceptible to SCC. This study evaluates the resistance of girth welds, in API 5L X80 pipes, to hydrogen embrittlement and to stress corrosion cracking in the presence of sulphides. The evaluation was performed according to NACE TM0177/96, Method A, applying the criterion of fracture/no fracture, and Slow Strain Rate Tensile tests (SSRT) were undertaken using a sodium thiosulphate solution according to the ASTM G129-00 Standard. According NACE requirements, the base metal was approved. The weld metal exhibited susceptibility to SCC in the presence of sulphides, failing in a period of less than 720h. This was confirmed by SSR tensile tests, where a significant decrease in the ultimate tensile strength, the elongation and the time to fracture were observed. The mechanism of fracture was transgranular. (author)

  12. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  13. Modeling and simulating of unloading welding transformer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The simulation model of an unloading welding transformer was established on the basis of MATLAB software, and the modeling principle was described in detail in the paper. The model was made up of three sub-models, i.e. the linear inductor sub-model, the non-linear inductor sub-model and series connection sub-model controlled by current, and these sub-models were jointed together by means of segmented linearization. The simulating results showed that, in the conditions of the high convert frequency and the large cross section of the magnet core of a welding transformer, the non-linear inductor sub-model can be substituted by a linear inductor sub-model in the model; and the leakage reactance in the welding transformer is one of the main reasons of producing over-current and over-voltage in the inverter. The simulation results demonstrate that the over-voltage produced by leakage reactance is nearly two times of the input voltage supplied to the transformer, and the lasting time of over-voltage depends on time constant τ1. With reducing of τ1, the amplitude of the over-current will increase, and the lasting time becomes shorter. Contrarily, with increasing of τ1, the amplitude of the over-current will decrease, and the lasting time becomes longer. The model has played the important role for the development of the inverter resistance welding machine.

  14. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  15. Weld pool image sensor for pulsed MIG welding

    Institute of Scientific and Technical Information of China (English)

    Liu Pengfei; Sun Zhenguo; Huang Cao; Chen Qiang

    2008-01-01

    Visual image sensor is developed to detect the weld pool images in pulsed MIG welding. An exposure controller, which is composed of the modules of the voltage transforming, the exposure parameters presetting, the complex programmable logic device (CPLD) based logic controlling, exposure signal processing, the arc state detecting, the mechanical iris driving and so on, is designed at first. Then, a visual image sensor consists of an ordinary CCD camera, optical system and exposure controller is established. The exposure synchronic control logic is described with very-high-speed integrated circuit hardware description language (VHDL) and programmed with CPLD, to detect weld pool images at the stage of base current in pulsed MIG welding. Finally, both bead on plate welding and V groove filled welding are carried out, clear and consistent weld pool images are acquired.

  16. Optimization of welding parameters of Ti6Al4V alloy using electron beam

    Directory of Open Access Journals (Sweden)

    Petr Havlík

    2016-06-01

    Full Text Available Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

  17. SRF test facility for the superconducting LINAC ``RAON'' — RRR property and e-beam welding

    Science.gov (United States)

    Jung, Yoochul; Hyun, Myungook; Joo, Jongdae; Joung, Mijoung

    2015-02-01

    Equipment, such as a vacuum furnace, high pressure rinse (HPR), eddy current test (ECT) and buffered chemical polishing (BCP), are installed in the superconducting radio frequency (SRF) test facility. Three different sizes of cryostats (diameters of 600 mm for a quarter wave resonator (QWR), 900 mm for a half wave resonator (HWR), and 1200 mm for single spoke resonator 1&2 (SSR 1&2)) for vertical RF tests are installed for testing cavities. We confirmed that as-received niobium sheets (ASTM B393, RRR300) good electrical properties because they showed average residual resistance ratio (RRR) values higher than 300. However, serious RRR degradation occurred after joining two pieces of Nb by e-beam welding because the average RRR values of the samples were ˜179, which was only ˜60% of as-received RRR value. From various e-beam welding experiments in which the welding current and a speed at a fixed welding voltage were changed, we confirmed that good welding results were obtained at a 53 mA welding current and a 20-mm/s welding speed at a fixed welding voltage of 150 kV.

  18. What makes an electric welding arc perform its required function

    Energy Technology Data Exchange (ETDEWEB)

    Correy, T.B.

    1982-09-01

    The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

  19. Piezoelectric resonators with mechanical damping and resistance in current conduction

    Institute of Scientific and Technical Information of China (English)

    Yook-Kong; YONG; Mihir; S; PATEL

    2007-01-01

    A novel design method for high Q piezoelectric resonators was presented and proposed using the 3-D equations of linear piezoelectricity with quasi-electrostatic approximation which include losses attributed to mechanical damping in solid and resistance in current conduction. There is currently no finite element software for estimating the Q of a resonator without apriori assumptions of the resonator impedance or damping. There is a necessity for better and more realistic modeling of resonators and filters due to miniaturization and the rapid advances in frequency ranges in telecommunication.We presented new three-dimensional finite element models of quartz and barium titanate resonators with mechanical damping and resistance in current conduction. Lee, Liu and Ballato's 3-D equations of linear piezoelectricity with quasi-electro- static approximation which include losses attributed to mechanical damping in solid and resistance in current conduction were formulated in a weak form and implemented in COMSOL. The resulting finite element model could predict the Q and other electrical parameters for any piezoelectric resonator without apriori assumptions of damping or resistance. Forced and free vibration analyses were performed and the results for the Q and other electrical parameters were obtained. Comparisons of the Q and other electrical parameters obtained from the free vibration analysis with their corresponding values from the forced vibration analysis were found to be in excellent agreement. Hence, the frequency spectra obtained from the free vibration analysis could be used for designing high Q resonators. Results for quartz thickness shear AT-cut and SC-cut resonators and thickness stretch poled barium titanate resonators were presented. An unexpected benefit of the model was the prediction of resonator Q with energy losses via the mounting supports.

  20. State Monitoring of High-Frequency Electric Resistance Welding Based on Digital Image Technology%基于数字图像技术的高频电阻焊状态监测

    Institute of Scientific and Technical Information of China (English)

    王会峰; 李云龙; 李记科

    2012-01-01

    为实现对高频电阻焊焊接过程的在线实时监测,通过对焊接现象、焊接缺陷及其成因的分析,提出了一种基于高速CCD成像和数字图像处理的焊接过程自动化监测方法.该方法利用架设在焊接区域上部的高速CCD相机获取焊接区的数字图像,通过对焊接区图像的特征加热面积、V型开口角大小、焊接熔合点位置、加热区对称度等多个参数的提取和测量,获取焊接区的多特征参数,然后将这些参数进行数据融合,得到当前的焊接状态.在图像处理中应用了基于非平衡R-G-B填充的抗干扰分割算法、基于直线拟合的V型角开口角大小及角分线检测算法,设计了面积对称度评价函数及基于BP神经网络的多特征融合模型.通过现场实验发现:文中方法能够有效监测焊接区的状态,有利于焊接质量控制.%In order to realize the real-time and on-line state monitoring of the high-frequency electric resistance welding (HF-ERW) , according to the analytical results of various welding phenomena as well as the welding defects and their causes, an automatic monitoring method based on the high-speed CCD imaging and the digital image processing is proposed. In this method, digital images of the welding region are obtained by using a CCD camera set on a fixed location above the welding region, and the parameters, such as the characteristic heating area, the value of V-type angle, the location of welding bond point and the symmetry degree of the heating region, are measured and processed through a multi-characteristic fusion, thus revealing the current welding state. Moreover, during the image processing, a new segmentation algorithm based on R-G-B non-equilibrium anti-inlerference technology is employed, the V-type angle detection and the corresponding bisection algorithm based on line fitting are adopted, a function to evaluate the symmetry degree of the heating region is designed, and a multi

  1. Emerging memories: resistive switching mechanisms and current status.

    Science.gov (United States)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R S; Scott, J F; Kohlstedt, H; Petraru, A; Hwang, Cheol Seong

    2012-07-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

  2. Investigation of C-276 Weld Metal Corrosion Resistance after Cold Metal Transfer(CMT)Welding%C-276合金冷金属过渡焊接焊缝熔敷金属耐蚀性研究

    Institute of Scientific and Technical Information of China (English)

    闫宏伟; 谷文; 高殿宝; 莫文林

    2013-01-01

    C-276合金在氧化性和非氧化性酸中都具有很好的耐腐蚀性,所以在精对苯二甲酸(PTA)装置中应用较多。在化工容器设计时,虽然没有明确规定哪些场合使用复合板或堆焊,但是,考虑到堆焊层是铸造枝晶状奥氏体组织,复合板是轧制孪晶奥氏体组织,而且堆焊的热过程比复合的热过程复杂。以C-276钢板为参考,研究了C-276合金冷金属过渡(CMT)焊接焊缝熔敷金属的耐蚀性,供PTA装置制造厂参考。%C-276 alloy has good corrosion resistance in oxidizing and non-oxidizing acids,so it is wide-ly used in purified terephthalic acid(PTA)device.In the chemical vessel design,it does not specify the using of composite board or surfacing.Considering the surfacing layer microstructure is dendritic austen-ite,the composite board microstructure is twinned austenite,and the thermal process of welding is complex than that of composite.We have study C -276 weld metal corrosion resistance after cold metal transfer (CMT)welding,which is useful for PTA device fabrication.

  3. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats

    Science.gov (United States)

    Zeidler-Erdely, Patti C.; Meighan, Terence G.; Erdely, Aaron; Fedan, Jeffrey S.; Thompson, Janet A.; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B.; Afshari, Aliakbar; McKinney, Walter; Frazer, David G.; Antonini, James M.

    2015-01-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m3 to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (RL) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline RL was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased RL and result in endothelial dysfunction, but otherwise had minor effects on the lung. PMID:25140454

  4. Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi objective Taguchi method and RSM

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Nora Siah; Manurung Yupiter HP; Hafidzi, Moham Mad; Abas, Sun Haji Kiyai; Tham, Ghalib; Haru Man, Esa [Universiti Teknologi MARA (UiTM), Selangor (Malaysia)

    2012-08-15

    This paper presents an alternative method to optimize process parameters of resistance spot welding (RSW) towards weld zone development. The optimization approach attempts to consider simultaneously the multiple quality characteristics, namely weld nugget and heat affected zone (HAZ), using multi objective Taguchi method (MTM). The experimental study was conducted for plate thickness of 1.5mm under different welding current, weld time and hold time. The optimum welding parameters were investigated using the Taguchi method with L9 orthogonal array. The optimum value was analyzed by means of MTM, which involved the calculation of total normalized quality loss (TNQL) and multi signal to noise ratio (MSNR). A significant level of the welding parameters was further obtained by using analysis of variance (ANOVA). Furthermore, the first order model for predicting the weld zone development is derived by using response surface methodology (RSM). Based on the experimental confirmation test, the proposed method can be effectively applied to estimate the size of weld zone, which can be used to enhance and optimized the welding performance in RSW or other application.

  5. Oil-Ash Corrosion Resistance of Dissimilar T22/T91 Welded Joint of Super Heater Tubes

    Science.gov (United States)

    Mittal, Rutash; Sidhu, Buta Singh

    2015-02-01

    The studies on the high temperature corrosion of the dissimilar metal weldment are necessary for longer service of the weldments in corrosive medium. This paper reports the performance of microstructurally different regions, namely heat-affected zone (HAZ), weld metal (WM), and base metal (BM) of dissimilar metal weldment of T22/T91 in the molten salt (Na2SO4-60%V2O5) environment under cyclic studies. The T22 HAZ, WM, and T91 HAZ were observed to oxidize at higher rates and develop more scale thickness than other regions in the weldment. Microstructures and elemental analysis indicate lesser availability of Cr in T22 HAZ and T91 HAZ due to formation of Cr-rich phases, which ultimately causes the difference in oxidation behavior of different regions. The presence of chromium carbides and intermetallics in un-oxidized T22 HAZ region and martensitic structure with the presence of delta ferrites in un-oxidized T91 HAZ region was observed to be the major cause behind the weak corrosion resistance of the respective HAZs. The higher oxidation rate of T22 HAZ may be attributed to the absence of protective scale of Cr2O3 and presence of Fe3O4 phases. Similarly higher oxidation rate of T91 HAZ region can be attributed to lesser availability of Cr due to the propensity of development of delta ferrite in martensitic structure.

  6. Resistance of weldclads made by flux-cored arc welding technology against erosive wear

    Directory of Open Access Journals (Sweden)

    I. Pernis

    2013-07-01

    Full Text Available The paper deals with the tribological properties of investigated types of hardfacing materials at erosive wear process. Influence of impact angle of abrasive grains on wear resistance and microhardness changes of hardfacing layer were investigated too. From quantitative aspect weldclads wear resistance were evaluated on the base of weight loss. Results achieved showed that impact angle is one of determining factors of material’s wear measure.

  7. Acoustic emission detection of 316L stainless steel welded joints during intergranular corrosion

    Institute of Scientific and Technical Information of China (English)

    Meng-yu Chai; Quan Duan; Wen-jie Bai; Zao-xiao Zhang; Xu-meng Xie

    2015-01-01

    This study analyzes acoustic emission (AE) signals during the intergranular corrosion (IGC) process of 316L stainless steel welded joints under different welding currents in boiling nitric acid. IGC generates several AE signals with high AE activity. The AE tech-nique could hardly distinguish IGC in stainless steel welded joints with different welding heat inputs. However, AE signals can effectively distinguish IGC characteristics in different corrosion stages. The IGC resistance of a heat-affected zone is lower than that of a weld zone. The initiation and rapid corrosion stages can be distinguished using AE results and microstructural analysis. Moreover, energy count rate and am-plitude are considered to be ideal parameters for characterizing different IGC processes. Two types of signals are detected in the rapid corro-sion stage. It can be concluded that grain boundary corrosion and grain separation are the AE sources of type 1 and type 2, respectively.

  8. Criticality and turbulence in a resistive magnetohydrodynamic current sheet.

    Science.gov (United States)

    Klimas, Alexander J; Uritsky, Vadim M

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  9. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    Science.gov (United States)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  10. Nitrogen segregation and blister formation of 316LN austenitic steel during electron beam welding tests for ITER gravity supports

    Science.gov (United States)

    Lee, P. Y.; Hou, B. L.; Wu, J. H.; Yang, D.; Zhang, G. R.; Zhang, C. P.

    2009-04-01

    316LN has been widely applied in the design of ITER components, such as shield blanket and gravity supports, due to its excellent corrosion resistance and high strength. The behavior of nitrogen in this steel during welding is important for the mechanical properties of the components. In this study, a focused 150 kv high voltage electron beam with 300 mA beam current has been used to weld 316LN steel under vacuum condition. The microstructure and composition of the welding area were observed and analyzed. The influence of welding on the shock resistance and tensile strength at both room temperature and low temperature were examined. It was found that the mechanical properties are strongly related to the defects formed in the welding process.

