WorldWideScience

Sample records for current research directions

  1. Current and Future Research Directions in Requirements Engineering

    Science.gov (United States)

    Cheng, Betty H. C.; Atlee, Joanne M.

    In this paper, we review current requirements engineering (RE) research and identify future research directions suggested by emerging software needs. First, we overview the state of the art in RE research. The research is considered with respect to technologies developed to address specific requirements tasks, such as elicitation, modeling, and analysis. Such a review enables us to identify mature areas of research, as well as areas that warrant further investigation. Next, we review several strategies for performing and extending RE research results, to help delineate the scope of future research directions. Finally, we highlight what we consider to be the “hot” current and future research topics, which aim to address RE needs for emerging systems of the future.

  2. Navy Telemedicine: Current Research and Future Directions

    National Research Council Canada - National Science Library

    Reed, Cheryl

    2002-01-01

    .... This report reviews military and civilian models for evaluating telemedicine systems in order to determine future directions for Navy telemedicine research within the current funding environment...

  3. Current directions in radiopharmaceutical research

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S J [Department of Nuclear Medicine, St. Bartholomew` s Hospital, London (United Kingdom)

    1998-08-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author) 36 refs

  4. Current directions in radiopharmaceutical research

    International Nuclear Information System (INIS)

    Mather, S.J.

    1998-01-01

    Much of current radiopharmaceutical research is directed towards the development of receptor-binding tracers which are targeted towards biochemical processes. These may be extra or intracellular in nature and hold promise for an imaging approach to tissue characterisation in-vivo. Many of these products are based on proteins which range in size from large monoclonal antibodies to small neuropeptides and share a radiolabelling chemistry based on the use of bifunctional chelating agents. Although developed initially for use with indium-111, considerations of cost and isotope availability have continued to direct the efforts of many researchers towards the use of technetium-99m. While polypeptide-based radiopharmaceuticals may be useful for imaging peripheral cell-surface receptors, access to sites of interest within the cell, or in the brain, requires the development of small lipophilic molecules with retained ability to interact with intracellular targets. The design and synthesis of these compounds presents a particular challenge to the radiopharmaceutical chemist which is being met through either a pendant or integrated approach to the use of technetium coordination with particular emphasis on technetium (v) cores. Progress continues to be made in the application of targeted radionuclide therapy particularly in the development of radiopharmaceuticals for the treatment of malignant bone disease. methods for labelling antibodies with a great variety of cytotoxic radionuclides have now been refined and their use for radioimmunotherapy in the treatment of haematological malignancies shows great promise. The major medical areas for application of these new radiopharmaceuticals will be in oncology, neurology and inflammation but the increasingly difficult regulatory climate in which drug development and health-care now operate will make it essential for researchers to direct their products toward specific clinical problems as well as biological targets. (author)

  5. Clinical Research with Transcranial Direct Current Stimulation (tDCS): Challenges and Future Directions

    Science.gov (United States)

    Brunoni, Andre Russowsky; Nitsche, Michael A.; Bolognini, Nadia; Bikson, Marom; Wagner, Tim; Merabet, Lotfi; Edwards, Dylan J.; Valero-Cabre, Antoni; Rotenberg, Alexander; Pascual-Leone, Alvaro; Ferrucci, Roberta; Priori, Alberto; Boggio, Paulo; Fregni, Felipe

    2011-01-01

    Background Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the past ten years, tDCS physiological mechanisms of action have been intensively investigated giving support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However, new methodological, ethical, and regulatory issues emerge when translating the findings of preclinical and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to discuss the key challenges of this process and possible methods to address them. Methods We convened a workgroup of researchers in the field to review, discuss and provide updates and key challenges of neuromodulation use for clinical research. Main Findings/Discussion We reviewed several basic and clinical studies in the field and identified potential limitations, taking into account the particularities of the technique. We review and discuss the findings into four topics: (i) mechanisms of action of tDCS, parameters of use and computer-based human brain modeling investigating electric current fields and magnitude induced by tDCS; (ii) methodological aspects related to the clinical research of tDCS as divided according to study phase (i.e., preclinical, phase I, phase II and phase III studies); (iii) ethical and regulatory concerns; (iv) future directions regarding novel approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative methods to facilitate clinical research on tDCS. PMID:22037126

  6. Object Detection: Current and Future Directions

    Directory of Open Access Journals (Sweden)

    Rodrigo eVerschae

    2015-11-01

    Full Text Available Object detection is a key ability required by most computer and robot vision systems. The latest research on this area has been making great progress in many directions. In the current manuscript we give an overview of past research on object detection, outline the current main research directions, and discuss open problems and possible future directions.

  7. Psychological Therapies for Auditory Hallucinations (Voices): Current Status and Key Directions for Future Research

    NARCIS (Netherlands)

    Thomas, N.; Hayward, M.; Peters, E; van der Gaag, M.; Bentall, R.P.; Jenner, J.; Strauss, C.; Sommer, I.E.; Johns, L.C.; Varese, F.; Gracia-Montes, J.M.; Waters, F.; Dodgson, G.; McCarthy-Jones, S.

    2014-01-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions,

  8. Current frontiers and future directions of telecoupling research

    Science.gov (United States)

    Liu, J.

    2016-12-01

    The world has been increasingly interconnected over long distances though processes such as international trade, migration, telecommunication, and disease spread. However, previous studies often focused on socioeconomic or environmental issues of distant processes. While these studies have generated useful information for individual disciplines, integrating socioeconomic and environmental information is essential for holistic understanding of complex global challenges and unbiased decision making to address the challenges. To advance integrated research, the framework of telecoupling (socioeconomic and environmental interactions over distances) has been developed to explicitly address both socioeconomic and environmental issues simultaneously. Although the framework is relatively new, it has already been applied to tackle a variety of globally important issues, such as food security, water resources, energy sustainability, land use, international trade (e.g., food, forest products, energy, wildlife, industrial products), species invasion, investment, ecosystem services, conservation, information dissemination, and tourism. These applications have identified many important research gaps (e.g. spillover systems) and hidden linkages (e.g. feedbacks) among distant areas of the world with profound implications for sustainable development, ecosystem health, and human well-being. While working with telecoupling presents more challenges than focusing only on disciplinary issues, support from funding agencies has helped accelerate research on telecoupling and more efforts are being aimed at framework quantification and operationalization. The presenter will provide an overview of the current frontiers, discuss future research directions, and highlight emerging opportunities and challenges in telecoupling research and governance.

  9. Medical Robots: Current Systems and Research Directions

    Directory of Open Access Journals (Sweden)

    Ryan A. Beasley

    2012-01-01

    Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.

  10. Water management: Current and future challenges and research directions

    Science.gov (United States)

    Cosgrove, William J.; Loucks, Daniel P.

    2015-06-01

    Water distinguishes our planet compared to all the others we know about. While the global supply of available freshwater is more than adequate to meet all current and foreseeable water demands, its spatial and temporal distributions are not. There are many regions where our freshwater resources are inadequate to meet domestic, economic development and environmental needs. In such regions, the lack of adequate clean water to meet human drinking water and sanitation needs is indeed a constraint on human health and productivity and hence on economic development as well as on the maintenance of a clean environment and healthy ecosystems. All of us involved in research must find ways to remove these constraints. We face multiple challenges in doing that, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization. How best to meet these challenges requires research in all aspects of water management. Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future.

  11. Psychological Therapies for Auditory Hallucinations (Voices): Current Status and Key Directions for Future Research

    Science.gov (United States)

    Thomas, Neil; Hayward, Mark; Peters, Emmanuelle; van der Gaag, Mark; Bentall, Richard P.; Jenner, Jack; Strauss, Clara; Sommer, Iris E.; Johns, Louise C.; Varese, Filippo; García-Montes, José Manuel; Waters, Flavie; Dodgson, Guy; McCarthy-Jones, Simon

    2014-01-01

    This report from the International Consortium on Hallucinations Research considers the current status and future directions in research on psychological therapies targeting auditory hallucinations (hearing voices). Therapy approaches have evolved from behavioral and coping-focused interventions, through formulation-driven interventions using methods from cognitive therapy, to a number of contemporary developments. Recent developments include the application of acceptance- and mindfulness-based approaches, and consolidation of methods for working with connections between voices and views of self, others, relationships and personal history. In this article, we discuss the development of therapies for voices and review the empirical findings. This review shows that psychological therapies are broadly effective for people with positive symptoms, but that more research is required to understand the specific application of therapies to voices. Six key research directions are identified: (1) moving beyond the focus on overall efficacy to understand specific therapeutic processes targeting voices, (2) better targeting psychological processes associated with voices such as trauma, cognitive mechanisms, and personal recovery, (3) more focused measurement of the intended outcomes of therapy, (4) understanding individual differences among voice hearers, (5) extending beyond a focus on voices and schizophrenia into other populations and sensory modalities, and (6) shaping interventions for service implementation. PMID:24936081

  12. Comments on the current status and possible future directions of research on heavy-ion interactions near the Coulomb barrier

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1990-01-01

    This paper contains comments on the current status and possible future directions of research on heavy-ion interactions near the Coulomb barrier. Fusion reactions, elastic and inelastic scattering and transfer reactions are discussed

  13. Effect of alternating and direct currents on Pseudomonas ...

    African Journals Online (AJOL)

    The test media were Muller-Hinton agar and eosin methylene blue (EMB) agar. In this research Pseudomonas aeruginosa which was isolated from patients wounds was examined with levels of alternating and direct current (AC and DC) electrical stimulation (1.5V, 3.5V, 5.5V and 10V) to see if these currents could inhibit P.

  14. Impression management and food intake. Current directions in research.

    Science.gov (United States)

    Vartanian, Lenny R

    2015-03-01

    This paper reviews recent research on consumption stereotypes (judgments of others based on what they eat) and impression management (modifying one's eating behavior in order to create a particular impression). A major recent focus in the literature has been on masculinity and meat eating, with research showing that meat is strongly associated with masculinity, and that individuals who follow a meat-based diet are perceived as more masculine than are individuals who follow a vegetarian diet. Although direct evidence for impression management through food intake remains sparse, a number of methodological approaches (including priming techniques and ecological valid assessments) are described that could be used in future research to identify the motives underlying people's eating behavior. Consumption stereotypes and impression management may be important influences on people's eating behavior, but the complexities of how, when, and for whom these factors influence food intake are still not well understood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Leadership: current theories, research, and future directions.

    Science.gov (United States)

    Avolio, Bruce J; Walumbwa, Fred O; Weber, Todd J

    2009-01-01

    This review examines recent theoretical and empirical developments in the leadership literature, beginning with topics that are currently receiving attention in terms of research, theory, and practice. We begin by examining authentic leadership and its development, followed by work that takes a cognitive science approach. We then examine new-genre leadership theories, complexity leadership, and leadership that is shared, collective, or distributed. We examine the role of relationships through our review of leader member exchange and the emerging work on followership. Finally, we examine work that has been done on substitutes for leadership, servant leadership, spirituality and leadership, cross-cultural leadership, and e-leadership. This structure has the benefit of creating a future focus as well as providing an interesting way to examine the development of the field. Each section ends with an identification of issues to be addressed in the future, in addition to the overall integration of the literature we provide at the end of the article.

  16. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    Science.gov (United States)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  17. Transcranial Direct Current Stimulation: Considerations for Research in Adolescent Depression

    Directory of Open Access Journals (Sweden)

    Jonathan C. Lee

    2017-06-01

    Full Text Available Adolescent depression is a prevalent disorder with substantial morbidity and mortality. Current treatment interventions do not target relevant pathophysiology and are frequently ineffective, thereby leading to a substantial burden for individuals, families, and society. During adolescence, the prefrontal cortex undergoes extensive structural and functional changes. Recent work suggests that frontolimbic development in depressed adolescents is delayed or aberrant. The judicious application of non-invasive brain stimulation techniques to the prefrontal cortex may present a promising opportunity for durable interventions in adolescent depression. Transcranial direct current stimulation (tDCS applies a low-intensity, continuous current that alters cortical excitability. While this modality does not elicit action potentials, it is thought to manipulate neuronal activity and neuroplasticity. Specifically, tDCS may modulate N-methyl-d-aspartate receptors and L-type voltage-gated calcium channels and effect changes through long-term potentiation or long-term depression-like mechanisms. This mini-review considers the neurobiological rationale for developing tDCS protocols in adolescent depression, reviews existing work in adult mood disorders, surveys the existing tDCS literature in adolescent populations, reviews safety studies, and discusses distinct ethical considerations in work with adolescents.

  18. Research development, current hotspots, and future directions of water research based on MODIS images: a critical review with a bibliometric analysis.

    Science.gov (United States)

    Zhang, Yibo; Zhang, Yunlin; Shi, Kun; Yao, Xiaolong

    2017-06-01

    Water is essential for life as it provides drinking water and food for humans and animals. Additionally, the water environment provides habitats for numerous species and plays an important role in hydrological, nutrient, and carbon cycles. Among the existing natural resources on Earth's surface, water is the most extensive as it covers more than 70% of the Earth. To gather a comprehensive understanding of the focus of past, present, and future directions of remote sensing water research, we provide an alternative perspective on water research using moderate resolution imaging spectroradiometer (MODIS) imagery by conducting a comparative quantitative and qualitative analysis of research development, current hotspots, and future directions using a bibliometric analysis. Our study suggests that there has been a rapid growth in the scientific outputs of water research using MODIS imagery over the past 15 years compared to other popular satellites around the world. The analysis indicated that Remote Sensing of Environment was the most active journal, and "remote sensing," "imaging science photographic technology," "environmental sciences ecology," "meteorology atmospheric sciences," and "geology" are the top 5 most popular subject categories. The Chinese Academy of Sciences was the most productive institution with a total of 477 papers, and Hu CM (Chinese) was the most productive author with 76 papers. A keyword analysis indicated that "vegetation index," "evapotranspiration," and "phytoplankton" were the most active research topics throughout the study period. In addition, it is predicted that more attention will be paid to research on climate change and phenology in the future. Based on the keyword analysis and in consideration of current environmental problems, more studies should focus on the following three aspects: (1) develop methods suitable for data assimilation to fully explain climate or phenological phenomena at continental or global scales rather than at

  19. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  20. Munchausen by internet: current research and future directions.

    Science.gov (United States)

    Pulman, Andy; Taylor, Jacqui

    2012-08-22

    also suggest directions for future research.

  1. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  2. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    Science.gov (United States)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  3. A three-port direct current converter

    DEFF Research Database (Denmark)

    2016-01-01

    circuit comprises a connection between the at least one input direct current source and the at least one storage battery, the primary side circuit configured for operating as a buck converter; a second magnetic component serially coupled to the first single magnetic component, wherein the first and second...... magnetic components are configured to perform a voltage step-up, wherein the secondary side circuit comprises a connection between the at least one storage battery and at least one load, the secondary side configured for operating as a tapped boost converter; wherein the three-port direct current converter......The three-port direct current converter comprising: at least one input direct current source; at least one storage battery; a primary side circuit; a secondary side circuit; a first single magnetic component shared by the primary side circuit and the secondary side circuit, wherein the primary side...

  4. Adjustable direct current and pulsed circuit fault current limiter

    Science.gov (United States)

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  5. Current Research Studies

    Science.gov (United States)

    ... Success Home > Explore Research > Current Research Studies Current Research Studies Email Print + Share The Crohn’s & Colitis Foundation ... conducted online. Learn more about IBD Partners. Clinical Research Alliance The Clinical Research Alliance is a network ...

  6. Current state and future direction of computer systems at NASA Langley Research Center

    Science.gov (United States)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  7. Virtual Inertia: Current Trends and Future Directions

    Directory of Open Access Journals (Sweden)

    Ujjwol Tamrakar

    2017-06-01

    Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.

  8. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Navy Telemedicine: Current Research and Future Directions

    National Research Council Canada - National Science Library

    Reed, Cheryl

    2002-01-01

    .... An assessment of Navy telemedicine as a complex healthcare support system is needed to demonstrate how current practices, training, equipment, and expenditures measure up to the emerging needs of the Fleet...

  10. Directed Motivational Currents: Using vision to create effective motivational pathways

    Directory of Open Access Journals (Sweden)

    Christine Muir

    2013-10-01

    Full Text Available Vision, that is, the mental representation of the sensory experience of a future goal state (involving imagination and imagery, is currently at the forefront of motivational innovation, and in recent years it has been seen increasingly more often in the motivational tool kit of practicing language teachers. Theories such as Dörnyei’s L2 motivational self system have explored the power that creating effective visions can harness (see, e.g., Dörnyei & Kubanyiova, 2014 and when viewed in conjunction with other current research avenues, such as future time perspective and dynamic systems theory, vision offers exciting potential. A Directed Motivational Current is a new motivational construct that we suggest is capable of integrating many current theoretical strands with vision: It can be described as a motivational drive which energises long-term, sustained behaviour (such as language learning, and through placing vision and goals as critical central components within this construct, it offers real and practical motivational potential. In this conceptual paper, we first discuss current understandings of vision and of Directed Motivational Currents, and then analyse how they may be optimally integrated and employed to create effective motivational pathways in language learning environments.

  11. Loyalty Programmes : Current Knowledge and Research Directions

    NARCIS (Netherlands)

    Dorotic, Matilda; Bijmolt, Tammo H. A.; Verhoef, Peter C.

    Loyalty programmes (LPs) have increased in number and popularity, but their effects on customer behaviour remain equivocal, due to a lack of understanding of the drivers of LP effectiveness and insufficient generalizable conclusions across prior studies. This paper synthesizes current knowledge

  12. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  13. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...

  14. Mechanisms and Effects of Transcranial Direct Current Stimulation

    Science.gov (United States)

    Giordano, James; Bikson, Marom; Kappenman, Emily S.; Clark, Vincent P.; Coslett, H. Branch; Hamblin, Michael R.; Hamilton, Roy; Jankord, Ryan; Kozumbo, Walter J.; McKinley, R. Andrew; Nitsche, Michael A.; Reilly, J. Patrick; Richardson, Jessica; Wurzman, Rachel

    2017-01-01

    The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose–response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged. PMID:28210202

  15. Charting a Democratic Course for Global Citizenship Education: Research Directions and Current Challenges

    Science.gov (United States)

    Myers, John P.

    2016-01-01

    This article outlines research directions for global citizenship education, by emphasizing the centrality of democratic goals for schools in the 21st century. Despite a significant shift in educational policies and practices towards addressing education that respond to the conditions of globalization, there is not a clear vision regarding its role…

  16. EOP Current Magnitude and Direction

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contain shipboard current magnitudes and directions collected in the Pacific, both pelagic and near shore environments. Data is collected using an RD...

  17. Work-related reproductive, musculoskeletal and mental disorders among working women--history, current issues and future research directions.

    Science.gov (United States)

    Kishi, Reiko; Kitahara, Teruyo; Masuchi, Ayumi; Kasai, Setsuko

    2002-04-01

    According to the recent changes of working environments and socio-economical conditions, the proportion of working women are increasing in Japan. Characteristics of occupational workload and stress of Japanese working women are consistent with those in many industrialized countries except man-dominant culture. In this review we describe the history, current issues, and future research directions on occupational health of working women, especially focused on reproductive health, work-related musculo-skeletal disorders (WMSDs), and mental disorders. In the reproductive health survey, traditionally main concern was about pregnancy outcomes, then fecundity studies, such as time to pregnancy, became topics recently. Future research will be shifted to outcomes not only during pregnancy but also disorders of hormonal balance and climacterium or health conditions after menopause. WMSDs are reviewed on mainly gender difference and its causative factors. Historically, mental health of working women in Japan has focused on the job stress of nurses. We compare results with a lot of recent researches in Europe and U.S.A., where interaction between occupational stress and family roles were studied. It is not easy to predict the prospective status of female workers in Japan, but social, workplace and familial supports will enhance their health promotion.

  18. The Philippine historical earthquakecatalog: its development, current stateand future directions

    OpenAIRE

    Bautista, M. L. P.; Bautista, B. C.

    2004-01-01

    This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines...

  19. HIV vaccines: current challenges and future directions.

    Science.gov (United States)

    Avrett, Sam; Collins, Chris

    2002-07-01

    Volume seven of the Review will mark the tenth anniversary of the Canadian HIV/AIDS Legal Network with a series of articles that describe past developments and future directions in several areas of policy and law related to HIV/AIDS. The following article is the first of these, discussing current challenges and future directions in the development of and access to HIV vaccines. It argues that governments are under public health, ethical, and legal obligations to develop and provide access to HIV vaccines. It further explains what is required for governments to fulfill their obligations: additional commitment and resources for HIV vaccine development in the context of increased global research and development regarding diseases of the poor; increased support and advocacy for partnerships to develop HIV vaccines; enhanced regulatory capacity in every country to review, approve, and monitor HIV vaccines; and assurance of global supply of, procurement of, delivery of, and access to vaccines in the context of efforts to increase global access to public health measures and technologies.

  20. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  1. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  2. A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective.

    Science.gov (United States)

    Zhang, Yunlin; Yao, Xiaolong; Qin, Boqiang

    2016-07-01

    Lake Taihu, as the important drinking water source of the Yangtze River Delta urban agglomeration and the third largest freshwater lake in China, has experienced serious lake eutrophication and water quality deterioration in the past three decades. Growing scientific, political, and public attention has been given to the water quality of Lake Taihu. This study aimed to conduct a comparative quantitative and qualitative analysis of the development, current hotspots, and future directions of Lake Taihu research using a bibliometric analysis of eight well-studied lakes (Lake Taihu, Lake Baikal, Lake Biwa, Lake Erie, Lake Michigan, Lake Ontario, Lake Superior and Lake Victoria) around the world based on the Science Citation Index (SCI) database. A total of 1582 papers discussing Lake Taihu research were published in 322 journals in the past three decades. However, the first paper about Lake Taihu research was not found in the SCI database until 1989, and there were only zero, one, or two papers each year from 1989 to 1995. There had been rapid development in Lake Taihu research since 1996 and a sharp increase in papers since 2005. A keyword analysis showed that "sediment," "eutrophication", "Microcystis aeruginosa", "cyanobacterial blooms", and "remote sensing" were the most frequently used keywords of the study subject. Owing to its significant impact on aquatic ecosystems, a crucial emphasis has been placed on climate change recently. In addition, the future focuses of research directions, including (1) environmental effects of physical processes; (2) nutrient cycles and control and ecosystem responses; (3) cyanobacteria bloom monitoring, causes, forecast and management; (4) eutrophication and climate change interactions; and (5) ecosystem degradation mechanism and ecological practice of lake restoration, are presented based on the keyword analysis. Through multidisciplinary fields (physics, chemistry, and biology) cross and synthesis study of Lake Taihu, the

  3. Direct current power delivery system and method

    Science.gov (United States)

    Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin

    2016-09-06

    A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.

  4. Qualitative ergonomics/human factors research in health care: Current state and future directions.

    Science.gov (United States)

    Valdez, Rupa Sheth; McGuire, Kerry Margaret; Rivera, A Joy

    2017-07-01

    The objective of this systematic review was to understand the current state of Ergonomics/Human Factors (E/HF) qualitative research in health care and to draw implications for future efforts. This systematic review identified 98 qualitative research papers published between January 2005 and August 2015 in the seven journals endorsed by the International Ergonomics Association with an impact factor over 1.0. The majority of the studies were conducted in hospitals and outpatient clinics, were focused on the work of formal health care professionals, and were classified as cognitive or organizational ergonomics. Interviews, focus groups, and observations were the most prevalent forms of data collection. Triangulation and data archiving were the dominant approaches to ensuring rigor. Few studies employed a formal approach to qualitative inquiry. Significant opportunities remain to enhance the use of qualitative research to advance systems thinking within health care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists

    Science.gov (United States)

    Priori, Alberto; Ciocca, Matteo; Parazzini, Marta; Vergari, Maurizio; Ferrucci, Roberta

    2014-01-01

    Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists. PMID:24907311

  6. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns

    Science.gov (United States)

    Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894

  7. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  8. Effect-directed analysis: Current status and future challenges

    Science.gov (United States)

    Hong, Seongjin; Giesy, John P.; Lee, Jung-Suk; Lee, Jong-Hyeon; Khim, Jong Seong

    2016-09-01

    Effect-directed analysis (EDA) has become useful for identification of toxicant(s) that occur in mixtures in the environment, especially those that are causative agents of specific adverse effects. Here, we summarize and review EDA methodology including preparation of samples, biological analyses, fractionations, and instrumental analyses, highlighting key scientific advancements. A total of 63 documents since 1999 (Scopus search) including 46 research articles, 13 review papers, and 4 project descriptions, have been collected and reviewed in this study. At the early stage (1999-2010), most studies that applied EDA focused on organic extracts of freshwater and coastal contaminated sediments and wastewater. Toxic effects were often measured using cell-based bioassays ( in vitro) and the causative chemicals were identified by use of low resolution gas chromatography with mass selective detector (GCMSD). More recently (2010-present), EDA has been extended to various matrices such as biota, soil, crude oil, and suspended solids and techniques have been improved to include determination of bioavailability in vivo. In particular, methods for non-target screenings of organic chemicals in environmental samples using cutting-edge instrumentation such as time of flight-mass spectrometry (ToF-MS), Fourier transform-ion cyclotron resonance (FT-ICR), and Orbitrap mass spectrometer have been developed. This overview provides descriptions of recent improvements of EDA and suggests future research directions based on current understandings and limitations.

  9. Consciousness and working memory: Current trends and research perspectives.

    Science.gov (United States)

    Velichkovsky, Boris B

    2017-10-01

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transcranial direct current stimulation in psychiatric disorders

    Science.gov (United States)

    Tortella, Gabriel; Casati, Roberta; Aparicio, Luana V M; Mantovani, Antonio; Senço, Natasha; D’Urso, Giordano; Brunelin, Jerome; Guarienti, Fabiana; Selingardi, Priscila Mara Lorencini; Muszkat, Débora; Junior, Bernardo de Sampaio Pereira; Valiengo, Leandro; Moffa, Adriano H; Simis, Marcel; Borrione, Lucas; Brunoni, André R

    2015-01-01

    The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry. PMID:25815258

  11. Transcranial Direct Current Stimulation in Epilepsy.

    Science.gov (United States)

    San-Juan, Daniel; Morales-Quezada, León; Orozco Garduño, Adolfo Josué; Alonso-Vanegas, Mario; González-Aragón, Maricarmen Fernández; Espinoza López, Dulce Anabel; Vázquez Gregorio, Rafael; Anschel, David J; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation therapy in epilepsy with conflicting results in terms of efficacy and safety. Review the literature about the efficacy and safety of tDCS in epilepsy in humans and animals. We searched studies in PubMed, MedLine, Scopus, Web of Science and Google Scholar (January 1969 to October 2013) using the keywords 'transcranial direct current stimulation' or 'tDCS' or 'brain polarization' or 'galvanic stimulation' and 'epilepsy' in animals and humans. Original articles that reported tDCS safety and efficacy in epileptic animals or humans were included. Four review authors independently selected the studies, extracted data and assessed the methodological quality of the studies using the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions, PRISMA guidelines and Jadad Scale. A meta-analysis was not possible due to methodological, clinical and statistical heterogeneity of included studies. We analyzed 9 articles with different methodologies (3 animals/6 humans) with a total of 174 stimulated individuals; 109 animals and 65 humans. In vivo and in vitro animal studies showed that direct current stimulation can successfully induce suppression of epileptiform activity without neurological injury and 4/6 (67%) clinical studies showed an effective decrease in epileptic seizures and 5/6 (83%) reduction of inter-ictal epileptiform activity. All patients tolerated tDCS well. tDCS trials have demonstrated preliminary safety and efficacy in animals and patients with epilepsy. Further larger studies are needed to define the best stimulation protocols and long-term follow-up. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Current Directions in Mediation Analysis

    Science.gov (United States)

    MacKinnon, David P.; Fairchild, Amanda J.

    2010-01-01

    Mediating variables continue to play an important role in psychological theory and research. A mediating variable transmits the effect of an antecedent variable on to a dependent variable, thereby providing more detailed understanding of relations among variables. Methods to assess mediation have been an active area of research for the last two decades. This paper describes the current state of methods to investigate mediating variables. PMID:20157637

  13. Current Directions in Mediation Analysis

    OpenAIRE

    MacKinnon, David P.; Fairchild, Amanda J.

    2009-01-01

    Mediating variables continue to play an important role in psychological theory and research. A mediating variable transmits the effect of an antecedent variable on to a dependent variable, thereby providing more detailed understanding of relations among variables. Methods to assess mediation have been an active area of research for the last two decades. This paper describes the current state of methods to investigate mediating variables.

  14. Frontal transcranial direct current stimulation (tDCS) abolishes list-method directed forgetting.

    Science.gov (United States)

    Silas, Jonathan; Brandt, Karen R

    2016-03-11

    It is a point of controversy as to whether directed forgetting effects are a result of active inhibition or a change of context initiated by the instruction to forget. In this study we test the causal role of active inhibition in directed forgetting. By applying cathodal transcranial direct current stimulation (tDCS) over the right prefrontal cortex we suppressed cortical activity commonly associated with inhibitory control. Participants who underwent real brain stimulation before completing the directed forgetting paradigm showed no directed forgetting effects. Conversely, those who underwent sham brain stimulation demonstrated classical directed forgetting effects. We argue that these findings suggest that inhibition is the primary mechanism that results in directed forgetting costs and benefits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Current status of research on power-frequency electric and magnetic fields of research

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Recent scientific literature has suggested a number of possible human health effects which might be associated with exposure to power frequency electric and magnetic fields. Several authoritative reviews of this subject have been published. currently, the major uncertainty and the major research effort is directed to the issue of these fields and cancer. Therefore, this review will be limited to examining the evidence relating prolonged power-frequency electric and magnetic field exposure to cancer in human populations. This paper reports that the CIGRE expert Group has assessed the research literature in the following areas: epidemiological evidence, animal studies, cellular effects, knowledge of mechanisms

  16. Qualitative research in rehabilitation science: opportunities, challenges, and future directions.

    Science.gov (United States)

    VanderKaay, Sandra; Moll, Sandra E; Gewurtz, Rebecca E; Jindal, Pranay; Loyola-Sanchez, Adalberto; Packham, Tara L; Lim, Chun Y

    2018-03-01

    Qualitative research has had a significant impact within rehabilitation science over time. During the past 20 years the number of qualitative studies published per year in Disability and Rehabilitation has markedly increased (from 1 to 54). In addition, during this period there have been significant changes in how qualitative research is conceptualized, conducted, and utilized to advance the field of rehabilitation. The purpose of this article is to reflect upon the progress of qualitative research within rehabilitation to date, to explicate current opportunities and challenges, and to suggest future directions to continue to strengthen the contribution of qualitative research in this field. Relevant literature searches were conducted in electronic data bases and reference lists. Pertinent literature was examined to identify current opportunities and challenges for qualitative research use in rehabilitation and to identify future directions. Six key areas of opportunity and challenge were identified: (a) paradigm shifts, (b) advancements in methodology, (c) emerging technology, (d) advances in quality evaluation, (e) increasing popularity of mixed methods approaches, and (f) evolving approaches to knowledge translation. Two important future directions for rehabilitation are posited: (1) advanced training in qualitative methods and (2) engaging qualitative communities of research. Qualitative research is well established in rehabilitation and has an important place in the continued growth of this field. Ongoing development of qualitative researchers and methods are essential. Implications for Rehabilitation Qualitative research has the potential to improve rehabilitation practice by addressing some of the most pervasive concerns in the field such as practitioner-client interaction, the subjective and lived experience of disability, and clinical reasoning and decision making. This will serve to better inform those providing rehabilitation services thereby benefiting

  17. Reversal thyristor-relay direct current commutator

    International Nuclear Information System (INIS)

    Ivanenko, A.I.

    1982-01-01

    A thyristor-relay commutator used for alteration of the leading magnetic field direction in experiments with polarized neutrons is described. The commutator flowsheet is presented. Thyristors, connected so as to allow the relay trigger operation mode, are used as controllable electronic relay. Two connected in series coils with the total inductance of the order of 0.28 H serve as the electronic relay load. The arc-free current commutation is effected at the moment of the minimal current across the load terminals, which allows to easily reverse the current up to 10 A at a volatage, v <= 150 V. The experience gained within a year of operation has shown that the commutator meets the requirements of reliability and tuning

  18. Improving CANDU annunciation - Current R and D and future directions

    International Nuclear Information System (INIS)

    Lupton, L.R.; Feher, M.P.; Davey, E.C.; Guo, K.Q.; Bhuiyan, S.H.

    1994-01-01

    Annunciation is used to ensure that control room staff are promptly alerted to important changes in plant conditions that may impact on safety and production goals. We are carrying out research and development to improve CANDU annunciation, in partnership with Canadian CANDU utility and design organizations. The main goal is to solve the ''information overload'' problem that occurs during major plant upsets, while providing operators with annunciation information needed to prevent, mitigate, and accommodate plant disturbances. To data, a set of annunciation concepts has been developed based on operational needs in a complex supervisory control environment. A prototype annunciation system has been developed and demonstrated with Point Lepreau Generating Station operations staff. Preliminary evaluations show that the system has the potential to solve many of the current problems associated with upset management. Further evaluation of this system is planned for 1994/95. This paper summarizes the project, including the current status, lessons learned to data, future directions of the research, and implementation by plants. (author). 9 refs, 3 figs, 1 tab

  19. Current Directional Protection of Series Compensated Line Using Intelligent Classifier

    Directory of Open Access Journals (Sweden)

    M. Mollanezhad Heydarabadi

    2016-12-01

    Full Text Available Current inversion condition leads to incorrect operation of current based directional relay in power system with series compensated device. Application of the intelligent system for fault direction classification has been suggested in this paper. A new current directional protection scheme based on intelligent classifier is proposed for the series compensated line. The proposed classifier uses only half cycle of pre-fault and post fault current samples at relay location to feed the classifier. A lot of forward and backward fault simulations under different system conditions upon a transmission line with a fixed series capacitor are carried out using PSCAD/EMTDC software. The applicability of decision tree (DT, probabilistic neural network (PNN and support vector machine (SVM are investigated using simulated data under different system conditions. The performance comparison of the classifiers indicates that the SVM is a best suitable classifier for fault direction discriminating. The backward faults can be accurately distinguished from forward faults even under current inversion without require to detect of the current inversion condition.