  11. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    Science.gov (United States)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  12. Performance analysis of a pneumatic to servo converted system for electrode actuation in resistance spot welding using 304L austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    Nachimani Charde

    2016-01-01

    A high current, AC waveform controller with C-type body frame of spot welder (75 kVA), was examined for the electrode actuating system whose pneumatically driven system has been redesigned and refitted for the servo based system without any vertical spring assistance in the 50 mm movable distance. Moreover, the pressing mechanism was carefully handled during the entire pressing tasks as to ensure that no catastrophic reaction happens for the electrodes’ caps, electrodes’ holders as well as the other part of mechanical assembly. With the mechanically originated-pneumatic and also the converted-servo systems, the stainless steels are welded for both systems to characterize the improvements. While the welding processes were carried out, the electrical signals have been captured to compute the signals’ representation of entire sequences. Later, the welded samples were underwent the tensile shear test, metallurgical observation and hardness test. The analytical results show distinct changes in the force profiles which has led to profound changes in mechanical properties of welded specimens.

  13. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    Science.gov (United States)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  14. Welding Polarity Effects on Weld Spatters and Bead Geometry of Hyperbaric Dry GMAW

    Institute of Scientific and Technical Information of China (English)

    XUE Long; WU Jinming; HUANG Junfen; HUANG Jiqiang; ZOU Yong; LIU Jian

    2016-01-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  15. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  16. The pipes for gas and oil pipelines mains one-sided high-speed welding

    Directory of Open Access Journals (Sweden)

    Сергій Вікторович Щетинін

    2016-11-01

    Full Text Available Electromagnetic theory of the undercuts formation under the arc magnetic field action according to which as welding speed increases cooling intensifies and arc diameter reduces, induction and magnetic pressure increase, pinch-effect amplifies, has been proved. The arc concentrates, heat input and the pool side edges electrical resistance reduce with the result that current through the side walls and a downward electromagnetic force, under the action of which the liquid metal flows from the pool edges, increase and the undercuts form. In high-speed welding a composite electrode as compared with the wire electrode the heat input into the side edges and their electrical resistance increase; current and induction at the pool side edges and the electromagnetic force decrease that providing the seams qualitative formation and confirming the electromagnetic theory of the undercuts. With welding speed increasing the weld pool molten metal crystallization rate increases in proportion to it, microstructure gets reduced and welding stresses decrease, that providing the welds joints toughness rise. By increasing welding speed due to deflection rearward the arc pressure decreases, the molten metal movement rate into the back part of the pool grows, that resulting in the molten metal hydrodynamic pressure reduction. Due to simultaneous reduction of the arc pressure, of the downward electromagnetic force and of the molten metal hydrodynamic pressure, the crystallization rate increase and the pool molten state time reduction the backing bead formation on the melt backing improves greatly at the high-speed welding. The energy-saving process of one-sided high-speed welding of the pipes for gas and oil pipelines on the melt backing with the use of glass flux by means of a composite electrode, which provides quality and the welded joints toughness increase, has been developed

  17. Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling

    Directory of Open Access Journals (Sweden)

    X. W. Yang

    2014-01-01

    Full Text Available Friction stir spot welding (FSSW is a very useful variant of the conventional friction stir welding (FSW, which shows great potential to be a replacement of single-point joining processes like resistance spot welding and riveting. There have been many reports and some industrial applications about FSSW. Based on the open literatures, the process features and variants, macro- and microstructural characteristics, and mechanical properties of the resultant joints and numerical simulations of the FSSW process were summarized. In addition, some applications of FSSW in aerospace, aviation, and automobile industries were also reviewed. Finally, the current problems and issues that existed in FSSW were indicated.

  18. Case Study Regarding the Design of a Direct Current Electromagnet for the MIG Welding of Metallic Materials Part II: Constructive-Electromagnetic Dimension and Verification of the Electromagnet Operation

    Directory of Open Access Journals (Sweden)

    Tudorel Ene

    2016-10-01

    Full Text Available The paper refers to the design of a direct current electromagnet, located on the head of a swan neck welding gun of a MIG welding equipment and used for magnetising the rotation space of two additional electric arches, in order to preheat the electrode wire and of the protective gas, partially turned into plasma jet. We present the constructive - electromagnetic dimensioning and the verification of the electromagnet operation.

  19. Resistance Spot Weldability of Galvanize Coated and Uncoated TRIP Steels

    Directory of Open Access Journals (Sweden)

    Hayriye Ertek Emre

    2016-11-01

    Full Text Available In this study, the resistance spot weldabilty of zinc galvanize-coated and uncoated TRIP800 steels was investigated in detail. Depending on the welding parameters such as welding current and welding time, the effects of zinc coating on the weld nugget geometry, the tensile shear strength, the failure modes, the hardness, and the microstructure of the resistance spot-welded sample were studied, and the results are compared with that of uncoated weldment. The coating on the surface of the TRIP steel causes a decrease in the weld nugget size and tensile shear strength of the weldment, and it changes to failure mode of the test sample from pullout to interfacial or partial interfacial fracture. As compared with the uncoated sample, the galvanized TRIP800 steel weldment has required a larger critical nugget size for achieving the desired pullout fracture mode and acceptable tensile shear strength.

  20. Joining of Dissimilar alloy Sheets (Al 6063&AISI 304) during Resistance Spot Welding Process: A Feasibility Study for Automotive industry

    OpenAIRE

    Reddy Sreenivasulu

    2014-01-01

    Present design trends in automotive manufacture have shifted emphasis to alternative lightweight materials in order to achieve higher fuel efficiency and to bring down vehicle emission. Although some other joining techniques are more and more being used, spot welding still remains the primary joining method in automobile manufacturing so far. Spot welds for automotive applications should have a sufficiently large diameter, so that nugget pullout mode is the dominant failure mode. Interfacial ...

  1. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    OpenAIRE

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72...

  2. 脉冲电流差值对双丝CO2焊影响%Research on the effect of pulse current difference on the twin - wire CO2 welding

    Institute of Scientific and Technical Information of China (English)

    李钰桢; 彭灿灿; 朱晓军; 岳海瑞; 杨锦辉; 薛家祥

    2014-01-01

    搭建由双丝数字化焊接电源系统组成的焊接工艺平台,通过大量工艺试验,全面测试所设计的双丝电源工艺性能。通过对比分析采集的电压、电流波形和焊缝,进一步确定双丝电流差值对双丝焊接效果的影响规律。实验结果得到最优电流差值范围,使双丝数字化焊接电源能有效实现双丝 CO2焊接,且焊接质量优异。%By utilizing the developed twin - wire digital welding power system,this paper established the welding technological plat-form. Then a large number of technological experiments have been carried out to fully test the designed twin - wire poer process perform-ance. through the contrast analysis the aacquisition of current,voltage waveforms and welding bram,to further determine the tein - wire current difference influence law of twin - wire weding effect. The experiment to get the best range of pulse current difference that the digital twin - wrie welding power system could achieve twin - wire CO2 welding effectively,and the welding quality is excellent.

  3. A study on consumable aided tungsten indirect arc welding

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Yuxin; Feng Jicai

    2009-01-01

    A consumable aided tungsten indirect arc welding method has been studied. This method is different from the traditional TIG welding because it introduces an MIG welding torch into the traditional TIG welding system. An indirect arc is generated between the consumable electrode of the MIG welding torch and the tungsten electrode of the TIG welding torch, but not generated between the tungsten electrode of the welding torch and the base metal. Welding current flows from the consumable electrode to the tungsten electrode in the free-burning indirect arc. The consumable aided tungsten indirect arc welding not only rapidly melts the welding wire but also effectively restrains the excessive fusion of the base metal. The welding experiment and the theoretical analysis confirm that this method can obtain a high deposition rate and a low dilution ratio during the welding process.

  4. Welding Development W87 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    A. Newman; G. Gibbs; G. K. Hicken

    1998-11-01

    This report covers the development activities used to qualify the Gas Tungsten Arc (FTA) girth weld and the resistance stem attachments on the W87 Base Line (W87BL). Design of experiments was used throughout the development activities.

  5. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  6. Microstructural analysis as the indicator for suitability of weld repairing of the heat resistant Cr - Ni steel

    Directory of Open Access Journals (Sweden)

    Odanović, Z.

    2010-08-01

    Full Text Available Metallurgical evaluation was performed on a fractured column tube of the reformer furnace in an ammonia plant. The tubes were manufactured from centrifugally cast heat resistant steel HK 40. Optical and scanning electron microscope (SEM were used for microstructural and fracture analysis. For composition determination of the microconstituents energy dispersive X ray spectroscopy (EDS was used. To evaluate mechanical properties, hardness and microhardness measurements were performed. Investigations based on the microstructural features with the idea to indicate suitability of weld repair of the column were performed in this study. It was observed that the crack initiation, caused by oxidation/corrosion and thermal stresses induced by temperature gradient, appeared in the inner side of the tube wall and propagation occurred along grain boundaries. The results clearly showed the presence of an irregular microstructure which contributed to crack propagation through the tube wall. An occurrence of precipitated needle-shaped carbides/carbonitrides and brittle σ phase was also identified in the microstructure. Results of the microstructural and fracture analysis clearly indicate that reformer furnace columns made of heat resistant steel HK 40 were unsuitable for weld repair.

    La evaluación metalúrgica se realizó en un tubo de columna con fracturas, que es parte del horno reformador en una planta de amoníaco. Estos tubos son fundidos centrífugamente y fabricados en acero resistente al calor, de tipo HK- 40. Para el análisis microestructural de la fractura se ha utilizado microscopía óptica y electrónica de barrido (SEM. La composición de los micro-constituyentes se determinó por espectrometría de rayos X de energía dispersiva (EDS. Las propiedades mecánicas se evaluaron mediante mediciones de microdureza Vickers. Las investigaciones en este estudio se han llevado a cabo con el fin de demostrar la idoneidad de reparación por

  7. Effect of weld schedule variation on the weldability and durability of AHSS spot weld joints

    Science.gov (United States)

    Weishaupt, Eric Raymond

    Tensile strength testing and high cycle fatigue testing of advanced high strength steel spot welded shear lap joints were performed for the various weld conditions. The materials used in this study were DP 980, DP 780 and TRIP 780. The microstructure and microhardness of the shear lap joints were examined in an effort to identify the effect of microstructural changes on the strength and fatigue durability of the spot weld specimens. The occurrence of interfacial failure was recorded for the differing weld processes. Several weld schedules were examined and used to produce shear lap spot weld joints, specifically varying the squeeze force and the average current. The weld force used to produce a spot weld does not have a significant effect on the fracture mode of the specimen given the average current is constant. The average current used to produce a spot weld has a significant effect on the fracture mode of the spot weld for several squeeze forces. Interfacial failure of spot welded TRIP 780 can be mitigated using a certain range of currents when welding. This appears to come as a tradeoff for sacrificing the strength of the joint. Higher values of weld strength were obtainable; however, welds that failed with higher strengths also experienced interfacial failure. A fracture mechanics approach to estimating the high cycle fatigue life of the shear lap specimen is also proposed and represents a conservative estimate of the shear lap specimen durability.

  8. Connection of AZ31B Magnesium Alloys and TC4 Titanium Alloy Via Resistance Spot Welding%AZ31B镁合金与TC4钛合金之间的电阻点焊连接

    Institute of Scientific and Technical Information of China (English)

    谈芬芳; 谢志雄; 杜康; 梅张强

    2013-01-01

    In order to make it became realistic that welding of AZ31B magnesium alloys and TC4 titanium alloy via resistance spot welding, in this work the theory of diffusion welding was used. The welding technology of AZ31B magnesium alloys and TC4 titanium alloy aluminum was discussed. In the process, aluminium foil and aluminium powder were used. The property and microstructure of welding spot were analysised by scanning electron microscope (SEM) and X-ray energy dispersion spectroscope (EDS). The results indicate that the mechanical performace of welding sopt is better when aluminiun powder as additive, the diffusion of elements and alloying reaction are conducive to improve the machanical property of welding spot.%为实现AZ31B镁合金与TC4钛合金异种材料的电阻点焊连接,借助扩散焊原理,探讨了在其之间添加铝箔和铝粉的电阻点焊工艺,并对焊点的力学性能及微观结构进行了分析.结果表明,以铝粉作为添加物,可以获得力学性能较好的焊点,元素间的扩散及合金化反应是焊点性能得以提高的主要原因.

  9. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  10. Investigation on the explosive welding mechanism of corrosion-resisting aluminum and stainless steel tubes through finite element simulation and experiments

    Science.gov (United States)

    Sui, Guo-Fa; Li, Jin-Shan; Li, Hong-Wei; Sun, Feng; Zhang, Tie-Bang; Fu, Heng-Zhi

    2012-02-01

    To solve the difficulty in the explosive welding of corrosion-resistant aluminum and stainless steel tubes, three technologies were proposed after investigating the forming mechanism through experiments. Then, a 3D finite element model was established for systematic simulations in the parameter determination. The results show that the transition-layer approach, the coaxial initial assembly of tubes with the top-center-point the detonation, and the systematic study by numerical modeling are the key technologies to make the explosive welding of LF6 aluminum alloy and 1Cr18Ni9Ti stainless steel tubes feasible. Numerical simulation shows that radial contraction and slope collision through continuous local plastic deformation are necessary for the good bonding of tubes. Stand-off distances between tubes ( D 1 and D 2) and explosives amount ( R) have effect on the plastic deformation, moving velocity, and bonding of tubes. D 1 of 1 mm, D 2 of 2 mm, and R of 2/3 are suitable for the explosive welding of LF6-L2-1Cr18Ni9Ti three-layer tubes. The plastic strain and moving velocity of the flyer tubes increase with the increase of stand-off distance. More explosives ( R>2/3) result in the asymmetrical distribution of plastic strain and non-bonding at the end of detonation on the tubes.