  20. Plant Virus–Insect Vector Interactions: Current and Potential Future Research Directions

    Science.gov (United States)

    Dietzgen, Ralf G.; Mann, Krin S.; Johnson, Karyn N.

    2016-01-01

    Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus–insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors. PMID:27834855

  1. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl [California Inst. for Energy and the Environment, Berkeley, CA (United States); Vossos, Vagelis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kloss, Margarita [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for an ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.

  2. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  3. Direct Drive Generator for Renewable Power Conversion from Water Currents

    International Nuclear Information System (INIS)

    Segergren, Erik

    2005-01-01

    In this thesis permanent magnet direct drive generator for power conversion from water currents is studied. Water currents as a power source involves a number of constrains as well as possibilities, especially when direct drive and permanent magnets are considered. The high power fluxes and low current velocities of a water current, in combination with its natural variations, will affect the way the generator is operated and, flowingly, the appearance of the generator. The work in this thesis can, thus, be categorized into two general topics, generator technology and optimization. Under the first topic, fundamental generator technology is used to increase the efficiency of a water current generator. Under the latter topic, water current generators are optimized to a specific environment. The conclusion drawn from this work is that it is possible to design very low speed direct drive generators with good electromagnetic properties and wide efficiency peak

  4. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815

  5. Current ethical and legal issues in health-related direct-to-consumer genetic testing.

    Science.gov (United States)

    Niemiec, Emilia; Kalokairinou, Louiza; Howard, Heidi Carmen

    2017-09-01

    A variety of health-related genetic testing is currently advertized directly to consumers. This article provides a timely overview of direct-to-consumer genetic testing (DTC GT) and salient ethical issues, as well as an analysis of the impact of the recently adopted regulation on in vitro diagnostic medical devices on DTC GT. DTC GT companies currently employ new testing approaches, report on a wide spectrum of conditions and target new groups of consumers. Such activities raise ethical issues including the questionable analytic and clinical validity of tests, the adequacy of informed consent, potentially misleading advertizing, testing in children, research uses and commercialization of genomic data. The recently adopted regulation on in vitro diagnostic medical devices may limit the offers of predisposition DTC GT in the EU market.

  6. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  7. Talent management : Current theories and future research directions

    NARCIS (Netherlands)

    Al Ariss, A.; Cascio, W.F.; Paauwe, J.

    2014-01-01

    Research on Talent Management (TM) has been lagging behind businesses in offering vision and leadership in this field. After sketching a comprehensive outline of knowledge about TM, theoretical as well as practical, we introduce the papers in this special issue and their important contributions.

  8. Directions and dilemmas in massage therapy research: a workshop report from the 2009 north american research conference on complementary and integrative medicine.

    Science.gov (United States)

    Moyer, Christopher A; Dryden, Trish; Shipwright, Stacey

    2009-06-29

    Massage therapy (MT) is widely used and expanding rapidly, but systematic research on its mechanisms and effects has, in contrast with many other therapeutic fields, a short history. To take stock of the current state of MT research and to explore approaches, directions, and strategies with the potential to make the next two decades of MT research optimally productive. The 2009 North American Research Conference on Complementary and Integrative Medicine held in Minneapolis, Minnesota. Using a modified Delphi method, the study authors led an interactive workshop that aimed to identify established MT research findings, needed MT research, weaknesses and limitations in currently available MT research, and directions to pursue in the next two decades of MT research. The thirty-seven conference attendees-including MT researchers, educators, and practitioners, and other health care practitioners who already work interprofessionally with MT-actively participated in the workshop and ensured that a diversity of perspectives were represented. The MT field has made rapid and laudable progress in its short history, but at the same time this short history is probably the main reason for most of the current shortcomings in MT research. Drawing on a diversity of backgrounds, workshop participants identified many opportunities and strategies for future research. Though lost time can never be recovered, the field's late start in research should not be allowed to be a demoralizing handicap to progress. Modern scientific methods and technologies, applied to the range of directions and dilemmas highlighted in this report, can lead to impressive progress in the next twenty years of MT research.

  9. Transcranial Direct Current Stimulation Improves Audioverbal Memory in Stroke Patients.

    Science.gov (United States)

    Kazuta, Toshinari; Takeda, Kotaro; Osu, Rieko; Tanaka, Satoshi; Oishi, Ayako; Kondo, Kunitsugu; Liu, Meigen

    2017-08-01

    The aim of this study was to investigate whether anodal transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance in stroke patients. Twelve stroke patients with audioverbal memory impairment participated in a single-masked, crossover, and sham-controlled experiment. The anodal or sham transcranial direct current stimulation was applied during the Rey Auditory Verbal Learning Test, which evaluates the ability to recall a list of 15 heard words over five trials. The number of correctly recalled words was compared between the anodal and sham conditions and the influence of transcranial direct current stimulation on serial position effect of the 15 words was also examined. The increase in the number of correctly recalled words from the first to the fifth trial was significantly greater in the anodal condition than in the sham condition (P transcranial direct current stimulation over the left temporoparietal area improved audioverbal memory performance and induced the primacy effect in stroke patients.

  10. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  11. The Effectiveness of Transcranial Direct Current Stimulation (tDCS on Working Memory in Patients with Major Depression

    Directory of Open Access Journals (Sweden)

    Mahboube Ebadi

    2017-08-01

    Full Text Available Abstract Background: The aim of this study was to evaluate the effectiveness of of transcranial direct current stimulation (tDCS on working memory in patients with major depression. Materials and Methods: The research method was quasi-experimental with pretest and post-test and follow-up with control group. The research population comprised female outpatient referrals to private psychiatric centers and psychological counseling centers in Tehran in the first half of 2016, They had received a diagnosis of depression by a psychiatrist at least once. Of these, 30 females were selected as a sample group with convenience sampling method and based on the criteria of inclusion and exclusion and were divided randomly into two groups , experimental (n = 15 and control (n = 15 group. The experimental group received transcranial direct current stimulation (tDCS in 10 sessions, While this intervention was not provided to the control group. The data were collected by N-BACK. Analysis of variance with repeated measurments was used to test the research hypothesis. Results: The results showed that transcranial direct current stimulation (tDCS had a significant effect on increasing working memory and the impact will continue to follow up. Conclusion: Therefore, this approach can be used to improve working memory in people with major depression.

  12. Spermatogonial stem cell transplantation and male infertility: Current status and future directions.

    Science.gov (United States)

    Forbes, Connor M; Flannigan, Ryan; Schlegel, Peter N

    2018-03-01

    To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.

  13. Management research in India: Current state and future directions

    Directory of Open Access Journals (Sweden)

    Naresh Khatri

    2012-06-01

    Full Text Available Concerned over the lack of high quality, context specific management research in India, and the predilection of Indian researchers to follow Western models of research and publication blindly, the authors take stock of Indian management research in this round table discussion and debate some of the relevant issues. Urging Indian researchers to strive for the levels of rigour of the Western models, they make a case for confident indigenous scholarship to suit the development and educational requirements of the country, following context-relevant constructs and methodologies in research and developing curricula, materials and modes of dissemination independently. These ideas were also explored at the second Indian Academy of Management Conference held at IIM Bangalore in December 2011.

  14. Where Is Current Research on Blockchain Technology?-A Systematic Review.

    Science.gov (United States)

    Yli-Huumo, Jesse; Ko, Deokyoon; Choi, Sujin; Park, Sooyong; Smolander, Kari

    2016-01-01

    Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

  15. Directions for further research

    DEFF Research Database (Denmark)

    Minsaas, Atle; Psaraftis, Harilaos N.

    2015-01-01

    Green transportation logistics is an area that combines the following: (a) it is relatively new in terms of research carried out thus far, (b) it has become increasingly important for both industry and society, and (c) it is rich in topics for further research, both basic and applied. In this final...... chapter of this book we discuss directions for further research in this area. We do so by taking stock of (1) related recommendations of project SuperGreen, and (2) related activities mainly in European research. Links between research and policy-making as two activities that should go hand in hand...

  16. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation.

    Science.gov (United States)

    To, Wing Ting; Hart, John; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, there remain significant unknowns about the influence of a diverse number of tDCS parameters (e.g. polarity, size, position of electrodes & duration of stimulation) in inducing neurophysiological and behavioral effects. This article explores both techniques starting with the history of tDCS, to the differences between conventional tDCS and high-definition transcranial direct current stimulation, the underlying physiological mechanism, the (in)direct effects, the applications of tDCS with varying parameters, the efficacy, the safety issues and the opportunities for future research.

  17. The Current Status of STEM Education Research

    Science.gov (United States)

    Brown, Josh

    2012-01-01

    This paper explores the current Science, Technology, Engineering and Mathematics (STEM) education research base through an analysis of articles from eight journals focused on the STEM disciplines. Analyzed are both practitioner and research publications to determine the current scope of STEM education research, where current STEM education…

  18. Regulatory Considerations for the Clinical and Research Use of Transcranial Direct Current Stimulation (tDCS): review and recommendations from an expert panel

    Science.gov (United States)

    Fregni, F; Nitsche, MA; Loo, C.K.; Brunoni, AR; Marangolo, P; Leite, J; Carvalho, S; Bolognini, N; Caumo, W; Paik, NJ; Simis, M; Ueda, K; Ekhitari, H; Luu, P; Tucker, DM; Tyler, WJ; Brunelin, J; Datta, A; Juan, CH; Venkatasubramanian, G; Boggio, PS; Bikson, M

    2014-01-01

    The field of transcranial electrical stimulation (tES) has experienced significant growth in the past 15 years. One of the tES techniques leading this increased interest is transcranial direct current stimulation (tDCS). Significant research efforts have been devoted to determining the clinical potential of tDCS in humans. Despite the promising results obtained with tDCS in basic and clinical neuroscience, further progress has been impeded by a lack of clarity on international regulatory pathways. We therefore convened a group of research and clinician experts on tDCS to review the research and clinical use of tDCS. In this report, we review the regulatory status of tDCS, and we summarize the results according to research, off-label and compassionate use of tDCS in the following countries: Australia, Brazil, France, Germany, India, Iran, Italy, Portugal, South Korea, Taiwan and United States. Research use, off label treatment and compassionate use of tDCS are employed in most of the countries reviewed in this study. It is critical that a global or local effort is organized to pursue definite evidence to either approve and regulate or restrict the use of tDCS in clinical practice on the basis of adequate randomized controlled treatment trials. PMID:25983531

  19. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex-correlation or causality in stimulation-mediated effects?

    Science.gov (United States)

    Wörsching, Jana; Padberg, Frank; Ertl-Wagner, Birgit; Kumpf, Ulrike; Kirsch, Beatrice; Keeser, Daniel

    2016-10-01

    Transcranial current stimulation approaches include neurophysiologically distinct non-invasive brain stimulation techniques widely applied in basic, translational and clinical research: transcranial direct current stimulation (tDCS), oscillating transcranial direct current stimulation (otDCS), transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS). Prefrontal tDCS seems to be an especially promising tool for clinical practice. In order to effectively modulate relevant neural circuits, systematic research on prefrontal tDCS is needed that uses neuroimaging and neurophysiology measures to specifically target and adjust this method to physiological requirements. This review therefore analyses the various neuroimaging methods used in combination with prefrontal tDCS in healthy and psychiatric populations. First, we provide a systematic overview on applications, computational models and studies combining neuroimaging or neurophysiological measures with tDCS. Second, we categorise these studies in terms of their experimental designs and show that many studies do not vary the experimental conditions to the extent required to demonstrate specific relations between tDCS and its behavioural or neurophysiological effects. Finally, to support best-practice tDCS research we provide a methodological framework for orientation among experimental designs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Spermatogonial stem cell transplantation and male infertility: Current status and future directions

    Directory of Open Access Journals (Sweden)

    Connor M. Forbes

    2018-03-01

    Full Text Available Objective: To summarise the current state of research into spermatogonial stem cell (SSC therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. Materials and methods: We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. Results: In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Conclusions: Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research. Keywords: Non-obstructive azoospermia, Fertility preservation, Onco-fertility, Male infertility, Stem cell therapy, Allograft

  1. Research progress from the SCI Model Systems (SCIMS): An interactive discussion on future directions.

    Science.gov (United States)

    Boninger, Michael L; Field-Fote, Edelle C; Kirshblum, Steven C; Lammertse, Daniel P; Dyson-Hudson, Trevor A; Hudson, Lesley; Heinemann, Allen W

    2018-03-01

    To describe current and future directions in spinal cord injury (SCI) research. The SCI Model Systems (SCIMS) programs funded by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) during the 2011 to 2016 cycle provided abstracts describing findings from current research projects. Discussion among session participants generated ideas for research opportunities. Pre-conference workshop before the 2016 American Spinal Injury Association (ASIA) annual meeting. A steering committee selected by the SCIMS directors that included the moderators of the sessions at the ASIA pre-conference workshop, researchers presenting abstracts during the session, and the audience of over 100 attending participants in the pre-conference workshop. Group discussion followed presentations in 5 thematic areas of (1) Demographics and Measurement; (2) Functional Training; (3) Psychosocial Considerations; (4) Assistive Technology; and (5) Secondary Conditions. The steering committee reviewed and summarized discussion points on future directions for research and made recommendations for research based on the discussion in each of the five areas. Significant areas in need of research in SCI remain, the goal of which is continued improvement in the quality of life of individuals with SCI.

  2. Worksite health promotion research: challenges, current state and future directions

    Directory of Open Access Journals (Sweden)

    Georg F. Bauer

    2007-12-01

    Full Text Available

    Background: Worksite health promotion (WHP addresses diverse individual and work-related health determinants. Thus, multiple, non-standardized interventions as well as company outcomes other than health have to be considered in WHP research.

    Methods: The article builds primarily on published research reviews in WHP and related fields. It discusses key practical and research challenges of the workplace setting. The evidence available on the effectiveness of WHP is summarised and conclusions are drawn for future WHP practice and research.

    Results: WHP research on health-oriented, behavioural interventions shows that the level of evidence ranges from suggestive to acceptable for key prevention areas such as physical activity, nutrition, fitness, smoking, alcohol and stress. Such interventions are effective if key conditions are met. Future research is needed on long-term effects, on multi-component programs and on programs, which address environmental determinants of health behaviour as well. Research on work-related determinants of health shows the economic and public health relevance of WHP interventions. Reviews of work-oriented, organisational interventions show that they produce a range of individual and organisational outcomes. However, due to the complexity of the organisational context, the generalisability and predictability of such outcomes remain limited.

    Conclusions: WHP research shows success factors of WHP and provides evidence of its effectiveness. In future, the evidence base should be expanded by developing adaptive, company-driven intervention approaches which allow for continuous optimisation of companies from a health perspective. Also, approaches for active dissemination of such a systemic-salutogenic occupational health management approach should be developed to increase the public health impact of WHP.

  3. Current Research in Resistivity Inversion Techniques by the Lab. Of Exploration Geophysics in Thessaloniki, Greece

    International Nuclear Information System (INIS)

    Tsokas, G.N.; Tsourlos, P.

    2007-01-01

    The current research in various topics of ERT methods is described. The main directions of this research have been imposed by exploration problems met in practice. Therefore, it is aimed towards the construction of reliable, accurate and easy to apply procedures and algorithms

  4. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  5. Where Is Current Research on Blockchain Technology?-A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Jesse Yli-Huumo

    Full Text Available Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers.

  6. Wind direction/velocity and current direction/velocity data from current meter casts in a world wide distribution from 1970-12-06 to 1991-10-01 (NODC Accession 9700218)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...

  7. Soft commutated direct current motor [summary of proposed paper

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    1998-10-22

    A novel soft commutated direct current (DC) motor is introduced. The current of the commutated coil is intentionally drained before the brush disconnects the coil. This prevents the spark generation that normally occurs in conventional DC motors. A similar principle can be applied for DC generators.

  8. Culture, mind, and the brain: current evidence and future directions.

    Science.gov (United States)

    Kitayama, Shinobu; Uskul, Ayse K

    2011-01-01

    Current research on culture focuses on independence and interdependence and documents numerous East-West psychological differences, with an increasing emphasis placed on cognitive mediating mechanisms. Lost in this literature is a time-honored idea of culture as a collective process composed of cross-generationally transmitted values and associated behavioral patterns (i.e., practices). A new model of neuro-culture interaction proposed here addresses this conceptual gap by hypothesizing that the brain serves as a crucial site that accumulates effects of cultural experience, insofar as neural connectivity is likely modified through sustained engagement in cultural practices. Thus, culture is "embrained," and moreover, this process requires no cognitive mediation. The model is supported in a review of empirical evidence regarding (a) collective-level factors involved in both production and adoption of cultural values and practices and (b) neural changes that result from engagement in cultural practices. Future directions of research on culture, mind, and the brain are discussed.

  9. Transcranial direct current stimulation in patients with Alzheimer’s disease: Challenges and responses

    Directory of Open Access Journals (Sweden)

    Hong Yuan

    2015-09-01

    Full Text Available The use of transcranial direct current stimulation (tDCS as a noninvasive therapeutic approach for Alzheimer’s disease (AD has gained increasing attention. Research regarding the utility of tDCS in AD is inconsistent. In this study, we reviewed the importance of individual diversity among AD patients, starting from the uninformative mean results. We also demonstrated variation among AD patients. Highly educated patients seem to benefit more; education also seems to modulate baseline measurements and the results. Individual cortical morphology also affects the current distribution, which influences the effectiveness of stimulation. We suggest the use of structural MRI to distinguish inter-individual variability; high-resolution modeling can also be used to predict current distributions and should be combined with cognitive training (CT along with tDCS.

  10. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  11. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  12. Measurement of direct currents of under 10-10 ampere and of resistances of 1012 Ω for a direct current

    International Nuclear Information System (INIS)

    Vagner, J.

    1965-01-01

    Measurement of weak direct currents by Townsend's method using a vibrating condenser electrometer. Development of a current generator giving a pico-ampere independently of the resistance of the circuit used. Development of generators giving currents which may be adjusted continuously and exactly (0.1 to 1 pico-ampere, 1 to 10 pico-amperes, 10 to 100 pico-amperes). Measurement of very high resistances (10 12 Ω) by three different methods. Graphs are made by plotting the value of the resistance against the potential difference applied across it (from 50 milli-volts to 50 volts). Two methods use adjustable current generators and the third is applicable to the measurement of resistances of between 10 7 and 10 13 Ω using a series of condensers ranging from 50 pico-farads to 10 micro-farads. The accuracy of the measurements is between 0. 5 and 1 per cent. (author) [fr

  13. Stimulating thought: a functional MRI study of transcranial direct current stimulation in schizophrenia.

    Science.gov (United States)

    Orlov, Natasza D; O'Daly, Owen; Tracy, Derek K; Daniju, Yusuf; Hodsoll, John; Valdearenas, Lorena; Rothwell, John; Shergill, Sukhi S

    2017-09-01

    Individuals with schizophrenia typically suffer a range of cognitive deficits, including prominent deficits in working memory and executive function. These difficulties are strongly predictive of functional outcomes, but there is a paucity of effective therapeutic interventions targeting these deficits. Transcranial direct current stimulation is a novel neuromodulatory technique with emerging evidence of potential pro-cognitive effects; however, there is limited understanding of its mechanism. This was a double-blind randomized sham controlled pilot study of transcranial direct current stimulation on a working memory (n-back) and executive function (Stroop) task in 28 individuals with schizophrenia using functional magnetic resonance imaging. Study participants received 30 min of real or sham transcranial direct current stimulation applied to the left frontal cortex. The 'real' and 'sham' groups did not differ in online working memory task performance, but the transcranial direct current stimulation group demonstrated significant improvement in performance at 24 h post-transcranial direct current stimulation. Transcranial direct current stimulation was associated with increased activation in the medial frontal cortex beneath the anode; showing a positive correlation with consolidated working memory performance 24 h post-stimulation. There was reduced activation in the left cerebellum in the transcranial direct current stimulation group, with no change in the middle frontal gyrus or parietal cortices. Improved performance on the executive function task was associated with reduced activity in the anterior cingulate cortex. Transcranial direct current stimulation modulated functional activation in local task-related regions, and in more distal nodes in the network. Transcranial direct current stimulation offers a potential novel approach to altering frontal cortical activity and exerting pro-cognitive effects in schizophrenia. © The Author (2017). Published by Oxford

  14. Intervention among Suicidal Men: Future Directions for Telephone Crisis Support Research.

    Science.gov (United States)

    Hunt, Tara; Wilson, Coralie J; Woodward, Alan; Caputi, Peter; Wilson, Ian

    2018-01-01

    Telephone crisis support is a confidential, accessible, and immediate service that is uniquely set up to reduce male suicide deaths through crisis intervention. However, research focusing on telephone crisis support with suicidal men is currently limited. To highlight the need to address service delivery for men experiencing suicidal crisis, this perspective article identifies key challenges facing current telephone crisis support research and proposes that understanding of the role of telephone crisis helplines in supporting suicidal men may be strengthened by careful examination of the context of telephone crisis support, together with the impact this has on help-provision for male suicidal callers. In particular, the impact of the time- and information-poor context of telephone crisis support on crisis-line staff's identification of, and response to, male callers with thoughts of suicide is examined. Future directions for research in the provision of telephone crisis support for suicidal men are discussed.

  15. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Chemello, Elena; Castellazzi, Paola; Filippetti, Mirko; Brugnera, Annalisa; Gandolfi, Marialuisa; Waldner, Andreas; Saltuari, Leopold; Smania, Nicola

    2018-01-01

    Preliminary evidence showed additional effects of anodal transcranial direct current stimulation over the damaged cerebral hemisphere combined with cathodal transcutaneous spinal direct current stimulation during robot-assisted gait training in chronic stroke patients. This is consistent with the neural organization of locomotion involving cortical and spinal control. The cerebellum is crucial for locomotor control, in particular for avoidance of obstacles, and adaptation to novel conditions during walking. Despite its key role in gait control, to date the effects of transcranial direct current stimulation of the cerebellum have not been investigated on brain stroke patients treated with robot-assisted gait training. To evaluate the effects of cerebellar transcranial direct current stimulation combined with transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke. After balanced randomization, 20 chronic stroke patients received ten, 20-minute robot-assisted gait training sessions (five days a week, for two consecutive weeks) combined with central nervous system stimulation. Group 1 underwent on-line cathodal transcranial direct current stimulation over the contralesional cerebellar hemisphere + cathodal transcutaneous spinal direct current stimulation. Group 2 received on-line anodal transcranial direct current stimulation over the damaged cerebral hemisphere + cathodal transcutaneous spinal direct current stimulation. The primary outcome was the 6-minute walk test performed before, after, and at follow-up at 2 and 4 weeks post-treatment. The significant differences in the 6-minute walk test noted between groups at the first post-treatment evaluation (p = 0.041) were not maintained at either the 2-week (P = 0.650) or the 4-week (P = 0.545) follow-up evaluations. Our preliminary findings support the hypothesis that cathodal transcranial direct current stimulation over the contralesional

  16. Where Is Current Research on Blockchain Technology?—A Systematic Review

    Science.gov (United States)

    Yli-Huumo, Jesse; Ko, Deokyoon; Park, Sooyong; Smolander, Kari

    2016-01-01

    Blockchain is a decentralized transaction and data management technology developed first for Bitcoin cryptocurrency. The interest in Blockchain technology has been increasing since the idea was coined in 2008. The reason for the interest in Blockchain is its central attributes that provide security, anonymity and data integrity without any third party organization in control of the transactions, and therefore it creates interesting research areas, especially from the perspective of technical challenges and limitations. In this research, we have conducted a systematic mapping study with the goal of collecting all relevant research on Blockchain technology. Our objective is to understand the current research topics, challenges and future directions regarding Blockchain technology from the technical perspective. We have extracted 41 primary papers from scientific databases. The results show that focus in over 80% of the papers is on Bitcoin system and less than 20% deals with other Blockchain applications including e.g. smart contracts and licensing. The majority of research is focusing on revealing and improving limitations of Blockchain from privacy and security perspectives, but many of the proposed solutions lack concrete evaluation on their effectiveness. Many other Blockchain scalability related challenges including throughput and latency have been left unstudied. On the basis of this study, recommendations on future research directions are provided for researchers. PMID:27695049

  17. Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report

    Science.gov (United States)

    Blackwell, Timothy S.; Tager, Andrew M.; Borok, Zea; Moore, Bethany B.; Schwartz, David A.; Anstrom, Kevin J.; Bar-Joseph, Ziv; Bitterman, Peter; Blackburn, Michael R.; Bradford, William; Brown, Kevin K.; Chapman, Harold A.; Collard, Harold R.; Cosgrove, Gregory P.; Deterding, Robin; Doyle, Ramona; Flaherty, Kevin R.; Garcia, Christine Kim; Hagood, James S.; Henke, Craig A.; Herzog, Erica; Hogaboam, Cory M.; Horowitz, Jeffrey C.; King, Talmadge E.; Loyd, James E.; Lawson, William E.; Marsh, Clay B.; Noble, Paul W.; Noth, Imre; Sheppard, Dean; Olsson, Julie; Ortiz, Luis A.; O’Riordan, Thomas G.; Oury, Tim D.; Raghu, Ganesh; Roman, Jesse; Sime, Patricia J.; Sisson, Thomas H.; Tschumperlin, Daniel; Violette, Shelia M.; Weaver, Timothy E.; Wells, Rebecca G.; White, Eric S.; Kaminski, Naftali; Martinez, Fernando J.; Wynn, Thomas A.; Thannickal, Victor J.

    2014-01-01

    The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI. PMID:24160862

  18. LANMAS core: Update and current directions

    International Nuclear Information System (INIS)

    Claborn, J.

    1995-01-01

    Local Area Network Material Accountability system (LANMAS) core software provides the framework of a material accountability system. It tracks the movement of material throughout a site and generates the required material accountability reports. LANMAS is a net-work- based nuclear material accountability system that runs in a client/server mode. The database of material type and location resides on the server, while the user interface runs on the client. The user interface accesses the data stored on the server via a network. The LANMAS core can be used as the foundation for building required materials control and accountability (MCA) functionality at any site requiring a new MCA system. An individual site will build on the LANMAS core by supplying site-specific software. This paper will provide an update on the current LANMAS development activities and discuss the current direction of the LANMAS project

  19. An integrative conceptual framework of disability. New directions for research.

    Science.gov (United States)

    Tate, Denise G; Pledger, Constance

    2003-04-01

    Advances in research on disability and rehabilitation are essential to creating equal opportunity, economic self-sufficiency, and full participation for persons with disabilities. Historically, such initiatives have focused on separate and specific areas, including neuroscience, molecular biology and genetics, gerontology, engineering and physical sciences, and social and behavioral sciences. Research on persons with disabilities should examine the broader context and trends of society that affect the total environment of persons with disabilities. This article examines the various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of persons with disabilities. The authors recommend new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current interventions, an emphasis on consumer-driven investigations within a socioecological perspective of disability, and the implications for research and practice.

  20. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  1. Transcranial Direct Current Stimulation (tDCS: A Beginner's Guide for Design and Implementation

    Directory of Open Access Journals (Sweden)

    Hayley Thair

    2017-11-01

    Full Text Available Transcranial direct current stimulation (tDCS is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.

  2. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation

    Science.gov (United States)

    Thair, Hayley; Holloway, Amy L.; Newport, Roger; Smith, Alastair D.

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields. PMID:29213226

  3. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M

    2018-04-01

    Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  4. Nanoscale Science, Engineering and Technology Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  5. Influence of Waveform and Current Direction on Short-Interval Intracortical Facilitation

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H

    2014-01-01

    -posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). RESULTS: Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas...... monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. CONCLUSION: SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly......BACKGROUND: Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction...

  6. Basic research into eddy current testing of austenetic weld joints and surface claddings

    International Nuclear Information System (INIS)

    Meier, W.

    1976-01-01

    The result of research work has shown that the eddy-current testing method can be used for austenetic steel up to 10 mm thick to detect cracks in the material. An exception to this are laminations if they are parallel to the surface. Cracks in the various geometrical positions in the test specimen produce different results in the x-y plot. They are influenced by the direction of the material cracks. Research into the influence the geometric parameters have on the indications shows that the eddy-current method provides clearer interpretations of material cracks than any other non-destructive test method known. (orig.) [de

  7. Safety Parameter Considerations of Anodal Transcranial Direct Current Stimulation in Rats

    Science.gov (United States)

    2017-10-01

    Richardson, J.D., Baker, J.M., Rorden, C., 2011. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a...AFRL-RH-WP-TR-2017-0069 Safety parameter considerations of anodal transcranial Direct Current Stimulation in rats R. Andy McKinley...response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the

  8. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation

    OpenAIRE

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-01-01

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel coun...

  9. Subcortical structures in humans can be facilitated by transcranial direct current stimulation

    NARCIS (Netherlands)

    Nonnekes, Johan Hendrik; Arrogi, Anass; Munneke, Moniek; van Asseldonk, Edwin H.F.; Oude Nijhuis, Lars; Geurts, Alexander; Weerdesteyn, Vivian

    2014-01-01

    BACKGROUND: Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability via application of a weak direct current. Interestingly, it was demonstrated in cats that tDCS can facilitate subcortical structures as well (Bolzonii et al., J

  10. Co-ordination of directional overcurrent protection with load current for parallel feeders

    Energy Technology Data Exchange (ETDEWEB)

    Wright, J.W.; Lloyd, G.; Hindle, P.J. [Alstom, Inc., Stafford (United Kingdom). T and D Protection and Control

    1999-11-01

    Directional phase overcurrent relays are commonly applied at the receiving ends of parallel feeders or transformer feeders. Their purpose is to ensure full discrimination of main or back-up power system overcurrent protection for a fault near the receiving end of one feeder. This paper reviews this type of relay application and highlights load current setting constraints for directional protection. Such constraints have not previously been publicized in well-known text books. A directional relay current setting constraint that is suggested in some text books is based purely on thermal rating considerations for older technology relays. This constraint may not exist with modern numerical relays. In the absence of any apparent constraint, there is a temptation to adopt lower current settings with modern directional relays in relation to reverse load current at the receiving ends of parallel feeders. This paper identifies the danger of adopting very low current settings without any special relay feature to ensure protection security with load current during power system faults. A system incident recorded by numerical relays is also offered to highlight this danger. In cases where there is a need to infringe the identified constraints an implemented and testing relaying technique is proposed.

  11. Construct validity-Current issues and recommendations for future hand hygiene research.

    Science.gov (United States)

    Neo, Jun Rong Jeffrey

    2017-05-01

    Health care-associated infection is a leading cause of morbidity and mortality. Hand hygiene is widely regarded as an effective prevention strategy. Often, hand hygiene research is designed and conducted by health care practitioners who may lack formal training in research methods, particularly in the area of social science. In a research context, a construct is a concept that can be measured or observed in some way. A construct can be directly or indirectly measured. For example, height can be directly measured by centimeters, whereas depression can be indirectly measured by a scale of 20 items. Every construct needs to be operationalized by measure(s) to make it a variable. Hence, construct validity refers to the degree of fit between the construct of interest and its operational measure. However, issues with construct validity often weaken the translation from construct to measure(s). This article will (1) describe the common threats to construct validity pertaining to hand hygiene research, (2) identify practical limitations in current research design, and (3) provide recommendations to improve construct validity in future hand hygiene research. By understanding how construct validity may affect hand hygiene research design, there is great potential to improve the validity of future hand hygiene research findings. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  12. LANMAS core: Update and current directions

    International Nuclear Information System (INIS)

    Claborn, J.

    1994-01-01

    Local Area Network Material Accountability System (LANMAS) core software will provide the framework of a material accountability system. LANMAS is a network-based nuclear material accountability system. It tracks the movement of material throughout a site and generates the required reports on material accountability. LANMAS will run in a client/server mode. The database of material type and location will reside on the server, while the user interface runs on the client. The user interface accesses the server via a network. The LANMAS core can be used as the foundation for building required Materials Control and Accountability (MC ampersand A) functionality at any site requiring a new MC ampersand A system. An individual site will build on the LANMAS core by supplying site-specific software. This paper will provide an update on the current LANMAS development activities and discuss the current direction of the LANMAS project

  13. Experimental study of anti-tumor activity of direct current

    International Nuclear Information System (INIS)

    Ito, Hisao; Hashimoto, Shozo

    1989-01-01

    The anti-tumor activity of direct current combined with radiation was studied. The experiments were performed with fibrosarcomas (FSA, NFSA) syngenetic to C3H mice. Direct current (0.6mA, 120min) alone was effective to reduce the tumor sizes, but could not cure the tumors. When the direct current therapy (DC therapy) was combined with radiation the DC therapy following radiation was more effective than that before radiation. Using TCD 50 assay, the DC therapy enhanced the effect of a single dose of radiation with the dose-modifying factor of 1.2. However, tumor control rates by the combination therapy were more improved at the smaller doses of radiation than at the larger ones. When the single DC therapy (0.6mA, 120min) was applied immediately after the first radiation of fractionated one the combination therapy still showed the enhanced effect. However, both DC therapy and the radiation therapy were divided in three fractions, and the DC therapy (0.6mA, 40min) was applied after each radiation. Tumor growth retardation by the combination therapy was no different from that by radiation alone. This result suggests that there might be a minimum required dose of coulombs to show the effect of the combination therapy. (author)

  14. Visualizing Transcranial Direct Current Stimulation (tDCS) in vivo using Magnetic Resonance Imaging

    Science.gov (United States)

    Jog, Mayank Anant

    Transcranial Direct Current Stimulation (tDCS) is a low-cost, non-invasive neuromodulation technique that has been shown to treat clinical symptoms as well as improve cognition. However, no techniques exist at the time of research to visualize tDCS currents in vivo. This dissertation presents the theoretical framework and experimental implementations of a novel MRI technique that enables non-invasive visualization of the tDCS electric current using magnetic field mapping. The first chapter establishes the feasibility of measuring magnetic fields induced by tDCS currents. The following chapter discusses the state of the art implementation that can measure magnetic field changes in individual subjects undergoing concurrent tDCS/MRI. The final chapter discusses how the developed technique was integrated with BOLD fMRI-an established MRI technique for measuring brain function. By enabling a concurrent measurement of the tDCS current induced magnetic field as well as the brain's hemodynamic response to tDCS, our technique opens a new avenue to investigate tDCS mechanisms and improve targeting.