  11. TIG welding power supply with improved efficiency

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2015-03-01

    Full Text Available In the article, the influence of the DC component of the welding current during TIG (Tungsten Inert Gas welding is discussed. Known methods of DC current cancellation are reviewed, such as capacitor bank or diode/thyristor network insertion in the secondary circuit of the welding transformer. A new method of controlling the magnitude and shape of the TIG welding current is proposed. The idea is to insert a controlled voltage source in the secondary circuit of the welding transformer. This controlled voltage source is realized using a full-bridge voltage source inverter (VSI. VSI control system design issues are discussed. VSI is controlled by a three-level hysteretic current controller, while current reference is generated using lookup table driven by PLL (Phase Locked Loop locked to the mains frequency. Simulation results are shown. The proposed topology of TIG power supply allows to provide magnitude and shape control of the welding current, with the limitation that its DC component must be zero. Thus, some capabilities of professional AC-TIG welders are obtained using substantially lower cost components: VSI built using high-current low voltage MOSFETs with control system based on 32-bit ARM microcontroller. The use of proposed TIG welding power supply will eliminate the DC component of the welding current, improve welding transformer’s power factor and improve welding technology by increasing the welding arc stability

  12. VIENNA结构在阻焊逆变电源中的应用仿真%Simulation of the inverter resistance welding power supply with VIENNA

    Institute of Scientific and Technical Information of China (English)

    张勇; 袁旭超; 腾辉; 谢红霞

    2012-01-01

    In this paper,we made a simulation study on the inverter resistance welding power supply with VIENNA power factor correction (PFC).Simulation results show that this circuit topology could improve the power factor. The harmonic content of resistance welding inverter power meets the standard IEC-62135-2.The power factor rise to 97.94%. The voltage loaded on the switch is only half of the output voltage. All this results show that VIENNA PFC circuit topology with lots of practicality and superiority in resistance welding inverter power supply.%针对大功率阻焊逆变电源网侧输入电流谐波含量高、功率因数低的缺点,应用PSPICE电路仿真软件仿真研究了其功率因数补偿电路.仿真结果表明,采用三相三开关三电平结构(VIENNA结构)功率因数校正电路能够有效降低阻焊逆变电源网侧输入电流的谐波含量,同时满足国际阻焊电源电磁兼容标准(IEC-62135-2标准),功率因数达97%以上,并且开关管关断时承受的反向电压仅为输出电压的一半,VIENNA结构功率因数校正电路应用于阻焊逆变电源具有很强的实用性与优越性.

  13. Análise da resistência à corrosão por pite em soldas de reparo pelo processo TIG em aço inoxidável superduplex UNS S32750 Analysis of pitting corrosion resistance in welding repair by GTAW procedure in a superduplex stainless steel UNS S32750

    Directory of Open Access Journals (Sweden)

    Juliana Primo Basílio de Souza

    2011-06-01

    Full Text Available Atualmente, os aços inoxidáveis superduplex (AISD estão sendo muito empregados no Brasil em setores industriais tais como petroquímico, energético, naval e plataformas offshore, tendo vasta aplicação em vasos de pressão em processos críticos, trocadores de calor, reatores, tubulações, umbilicais, digestores, bombas e naqueles componentes onde a produtividade contínua é essencial e o custo não é a maior limitação. No entanto, durante processos de fabricação e montagem, assim como na vida em serviço destes componentes de processo pode existir a necessidade eventual de efetuar soldagens de reparo. Deste modo, o presente trabalho, visa avaliar a microestrutura e os valores de resistência à corrosão por pites na zona termicamente afetada (ZTA e metal de solda do AISD UNS S32750 durante a simulação de um processo de reparo mediante a utilização do processo de soldagem TIG (GTAW. Os resultados obtidos permitem estabelecer diretrizes para a realização de procedimentos de soldagem de reparo em AISD.Currently superduplex stainless steels (SDSS are being extensively employed in the petrochemical, power generation, naval and offshore industries. The uses of these materials are: pressure vessels for critical processes, heat exchangers, reactors, pipes, umbilicals, digesters, pumps and other facilities where continuous use is essential and cost is not the main limitation. However, during fabrication and assembly, or as consequence of service, repair welding operations may be necessary. Thus, in this study a simulation of welding repair by GTAW process was performed in a SDSS UNS S32750. The objective of this work was to evaluate the microstructure and the values of critical pitting resistance (CPT in the weld metal, heat affected zone and base metal. The results obtained allows the determination of welding procedures and recommendations useful to the welding repair of SDSS.

  14. Hybrid laser-arc welding of galvanized high-strength steels in a gap-free lap-joint configuration

    Science.gov (United States)

    Yang, Shanglu

    In order to meet the industry demands for increased fuel efficiency and enhanced mechanical and structural performance of vehicles as well as provided excellent corrosion resistance, more and more galvanized advanced high-strength steels (AHSS) have been used to fabricate automobile parts such as panels, bumpers, and front rails. The automotive industry has shown tremendous interest in using laser welding to join galvanized dual phase steels because of lower heat input and higher welding speed. However, the laser welding process tends to become dramatically unstable in the presence of highly pressurized zinc vapor because of the low boiling point of zinc, around 906°C, compared to higher melting point of steel, over 1500°C. A large number of spatters are produced by expelling the liquid metal from the molten pool by the pressurized zinc vapor. Different weld defects such as blowholes and porosities appear in the welds. So far, limited information has been reported on welding of galvanized high strength dual-phase steels in a gap-free lap joint configuration. There is no open literature on the successful attainment of defect-free welds from the laser or hybrid welding of galvanized high-strength steels. To address the significant industry demand, in this study, different welding techniques and monitoring methods are used to study the features of the welding process of galvanized DP steels in a gap-free lap joint configuration. The current research covers: (i) a feasibility study on the welding of galvanized DP 980 steels in a lap joint configuration using gas tungsten arc welding (GTAW), laser welding, hybrid laser/arc welding with the common molten pool, laser welding with the assistance of GTAW preheating source and hybrid laser-variable polarity gas tungsten arc welding (Laser-VPGTAW) techniques (Chapter 2-4); (ii) a welding process monitoring of the welding techniques including the use of machine vision and acoustic emission technique (Chapter 5); (iii

  15. Real-time monitoring of weld penetration quality in roboticarc welding process

    Institute of Scientific and Technical Information of China (English)

    Wu Chuansong; Jia Chuanbao; Duan Xiaoning

    2008-01-01

    It is of great significance to develop an intelligent monitoring system for weld penetration defects such as incomplete penetration and burn-through in real-time during robotic arc welding process. In this paper, robotic gas metal arc welding experiments are carried out on the mild steel test pieces with Vee-type groove. Through-the-arc sensing method is used to capture the transient values of the welding voltage and current. The raw data of the captured welding current and voltage are processed statistically, and the feature vector S10 is extracted to correlate the welding conditions to the weld penetration information. It lays foundation for intelligent monitoring of weld quality in robotic arc welding.

  16. The Effect of Friction Stir Welding on Corrosion Behavior of Ti-6Al-4V

    Science.gov (United States)

    Nasresfahani, Ali Reza; Soltanipur, Abdol Reza; Farmanesh, Khosro; Ghasemi, Ali

    2017-09-01

    Fusion welding can deteriorate corrosion behavior of Ti-6Al-4V alloy. However, the use of friction stir welding leads to a more appropriate corrosion resistance. In this study, the corrosion resistance of welded zones of Ti-6Al-4V alloy using friction stir welding technique is evaluated. For these purposes, the study of structural characteristics using SEM and FESEM equipped with EDS micro-analyses was conducted. Micro-hardness test was also employed to estimate the hardness of welded zones. Corrosion behavior was investigated by a potentiostat instrument. SEM micrographs, EDS and XRD analyses confirmed non-uniformity of chemical composition within the welded zones. The results reveal that the stir zone contains typical alpha and prior beta phases. Nevertheless, thermomechanical zone included equiaxed and bimodal lamellae structure. Furthermore, the presence of different types of phases and microstructure in the thermomechanical zone led to reduced corrosion resistance. The corresponding values of corrosion current density in the stir zone, thermomechanical zone and base metal were 0.048, 0.55 and 0.032 µA, respectively. Corresponding corrosion potential for these zones was estimated as -207, -110 and -157 mV. Evidently, the results show that corrosion resistance of thermomechanical zone is less than that of the stir zone and both zones have lower value than the base metal.

  17. Improving the problem of heavy gold plate resistance welding of half jack oil%沉金板阻焊半塞孔冒油问题改良

    Institute of Scientific and Technical Information of China (English)

    常盼; 邢玉伟

    2015-01-01

    为了降低沉金板阻焊半塞孔冒油比例,设计试验验证总结影响沉金板阻焊半塞孔冒油的影响因素:阻焊塞孔油墨更换、重氮片更换、显影参数调整及后烘参数优化等。通过试验逐一验证后输出控制措施从而达到改善沉金板阻焊半塞孔冒油问题。%In order to reduce the heavy gold plate resistance welding of half jack oil ratio, we made design test, summarized the influence factors of oil in plug hole: plug hole solder resist ink change, diazo replacement, imaging parameters adjustment and drying parameter optimization, etc. One by one through the test output control measures so as to achieve improved after heavy gold pl-ate resistance welding half jack take the purpose of the oil problem.

  18. The Research of Welding Residual Stress Based Finite Element Method

    Directory of Open Access Journals (Sweden)

    Qinghua Bai

    2013-06-01

    Full Text Available Welding residual stress was caused by local heating during the welding process, tensile residual stress reduce fatigue strength and corrosion resistance, Compressive residual stress decreases stability limit. So it will produce brittle fracture, reduce working life and strength of workpiece; Based on the simulation of welding process with finite element method, calculate the welding temperature field and residual stress, and then measure residual stress in experiments, So as to get the best welding technology and welding parameters, to reduce welding residual stress effective, it has very important significance.

  19. Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    Directory of Open Access Journals (Sweden)

    K. Devakumaran

    2015-06-01

    Full Text Available 25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm (NG-20 and 13 mm (NG-13 groove openings. The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy. It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint since the dilution of base metal extends from the deposit adjacent to groove wall to weld center through dissolution by fusion and solid state diffusion. Further, it is noticed that a high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process enhances the dilution of weld deposit and accordingly varies the chemical composition in multi-pass P-GMA weld deposit. Lower angle of attack to the groove wall surface along with low heat input in NG-13 weld groove minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center. This results in more uniform properties of NG-13 P-GMA weld in comparison to those of NG-20 and CG welds.

  20. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  1. Penetration control by weld pool resonance during gas tungsten arc welding

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Presents penetration control by weld pool resonance which occurs when the natural frequency of weld pool is equal to the frequency of sine wave current while the weld pool is excited into oscillation by superimposing sine wave current with definite frequency or regular fiequency on DC current, and experiments carried out on detecting resonance signals during both stationary and travelling arc welding with variant frequency pulse current, and concludes with ex perimental results that penetration control can be realized by weld pool resonance when welding speed is lower than 80mm/min, and this control method is applicable to welding thin (0.5 ~ 3.0 mm) plates of carbon steel, low alloy steel, high strength steel and superhigh strength steel, and suitable for alternating polarity welding of stainless steel, titanium alloy steel and aluminum alloy.

  2. Stress corrosion cracking in canistered waste package containers: Welds and base metals

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.

    1998-03-01

    The current design of waste package containers include outer barrier using corrosion allowable material (CAM) such as A516 carbon steel and inner barrier of corrosion resistant material (CRM) such as alloy 625 and C22. There is concern whether stress corrosion cracking would occur at welds or base metals. The current memo documents the results of our analysis on this topic.

  3. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; FAN Ding; FAN Qinghua

    2007-01-01

    When multi-component flux AF305 is used as surface activating flux for an aluminum alloy, the weld penetration of activating flux-tungsten inert-gas (A-TIG)welding is over two times more than that of conventional TIG welding. Using A-TIG welding with the modes of alternating current (AC), direct current electrode negative (DCEN) and direct current electrode positive (DCEP), respectively, the flux differently affects weld penetration when the polarity is different. After studied the effect of compelled arc constriction on weld penetration of AC welding, it is believed that the constriction of the whole arc root is not the main mechanism that flux AF305 dramatically improves weld penetration. The penetration has a relationship with the separate distribution of slag on the weld surface. Then, an observation of scanning electron microscopy (SEM) and an electronic data systems (EDS) analysis of slag were performed respectively. The separate distribution of slag on the weld pool during welding and the great constriction of arc spots were confirmed by TIG welding with helium shielding gas. The relationship between slag distribution and weld penetration was studied by adding aluminum powder into flux AF305 to change the distribution of slag. During welding, the separate distribution of slag on the weld pool results in the great constriction of arc spots, an increase in arc spot force, and an increase in Lorentz force within the arc and weld pool. Finally, the weld penetration is increased.

  4. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  5. Friction Stir Spot Welding of Advanced High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  6. Investigation of the micro contact profile welding technics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The cladding preparation technology for the micro contact profile is investigated through the way of seam welding. The effects of the seam welding on different conditions including welding electrical current, welding time, electrode force and electrode material were contrasted through the way of metallographic structure, electron scanning, experiments of rectification and twist fatigue.The parameters of welding several kinds of materials were obtained. As a result, the qualified contact profile can be produced by making a control of the technical conditions: welding current, welding time, electrode force and electrode material.

  7. 1Cr5Mo珠光体耐热钢管的三种不同工艺研究%Research in three different welding technology of 1Cr5Mo pearlitic heat-resistant steel pipe

    Institute of Scientific and Technical Information of China (English)

    赵亮; 李宪臣; 刘海河

    2011-01-01

    Describes the three different welding technologies of applied to the steel currently by analyzing the weldability of Cr5Mo steel.It can be proposed that welding with the same materials as much as possible in order to avoid joints early failure in the operation and reduce welding cost when it has the availability of post weld heat treatment conditions and case of large-scale welding by comparing the performance differences of welded joints obtained and the implementation features with the three welding technology.If in the absence of heat treatment conditions or less maintenance in the field.it is also can be welded with different materials. However,we recommend using the new low-Cr high manganese AR617 weld rod to weld Cr5Mo so as to ensure that it will not low ductile fracture in the joints, the weld rod has excellent welding technology .Through joints sampling observation in the production practices and 44 000 hours service,performance is stable,fully meet the production requirements,the welding technology conditions is relatively simple.%通过分析1Cr5Mo钢的焊接性,介绍了当前应用于该钢种的三种不同的焊接工艺方法.通过比较三种焊接工艺方法所获得焊接接头性能差异和特点,提出在具备焊后热处理条件和大规模施焊情况下应尽可能采用同质材料进行焊接,以避免接头在运行中出现早期失效,降低焊接成本.在不具备热处理条件或现场维修量少的情况下,也可采用异质材料进行焊接.但是,为保证接头在长期高温运行下不出现低韧性脆性断裂,建议采用新型低铬高锰型AR617焊条焊接1Cr5Mo,该焊条焊接工艺性能优良,通过生产实践和对服役44000 h的接头取样观察,使用性能稳定,完全满足生产要求,其焊接工艺条件相对简单.

  8. Corrosion and high temperature resistant coatings for molybdenum, made out of iron and nickel alloys and applied by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Pruemmer, R.; Henne, R.