  15. Workshop on Direct Contact Heat Transfer at the Solar Energy Research Institute

    CERN Document Server

    Boehm, R

    1988-01-01

    to increase the use of direct contact processes, the National Science Foundation sup­ ported a workshop on direct contact heat transfer at the Solar Energy Research Insti­ tute in the summer of 1985. We served as organizers for this workshop, which em­ phasized an area of thermal engineering that, in our opinion, has great promise for the future, but has not yet reached the point of wide-spread commercial application. Hence, a summary of the state of knowledge at this point is timely. The workshop had a dual objective: 1. To summarize the current state of knowledge in such a form that industrial practi­ tioners can make use of the available information. 2. To indicate the research and development needed to advance the state-of-the-art, indicating not only what kind of research is needed, but also the industrial poten­ tial that could be realized if the information to be obtained through the proposed research activities were available.

  16. Transcranial direct current stimulation enhances propulsion during walking

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Jensen, W.; Andersen, O.K.; Akay, M

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to improve force generation and control in single leg joints in healthy subjects and stroke survivors. However, it is unknown whether these effects also result in improved force production and coordination during walking. Here we

  17. Brainstem tumors: Current management and future directions

    Directory of Open Access Journals (Sweden)

    Pablo F Recinos

    2012-01-01

    Full Text Available Tumors arising in the brainstem comprise 10-20% of all pediatric central nervous system (CNS tumors and account for a small percentage in adults. The prognosis for these tumors was considered uniformly poor prior to the era of modern neuroimaging and the location was fraught with disaster being considered a ′no man′s land′ for neurosurgeons. Following the introduction of advanced imaging modalities and neurophysiological monitoring, striking progress has occurred in the management of these lesions. Brainstem tumors are presently classified based on their anatomic location, focality, and histopathology. This article reviews the current classification of brainstem tumors, current management options, and future directions in the treatment for these rare tumors.

  18. Neuroscience-related research in Ghana: a systematic evaluation of direction and capacity.

    Science.gov (United States)

    Quansah, Emmanuel; Karikari, Thomas K

    2016-02-01

    Neurological and neuropsychiatric diseases account for considerable healthcare, economic and social burdens in Ghana. In order to effectively address these burdens, appropriately-trained scientists who conduct high-impact neuroscience research will be needed. Additionally, research directions should be aligned with national research priorities. However, to provide information about current neuroscience research productivity and direction, the existing capacity and focus need to be identified. This would allow opportunities for collaborative research and training to be properly explored and developmental interventions to be better targeted. In this study, we sought to evaluate the existing capacity and direction of neuroscience-related research in Ghana. To do this, we examined publications reporting research investigations authored by scientists affiliated with Ghanaian institutions in specific areas of neuroscience over the last two decades (1995-2015). 127 articles that met our inclusion criteria were systematically evaluated in terms of research foci, annual publication trends and author affiliations. The most actively-researched areas identified include neurocognitive impairments in non-nervous system disorders, depression and suicide, epilepsy and seizures, neurological impact of substance misuse, and neurological disorders. These studies were mostly hospital and community-based surveys. About 60% of these articles were published in the last seven years, suggesting a recent increase in research productivity. However, data on experimental and clinical research outcomes were particularly lacking. We suggest that future investigations should focus on the following specific areas where information was lacking: large-scale disease epidemiology, effectiveness of diagnostic platforms and therapeutic treatments, and the genetic, genomic and molecular bases of diseases.

  19. Wave-current interactions at the FloWave Ocean Energy Research Facility

    Science.gov (United States)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The

  20. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  1. An Overview of the Current State of Women’s Leadership in Higher Education in Saudi Arabia and a Proposal for Future Research Directions

    Directory of Open Access Journals (Sweden)

    Azzah Alsubaie

    2017-10-01

    Full Text Available Despite the predominance of perspectives on women’s leadership, which consistently emphasize the underrepresentation of women in virtually every sphere of political and economic life in countries around the world, very little is known about women’s leadership, especially in higher education, in the Kingdom of Saudi Arabia (KSA. This has resulted in a gap in the literature, since higher education is one area of employment where Saudi women have made progress, and in spite of complex social, religious, cultural and organisational barriers, some have broken through the glass ceiling into higher education leadership. One goal of this paper is to highlight, through a synthesis of existing literature, the current state of women’s higher education leadership in Saudi Arabia. The second goal of this paper is to propose new directions for future research to address the current dearth of empirical work on women’s leadership in higher education in Saudi Arabia. This may be relevant to other regions of the Middle East and elsewhere.

  2. [The risk of direct current countershock].

    Science.gov (United States)

    Gajek, J; Zyśko, D

    2001-07-01

    Direct current cardioversion (DCC) is a procedure commonly used to restore the sinus rhythm in patients with supraventricular and ventricular arrhythmias. Its safety, regarding the use of electric current, is still a matter of controversy and debate. The patients with atrial fibrillation/flutter, supraventricular or ventricular tachycardia represent a broad spectrum of clinical conditions and it is difficult to draw the conclusions. The high success rate of DCC in restoring the sinus rhythm, may be partly responsible for enhancing and revealing proarrhythmic properties of antiarrhythmic drugs. The deaths described as a complications of DCC were mainly due to the proarrhythmia and less common to the progression of the pathologic process. The embolic, arrhythmic and anesthetic complications of DCC can be prevented if the known recommendations of performing the DCC are followed. The authors review critically the literature data about the complications of the procedure and come to the conclusion of safety of DCC.

  3. Defining Future Directions for Endometriosis Research

    Science.gov (United States)

    D’Hooghe, Thomas M.; Fazleabas, Asgerally; Giudice, Linda C.; Montgomery, Grant W.; Petraglia, Felice; Taylor, Robert N.

    2013-01-01

    Endometriosis, defined as estrogen-dependent lesions containing endometrial glands and stroma outside the uterus, is a chronic and often painful gynecological condition that affects 6% to 10% of reproductive age women. Endometriosis has estimated annual costs of US $12 419 per woman (approximately €9579), comprising one-third of the direct health care costs with two-thirds attributed to loss of productivity. Decreased quality of life is the most important predictor of direct health care and total costs. It has been estimated that there is a mean delay of 6.7 years between onset of symptoms and a surgical diagnosis of endometriosis, and each affected woman loses on average 10.8 hours of work weekly, mainly owing to reduced effectiveness while working. To encourage and facilitate research into this debilitating disease, a consensus workshop to define future directions for endometriosis research was held as part of the 11th World Congress on Endometriosis in September 2011 in Montpellier, France. The objective of this workshop was to review and update the endometriosis research priorities consensus statement developed following the 10th World Congress on Endometriosis in 2008.1 A total of 56 recommendations for research have been developed, grouped under 6 subheadings: (1) diagnosis, (2) classification and prognosis, (3) clinical trials, treatment, and outcomes, (4) epidemiology, (5) pathophysiology, and (6) research policy. By producing this consensus international research priorities statement, it is the hope of the workshop participants that researchers will be encouraged to develop new interdisciplinary research proposals that will attract increased funding support for work on endometriosis. PMID:23427182

  4. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  5. Multiday Transcranial Direct Current Stimulation Causes Clinically Insignificant Changes in Childhood Dystonia: A Pilot Study.

    Science.gov (United States)

    Bhanpuri, Nasir H; Bertucco, Matteo; Young, Scott J; Lee, Annie A; Sanger, Terence D

    2015-10-01

    Abnormal motor cortex activity is common in dystonia. Cathodal transcranial direct current stimulation may alter cortical activity by decreasing excitability while anodal stimulation may increase motor learning. Previous results showed that a single session of cathodal transcranial direct current stimulation can improve symptoms in childhood dystonia. Here we performed a 5-day, sham-controlled, double-blind, crossover study, where we measured tracking and muscle overflow in a myocontrol-based task. We applied cathodal and anodal transcranial direct current stimulation (2 mA, 9 minutes per day). For cathodal transcranial direct current stimulation (7 participants), 3 subjects showed improvements whereas 2 showed worsening in overflow or tracking error. The effect size was small (about 1% of maximum voluntary contraction) and not clinically meaningful. For anodal transcranial direct current stimulation (6 participants), none showed improvement, whereas 5 showed worsening. Thus, multiday cathodal transcranial direct current stimulation reduced symptoms in some children but not to a clinically meaningful extent, whereas anodal transcranial direct current stimulation worsened symptoms. Our results do not support transcranial direct current stimulation as clinically viable for treating childhood dystonia. © The Author(s) 2015.

  6. Direct calculation of current drive efficiency in FISIC code

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.; Bonoli, P.T.

    1996-01-01

    Two-dimensional RF modeling codes use a parameterization (1) of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform quasi-linear diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by the full wave code, FISIC (2). Current profiles are calculated using the adjoint formulation (3). Comparisons between the two formulations are presented. copyright 1996 American Institute of Physics

  7. Sexting: Current Research Gaps and Legislative Issues

    OpenAIRE

    Ngo, Fawn; Jaishankar, K; Agustina, Jose R.

    2017-01-01

    'Sexting, the portmanteau of Sex and Texting, has become a hot topic of debate between the legislators, researchers, educators, parents and teens' (Jaishankar, 2009, para 1). In spite of the considerable and growing body of literature on sexting, there are significant gaps in the current research. A review of research to date also reveals a dearth of cross-national and cross-cultural research on the topic of sexting. Notably, legal and ethical issues abound with the current method for punishi...

  8. The control of the upstream movement of fish with pulsated direct current

    Science.gov (United States)

    McLain, Alberton L.

    1957-01-01

    Alternating-current electromechanical devices installed in the mouths of streams have proved effective in stopping the spawning migrations of the parasitic sea lamprey (Petromyzon marinus) which has seriously damaged Great Lakes fisheries. In a few streams, excessive mortality has occurred to other fish at the alternating-current barriers. A direct-current unit was developed in an attempt to reduce this mortality. This direct-current “diversion device” consists of a row of suspended negative electrodes which begins at the end of a trap wing and extends across the river at a downstream angle of 45° and a series of pipes (positive electrodes) driven into the stream bank. A second array, consisting of horizontal pipes installed downstream and parallel to the suspended electrodes and connected to a series of rods driven into the bank near the positive electrodes, controls the electrical field and dissipates the collecting influence of the positive side of the circuit. The electrical field is established from the end of the trap wing to the opposite bank. Fish are diverted away from the negative electrodes and toward the bank near which the trap is located. The array is activiated by pulsated direct current of essentially square wave shape with pulses at a duty cycle of 0.66 and a repetition rate of 3 per second. Direct-current diversion devices were operated in conjunction with alternating-current barriers during 1956 in the Chocolay River, Marquette County, and the Silver River, Baraga County, Michigan.

  9. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Research activities and plan of electron cyclotron wave startup and Alfven wave current drive at SUNIST

    International Nuclear Information System (INIS)

    Gao Zhe; He Yexi; Tan Yi

    2009-01-01

    Using electromagnetic waves to startup and sustain plasma current takes a important role in the research program of the SUNIST spherical tokamak. Electron cyclotron ware (ECW) current startup have been investigated and revealed two totally different regimes. In the regime of very low working pressure, a plasma current of about 2 kA is obtained with a steadily applied vertical field of 12 Gauss and 40 kW/2.45 GHz microwave injection. In addition, the physics of the transient process during ECW startup in the relatively high working pressure regime is analyzed. The hardware preparation for the experimental research of Alfven wave current drive is being performed. The Alfven wave antenna system consists of four models in toroidal direction and two antenna straps in poloidal direction for each module and the rf generator has been designed as a four-phase oscillator (4x100 kW, 0.5 - 1 Mhz).The impedance spectrum of the antenna system is roughly evaluated by 1-D cylindrical magneto-hydrodynamic calculation. To investigate the wave-plasma interaction in ECW startup and Alfven wave current drive, upgrade of the device, especially in equilibrium control and diagnostics, is ongoing. (author)

  11. Current Direct Neutrino Mass Experiments

    Directory of Open Access Journals (Sweden)

    G. Drexlin

    2013-01-01

    Full Text Available In this contribution, we review the status and perspectives of direct neutrino mass experiments, which investigate the kinematics of β-decays of specific isotopes (3H, 187Re, 163Ho to derive model-independent information on the averaged electron (antineutrino mass. After discussing the kinematics of β-decay and the determination of the neutrino mass, we give a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for 3H, cryobolometers for 187Re. We then describe the Karlsruhe Tritium Neutrino (KATRIN experiment currently under construction at Karlsruhe Institute of Technology, which will use the MAC-E-Filter principle to push the sensitivity down to a value of 200 meV (90% C.L.. To do so, many technological challenges have to be solved related to source intensity and stability, as well as precision energy analysis and low background rate close to the kinematic endpoint of tritium β-decay at 18.6 keV. We then review new approaches such as the MARE, ECHO, and Project8 experiments, which offer the promise to perform an independent measurement of the neutrino mass in the sub-eV region. Altogether, the novel methods developed in direct neutrino mass experiments will provide vital information on the absolute mass scale of neutrinos.

  12. Direct-current-like Phase Space Manipulation Using Chirped Alternating Current Fields

    International Nuclear Information System (INIS)

    Schmit, P.F.; Fisch, N.J.

    2010-01-01

    Waves in plasmas can accelerate particles that are resonant with the wave. A dc electric field also accelerates particles, but without a resonance discrimination, which makes the acceleration mechanism profoundly different. Whereas wave-particle acceleration mechanisms have been widely discussed in the literature, this work discusses the direct analogy between wave acceleration and dc field acceleration in a particular parameter regime explored in previous works. Apart from the academic interest of this correspondence, there may be practical advantages in using waves to mimic dc electric fields, for example, in driving plasma current with high efficiency.

  13. Obesity pharmacotherapy: current perspectives and future directions.

    Science.gov (United States)

    Misra, Monika

    2013-02-01

    The rising tide of obesity and its related disorders is one of the most pressing health concerns worldwide, yet existing medicines to combat the problem are disappointingly limited in number and effectiveness. Recent advances in mechanistic insights into the neuroendocrine regulation of body weight have revealed an expanding list of molecular targets for novel, rationally designed antiobesity pharmaceutical agents. Antiobesity drugs act via any of four mechanisms: 1) decreasing energy intake, 2) increasing energy expenditure or modulating lipid metabolism, 3) modulating fat stores or adipocyte differentiation, and 4) mimicking caloric restriction. Various novel drug candidates and targets directed against obesity are currently being explored. A few of them are also in the later phases of clinical trials. This review discusses the development of novel antiobesity drugs based on current understanding of energy homeostasis.

  14. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  15. Investigation of students’ intermediate conceptual understanding levels: the case of direct current electricity concepts

    International Nuclear Information System (INIS)

    Aktan, D Cobanoglu

    2013-01-01

    Conceptual understanding is one of the main topics in science and physics education research. In the majority of conceptual understanding studies, students’ understanding levels were categorized dichotomously, either as alternative or scientific understanding. Although they are invaluable in many ways, namely developing new instructional materials and assessment instruments, students’ alternative understandings alone are not sufficient to describe students’ conceptual understanding in detail. This paper introduces an example of a study in which a method was developed to assess and describe students’ conceptual understanding beyond alternative and scientific understanding levels. In this study, six undergraduate students’ conceptual understanding levels of direct current electricity concepts were assessed and described in detail by using their answers to qualitative problems. In order to do this, conceptual understanding indicators are described based on science and mathematics education literature. The students’ understanding levels were analysed by assertion analysis based on the conceptual understanding indicators. The results indicated that the participants demonstrated three intermediate understanding levels in addition to alternative and scientific understanding. This paper presents the method and its application to direct current electricity concepts. (paper)

  16. Research directions in plant protection chemistry

    Directory of Open Access Journals (Sweden)

    Andras Szekacs

    2017-09-01

    Full Text Available This Opinion paper briefly summarizes the views of the authors on the directions of research in the area of plant protection chemistry. We believe these directions need to focus on (1 the discovery of new pesticide active ingredients, and (2 the protection of human health and the environment. Research revenues are discussed thematically in topics of target site identification, pesticide discovery, environmental aspects, as well as keeping track with the international trends. The most fundamental approach, target site identification, covers both computer-aided molecular design and research on biochemical mechanisms. The discovery of various classes of pesticides is reviewed including classes that hold promise to date, as well as up-to-date methods of innovation, e.g. utilization of plant metabolomics in identification of novel target sites of biological activity. Environmental and ecological aspects represent a component of increasing importance in pesticide development by emphasizing the need to improve methods of environmental analysis and assess ecotoxicological side-effects, but also set new directions for future research. Last, but not least, pesticide chemistry and biochemistry constitute an integral part in the assessment of related fields of plant protection, e.g. agricultural biotechnology, therefore, issues of pesticide chemistry related to the development and cultivation of genetically modified crops are also discussed.

  17. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations

    OpenAIRE

    Gunduz, Aysegul; Kumru, Hatice; Pascual-Leone, Alvaro

    2014-01-01

    Non-invasive brain stimulations mainly consist of repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Repetitive transcranial magnetic stimulation exhibits satisfactory outcomes in improving multiple sclerosis, stroke, spinal cord injury and cerebral palsy-induced spasticity. By contrast, transcranial direct current stimulation has only been studied in post-stroke spasticity. To better validate the efficacy of non-invasive brain stimulations in improving ...

  18. Technology-based suicide prevention: current applications and future directions.

    Science.gov (United States)

    Luxton, David D; June, Jennifer D; Kinn, Julie T

    2011-01-01

    This review reports on current and emerging technologies for suicide prevention. Technology-based programs discussed include interactive educational and social networking Web sites, e-mail outreach, and programs that use mobile devices and texting. We describe innovative applications such as virtual worlds, gaming, and text analysis that are currently being developed and applied to suicide prevention and outreach programs. We also discuss the benefits and limitations of technology-based applications and discuss future directions for their use.

  19. Method for exciting inductive-resistive loads with high and controllable direct current

    International Nuclear Information System (INIS)

    Hill, H.M. Jr.

    1976-01-01

    The apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator are described. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100 percent duty factor amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity. 4 Claims, 18 Drawing Figures

  20. Incredible Years parenting interventions: current effectiveness research and future directions.

    Science.gov (United States)

    Gardner, Frances; Leijten, Patty

    2017-06-01

    The Incredible Years parenting intervention is a social learning theory-based programme for reducing children's conduct problems. Dozens of randomized trials, many by independent investigators, find consistent effects of Incredible Years on children's conduct problems across multiple countries and settings. However, in common with other interventions, these average effects hide much variability in the responses of individual children and families. Innovative moderator research is needed to enhance scientific understanding of why individual children and parents respond differently to intervention. Additionally, research is needed to test whether there are ways to make Incredible Years more effective and accessible for families and service providers, especially in low resource settings, by developing innovative delivery systems using new media, and by systematically testing for essential components of parenting interventions. Copyright © 2017. Published by Elsevier Ltd.

  1. Resistivity measurements using a direct current induction method (1963)

    International Nuclear Information System (INIS)

    Delaplace, J.; Hillairet, J.

    1964-01-01

    The conventional methods for measuring electrical resistivities necessitate the fixing of electrical contacts on the sample either mechanically or by soldering. Furthermore it is also necessary to carry,out the measurements on low cross-section samples which are not always easy to obtain. Our direct-current induction method on the other hand requires no contacts and can easily be applied to samples of large cross-section. The sample is placed in a uniform magnetic field; at the moment when the current is cut, eddy currents appear in the sample which tend to oppose the disappearance of the field. The way in which the magnetic flux decreases in the sample makes it possible to determine the resistivity of the material. This method has been applied to samples having diameters of between 1 and 30 mm in the case of metals which are good conductors. It gives a value for the local resistivity and makes it possible to detect any variation along a sample. The measurements can be carried out at all temperature from a few degrees absolute to 500 deg. C. We have used the induction method to follow the purification of beryllium by zone-melting; it is in effect possible to estimate the purity of a material by resistivity measurements. We have measured the resistivity along each bar treated by the zone-melting technique and have thus, localised the purest section. High temperature measurements have been carried out on uranium carbide and on iron-aluminium alloys. This method constitutes an interesting means of investigation the resistivity of solid materials. Its accuracy and rapidity make it particularly adapted both to fundamental research and to production control. (authors) [fr

  2. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  3. Impact of transcranial direct current stimulation (tDCS) on neuronal functions

    NARCIS (Netherlands)

    Das, S. (Suman); P.J. Holland (Peter); M.A. Frens (Maarten); O. Donchin (Opher)

    2016-01-01

    textabstractTranscranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, modulates neuronal excitability by the application of a small electrical current. The low cost and ease of the technique has driven interest in potential clinical applications. However, outcomes

  4. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    Science.gov (United States)

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  5. Analysis of critical thinking ability in direct current electrical problems solving

    Science.gov (United States)

    Hartono; Sunarno, Widha; Sarwanto; Arya Nugraha, Dewanta

    2017-11-01

    This study concern on analyzing the ability of students in critical thinking skills on the subject matter of direct current electricity. Samples were taken using purposive random sampling consisted of 32 students of grade XI, Multimedia 1, SMK Negeri 3 Surakarta in academic year 2016/2017. This study used descriptive quantitative method. The data were collected using tests and interviews regarding the subject matter of direct current electricity. Based on the results, students are getting some difficulties in solving problem in indicator 4. The average of students’ correct answer is 62.8%.

  6. Revision of the Euratom basic safety standards directive-current status

    International Nuclear Information System (INIS)

    Mundig, S.

    2011-01-01

    The European Commission is currently developing a revised Euratom Basic Safety Standards (BSS) Directive covering two major objectives: the consolidation of existing Euratom Radiation Protection legislation and the revision of the Euratom BSS. The consolidation will merge the following five Directives into one single Directive: the BSS Directive, the Medical Exposures Directive, the Public Information Directive, the Outside Workers Directive and the Directive on the Control of high-activity sealed radioactive sources and orphan sources. The revision of the Euratom BSS will take account of the latest recommendations by the International Commission on Radiological Protection and shall improve clarity of the requirements where appropriate. It is planned to introduce more binding requirements on natural radiation sources, on criteria for exemption and clearance, and on the cooperation between Member States for emergency planning and response. The provisions for regulatory control of planned exposure situations foresee a graded approach commensurate to the magnitude and likelihood of exposures from a practice. Finally, the new BSS shall take account of recent scientific developments. One additional goal is to achieve greater harmonisation between the Euratom BSS and the international BSS. While the requirements on the protection of workers, apprentices and students remain nearly unchanged, the revised BSS will clarify the roles and responsibilities of services and experts involved in technical and practical aspects of radiation protection, such as the occupational health services, the dosimetry services, the radiation protection expert and the medical physics expert. The requirements in the BSS on individual monitoring of category A workers remain unchanged, but the existing guidance on individual monitoring was revised and updated-the technical recommendations for monitoring individuals occupationally exposed to external radiation are published by the European

  7. An Emerging Strategy of "Direct" Research.

    Science.gov (United States)

    Mintzberg, Henry

    1979-01-01

    Discusses seven basic themes that underlie the author's "direct research" activities. These themes include reliance on research based on description and induction instead of prescription and deduction, and the measurement of many elements in real settings, supported by anecdote, instead of few variables in perceptual terms from a…

  8. Novel methods to optimize the effects of transcranial direct current stimulation: a systematic review of transcranial direct current stimulation patents.

    Science.gov (United States)

    Malavera, Alejandra; Vasquez, Alejandra; Fregni, Felipe

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that has been extensively studied. While there have been initial positive results in some clinical trials, there is still variability in tDCS results. The aim of this article is to review and discuss patents assessing novel methods to optimize the use of tDCS. A systematic review was performed using Google patents database with tDCS as the main technique, with patents filling date between 2010 and 2015. Twenty-two patents met our inclusion criteria. These patents attempt to address current tDCS limitations. Only a few of them have been investigated in clinical trials (i.e., high-definition tDCS), and indeed most of them have not been tested before in human trials. Further clinical testing is required to assess which patents are more likely to optimize the effects of tDCS. We discuss the potential optimization of tDCS based on these patents and the current experience with standard tDCS.

  9. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  10. Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s)

    Science.gov (United States)

    2015-12-01

    TRANSCRANIAL DIRECT CURRENT STIMULATION OF EXPRESSION OF IMMEDIATE EARLY GENES (IEG’S) Jessica...AND SUBTITLE Effects of Transcranial Direct Current Stimulation on Expression of Immediate Early Genes (IEG’s) 5a. CONTRACT NUMBER In-House 5b...community in better understanding what is occurring biologically during tDCS. 15. SUBJECT TERMS Transcranial direct current stimulation

  11. Feasibility of transcranial direct current stimulation use in children aged 5 to 12 years.

    Science.gov (United States)

    Andrade, Agnes Carvalho; Magnavita, Guilherme Moreira; Allegro, Juleilda Valéria Brasil Nunes; Neto, Carlos Eduardo Borges Passos; Lucena, Rita de Cássia Saldanha; Fregni, Felipe

    2014-10-01

    Transcranial direct current stimulation is a noninvasive brain stimulation technique that has been studied for the treatment of neuropsychiatric disorders in adults, with minimal side effects. The objective of this study is to report the feasibility, tolerability, and the short-term adverse effects of transcranial direct current stimulation in children from 5 to 12 years of age. It is a naturalistic study of 14 children who underwent 10 sessions of transcranial direct current stimulation as an alternative, off-label, and open-label treatment for various languages disorders. Frequency, intensity, adverse effects, and perception of improvement reported by parents were collected. The main side effects detected were tingling (28.6%) and itching (28.6%), acute mood changes (42.9%), and irritability (35.7%). Transcranial direct current stimulation is a feasible and tolerable technique in children, although studies regarding plastic and cognitive changes in children are needed to confirm its safety. In conclusion, this is a naturalistic report in which we considered transcranial direct current stimulation as feasible in children. © The Author(s) 2013.

  12. Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions

    Science.gov (United States)

    Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...

  13. What is past is prologue: future directions in Tokamak Power Reactor Design Research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    After reviewing the first generation of studies and the primary conclusions they produced, four current designs are discussed that are representative of present trends in this area of research. In particular, the trends towards reduced reactor size and higher neutron wall loadings are discussed. Moving in this direction requires new approaches to many subsystem designs. New approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets are described. A discussion is given of the future role of conceptual reactor design research and the need for close interactions with ongoing experiments in fusion technology

  14. Current direction, benthic organisms, temperature, and wind direction data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 22 September 1977 - 30 November 1978 (NODC Accession 7900110)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, benthic organisms, temperature, and wind direction data were collected using moored current meter casts in the Gulf of Mexico from September 22,...

  15. Transcranial Direct Current Stimulation Does Not Improve Language Outcome in Subacute Poststroke Aphasia.

    Science.gov (United States)

    Spielmann, Kerstin; van de Sandt-Koenderman, W Mieke E; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M

    2018-04-01

    The aim of the present study is to investigate the effect of transcranial direct current stimulation on word-finding treatment outcome in subacute poststroke aphasia. In this multi-center, double-blind, randomized controlled trial with 6-month follow-up, we included 58 patients with subacute aphasia (transcranial direct current stimulation (1 mA, 20 minutes; experimental group) or sham transcranial direct current stimulation (control group) over the left inferior frontal gyrus. The primary outcome measure was the Boston Naming Test. Secondary outcome measures included naming performance for trained/untrained picture items and verbal communication. Both the experimental (n=26) and the control group (n=32) improved on the Boston Naming Test over the intervention period and 6-month follow-up; however, there were no significant differences between groups. Also for the secondary outcome measures, no significant differences were found. The results of the present study do not support an effect of transcranial direct current stimulation as an adjuvant treatment in subacute poststroke aphasia. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp. Unique identifier: NTR4364. © 2018 American Heart Association, Inc.

  16. Directed Current Without Dissipation: Reincarnation of a Maxwell-Loschmidt Demon

    Science.gov (United States)

    Goychuk, Igor; Haenggi, Peter

    We investigate whether for initially localized particles a directed current in rocked periodic structures is possible in absence of a dissipative mechanism. With a pure Hamiltonian dynamics the breaking of Time-Reversal-Invariante presents anecessary condition to find nonzero current values. Numerical studies are presented for the classical Hamiltonian dynamical case. These support the fact that indeed a finite current does occur when a time-reversal symmetry-breaking signal, such as a harmonic mixing signal, is acting. To gain analytical insight we consider the coherent driven quantum transport in a one-dimensional tight-binding lattice. Here, a finite coherent current is absent for initially localized preparations; it emerges, however, when the initial preparation (with zero initial current) possesses finite coherence. The presence of phase fluctuations will eventually kill any finite current, thereby rendering the nondissipative currents a transient phenomenon.

  17. Transcranial Direct Current Stimulation (tDCS): A Promising Treatment for Major Depressive Disorder?

    Science.gov (United States)

    Bennabi, Djamila; Haffen, Emmanuel

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) opens new perspectives in the treatment of major depressive disorder (MDD), because of its ability to modulate cortical excitability and induce long-lasting effects. The aim of this review is to summarize the current status of knowledge regarding tDCS application in MDD. Methods: In this review, we searched for articles published in PubMed/MEDLINE from the earliest available date to February 2018 that explored clinical and cognitive effects of tDCS in MDD. Results: Despite differences in design and stimulation parameters, the examined studies indicated beneficial effects of tDCS for MDD. These preliminary results, the non-invasiveness of tDCS, and its good tolerability support the need for further research on this technique. Conclusions: tDCS constitutes a promising therapeutic alternative for patients with MDD, but its place in the therapeutic armamentarium remains to be determined. PMID:29734768

  18. The evolution of strategic management research: Recent trends and current directions

    Directory of Open Access Journals (Sweden)

    Luis Ángel Guerras-Martín

    2014-04-01

    Full Text Available Strategic management is a relatively youthful discipline that has steadily matured over the past fifty years. The field has become consolidated over this period, while simultaneously expanding the range of topics analyzed and research methodologies used. Different theories and approaches, addressing different research topics, have been developed to explain the reasons underlying firms’ competitive advantage and success. In this paper, we posit the existence of two pendulums in constant motion that, on the one hand, reflect the tension that has historically existed between the focus on internal firm factors and external environmental attributes respectively and, on the other hand, the tension between a more macro level of analysis, i.e., the firm and its environment, and a more micro level one, i.e., individuals and their relations within the firm. The frontier of research in strategic management is shaped by the simultaneous movement of both pendulums.

  19. Current status and future direction of the MONK software package

    International Nuclear Information System (INIS)

    Smith, Nigel; Armishaw, Malcolm; Cooper, Andrew

    2003-01-01

    The current status of the MONK criticality software package is summarized in terms of recent and current developments and envisaged directions for the future. The areas of the discussion are physics modeling, geometry modeling, source modeling, nuclear data, validation, supporting tools and customer services. In future development plan, MONK continues to be focused on meeting the short and long-term needs of the code user community. (J.P.N.)

  20. Inter- and Intra-individual Variability in Response to Transcranial Direct Current Stimulation (tDCS) at Varying Current Intensities.

    Science.gov (United States)

    Chew, Taariq; Ho, Kerrie-Anne; Loo, Colleen K

    2015-01-01

    Translation of transcranial direct current stimulation (tDCS) from research to clinical practice is hindered by a lack of consensus on optimal stimulation parameters, significant inter-individual variability in response, and in sufficient intra-individual reliability data. Inter-individual differences in response to anodal tDCS at a range of current intensities were explored. Intra-individual reliability in response to anodal tDCS across two identical sessions was also investigated. Twenty-nine subjects participated in a crossover study. Anodal-tDCS using four different current intensities (0.2, 0.5, 1 and 2 mA), with an anode size of 16 cm2, was tested. The 0.5 mA condition was repeated to assess intra-individual variability. TMS was used to elicit 40 motor-evoked potentials (MEPs) before 10 min of tDCS, and 20 MEPs at four time-points over 30 min following tDCS. ANOVA revealed no main effect of TIME for all conditions except the first 0.5 mA condition, and no differences in response between the four current intensities. Cluster analysis identified two clusters for the 0.2 and 2 mA conditions only. Frequency distributions based on individual subject responses (excitatory, inhibitory or no response) to each condition indicate possible differential responses between individuals to different current intensities. Test-retest reliability was negligible (ICC(2,1) = -0.50). Significant inter-individual variability in response to tDCS across a range of current intensities was found. 2 mA and 0.2 mA tDCS were most effective at inducing a distinct response. Significant intra-individual variability in response to tDCS was also found. This has implications for interpreting results of single-session tDCS experiments. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  1. High magnetic field science and its application in the United States current status and future directions

    CERN Document Server

    National Research Council of the National Academies

    2013-01-01

    The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the str...

  2. 'Big data' in mental health research: current status and emerging possibilities.

    Science.gov (United States)

    Stewart, Robert; Davis, Katrina

    2016-08-01

    'Big data' are accumulating in a multitude of domains and offer novel opportunities for research. The role of these resources in mental health investigations remains relatively unexplored, although a number of datasets are in use and supporting a range of projects. We sought to review big data resources and their use in mental health research to characterise applications to date and consider directions for innovation in future. A narrative review. Clear disparities were evident in geographic regions covered and in the disorders and interventions receiving most attention. We discuss the strengths and weaknesses of the use of different types of data and the challenges of big data in general. Current research output from big data is still predominantly determined by the information and resources available and there is a need to reverse the situation so that big data platforms are more driven by the needs of clinical services and service users.

  3. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 μA, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 μA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 μA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell–material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: ► D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. ► Cells cultured on Ti were stimulated by using a custom made electrical stimulator. ► Optimization was performed by using a varying range of direct currents ∼ 5 to 25 μA. ► 25 μA stimulation was found most beneficial for promotion of cell adhesion/growth.

  4. Current and future directions in culture and happiness research.

    Science.gov (United States)

    Oishi, Shigehiro; Gilbert, Elizabeth A

    2016-04-01

    Once believed to be universal, a growing body of research shows that both the conception and predictors of happiness vary cross-culturally. First, the meaning and importance of happiness varies both across time and between nations. Americans, for instance, tend to define happiness in terms of pleasure or enjoyment and view happiness as universally positive, whereas East Asian and Middle Eastern cultures may highlight the transient and socially disruptive nature of happiness and be ambivalent about whether it is good. Second, predictors of happiness vary between cultures. Recent work highlights new mediators (e.g., relational mobility), individual predictors (e.g., person-culture fit), societal factors (e.g., good governance and wealth), within-culture variations (e.g., at the state or city level), and interventions (e.g., practicing gratitude) that differ cross-culturally or help explain cultural differences in happiness. Though many questions remain, this review highlights how these recent advances broaden and revise our understanding of culture and happiness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods

    International Nuclear Information System (INIS)

    Chávez-Valdez, Alejandra; Boccaccini, Aldo R.

    2012-01-01

    This review summarizes emerging developments in the field of alternating current (AC) and pulsed direct current (DC) electrophoretic deposition (EPD) in aqueous or organic media. Numerous applications of AC-EPD are discussed including two major groups of investigations: (i) AC-EPD to suppress water hydrolysis at high voltages in inorganic (ceramic) coatings and (ii) AC-EPD for deposition of biological entities. The deposition, purification and manipulation of carbon nanotubes and nanoparticles by AC-EPD to form specific arrays, for development of sensors and other electronic devices and the application of AC-EPD as method for separation of particles according to their shape or size are also presented. Other applications reviewed relate to the fabrication by AC-EPD of toxic gas sensors from oxides and superconducting layers. The main materials being examined by AC-EPD are inorganic, including carbon nanotubes, TiO 2 nanoparticles, Al 2 O 3 , Si, SnO 2 , ZnO and WO 3 and biological entities, e.g. bacteria cells. For pulsed EPD, the applications reviewed are divided in pulsed current and pulsed voltage EPD. Among the applications of pulsed EPD, the formation of thick films from aqueous suspensions without water decomposition, the fabrication of multilayer and composite materials and the size-selective deposition of ceramic nanoparticles are the most important investigated to date, based on the quality of the coatings and deposits obtained and their relevance for applications.

  6. Genetics and sport performance: current challenges and directions to the future

    Directory of Open Access Journals (Sweden)

    João Paulo Limongi França GUILHERME

    2014-03-01

    Full Text Available In recent years there has been a great progress in molecular biology techniques, which has facilitated the researches on influence of genetics on human performance. There are specific regions of DNA that can vary between individuals. Such variations (i.e., polymorphisms may, in part, explain why some individuals have differentiated responses to certain stimuli, including the responses to sports training. In a particular sport, the presence of specific polymorphisms may contribute to high levels of performance. Since 1998, several polymorphisms have been associated with athletic phenotypes; however the accumulation of information generated over these 15 years shows that the influence of genetics to sport is extremely complex. In this review, we will summarise the current status of the field, discussing the implications of available knowledge for the practice of professionals involved with the sport and suggesting future directions for research. We also discuss topics related to the importance of polygenic profile characterization of athletes, methods for the identification of new polymorphisms associated with physical performance, the use of genetic testing for predicting competitive success, and how crucial is the genetic profile for the success athletes in competition.

  7. Neuroimaging for psychotherapy research: current trends.

    Science.gov (United States)

    Weingarten, Carol P; Strauman, Timothy J

    2015-01-01

    This article reviews neuroimaging studies that inform psychotherapy research. An introduction to neuroimaging methods is provided as background for the increasingly sophisticated breadth of methods and findings appearing in psychotherapy research. We compiled and assessed a comprehensive list of neuroimaging studies of psychotherapy outcome, along with selected examples of other types of studies that also are relevant to psychotherapy research. We emphasized magnetic resonance imaging (MRI) since it is the dominant neuroimaging modality in psychological research. We summarize findings from neuroimaging studies of psychotherapy outcome, including treatment for depression, obsessive compulsive disorder (OCD), and schizophrenia. The increasing use of neuroimaging methods in the study of psychotherapy continues to refine our understanding of both outcome and process. We suggest possible directions for future neuroimaging studies in psychotherapy research.

  8. 1997 Annual report. Technological Research Direction

    International Nuclear Information System (INIS)

    Instituto Nacional de Investigaciones Nucleares

    1998-01-01

    This document describes the results for one year of work. Here is presented the goals of the Technological Research Direction of the National Institute of Nuclear Research in Mexico, which is promoting and developing the production of high technologies in the nuclear sciences and related disciplines as well as to generate the technologies, products, quality insume for academic organizations, health, industrial and commercial that are required. (Author)

  9. Magnesium and Osteoporosis: Current State of Knowledge and Future Research Directions

    Directory of Open Access Journals (Sweden)

    Jeanette A. M. Maier

    2013-07-01

    Full Text Available A tight control of magnesium homeostasis seems to be crucial for bone health. On the basis of experimental and epidemiological studies, both low and high magnesium have harmful effects on the bones. Magnesium deficiency contributes to osteoporosis directly by acting on crystal formation and on bone cells and indirectly by impacting on the secretion and the activity of parathyroid hormone and by promoting low grade inflammation. Less is known about the mechanisms responsible for the mineralization defects observed when magnesium is elevated. Overall, controlling and maintaining magnesium homeostasis represents a helpful intervention to maintain bone integrity.

  10. Current Understanding and Future Directions for Vocal Fold Mechanobiology

    Science.gov (United States)

    Li, Nicole Y.K.; Heris, Hossein K.; Mongeau, Luc

    2013-01-01

    The vocal folds, which are located in the larynx, are the main organ of voice production for human communication. The vocal folds are under continuous biomechanical stress similar to other mechanically active organs, such as the heart, lungs, tendons and muscles. During speech and singing, the vocal folds oscillate at frequencies ranging from 20 Hz to 3 kHz with amplitudes of a few millimeters. The biomechanical stress associated with accumulated phonation is believed to alter vocal fold cell activity and tissue structure in many ways. Excessive phonatory stress can damage tissue structure and induce a cell-mediated inflammatory response, resulting in a pathological vocal fold lesion. On the other hand, phonatory stress is one major factor in the maturation of the vocal folds into a specialized tri-layer structure. One specific form of vocal fold oscillation, which involves low impact and large amplitude excursion, is prescribed therapeutically for patients with mild vocal fold injuries. Although biomechanical forces affect vocal fold physiology and pathology, there is little understanding of how mechanical forces regulate these processes at the cellular and molecular level. Research into vocal fold mechanobiology has burgeoned over the past several years. Vocal fold bioreactors are being developed in several laboratories to provide a biomimic environment that allows the systematic manipulation of physical and biological factors on the cells of interest in vitro. Computer models have been used to simulate the integrated response of cells and proteins as a function of phonation stress. The purpose of this paper is to review current research on the mechanobiology of the vocal folds as it relates to growth, pathogenesis and treatment as well as to propose specific research directions that will advance our understanding of this subject. PMID:24812638

  11. An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect

    International Nuclear Information System (INIS)

    Zhang, Yue-Jun; Wei, Yi-Ming

    2010-01-01

    The European Union Emissions Trading Scheme (EU ETS) is supposed to be an important mechanism for addressing climate change. Up to now, the theoretical foundation of EU ETS has been widely acknowledged, but empirical research on its current situation has only been published recently or is forthcoming. Therefore, this paper is aimed to summarize the main arguments of empirical studies on the EU ETS, in terms of two aspects, i.e., the operating mechanism and economic effect of the EU ETS, which are two crucial topics and have been attached much attention. Based on the shortcomings of current research and future requirements of the EU ETS evolution, finally, we also present some further directions of the EU ETS research. Overall, the research overview here may be helpful to recognize the features of the EU ETS and its effect on others. (author)

  12. Current activities at the MIT Research Reactor

    International Nuclear Information System (INIS)

    Hu Linwen; Bernard, John A.; Harling, Otto K.; Kohse, Gordon E.; Ames, Michael; Olmez, Ilhan

    1998-01-01

    The MIT Research Reactor (MITR) is a MW nuclear research reactor that is owned and operated by the Massachusetts Institute of Technology to further its educational and research goals at both the undergraduate and graduate level. The reactor first achieved criticality in 1958. It was largely rebuilt in 1973/1974 by MIT staff and students, and its current license expires in August 1999. The current facility, which is designated as the MITR-H, uses a compact core with finned, aluminum-clad, plate-type fuel that is cooled and moderated by light water and reflected by heavy water. The reactor core can hold twenty-seven fuel elements. However, the normal configuration is twenty-four elements. A maximum of four fuel elements can be replaced with in-core experimental facilities. A unique feature of the MITR-II's design is that fixed absorber plates can be inserted in the upper half of the core. These cause the flux to peak in the lower half which benefits experimenters and also facilitates a fuel strategy that involves inversion of fuel elements midway through their life cycle. The MITR-II currently operates continuously for four weeks followed by shutdown of a few days for maintenance. This paper provides an overview of current activities at the MITR including preparations for re-licensing. The status of an on-going Phase-I clinical trial of boron neutron capture therapy for both glioblastoma multiforme and metastatic melanoma is described as well as the design of a fission converter facility for BNCT. Environmental research using neutron activation analysis is summarized as well as in-pile research focussed on LWR water chemistry and structural materials. (author)

  13. Animal Research on Nicotine Reduction: Current Evidence and Research Gaps.

    Science.gov (United States)

    Smith, Tracy T; Rupprecht, Laura E; Denlinger-Apte, Rachel L; Weeks, Jillian J; Panas, Rachel S; Donny, Eric C; Sved, Alan F

    2017-09-01

    A mandated reduction in the nicotine content of cigarettes may improve public health by reducing the prevalence of smoking. Animal self-administration research is an important complement to clinical research on nicotine reduction. It can fill research gaps that may be difficult to address with clinical research, guide clinical researchers about variables that are likely to be important in their own research, and provide policy makers with converging evidence between clinical and preclinical studies about the potential impact of a nicotine reduction policy. Convergence between clinical and preclinical research is important, given the ease with which clinical trial participants can access nonstudy tobacco products in the current marketplace. Herein, we review contributions of preclinical animal research, with a focus on rodent self-administration, to the science of nicotine reduction. Throughout this review, we highlight areas where clinical and preclinical research converge and areas where the two differ. Preclinical research has provided data on many important topics such as the threshold for nicotine reinforcement, the likelihood of compensation, moderators of the impact of nicotine reduction, the impact of environmental stimuli on nicotine reduction, the impact of nonnicotine cigarette smoke constituents on nicotine reduction, and the impact of nicotine reduction on vulnerable populations. Special attention is paid to current research gaps including the dramatic rise in alternative tobacco products, including electronic nicotine delivery systems (ie, e-cigarettes). The evidence reviewed here will be critical for policy makers as well as clinical researchers interested in nicotine reduction. This review will provide policy makers and clinical researchers interested in nicotine reduction with an overview of the preclinical animal research conducted on nicotine reduction and the regulatory implications of that research. The review also highlights the utility of

  14. New Directions in Socialization Research.

    Science.gov (United States)

    Baumrind, Diana

    1980-01-01

    Discusses the reproduction of gender-related insufficiencies by the organizational assymetry of family structure, whereby children of both sexes are predominantly mother-reared; and current challenges to the traditional, logical positivist paradigm in socialization research by a paradigm more congruent with a concrete, historical, and relational…

  15. Food waste-to-energy conversion technologies: current status and future directions.

    Science.gov (United States)

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  17. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  18. Transcranial Direct Current Stimulation and behavioral models of smoking addiction

    Directory of Open Access Journals (Sweden)

    Paige eFraser

    2012-08-01

    Full Text Available While few studies have applied transcranial direct current stimulation (tDCS to smoking addiction, existing work suggests that the intervention holds promise for altering the complex system by which environmental cues interact with cravings to drive behavior. Imaging and repetitive transcranial magnetic stimulation (rTMS studies suggest that increased dorsolateral prefrontal cortex (DLPFC activation and integrity may be associated with increased resistance to smoking cues. Anodal tDCS of the DLPFC, believed to boost activation, reduces cravings in response to these cues. The finding that noninvasive stimulation modifies cue induced cravings has profound implications for understanding the processes underlying addiction and relapse. TDCS can also be applied to probe mechanisms underlying and supporting nicotine addiction, as was done in a pharmacologic study that applied nicotine, tDCS, and TMS paired associative stimulation to find that stopping nicotine after chronic use induces a reduction in plasticity, causing difficulty in breaking free from association between cues and cravings. This mini-review will place studies that apply tDCS to smokers in the context of research involving the neural substrates of nicotine addiction.

  19. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  20. Current situation on the glueball research

    International Nuclear Information System (INIS)

    Shen Qixing

    1991-01-01

    The current situation on the glueball research is reviewed. The emphases are some qualitative guidances to identify the glueball and several possible candidate states for the glueball which have been discovered in the experiments

  1. 30 CFR 75.703-3 - Approved methods of grounding offtrack mobile, portable and stationary direct-current machines.

    Science.gov (United States)

    2010-07-01

    ..., portable and stationary direct-current machines. 75.703-3 Section 75.703-3 Mineral Resources MINE SAFETY... stationary direct-current machines. In grounding offtrack direct-current machines and the enclosures of their... requirements: (1) Installation of silicon diodes shall be restricted to electric equipment receiving power from...

  2. Compulsory Checking of Nuclear Power Engineering Materials by Direct and Eddy Current

    Science.gov (United States)

    Larionov, V. V.; Lider, A. M.; Sednev, D. A.; Xu, Shupeng

    2016-08-01

    The testing technology of copper parts designed for dry storage of spent nuclear fuel with application of direct and eddy current has been developed. Measurements results of flaw quantity caused hydrogenation and oxidation processes are presented. Evolution of copper M 001 flaw structure during hydrogenation from gaseous medium is analyzed. It has been demonstrated that the dependence of copper p electrical resistance on number of flaws in its structure has dome shaped character and changes with eddy current frequency change. Number of flaws formed by hydrogen depends on direction (100) or (200) of the crystal structure of copper lattice.

  3. Dependence of critical current density on crystalline direction in thin YBCO films

    DEFF Research Database (Denmark)

    Paturi, P.; Peurla, M.; Raittila, J.

    2005-01-01

    The dependence of critical current density (J(c)) on the angle between the current direction and the (100) direction in the ab-plane of thin YBCO films deposited on (001)-SrTiO3 from natiocrystalline and microcrystalline targets is studied using magneto-optical microscopy. In the films made from...... the nanocrystalline target it is found that J(c) does not depend on the angle whereas J(c) decreases with increasing angle in the films made from the microcrystalline target. The films were characterized by detailed X-ray diffraction measurements. The findings are explained in terms of a network of planar defects...

  4. Third-generation biofuels: current and future research on microalgal lipid biotechnology

    Directory of Open Access Journals (Sweden)

    Li-Beisson Yonghua

    2013-11-01

    Full Text Available One pressing issue faced by modern societies is to develop renewable energy for transportation. Microalgal biomass offers an attractive solution due to its high (annual surface biomass productivity, efficient conversion of solar energy into chemical energy and the ability to grow on non-agricultural land. Despite these considerable advantages, microalgal biofuels are not yet commercially sustainable. Major challenges lie in improving both cultivation technologies and microalgal strains. A microalgal crop species is yet to emerge. In this review, we focus on researches aiming at understanding and harnessing lipid metabolism in microalgae in view of producing lipid-based biofuels such as biodiesel. Current biotechnological challenges and key progresses made in the development of algal models, genetic tools and lipid metabolic engineering strategies are reviewed. Possible future research directions to increase oil yields in microalgae are also highlighted.

  5. Vital directions for mathematics education research

    CERN Document Server

    Leatham, Keith R

    2013-01-01

    In this book, experts discuss vital issues in mathematics education and what they see as viable directions for research in mathematics education to address them. Their recommendations take the form of overarching principles and ideas that cut across the field.

  6. Effectiveness of anodal transcranial direct current stimulation in patients with chronic low back pain: Design, method and protocol for a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Luedtke Kerstin

    2011-12-01

    Full Text Available Abstract Background Electrical stimulation of central nervous system areas with surgically implanted stimulators has been shown to result in pain relief. To avoid the risks and side effects of surgery, transcranial direct current stimulation is an option to electrically stimulate the motor cortex through the skull. Previous research has shown that transcranial direct current stimulation relieves pain in patients with fibromyalgia, chronic neuropathic pain and chronic pelvic pain. Evidence indicates that the method is pain free, safe and inexpensive. Methods/Design A randomised controlled trial has been designed to evaluate the effect of transcranial direct current stimulation over the motor cortex for pain reduction in patients with chronic low back pain. It will also investigate whether transcranial direct current stimulation as a prior treatment enhances the symptom reduction achieved by a cognitive-behavioural group intervention. Participants will be randomised to receive a series of 5 days of transcranial direct current stimulation (2 mA, 20 mins or 20 mins of sham stimulation; followed by a cognitive-behavioural group programme. The primary outcome parameters will measure pain (Visual Analog Scale and disability (Oswestry Disability Index. Secondary outcome parameters will include the Fear Avoidance Beliefs Questionnaire, the Funktionsfragebogen Hannover (perceived function, Hospital Anxiety Depression Scale, bothersomeness and Health Related Quality of Life (SF 36, as well as Patient-Perceived Satisfactory Improvement. Assessments will take place immediately prior to the first application of transcranial direct current stimulation or sham, after 5 consecutive days of stimulation, immediately after the cognitive-behavioural group programme and at 4 weeks, 12 weeks and 24 weeks follow-up. Discussion This trial will help to determine, whether transcranial direct current stimulation is an effective treatment for patients with chronic low back

  7. Current state and future directions of research and development in conducting polymers

    International Nuclear Information System (INIS)

    Spinks, G.M.; Innis, P.C.; Lewis, T.W.; Kane-Maghire, L.A.P.; Wallace, G.G.

    2000-01-01

    Polymers that inherently conduct electricity have been researched intensively for a little over 20 years. An enormous research effort in academic and industrial institutions has resulted in over 17,000 publications published in the last 10 years alone. Significant advances in the synthesis of new polymers and the methods for processing these polymers into products have resulted from this research activity. A number of commercial developments have emerged, some of which have reached maturity as marketed products. Some others have failed in the marketplace. The diversity of applications for conducting polymers continues to fuel research and development and ensures that new products will emerge over the foreseeable future. In the more distant future, truly intelligent polymer systems remain as an achievable objective. By developing appropriate processing and fabrication technologies, it should be possible to integrate sensing, actuating and energy storage functions into a single system. Further developments in self-assembly of conducting polymers from the nano- to the meso-scale will open up applications in MEMS and nanotechnology

  8. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  9. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016.

    Science.gov (United States)

    Bikson, Marom; Grossman, Pnina; Thomas, Chris; Zannou, Adantchede Louis; Jiang, Jimmy; Adnan, Tatheer; Mourdoukoutas, Antonios P; Kronberg, Greg; Truong, Dennis; Boggio, Paulo; Brunoni, André R; Charvet, Leigh; Fregni, Felipe; Fritsch, Brita; Gillick, Bernadette; Hamilton, Roy H; Hampstead, Benjamin M; Jankord, Ryan; Kirton, Adam; Knotkova, Helena; Liebetanz, David; Liu, Anli; Loo, Colleen; Nitsche, Michael A; Reis, Janine; Richardson, Jessica D; Rotenberg, Alexander; Turkeltaub, Peter E; Woods, Adam J

    2016-01-01

    This review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk. Safety data from animal tests for tissue damage are reviewed with systematic consideration of translation to humans. Arbitrary safety considerations are avoided. Computational models are used to relate dose to brain exposure in humans and animals. We review relevant dose-response curves and dose metrics (e.g. current, duration, current density, charge, charge density) for meaningful safety standards. Special consideration is given to theoretically vulnerable populations including children and the elderly, subjects with mood disorders, epilepsy, stroke, implants, and home users. Evidence from relevant animal models indicates that brain injury by Direct Current Stimulation (DCS) occurs at predicted brain current densities (6.3-13 A/m(2)) that are over an order of magnitude above those produced by conventional tDCS. To date, the use of conventional tDCS protocols in human trials (≤40 min, ≤4 milliamperes, ≤7.2 Coulombs) has not produced any reports of a Serious Adverse Effect or irreversible injury across over 33,200 sessions and 1000 subjects with repeated sessions. This includes a wide variety of subjects, including persons from potentially vulnerable populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  11. Dynamic pricing and learning: Historical origins, current research, and new directions

    NARCIS (Netherlands)

    den Boer, A.V.

    The topic of dynamic pricing and learning has received a considerable amount of attention in recent years, from different scientific communities. We survey these literature streams: we provide a brief introduction to the historical origins of quantitative research on pricing and demand estimation,

  12. Transcranial direct-current stimulation as treatment in epilepsy.

    Science.gov (United States)

    Gschwind, Markus; Seeck, Margitta

    2016-12-01

    Neuromodulation (NM) is a complementary therapy for patients with drug-resistant epilepsy. Vagal nerve stimulation and deep brain stimulation of the anterior thalamus are established techniques and have shown their efficacy in lowering seizure frequency, but they are invasive and rarely render patients seizure-free. Non-invasive NM techniques are therefore increasingly investigated in a clinical context. Areas covered: Current knowledge about transcranial direct-current stimulation (tDCS) and other non-invasive NM in patients with epilepsy, based on the available animal and clinical studies from PubMed search. Expert commentary: tDCS modulates neuronal membrane potentials, and consequently alters cortical excitability. Cathodal stimulation leads to cortical inhibition, which is of particular importance in epilepsy treatment. The antiepileptic efficacy is promising but still lacks systematic studies. The beneficial effect, seen in ~20%, outlasts the duration of stimulation, indicating neuronal plasticity and is therefore of great interest to obtain long-term effects.

  13. Chaos as a psychological construct: historical roots, principal findings, and current growth directions.

    Science.gov (United States)

    Guastello, Stephen J

    2009-07-01

    The landmarks in the use of chaos and related constructs in psychology were entwined with the growing use of other nonlinear dynamical constructs, especially catastrophes and self-organization. The growth in substantive applications of chaos in psychology is partially related to the development of methodologies that work within the constraints of psychological data. The psychological literature includes rigorous theory with testable propositions, lighter-weight metaphorical uses of the construct, and colloquial uses of "chaos" with no particular theoretical intent. The current state of the chaos construct and supporting empirical research in psychological theory is summarized in neuroscience, psychophysics, psychomotor skill and other learning phenomena, clinical and abnormal psychology, and group dynamics and organizational behavior. Trends indicate that human systems do not remain chaotic indefinitely; they eventually self-organize, and the concept of the complex adaptive system has become prominent. Chaotic turbulence is generally higher in healthy systems compared to unhealthy systems, although opposite appears true in mood disorders. Group dynamics research shows trends consistent with the complex adaptive system, whereas organizational behavior lags behind in empirical studies relative to the quantity of its theory. Future directions for research involving the chaos construct and other nonlinear dynamics are outlined.

  14. Gender relations and health research: a review of current practices

    Directory of Open Access Journals (Sweden)

    Bottorff Joan L

    2011-12-01

    Full Text Available Abstract Introduction The importance of gender in understanding health practices and illness experiences is increasingly recognized, and key to this work is a better understanding of the application of gender relations. The influence of masculinities and femininities, and the interplay within and between them manifests within relations and interactions among couples, family members and peers to influence health behaviours and outcomes. Methods To explore how conceptualizations of gender relations have been integrated in health research a scoping review of the existing literature was conducted. The key terms gender relations, gender interactions, relations gender, partner communication, femininities and masculinities were used to search online databases. Results Through analysis of this literature we identified two main ways gender relations were integrated in health research: a as emergent findings; and b as a basis for research design. In the latter, gender relations are included in conceptual frameworks, guide data collection and are used to direct data analysis. Conclusions Current uses of gender relations are typically positioned within intimate heterosexual couples whereby single narratives (i.e., either men or women are used to explore the influence and/or impact of intimate partner gender relations on health and illness issues. Recommendations for advancing gender relations and health research are discussed. This research has the potential to reduce gender inequities in health.

  15. Future directions for positive body image research

    OpenAIRE

    Halliwell, E.

    2015-01-01

    The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for fu...

  16. Current status of quantum electrical metrology

    International Nuclear Information System (INIS)

    Urano, Chiharu; Kaneko, Nobuhisa; Kiryu, Shogo

    2005-01-01

    Physical background, current status of proof systems and researches of the next generation standards of Josephson voltage and Quantized Hall Resistance (QHR) standard system are described. Josephson effect, the principle and theory of quantized hall effect, usual voltage standard system, standard feed of direct current resistance, and researches of voltage standard and direct current resistance standard are explained. The current-voltage of Josephson element in the usual voltage standard proof system and bias method, outline of typical Josephson voltage standard proof system and GaAs/AlGaAs heterostructure used as resistance standard are stated. Cryogenic Current Comparator (CCC) and Direct Current Comparator (DCC) proofread usual resistor. New Quantum Hall Array Resistance Standard (QHARS) is studied by BNM-LNE group in French, and the other new AC Quantized Hall Resistance (AC-QHR) by the European ACQHE Project. (S.Y.)

  17. Social networks user: current research

    OpenAIRE

    Agadullina E.R.

    2015-01-01

    The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1) social-demographic characteristics (Age, Gender, Nationality); 2) personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem). The results showed that the information in the personal profile and online behavior are strongly connect...

  18. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  19. Advances and Research Directions in Data-Warehousing Technology

    Directory of Open Access Journals (Sweden)

    Mukesh Mohania

    1999-11-01

    Full Text Available Information is one of the most valuable assets of an organisation and when used properly can assist in intelligent decision making that can significantly improve the functioning of an organisation. Data Warehousing is a recent technology that allows information to be easily and efficiently accessed for decision-making activities by collecting data from many operational, legacy and possibly heterogeneous data sources. On-Line Analytical Processing (OLAP tools are well-suited for complex data analysis, such as multi-dimensional data analysis, and to assist in decision support activities while data mining tools take the process one step further and actively search the data for patterns and hidden knowledge in the data held in the warehouse. Many organisations are building, or are planning to develop, a data warehouse for their operational and decision support needs. In this paper, we present an overview of data warehousing, multi-dimensional databases, OLAP and data mining technology and discuss the directions of current research in the area. We also discuss recent developments in data warehouse modelling, view selection and maintenance, indexing schemes, parallel query processing and data mining issues. A number of technical issues for exploratory research are presented and possible solutions are also discussed.

  20. Agriculture for improved nutrition: the current research landscape.

    Science.gov (United States)

    Turner, Rachel; Hawkes, Corinna; Jeff, Waage; Ferguson, Elaine; Haseen, Farhana; Homans, Hilary; Hussein, Julia; Johnston, Deborah; Marais, Debbi; McNeill, Geraldine; Shankar, Bhavani

    2013-12-01

    Concern about food security and its effect on persistent undernutrition has increased interest in how agriculture could be used to improve nutritional outcomes in developing countries. Yet the evidence base for the impact of agricultural interventions targeted at improved nutrition is currently poor. To map the extent and nature of current and planned research on agriculture for improved nutrition in order to identify gaps where more research might be useful. The research, which was conducted from April to August 2012, involved developing a conceptual framework linking agriculture and nutrition, identifying relevant research projects and programs, devising and populating a "template" with details of the research projects in relation to the conceptual framework, classifying the projects, and conducting a gap analysis. The study identified a large number of research projects covering a broad range of themes and topics. There was a strong geographic focus on sub-Saharan Africa, and many studies were explicitly concerned with nutritional impacts on women and children. Although the study revealed a diverse and growing body of research, it also identified research gaps. Few projects consider the entire evidence chain linking agricultural input or practice to nutritional outcomes. There is comparatively little current research on indirect effects of agriculture on nutrition, or the effect of policies or governance, rather than technical interventions. Most research is focused on undernutrition and small farmer households, and few studies target consumers generally, urban populations, or nutrition-related non-communicable diseases. There is very little work on the cost-effectiveness of agricultural interventions. On the basis of these findings, we make suggestions for research investment and for broader engagement of researchers and disciplines in developing approaches to design and evaluate agricultural programs for improved nutrition.

  1. Anodal transcranial direct current stimulation of right temporoparietal area inhibits self-recognition.

    Science.gov (United States)

    Payne, Sophie; Tsakiris, Manos

    2017-02-01

    Self-other discrimination is a crucial mechanism for social cognition. Neuroimaging and neurostimulation research has pointed to the involvement of the right temporoparietal region in a variety of self-other discrimination tasks. Although repetitive transcranial magnetic stimulation over the right temporoparietal area has been shown to disrupt self-other discrimination in face-recognition tasks, no research has investigated the effect of increasing the cortical excitability in this region on self-other face discrimination. Here we used transcranial direct current stimulation (tDCS) to investigate changes in self-other discrimination with a video-morphing task in which the participant's face morphed into, or out of, a familiar other's face. The task was performed before and after 20 min of tDCS targeting the right temporoparietal area (anodal, cathodal, or sham stimulation). Differences in task performance following stimulation were taken to indicate a change in self-other discrimination. Following anodal stimulation only, we observed a significant increase in the amount of self-face needed to distinguish between self and other. The findings are discussed in relation to the control of self and other representations and to domain-general theories of social cognition.

  2. Direct-current nanogenerator driven by ultrasonic waves.

    Science.gov (United States)

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  3. Cerebellar transcranial direct current stimulation in patients with ataxia: A double-blind, randomized, sham-controlled study.

    Science.gov (United States)

    Benussi, Alberto; Koch, Giacomo; Cotelli, Maria; Padovani, Alessandro; Borroni, Barbara

    2015-10-01

    Numerous studies have highlighted the possibility of modulating the excitability of cerebellar circuits using transcranial direct current stimulation. The present study investigated whether a single session of cerebellar anodal transcranial direct current stimulation could improve symptoms in patients with ataxia. Nineteen patients with ataxia underwent a clinical and functional evaluation pre- and post-double-blind, randomized, sham, or anodal transcranial direct current stimulation. There was a significant interaction between treatment and time on the Scale for the Assessment and Rating of Ataxia, on the International Cooperative Ataxia Rating Scale, on the 9-Hole Peg Test, and on the 8-Meter Walking Time (P transcranial direct current stimulation can transiently improve symptoms in patients with ataxia and might represent a promising tool for future rehabilitative approaches. © 2015 International Parkinson and Movement Disorder Society.

  4. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  5. 77 FR 46805 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... Vol. 77 Monday, No. 151 August 6, 2012 Part II Small Business Administration 13 CFR Chapter I Small Business Innovation Research Program Policy Directive; Small Business Technology Transfer Program Policy Directive; Small Business Innovation Research (SBIR) Program and Small Business Technology...

  6. Spectrochemical analysis of plutonium using direct current plasma emission spectrometry

    International Nuclear Information System (INIS)

    Morris, W.F.; Fadeff, S.K.; Torres, S.

    1983-01-01

    One year ago, LLNL was just completing the installation of a Direct Current Plasma (DCP) spectrometer for the analysis of Pu and Pu alloys. The installation was completed in December 1982 and has been utilized regularly for Pu analysis since then. This paper discusses the experience with the instrument and some data demonstrating its performance

  7. Use of Direct Current Resistivity Measurements to Assess AISI 304 Austenitic Stainless Steel Sensitization

    OpenAIRE

    Mesquita, Ramaiany Carneiro; Mecury, José Manoel Rivas; Tanaka, Auro Atsumi; Sousa, Regina Célia de

    2015-01-01

    This paper describes the feasibility of using direct current electrical resistivity measurements to evaluate AISI 304 austenitic stainless steel sensitization. ASTM A262 – Practice A and double loop electrochemical potentiodynamic reactivation (DL-EPR) tests were performed to assess the degree of sensitization (DoS) qualitatively and quantitatively, and electrical resistivity (ER) was measured by the four-point direct-current potential drop method. The results indicate that the DoS incr...

  8. Research on high beam-current accelerators

    International Nuclear Information System (INIS)

    Keefe, D.

    1981-01-01

    In this review of research being undertaken at present in the US on accelerating devices and concepts of a novel nature, both non-collective systems, including high-current rf linacs and a variety of induction linacs, and also collective systems are considered. (U.K.)

  9. Challenges in Governing the Digital Transportation Ecosystem in Jakarta: A Research Direction in Smart City Frameworks

    Directory of Open Access Journals (Sweden)

    Iqbal Yulizar Mukti

    2018-03-01

    Full Text Available Mobility is one of the most difficult domains of the smart city to face. In fact, most large cities in the world are still facing urban mobility problems, especially traffic congestion. Particularly, in Jakarta, Indonesia, traffic congestion is a major issue that negatively affects productivity and the overall living quality of the citizens. Along with the development of the information communication and technology (ICT, the transportation domain in Jakarta has formed a digital transportation ecosystem, shown by the emergence of innovative digital-based transportation services. In line with this current condition, this paper hopes to contribute to the improvement of urban traffic in Jakarta by proposing research directions to govern the digital transportation ecosystem within a smart city framework. The significance of the research directions is reviewed using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA methodology in a systematic review of previous studies. Ultimately, the research directions proposed in this paper lead to the necessity for an architectural perspective and relevant big data analytical tools to improve the digital transportation ecosystem in Jakarta.

  10. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  11. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  12. Recommended Research Directions for Improving the Validation of Complex Systems Models.

    Energy Technology Data Exchange (ETDEWEB)

    Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trucano, Timothy G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Finley, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Tatiana Paz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Naugle, Asmeret Bier [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Verzi, Stephen Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and external organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.

  13. Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System

    Directory of Open Access Journals (Sweden)

    NAMMALVAR, P.

    2018-02-01

    Full Text Available This paper projects Parameter Improved Particle Swarm Optimization (PIPSO based direct current vector control technology for the integration of photovoltaic array in an AC micro-grid to enhance the system performance and stability. A photovoltaic system incorporated with AC micro-grid is taken as the pursuit of research study. The test system features two power converters namely, PV side converter which consists of DC-DC boost converter with Perturbation and Observe (P&O MPPT control to reap most extreme power from the PV array, and grid side converter which consists of Grid Side-Voltage Source Converter (GS-VSC with proposed direct current vector control strategy. The gain of the proposed controller is chosen from a set of three values obtained using apriori test and tuned through the PIPSO algorithm so that the Integral of Time multiplied Absolute Error (ITAE between the actual and the desired DC link capacitor voltage reaches a minimum and allows the system to extract maximum power from PV system, whereas the existing d-q control strategy is found to perform slowly to control the DC link voltage under varying solar insolation and load fluctuations. From simulation results, it is evident that the proposed optimal control technique provides robust control and improved efficiency.