    1980-04-01

    The impact parameters of the explosive welding of molybdenum with Inconel 601 were determined. The combination Mo and Inconel 601 was considered as nonweldable. It can be applied in solar radiation concentrating devices, allowing a higher operating temperature and higher energy conversion efficiency. The usual velocities of the explosive welding process (collision velocities of 2200 m/sec) lead at best to samples affected by cracks, due to the insufficient workability of molybdenum. At higher velocities cracks no longer occur, molybdenum being a strain rate sensitive material. Layer composite materials can be manufactured in flat as well as in tube form. (ESA)

  9. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  10. Análise da resistência ao desgaste de revestimento duro aplicado por soldagem em facas picadoras de cana-de-açúcar Analysis of wear resistance of hardfacing applied by welding in sugarcane shredder knife

    Directory of Open Access Journals (Sweden)

    Aldemi Coelho Lima

    2010-06-01

    cost is high due to metallic losses by wear. This paper studies the application of hardfacings by flux cored arc welding on the wear resistance of sugarcane shredder knives comparing laboratory and field-test results. Four types of consumable were used: three selfshielded flux cored wires of diameter 1.6 mm of alloys FeCrC, FeCrC+Nb and FeCrC+Ti and a covered electrode of FeCrC alloy of diameter 4.0 mm. The base metal is SAE 1020 steel. Test specimens were evaluated using rubber wheel abrasion tests (ASTM G65. Sugarcane shredder knives hardfaced in the same welding conditions were also tested on a shredder in an alcohol distillery. Wear evaluation is by mass loss. The flux cored wires were welded in short-circuit transfer mode with the same current and voltage values. The wire with Nb had the highest wear resistance in laboratory test but due to cracks and spalling had the least wear resistance in field test. The FeCrC and FeCrC+Ti wires presented the worst results in laboratory tests and the best results in field test, respectively. In comparison with the covered electrode, the FeCrC+Nb wire presented similar performance in laboratory and the FeCrC+Ti wire presented similar performance in field tests.

  11. Simulation of Weld Depth in A-TIG Welding with Unified Arc-electrode model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Calculations have been made for weld depths occurring for TIG welding activated by a flux over the surface of the weld pool. In this case, the flux introduces an electrically insulating layer over the outer regions of the weld-pool surface. There is then an increase in the current density at the surface of the centre of the weld-pool with a consequent increase in the J×B forces, which drive a strong convective flow of the molten metal downwards, tending to make a deep weld. For a flux which produces an insulating layer for all but a central region of radius 2 mm, the calculated weld-depth is 7 mm, and an arc spot is predicted at the centre of the weld-pool surface. As yet we have not resolved the reason for significant differences that exist between our measurements of weld depth and the theoretical predictions.

  12. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  13. Direct-current resistivity data from 94 sites in northeastern Palm Beach County, Florida

    Science.gov (United States)

    Peterson, Cathleen J.

    1988-01-01

    Direct-current resistivity data were collected from 94 vertical electric sounding profiles in northeastern Palm Beach County, Florida. Direct-current resistivity data, which may be used to determine the location and thicknesses of shallow, semipermeable marls or locate zones of high chloride concentration, are presented in this report. The resistivity data consist of field data, smoothed data, layer resistivity from smoothed data, and Cartesian graphs of resistivity in relation to depth for 94 sites located in northeastern Palm Beach County. (USGS)

  14. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  15. 焊接工艺对40CrMnMo小齿轮补焊抗裂性的影响%The Influence of Welding Technology to CrackResistance of Forged Steel 40CrMnMo Pinion Defects Welding Repair

    Institute of Scientific and Technical Information of China (English)

    李家森; 赵宏明

    2014-01-01

    The cracks about forged steel 40CrMnMo pinion was introduced , and the weldability of 40CrMnMo was analyzed . Take defects welding repair of forged steel 40CrMnMo Pinion for example , the connection between the welding technology and the crack resistance was expounded .Pointed out that the welding technology has a direct impact to improve carack resistance , only compiled reasonable welding technology to ensure welding quality .%本文介绍了锻钢40CrMnMo 小齿轮裂纹情况,分析了40CrMnMo 的焊接性,以40CrMnMo小齿轮补焊为例,阐述了焊接工艺与抗裂性的关系。指出焊接工艺对提高抗裂性有直接影响,只有制定合理的焊接工艺才能确保焊接质量。

  16. Multi-response optimization of process parameters for TIG welding of Incoloy 800HT by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Arun Kumar Srirangan

    2016-06-01

    Full Text Available Incoloy 800HT which was selected as one of the prominent material for fourth generation power plant can exhibit appreciable strength, good resistance to corrosion and oxidation in high temperature environment. This study focuses on the multi-objective optimization using grey relational analysis for Incoloy 800HT welded with tungsten inert arc welding process with N82 filler wire of diameter 1.2 mm. The welding input parameters play a vital role in determining desired weld quality. The experiments were conducted according to L9 orthogonal array. The input parameter chosen were the welding current, Voltage and welding speed. The output response for quality targets chosen were the ultimate tensile strength and yield strength (at room temperature, 750 °C and impact toughness. Grey relational analysis was applied to optimize the input parameters simultaneously considering multiple output variables. The optimal parameters combination was determined as A2B1C2 i.e. welding current at 110 A, voltage at 10 V and welding speed at 1.5 mm/s. ANOVA method was used to assess the significance of factors on the overall quality of the weldment. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics:

  17. Modeling corrosion behavior of gas tungsten arc welded titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pitting corrosion characteristics of pulse TIG welded Ti-6Al-4V titanium alloy in marine environment were explained.Besides the rapid advance of titanium metallurgy, this is also due to the successful solution of problems associated with the development of titanium alloy welding. The preferred welding process of titanium alloy is frequently gas tungsten arc(GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The benefit of the process is utilized to obtain better quality titanium weldments. Four factors, five levels, central composite, rotatable design matrix are used to optimize the required number of experiments. The mathematical models have been developed by response surface method(RSM). The results reveal that the titanium alloy can form a protective scale in marine environment and is resistant to pitting corrosion. Experimental results are provided to illustrate the proposed approach.

  18. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong Chae [ORNL; Sanderson, Samuel [MegaStir Technologies LLC; Mahoney, Murray [Consultant; Wasson, Andrew J [ExxonMobil, Upstream Research Company (URC); Fairchild, Doug P [ExxonMobil, Upstream Research Company (URC); Wang, Yanli [ORNL; Feng, Zhili [ORNL

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  19. Evaluation of iron aluminide weld overlays for erosion - corrosion resistant boiler tube coatings in low NO{sub x} boilers

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Banovic, S.W.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

    1996-08-01

    Low NOx burners are being installed in many fossil fired power plants in order to comply with new Clean Air Regulations. Due to the operating characteristics of these burners, boiler tube sulfidation corrosion is often enhanced and premature tube failures can occur. Failures due to oxidation and solid particle erosion are also a concern. A program was initiated in early 1996 to evaluate the use of iron aluminide weld overlays for erosion/corrosion protection of boiler tubes in Low NOx boilers. Composite iron/aluminum wires will be used with the Gas Metal Arc Welding (GMAW) process to prepare overlays on boiler tubes steels with aluminum contents from 8 to 16wt%. The weldability of the composite wires will be evaluated as a function of chemical composition and welding parameters. The effect of overlay composition on corrosion (oxidation and sulfidation) and solid particle erosion will also be evaluated. The laboratory studies will be complemented by field exposures of both iron aluminide weld overlays and co-extruded tubing under actual boiler conditions.

  20. Resistance spot weldability of lightweight steel with a high Al content

    Science.gov (United States)

    Hwang, Insung; Kim, Dongcheol; Kang, Munjin; Kwak, Jae-Hyun; Kim, Young-Min

    2017-03-01

    Using alternating current (AC)- and direct current (DC)-type welders, the resistance spot weldability of lightweight steel was evaluated under various electrode forces, welding currents, and times. The acceptable welding conditions were specified; however, these had very narrow ranges and there was little difference between the conditions determined for the AC- and DC-type welding. In both types of welding with electrode forces of of 300 kgf and 400 kgf, the acceptable weld currents were 5.0 kA and 5.5 kA, respectively. Also, the nugget size increased with the welding current. Under the acceptable welding conditions, there were no significant changes in the maximum tensile shear strength and nugget size, as 6.4-6.6 kN and 4.1-4.3 mm, respectively. The microstructure of weld metals was consisted of martensite, austenite and ferrite. And the small fraction of martensite was founded in the heat affected zone (HAZ), therefore the weld metal had the greatest hardness, and HAZ softening did not occur in this study. Considering the fracture surface, cleavage and ductile fracture were investigated because of the existence of martensite and ferrite in the welds.

  1. 一种相控阵雷达用耐气压冷板的焊接工艺方法研究%Research on Welding Processes of A Pressure-resistant Cooling Plate for Phased Array Radar

    Institute of Scientific and Technical Information of China (English)

    王志鹏; 冉振旺; 杨文静; 肖爱群; 许明珠

    2014-01-01

    某相控阵雷达冷板对焊缝提出了气密性要求,为实现装配,还要求焊接后平面度公差不超过0.1mm。使用真空钎焊、激光焊、电子束焊方法分别对耐气压冷板进行焊接试验,对焊接变形及密封性检测的情况进行了分析,确定了满足冷板使用要求的焊接工艺方法,通过对焊接方法的改进,使形位公差、气密性指标均得到很好的保证,解决了该冷板焊接的技术难题。%A new sort of cooling plate, pressure-resistant cooling plate, is proposed in the phased array radar. For its new filler in the plate, a higher requirement of air tightness is necessary. What’s more, its flatness tolerance after welding should be no more than 0.1mm so that a very thin PCB assembles onto the plate. In order to meet the requirement, three welding methods of vacuum brazing, laser welding and electron beam welding were carried out. By testing the welding deformation and air tightness, the advantages and disadvantages of the welding methods were compared. As a result, an optimized welding process was formed to solve the cooling plate welding technical problems.

  2. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  3. An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding of the Cast Iron

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kyung Man; Lee, Myung Hoon; Kim, Ki Joon [Korea Maritime University, Busan (Korea, Republic of); Kim, Jin Gyeong [Korea Institute of Marine and Frsheries Technology, Busan (Korea, Republic of)

    2008-04-15

    Cold arc welding of cast iron has been widely used with repair welding of metal structures. However its welding is often resulted in the galvanic corrosion between weld metal zone and heat affected zone(HAZ) due to increasing of hardness. In this study, corrosion properties such as hardness, corrosion potential, surface microstructures, and variation of corrosion current density of welding zone with parameters of used electrodes for cast iron welding were investigated with an electrochemical evaluation. Hardness of HAZ showed the highest value compared to other welding zone regardless of kinds of used electrodes for cast iron welding. And its corrosion potential was also shifted to more negative direction than other welding zone. In addition, corrosion current density of WM in polarization cures was qualitatively smaller than that of HAZ. Therefore galvanic corrosion may be apparently observed at HAZ. However galvanic corrosion may be somewhat controlled by using an optimum welding electrode.

  4. Effect of operating current dependent series resistance on the fill factor of a solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dadu, Meena; Kapoor, A.; Tripathi, K.N. [Department of Electronic Science, University of Delhi, South Campus, Benito Juarez road, -110 021 New Delhi (India)

    2002-02-01

    The fill factor of a solar cell depends upon the series resistance, reverse saturation current, diode quality factor, operating current and voltage. Since the series resistance itself depends upon the operating current (or voltage), it makes the evaluation of fill factor very complicated. In this paper, we have evaluated the fill factor of a solar cell, taking into account operating current dependence of the series resistance.

  5. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    Science.gov (United States)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  6. Weld pool vision sensing and image processing for GMAW

    Institute of Scientific and Technical Information of China (English)

    YUE Jianfeng; LI Liangyu; FAN Fanglei; WU Baolin

    2009-01-01

    It is difficult to acquire satisfied weld pool image by CCD sensor during gas metal arc welding(GMAW), for arc disturbs violently, welding current is great and working frequeacy is high. By using CMOS vision sensor to GMA W process, the vivid weld pool image is collected at any time, furthermore, whose gray compression ratio is controllable by sensor hardware circuit developed. Acquired weld pool image is firstly pre-processed by using Wiener filter and Ostu threshold segmentation algorithm. Subsequently separation between weld pool intage and cathode mist region is conducted by means of mathematical morphological algorithm, and the edge of weld pool image is extracted by using Prewitt algorithm.

  7. Digital controlling for GMA welding machine based on DSP

    Institute of Scientific and Technical Information of China (English)

    华学明; 吴毅雄; 张勇; 焦馥杰; 于乾波

    2003-01-01

    This paper introduced a welding machine for GMAW using digital controlling method based on DSP (Digital Signal Process). By means of flexible programming according to welding technologies and experiences the suitable characteristics of welding machine, such as line compensation, welding voltage and current feedback, wire-feed driving, SCR trigging and so on, can be controlled and self-adjusted using digital signals. Through the designing based on DSP it is put out that the traditional hardware of control circuit is decreased greatly which can enhance the stability and reliability of welding machine. Finally, the welding experiment using CO2 shielding gas proves that the welding process is stable.

  8. Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-12-01

    It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged (T6 condition but the welds showed poor corrosion resistance. The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment. The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.

  9. The Advantage of Sensor Sealing Laser Welding

    Institute of Scientific and Technical Information of China (English)

    YAN Yezhi; XU yu

    2007-01-01

    @@ Laser Welding Inevitably Applied in Sen sor Production Certain kinds of sensors such as pressure sensor,temperature sensor, optic-electronic sensor etc. utilize welding seal according to different application environment. With precision components and IC which is isolated by inert gas inside, these sensors should be sealed and able to resist the pressure. So the welding process must avoid distortion and harm to the components and IC.

  10. 29 CFR 1910.254 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ..., hoists, and elevators shall not be used to carry welding current. (iv) Where a structure, conveyor, or... following limits shall not be exceeded: (i) Alternating-current machines (A) Manual arc welding and cutting...-current machines (A) Manual arc welding and cutting—100 volts. (B) Automatic (machine or mechanized) arc...

  11. Current Status of Methods to Assess Cancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Theodor H. Lippert, Hans-Jörg Ruoff, Manfred Volm

    2011-01-01

    Full Text Available Drug resistance is the main cause of the failure of chemotherapy of malignant tumors, resistance being either preexisting (intrinsic resistance or induced by the drugs (acquired resistance. At present, resistance is usually diagnosed during treatment after a long period of drug administration.In the present paper, methods for a rapid assessment of drug resistance are described. Three main classes of test procedures can be found in the literature, i.e. fresh tumor cell culture tests, cancer biomarker tests and positron emission tomography (PET tests. The methods are based on the evaluation of molecular processes, i.e. metabolic activities of cancer cells. Drug resistance can be diagnosed before treatment in-vitro with fresh tumor cell culture tests, and after a short time of treatment in-vivo with PET tests. Cancer biomarker tests, for which great potential has been predicted, are largely still in the development stage. Individual resistance surveillance with tests delivering rapid results signifies progress in cancer therapy management, by providing the possibility to avoid drug therapies that are ineffective and only harmful.

  12. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  13. Process Management Development for Quality Monitoring on Resistance Weldment of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Na, Tae Hyung; Yang, Kyung Hwan; Kim, In Kyu [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    The current, welding force, and displacement are displayed on the indicator during welding. However, real-time quality control is not performed. Due to the importance of fuel rod weldment, many studies on welding procedures have been conducted. However, there are not enough studies regarding weldment quality evaluation. On the other hand, there are continuous studies on the monitoring and control of welding phenomena. In resistance welding, which is performed in a very short time, it is important to find the process parameters that well represent the weld zone formation and the welding process. In his study, Gould attempted to analyze melt zone formation using the finite difference method. Using the artificial neural network, Javed and Sanders, Messler Jr et al., Cho and Rhee, Li and Gong et al. estimated the size of the melt zone by mapping a nonlinear functional relation between the weldment and the electrode head movement, which is a typical welding process parameter. Applications of the artificial intelligence method include fuzzy control using electrode displacement, fuzzy control using the optimal power curve, neural network control using the dynamic resistance curve, fuzzy adaptive control using the optimal electrode curve, etc. Therefore, this study induced quality factors for the real-time quality control of nuclear fuel rod end plug weldment using instantaneous dynamic resistance (IDR), which incorporates the instantaneous value of secondary current and voltage of the transformer, and using instantaneous dynamic force (IDF), obtained real-time during welding.

  14. Tool For Friction Stir Tack Welding of Aluminum Alloys

    Science.gov (United States)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  15. 基于脉冲宽度调制电流控制的热电偶碰焊机设计%A Design of Thermocouple Welding Machine Based on PWM Current Control

    Institute of Scientific and Technical Information of China (English)

    姜华; 司念朋; 刘建瓴; 李炳峰

    2013-01-01

    介绍了检测实验室对热电偶焊接的要求,并根据CTL程序文件CTL-OP 108、109设计了一种基于脉冲宽度调制电流控制的热电偶焊接机。本设计成本低廉、实用方便、标准符合性高,为检测类实验室提供了一种较好的热电偶焊接手段。%The thermocouple welding requirements for testing laboratory were introduced. A thermocouple welding machine based on PWM current control was designed by CTL proceeding documents of CTL-OP 108 and CTL-OP 109. The design was low-cost, practical, convenient, and high-performance in standard conformance. It provides a new way in thermocouple welding for testing laboratory.

  16. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  17. 一种建筑用高性能耐火耐候钢的焊接试验%Welding Test for High Performance Fire and Weathering Resistant Steel Used for Building

    Institute of Scientific and Technical Information of China (English)

    李世红; 田璐; 牛全峰

    2011-01-01

    针对具有优异强韧性及耐火耐候性能的建筑用WGJ510C2钢,进行了气体保护焊焊接评定试验研究,内容包括熔敷金属试验、接头常规力学性能试验、高温拉伸性能试验及微观组织分析.结果表明,焊接接头常温和高温拉伸强度均满足WGJ510C2钢技术条件要求,焊接接头低温冲击功有较大的富余量.因此,采用气体保护焊焊接方法及NHG-1焊丝匹配WGJ510C2钢,焊接接头综合性能指标完全满足高层建筑用钢焊接技术要求.%The welding assessment test research of gas shielded was conducted, for WGJ510C2 steel with high toughness, fire and weathering resistant used for building. The tests included deposited metal test, routine mechanical properties test of welded joint, tensile performance test at high temperature and microstructure analysis. The results showed that the tensile property at room temperature and high temperature both can meet the welding requirements of WGJ510C2 steel, and the impact energy value of welded joint is surplus at low temperature . Therefore, adopting gas shielded welding method and NHG-1 wire to match with WGJ510C2 steel, the comprehensive properties of welded joint can completely satisfy the welding requirements of the steel used for high-rise building.

  18. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    Science.gov (United States)

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  19. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    Science.gov (United States)

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  20. Resistance evaluation of distillation tower welded metal plate linings to corrosion caused by heavy crude oil; Avaliacao da resistencia a corrosao causada por petroleo pesado em chapas soldadas utilizadas em 'linings' de torres de destilacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleiton Carvalho; Farias, Jesualdo Pereira [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Metalurgica e de Materiais], e-mail: cleitonufc@yahoo.com.br, e-mail: jpf@secrel.com.br; Sant' Ana, Hosilberto Batista de [' Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia Quimica], e-mail: hbs@ufc.br

    2008-04-15

    This study evaluated the microstructures and the resistance of AISI 316L, 410S and 444 stainless steel welded joints to heavy crude oil corrosion, using the AWS E309MoL-16 electrode. The above mentioned stainless steel plates were welded applying three energy levels (6; 9 and 12kJ/cm). Experimental sample forms were obtained from the welded plates, which were thermally treated at 200 and 300 deg C and immersed (annealed) in heavy crude oil. The techniques of optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were employed to make the microstructure evaluation, in addition to the surface characterization and the corrosion product identification. It was concluded that the welding thermal cycle is sufficient to cause metallurgic alterations in the region of the heat-affected zone (HAZ), making the region more susceptible to corrosion. It was also observed that the rate of corrosion varied according to the welding parameters applied. (author)

  1. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  2. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I. [Idaho National Laboratory, Idaho Falls, ID 83415-3570 (United States); Todorov, E.; Levesque, S. [Edison Welding Institute, Columbus, OH (United States)

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  3. Welding in space and the construction of space vehicles by welding; Proceedings of the Conference, New Carrollton, MD, Sept. 24-26, 1991

    Science.gov (United States)

    The present conference discusses such topics in spacecraft welding as the NASA Long Duration Exposure Facility's evidence on material properties degradation, EVA/telerobotic construction techniques, welding of the superfluid helium on-orbit transfer flight demonstration tanks and hardware, electron-beam welding of aerospace vehicles, variable-polarity plasma arc keyhole welding of Al, aircraft experiments of low-gravity fusion welding, flash-butt welding of Al alloys, and a computer-aided handbook for space welding fabrication. Also discussed are the welded nozzle extension for Ariane launch vehicles, the existence of on-orbit cold-welding, structural materials performance in long-term space service, high-strength lightweight alloys, steels, and heat-resistant alloys for aerospace welded structures, the NASA-Goddard satellite repair program, and the uses of explosion welding and cutting in aerospace engineering.

  4. Study the Factors Effecting on Welding Joint of Dissimilar Metals

    Directory of Open Access Journals (Sweden)

    Esam J. Ebraheam

    2011-01-01

    Full Text Available The aim of this work is to study the factors that affect the welding joint of dissimilar metals. Austenitic stainless steel-type AISI (316L with a thickness of (2mm was welded to carbon steel (1mm using an MIG spot welding. The filler metal is a welding wire of the type E80S-G (according to AWS is used with (1.2mm diameter and CO2 is used as shielding gas with flow rate (7L/min for all times was used in this work. The results indicate that the increase of the welding current tends to increase the size of spot weld, and also increases the sheer force. Whereas the sheer force increased inversely with the time of welding. Furthermore, the results indicate that increasing the current and time of welding increases the diameter of weld zone, and decreases the sheer force.

  5. Welding characteristics in different laser-TIG hybrid manners

    Institute of Scientific and Technical Information of China (English)

    陈彦宾; 雷正龙; 李俐群; 吴林

    2004-01-01

    An experiment for determining the laser-TIG hybrid welding characteristics was carried out in three kinds of hybrid methods: CO2 laser-TIG coaxial hybrid, CO2 laser-TIG paraxial hybrid and Nd: YAG laser-TIG paraxial hybrid. The experimental results indicate that hybrid welding has two welding mechanisms in CO2 laser-TIG hybrid welding: deep penetration welding and heat conduction welding. As the effect of the laser-induced keyhole, the arc root is condensed, the current density and penetration depth increase significantly, the welding characteristic is apt to deep penetration welding. When current increases to some degree, the keyhole induced by laser disappears, which produces a shallow penetration and wide bead. The weld exhibits heat conduction welding characteristics. Furthermore, the arc images and weld bead cross-sections of three kinds of hybrid manners were also compared and analyzed at different welding currents, which established the foundation for understanding the welding characteristics of laser-TIG hybrid welding comprehensively.

  6. Ensuring and improving corrosion resistance in high-alloy welds. Final report; Sicherung und Steigerung der Korrosionsbestaendigkeit hochlegierter Schweissverbindungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-22

    The welding process of the two high-alloy austenitic steels X5CrNiMo17 12 2 (1.4404) and X1NiCrMoCuN25 20 5 (1.4539) and the subsequent maintenance of the welds were to be optimized. This comprised detailed investigations into the interdependence between welding technologies and surface treatment. Systematic investigations showed that even with optimized processes, welding involves considerable stress to the materials, leading to structural changes, higher intrinsic stress and tarnish layers. Investigations of surface finishing processes showed that the finishing process and tools have significant effect on corrosion. (orig.) [German] Das Forschungsvorhaben hatte zum Ziel, neben der Optimierung des Schweissprozesses der beiden hochlegierten austenitischen Staehle X5CrNiMo17 12 2 (1.4404) und X1NiCrMoCuN25 20 5 (1.4539), eine auf den Schweissprozess abgestimmte ''Nachsorge'' zu optimieren. Das heisst, dass die Zusammenhaenge zwischen der jeweiligen Schweisstechnologie und der Oberflaechennachbehandlung in ihrer Vielschichtigkeit grundlegend untersucht werden sollen. Es konnte anhand von systematischen schweisstechnischen und werkstofftechnischen Untersuchungen gezeigt werden, dass auch nach einer umfassenden Optimierung des Schweissprozesses das Schweissen fuer den Werkstoff eine erhebliche Beeinflussung darstellt. Es kommt zu Gefuegeveraenderungen, zur Erhoehung der Eigenspannungen und zur Ausbildung von Anlaufschichten. Diese durch das Schweissen bedingten Effekte ueben allesamt einen grossen Einfluss auf das Korrosionsverhalten aus. Weder durch die Optimierung der Schweissparameter (z. B. Streckenenergie) noch durch die Wahl der Art des zu verwendenen Schutz- bzw. Wurzelschutzgases kann die Ausbildung der Anlaufschichten und eine daraus resultierende Veraenderung der Korrosionsbestaendigkeit verhindert werden. Das Korrosionsverhalten laesst sich jedoch positiv z.B. durch die Art des Schutzgases bei Einhaltung der optimierten Schweissparameter

  7. Residual stresses in welded plates

    Science.gov (United States)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  8. Welded Kimberlite?

    Science.gov (United States)

    van Straaten, B. I.; Kopylova, M. G.; Russell, J. K.; Scott Smith, B. H.

    2009-05-01

    Welding of pyroclastic deposits generally involves the sintering of hot glassy vesicular particles and requires the presence of a load and/or high temperatures. Welding can occur on various scales as observed in large welded pyroclastic flows, in small-volume agglutinated spatter rims, or as in coalesced clastogenic lava flows. In all these examples welding occurs mainly by reduction or elimination of porosity within the vesicular clasts and/or inter-clast pore space. The end result of welding in pyroclastic deposits is to produce dense, massive, coherent deposits. Here, we present a possible new end-member of the welding process: welding of non- vesicular pyroclasts in intra-crater kimberlite deposits. Kimberlite melt is a low-viscosity liquid carrying abundant crystals. Because of this, kimberlite eruptions generally produce non-vesicular pyroclasts. During welding, these pyroclast cannot deform by volume reduction to form typical fiamme. As a result, welding and compaction in kimberlites proceeds via the reduction of inter-clast pore space alone. The lack of porous pyroclasts limits the maximum amount of volumetric strain within pyroclastic kimberlite deposits to about 30%. This value is substantially lower than the limiting values for welding of more common felsic pyroclastic flows. The lower limit for volumetric strain in welded kimberlite deposits severely restricts the development of a fabric. In addition, pyroclastic kimberlite deposits commonly feature equant-shaped pyroclasts, and equant-shaped crystals. This, in turn, limits the visibility of the results of compaction and pore space reduction, as there are few deformable markers and elongate rigid markers that are able to record the strain during compaction. These features, together with the low viscosity of kimberlite magma and the stratigraphic position of these kimberlite deposits within the upper reaches of the volcanic conduit, call for careful interpretation of coherent-looking rocks in these

  9. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    Science.gov (United States)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  10. Tailoring weld geometry and composition in fusion welding through convective mass transfer calculations

    Science.gov (United States)

    Mishra, Saurabh

    In the past two decades, numerical transport phenomena based models have provided useful information about the thermal cycles and weld pool geometry. However, no effort has been made to apply these concepts to design weld consumables, to study the weld bead shape on welding two plates with different sulfur contents and to tailor weld pool geometry to specified dimensions. The present research focuses on these unexplored areas. The research proposed here seeks to develop a quantitative understanding of mass transport during fusion welding, with special emphasis on the role of surface active elements and the effect of solute distribution on weld defects like liquation cracking. A comprehensive model, incorporating numerical three-dimensional calculations of temperature and velocity fields and solute distribution in the weld pool is developed for the proposed quantitative study. The study identifies the factors that affect the weld pool geometry on joining two plates with different sulfur contents, and predicts the susceptibility of an aluminum-copper alloy GMA weld to liquation cracking. The specific contributions of the present thesis research include (i) development of a numerical solute transport model for fusion welding; (ii) improving the reliability of output of the numerical model; (iii) achieving computational efficiency and economy by developing a neural network trained by data generated by the numerical model; (iv) creating a bi-directional methodology where a target weld attribute like weld pool geometry can be attained via multiple combinations of input process parameters like arc current, voltage and welding speed; (v) calculating sulfur distribution during gas tungsten arc welding of stainless steel plates with different sulfur contents and predicting the arc welding of aluminum-copper alloys by incorporating the heat and mass addition from filler metal and a non-equilibrium solidification model, and using the copper content of the mushy zone to predict

  11. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  12. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    Science.gov (United States)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  13. 焊接温度对铸铁件焊补区组织和性能的影响%Effects of Welding Temperature on the Structure and Property of Welding-mend Zone of Grey Iron

    Institute of Scientific and Technical Information of China (English)

    赵书林; 翟秋亚; 董立社; 罗秋利

    2001-01-01

    The effects of a variet welding temperature on the structure andproperty of welding-mend zone of grey iron (HT250) plank is tested under produce condition using mutti-alloying cast iron homogeneous are cold welding electrode.The results shows that on-chill welding-mend zone can be obtained by the biger welding electric current and continuous welding at 200℃.The structure of welding zone is composed of pealite and a few ferri te and fine flake graphit the hardness is 176 HB for the welding zone and 198 HB for the semimelting zone.Moreove the welding mend zone has high resistance of crack and exellent machinability and be satisfied with welding cylinder typical iron casting.%在生产条件下使用多元微合金化铸铁同质电弧冷焊焊条对HT250板材进行不同温度下的焊接试验。结果表明,200℃大电流连续焊接可获得无白口的焊补区,焊缝由珠光体、少量铁素体加细小的片墨构成。焊缝与熔合区硬度分别为176HB和198HB,机加工性能良好,抗裂性好,熔敷金属强度高,能够满足缸体类铸铁件焊补需要。

  14. Weld Decay Recovery by Laser Beam Surfacing of Austenitic Stainless Steel Welded Joints

    OpenAIRE

    Isao, MASUMOTO; Takeshi, SHINODA; Toshimasa, HIRATE; Nagoya University, currently at Gifu Vocational Training College; Faculty of Engineering, Nagoya University; Nagoya University, currently at Toshiba Co. Ltd.