  14. Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review

    Directory of Open Access Journals (Sweden)

    Águida Foerster

    Full Text Available Introduction Transcranial direct current stimulation (tDCS has been used to modify cortical excitability and promote motor learning. Objective To systematically review published data to investigate the effects of transcranial direct current stimulation on motor learning in healthy individuals. Methods Randomized or quasi-randomized studies that evaluated the tDCS effects on motor learning were included and the risk of bias was examined by Cochrane Collaboration’s tool. The following electronic databases were used: PubMed, Scopus, Web of Science, LILACS, CINAHL with no language restriction. Results It was found 160 studies; after reading the title and abstract, 17 of those were selected, but just 4 were included. All studies involved healthy, right-handed adults. All studies assessed motor learning by the Jebsen Taylor Test or by the Serial Finger Tapping Task (SFTT. Almost all studies were randomized and all were blinding for participants. Some studies presented differences at SFTT protocol. Conclusion The result is insufficient to draw conclusions if tDCS influences the motor learning. Furthermore, there was significant heterogeneity of the stimulation parameters used. Further researches are needed to investigate the parameters that are more important for motor learning improvement and measure whether the effects are long-lasting or limited in time.

  15. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  16. 75 FR 15756 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2010-03-30

    ... SMALL BUSINESS ADMINISTRATION RIN 3244-AF61 Small Business Innovation Research Program Policy Directive AGENCY: U.S. Small Business Administration. ACTION: Notice of Final Amendments to Policy Directive. SUMMARY: This document announces a final amendment to the Small Business Innovation Research (SBIR...

  17. Pharmacologic versus direct-current electrical cardioversion of atrial flutter and fibrillation

    NARCIS (Netherlands)

    Van Gelder, IC; Tuinenburg, AE; Schoonderwoerd, BS; Tieleman, RG; Crijns, HJGM

    1999-01-01

    Conversion of atrial flutter and atrial fibrillation (AF) can be achieved by either pharmacologic or direct-current (DC) electrical cardioversion. DC electrical cardioversion is more effective and restores sinus rhythm instantaneously; however, general anesthesia is necessary, which can cause severe

  18. Non-Cyanide Electrodeposited Ag–PTFE Composite Coating Using Direct or Pulsed Current Deposition

    Directory of Open Access Journals (Sweden)

    Raymond Sieh

    2016-07-01

    Full Text Available The effects of FC-4 cationic surfactant on electrodeposited Ag–PTFE composite coating using direct or pulsed currents were studied using scanning electron microscope (SEM, energy dispersive X-ray (EDS, optical microscope, and a linear tribometer. FC-4:PTFE in various ratios were added to a non-cyanide succinimide silver complex bath. Direct or pulsed current method was used at a constant current density to enable comparison between both methods. A high incorporation rate of PTFE was successfully achieved, with pulsed current being highly useful in increasing the amount of PTFE in the composite coating. The study of coating wear under sliding showed that a large majority of the electrodeposited coatings still managed to adhere to the substrate, even after 10 wear cycles of sliding tests. Performance improvements were achieved on all the samples with a coefficient of friction (CoF between 0.06 and 0.12.

  19. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study.

    Science.gov (United States)

    Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush

    2015-10-01

    Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.

  20. Curating research data a handbook of current practice

    CERN Document Server

    Johnston, Lisa R

    2017-01-01

    Curating Research Data, Volume Two: A Handbook of Current Practice guides you across the data lifecycle through the practical strategies and techniques for curating research data in a digital repository setting. The data curation steps for receiving, appraising, selecting, ingesting, transforming, describing, contextualizing, disseminating, and preserving digital research data are each explored, and then supplemented with detailed case studies written by more than forty international practitioners from national, disciplinary, and institutional data repositories. The steps in this volume detail the sequential actions that you might take to curate a data set from receiving the data (Step 1) to eventual reuse (Step 8). Data curators, archivists, research data management specialists, subject librarians, institutional repository managers, and digital library staff will benefit from these current and practical approaches to data curation.

  1. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  2. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  3. Transcranial direct current stimulation for depression in Alzheimer's disease: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Narita, Zui; Yokoi, Yuma

    2017-06-19

    Patients with Alzheimer's disease frequently elicit neuropsychiatric symptoms as well as cognitive deficits. Above all, depression is one of the most common neuropsychiatric symptoms in Alzheimer's disease but antidepressant drugs have not shown significant beneficial effects on it. Moreover, electroconvulsive therapy has not ensured its safety for potential severe adverse events although it does show beneficial clinical effect. Transcranial direct current stimulation can be the safe alternative of neuromodulation, which applies weak direct electrical current to the brain. Although transcranial direct current stimulation has plausible evidence for its effect on depression in young adult patients, no study has explored it in older subjects with depression in Alzheimer's disease. Therefore, we present a study protocol designed to evaluate the safety and clinical effect of transcranial direct current stimulation on depression in Alzheimer's disease in subjects aged over 65 years. This is a two-arm, parallel-design, randomized controlled trial, in which patients and assessors will be blinded. Subjects will be randomized to either an active or a sham transcranial direct current stimulation group. Participants in both groups will be evaluated at baseline, immediately, and 2 weeks after the intervention. This study investigates the safety and effect of transcranial direct current stimulation that may bring a significant impact on both depression and cognition in patients with Alzheimer's disease, and may be useful to enhance their quality of life. ClinicalTrials.gov, NCT02351388 . Registered on 27 January 2015. Last updated on 30 May 2016.

  4. Just add a pinch of salt!--current directions for the use of salt in recipes in Australian magazines.

    Science.gov (United States)

    Webster, Jacqui; Dunford, Elizabeth; Barzi, Federica; Neal, Bruce

    2010-02-01

    Australians currently consume too much salt causing adverse consequences for health. The media play an important role in the provision of nutrition advice to consumers. Previous research shows that many foods advertized in consumer magazines are high in salt, but little research has examined magazine recipes in this context. The aim of this project was to summarize directions for salt use in recipes in leading Australian magazines. In August 2007 and 2008, the top 10 magazines by circulation that included at least five recipes, were examined. Standardized information was collected about directions for salt use in recipes. Three hundred and thirty recipes were identified in 2007 and 417 in 2008. About 68% of recipes included high-salt ingredients, 37% instructed to season with salt, 10% instructed to add a specific quantity of salt and 15% recommended selection of low-salt ingredients. There was substantial variability in directions for salt use in recipes between magazines, but no clear differences between 2007 and 2008. Many recipes advised to add salt in direct contradiction to national dietary guidelines. There is clear potential for editorial guidelines on salt use in recipes to play a role in advancing public health efforts in Australia and other such nations.

  5. [Transcranial direct current stimulation (tDCS) for depression: Results of nearly a decade of clinical research].

    Science.gov (United States)

    Palm, U; Ayache, S S; Padberg, F; Lefaucheur, J-P

    2016-02-01

    Since 2006 transcranial direct current stimulation (tDCS) has been investigated in the treatment of depression. In this review, we discuss the implications and clinical perspectives that tDCS may have as a therapeutic tool in depression from the results reported in this domain. A comprehensive literature review has found nearly thirty articles - all in English - on this topic, corresponding to clinical studies, placebo-controlled or not, case reports and reviews. Several meta-analyses showed that the antidepressant effects of active tDCS are significant against placebo, but variable, mainly due to the heterogeneity of the patients included in the studies, for example regarding the resistance to antidepressant treatment. Specific recommendations for the use of tDCS in treating depression may not yet be available, but some elements of good practice can be highlighted. Of particular note is that anodal tDCS of the left prefrontal cortex at 2mA for 20 minutes per day has a potential therapeutic value without risk of significant side effects: tDCS offers safe conditions for clinical use in the treatment of depression. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.

  6. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS

    Directory of Open Access Journals (Sweden)

    Natalie Dittert

    2018-04-01

    Full Text Available Although posttraumatic stress disorder (PTSD; DSM-V 309.82 and anxiety disorders (DSM-V 300.xx are widely spread mental disorders, the effectiveness of their therapy is still unsatisfying. Non-invasive brain-stimulation techniques like transcranial direct current stimulation (tDCS might be an option to improve extinction learning, which is a main functional factor of exposure-based therapy for anxiety disorders. To examine this hypothesis, we used a fear conditioning paradigm with female faces as conditioned stimuli (CS and a 95-dB female scream as unconditioned stimulus (UCS. We aimed to perform a tDCS of the ventromedial prefrontal cortex (vmPFC, which is mainly involved in the control of extinction-processes. Therefore, we applied two 4 × 4 cm electrodes approximately at the EEG-positions F7 and F8 and used a direct current of 1.5 mA. The 20-min stimulation was started during a 10-min break between acquisition and extinction and went on overall extinction-trials. The healthy participants were randomly assigned in two double-blinded process into two sham stimulation and two verum stimulation groups with opposite current flow directions. To measure the fear reactions, we used skin conductance responses (SCR and subjective ratings. We performed a generalized estimating equations model for the SCR to assess the impact of tDCS and current flow direction on extinction processes for all subjects that showed a successful conditioning (N = 84. The results indicate that tDCS accelerates early extinction processes with a significantly faster loss of CS+/CS– discrimination. The discrimination loss was driven by a significant decrease in reaction toward the CS+ as well as an increase in reaction toward the CS– in the tDCS verum groups, whereas the sham groups showed no significant reaction changes during this period. Therefore, we assume that tDCS of the vmPFC can be used to enhance early extinction processes successfully. But before it should be

  7. Current status and recent research achievements in SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Y., E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Snead, L.L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Henager, C.H. [Pacific Northwest National Laboratory, Richland, WA (United States); Nozawa, T. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Iveković, A.; Novak, S. [Jožef Stefan Institute, Ljubljana (Slovenia); Gonzalez de Vicente, S.M. [EFDA Close Support Unit, Garching (Germany)

    2014-12-15

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  8. Current status and recent research achievements in SiC/SiC composites

    International Nuclear Information System (INIS)

    Katoh, Y.; Snead, L.L.; Henager, C.H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S.M.

    2014-01-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications

  9. Current status and recent research achievements in SiC/SiC composites

    Science.gov (United States)

    Katoh, Y.; Snead, L. L.; Henager, C. H.; Nozawa, T.; Hinoki, T.; Iveković, A.; Novak, S.; Gonzalez de Vicente, S. M.

    2014-12-01

    The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC) composite system for fusion applications has seen a continual evolution from development a fundamental understanding of the material system and its behavior in a hostile irradiation environment to the current effort which is directed at a broad-based program of technology maturation program. In essence, over the past few decades this material system has steadily moved from a laboratory curiosity to an engineering material, both for fusion structural applications and other high performance application such as aerospace. This paper outlines the recent international scientific and technological achievements towards the development of SiC/SiC composite material technologies for fusion application and discusses future research directions. It also reviews the materials system in the larger context of progress to maturity as an engineering material for both the larger nuclear community and broader engineering applications.

  10. Current research on parenting styles, dimensions, and beliefs.

    Science.gov (United States)

    Smetana, Judith G

    2017-06-01

    For decades, parenting has been characterized in terms of broad global styles, with authoritative parenting seen as most beneficial for children's development. Concerns with greater sensitivity to cultural and contextual variations have led to greater specificity in defining parenting in terms of different parenting dimensions and greater consideration of the role of parenting beliefs in moderating links between parenting and adjustment. New research includes 'domain-specific' models that describe parents as flexibly deploying different practices depending on their goals, children's needs, and the types of behaviors towards which parenting is directed. These trends are described, and directions for future research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Social networks user: current research

    Directory of Open Access Journals (Sweden)

    Agadullina E.R.

    2015-12-01

    Full Text Available The purpose of this article is to review current research studies focusing on the users of Facebook and their behaviors in social networks. This review is organized into two sections: 1 social-demographic characteristics (Age, Gender, Nationality; 2 personality characteristics (Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness, Narcissism, Self-esteem. The results showed that the information in the personal profile and online behavior are strongly connected with socio-demographic and personality characteristics

  12. Current and future geothermal research in New Zealand

    International Nuclear Information System (INIS)

    Graham, I.J.; Browne, P.; Christenson, B.W.; Hunt, T.M.; Weir, G.

    2000-01-01

    Research programs by Crown Research Institutes (Geological and Nuclear Sciences Ltd. and Industrial Research Ltd.), university departments (Auckland, Massey and Victoria), power companies and private consultancies aim to obtain a better understanding of currently producing geothermal fields in New Zealand, and of deep geothermal systems which might have potential for future resource development. Research is also being directed at industrial and environmental issues related to exploitation, water-rock alteration processes, changes in shallow geothermal systems with time, and mineralisation as it relates to epithermal ore formation. The chemical and physical environment of geothermal reservoirs in the Taupo Volcanic Zone (e.g. Thames, Kawerau, Ohaaki, Ngatamariki, Wairakei, Tongariro, Tauhara and Tokaanu-Waihi) is being quantified with the aim of developing a suite of magma to ambient production scenarios using numerical, reactive transport models. A variety of geological, geochemical and geophysical techniques including fluid inclusion geothermometry, stable isotope analysis, electromagnetic, micro-seismic and magnetotelluric analysis is providing high quality input data. Through experimentation and computer modelling, criteria for assessing the optimal depths for re-injection of production effluents are being developed, and related problems such as silica and calcite scaling, pipeline insulation and chemical corrosion investigated. Paths, flow mechanisms and flow rates of re-injection plumes are being modelled using electrical resistivity, micro-gravity and radioisotope tracer methods. Environmental effects related to testing and development, presently causing concern amongst local authorities and the public, are being quantitatively assessed, and recommendations made to mitigate them. The mechanical and petrological properties of rocks in shallow aquifers undergoing ground subsidence are being determined, and the extent and style of ground deformation investigated

  13. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.

    Science.gov (United States)

    Patra, Amlan Kumar

    2012-04-01

    Enteric methane (CH(4)) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH(4) is produced annually from enteric fermentation mainly from ruminants. Therefore, CH(4) mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH(4) mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH(4) oxidation by methylotrophs, and genetic selection of low CH(4)-producing animals have emerged to decrease CH(4) production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH(4) mitigation as well. A combination of different CH(4) mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH(4) mitigation technologies

  14. Neuroprotective effect of cathodal transcranial direct current stimulation in a rat stroke model.

    Science.gov (United States)

    Notturno, Francesca; Pace, Marta; Zappasodi, Filippo; Cam, Etrugul; Bassetti, Claudio L; Uncini, Antonino

    2014-07-15

    Experimental focal brain ischemia generates in the penumbra recurrent depolarizations which spread across the injured cortex inducing infarct growth. Transcranial direct current stimulation can induce a lasting, polarity-specific, modulation of cortical excitability. To verify whether cathodal transcranial direct current stimulation could reduce the infarct size and the number of depolarizations, focal ischemia was induced in the rat by the 3 vessels occlusion technique. In the first experiment 12 ischemic rats received cathodal stimulation (alternating 15 min on and 15 min off) starting 45 min after middle cerebral artery occlusion and lasting 4 h. In the second experiment 12 ischemic rats received cathodal transcranial direct current stimulation with the same protocol but starting soon after middle cerebral artery occlusion and lasting 6 h. In both experiments controls were 12 ischemic rats not receiving stimulation. Cathodal stimulation reduced the infarct volume in the first experiment by 20% (p=0.002) and in the second by 30% (p=0.003). The area of cerebral infarction was smaller in animals receiving cathodal stimulation in both experiments (p=0.005). Cathodal stimulation reduced the number of depolarizations (p=0.023) and infarct volume correlated with the number of depolarizations (p=0.048). Our findings indicate that cathodal transcranial direct current stimulation exert a neuroprotective effect in the acute phase of stroke possibly decreasing the number of spreading depolarizations. These findings may have translational relevance and open a new avenue in neuroprotection of stroke in humans. Copyright © 2014. Published by Elsevier B.V.

  15. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study.

    Science.gov (United States)

    Santos, Michele Devido; Gagliardi, Rubens José; Mac-Kay, Ana Paula Machado Goyano; Boggio, Paulo Sergio; Lianza, Roberta; Fregni, Felipe

    2013-01-01

    Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. Prospective cohort study developed in a public university hospital. Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034), naming (P = 0.041) and verbal fluency for names of animals (P = 0.038). Improved scores for performing these three tasks were seen after stimulation. We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.

  16. Current research and potential applications of the Concealed Information Test: An overview

    Directory of Open Access Journals (Sweden)

    Gershon eBen-Shakhar

    2012-09-01

    Full Text Available Research interest in psychophysiological detection of deception has significantly increased since the September 11 terror attack in the USA. In particular, the Concealed Information Test (CIT, designed to detect memory traces that can connect suspects to a certain crime, has been extensively studied. In this paper I will briefly review several psychophysiological detection paradigms that have been studied, with a focus on the CIT. The theoretical background of the CIT, its strength and weaknesses, its potential applications as well as research finings related to its validity, (based on a recent mata-analytic study, will be discussed. Several novel research directions, with a focus on factors that may affect CIT detection in realistic settings (e.g., memory for crime details; the effect of emotional stress during crime execution will be described. Additionally, research focusing on mal-intentions and attempts to detect terror networks using information gathered from groups of suspects using both the standard CIT and the searching CIT will be reviewed. Finally, implications of current research to the actual application of the CIT will be discussed and several recommendations that can enhance the use of the CIT will be made.

  17. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  18. Current direction-dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS).

    Science.gov (United States)

    Shirota, Yuichiro; Dhaka, Suman; Paulus, Walter; Sommer, Martin

    2017-05-22

    Transcranial magnetic stimulation (TMS) with different current directions can activate different sets of neurons. Current direction can also affect the results of repetitive TMS. To test the influence of uni-directional intermittent theta burst stimulation (iTBS) using different current directions, namely posteroanterior (PA) and anteroposterior (AP), on motor behaviour. In a cross-over design, PA- and AP-iTBS was applied over the left primary motor cortex in 19 healthy, right-handed volunteers. Performance of a finger-tapping task was recorded before and 0, 10, 20, and 30min after the iTBS. The task was conducted with the right and left hands separately at each time point. As a control, AP-iTBS with reduced intensity was applied to 14 participants in a separate session (AP weak condition). The finger-tapping count with the left hand was decreased after PA-iTBS. Neither AP- nor AP weak -iTBS altered the performance. Current direction had a significant impact on the after-effects of iTBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Precision viticulture in Brazil: Current research status on wine grape

    Directory of Open Access Journals (Sweden)

    Miele Alberto

    2014-01-01

    Full Text Available Technologies associated to precision viticulture (PV are not currently used by Brazilian growers. To overcome this situation, a research is being carried out since 2011 in a vineyard of Merlot using a wide range of PV technologies. During this period, several PV research activities were performed which will be concluded in a couple of years. Therefore, final results depend on further variable evaluation which should be done by means of geostatistic, Geographic Information Systems and Principal Component Analysis. This paper briefly presents a series of methodological procedures used in different ways to attain the objective of this research project. In the sequence, it describes one final result and nine partial ones. Morphological and physicochemical analyses of soil showed that the vineyards are established on three taxonomic classes of soil – Argissolo, Cambissolo and Neossolo −, which are formed by ten mapping units. The partial results are mainly related to the utilization of GIS, modeling and must and wine composition of five mapping units; however they show results of only one year. With the complete set of analyses, data should be spatialized and maps prepared. Then, it will be possible to recommend different practices to each soil type and to aid oenologists to direct wines to a specific quality pattern.

  20. What is past is prologue: future directions in tokamak power reactor design research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    Conceptual tokamak power reactor designs over the last five years have provided us with many fundamental insights regarding tokamaks as fusion reactors. This first generation of studies has helped lay the groundwork upon which to build improvements in reactor design and begin a process of optimization. After reviewing the first generation of studies and the primary conclusions they produced, we discuss four current designs that are representative of present trends in this area of research. In particular, we discuss the trends towards reduced reactor size and higher neutron wall loadings. Moving in this direction requires new approaches to many subsystem designs. We describe new approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets. We close with a discussion of the future role of conceptual reactor design research and the need for close interaction with ongoing experiments in fusion technology

  1. Mild cognitive impairment in Parkinson's disease is improved by transcranial direct current stimulation combined with physical therapy.

    Science.gov (United States)

    Manenti, Rosa; Brambilla, Michela; Benussi, Alberto; Rosini, Sandra; Cobelli, Chiara; Ferrari, Clarissa; Petesi, Michela; Orizio, Italo; Padovani, Alessandro; Borroni, Barbara; Cotelli, Maria

    2016-05-01

    Parkinson's disease (PD) is characterized by both motor and cognitive deficits. In PD, physical exercise has been found to improve physical functioning. Recent studies demonstrated that repeated sessions of transcranial direct current stimulation led to an increased performance in cognitive and motor tasks in patients with PD. The present study investigated the effects of anodal transcranial direct current stimulation applied over the dorsolateral prefrontal cortex and combined with physical therapy in PD patients. A total of 20 patients with PD were assigned to 1 of 2 study groups: group 1, anodal transcranial direct current stimulation plus physical therapy (n = 10) or group 2, placebo transcranial direct current stimulation plus physical therapy (n = 10). The 2 weeks of treatment consisted of daily direct current stimulation application for 25 minutes during physical therapy. Long-term effects of treatment were evaluated on clinical, neuropsychological, and motor task performance at 3-month follow-up. An improvement in motor abilities and a reduction of depressive symptoms were observed in both groups after the end of treatment and at 3-month follow-up. The Parkinson's Disease Cognitive Rating Scale and verbal fluency test performances increased only in the anodal direct current stimulation group with a stable effect at follow-up. The application of anodal transcranial direct current stimulation may be a relevant tool to improve cognitive abilities in PD and might be a novel therapeutic strategy for PD patients with mild cognitive impairment. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  2. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  3. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  4. Current and Potential Chinese Foreign Direct Investment in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Zhang Liqun

    2017-06-01

    Full Text Available This article presents an overview of current and potential investment from China into the Slovak Republic within the broader CEEC region cooperation based on the 16+1 platform. Based on a business study on the automotive industry in the CEEC region, and particularly Slovakia as one of the industrial sectors for possible Chinese investment with immense potential, the article aims to identify the main advantages and disadvantages of the region as a foreign direct investment destination. The article also analyses the impact of FDI inflows on the Slovak economy. We come to the conclusion that the recent FDI inflow from China to Slovakia has been statistically insignificant, which may, however, change in case the envisaged Chinese investment into the steel industry in Slovakia will be realised. With respect thereto, the article also points at the need to set out a new revised framework for the international legal protection of Chinese investment in the EU. It has been established that further research is required to assess the impact of Chinese FDI on the Slovak economy.

  5. Direct-current vector control of three-phase grid-connected rectifier-inverter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuhui; Haskew, Timothy A.; Hong, Yang-Ki; Xu, Ling [Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35475 (United States)

    2011-02-15

    The three-phase grid-connected converter is widely used in renewable and electric power system applications. Traditionally, control of the three-phase grid-connected converter is based on the standard decoupled d-q vector control mechanism. Nevertheless, the study of this paper shows that there is a limitation in the conventional standard vector control method. Some of the limitations have also been found recently by other researchers. To overcome the shortage of the conventional vector control technique, this paper proposes a new direct-current d-q vector control mechanism in a nested-loop control structure, based on which an optimal control strategy is developed in a nonlinear programming formulation. The behaviors of both the conventional and proposed control methods are compared and evaluated in simulation and laboratory hardware experiment environments, both of which demonstrates that the proposed approach is effective for grid-connected power converter control in a wide system conditions while the conventional standard vector control approach may behave improperly especially when the converter operates beyond its PWM saturation limit. (author)

  6. THE ASSESSMENT OF ENTREPRENEURIAL PERSONALITY: THE CURRENT SITUATION AND FUTURE DIRECTIONS

    Directory of Open Access Journals (Sweden)

    Javier Suárez-Álvarez

    2016-01-01

    Full Text Available Entrepreneurship is fundamental in modern society because it represents an important source of innovation, employment, productivity, and growth. While the first theoretical models arose from economic and sociological approaches, psychology provides models that integrate different aspects such as cognitions, attitudes and personality, which allow a more detailed study. The purpose of this paper is to show the main contributions of psychology to the assessment of the enterprising personality. For this purpose, the main models and instruments developed to date were reviewed. The results confirm that the enterprising personality has a multidimensional structure and eight personality traits can be highlighted: achievement motivation, risk-taking, autonomy, self-efficacy, stress tolerance, innovativeness, internal locus of control, and optimism. From a methodological point of view, Item Response Theory and Computerised Adaptive Tests represent the most advanced and modern methods for assessing enterprising personality. There are currently several measurement instruments available. Future areas of research should be directed at the construction of multidimensional models as well as providing alternatives that facilitate a reduction in social desirability and other biases inherent in self-reports.

  7. Public health services and systems research: current state of finance research.

    Science.gov (United States)

    Ingram, Richard C; Bernet, Patrick M; Costich, Julia F

    2012-11-01

    There is a growing recognition that the US public health system should strive for efficiency-that it should determine the optimal ways to utilize limited resources to improve and protect public health. The field of public health finance research is a critical part of efforts to understand the most efficient ways to use resources. This article discusses the current state of public health finance research through a review of public health finance literature, chronicles important lessons learned from public health finance research to date, discusses the challenges faced by those seeking to conduct financial research on the public health system, and discusses the role of public health finance research in relation to the broader endeavor of Public Health Services and Systems Research.

  8. Self-consistent model for pulsed direct-current N2 glow discharge

    International Nuclear Information System (INIS)

    Liu Chengsen

    2005-01-01

    A self-consistent analysis of a pulsed direct-current (DC) N 2 glow discharge is presented. The model is based on a numerical solution of the continuity equations for electron and ions coupled with Poisson's equation. The spatial-temporal variations of ionic and electronic densities and electric field are obtained. The electric field structure exhibits all the characteristic regions of a typical glow discharge (the cathode fall, the negative glow, and the positive column). Current-voltage characteristics of the discharge can be obtained from the model. The calculated current-voltage results using a constant secondary electron emission coefficient for the gas pressure 133.32 Pa are in reasonable agreement with experiment. (authors)

  9. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  10. Integrated fundamental research on current collection

    Science.gov (United States)

    Kuhlmann-Wilsdorf, Doris; Tran, Leo

    1993-06-01

    The aim of our research was to add to the basic understanding in the area of current collection with particular emphasis on topics likely to benefit practical objectives. Under sponsorship of this contract, 23 papers were published in the international literature. Additionally, 13 invited lectures and 11 contributed lectures on various aspects of this research were delivered at universities, research laboratories, and international conferences by the principal investigator and co-workers. The development of a novel metal fiber material for sliding electrical contacts was continued with much success. This is expected to become very useful for making metal fiber brushed for homopolar motors/generators, as well as for EML armatures. Included in this report are title pages (and abstracts) for the 23 published papers.

  11. Direct current hopping conductance along DNA chain

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Li Ming-Jun

    2007-01-01

    This paper proposes a model of direct current(DC) electron hopping transport in DNA,in which DNA is considered as a binary one-dimensional disordered system.To quantitatively study the DC conductivity in DNA,it numerically calculates the DC conductivity of DNA chains with difierent parameter values.The result shows that the DC conductivity of DNA chain increases with the increase of temperature.And the conductivity of DNA chain is depended on the probability P.which represents the degree of compositional disorder in a DNA sequence to some extent.For P<0.5,the conductivity of DNA chain decreases with the increase of P,while for P≥0.5,the conductivity increases with the increase of p.The DC conductivity in DNA chain also varies with the change of the electric field,it presents non-Ohm's law conductivity characteristics.

  12. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  13. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  14. Current research projects on traffic conflicts technique studies.

    NARCIS (Netherlands)

    Hondel, M. van den & and Kraay, J.H.

    1979-01-01

    A review of current research concerning the development, evaluation and use of the traffic conflicts technique is presented. The 32 studies, selected from the IRRD data base, are listed alphabetically by names of countries and under countries by names of research organizations. The IRRD descriptions

  15. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    Directory of Open Access Journals (Sweden)

    Michele Devido Santos

    Full Text Available CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with chronic aphasia received 10 transcranial direct current stimulation sessions lasting 20 minutes each on consecutive days, using a current of 2 mA. The anode was positioned over the supraorbital area and the cathode over the contralateral motor cortex. The following variables were analyzed before and after the 10 neuromodulation sessions: oral language comprehension, copying, dictation, reading, writing, naming and verbal fluency. RESULTS: There were no adverse effects in the study. We found statistically significant differences from before to after stimulation in relation to simple sentence comprehension (P = 0.034, naming (P = 0.041 and verbal fluency for names of animals (P = 0.038. Improved scores for performing these three tasks were seen after stimulation. CONCLUSIONS: We observed that excitability of the primary motor cortex through transcranial direct current stimulation was associated with effects on different aspects of language. This can contribute towards future testing in randomized controlled trials.

  16. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  17. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  18. Future Directions in Research on Mathematics-Related Teacher Identity

    Science.gov (United States)

    Lutovac, Sonja; Kaasila, Raimo

    2018-01-01

    Mathematics education research has placed great emphasis on teacher identity, examining both pre- and in-service teachers, and within these cohorts, specialised mathematics teachers and non-specialists such as elementary teachers. Extensive research has already been done; hence, this paper discusses possible future directions for research on…

  19. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  20. Geysers advanced direct contact condenser research

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for the Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.

  1. Transcranial direct-current stimulation induced in stroke patients with aphasia: a prospective experimental cohort study

    OpenAIRE

    Santos,Michele Devido; Gagliardi,Rubens José; Mac-Kay,Ana Paula Machado Goyano; Boggio,Paulo Sergio; Lianza,Roberta; Fregni,Felipe

    2013-01-01

    CONTEXT AND OBJECTIVE: Previous animal and human studies have shown that transcranial direct current stimulation can induce significant and lasting neuroplasticity and may improve language recovery in patients with aphasia. The objective of the study was to describe a cohort of patients with aphasia after stroke who were treated with transcranial direct current stimulation. DESIGN AND SETTING: Prospective cohort study developed in a public university hospital. METHODS: Nineteen patients with ...

  2. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  3. Image Information Retrieval: An Overview of Current Research

    OpenAIRE

    Abby A. Goodrum

    2000-01-01

    This paper provides an overview of current research in image information retrieval and provides an outline of areas for future research. The approach is broad and interdisciplinary and focuses on three aspects of image research (IR): text-based retrieval, content-based retrieval, and user interactions with image information retrieval systems. The review concludes with a call for image retrieval evaluation studies similar to TREC.

  4. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study.

    Science.gov (United States)

    Kaski, D; Dominguez, R O; Allum, J H; Islam, A F; Bronstein, A M

    2014-11-01

    To improve gait and balance in patients with Parkinson's disease by combining anodal transcranial direct current stimulation with physical training. In a double-blind design, one group (physical training; n = 8) underwent gait and balance training during transcranial direct current stimulation (tDCS; real/sham). Real stimulation consisted of 15 minutes of 2 mA transcranial direct current stimulation over primary motor and premotor cortex. For sham, the current was switched off after 30 seconds. Patients received the opposite stimulation (sham/real) with physical training one week later; the second group (No physical training; n = 8) received stimulation (real/sham) but no training, and also repeated a sequential transcranial direct current stimulation session one week later (sham/real). Hospital Srio Libanes, Buenos Aires, Argentina. Sixteen community-dwelling patients with Parkinson's disease. Transcranial direct current stimulation with and without concomitant physical training. Gait velocity (primary gait outcome), stride length, timed 6-minute walk test, Timed Up and Go Test (secondary outcomes), and performance on the pull test (primary balance outcome). Transcranial direct current stimulation with physical training increased gait velocity (mean = 29.5%, SD = 13; p transcranial direct current stimulation alone. There was no isolated benefit of transcranial direct current stimulation alone. Although physical training improved gait velocity (mean = 15.5%, SD = 12.3; p = 0.03), these effects were comparatively less than with combined tDCS + physical therapy (p stimulation-related improvements were seen in patients with more advanced disease. Anodal transcranial direct current stimulation during physical training improves gait and balance in patients with Parkinson's disease. Power calculations revealed that 14 patients per treatment arm (α = 0.05; power = 0.8) are required for a definitive trial. © The Author(s) 2014.

  5. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    International Nuclear Information System (INIS)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do; Lee, Soo Yeol; Jung, Ki-Young

    2008-01-01

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  6. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)

    Energy Technology Data Exchange (ETDEWEB)

    Im, Chang-Hwan; Jung, Hui-Hun; Choi, Jung-Do [Department of Biomedical Engineering, Yonsei University, Wonju, 220-710 (Korea, Republic of); Lee, Soo Yeol [Department of Biomedical Engineering, Kyung Hee University, Suwon (Korea, Republic of); Jung, Ki-Young [Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of)], E-mail: ich@yonsei.ac.kr

    2008-06-07

    The present study introduces a new approach to determining optimal electrode positions in transcranial direct current stimulation (tDCS). Electric field and 3D conduction current density were analyzed using 3D finite element method (FEM) formulated for a dc conduction problem. The electrode positions for minimal current injection were optimized by changing the Cartesian coordinate system into the spherical coordinate system and applying the (2+6) evolution strategy (ES) algorithm. Preliminary simulation studies applied to a standard three-layer head model demonstrated that the proposed approach is promising in enhancing the performance of tDCS. (note)

  7. Text mining of cancer-related information: review of current status and future directions.

    Science.gov (United States)

    Spasić, Irena; Livsey, Jacqueline; Keane, John A; Nenadić, Goran

    2014-09-01

    This paper reviews the research literature on text mining (TM) with the aim to find out (1) which cancer domains have been the subject of TM efforts, (2) which knowledge resources can support TM of cancer-related information and (3) to what extent systems that rely on knowledge and computational methods can convert text data into useful clinical information. These questions were used to determine the current state of the art in this particular strand of TM and suggest future directions in TM development to support cancer research. A review of the research on TM of cancer-related information was carried out. A literature search was conducted on the Medline database as well as IEEE Xplore and ACM digital libraries to address the interdisciplinary nature of such research. The search results were supplemented with the literature identified through Google Scholar. A range of studies have proven the feasibility of TM for extracting structured information from clinical narratives such as those found in pathology or radiology reports. In this article, we provide a critical overview of the current state of the art for TM related to cancer. The review highlighted a strong bias towards symbolic methods, e.g. named entity recognition (NER) based on dictionary lookup and information extraction (IE) relying on pattern matching. The F-measure of NER ranges between 80% and 90%, while that of IE for simple tasks is in the high 90s. To further improve the performance, TM approaches need to deal effectively with idiosyncrasies of the clinical sublanguage such as non-standard abbreviations as well as a high degree of spelling and grammatical errors. This requires a shift from rule-based methods to machine learning following the success of similar trends in biological applications of TM. Machine learning approaches require large training datasets, but clinical narratives are not readily available for TM research due to privacy and confidentiality concerns. This issue remains the main

  8. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sung Hun [Dept. of Electrical Engineering, Soongsil University, Seoul (Korea, Republic of); Han, Tae Hee [Dept. of Aero Materials Engineering, Jungwon University, Goesan (Korea, Republic of)

    2017-06-15

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding.