    1990-01-01

    This study is an attempt to improve corrosion resistance by laser beam surface treatment. AISI 304 type stainless steel welds were surface treated by laser and the effectivenesses of various treatment conditions were evaluated by acidic corrosion tests and metallurgical observation. It was found that laser treatment changed the morphology of carbide precipitates in the heat affected zone of AISI 304 austenitic steel MIG welded joints, and that it is possible to effect revovery from weld decay...

  15. A study on the health evaluation in spot welded zone by using optical pulse and lock-in phase infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Sang; Choi, Mang Yog; Kwon, Koo Ahn; Park, Jeong Hak [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Tae [School of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of); Lee, Bo Young [School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang (Korea, Republic of)

    2013-08-15

    The non-destructive testing using infrared thermography is extended to a variety of industries and non-destructive testing of welds using infrared thermography is also in progress in various ways. Currently, a non-destructive testing of electrical resistance spot welds which is mainly used is Radiography Testing. This study detected area of spot welds nugget using optical-infrared thermography. In the results, it is possible for detecting defects of nugget in a short period of time using pulse-infrared thermography.

  16. Welding and Joining of Titanium Aluminides

    Directory of Open Access Journals (Sweden)

    Jian Cao

    2014-06-01

    Full Text Available Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials.

  17. 10,170 flawless welds

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    The welding of tubes containing the principal current-carrying busbars in the LHC magnets was one of the main activities of the SMACC project. After a year of preparation and another of intense activity in the tunnel, the last weld was completed on Wednesday 14 May. Over 10,170 welds have been inspected and not a single fault has been found.    The welder (above) creates the weld using an orbital welding machine (below) specifically designed for CERN. Each of the eight sectors of the LHC contains around 210 interconnects between the superconducting magnets. Consolidating these interconnections was the SMACC project’s primary objective. One of the last jobs before closing the interconnects is the welding of the M lines: each has a 104 mm diameter and a radial clearance of just 45 mm. In total: 10,170 welds carried out in a single year of activities. A true challenge, which was carried out by a team of 30 highly specialised welders, working under the supervision o...

  18. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    OpenAIRE

    2011-01-01

    The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW) welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot crac...

  19. Research on Pitting Corrosion-resistant of Stainless Steel/Carbon Steel Welding Jiont%不锈钢/碳钢复合钢板焊接接头耐点蚀性能研究

    Institute of Scientific and Technical Information of China (English)

    贡志林

    2015-01-01

    The corrosion resistance of bade metal, weld and heat affected zone of stainless steel-carbon steel laminated composite material in 3. 5% NaCl solution, 30% CH3 COOH solution, 60% CH3 COOH solution and 98%CH3 COOH solution was studied respectively through electrochemical test. It was obtained that the corrosion resistance of weld was the better then the base metal, but the corrosion resistance of heat affected zone was the worst. Besides, in the four solution base metal and weld showed poor corrosion resistance in 3. 5%NaCl solution. A theoretical and experimental foundation for stainless steel-carbon steel laminated composite material was supplied.%采用电化学测试方法评价了不锈钢复合板母材、焊缝及热影响区在3.5%NaCl溶液、30%CH3 COOH溶液、60%CH3 COOH溶液、98%CH3 COOH溶液中的耐点蚀性能。结果显示在以上各种溶液中焊缝的抗腐蚀性能最优、母材其次而热影响区抗腐蚀性能最弱。此外在这四种溶液中母材跟焊区在3.5%NaCl溶液溶液中的耐腐蚀性能最弱。

  20. Welding Curtains

    Science.gov (United States)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  1. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  2. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  3. Next generation high productivity submerged arc welding

    OpenAIRE

    LANGENOJA, MARKUS; Öhrvall Karlsson, Vincent

    2012-01-01

    The task of designing concepts for the next generation of submerged arc welding heads was given by ESAB. ESAB is a global company manufacturing welding equipment for a wide span of industries and uses. In October 2011, ESAB introduced a new technology called Integrated Cold Electrode™, abbreviated and trademarked as ICE™. ICE™ is a technique which utilizes three electrodes in a highly productive and stable process. The current state of the ICE™ technique focuses on welding thick plates with c...

  4. Weldpool flow visualization studies during gas tungsten arc welding of steel and aluminum.

    OpenAIRE

    Schupp, Peter E.

    1992-01-01

    Approved for public release; distribution is unlimited. A flow visualization study of current distribution effects on weld pool stirring in GTA steel welds is presented using a pulsed ultraviolet laser vision system. Weld pool stirring is almost eliminated in HY-80 steel by the use of symmetric current flow path within the weld samples. Periodic radial surface pulses are observed at low currents in stationary welds while flows of turbulent nature are observed at higher cu...

  5. A study on twin-tungsten TIG welding method

    Institute of Scientific and Technical Information of China (English)

    Leng Xuesong; Zhang Guangjun; Gao Hongming; Wu Lin

    2006-01-01

    A new twin-tungsten TIG (T-TIG) welding method was studied. This method differs from the conventional TIG method, it places two electrodes insulated from each other in the same welding torch, and a coupling arc is generated from the two electrodes. The coupling arc pressure was measured and preliminary welding experiment was made. The results show that the coupling arc can keep arc pressure at a low level compared with conventional TIG arc, and welding can be achieved under higher current and high travel speed with sound appearance of weld. Therefore, this new method can applied widely in high efficiency welding.

  6. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, S.W.

    1993-10-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  7. [Multidrug-resistant tuberculosis: current epidemiology, therapeutic regimens, new drugs].

    Science.gov (United States)

    Gómez-Ayerbe, C; Vivancos, M J; Moreno, S

    2016-09-01

    Multidrug and extensively resistant tuberculosis are especially severe forms of the disease for which no efficacious therapy exists in many cases. All the countries in the world have registered cases, although most of them are diagnosed in resource-limited countries from Asia, Africa and South America. For adequate treatment, first- and second-line antituberculosis drugs have to be judiciously used, but the development of new drugs with full activity, good tolerability and little toxicity is urgently needed. There are some drugs in development, some of which are already available through expanded-access programs.

  8. Dependence of the mechanical properties of joints welded according to the parameters of the metal active gas (MAG welding regime

    Directory of Open Access Journals (Sweden)

    D. Dobrotă

    2015-10-01

    Full Text Available The main objective followed in the realization of welded structures is to obtain superior mechanical characteristics for these structures. The research aimed at setting ranges of values for the welding voltage (Uw, respectively for the welding current (Iw so as to obtain superior mechanical features for welded constructions. The research was carried out using E 36-4 steel as base material and SG2 wire as filler material, whereas the applied welding process was MAG. The optimization was done with the help of a number of 31 test bars considering various welding procedures for each test bar, and the experimental data were processed using the STATISTCA program.

  9. Models for selecting GMA Welding Parameters for Improving Mechanical Properties of Weld Joints

    Science.gov (United States)

    Srinivasa Rao, P.; Ramachandran, Pragash; Jebaraj, S.

    2016-02-01

    During the process of Gas Metal Arc (GMAW) welding, the weld joints mechanical properties are influenced by the welding parameters such as welding current and arc voltage. These parameters directly will influence the quality of the weld in terms of mechanical properties. Even small variation in any of the cited parameters may have an important effect on depth of penetration and on joint strength. In this study, S45C Constructional Steel is taken as the base metal to be tested using the parameters wire feed rate, voltage and type of shielding gas. Physical properties considered in the present study are tensile strength and hardness. The testing of weld specimen is carried out as per ASTM Standards. Mathematical models to predict the tensile strength and depth of penetration of weld joint have been developed by regression analysis using the experimental results.

  10. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  11. Control of Saturation level in the magnetic core of a welding transformer by Hysteresis Controller (HC and Proportional Integral (PI Controller

    Directory of Open Access Journals (Sweden)

    Rama Subbanna.S

    2016-12-01

    Full Text Available The objective of this paper is to analyse the performances of two controllers such as Hysteresis control (HC and proportional integral (PI control to control saturation level in the magnetic core of a welding transformer in a middle-frequency direct current (MFDC resistance spot welding system(RSWS. It consists of an input converter, welding transformer, and a full-wave rectifier mounted at the transformer secondary. The unequal ohmic resistances of the two transformer’s secondary circuits and the different characteristics of the diodes of output rectifier certainly lead to the magnetic core saturation which, consequently, causes the unwanted spikes in the transformer’s primary current and over-current protection switch-off. The goal is to analyse the performance of both controllers in terms of transients, total harmonic distortion(THD and variations in primary current and flux in the magnetic core of a welding transformer of highly nonlinear system of RSWS. The simulation study has been done in Matlab/Simulink environment and presented performance analysis. The responses shows that from the aforementioned aspects, proportional integral Controller is the better choice for controlling the saturation level in magnetic core of a welding transformer which is widely used in automobile industry welding system.

  12. Management of patients with resistant hypertension: current treatment options

    Directory of Open Access Journals (Sweden)

    Kumar N

    2013-10-01

    Full Text Available Nilay Kumar,1 David A Calhoun,2 Tanja Dudenbostel21Department of Medicine, 2Division of Cardiovascular Disease, Hypertension and Vascular Biology Program, University of Alabama at Birmingham, Birmingham, AL, USAAbstract: Resistant hypertension (RHTN is an increasingly common clinical problem that is often heterogeneous in etiology, risk factors, and comorbidities. It is defined as uncontrolled blood pressure on optimal doses of three antihypertensive agents, ideally one being a diuretic. The definition also includes controlled hypertension with use of four or more antihypertensive agents. Recent observational studies have advanced the characterization of patients with RHTN. Patients with RHTN have higher rates of cardiovascular events and mortality compared with patients with more easily controlled hypertension. Secondary causes of hypertension, including obstructive sleep apnea, primary aldosteronism, renovascular disease, are common in patients with RHTN and often coexist in the same patient. In addition, RHTN is often complicated by metabolic abnormalities. Patients with RHTN require a thorough evaluation to confirm the diagnosis and optimize treatment, which typically includes a combination of lifestyle adjustments, and pharmacologic and interventional treatment. Combination therapy including a diuretic, a long-acting calcium channel blocker, an angiotensin-converting enzyme inhibitor, a beta blocker, and a mineralocorticoid receptor antagonist where warranted is the classic regimen for patients with treatment-resistant hypertension. Mineralocorticoid receptor antagonists like spironolactone or eplerenone have been shown to be efficacious in patients with RHTN, heart failure, chronic kidney disease, and primary aldosteronism. Novel interventional therapies, including baroreflex activation and renal denervation, have shown that both of these methods may be used to lower blood pressure safely, thereby providing exciting and promising new

  13. 熔焊对碳钢渗铝层组织和抗氧化性能的影响%Influence of Fusion Welding on Microstructure and Oxidation Resistance of Aluminized Layer on Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    丛伟; 姚正军; 包卫军

    2011-01-01

    Vacuum diffusion Q235 steel after hop dip aluminizing was welded by tungsten gas arc welding.The effect of fusion welding on microstructure and high-temperature (800℃ ) oxidation resistance of the aluminized layer was investigated by means of optical microscopy, scanning electron microscopy, energy dispersive spectra and X-ray diffraction. The results show that the interface between aluminized layer and welding seam was metallurgical bonding. The elements of Cr, Ni and Al near fusion line gradiently distributed. The main phases near fusion line were Al2Cr, AlCrFe2 and (Fe, Cr) solid solution. The oxidation-mass gain curves of the post-weld sample were nearly parabolic. The main phases of the oxidation film in fusion zone were Al2O3, Cr2O3 and Fe2O3. Comparing with the high-temperature oxidation resistance of the aluminized sample before welding , the one of the sample after welding only decreased by 22. 8%.%采用钨极氩弧焊焊接了热浸镀铝后真空扩散的Q235钢板,采用光学显微镜、SEM、EDS、XRD等研究了熔焊对渗铝层组织及高温(800℃)抗氧化性能的影响.结果表明:渗铝层与焊缝之间实现冶金结合,铬、镍、铝元素在熔合线附近呈现梯度分布,熔合线附近的主要物相为Al2Cr、AlCrFe2以及(Fe,Cr)固溶体;焊后试样的氧化-增重曲线近似抛物线,熔合区氧化膜的主要物相为Al2O3、Cr2O3和Fe2O3,焊后渗铝试样的高温抗氧化性能比焊接前仅下降了22.8%.

  14. Prediction of optimum weld pool geometry of PCTIG welded titanium alloy using statistical design

    Directory of Open Access Journals (Sweden)

    M. Balasubramanian

    2016-03-01

    Full Text Available Mechanical strength of the weldments is not only influenced by the composition of the metals but selection of process parameters and weld bead profile also play a vital role in determining the strength. The relationships between the process parameters and the bead parameters controlling the bead shape are to be established. This is achieved by the development of mathematical expressions, relating the weld bead dimensions to the important process control variables affecting these dimensions. Also, optimization of the process parameters to control and obtain the required shape and quality of weld beads is also made possible with these expressions. The pulsing current parameters on weld pool geometry namely front height, back height, front width and back width of pulsed current tungsten inert gas welding (PCTIG of titanium alloy was analyzed. Box–Behnken design was used to develop empirical relationships, incorporating pulsed current parameters and weld pool geometry.

  15. Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness

    Science.gov (United States)

    Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro

    2017-10-01

    This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.

  16. Analysis of the Covered Electrode Welding Process Stability on the Basis of Linear Regression Equation

    Directory of Open Access Journals (Sweden)

    Słania J.

    2014-10-01

    Full Text Available The article presents the process of production of coated electrodes and their welding properties. The factors concerning the welding properties and the currently applied method of assessing are given. The methodology of the testing based on the measuring and recording of instantaneous values of welding current and welding arc voltage is discussed. Algorithm for creation of reference data base of the expert system is shown, aiding the assessment of covered electrodes welding properties. The stability of voltage–current characteristics was discussed. Statistical factors of instantaneous values of welding current and welding arc voltage waveforms used for determining of welding process stability are presented. The results of coated electrodes welding properties are compared. The article presents the results of linear regression as well as the impact of the independent variables on the welding process performance. Finally the conclusions drawn from the research are given.

  17. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  18. R&D on Resistive Heat Exchangers for HTS High Rated Current Leads%R&D on Resistive Heat Exchangers for HTS High Rated Current Leads

    Institute of Scientific and Technical Information of China (English)

    毕延芳

    2011-01-01

    The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4%

  19. Stochastic macromodel of magnetic tunnel junction resistance variation and critical current dependence on resistance variation for SPICE simulation

    Science.gov (United States)

    Choi, Juntae; Song, Yunheub

    2017-04-01

    The resistance distribution of a magnetic tunnel junction (MTJ) shows nonuniformity according to various MTJ parameters. Moreover, this resistance variation leads to write-current density variation, which can cause serious problems when designing peripheral circuits for spin transfer torque magnetoresistance random access memory (STT-MRAM) and commercializing gigabit STT-MRAM. Therefore, a macromodel of MTJ including resistance, tunneling magnetoresistance ratio (TMR), and critical current variations is required for circuit designers to design MRAM peripheral circuits, that can overcome the various effects of the variations, such as write failure and read failure, and realize STT-MRAM. In this study, we investigated a stochastic behavior macromodel of the write current dependence on the MTJ resistance variation. The proposed model can possibly be used to analyze the write current density in relation to the resistance and TMR variations of MTJ with various parameter variations. It can be very helpful for designing STT-MRAM circuits and simulating the operation of STT-MRAM devices considering MTJ variations.

  20. Plasma-MIG hybrid arc welding with PID increment constant current or voltage control algorithm%增量型PID恒流恒压控制的Plasma-MIG复合电弧焊接

    Institute of Scientific and Technical Information of China (English)

    杨涛; 张生虎; 高洪明; 吴林; 许可望; 刘永贞

    2013-01-01

    Plasma-MIG复合电弧焊接对电源的外特性输出及焊接过程控制有着很高的要求,以VC++软件开发工具为平台,推导了适合于Plasma-MIG复合电弧焊接的增量型PID控制算法,实现了对复合电弧焊接过程控制及电源外特性的要求.结果表明,增量型PID恒流恒压控制能够满足Plasma-MIG对电源外特性的输出要求.Plasma电弧和MIG电弧并不是相互独立的,两者以共享的电磁空间、导电气氛和焊丝为媒介建立起耦合关系.Plasma-MIG复合电弧焊接过程中,增量型PID控制下的Plasma电弧能够自发的调节自身电参数,来稳定电弧空间的电流密度,使得焊接过程中无飞溅.采用控制后,Plasma-MIG复合电弧焊焊接过程焊缝铺展好,焊接过程稳定,焊缝成形好.%Output characteristics of the power supply and welding process control are important factors for plasma-MIG hybrid arc welding. PID increment control algorithm suitable for Plasma-MIG hybrid arc welding was developed based on VC + + language in this paper, which optimized the output characteristics of the power supply and welding process control. The results show that the plasma arc and MIG arc were coupled with each other by sharing the electro-magnetic space, gas and filler metal. Plasma are controlled by PID increment control algorithm was capable of stabilizing the current density through the arc due to its self-adjusting function, without sputtering in the welding process. High stability, molten metal with excellent liquidity and weld with smooth surface were realized by plasma-MIG hybrid arc welding with PID increment control algorithm.

  1. Current perspectives on the dynamics of antibiotic resistance in different reservoirs

    OpenAIRE

    Eduarda Gomes-Neves

    2015-01-01

    Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibioticresistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute tothe current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elementsand events is revisited, exploring examples of the processes by which ...

  2. Wear Resistance of Friction Pair of Metal Composite/Copper under Electric Current

    Science.gov (United States)

    Aleutdinova, M. I.; Fadin, V. V.; Rubtsov, V. Ye; Aleutdinov, K. A.

    2016-11-01

    Sliding of metal composites against copper counterbody under severe conditions (i.e. at the contact current density higher 50 A/cm2 and at high roughness of counterbody) is carried out. It is shown that the composite of composition of Cu-30% of graphite shows low wear resistance in these conditions. Higher wear resistance is inherent in the composites containing lead and bearing steel. Impregnation of these composites by industrial oil hasn't led to noticeable increase in wear resistance.

  3. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  4. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  5. Research of resisting of the biological active point for constant and alternative current

    Directory of Open Access Journals (Sweden)

    S. N. Peregudov

    2008-05-01

    Full Text Available Is conducted research of resistance of biologically active point (BAT on a direct and variable current. Research results are presented. The estimation of intercommunication between resistance of skin and by an electromagnetic radiation in BAT is done. Is shown possibility of the use of experimental information for diagnostics of the state of human to the organism.

  6. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying

    2011-10-01

    One form of power overshoot commonly observed with mixed culture microbial fuel cells (MFCs) is doubling back of the power density curve at higher current densities, but the reasons for this type of overshoot have not been well explored. To investigate this, MFCs were acclimated to different external resistances, producing a range of anode potentials and current densities. Power overshoot was observed for reactors acclimated to higher (500 and 5000. Ω) but not lower (5 and 50. Ω) resistances. Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current in cyclic voltammograms (CVs) and higher levels of redox activity over a broader range of anode potentials (-0.4 to 0. V; vs. a Ag/AgCl electrode) based on first derivative cyclic voltammetry (DCV) plots. Reactors acclimated to higher external resistances produced lower current in CVs, exhibited lower redox activity over a narrower anode potential range (-0.4 to -0.2. V vs. Ag/AgCl), and failed to produce higher currents above ∼-0.3. V (vs. Ag/AgCl). After the higher resistance reactors were acclimated to the lowest resistance they also exhibited similar CV and DCV profiles. Our findings show that to avoid overshoot, prior to the polarization and power density tests the anode biofilm must adapt to low external resistances to be capable of higher currents. © 2011 Elsevier B.V.

  7. Pulmonary effects of spot welding in automobile assembly.

    Science.gov (United States)

    Loukzadeh, Zeeba; Sharifian, Seyed Akbar; Aminian, Omid; Shojaoddiny-Ardekani, Ahmad

    2009-06-01

    Spot welding is a type of resistance welding in which pieces of metals are pressed together and an electric current is passed through them. Spot welders are at risk of contact with some potentially hazardous agents but there are few studies about the respiratory effects of spot welding. Our objective was to study lung function and respiratory symptoms among spot welders and office workers at an automobile assembly factory in Iran. This was a cross-sectional study of 137 male spot welders and 129 office workers. We used a questionnaire to record demographic data, smoking habits, work history and respiratory symptoms. Spirometry was performed to assess lung function status. Metal fume samples from the respiratory zone of spot welders were analysed. The concentrations of metal fume were less than the American Conference of Industrial Hygienists (ACGIH) threshold limit values. There were significantly lower values for average forced expiratory volume in 1st second (FEV(1)), FEV(1)/forced vital capacity and 25-75% forced expiratory flow in spot welders compared to controls. There was also a significantly raised prevalence of respiratory symptoms (sputum and dyspnoea) in spot welders. Fifteen per cent of spot welders and 1% of controls had an obstructive pattern in spirometry. Our survey suggests that spot welders are at risk of developing respiratory symptoms and decreasing pulmonary function values despite their exposure to components of welding fume being within ACGIH guidelines.

  8. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1996-01-01

    -nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...... activities concerning the weldability of high alloyed austenitic stainless steels for mass production industry applying industrial lasers for fine welding will be described. Studies on hot cracking sensitivity of high alloyed austenitic stainless steel applying both ND-YAG-lasers and CO2-lasers has been...... performed and is currently in progress in collaboration with a major Danish company, who currently is applying laser welding in several production lines. Furthermore some case stories from development work on laser welding for industri-al production will be described. One case story describes a current...

  9. The corrosion resistance of composite arch wire laser-welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein.

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect.

  10. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  11. Effect of welding techniques on microstructure and mechanical properties of aluminium-lithium alloy welds

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan Reddy, G.; Gokhale, A.A.; Saxena, V.K. [Defence Metallurgical Research Lab., Hyderabad (India); Prasad Rao, K.

    2000-07-01

    The tensile properties and fatigue crack growth behaviour of sheets of an Al-1.9Li-1.8Cu-1.0 Mg-0.1Zr alloy welded under different conditions were evaluated. The basic welding technique was constant current (CC) gas tungsten arc (GTA) welding. Two modifications viz. pulsed current (PC) and magnetic arc oscillation (AO) were introduced to study effects on microstructure and properties. Both PC and AO resulted in microstructural refinement in the fusion zone. The tensile residual stresses present in CC welds reduced when either PC or AO welding was used. The tensile strength and ductility increased, and fatigue crack growth rates lowered when PC or AO conditions replaced CC welding. (orig.)

  12. Realizing precision pulse TIG welding with arc length control and visual image sensing based weld detection

    Institute of Scientific and Technical Information of China (English)

    孙振国; 陈念; 陈强

    2003-01-01

    Methods of arc length control and visual image based weld detection for precision pulse TIG welding were investigated. With a particular all-hardware circuit, arc voltage during peak current stage is sampled and integrated to indicate arc length, deviation of arc length and adjusting parameters are calculated and output to drive a step motor directly. According to the features of welding image grabbed with CCD camera, a special algorithm was developed to detect the central line of weld fast and accurately. Then an application system were established, whose static arc length error is ±0.1 mm with 20 A average current and 1 mm given arc length, static detection precision of weld is 0.01 mm, processing time of each image is less than 120 ms. Precision pulse TIG welding of some given thin stainless steel components with complicated curved surface was successfully realized.

  13. Repair welding of cast iron coated electrodes

    Science.gov (United States)

    Żuk, M.; Górka, J.; Dojka, R.; Czupryński, A.

    2017-08-01

    Welding cast iron is a complex production procedure. Repair welding was used to repair damaged or poorly made castings. This is due to a tendency to cracking of the material during welding as well as after it. Welding cast iron can be carried out on hot or on cold. Hot welding requires high heat material and the use of welding material in the form of cast iron. In the case of cold welding, it is possible to use different materials. Mostly used filler metals are nickel and copper based. The work shows the course of research concerning repairmen of ductile iron with arc welding method. For the reparation process four types of ESAB company coated electrodes dedicated for cast iron were used with diameter 3.2 and 4 mm: ES 18-8-6B (4mm), EB 150 (4mm), OK NiCl, EŻM. In the cast iron examined during the testing grooves were made using plasma methods, in order to simulate the removed casting flaws. Then the welding process with coated electrodes was executed. The process utilized low welding current row of 100A, so there would only be a small amount of heat delivered to the heat affected zone (HAZ). Short stitches were made, after welding it was hammered, in order to remove stresses. After the repair welding the part of studies commenced which purpose was finding surface defects using visual testing (VT) and penetration testing (PT). In the second part, a series of macro and microscopic studies were executed witch the purpose of disclosuring the structure. Then the hardness tests for welds cross sections were performed. An important aspect of welding cast iron is the colour of the padding weld after welding, more precisely the difference between the base material and padding weld, the use of different materials extra gives the extra ability to select the best variant. The research of four types of coated electrode was executed, based on the demands the best option in terms of aesthetic, strength and hardness.

  14. Direct-current vertical electrical-resistivity soundings in the Lower Peninsula of Michigan

    Science.gov (United States)

    Westjohn, D.B.; Carter, P.J.

    1989-01-01

    Ninety-three direct-current vertical electrical-resistivity soundings were conducted in the Lower Peninsula of Michigan from June through October 1987. These soundings were made to assist in mapping the depth to brine in areas where borehole resistivity logs and water-quality data are sparse or lacking. The Schlumberger array for placement of current and potential electrodes was used for each sounding. Vertical electrical-resistivity sounding field data, shifted and smoothed sounding data, and electric layers calculated using inverse modeling techniques are presented. Also included is a summary of the near-surface conditions and depths to conductors and resistors for each sounding location.

  15. Automated Spot Weld Inspection using Infrared Thermography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian [ORNL; Zhang, Wei [ORNL; Yu, Zhenzhen [ORNL; Feng, Zhili [ORNL

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  16. Alternating grain orientation and weld solidification cracking

    Science.gov (United States)

    Kou, S.; Le, Y.

    1985-10-01

    A new mechanism for reducing weld solidification cracking was proposed, based on the concept of the crack path and resistance to crack propagation, and its effectiveness was verified in magnetically oscillated GTA welds of a rather crack susceptible material 2014 aluminum alloy. This mechanism, i.e., alternating grain orientation, was most pronounced in welds made with transverse arc oscillation of low frequency and high amplitude, and solidification cracking was dramatically reduced in these welds. The effect of the arc oscillation pattern, amplitude, and frequency on the formation of alternating columnar grains and the reduction of solidification cracking in GTA welds of 2014 aluminum alloy was examined and explained. The present study demonstrated for the first time that columnar grains can, in fact, be very effective in reducing solidification cracking, provided that they are oriented favorably.

  17. A Modified Time-Delay Addition Method to Extract Resistive Leakage Current of MOSA

    Science.gov (United States)

    Khodsuz, Masume; Mirzaie, Mohammad

    2016-12-01

    Metal oxide surge arresters are one of the most important equipment for power system protection against switching and lightning over-voltages. High-energy stresses and environmental features are the main factors which degrade surge arresters. In order to verify surge arresters good condition, their monitoring is necessary. The majority of surge arrester monitoring techniques is based on total leakage current decomposition of their capacitive and resistive components. This paper introduces a new approach based on time-delay addition method to extract the resistive current from the total leakage current without measuring voltage signal. Surge arrester model for calculating leakage current has been performed in ATP-EMTP. In addition, the signal processing has been done using MATLAB software. To show the accuracy of the proposed method, experimental tests have been performed to extract resistive leakage current by the proposed method.

  18. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  19. Equalization of Ti-6Al-4 V alloy welded joint by scanning electron beam welding

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The equalization of Ti-6Al-4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was ob tained. Uniform microstructure and solutedistribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield-strength ratio is 99.5%, which is 3.6% higher than that of base metal.

  20. Antimicrobial resistance among Enterobacteriaceae in South America: history, current dissemination status and associated socioeconomic factors.

    Science.gov (United States)

    Bonelli, Raquel Regina; Moreira, Beatriz Meurer; Picão, Renata Cristina

    2014-04-01

    South America exhibits some of the higher rates of antimicrobial resistance in Enterobactericeae worldwide. This continent includes 12 independent countries with huge socioeconomic differences, where the ample access to antimicrobials, including counterfeit ones, coexists with ineffective health systems and sanitation problems, favoring the emergence and dissemination of resistant strains. This work presents a literature review concerning the evolution and current status of antimicrobial resistance threats found among Enterobacteriaceae in South America. Resistance to β-lactams, fluoroquinolones and aminoglycosides was emphasized along with description of key epidemiological studies that highlight the success of specific resistance determinants in different parts of the continent. In addition, a discussion regarding political and socioeconomic factors possibly related to the dissemination of antimicrobial resistant strains in clinical settings and at the community is presented. Finally, in order to assess the possible sources of resistant bacteria, we compile the current knowledge about the occurrence of antimicrobial resistance in isolates in South American' food, food-producing animals and off-hospitals environments. By addressing that intensive intercontinental commerce and tourism neutralizes the protective effect of geographic barriers, we provide arguments reinforcing that globally integrated efforts are needed to decelerate the emergence and dissemination of antimicrobial resistant strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. 白车身电阻点焊质量控制技术%Quality measurements for resistance spot-weld and control technologies in body-in-white

    Institute of Scientific and Technical Information of China (English)

    张勇; 付玉生

    2012-01-01

    Several technology methods and their applications for spot-weld quality measurement and control were briefly described in this article.The single channel ultra-sonic back wave of different characteristic on weld-spots is list.And latest matrix ultra-sonic aenor information, dynamic resistance self-adaption control technology are described in the article.The application and development Irend of ultra-sonic measure technology and dynamic resistance self-adaption control technology in quality assurance system of spot-weld in Body-in-White also introduced.%概述了白车身电阻点焊质量检测控制的几种技术手段,列举了常见的不同特征焊点的单通道超声波回馈波形,介绍目前最新的矩阵式超声波传感器的特点和动态电阻自适应控制技术工作原理,以及超声波检测技术和动态电阻自适应控制技术在车身电阻点焊质量保证系统中的应用情况及其趋势.