  9. Current limiting characteristics of transformer type SFCL with coupled secondary windings according to its winding direction

    International Nuclear Information System (INIS)

    Lim, Sung Hun; Han, Tae Hee

    2017-01-01

    In this paper, the current limiting characteristics of the transformer type superconducting fault current limiter (SFCL) with the two coupled secondary windings due to its winding direction were analyzed. To analyze the dependence of transient fault current limiting characteristics on the winding direction of the additional secondary winding, the fault current limiting tests of the SFCL with an additional secondary winding, wound as subtractive polarity winding and additive polarity winding, were carried out. The time interval of quench occurrence between two superconducting elements comprising the transformer type SFCL with the additional secondary winding was confirmed to be affected by the winding direction of the additional secondary winding. In case of the subtractive polarity winding of the additional secondary winding, the time interval of the quench occurrence in two superconducting elements was shorter than the case of the additive polarity winding

  10. Combined Dextroamphetamine and Transcranial Direct Current Stimulation in Poststroke Aphasia.

    Science.gov (United States)

    Keser, Zafer; Dehgan, Michelle Weber; Shadravan, Shaparak; Yozbatiran, Nuray; Maher, Lynn M; Francisco, Gerard E

    2017-10-01

    There is a growing need for various effective adjunctive treatment options for speech recovery after stroke. A pharmacological agent combined with noninvasive brain stimulation has not been previously reported for poststroke aphasia recovery. In this "proof of concept" study, we aimed to test the safety of a combined intervention consisting of dextroamphetamine, transcranial direct current stimulation, and speech and language therapy in subjects with nonfluent aphasia. Ten subjects with chronic nonfluent aphasia underwent two experiments where they received dextroamphetamine or placebo along with transcranial direct current stimulation and speech and language therapy on two separate days. The Western Aphasia Battery-Revised was used to monitor changes in speech performance. No serious adverse events were observed. There was no significant increase in blood pressure with amphetamine or deterioration in speech and language performance. Western Aphasia Battery-Revised aphasia quotient and language quotient showed a statistically significant increase in the active experiment. Comparison of proportional changes of aphasia quotient and language quotient in active experiment with those in placebo experiment showed significant difference. We showed that the triple combination therapy is safe and implementable and seems to induce positive changes in speech and language performance in the patients with chronic nonfluent aphasia due to stroke.

  11. Rice Genome Research: Current Status and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Bin Han

    2008-11-01

    Full Text Available Rice ( L. is the leading genomics system among the crop plants. The sequence of the rice genome, the first cereal plant genome, was published in 2005. This review summarizes progress made in rice genome annotations, comparative genomics, and functional genomics researches. It also maps out the status of rice genomics globally and provides a vision of future research directions and resource building.

  12. Outstanding Issues and Future Directions of Inner Magnetospheric Research (Invited)

    Science.gov (United States)

    Brandt, P. C.

    2009-12-01

    Several research areas of the inner magnetosphere and ionosphere (MI) system have reached a state, where the coupling mechanisms can no longer be treated as boundary conditions or ad-hoc assumptions in our physical models. It is nothing new that our community has become increasingly aware of the necessity to use global measurements from multiple observation platforms and missions, in order to understand both the system as a whole as well as its individual subsystems. In this presentation we briefly review the current status and outstanding issues of inner MI research. We attempt to establish a working definition of the term "Systems Approach", then present observational tools and techniques that enable such an approach. Physical modeling plays a central role not only in understanding the mechanisms at work, but also in determining the key quantities to be measured. We conclude by discussing questions relevant to future directions. Are there new techniques that need more attention? Should multi-platform observations be included as a default component already at the mission-level in the future? Is solar minimum uninteresting from an MI perspective? Should we actively compare to magnetospheres of other planets? Examples of outstanding issues in inner MI research include the circulation of ionospheric plasma from low to high latitudes and its escape to the magnetosphere, where it is energized by magnetospheric processes and becomes a part of the plasma pressure that in turn affects the ionospheric and magnetospheric electric field. The electric field, in turn, plays a controlling role in the transport of both magnetospheric and ionospheric plasma, which is intimately linked with ionospheric conductance. The conductance, in turn, is controlled by thermospheric chemistry coupled with plasma flow and heating and magnetospheric precipitation and Joule heating. Several techniques have emerged as important tools: auroral imaging, inversions of ENA images to retrieve the

  13. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  14. Future directions for positive body image research.

    Science.gov (United States)

    Halliwell, Emma

    2015-06-01

    The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for future positive body image research are outlined: (a) conceptualization, (b) models, (c) developmental factors, (d) social interactions, (e) cognitive processing style, and (f) interventions. Finally, the potential role of positive body image as a protective factor within the broader body image literature is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    Science.gov (United States)

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  16. Functional Behavior Assessment in Schools: Current Status and Future Directions

    Science.gov (United States)

    Anderson, Cynthia M.; Rodriguez, Billie Jo; Campbell, Amy

    2015-01-01

    Functional behavior assessment is becoming a commonly used practice in school settings. Accompanying this growth has been an increase in research on functional behavior assessment. We reviewed the extant literature on documenting indirect and direct methods of functional behavior assessment in school settings. To discern best practice guidelines…

  17. Grand Research Plan for Neural Circuits of Emotion and Memory--current status of neural circuit studies in China.

    Science.gov (United States)

    Zhu, Yuan-Gui; Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    During recent years, major advances have been made in neuroscience, i.e., asynchronous release, three-dimensional structural data sets, saliency maps, magnesium in brain research, and new functional roles of long non-coding RNAs. Especially, the development of optogenetic technology provides access to important information about relevant neural circuits by allowing the activation of specific neurons in awake mammals and directly observing the resulting behavior. The Grand Research Plan for Neural Circuits of Emotion and Memory was launched by the National Natural Science Foundation of China. It takes emotion and memory as its main objects, making the best use of cutting-edge technologies from medical science, life science and information science. In this paper, we outline the current status of neural circuit studies in China and the technologies and methodologies being applied, as well as studies related to the impairments of emotion and memory. In this phase, we are making efforts to repair the current deficiencies by making adjustments, mainly involving four aspects of core scientific issues to investigate these circuits at multiple levels. Five research directions have been taken to solve important scientific problems while the Grand Research Plan is implemented. Future research into this area will be multimodal, incorporating a range of methods and sciences into each project. Addressing these issues will ensure a bright future, major discoveries, and a higher level of treatment for all affected by debilitating brain illnesses.

  18. Research on Social Networking Sites and Social Support from 2004 to 2015: A Narrative Review and Directions for Future Research.

    Science.gov (United States)

    Meng, Jingbo; Martinez, Lourdes; Holmstrom, Amanda; Chung, Minwoong; Cox, Jeff

    2017-01-01

    The article presents a narrative review of scholarship on social support through social networking sites (SNSs) published from 2004 to 2015. By searching keywords related to social support and SNSs in major databases for social sciences, we identified and content analyzed directly relevant articles (N = 88). The article summarizes the prevalence of theory usage; the function of theory usage (e.g., testing a theory, developing a theory); major theories referenced; and methodologies, including research designs, measurement, and the roles of social support and SNS examined in this literature. It also reports four themes identified across the studies, indicating the trends in the current research. Based on the review, the article presents a discussion about study sites, conceptualization of social support, theoretical coherence, the role of social networks, and the dynamic relationships between SNS use and social support, which points out potential avenues for shaping a future research agenda.

  19. Current Issues in LPP Research and Their Impact on Society

    Science.gov (United States)

    Darquennes, Jeroen

    2013-01-01

    After a very broad description of what language policy and planning is about this paper presents an overview of some of the current preoccupations of researchers focusing on language policy and planning as one of the blooming fields of applied linguistics. The current issues in language policy and planning research that are dealt with include…

  20. Eddy current imaging. Simplifying the direct problem. Analysis of a 2D case with formulations

    International Nuclear Information System (INIS)

    Spineanu, A.; Zorgati, R.

    1995-01-01

    Eddy current non-destructive testing is used by EDF to detect faults affecting conductive objects such as steam generator tubes. A new technique, known as eddy current imaging, is being developed to facilitate diagnosis in this context. The first stage in this work, discussed in the present paper, consists in solving the direct problem. This entails determining the measurable quantities, on the basis of a thorough knowledge of the material considered. This was done by formulating the direct problem in terms of eddy currents in general 3D geometry context, applying distribution theory and Maxwell equations. Since no direct problem code was available we resorted to simplified situations. Taking care not to interfere with previous developments or those to be attempted in an inversion context, we studied the case of a flaw affecting a 2D structure, illuminated by a plane wave type probe. For this configuration, we studied the exact model and compared results with those of a linearized simplified model. This study emphasizes the ill-posed situation of the eddy current inverse problem related with the severe electromagnetic field attenuation. This means that regularization of the inverse problem, although absolutely necessary, will not be sufficient. Owing to the simplicity of the models available and implemented during the inversion process, processing real data would not yet be possible. We must first focus all our efforts on the direct 3 D problem, in conformity with the requirements of the inverse procedure ad describing a realistic eddy current NDT situation. At the same time, consideration should be given to the design of a specific probe customized for eddy current imaging. (authors). 9 refs., 5 figs., 3 appends

  1. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  2. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  3. Transcranial Direct Current Stimulation in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder (ADHD): A Pilot Study.

    Science.gov (United States)

    Bandeira, Igor Dórea; Guimarães, Rachel Silvany Quadros; Jagersbacher, João Gabriel; Barretto, Thiago Lima; de Jesus-Silva, Jéssica Regina; Santos, Samantha Nunes; Argollo, Nayara; Lucena, Rita

    2016-06-01

    Studies investigating the possible benefits of transcranial direct current stimulation on left dorsolateral prefrontal cortex in children and adolescents with attention-deficit hyperactivity disorder (ADHD) have not been performed. This study assesses the effect of transcranial direct current stimulation in children and adolescents with ADHD on neuropsychological tests of visual attention, visual and verbal working memory, and inhibitory control. An auto-matched clinical trial was performed involving transcranial direct current stimulation in children and adolescents with ADHD, using SNAP-IV and subtests Vocabulary and Cubes of the Wechsler Intelligence Scale for Children III (WISC-III). Subjects were assessed before and after transcranial direct current stimulation sessions with the Digit Span subtest of the WISC-III, inhibitory control subtest of the NEPSY-II, Corsi cubes, and the Visual Attention Test (TAVIS-3). There were 9 individuals with ADHD according to Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) criteria. There was statistically significant difference in some aspects of TAVIS-3 tests and the inhibitory control subtest of NEPSY-II. Transcranial direct current stimulation can be related to a more efficient processing speed, improved detection of stimuli, and improved ability to switch between an ongoing activity and a new one. © The Author(s) 2016.

  4. Subcortical structures in humans can be facilitated by transcranial direct current stimulation

    NARCIS (Netherlands)

    Nonnekes, J.H.; Arrogi, A.; Munneke, M.A.M.; Asseldonk, E.H. van; Nijhuis, L.B.; Geurts, A.C.H.; Weerdesteyn, V.G.M.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential

  5. Subcortical Structures in Humans Can Be Facilitated by Transcranial Direct Current Stimulation

    NARCIS (Netherlands)

    Nonnekes, Johan Hendrik; Arrogi, A.; Munneke, M.A.M.; van Asseldonk, Edwin H.F.; Oude Nijhuis, L.B.; Geurts, A.C.; Weerdesteyn, V.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential

  6. Simulating Transcranial Direct Current Stimulation With a Detailed Anisotropic Human Head Model

    NARCIS (Netherlands)

    Rampersad, S.; Janssen, A.J.E.M.; Lucka, F.; Aydin, U.; Lanfer, B.; Lew, S.; Wolters, C.H.; Stegeman, D.F.; Oostendorp, T.F.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve

  7. Simulating transcranial direct current stimulation with a detailed anisotropic human head model

    NARCIS (Netherlands)

    Rampersad, S.M.; Janssen, A.M.; Lucka, F.; Aydin, U.; Lanfer, B.; Lew, S.; Wolters, C.H.; Stegeman, D.F.; Oostendorp, T.F.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce long-lasting changes in cortical excitability that can benefit cognitive functioning and clinical treatment. In order to both better understand the mechanisms behind tDCS and possibly improve

  8. Method and system for a gas tube-based current source high voltage direct current transmission system

    Science.gov (United States)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  9. Digital library research : current developments and trends

    OpenAIRE

    Shiri, Ali

    2003-01-01

    This column gives an overview of current trends in digital library research under the following headings: digital library architecture, systems, tools and technologies; digital content and collections; metadata; interoperability; standards; knowledge organisation systems; users and usability; legal, organisational, economic, and social issues in digital libraries.

  10. The Effects of Transcranial Direct Current Stimulation (tDCS on Multitasking Throughput Capacity

    Directory of Open Access Journals (Sweden)

    Justin Nelson

    2016-11-01

    Full Text Available Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators’ capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female with an average age of 31.1 (SD = 4.5. Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants’ information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  11. The Effects of Transcranial Direct Current Stimulation (tDCS) on Multitasking Throughput Capacity.

    Science.gov (United States)

    Nelson, Justin; McKinley, Richard A; Phillips, Chandler; McIntire, Lindsey; Goodyear, Chuck; Kreiner, Aerial; Monforton, Lanie

    2016-01-01

    Background: Multitasking has become an integral attribute associated with military operations within the past several decades. As the amount of information that needs to be processed during these high level multitasking environments exceeds the human operators' capabilities, the information throughput capacity reaches an asymptotic limit. At this point, the human operator can no longer effectively process and respond to the incoming information resulting in a plateau or decline in performance. The objective of the study was to evaluate the efficacy of a non-invasive brain stimulation technique known as transcranial direct current stimulation (tDCS) applied to a scalp location over the left dorsolateral prefrontal cortex (lDLPFC) to improve information processing capabilities during a multitasking environment. Methods: The study consisted of 20 participants from Wright-Patterson Air Force Base (16 male and 4 female) with an average age of 31.1 (SD = 4.5). Participants were randomly assigned into two groups, each consisting of eight males and two females. Group one received 2 mA of anodal tDCS and group two received sham tDCS over the lDLPFC on their testing day. Results: The findings indicate that anodal tDCS significantly improves the participants' information processing capability resulting in improved performance compared to sham tDCS. For example, the multitasking throughput capacity for the sham tDCS group plateaued near 1.0 bits/s at the higher baud input (2.0 bits/s) whereas the anodal tDCS group plateaued near 1.3 bits/s. Conclusion: The findings provided new evidence that tDCS has the ability to augment and enhance multitasking capability in a human operator. Future research should be conducted to determine the longevity of the enhancement of transcranial direct current stimulation on multitasking performance, which has yet to be accomplished.

  12. An image-guided transcranial direct current stimulation system: a pilot phantom study

    International Nuclear Information System (INIS)

    Jung, Young-Jin; Kim, Jung-Hoon; Kim, Daejeong; Im, Chang-Hwan

    2013-01-01

    In this study, an image-guided transcranial direct current stimulation (IG-tDCS) system that can deliver an increased stimulation current to a target brain area without the need to adjust the location of an active electrode was implemented. This IG-tDCS system was based on the array-type tDCS concept, which was validated through computer simulations in a previous study. Unlike a previous study, the present IG-tDCS system adopts a single reference electrode and an active electrode array consisting of 16 (4 × 4) sub-electrodes. The proposed IG-tDCS system is capable of shaping current flow inside the human head by controlling the input currents of the arrayed electrodes. Once a target brain area has been selected, the optimal injection current of each arrayed sub-electrode is evaluated automatically using a genetic algorithm in order to deliver the maximum available current to the target area. The operation of our pilot system was confirmed through a simple phantom experiment. (paper)

  13. Multi-terminal direct-current grids modeling, analysis, and control

    CERN Document Server

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  14. Research Directions in Anthropological Pragmatics

    Directory of Open Access Journals (Sweden)

    Piotr P. Chruszczewski

    2011-08-01

    Full Text Available Anthropological linguistics, and by default also anthropological pragmatics, grew as sub-disciplines of both anthropology and linguistics. “The intellectual basis for anthropological linguistics in the United States derives from Boas ([1911] 1966, whose interests and concerns led to the anthropological view of language, which is that language is an integral part of culture (…” (Klein 2006: 296. Pragmatics enters the scene, telling the researcher how to analyse the aforementioned phenomena. Therefore, anthropological pragmatics would be responsible for equipping the researcher with tools, for it is language and language-oriented mechanisms of communication, the study of which provides a much clearer insight into cultural phenomena which often direct the use of language representing culture from both the synchronic and the diachronic point of view. “[O]ne approaches language from an anthropological view, which includes the uses of language and the uses of silence, as well as the cultural problems involved in silence and speech” (ibid..

  15. Evaluating the risks of clinical research: direct comparative analysis.

    Science.gov (United States)

    Rid, Annette; Abdoler, Emily; Roberson-Nay, Roxann; Pine, Daniel S; Wendler, David

    2014-09-01

    Many guidelines and regulations allow children and adolescents to be enrolled in research without the prospect of clinical benefit when it poses minimal risk. However, few systematic methods exist to determine when research risks are minimal. This situation has led to significant variation in minimal risk judgments, raising concern that some children are not being adequately protected. To address this concern, we describe a new method for implementing the widely endorsed "risks of daily life" standard for minimal risk. This standard defines research risks as minimal when they do not exceed the risks posed by daily life activities or routine examinations. This study employed a conceptual and normative analysis, and use of an illustrative example. Different risks are composed of the same basic elements: Type, likelihood, and magnitude of harm. Hence, one can compare the risks of research and the risks of daily life by comparing the respective basic elements with each other. We use this insight to develop a systematic method, direct comparative analysis, for implementing the "risks of daily life" standard for minimal risk. The method offers a way of evaluating research procedures that pose the same types of risk as daily life activities, such as the risk of experiencing anxiety, stress, or other psychological harm. We thus illustrate how direct comparative analysis can be applied in practice by using it to evaluate whether the anxiety induced by a respiratory CO2 challenge poses minimal or greater than minimal risks in children and adolescents. Direct comparative analysis is a systematic method for applying the "risks of daily life" standard for minimal risk to research procedures that pose the same types of risk as daily life activities. It thereby offers a method to protect children and adolescents in research, while ensuring that important studies are not blocked because of unwarranted concerns about research risks.

  16. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  17. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  18. Magnetic particle imaging: current developments and future directions

    Directory of Open Access Journals (Sweden)

    Panagiotopoulos N

    2015-04-01

    of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance. Keywords: magnetic particle imaging, superparamagnetic iron oxide nanoparticles, magnetic particle spectrometer, peripheral nerve stimulation, cardiovascular interventions

  19. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  20. Pressure ulcer research : current and future perspectives

    NARCIS (Netherlands)

    Bader, D.L.; Bouten, C.V.C.; Colin, D.; Oomens, C.W.J.

    2005-01-01

    This book provides an up-to-date scientific account of all aspects related to pressure ulcers and pressure ulcer research, as well as evidence-based knowledge of pressure ulcer aetiology. Further, it describes current and future tools for evaluating patients at risk. It comprises 20 chapters by

  1. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  2. Expanding Boundaries: Current and New Directions in Study Abroad Research and Practice

    Science.gov (United States)

    Marijuan, Silvia; Sanz, Cristina

    2018-01-01

    In spite of advances in the understanding of the effects of the immersion experience on language and cultural development in the last three decades, many questions in study abroad (SA) research remain unanswered. The present article offers a close examination of the field as it is today with an eye toward future trends and gaps in the literature.…

  3. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Maximizing direct current power delivery from bistable vibration energy harvesting beams subjected to realistic base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2017-04-01

    Effective development of vibration energy harvesters is required to convert ambient kinetic energy into useful electrical energy as power supply for sensors, for example in structural health monitoring applications. Energy harvesting structures exhibiting bistable nonlinearities have previously been shown to generate large alternating current (AC) power when excited so as to undergo snap-through responses between stable equilibria. Yet, most microelectronics in sensors require rectified voltages and hence direct current (DC) power. While researchers have studied DC power generation from bistable energy harvesters subjected to harmonic excitations, there remain important questions as to the promise of such harvester platforms when the excitations are more realistic and include both harmonic and random components. To close this knowledge gap, this research computationally and experimentally studies the DC power delivery from bistable energy harvesters subjected to such realistic excitation combinations as those found in practice. Based on the results, it is found that the ability for bistable energy harvesters to generate peak DC power is significantly reduced by introducing sufficient amount of stochastic excitations into an otherwise harmonic input. On the other hand, the elimination of a low amplitude, coexistent response regime by way of the additive noise promotes power delivery if the device was not originally excited to snap-through. The outcomes of this research indicate the necessity for comprehensive studies about the sensitivities of DC power generation from bistable energy harvester to practical excitation scenarios prior to their optimal deployment in applications.

  5. Treating Alopecia Areata: Current Practices Versus New Directions.

    Science.gov (United States)

    Gupta, Aditya K; Carviel, Jessie; Abramovits, William

    2017-02-01

    Alopecia areata (AA) is non-scarring hair loss resulting from an autoimmune disorder. Severity varies from patchy hair loss that often spontaneously resolves to severe and chronic cases that can progress to total loss of scalp and body hair. Many treatments are available; however, the efficacy of these treatments has not been confirmed, especially in severe cases, and relapse rates are high. First-line treatment often includes corticosteroids such as intralesional or topical steroids for mild cases and systemic steroids or topical immunotherapy with diphenylcyclopropenone or squaric acid dibutylester in severe cases. Minoxidil and bimatoprost may also be recommended, usually in combination with another treatment. Ongoing research and new insights into mechanisms have led to proposals of innovative therapies. New directions include biologics targeting immune response as well as lasers and autologous platelet-rich plasma therapy. Preliminary data are encouraging, and it is hoped this research will translate into new options for the treatment of AA in the near future.

  6. The Development and Current State of Translation Process Research

    DEFF Research Database (Denmark)

    Lykke Jakobsen, Arnt

    2014-01-01

    The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer to a spe...... itself, into regions like cognitive psychology, psycho- and neurolinguistics, and neuroscience, where the interest in what goes on in our heads is also very strong.......The development and current state of translation process research ch Arnt Lykke Jakobsen Copenhagen Business School lInterest in process-oriented translation studies has been intense for the past almost half a century. Translation process research (TPR) is the label we have used to refer...... which simultaneously tracks the translator’s eye movements across a screen displaying both a source text and the translator’s emerging translation. This research method was developed as a means of qualifying and strengthening translation process hypotheses based on verbal reports by providing additional...

  7. Future directions in international financial integration research - A crowdsourced perspective

    OpenAIRE

    Lucey, B.M.; Vigne, S.A.; Ballester, L.; Barbopoulos, L.; Brzeszczynski, J.; Carchano, O.; Dimic, N.; Fernandez, V.; Gogolin, F.; González-Urteaga, A.; Goodell, J.W.; Helbing, P.; Ichev, R.; Kearney, F.; Laing, E.

    2018-01-01

    This paper is the result of a crowdsourced effort to surface perspectives on the present and future direction of international finance. The authors are researchers in financial economics who attended the INFINITI 2017 conference in the University of Valencia in June 2017 and who participated in the crowdsourcing via the Overleaf platform. This paper highlights the actual state of scientific knowledge in a multitude of fields in finance and proposes different directions for future research.

  8. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions.

    Science.gov (United States)

    Kao, Cheng-Kai; Liebovitz, David M

    2017-05-01

    This paper discusses the current state, barriers, and future directions of consumer-facing applications (apps). There are currently more than 165,000 mobile health apps publicly available in major app stores, the vast majority of which are designed for patients. The top 2 categories are wellness management and disease management apps, whereas other categories include self-diagnosis, medication reminder, and electronic patient portal apps. Apps specific to physical medicine and rehabilitation also are reviewed. These apps have the potential to provide low-cost, around-the-clock access to high-quality, evidence-based health information to end users on a global scale. However, they have not yet lived up to their potential due to multiple barriers, including lack of regulatory oversight, limited evidence-based literature, and concerns of privacy and security. The future directions may consist of improving data integration into the health care system, an interoperable app platform allowing access to electronic health record data, cloud-based personal health record across health care networks, and increasing app prescription by health care providers. For consumer mobile health apps to fully contribute value to health care delivery and chronic disease management, all stakeholders within the ecosystem must collaborate to overcome the significant barriers. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Sustainable supply chain management: current debate and future directions

    Directory of Open Access Journals (Sweden)

    Bruno Silvestre

    Full Text Available Abstract This paper is a research brief on sustainable supply chain management and covers some of the key elements of literature’s past debate and trends for future directions. It highlights the growth of this research area and reinforces the importance of a full consideration of all three key dimensions of sustainability when managing sustainable supply chains, i.e., the financial, environmental and social dimensions. Therefore, supply chain decision makers need to unequivocally assess the impact of their decisions on the financial, environmental and social performances of their supply chains. This paper also argues that risks and opportunities are the key drivers for supply chain decision makers to adopt sustainability within their operations, and that barriers to sustainability adoption exist. This research highlights that, depending on the focus adopted, supply chains can evolve and shift from more traditional to more sustainable approaches over time. The paper concludes with some promising avenues for future investigation.

  10. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  11. Research directions in computer engineering. Report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H

    1982-09-01

    The results of a workshop held in November 1981 in Washington, DC, to outline research directions for computer engineering are reported upon. The purpose of the workshop was to provide guidance to government research funding agencies, as well as to universities and industry, as to the directions which computer engineering research should take for the next five to ten years. A select group of computer engineers was assembled, drawn from all over the United States and with expertise in virtually every aspect of today's computer technology. Industrial organisations and universities were represented in roughly equal numbers. The panel proceeded to provide a sharper definition of computer engineering than had been in popular use previously, to identify the social and national needs which provide the basis for encouraging research, to probe for obstacles to research and seek means of overcoming them and to delineate high-priority areas in which computer engineering research should be fostered. These included experimental software engineering, architectures in support of programming style, computer graphics, pattern recognition. VLSI design tools, machine intelligence, programmable automation, architectures for speech and signal processing, computer architecture and robotics. 13 references.

  12. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  13. Development of an intelligent high-voltage direct-current power supply for nuclear detectors

    International Nuclear Information System (INIS)

    Zhao Xiuliang

    1997-01-01

    The operation and performances of a new type direct-current high-voltage power supply are described. The power supply with intelligent feature is controlled by a single-chip microcomputer (8031), and various kinds of output voltage can be preset. The output-voltage is monitored and regulated by the single-chip microcomputer and displayed by LED. The output voltage is stable when the load current is within the allowable limits

  14. New Directions of Research in Molecules and Materials

    Indian Academy of Sciences (India)

    Wintec

    New Directions of Research in Molecules and Materials. Foreword. 'Materials' has ... Solution phase chemistry is a central aspect of materials as demonstrated by. Panchakarla and ... Changes at the atomic scale affect bulk properties such as ...

  15. EPA Current Research on Cyanotoxins in Fish Tissue

    Science.gov (United States)

    This is a presentation regarding research into the recovery of microcystins from fish tissue. The potential bioaccumulation of toxins is of potential health both because of the direct risk of consumption and the potential for bioaccumulation of toxins. This is a short presentatio...

  16. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    Science.gov (United States)

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Current status and future directions of Lévy walk research

    Science.gov (United States)

    2018-01-01

    ABSTRACT Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) – the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. PMID:29326297

  18. Artificial intelligence and design: Opportunities, research problems and directions

    Science.gov (United States)

    Amarel, Saul

    1990-01-01

    that are of intrinsic concern to AI. We present examples of current AI work on specific design tasks, and discuss new directions of research, both as extensions of current work and in the context of new design tasks where domain knowledge is either intractable or incomplete. The domains discussed include Digital Circuit Design, Mechanical Design of Rotational Transmissions, Design of Computer Architectures, Marine Design, Aircraft Design, and Design of Chemical Processes and Materials. Work in these domains is significant on technical grounds, and it is also important for economic and policy reasons.

  19. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  20. Energy efficient direct current distribution in commercially used buildings with smart power link to the AC distribution grid; Energieeffiziente Gleichstromverteilung in kommerziell genutzten Gebaeuden mit intelligenter Kopplung zum Niederspannungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Roland [Siemens AG, Erlangen (Germany); Boeke, Ulrich [Philips Group Innovation-Research, Eindhoven (Netherlands); Maurer, Wilhelm [Infineon Technologies AG, Neubiberg (Germany); Zeltner, Stefan [Fraunhofer-Inst. fuer Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen (Germany)

    2012-07-01

    The joint undertaking ''Direct Current Components and Grid'' (DCC+G) takes on the strategic challenge to reduce energy consumption and thus the reduction of CO{sub 2} emission caused by commercially used buildings through research in the fields of Direct Current distribution at a voltage level of {+-} 380 V. The major energy consumers in commercially used buildings, ready for the ''net-zero-energy'' goal of the European Union, are heat pumps for heating, ventilation systems, air conditioning units, cooling units (HVAC), lighting systems and information technology. All these components and subsystems have in common, that the most efficient versions would benefit from a direct current supply. Additionally the local producers of electric energy like photovoltaic systems usually generate DC-current. A Direct Current distribution grid within buildings would avoid the repeating conversion from DC and AC an vice versa and therefore reduce conversion losses. Important components of a direct current distribution grid are central, smart, high efficient, bidirectional rectifiers replacing the large number of small, less efficient rectifiers used today. Such large central rectifiers units could additionally be used to actively improve the power quality of the smart local AC distribution grid. One major part of the described activities is to show energy savings of about 5 % of electrical energy with a 2-phase direct current distribution grid using a voltage level of {+-} 380 V. (orig.)

  1. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  2. Polarity Specific Suppression Effects of Transcranial Direct Current Stimulation for Tinnitus

    Directory of Open Access Journals (Sweden)

    Kathleen Joos

    2014-01-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external auditory stimulus and affects 10–15% of the Western population. Previous studies have demonstrated the therapeutic effect of anodal transcranial direct current stimulation (tDCS over the left auditory cortex on tinnitus loudness, but the effect of this presumed excitatory stimulation contradicts with the underlying pathophysiological model of tinnitus. Therefore, we included 175 patients with chronic tinnitus to study polarity specific effects of a single tDCS session over the auditory cortex (39 anodal, 136 cathodal. To assess the effect of treatment, we used the numeric rating scale for tinnitus loudness and annoyance. Statistical analysis demonstrated a significant main effect for tinnitus loudness and annoyance, but for tinnitus annoyance anodal stimulation has a significantly more pronounced effect than cathodal stimulation. We hypothesize that the suppressive effect of tDCS on tinnitus loudness may be attributed to a disrupting effect of ongoing neural hyperactivity, independent of the inhibitory or excitatory effects and that the reduction of annoyance may be induced by influencing adjacent or functionally connected brain areas involved in the tinnitus related distress network. Further research is required to explain why only anodal stimulation has a suppressive effect on tinnitus annoyance.

  3. Current status and future directions of development of PR/PP evaluation methodology

    International Nuclear Information System (INIS)

    Kim, D. Y.; Kwon, E. H.; Kim, H. D.

    2012-01-01

    A mandatory design requirement for the introduction of generation IV nuclear energy systems (NESs) is defined as the characteristic of a nuclear energy system that impedes the diversion or undeclared production of nuclear material, or misuse of technology, by State in order to acquire nuclear weapons or other nuclear explosive devices. The same report also defines physical protection (PP) as the use of technical, administrative, and operational measures to prevent the theft of nuclear/radioactive material for the purpose of producing nuclear weapons, producing nuclear devices for nuclear terrorism, or using the facility or transportation system for radiological sabotage. Since the early 1970s right after the Indian nuclear test, the international community has recognized the limits of political and diplomatic means to prevent overt proliferation by states and looked for ways to incorporate technical features that are inherent in NESs. As a first step, active research has been conducted to develop a methodology to evaluate PR and PP components of NESs and has now been reduced to two main R and D streams: the Generation IV International Forum (GIF) and International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). (Currently, GIF and INPRO are leading the debate as major projects for PR and PP evaluation methods.) This paper presents an overview of the R and D accomplishments during the development of PR and PP evaluation methodology. It also suggests some directions for future research

  4. Current status and future directions of development of PR/PP evaluation methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. Y.; Kwon, E. H.; Kim, H. D. [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    A mandatory design requirement for the introduction of generation IV nuclear energy systems (NESs) is defined as the characteristic of a nuclear energy system that impedes the diversion or undeclared production of nuclear material, or misuse of technology, by State in order to acquire nuclear weapons or other nuclear explosive devices. The same report also defines physical protection (PP) as the use of technical, administrative, and operational measures to prevent the theft of nuclear/radioactive material for the purpose of producing nuclear weapons, producing nuclear devices for nuclear terrorism, or using the facility or transportation system for radiological sabotage. Since the early 1970s right after the Indian nuclear test, the international community has recognized the limits of political and diplomatic means to prevent overt proliferation by states and looked for ways to incorporate technical features that are inherent in NESs. As a first step, active research has been conducted to develop a methodology to evaluate PR and PP components of NESs and has now been reduced to two main R and D streams: the Generation IV International Forum (GIF) and International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). (Currently, GIF and INPRO are leading the debate as major projects for PR and PP evaluation methods.) This paper presents an overview of the R and D accomplishments during the development of PR and PP evaluation methodology. It also suggests some directions for future research.

  5. Effectiveness of direct-current cardioversion for treatment of supraventricular tachyarrhythmias, in particular atrial fibrillation, in surgical intensive care patients.

    Science.gov (United States)

    Mayr, Andreas; Ritsch, Nicole; Knotzer, Hans; Dünser, Martin; Schobersberger, Wolfgang; Ulmer, Hanno; Mutz, Norbert; Hasibeder, Walter

    2003-02-01

    To evaluate primary success rate and effectiveness of direct-current cardioversion in postoperative critically ill patients with new-onset supraventricular tachyarrhythmias. Prospective intervention study. Twelve-bed surgical intensive care unit in a university teaching hospital. Thirty-seven consecutive, adult surgical intensive care unit patients with new-onset supraventricular tachyarrhythmias without previous history of tachyarrhythmias. Direct-current cardioversion using a monophasic, damped sinus-wave defibrillator. Energy levels used were 50, 100, 200, and 300 J for regular supraventricular tachyarrhythmias (n = 6) and 100, 200, and 360 J for irregular supraventricular tachyarrhythmias (n = 31). None of the patients was hypoxic, hypokalemic, or hypomagnesemic at onset of supraventricular tachyarrhythmia. Direct-current cardioversion restored sinus rhythm in 13 of 37 patients (35% primary responders). Most patients responded to the first or second direct-current cardioversion shock. Only one of 25 patients requiring more than two direct-current cardioversion shocks converted into sinus rhythm. Primary responders were significantly younger and demonstrated significant differences in arterial Po2 values at onset of supraventricular tachyarrhythmias compared with nonresponders. At 24 and 48 hrs, only six (16%) and five (13.5%) patients remained in sinus rhythm, respectively. In contrast to recent literature, direct-current cardioversion proved to be an ineffective method for treatment of new-onset supraventricular tachyarrhythmias and, in particular, atrial fibrillation with a rapid ventricular response in surgical intensive care unit patients.