  3. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons.

    Science.gov (United States)

    Szulczyk, Bartlomiej; Nurowska, Ewa

    2017-09-16

    Valproic acid is frequently prescribed and used to treat epilepsy, bipolar disorder and other conditions. However, the mechanism of action of valproic acid has not been fully elucidated. The aim of this study was to assess the influence of valproic acid (200 μM) on TTX-resistant sodium currents in mPFC pyramidal neurons. Valproic acid inhibited the maximal amplitude and did not change the activation parameters of TTX-resistant sodium currents. Moreover, valproic acid (2 μM and 200 μM) shifted the TTX-resistant sodium channel inactivation curve towards hyperpolarisation. In the presence of valproic acid, TTX-resistant sodium currents recovered from inactivation more slowly. Valproic acid did not influence the use-dependent blockade of TTX-resistant sodium currents. This study suggests that a potential new mechanism of the antiepileptic action of valproic acid is, among others, inhibition of TTX-resistant sodium currents. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Current perspectives on the dynamics of antibiotic resistance in different reservoirs.

    Science.gov (United States)

    Caniça, Manuela; Manageiro, Vera; Jones-Dias, Daniela; Clemente, Lurdes; Gomes-Neves, Eduarda; Poeta, Patrícia; Dias, Elsa; Ferreira, Eugénia

    2015-09-01

    Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibiotic resistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute to the current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elements and events is revisited, exploring examples of the processes by which successful mobile resistance genes spread across different niches. The importance of classic and next generation molecular approaches, as well as action plans and policies which might aid in the fight against antibiotic resistance, are also reviewed. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Pitting corrosion behaviour of built-up welds - Effects of welding layers and tarnish; Lochkorrosionsverhalten von Auftragschweissungen - Schweisslagen- und Oberflaecheneffekte

    Energy Technology Data Exchange (ETDEWEB)

    Heyn, A.; Schilling, K.; Boese, E.; Spieler, S.; Altendorf, S. [Otto-von-Guericke-Universitaet Magdeburg, IWW, PF 4120, 39016 Magdeburg (Germany); Burkert, A. [BAM, Berlin, Fachgruppe VII.3, Unter den Eichen 87, 12205 Berlin (Germany); Schultze, S. [LMPA Sachsen-Anhalt, Grosse Steinernetischstrasse 4, 39104 Magdeburg (Germany)

    2003-12-01

    The pitting corrosion resistance of nickel based deposition welds on a superduplex steel made by active-gas metal pulsed-arc welding was studied. Therefore the determination of the CPT (Critical Pitting Temperature) should be carried out corresponding to ASTM G 48 C. However an unexpectedly low resistance of the built-up welds also at multilayer order was noticed. After visual assessment of the examined specimens a significant effect of the surface condition was assumed. Because the CPT determination according to ASTM does not allow any statement about the corrosion process, this method was not suitable to characterize the corrosion system. For this reason a new method was applied to clarify the causes of the low corrosion resistance. This method determines the CPT with the help of the electrochemical current noise under the same conditions demanded in ASTM G 48 C. The temperature is increased continuously and the characteristic parameters of the system are recorded and evaluated objectively within short time. So it was possible to see the influence of the surface condition on the pitting corrosion behaviour of the examined specimens. The required parameters to the post-processing of the deposition welds were determined. The comparison of the results show that the surface tarnish formed after the shielded arc welding process influences the pitting corrosion resistance negatively. After its elimination the CPT could be determined in dependence of the welding layers. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Zur vergleichenden Einschaetzung der Lochkorrosionsbestaendigkeit von verschiedenen, mehrlagigen MAGp-auftraggeschweissten Nickelbasis-Schweissguetern auf einem Superduplexstahl wurden kritische Lochkorrosionstemperaturen (critical pitting temperature, CPT) nach ASTM G 48 C ermittelt. Es zeigte sich eine unerwartet niedrige Bestaendigkeit der Auftragschweissungen, als dessen Ursache ein unguenstiger Oberflaechenzustand angenommen wurde. Da die

  6. Thermodynamics analysis of diffusion in spark plasma sintering welding Cr3C2 and Ni

    Science.gov (United States)

    Zhang, Fan; Zhang, Jinyong; Leng, Xiaoxuan; Lei, Liwen; Fu, Zhengyi

    2017-03-01

    Spark plasma sintering (SPS) welding of chromium carbide (Cr3C2) and nickel (Ni) was used to investigate the atomic diffusion caused by bypassing current. It was found that the diffusion coefficient with bypassing current was enhanced by almost 3.57 times over that without bypassing current. Different from the previous researches, the thermodynamics analysis conducted herein showed that the enhancement included a current direction-independent part besides the known current direction-dependent part. A local temperature gradient (LTG) model was proposed to explain the current direction-independent effect. Assuming that the LTG was mainly due to the interfacial electric resistance causing heterogeneous Joule heating, the theoretical results were in good agreement with the experimental results both in the present and previous studies. This new LTG model provides a reasonable physical meaning for the low-temperature advantage of SPS welding and should be useful in a wide range of applications.

  7. Investigation of flux-powder wire’s components-stabilizers on welding and technological properties in underwater welding

    Directory of Open Access Journals (Sweden)

    М. Ю. Каховський

    2015-03-01

    Full Text Available Based on long-term experience of welding by mechanized flux-cored wires, the E.O. Paton Electric Welding Institute investigated a self-protecting flux-cored wire for wet underwater welding of stainless steels type 18-10. It allows to perform welding of butt, fillet and overlapped joints in flat and vertical positions of high-alloy corrosion-resistant steels type of 18-10 (AISI 304L, 308L, 347 and 321. The article presents results of development of welding-repair technology using self-shielded flux-cored wire for wet underwater welding of high-alloy stainless steels type 18-10. Also, the article describes a method of increasing the process stability of the arc in wet underwater welding high corrosion resistant steels type 18-10 by self-shielded flux cored wire. Studied welding characteristics of the weld metal with the introduction of the charge wire components stabilizers. The application of this technology allows partially or completely reducing the human participation in welding process under the extreme conditions: at large depth, in radioactive environments (in case of NPS and also gaining a significant economic effect due to greater efficiency (productivity of welding-repair works. The practical value of this technology consists in possibility of welding-repair works directly under water without any additional assembly works. As to its properties the developed self-shielding wire for underwater welding of high-alloy corrosion resistant steel meets completely the requirements of class (B of the International standard ANSI/AWS D3.6 on underwater welding

  8. Current trends of human infections and antibiotic resistance of the genus Shewanella.

    Science.gov (United States)

    Yousfi, K; Bekal, S; Usongo, V; Touati, A

    2017-08-01

    Shewanella spp. are commonly known as environmental bacteria and are most frequently isolated from aquatic areas. Currently, diseases syndromes and multidrug resistance have increasingly been reported in the genus Shewanella. Some species are associated with various infections, such as skin and soft tissue infections, as well as bacteremia. Generally, these bacteria are opportunistic and mostly affect people with an impaired immune system. This genus is also a probable vehicle and progenitor of antibiotic resistance genes. In fact, several resistance genes and mobile genetic elements have been identified in some resistant species isolated from environmental or clinical settings. These genes confer resistance to different antibiotic classes, including those used in therapies such as β-lactams and quinolones, and are generally located on the chromosome. Recently, a multidrug-resistant (MDR) plasmid harboring several drug resistance genes associated with transposons and integrons has been identified in Shewanella xiamenensis. These antibiotic resistance genes can circulate in the environment and contribute to the emergence of antibiotic resistance. This review describes different aspects of Shewanella, focusing on the infections caused by this genus, as well as their role in the propagation of antibiotic resistance via mobile genetic elements.

  9. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    Science.gov (United States)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  10. Simultaneous observation of keyhole and weld pool in plasma arc welding with a single cost-effective sensor

    Institute of Scientific and Technical Information of China (English)

    张国凯; 武传松; 刘新锋; 张晨

    2014-01-01

    The dynamic behaviors ofthe keyhole and weld pool are coupled together in plasma arc welding,and the geometric variations ofboth the keyhole and the weld pool determine the weld quality.It is ofgreat significance to simultaneously sense and monitor the keyhole and the weld pool behaviors by using a single low-cost vision sensor in plasma arc welding process.In this study,the keyhole and weld pool were observed and measured under different levels ofwelding current by using the near infrared sensing technology and the charge coupled device (CCD)sensing system.The shapes and relative position ofweld pool and keyhole under different conditions were compared and analyzed.The observation results lay solid foundation for controlling weld quality and understanding the underlying process mechanisms.

  11. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  12. An assessment of solid-wire film coatings for MAG welding

    Energy Technology Data Exchange (ETDEWEB)

    Turyk, E.; Ruda, A.; Lomozik, M

    2002-07-01

    Solid electrode-wires, intended for MAG welding, are made of common and low-alloy constructional steels and are usually coated with a thin copper film whose role is to ensure good electrical contact in the contact tube (the current terminal), a low level of resistance to feed in the spiral of the MAG welding clamp, and a temporary anticorrosion protection. The present paper contains results of the investigations into the properties of film coatings on G3Sil-EN 440 solid wires. The assessment of the wire properties was based on the criteria established in the course of the experimentation. This was necessary because the available standards for the welding wires do not uniquely specify requirements regarding factors such as, for instance, film thickness, its uniformity and surface roughness which influence the quality of the coating.

  13. Research on PLC controlling system for high strength plastics-steel composite pipe based on DC resistance welding%基于直流电阻焊的高强度钢塑管道PLC控制系统

    Institute of Scientific and Technical Information of China (English)

    廖继明; 熊健; 杨继文; 姜正

    2011-01-01

    This paper designed and realized high strength plastics-steel composite PLC controlling system with the precision of 0.001 s, utilizing the principle of mid-frequency inverter resistance welding,in accordance with the problems that composite pipe produced by AC resistance welding can't meet the application in high-quality project in face of the increasingly stringent technological and environmental indexes.The strength of welding point enhanced about 20 kg and the capability of anti-extrusion improved approximately 3.0 Mpa in contrast with AC welding.The experimental results indicated that the system in the abominable electromagnetic environment is reliable,strongly universal,accurate control and convenient operation.%针对日益严格的技术、环境指标和交流焊接生产的管道无法应用于高品质工程的问题,利用中频逆变直流电阻焊原理,设计并实现了控制精度为0.001 s的高强度钢塑复合管道PLC控制系统.经过系统组态、焊接电路的设计和改进,与交流电阻焊相比较,直流焊焊点强度提高约20 kg,抗挤压能力提高约3.0 MPa.试验结果表明,通过采取抗干扰措施,系统运行稳定可靠、通用性强、控制精确、操作方便.

  14. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ met

  15. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  16. Neonatal infections due to multi-resistant strains: Epidemiology, current treatment, emerging therapeutic approaches and prevention.

    Science.gov (United States)

    Tzialla, Chryssoula; Borghesi, Alessandro; Pozzi, Margherita; Stronati, Mauro

    2015-12-07

    Severe infections represent the main cause of neonatal mortality accounting for more than one million neonatal deaths worldwide every year. Antibiotics are the most commonly prescribed medications in neonatal intensive care units. The benefits of antibiotic therapy when indicated are clearly enormous, but the continued and widespread use of antibiotics has generated over the years a strong selective pressure on microorganisms, favoring the emergence of resistant strains. Health agencies worldwide are galvanizing attention toward antibiotic resistance in gram-positive and gram-negative bacteria. Infections in neonatal units due to multidrug and extensively multidrug resistant bacteria are rising and are already seriously challenging antibiotic treatment options. While there is a growing choice of agents against multi-resistant gram-positive bacteria, new options for multi-resistant gram-negative bacteria in the clinical practice have decreased significantly in the last 20 years making the treatment of infections caused by multidrug-resistant pathogens challenging mostly in neonates. Treatment options are currently limited and will be some years before any new treatment for neonates become available for clinical use, if ever. The aim of the review is to highlight the current knowledge on antibiotic resistance in the neonatal population, the possible therapeutic choices, and the prevention strategies to adopt in order to reduce the emergency and spread of resistant strains.

  17. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation; Eficiencia termica en soldadura de la aleacion AA6061-T6 por arco electrico indirecto modificado y digitalizacion de senales de intensidad de corriente

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-07-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs.

  18. Modelling of damage development and ductile failure in welded joints

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    This thesis focuses on numerical analysis of damage development and ductile failure in welded joints. Two types of welds are investigated here. First, a study of the localization of plastic flow and failure in aluminum sheets, welded by the relatively new Friction Stir (FS) Welding method, has been...... conducted ([P1], [P2], [P7]-[P9]). The focus in the thesis is on FS-welded 2xxx and 6xxx series of aluminum alloys, which are attractive, for example, to the aerospace industry, since the 2024 aluminum in particular, is typically classified as un-weldable by conventional fusion welding techniques. Secondly......, a study of the damage development in Resistance SpotWelded joints, when subject to the commonly used static shear-lab or cross-tension testing techniques, has been carried out ([P3]-[P6]). The focus in thesis is on the Advanced High Strength Steels, Dual-Phase 600, which is used in for example...

  19. Method for the formation of cylindrical current and its application to evaluate electrical resistivity

    Science.gov (United States)

    Li, T.-C.; Chang, C.-S.; Liang, W.-L.; Tsai, W.-F.; Ai, C.-F.; Lin, J.-F.

    2012-07-01

    A cylindrical current method is developed to obtain a stable and precise electrical resistivity of a specimen with or without a coating film. The electrical resistivity of a standard silicon wafer doped with boron at a concentration can be measured using the proposed method if the experimental results of electrical voltage varying with the distance from the center line of the cylindrical current are available. A comparison of the electrical resistivity obtained using the present method and the theoretical reference value indicates that the proposed method produces reliable and precise measurements. Using four test samples, the experimental results of electrical resistivity measured by the present method are shown to be reproducible and more precise than those measured by the four-terminal sensing method and the van der Pauw method. The electrical voltage and current obtained at various distances from the center line of the cylindrical current are almost independent of the distance and the direction of measurements. The effect of specimen's crystallinity appears to be the governing factor of electrical resistivity. Electrical resistivity decreases with increasing crystallinity generally.

  20. Laser welding in space

    Science.gov (United States)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.