  6. ABSTRACT——Current Situation and Future Direction of Marxism Popularity Research

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In recent years, academic circles has made important progress in the following studies on the basic connotation of Marxist popularity, the relations between popularity of Marxism and sinicization, the relations between popularity of Marxism and epochal character, the realizing method of popularity of Marxism. Next, study on popularization of Marxism has to make efforts in the following two aspects: the relationship between the popularity of Marxism and socialist theory system with Chinese characteris- tics, and integration of the popularity of Marxism and the ideological and political education. Meanwhile the efforts should be made to deepen the study of Marxism popularity through the process of sinicization of Marxism, to study Marxism popularity from the viewpoint of the three dimensional perspective of the development of Marxism, also to strengthen the research of basic princi- ples of Marxism popularity and deepen the studies of basic forms of Marxism popularity, thus to build a study system of Marxism popularity.

  7. Design of all-optical, hot-electron current-direction-switching device based on geometrical asymmetry.

    Science.gov (United States)

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-02-18

    We propose a nano-scale current-direction-switching device(CDSD) that operates based on the novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic nanostructures. The proposed device is easy to fabricate and economical to develop compared to most other existing designs. It also has the ability to function without external wiring in nano or molecular circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such as geometric difference between the two nanorods, their volumes and the barrier width on quality parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, positive to negative current ratio, and the energy conversion efficiency is discussed by considering a device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and sensors.

  8. A self-discharge model of Lithium-Sulfur batteries based on direct shuttle current measurement

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    . A simple but comprehensive mathematical model of the Li-S battery cell self-discharge based on the shuttle current was developed and is presented. The shuttle current values for the model parameterization were obtained from the direct shuttle current measurements. Furthermore, the battery cell depth......-of-discharge values were recomputed in order to account for the influence of the self-discharge and provide a higher accuracy of the model. Finally, the derived model was successfully validated against laboratory experiments at various conditions....

  9. A method for crack profiles identification in eddy current testing by the multi-directional scan

    International Nuclear Information System (INIS)

    Kojima, Fumio; Ikeda, Takuya; Nguyen, Doung

    2006-01-01

    This paper is concerned with a method for identification of crack shape in conducting materials. Multi-directional scanning strategies using Eddy Current Testing is performed for sizing complex natural crackings. Two dimensional measurements by means of multi-directional scan are used in a output least square identifications. (author)

  10. Priority research directions in the area of qualitative methodology

    OpenAIRE

    Melnikova, Olga; Khoroshilov, Dmitry

    2010-01-01

    The basic directions of modern theoretical and practical research in the area of qualitative methodology in Russia are discussed in the article. The complexity of research is considered from three points of view: the development of methodology of qualitative analysis, qualitative methods, and verbal and nonverbal projective techniques. The authors present an integrative model of the qualitative analysis, the research on specificity of the use of discourse-analysis method and projective techni...

  11. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  12. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  13. Effects of neglecting carrier tunneling on electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs

    OpenAIRE

    Hakim, MMA; Haque, A

    2002-01-01

    We investigate the validity of the assumption of neglecting carrier tunneling effects on self-consistent electrostatic potential in calculating direct tunneling gate current in deep submicron MOSFETs. Comparison between simulated and experimental results shows that for accurate modeling of direct tunneling current, tunneling effects on potential profile need to be considered. The relative error in gate current due to neglecting carrier tunneling is higher at higher gate voltages and increases...

  14. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  15. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  16. Nevada Test Site-Directed Research, Development, and Demonstration

    International Nuclear Information System (INIS)

    Will Lewis, Compiler

    2006-01-01

    The Nevada Test Site-Directed Research, Development, and Demonstration (SDRD) program completed a very successful year of research and development activities in FY 2005. Fifty new projects were selected for funding this year, and five FY 2004 projects were brought to conclusion. The total funds expended by the SDRD program were $5.4 million, for an average per project cost of just under $100,000. Two external audits of SDRD accounting practices were conducted in FY 2005. Both audits found the program's accounting practices consistent with the requirements of DOE Order 413.2A, and one included the observation that the NTS contractor ''did an exceptional job in planning and executing year-start activities.'' Highlights for the year included: the filing of 18 invention disclosures for intellectual property generated by FY 2005 projects; programmatic adoption of 17 FY 2004 SDRD-developed technologies; participation in the tri-lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2005 projects; and the successful completion of 55 R and D projects, as presented in this report

  17. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    Science.gov (United States)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  18. Current and Emerging Directions in the Treatment of Eating Disorders

    Directory of Open Access Journals (Sweden)

    Tiffany A. Brown

    2012-01-01

    Full Text Available Eating disorders are a significant source of psychiatric morbidity in young women and demonstrate high comorbidity with mood, anxiety, and substance use disorders. Thus, clinicians may encounter eating disorders in the context of treating other conditions. This review summarizes the efficacy of current and emerging treatments for anorexia nervosa (AN, bulimia nervosa (BN, and binge eating disorder (BED. Treatment trials were identified using electronic and manual searches and by reviewing abstracts from conference proceedings. Family based therapy has demonstrated superiority for adolescents with AN but no treatment has established superiority for adults. For BN, both 60 mg fluoxetine and cognitive behavioral therapy (CBT have well-established efficacy. For BED, selective serotonin reuptake inhibitors, CBT, and interpersonal psychotherapy have demonstrated efficacy. Emerging directions for AN include investigation of the antipsychotic olanzapine and several novel psychosocial treatments. Future directions for BN and BED include increasing CBT disseminability, targeting affect regulation, and individualized stepped-care approaches.

  19. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  20. The Philippine historical earthquakecatalog: its development, current stateand future directions

    Directory of Open Access Journals (Sweden)

    B. C. Bautista

    2004-06-01

    Full Text Available This report will trace the development of the historical earthquake catalog of the Philippines, assess its present state and recommend future research directions. The current Philippine historical earthquake catalog is culled from various catalogs, both global and local, that were developed since the first Philippine catalog by Perrey was published in 1860. While early global catalogs gave simple mention of earthquakes in the Philippines, more focused earthquake catalogs about the Philippines gave more explicit descriptions of earthquake accounts and adopted descriptions by local historians. Over the years, various historians and seismologists continued to compile their catalogs whose contents depended on the author?s perspectives and purposes. These works varied from simple listings to others including detailed descriptions. It was only recently that an attempt made to parameterize the magnitudes and epicenters of Philippine historical earthquakes using magnitude-felt area relations was done. A more detailed catalog, however, is now underway that will show details of intensity distribution for each significant historical earthquake. By comparing the historical catalog with the recent catalog and assuming that the recent catalog is complete, we find that there are still a substantial amount of historical earthquakes that needs to be reviewed and located. Possible sources of new information are local libraries, museums and archives in the Philippines, Spain and other Southeast Asian countries to which the country was in contact with during historical times.

  1. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    NARCIS (Netherlands)

    Hanken, K.; Bosse, M.; Möhrke, K.; Eling, P.A.T.M.; Kastrup, A.; Antal, A.; Hildebrandt, H.

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation

  2. On-Line Monitoring of Environment-Assisted Cracking in Nuclear Piping Using Array Probe Direct Current Potential Drop

    OpenAIRE

    Kim, Y.; Choi, S.; Yoon, J. Y.; Nam, W. C.; Hwang, I. S.; Bromberg, Leslie; Stahle, Peter W; Ballinger, Ronald G

    2015-01-01

    A direct current potential drop method utilizing array probes with measurement ends maintaining an equalized potential designated as equi-potential switching array probe direct current potential drop (ESAP-DCPD) technique has been developed earlier at Seoul National University. This paper validates ESAP-DCPD technique by showing consistency among experimental measurements, analytical solution and numerical predictions using finite element analysis (FEA) of electric field changes with crack gr...

  3. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping

    Science.gov (United States)

    Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.

    2018-01-01

    Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.

  4. Research on the Direct Carbon Emission Forecast of CHINA'S Provincial Residents Based on Neural Network

    Science.gov (United States)

    Zhang, T.; Zhou, B.; Zhou, S.; Yan, W.

    2018-04-01

    Global climate change, which mainly effected by human carbon emissions, would affect the regional economic, natural ecological environment, social development and food security in the near future. It's particularly important to make accurate predictions of carbon emissions based on current carbon emissions. This paper accounted out the direct consumption of carbon emissions data from 1995 to 2014 about 30 provinces (the data of Tibet, Hong Kong, Macao and Taiwan is missing) and the whole of China. And it selected the optimal models from BP, RBF and Elman neural network for direct carbon emission prediction, what aim was to select the optimal prediction method and explore the possibility of reaching the peak of residents direct carbon emissions of China in 2030. Research shows that: 1) Residents' direct carbon emissions per capita of all provinces showed an upward trend in 20 years. 2) The accuracy of the prediction results by Elman neural network model is higher than others and more suitable for carbon emission data projections. 3) With the situation of residents' direct carbon emissions free development, the direct carbon emissions will show a fast to slow upward trend in the next few years and began to flatten after 2020, and the direct carbon emissions of per capita will reach the peak in 2032. This is also confirmed that China is expected to reach its peak in carbon emissions by 2030 in theory.

  5. A Comparison of Alternating Current and Direct Current Electrospray Ionization for Mass Spectrometry

    Science.gov (United States)

    Sarver, Scott A.; Chetwani, Nishant; Dovichi, Norman J.; Go, David B.; Gartner, Carlos A.

    2014-04-01

    A series of studies comparing the performance of alternating current electrospray ionization (AC ESI) mass spectrometry (MS) and direct current electrospray ionization (DC ESI) MS have been conducted, exploring the absolute signal intensity and signal-to-background ratios produced by both methods using caffeine and a model peptide as targets. Because the high-voltage AC signal was more susceptible to generating gas discharges, the operating voltage range of AC ESI was significantly smaller than that for DC ESI, such that the absolute signal intensities produced by DC ESI at peak voltages were one to two orders of magnitude greater than those for AC ESI. Using an electronegative nebulizing gas, sulfur hexafluoride (SF6), instead of nitrogen (N2) increased the operating range of AC ESI by ~50 %, but did not appreciably improve signal intensities. While DC ESI generated far greater signal intensities, both ionization methods produced comparable signal-to-background noise, with AC ESI spectra appearing qualitatively cleaner. A quantitative calibration analysis was performed for two analytes, caffeine and the peptide MRFA. AC ESI utilizing SF6 outperforms all other techniques for the detection of MRFA, producing chromatographic limits of detection nearly one order of magnitude lower than that of DC ESI utilizing N2, and one-half that of DC ESI utilizing SF6. However, DC ESI outperforms AC ESI for the analysis of caffeine, indicating that improvements in spectral quality may benefit certain compounds or classes of compounds, on an individual basis.

  6. Comparative studies of high-frequency and direct current molecular gas discharges

    International Nuclear Information System (INIS)

    Goichman, V.H.; Goldfarb, V.M.; Tendler, M.B.

    1975-01-01

    Electron gas parameters, gas temperatures, ionization and thermal instability are found to be markedly different in direct current glow discharges from capactive electrodless high frequency discharge even when equal net power input is provided. It is reasonable to expect that the combined discharge containing both types of discharges mentioned above may be expected to improve significantly both the steady-state and transient characteristics of the plasma. The characteristics of different discharges in air, nitrogen air-CO 2 -He mixture have been compared. Because of the lack of the direct electrical methods for measurements of the hf plasma, exphasis in this investigation has been laid on both theoretical) based on the analytical expression for electron energy distribution function received previously and experimental spectroscopic evaluations of the plasma parameters. (Auth.)

  7. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines

    Directory of Open Access Journals (Sweden)

    Kai-Wern Ng

    2013-03-01

    Full Text Available Research in marine current energy, including tidal and ocean currents, has undergone significant growth in the past decade. The horizontal-axis marine current turbine is one of the machines used to harness marine current energy, which appears to be the most technologically and economically viable one at this stage. A number of large-scale marine current turbines rated at more than 1 MW have been deployed around the World. Parallel to the development of industry, academic research on horizontal-axis marine current turbines has also shown positive growth. This paper reviews previous research on horizontal-axis marine current turbines and provides a concise overview for future researchers who might be interested in horizontal-axis marine current turbines. The review covers several main aspects, such as: energy assessment, turbine design, wakes, generators, novel modifications and environmental impact. Future trends for research on horizontal-axis marine current turbines are also discussed.

  8. Mapping geological structures in bedrock via large-scale direct current resistivity and time-domain induced polarization tomography

    DEFF Research Database (Denmark)

    Rossi, Matteo; Olsson, Per-Ivar; Johansson, Sara

    2017-01-01

    -current resistivity distribution of the subsoil and the phase of the complex conductivity using a constant-phase angle model. The joint interpretation of electrical resistivity and induced-polarization models leads to a better understanding of complex three-dimensional subsoil geometries. The results have been......An investigation of geological conditions is always a key point for planning infrastructure constructions. Bedrock surface and rock quality must be estimated carefully in the designing process of infrastructures. A large direct-current resistivity and time-domain induced-polarization survey has......, there are northwest-trending Permian dolerite dykes that are less deformed. Four 2D direct-current resistivity and time-domain induced-polarization profiles of about 1-km length have been carefully pre-processed to retrieve time-domain induced polarization responses and inverted to obtain the direct...

  9. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  10. Online effects of transcranial direct current stimulation on prefrontal metabolites in gambling disorder.

    Science.gov (United States)

    Dickler, Maya; Lenglos, Christophe; Renauld, Emmanuelle; Ferland, Francine; Edden, Richard A; Leblond, Jean; Fecteau, Shirley

    2018-03-15

    Gambling disorder is characterized by persistent maladaptive gambling behaviors and is now considered among substance-related and addictive disorders. There is still unmet therapeutic need for these clinical populations, however recent advances indicate that interventions targeting the Glutamatergic/GABAergic system hold promise in reducing symptoms in substance-related and addictive disorders, including gambling disorder. There is some data indicating that transcranial direct current stimulation may hold clinical benefits in substance use disorders and modulate levels of brain metabolites including glutamate and GABA. The goal of the present work was to test whether this non-invasive neurostimulation method modulates key metabolites in gambling disorder. We conducted a sham-controlled, crossover, randomized study, blinded at two levels in order to characterize the effects of transcranial direct current stimulation over the dorsolateral prefrontal cortex on neural metabolites levels in sixteen patients with gambling disorder. Metabolite levels were measured with magnetic resonance spectroscopy from the right dorsolateral prefrontal cortex and the right striatum during active and sham stimulation. Active as compared to sham stimulation elevated prefrontal GABA levels. There were no significant changes between stimulation conditions in prefrontal glutamate + glutamine and N-acetyl Aspartate, or in striatal metabolite levels. Results also indicated positive correlations between metabolite levels during active, but not sham, stimulation and levels of risk taking, impulsivity and craving. Our findings suggest that transcranial direct current stimulation can modulate GABA levels in patients with gambling disorder which may represent an interesting future therapeutic avenue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  12. Early Childhood Inclusion in the United States: Goals, Current Status, and Future Directions

    Science.gov (United States)

    Guralnick, Michael J.; Bruder, Mary Beth

    2016-01-01

    The current status and future directions of early childhood inclusion in the United States are discussed from the perspective of 4 key goals: access, accommodations and feasibility, developmental progress, and social integration. Recommendations are put forward to promote inclusion goals emphasizing administrative structures, personnel…

  13. Current in the plasma moving in an arbitrary direction across a magnetic field

    International Nuclear Information System (INIS)

    Samokhin, M.V.

    1991-01-01

    Condition under which freezing-in equation is satisfied in case of arbitrarily changeable direction of rate of plasma flow across the magnetic field is considered. It is shown that in the ideally frozen-in plasma there should exist current independent on the flow rate

  14. Research Directions for Cyber Experimentation: Workshop Discussion Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    DeWaard, Elizabeth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deccio, Casey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fritz, David Jakob [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tarman, Thomas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sandia National Laboratories hosted a workshop on August 11, 2017 entitled "Research Directions for Cyber Experimentation," which focused on identifying and addressing research gaps within the field of cyber experimentation , particularly emulation testbeds . This report mainly documents the discussion toward the end of the workshop, which included research gaps such as developing a sustainable research infrastructure, exp anding cyber experimentation, and making the field more accessible to subject matter experts who may not have a background in computer science . Other gaps include methodologies for rigorous experimentation, validation, and uncertainty quantification, which , if addressed, also have the potential to bridge the gap between cyber experimentation and cyber engineering. Workshop attendees presented various ways to overcome these research gaps, however the main conclusion for overcoming these gaps is better commun ication through increased workshops, conferences, email lists, and slack chann els, among other opportunities.

  15. Adolescent suicide prevention. Current research and social policy implications.

    Science.gov (United States)

    Garland, A F; Zigler, E

    1993-02-01

    The rate of adolescent suicide has increased dramatically in the past few decades, prompting several interventions to curb the increase. Unfortunately, many of the intervention efforts have not benefited from current research findings because the communication between researchers and those who develop the interventions is inadequate. Of specific concern are the increasingly popular curriculum-based suicide prevention programs, which have not demonstrated effectiveness and may contain potentially deleterious components. This article reviews the current epidemiological research in adolescent suicide and suggests how this knowledge could be used more effectively to reduce the rate of adolescent suicide. Recommendations include support for integrated primary prevention efforts; suicide prevention education for professionals; education and policies on firearm management; education for the media about adolescent suicide; more efficient identification and treatment of at-risk youth, including those exposed to suicidal behavior; crisis intervention; and treatment for suicide attempters.

  16. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  17. Current and Future Research at DANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Hayes, A.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Walker, C. L.; Wilhelmy, J. B.

    2015-05-01

    An overview of the current experimental program on measurements of neutron capture and neutron induced fission at the Detector for Advanced Neutron Capture Experiments (DANCE) is presented. Three major projects are currently under way: 1) high precision measurements of neutron capture cross sections on Uranium isotopes, 2) research aimed at studies of the short-lived actinide isomer production in neutron capture on 235U and 3) measurements of correlated data of fission observables. New projects include developments of auxiliary detectors to improve the capability of DANCE. We are building a compact, segmented NEUtron detector Array at DANCE (NEUANCE), which will be installed in the central cavity of the DANCE array. It will provide experimental information on prompt fission neutrons in coincidence with the prompt fission gamma-rays measured by 160 BaF2 crystals of DANCE. Unique correlated data will be obtained for neutron capture and neutron-induced fission using the DANCE-NEUANCE experimental set up in the future.

  18. Photocatalytic NO_x abatement. Theory, applications, current research, and limitations

    International Nuclear Information System (INIS)

    Bloh, Jonathan Z.

    2017-01-01

    Nitrogen oxides are one of the major air pollutants that threaten our air quality and health. As a consequence, increasingly stricter regulations are in place forcing action to reduce the concentration of these dangerous compounds. Conventional methods of reducing the NO_x pollution level are reducing the emission directly at the source or restrictive measures such as low emission zones. However, there are recent reports questioning the efficacy of the strategy to reduce ambient NO_x levels solely by reducing their emissions and existing threshold values are still frequently exceeded in many European cities. Semiconductor photocatalysis presents an appealing alternative capable of removing NO_x and other air pollutants from the air once they have already been released and dispersed. Recent field tests have shown that a reduction of a few percent in NO_x values is possible with available photocatalysts. Current research focuses on further increasing the catalysts' efficacy as well as their selectivity to suppress the formation of undesired by-products. Especially using these improved materials, photocatalytic NO_x abatement could prove a very valuable contributor to better air quality.

  19. Mindfulness Meditation Training for Attention-Deficit/Hyperactivity Disorder in Adulthood: Current Empirical Support, Treatment Overview, and Future Directions

    Science.gov (United States)

    Mitchell, John T.; Zylowska, Lidia; Kollins, Scott H.

    2015-01-01

    Research examining nonpharmacological interventions for adults diagnosed with attention-deficit/hyperactivity disorder (ADHD) has expanded in recent years and provides patients with more treatment options. Mindfulness-based training is an example of an intervention that is gaining promising preliminary empirical support and is increasingly administered in clinical settings. The aim of this review is to provide a rationale for the application of mindfulness to individuals diagnosed with ADHD, describe the current state of the empirical basis for mindfulness training in ADHD, and summarize a treatment approach specific to adults diagnosed with ADHD: the Mindful Awareness Practices (MAPs) for ADHD Program. Two case study examples are provided to demonstrate relevant clinical issues for practitioners interested in this approach. Directions for future research, including mindfulness meditation as a standalone treatment and as a complementary approach to cognitive-behavioral therapy, are provided. PMID:25908900

  20. Age and impulsive behavior in drug addiction: A review of past research and future directions.

    Science.gov (United States)

    Argyriou, Evangelia; Um, Miji; Carron, Claire; Cyders, Melissa A

    2018-01-01

    Impulsive behavior is implicated in the initiation, maintenance, and relapse of drug-seeking behaviors involved in drug addiction. Research shows that changes in impulsive behavior across the lifespan contribute to drug use and addiction. The goal of this review is to examine existing research on the relationship between impulsive behavior and drug use across the lifespan and to recommend directions for future research. Three domains of impulsive behavior are explored in this review: impulsive behavior-related personality traits, delay discounting, and prepotent response inhibition. First, we present previous research on these three domains of impulsive behavior and drug use across developmental stages. Then, we discuss how changes in impulsive behavior across the lifespan are implicated in the progression of drug use and addiction. Finally, we discuss the relatively limited attention given to middle-to-older adults in the current literature, consider the validity of the measures used to assess impulsive behavior in middle-to-older adulthood, and suggest recommendations for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Comments on: “Transcranial Direct Current Stimulation for Obsessive-Compulsive Disorder: A Systematic Review”

    Directory of Open Access Journals (Sweden)

    Mohammad Alwardat

    2018-03-01

    Full Text Available Dear Editor, Brunelin et al. [1] recently conducted a systematic review that evaluated the effect of applied transcranial direct current stimulation (tDCS on patients with obsessive compulsive disorder (OCD.[...

  2. Sensorless optimal sinusoidal brushless direct current for hard disk drives

    Science.gov (United States)

    Soh, C. S.; Bi, C.

    2009-04-01

    Initiated by the availability of digital signal processors and emergence of new applications, market demands for permanent magnet synchronous motors have been surging. As its back-emf is sinusoidal, the drive current should also be sinusoidal for reducing the torque ripple. However, in applications like hard disk drives, brushless direct current (BLDC) drive is adopted instead of sinusoidal drive for simplification. The adoption, however, comes at the expense of increased harmonics, losses, torque pulsations, and acoustics. In this paper, we propose a sensorless optimal sinusoidal BLDC drive. First and foremost, the derivation for an optimal sinusoidal drive is presented, and a power angle control scheme is proposed to achieve an optimal sinusoidal BLDC. The scheme maintains linear relationship between the motor speed and drive voltage. In an attempt to execute the sensorless drive, an innovative power angle measurement scheme is devised, which takes advantage of the freewheeling diodes and measures the power angle through the detection of diode voltage drops. The objectives as laid out will be presented and discussed in this paper, supported by derivations, simulations, and experimental results. The proposed scheme is straightforward, brings about the benefits of sensorless sinusoidal drive, negates the need for current sensors by utilizing the freewheeling diodes, and does not incur additional cost.

  3. Current trends in chloroplast genome research | Khan | African ...

    African Journals Online (AJOL)

    comprise of DOGMA for annotation, SCAN-SE, ARAGON and PREP suit for RNA analyses and CG viewer for circular map construction/comparative analysis. Faster algorithms for gene-order based phylogenetic reconstruction and bootstrap analysis have attracted the attention of research community. Current trends in ...

  4. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  5. Safety and tolerability of transcranial direct current stimulation to stroke patients - A phase I current escalation study.

    Science.gov (United States)

    Chhatbar, Pratik Y; Chen, Rong; Deardorff, Rachael; Dellenbach, Blair; Kautz, Steven A; George, Mark S; Feng, Wuwei

    A prior meta-analysis revealed that higher doses of transcranial direct current stimulation (tDCS) have a better post-stroke upper-extremity motor recovery. While this finding suggests that currents greater than the typically used 2 mA may be more efficacious, the safety and tolerability of higher currents have not been assessed in stroke patients. We aim to assess the safety and tolerability of single session of up to 4 mA in stroke patients. We adapted a traditional 3 + 3 study design with a current escalation schedule of 1»2»2.5»3»3.5»4 mA for this tDCS safety study. We administered one 30-min session of bihemispheric montage tDCS and simultaneous customary occupational therapy to patients with first-ever ischemic stroke. We assessed safety with pre-defined stopping rules and investigated tolerability through a questionnaire. Additionally, we monitored body resistance and skin temperature in real-time at the electrode contact site. Eighteen patients completed the study. The current was escalated to 4 mA without meeting the pre-defined stopping rules or causing any major safety concern. 50% of patients experienced transient skin redness without injury. No rise in temperature (range 26°C-35 °C) was noted and skin barrier function remained intact (i.e. body resistance >1 kΩ). Our phase I safety study supports that single session of bihemispheric tDCS with current up to 4 mA is safe and tolerable in stroke patients. A phase II study to further test the safety and preliminary efficacy with multi-session tDCS at 4 mA (as compared with lower current and sham stimulation) is a logical next step. ClinicalTrials.gov Identifier: NCT02763826. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Overview of current radon and radon daughter research at LBL

    International Nuclear Information System (INIS)

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations

  7. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  8. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  9. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  10. Measurements of the large-scale direct-current Earth potential and possible implications for the geomagnetic dynamo.

    Science.gov (United States)

    1985-07-05

    The magnitude of the large-scale direct-current earth potential was measured on a section of a recently laid transatlantic telecommunications cable. Analysis of the data acquired on the 4476-kilometer cable yielded a mean direct-current potential drop of less than about 0.072 +/- 0.050 millivolts per kilometer. Interpreted in terms of a generation of the potential by the earth's geodynamo, such a small value of the mean potential implies that the toroidal and poloidal magnetic fields of the dynamo are approximately equal at the core-mantle boundary.

  11. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  12. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  13. Molecular ultrasound imaging: current status and future directions

    International Nuclear Information System (INIS)

    Deshpande, N.; Needles, A.; Willmann, J.K.

    2010-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionising irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of pre-clinical and clinical ultrasound systems, the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic.

  14. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  15. An Integrative Conceptual Framework of Disability: New Directions for Research.

    Science.gov (United States)

    Tate, Denise G.; Pledger, Constance

    2003-01-01

    Examines various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of people with disabilities. Recommends new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current…

  16. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  17. Book Review: Current Issues in International Human Resource Management and Strategy Research

    DEFF Research Database (Denmark)

    Gretzinger, Susanne

    2009-01-01

    The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer.......The article reviews the book "Current Issues in International Human Resource Management and Strategy Research," edited by Marion Festing and Susanne Royer....

  18. Integrating Theory, Research, and Practice in Vocational Psychology: Current Status and Future Directions

    Science.gov (United States)

    Sampson, James P., Jr., Ed.; Bullock-Yowell, Emily, Ed.; Dozier, V. Casey, Ed.; Osborn, Debra S., Ed.; Lenz, Janet G., Ed.

    2017-01-01

    This publication is based on the 2016 Society for Vocational Psychology (SVP) Biennial Conference, that was held at the Florida State University on May 16-17, 2016. The conference theme was "Integrating Theory, Research, and Practice in Vocational Psychology." The conference content and the resulting edited book are based on the…

  19. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  20. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  1. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  2. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  3. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  4. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  5. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  6. Boosting Cognition : Effects of Multiple-Session Transcranial Direct Current Stimulation on Working Memory

    NARCIS (Netherlands)

    Talsma, L.J.; Kroese, H.A.; Slagter, H.A.

    Transcranial direct current stimulation (tDCS) is a promising tool for neurocognitive enhancement. Several studies have shown that just a single session of tDCS over the left dorsolateral pFC (lDLPFC) can improve the core cognitive function of working memory (WM) in healthy adults. Yet, recent

  7. Effects of transcranial direct current stimulation for treating depression: A modeling study

    DEFF Research Database (Denmark)

    Csifcsák, Gábor; Boayue, Nya Mehnwolo; Puonti, Oula

    2018-01-01

    Background: Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been investiga......Background: Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been...... regions. We evaluated effects of seven bipolar and two multi-electrode 4 × 1 tDCS protocols. Results: For bipolar montages, EFs were of comparable strength in the lDLPFC and in the medial prefrontal cortex (MPFC). Depending on stimulation parameters, EF cortical maps varied to a considerable degree......, but were found to be similar in controls and patients. 4 × 1 montages produced more localized, albeit weaker effects. Limitations: White matter anisotropy was not modeled. The relationship between EF strength and clinical response to tDCS could not be evaluated. Conclusions: In addition to l...

  8. Direct current stimulation of the left temporoparietal junction modulates dynamic humor appreciation.

    Science.gov (United States)

    Slaby, Isabella; Holmes, Amanda; Moran, Joseph M; Eddy, Marianna D; Mahoney, Caroline R; Taylor, Holly A; Brunyé, Tad T

    2015-11-11

    The aim of this study was to evaluate the influence of transcranial direct current stimulation targeting the left temporoparietal junction (TPJ) on humor appreciation during a dynamic video rating task. In a within-participants design, we targeted the left TPJ with anodal, cathodal, or no transcranial direct current stimulation, centered at electrode site C3 using a 4×1 targeted stimulation montage. During stimulation, participants dynamically rated a series of six stand-up comedy videos for perceived humor. We measured event-related (time-locked to crowd laughter) modulation of humor ratings as a function of stimulation condition. Results showed decreases in rated humor during anodal (vs. cathodal or none) stimulation; this pattern was evident for the majority of videos and was only partially predicted by individual differences in humor style. We discuss the possibility that upregulation of neural circuits involved in the theory of mind and empathizing with others may reduce appreciation of aggressive humor. In conclusion, the present data show that neuromodulation of the TPJ can alter the mental processes underlying humor appreciation, suggesting critical involvement of this cortical region in detecting, comprehending, and appreciating humor.

  9. Practical and Ethical Aspects of Advance Research Directives for Research on Healthy Aging: German and Israeli Professionals' Perspectives.

    Science.gov (United States)

    Werner, Perla; Schicktanz, Silke

    2018-01-01

    Healthy aging is the development and maintenance of optimal cognitive, social and physical well-being, and function in older adults. Preventing or minimizing disease is one of the main ways of achieving healthy aging. Dementia is one of the most prevalent and life-changing diseases of old age. Thus, dementia prevention research is defined as one of the main priorities worldwide. However, conducting research with persons who lack the capacity to give consent is a major ethical issue. Our study attempts to explore if and how advance research directives (ARDs) may be used as a future tool to deal with the ethical and practical issues in dementia research. We conducted focus groups and in-depth interviews with German and Israeli professional stakeholders from the fields of gerontology, ethics, medical law, psychiatry, neurology and policy advice ( n  = 16), and analyzed the main topics discussed regarding cross-national similarities and controversies within the groups, as well as across the two national contexts. While both countries are in the midst of a developmental process and have recognized the importance and need for ARD as a tool for expanding healthy aging, Germany is in a more advanced stage than Israel because of the EU regulation process, which indicates the influence of international harmonization on these research-related ethical issues. Consensual themes within the qualitative material were identified: the need for a broader debate on ARD, the ethical importance of autonomy and risk-benefit assessment for ARD implementation, the role of the proxy and the need for the differentiation of types of dementia research. Controversies and dilemmas aroused around themes such as the current role of IRBs in each country, the need for limits, and how to guaranty safeguarding and control. Implementing a new tool is a step-by-step procedure requiring a thorough understanding of the current state of knowledge as well as of the challenges and hurdles ahead. As long

  10. Practical and Ethical Aspects of Advance Research Directives for Research on Healthy Aging: German and Israeli Professionals’ Perspectives

    Directory of Open Access Journals (Sweden)

    Perla Werner

    2018-04-01

    Full Text Available BackgroundHealthy aging is the development and maintenance of optimal cognitive, social and physical well-being, and function in older adults. Preventing or minimizing disease is one of the main ways of achieving healthy aging. Dementia is one of the most prevalent and life-changing diseases of old age. Thus, dementia prevention research is defined as one of the main priorities worldwide. However, conducting research with persons who lack the capacity to give consent is a major ethical issue.ObjectiveOur study attempts to explore if and how advance research directives (ARDs may be used as a future tool to deal with the ethical and practical issues in dementia research.MethodWe conducted focus groups and in-depth interviews with German and Israeli professional stakeholders from the fields of gerontology, ethics, medical law, psychiatry, neurology and policy advice (n = 16, and analyzed the main topics discussed regarding cross-national similarities and controversies within the groups, as well as across the two national contexts.ResultsWhile both countries are in the midst of a developmental process and have recognized the importance and need for ARD as a tool for expanding healthy aging, Germany is in a more advanced stage than Israel because of the EU regulation process, which indicates the influence of international harmonization on these research-related ethical issues. Consensual themes within the qualitative material were identified: the need for a broader debate on ARD, the ethical importance of autonomy and risk–benefit assessment for ARD implementation, the role of the proxy and the need for the differentiation of types of dementia research. Controversies and dilemmas aroused around themes such as the current role of IRBs in each country, the need for limits, and how to guaranty safeguarding and control.DiscussionImplementing a new tool is a step-by-step procedure requiring a thorough understanding of the current state of knowledge

  11. Human factors implications of vehicle automation: Current understanding and future directions

    NARCIS (Netherlands)

    Merat, N.; de Waard, Dick

    2014-01-01

    Advances in vehicle-based technology are currently progressing at an ever- increasing rate and innovations in this area are no longer restricted to Original Equipment Manufacturers or the automotive industry, with service providers such as Google and a number of research institutes in Europe and

  12. Preparing direct care nurses to function as research coordinators in a heart failure study.

    Science.gov (United States)

    Trocky, Nina M

    2017-09-19

    Nurses interviewed heart failure patients admitted to two rural hospitals, to learn what was important to them concerning their disease. Data from this study would inform a subsequent heart failure intervention study. The researchers gained a better appreciation of the role of direct care nurses in research coordination, recruitment and data collection. To describe lessons learned during this research about using direct care nurses as research coordinators. The direct care nurses were highly motivated and engaged in the research, identifying barriers and solutions to enrolling heart failure patients in the hospital. The researchers developed customised educational materials and data management documents to address the nurses' learning needs, ensuring compliance with protocol and the safety of participants. Nurse researchers can establish an effective partnership with direct care nurses when conducting research studies. To accommodate learning needs and workplace demands, securing protected time for nurses to complete training, budgeting for administrative support and monitoring recruitment data weekly, as opposed to monthly, may be considered. Direct care nurses can inform the design and conduct of research conducted in a hospital. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  13. Self-deformation in a direct current driven helium jet micro discharge

    International Nuclear Information System (INIS)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode

  14. Hybrid indirect/direct contactor for thermal management of counter-current processes

    Science.gov (United States)

    Hornbostel, Marc D.; Krishnan, Gopala N.; Sanjurjo, Angel

    2018-03-20

    The invention relates to contactors suitable for use, for example, in manufacturing and chemical refinement processes. In an aspect is a hybrid indirect/direct contactor for thermal management of counter-current processes, the contactor comprising a vertical reactor column, an array of interconnected heat transfer tubes within the reactor column, and a plurality of stream path diverters, wherein the tubes and diverters are configured to block all straight-line paths from the top to bottom ends of the reactor column.

  15. Self-deformation in a direct current driven helium jet micro discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks and Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  16. Self-deformation in a direct current driven helium jet micro discharge

    Science.gov (United States)

    Xu, S. F.; Zhong, X. X.

    2016-01-01

    We report on the experimental observation of three dimensional self-deformation in an atmospheric micro discharge of the helium microjet through a tube into the ambient air upon a water electrode. The geometry of the discharge system is axial symmetric. While decreasing the discharge current, three dimensional collective motion of plasma filaments is directly observed. The three dimensional configuration of the discharge self changed from an axial symmetrical horn to a rectangular horn when the water acts as a cathode.

  17. In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Science.gov (United States)

    Jog, Mayank V.; Smith, Robert X.; Jann, Kay; Dunn, Walter; Lafon, Belen; Truong, Dennis; Wu, Allan; Parra, Lucas; Bikson, Marom; Wang, Danny J. J.

    2016-10-01

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate in-vivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement.

  18. Effects of transcranial direct current stimulation for treating depression: A modeling study.

    Science.gov (United States)

    Csifcsák, Gábor; Boayue, Nya Mehnwolo; Puonti, Oula; Thielscher, Axel; Mittner, Matthias

    2018-07-01

    Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been investigated in a large sample including patient data. We used 38 head models created from structural magnetic resonance imaging data of 19 healthy adults and 19 MDD patients and applied computational modeling to simulate the spatial distribution of tDCS-induced electric fields (EFs) in 20 frontal regions. We evaluated effects of seven bipolar and two multi-electrode 4 × 1 tDCS protocols. For bipolar montages, EFs were of comparable strength in the lDLPFC and in the medial prefrontal cortex (MPFC). Depending on stimulation parameters, EF cortical maps varied to a considerable degree, but were found to be similar in controls and patients. 4 × 1 montages produced more localized, albeit weaker effects. White matter anisotropy was not modeled. The relationship between EF strength and clinical response to tDCS could not be evaluated. In addition to lDLPFC stimulation, excitability changes in the MPFC should also be considered as a potential mechanism underlying clinical efficacy of bipolar montages. MDD-associated anatomical variations are not likely to substantially influence current flow. Individual modeling of tDCS protocols can substantially improve cortical targeting. We make recommendations for future research to explicitly test the contribution of lDLPFC vs. MPFC stimulation to therapeutic outcomes of tDCS in this disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    Science.gov (United States)

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  20. Future directions of small research reactors

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.

    1986-01-01

    In prognosticating future perspectives, it is important to realize that the current number of small reactors throughout the world is not overly large and will undoubtedly decrease or at best remain constant in future generations. To survive and remain productive, small reactor facilities must concentrate on work that is unique and that cannot be performed as well by other instruments. Wherever possible, these facilities should develop some form of collaboration with universities and medical center investigators. Future development will continue and will flourish in neutron activation analysis and its applications for a diversity of fields. Fundamental research such as hot atom chemistry will continue to use neutrons from small research reactors. Finally, training of power reactor operators can be an important source of revenue for the small facility in addition to performing an important service to the nuclear power industry

  1. What Price Ethics: New Research Directions in Counselor Ethical Behavior

    Science.gov (United States)

    Paradise, Louis V.

    1978-01-01

    This paper briefly examines research on the ethical behavior of counselors, demonstrating that new directions in this area are needed, and that new research questions must be asked if significant information relating to counseling and ethics is to advance. Areas of inquiry and methods for investigation are suggested. (Author)

  2. Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements

    Science.gov (United States)

    Meltzer, Alexander Y.; Levin, Eitan; Zeldov, Eli

    2017-12-01

    An accurate determination of microscopic transport and magnetization currents is of central importance for the study of the electric properties of low-dimensional materials and interfaces, of superconducting thin films, and of electronic devices. Current distribution is usually derived from the measurement of the perpendicular component of the magnetic field above the surface of the sample, followed by numerical inversion of the Biot-Savart law. The inversion is commonly obtained by deriving the current stream function g , which is then differentiated in order to obtain the current distribution. However, this two-step procedure requires filtering at each step and, as a result, oversmooths the solution. To avoid this oversmoothing, we develop a direct procedure for inversion of the magnetic field that avoids use of the stream function. This approach provides enhanced accuracy of current reconstruction over a wide range of noise levels. We further introduce a reflection procedure that allows for the reconstruction of currents that cross the boundaries of the measurement window. The effectiveness of our approach is demonstrated by several numerical examples.

  3. Transcranial direct current stimulation versus caffeine as a fatigue countermeasure.

    Science.gov (United States)

    McIntire, Lindsey K; McKinley, R Andy; Nelson, Justin M; Goodyear, Chuck

    To assess the efficacy of using transcranial direct current stimulation (tDCS) to remediate the deleterious effects of fatigue induced by sleep deprivation and compare these results to caffeine, a commonly used fatigue countermeasure. Based on previous research, tDCS of the dorsolateral prefrontal cortex (DLPFC) can modulate attention and arousal. The authors hypothesize that tDCS can be an effective fatigue countermeasure. Five groups of ten participants each received either active tDCS and placebo gum at 1800, caffeine gum with sham tDCS at 1800, active tDCS and placebo gum at 0400, caffeine gum with sham tDCS at 0400, or sham tDCS with placebo gum at 1800 and 0400 during 36-h of sustained wakefulness. Participants completed a vigilance task, working memory task, psychomotor vigilance task (PVT), and a procedural game beginning at 1800 h and continued every two hours throughout the night until 1900 the next day. tDCS dosed at 1800 provided 6 h of improved attentional accuracy and reaction times compared to the control group. Caffeine did not produce an effect. Both tDCS groups also had an improved effect on mood. Participants receiving tDCS reported feeling more vigor, less fatigue, and less bored throughout the night compared to the control and caffeine groups. We believe tDCS could be a powerful fatigue countermeasure. The effects appear to be comparable or possibly more beneficial than caffeine because they are longer lasting and mood remains more positive. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  5. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder

    OpenAIRE

    van?t Wout, Mascha; Longo, Sharon M.; Reddy, Madhavi K.; Philip, Noah S.; Bowker, Marguerite T.; Greenberg, Benjamin D.

    2017-01-01

    Abstract Background Abnormalities in fear extinction and recall are core components of posttraumatic stress disorder (PTSD). Data from animal and human studies point to a role of the ventromedial prefrontal cortex (vmPFC) in extinction learning and subsequent retention of extinction memories. Given the increasing interest in developing noninvasive brain stimulation protocols for psychopathology treatment, we piloted whether transcranial direct current stimulation (tDCS) during extinction lear...

  6. RESEARCH ON THE DIRECT CARBON EMISSION FORECAST OF CHINA'S PROVINCIAL RESIDENTS BASED ON NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    T. Zhang

    2018-04-01

    Full Text Available Global climate change, which mainly effected by human carbon emissions, would affect the regional economic, natural ecological environment, social development and food security in the near future. It’s particularly important to make accurate predictions of carbon emissions based on current carbon emissions. This paper accounted out the direct consumption of carbon emissions data from 1995 to 2014 about 30 provinces (the data of Tibet, Hong Kong, Macao and Taiwan is missing and the whole of China. And it selected the optimal models from BP, RBF and Elman neural network for direct carbon emission prediction, what aim was to select the optimal prediction method and explore the possibility of reaching the peak of residents direct carbon emissions of China in 2030. Research shows that: 1 Residents’ direct carbon emissions per capita of all provinces showed an upward trend in 20 years. 2 The accuracy of the prediction results by Elman neural network model is higher than others and more suitable for carbon emission data projections. 3 With the situation of residents’ direct carbon emissions free development, the direct carbon emissions will show a fast to slow upward trend in the next few years and began to flatten after 2020, and the direct carbon emissions of per capita will reach the peak in 2032. This is also confirmed that China is expected to reach its peak in carbon emissions by 2030 in theory.

  7. Hydrologic Forecasting in the 21st Century: Challenges and Directions of Research

    Science.gov (United States)

    Restrepo, P.; Schaake, J.

    2009-04-01

    Traditionally, the role of the Hydrology program of the National Weather Service has been centered around forecasting floods, in order to minimize loss of lives and damage to property as a result of floods as well as water levels for navigable rivers, and water supply in some areas of the country. A number of factors, including shifting population patterns, widespread drought and concerns about climate change have made it imperative to widen the focus to cover forecasting flows ranging from drought to floods and anything in between. Because of these concerns, it is imperative to develop models that rely more on the physical characteristics of the watershed for parameterization and less on historical observations. Furthermore, it is also critical to consider explicitly the sources of uncertainty in the forecasting process, including parameter values, model structure, forcings (both observations and forecasts), initial conditions, and streamflow observations. A consequence of more widespread occurrence of low flows as a result either of the already evident earlier snowmelt in the Western United States, or of the predicted changes in precipitation patterns, is the issue of water quality: lower flows will have higher concentrations of certain pollutants. This paper describes the current projects and future directions of research for hydrologic forecasting in the United States. Ongoing projects on quantitative precipitation and temperature estimates and forecasts, uncertainty modeling by the use of ensembles, data assimilation, verification, distributed conceptual modeling will be reviewed. Broad goals of the research directions are: 1) reliable modeling of the different sources of uncertainty. 2) a more expeditious and cost-effective approach by reducing the effort required in model calibration; 3) improvements in forecast lead-time and accuracy; 4) an approach for rapid adjustment of model parameters to account for changes in the watershed, both rapid as the result

  8. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  9. POLITICAL POWER IN THE PRISM OF POLITICAL ANALYSIS (EXPERIENCE REVIEW OF CURRENT RESEARCH DIRECTIONS

    Directory of Open Access Journals (Sweden)

    A. N. Kuryukin

    2010-01-01

    Full Text Available The broad theoretical material considered relevant areas of the study of political power. Reveals the patterns of occurrence and development of a strictly scientific views on political power as a phenomenon and a social process. Determined the current trends of development of theoreticalunderstanding of political power in relation to the stages of its evolution. The most urgent technological model of exercising political power.

  10. Autonomous Energy Sources in the North of the Far East: Current State and Directions of Diversification

    Directory of Open Access Journals (Sweden)

    Boris Grigorievich Saneev

    2018-03-01

    Full Text Available The paper presents the current state of autonomous energy sources in the north of the Far East. Consideration is given to the capacity structures with a focus on industrial and residential autonomous energy sources. One of the main problems facing power supply to residential consumers in the north of the Far East is the insufficiently developed transport infrastructure, which causes complicated fuel delivery patterns, fuel price rise, and hence high electricity generation cost. The changes in the installed capacity of renewable energy sources (RES in the north of the Far East are demonstrated for the period between 2011 and 2015. The research shows the main directions of power production diversification in the north of the Far East. The directions include the use of local fuel types, the development of cogeneration, the involvement of renewable energy sources and small-scale nuclear power plants. The paper presents a forecast for the renewable energy development in the north of the Far East up to 2035, made by the authors. The priority RES projects in the off-grid power supply in the north of the Far East are wind and solar power plants

  11. Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors

    Directory of Open Access Journals (Sweden)

    Yean-Der Kuan

    2014-05-01

    Full Text Available The direct methanol fuel cell (DMFC adopts methanol solution as a fuel suitable for low power portable applications. A miniature, lightweight, passive air-breathing design is therefore desired. This paper presents a novel planar disc-type DMFC with multiple cells containing a novel developed lightweight current collector at both the anode and cathode sides. The present lightweight current collector adopts FR4 Glass/Epoxy as the substrate with the current collecting areas located at the corresponding membrane electrolyte assembly (MEA areas. The current collecting areas are fabricated by sequentially coating a corrosion resistant layer and electrical conduction layer via the thermal evaporation technique. The anode current collector has carved flow channels for fuel transport and production. The cathode current collector has drilled holes for passive air breathing. In order to ensure feasibility in the present concept a 3-cell prototype DMFC module with lightweight disc type current collectors is designed and constructed. Experiments were conducted to measure the cell performance. The results show that the highest cell power output is 54.88 mW·cm−2 and successfully demonstrate the feasibility of this novel design.

  12. Joint Inversion of Direct Current Resistivity and Seismic Refraction Data

    International Nuclear Information System (INIS)

    Kurt, B.B.

    2007-01-01

    In this study, I assumed the underground consist of horizontal layers. I developed one-dimensional (1D) Direct Current Resistivity (DCR) and seismic refraction inversion code using MATLAB package and attempt to find velocity, resistivity and depth of the layers. The code uses damped least square technique. The code can do inversion on DCR and seismic data either individually or jointly. I tested the joint inversion code on synthetic data. Eventually, I saw that the result of joint inversion is better than the result of individual inversions. The joint inversion found depth of models of each layer and, in addition, velocity and resistivity closer to real values

  13. Human-Robot Interaction Directed Research Project

    Science.gov (United States)

    Rochlis, Jennifer; Ezer, Neta; Sandor, Aniko

    2011-01-01

    Human-robot interaction (HRI) is about understanding and shaping the interactions between humans and robots (Goodrich & Schultz, 2007). It is important to evaluate how the design of interfaces and command modalities affect the human s ability to perform tasks accurately, efficiently, and effectively (Crandall, Goodrich, Olsen Jr., & Nielsen, 2005) It is also critical to evaluate the effects of human-robot interfaces and command modalities on operator mental workload (Sheridan, 1992) and situation awareness (Endsley, Bolt , & Jones, 2003). By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed that support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for design. Because the factors associated with interfaces and command modalities in HRI are too numerous to address in 3 years of research, the proposed research concentrates on three manageable areas applicable to National Aeronautics and Space Administration (NASA) robot systems. These topic areas emerged from the Fiscal Year (FY) 2011 work that included extensive literature reviews and observations of NASA systems. The three topic areas are: 1) video overlays, 2) camera views, and 3) command modalities. Each area is described in detail below, along with relevance to existing NASA human-robot systems. In addition to studies in these three topic areas, a workshop is proposed for FY12. The workshop will bring together experts in human-robot interaction and robotics to discuss the state of the practice as applicable to research in space robotics. Studies proposed in the area of video overlays consider two factors in the implementation of augmented reality (AR) for operator displays during teleoperation. The first of these factors is the type of navigational guidance provided by AR symbology. In the proposed

  14. Transcranial Direct Current Stimulation in Stroke Rehabilitation: A Review of Recent Advancements

    Science.gov (United States)

    Gomez Palacio Schjetnan, Andrea; Faraji, Jamshid; Metz, Gerlinde A.; Tatsuno, Masami; Luczak, Artur

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches. PMID:23533955

  15. Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors

    Directory of Open Access Journals (Sweden)

    Jing-Yi Chang

    2014-01-01

    Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.

  16. New directions in tokamak reactors

    International Nuclear Information System (INIS)

    Baker, C.C.

    1985-01-01

    New directions for tokamak research are briefly mentioned. Some of the areas for new considerations are the following: reactor size, beta ratio, current drivers, blankets, impurity control, and modular designs

  17. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  18. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  19. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  20. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  1. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  2. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  3. Electrochemical deposition and characterization of zinc–nickel alloys deposited by direct and reverse current

    Directory of Open Access Journals (Sweden)

    JELENA B. BAJAT

    2005-12-01

    Full Text Available Zn–Ni alloys electrochemically deposited on steel under various deposition conditions were investigated. The alloys were deposited on a rotating disc electrode and on a steel panel from chloride solutions by direct and reverse current. The influence of reverse plating variables (cathodic and anodic current densities and their time duration on the composition, phase structure and corrosion properties were investigated. The chemical content and phase composition affect the anticorrosive properties of Zn–Ni alloys during exposure to a corrosive agent (3 % NaCl solution. It was shown that the Zn–Ni alloy electrodeposited by reverse current with a full period T = 1 s and r = 0.2 exhibits the best corrosion properties of all the investigated alloys deposited by reverse current.

  4. Current Research on Adolescence and its Program Implications.

    Science.gov (United States)

    Cvetkovich, George; Grote, Barbara

    This paper discusses program implications of research on adolescents. A brief historical review of teenage sexuality is presented in order to put current information in perspective. The present increase in teenage fertility is seen as part of a larger epidemic failure of socialization. A number of recent studies are reviewed and synthesized,…

  5. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  6. Respiratory sensitization and allergy: Current research approaches and needs

    International Nuclear Information System (INIS)

    Boverhof, Darrell R.; Billington, Richard; Gollapudi, B. Bhaskar; Hotchkiss, John A.; Krieger, Shannon M.; Poole, Alan; Wiescinski, Connie M.; Woolhiser, Michael R.

    2008-01-01

    There are currently no accepted regulatory models for assessing the potential of a substance to cause respiratory sensitization and allergy. In contrast, a number of models exist for the assessment of contact sensitization and allergic contact dermatitis (ACD). Research indicates that respiratory sensitizers may be identified through contact sensitization assays such as the local lymph node assay, although only a small subset of the compounds that yield positive results in these assays are actually respiratory sensitizers. Due to the increasing health concerns associated with occupational asthma and the impending directives on the regulation of respiratory sensitizers and allergens, an approach which can identify these compounds and distinguish them from contact sensitizers is required. This report discusses some of the important contrasts between respiratory allergy and ACD, and highlights several prominent in vivo, in vitro and in silico approaches that are being applied or could be further developed to identify compounds capable of causing respiratory allergy. Although a number of animal models have been used for researching respiratory sensitization and allergy, protocols and endpoints for these approaches are often inconsistent, costly and difficult to reproduce, thereby limiting meaningful comparisons of data between laboratories and development of a consensus approach. A number of emerging in vitro and in silico models show promise for use in the characterization of contact sensitization potential and should be further explored for their ability to identify and differentiate contact and respiratory sensitizers. Ultimately, the development of a consistent, accurate and cost-effective model will likely incorporate a number of these approaches and will require effective communication, collaboration and consensus among all stakeholders

  7. Current status and future prospects for thermal-hydraulics and safety research

    International Nuclear Information System (INIS)

    Park, G.C.

    2000-01-01

    The present paper is to outline the current activities in Korea for the thermal-hydraulics and safety researches, and furthermore illuminate the future aspect of those field under the umbrella of worldwide nuclear prospect. In Korea, a long-term nuclear research plan has been established since 1992, which was recently funded with a fixed monetary rate of Korean won 1.20 per kWh of electricity produced with nuclear power. 11.5% of the fund is assigned for nuclear safety research in 6 areas. Under this program, 3 axes of research body (KAERI, KINS, University) has been operated with close cooperation. Their role, current activities and long-term plan of each body are introduced in the point of thermal-hydraulics' view. (author)

  8. [Physiotherapeutic care marketing research: current state-of-the art].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    Successful introduction of modern technologies into the national health care systems strongly depends on the current pharmaceutical market situation. The present article is focused on the peculiarities of marketing research with special reference to physiotherapeutic services and commodities. Analysis of the structure and sequence of marketing research processes is described along with the methods applied for the purpose including their support by the use of Internet resources and technologies.

  9. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    Science.gov (United States)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  10. THE RESEARCH ACTIVITY OF THE UNIVERSITY TEACHERS: DIRECTIONS, RESULTS, AND PROSPECTS. SOCIOLOGICAL CONTENT

    Directory of Open Access Journals (Sweden)

    I. A. Vasilyev

    2016-01-01

    Full Text Available The main purpose of an integrated monitoring research is the analysis of the main directions of research activity of faculty, staff and young scientists of the university.Methods. Scientific and theoretical analysis of publications on the researched topic are used as basic methods; sociological and diagnostic data collection methods; the method of statistical processing and classification of documentary and empirical data; the methods of content analysis and quantification of documentary and sociological information.Scientific novelty. The research is characterized by an integrated approach to the study of the problem: the basic provisions are analyzed; conclusions and recommendations of reports on research projects made by members of temporary research teams (or, university scientists and teaching staff. The classification (depending on the translation vectors results of dissertation works of graduate students, doctoral candidates is carried out in the course of the present study. Documentary information about the publication and presentation of scientific and pedagogical staff of the university is systematized; the report and information cards on the activities of innovative platforms are analyzed. The research team, with the direct participation of the author, after studying a few scientific publications on the subject, has developed an original method of complex research of the main directions of research activity of university scientists.Results. The presented research has allowed to note publication and innovative activity of the research and educational personnel, along with other its types, can act as the indicators characterizing the main directions of research activity both of higher education institution in general, and its concrete educational and scientific divisions. At the same, time the author emphasizes that efficiency of research process is caused not so much by quantitative as qualitative characteristics of concrete research

  11. Educational Research in Mainland China: Current Situation and Developmental Trends

    Science.gov (United States)

    Sun, Miantao

    2011-01-01

    The influence of Confucian culture in Chinese Mainland China is reflected in the current situation and contextual trends of educational research content of educational thought of Confucianism, educational issues grounded on theoretical views of Confucianism, and the influence of the inclusiveness of Confucianism. In terms of research method, the…

  12. Water reactor safety research program. A description of current and planned research

    International Nuclear Information System (INIS)

    1978-07-01

    The U.S. Nuclear Regulatory Commission (NRC) sponsors confirmatory safety research on lightwater reactors in support of the NRC regulatory program. The principal responsibility of the NRC, as implemented through its regulatory program is to ensure that public health, public safety, and the environment are adequately protected. The NRC performs this function by defining conditions for the use of nuclear power and by ensuring through technical review, audit, and follow-up that these conditions are met. The NRC research program provides technical information, independent of the nuclear industry, to aid in discharging these regulatory responsibilities. The objectives of NRC's research program are the following: (1) to maintain a confirmatory research program that supports assurance of public health and safety, and public confidence in the regulatory program, (2) to provide objectively evaluated safety data and analytical methods that meet the needs of regulatory activities, (3) to provide better quantified estimates of the margins of safety for reactor systems, fuel cycle facilities, and transportation systems, (4) to establish a broad and coherent exchange of safety research information with other Federal agencies, industry, and foreign organization. Current and planned research toward these goals is described

  13. Male circumcision and HIV prevention: current knowledge and future research directions.

    Science.gov (United States)

    Bailey, R C; Plummer, F A; Moses, S

    2001-11-01

    Over the past decade, numerous epidemiological studies have reported a significant association between lack of male circumcision and risk for HIV infection, leading to recommendations for male circumcision to be added to the armamentarium of effective HIV prevention strategies. We review the epidemiological data from studies that have investigated this association, including ecological, cross-sectional/case-control, and prospective studies. We discuss problematic issues in interpreting the epidemiological data, including the presence of other sexually transmitted infections, age of circumcision, and potential confounders such as religion, cultural practices, and genital hygiene. In addition, we review studies of biological mechanisms by which the presence of the foreskin may increase HIV susceptibility, data on risks associated with the circumcision procedure, and available data on the acceptability and feasibility of introducing male circumcision in societies where it is traditionally not practised. Although the evidence in support of male circumcision as an effective HIV prevention measure is compelling, residual confounding in observational studies cannot be excluded. Taken together with concerns over the potential disinhibiting effect of male circumcision on risk behaviour, and safety of the circumcision procedure, randomised trials of male circumcision to prevent HIV infection are recommended. An individual's choice to undergo male circumcision or a community's decision to promote the practice should be made in the light of the best available scientific evidence. More knowledge is required to assist individuals and communities in making those decisions. We conclude with recommendations for future research.

  14. Hybrid Direct-Current Circuit Breaker

    Science.gov (United States)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  15. Design Rework Prediction in Concurrent Design Environment: Current Trends and Future Research Directions

    OpenAIRE

    Arundachawat, Panumas; Roy, Rajkumar; Al-Ashaab, Ahmed; Shehab, Essam

    2009-01-01

    Organised by: Cranfield University This paper aims to present state-of-the-art and formulate future research areas on design rework in concurrent design environment. Related literatures are analysed to extract the key factors which impact design rework. Design rework occurs due to changes from upstream design activities and/or by feedbacks from downstream design activities. Design rework is considered as negative iteration; therefore, value in design activities will be increase...

  16. A clinical trial with combined transcranial direct current stimulation and alcohol approach bias retraining

    NARCIS (Netherlands)

    den Uyl, T.E.; Gladwin, T.E.; Rinck, M.; Lindenmeyer, J.; Wiers, R.W.

    2017-01-01

    Two studies showed an improvement in clinical outcomes after alcohol approach bias retraining, a form of Cognitive Bias Modification (CBM). We investigated whether transcranial direct current stimulation (tDCS) could enhance effects of CBM. TDCS is a neuromodulation technique that can increase

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  18. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  19. Statistical mechanical characteristics of slip-ring induction motors when direct current braking

    Energy Technology Data Exchange (ETDEWEB)

    Kedzior, W; Muchorowski, J; Pienkowski, K

    1980-09-01

    This paper evaluates methods of braking high capacity belt conveyors used in brown coal surface mines in Poland. Complications associated with belt conveyor braking, particularly when a conveyor moves down a slope, are analyzed. A method of calculating mechanical characteristics of wound-rotor induction motors during direct current braking taking into account saturation of magnetic circuit is presented. Characteristics of the SZUr motor with 630 kW power, used in brown coal mining, are also given. Analyses show that motor operation can be efficiently braked in two ways: 1. by changing additional resistance in rotor circuit (e.g. using thyristor controller); 2. by changing intensity of electric current supplied to stator winding (e.g. using a rectifier). (3 refs.) (In Polish)

  20. The outcomes of complementary and alternative medicine use among pregnant and birthing women: current trends and future directions.

    Science.gov (United States)

    Steel, Amie; Adams, Jon; Sibbritt, David; Broom, Alex

    2015-06-01

    Complementary and alternative medicine is used by a substantial number of pregnant women and maternity care providers are often faced with the task of ensuring women are using safe and effective treatments while respecting a woman's right to autonomous decision-making. In the era of evidence-based medicine maternity health professionals are expected to draw upon the best available evidence when making clinical decisions and providing health advice. This review will outline the current trends in research evidence associated with the outcomes of complementary and alternative medicine use amongst pregnant and birthing women as well as highlight some potential directions for future development in this important yet largely unknown topic in contemporary maternity care.

  1. The application of bonded magnet MQP-0 on an electrical direct current motor

    International Nuclear Information System (INIS)

    Ridwan; Mujamilah; Gunawan

    2002-01-01

    Isotropic bonded magnet materials using NdFeB produced by rapid quench method, has advantages that can be easily adapted to the costumer demand. The synthesized bonded magnets are mixed of cpoxy resin or polyester as matrix binder with powder magnet of MQP-O The proportions of polymer and magnetic powder are 4060; 50:50; and 6040 volume % of magnet composites. The characterization of magnetic properties was determined by Vibrating Sample Magnetometer (VSM) at P3IB-BATAN and the density was measured by piknometer. The highest energy product maximum, (BH) m ax of magnet composite synthesized by P3IB-BATAN in this activity is 435 MGOeThe quality of magnet components has been tested empirically by changing the magnetic components of an electric direct current motor found in the local market by magnetic components synthesized by P 3IB-BA TAN. The max imum rotation resulted by using P3IB-BATAN is 40 0 00 rpm The magnetic components synthesized in these research activities are functionally work and comparatively the same with the magnetic components found in the local market as an import commodities

  2. Tele-yoga for Chronic Pain: Current Status and Future Directions.

    Science.gov (United States)

    Mathersul, Danielle C; Mahoney, Louise A; Bayley, Peter J

    2018-01-01

    Pain is a pervasive, debilitating disorder that is resistant to long-term pharmacological interventions. Although psychological therapies such as cognitive behavior therapy demonstrate moderate efficacy, many individuals continue to have ongoing difficulties following treatment. There is a current trend to establish complementary and integrative health interventions for chronic pain, for which yoga has been found to have exciting potential. Nevertheless, an important consideration within the field is accessibility to adequate care. Telehealth can be used to provide real-time interactive video conferencing leading to increased access to health care for individuals located remotely or who otherwise have difficulty accessing services, perhaps through issues of mobility or proximity of adequate services. This article assesses the current status and feasibility of implementing tele-yoga for chronic pain. Methodological limitations and recommendations for future research are discussed.

  3. Improving Naming Abilities among Healthy Young-Old Adults Using Transcranial Direct Current Stimulation

    Science.gov (United States)

    Lifshitz-Ben-Basat, Adi; Mashal, Nira

    2018-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive tool to facilitate brain plasticity and enhance language abilities. Our study aims to search for a potential beneficial influence of tDCS on a cognitive linguistic task of naming which found to decline during aging. A group of fifteen healthy old adults (M = 64.93 ± 5.09 years) were…

  4. Effect of Cathodal Transcranial Direct Current Stimulation on a Child with Involuntary Movement after Hypoxic Encephalopathy

    Directory of Open Access Journals (Sweden)

    Mayumi Nagai

    2018-01-01

    Full Text Available The aim of the study was to investigate the effect of cathodal transcranial direct current stimulation to the supplementary motor area to inhibit involuntary movements of a child. An 8-year-old boy who developed hypoxic encephalopathy after asphyxia at the age of 2 had difficulty in remaining standing without support because of involuntary movements. He was instructed to remain standing with his plastic ankle-foot orthosis for 10 s at three time points by leaning forward with his forearms on a desk. He received cathodal or sham transcranial direct current stimulation to the supplementary motor area at 1 mA for 10 min. Involuntary movements during standing were measured using an accelerometer attached to his forehead. The low-frequency power of involuntary movements during cathodal transcranial direct current stimulation significantly decreased compared with that during sham stimulation. No adverse effects were observed. Involuntary movement reduction by cathodal stimulation to supplementary motor areas suggests that stimulations modulated the corticobasal ganglia motor circuit. Cathodal stimulation to supplementary motor areas may be effective for reducing involuntary movements and may be safely applied to children with movement disorders.

  5. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  6. Current direction, temperature, and salinity data from moored current meter casts in the North Pacific Ocean from 1983-06-01 to 1983-08-01 (NODC Accession 8500147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the North Pacific Ocean from June 1, 1983 to August 1, 1983....

  7. Direct disposal of spent nuclear fuel. The current status of technology January 1987

    International Nuclear Information System (INIS)

    Wheelton, I.S.; Kelly, B.R.; Wood, E.

    1987-02-01

    The Study assesses the degree and status of research and development worldwide on Direct Disposal of Spent Nuclear Fuel. It is limited to technological, radiological and waste management aspects appertaining to Light Water and AGR Reactor Systems and reviews the 'State of the Art' in terms of applicability to the United Kingdom. The report concludes that much technology exists both at National and International level which the UK can apply to the subject of Direct Disposal. (author)

  8. On Moderator Detection in Anchoring Research: Implications of Ignoring Estimate Direction

    Directory of Open Access Journals (Sweden)

    Nathan N. Cheek

    2018-05-01

    Full Text Available Anchoring, whereby judgments assimilate to previously considered standards, is one of the most reliable effects in psychology. In the last decade, researchers have become increasingly interested in identifying moderators of anchoring effects. We argue that a drawback of traditional moderator analyses in the standard anchoring paradigm is that they ignore estimate direction—whether participants’ estimates are higher or lower than the anchor value. We suggest that failing to consider estimate direction can sometimes obscure moderation in anchoring tasks, and discuss three potential analytic solutions that take estimate direction into account. Understanding moderators of anchoring effects is essential for a basic understanding of anchoring and for applied research on reducing the influence of anchoring in real-world judgments. Considering estimate direction reduces the risk of failing to detect moderation.

  9. Fundamental properties of field emission-driven direct current microdischarges

    International Nuclear Information System (INIS)

    Rumbach, Paul; Go, David B.

    2012-01-01

    For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n + ≈ 0.1V A ε 0 /qd 2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ ′ of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].

  10. Trans-spinal direct current stimulation for the modulation of the lumbar spinal motor networks

    NARCIS (Netherlands)

    Kuck, Alexander

    2018-01-01

    Trans-spinal Direct Current Stimulation (tsDCS) is a noninvasive neuromodulatory tool for the modulation of the spinal neurocircuitry. Initial studies have shown that tsDCS is able to induce a significant and lasting change in spinal-reflex- and corticospinal information processing. It is therefore

  11. Direct current hopping conductance in one-dimensional diagonal disordered systems

    Institute of Scientific and Technical Information of China (English)

    Ma Song-Shan; Xu Hui; Liu Xiao-Liang; Xiao Jian-Rong

    2006-01-01

    Based on a tight-binding disordered model describing a single electron band, we establish a direct current (dc) electronic hopping transport conductance model of one-dimensional diagonal disordered systems, and also derive a dc conductance formula. By calculating the dc conductivity, the relationships between electric field and conductivity and between temperature and conductivity are analysed, and the role played by the degree of disorder in electronic transport is studied. The results indicate the conductivity of systems decreasing with the increase of the degree of disorder, characteristics of negative differential dependence of resistance on temperature at low temperatures in diagonal disordered systems, and the conductivity of systems decreasing with the increase of electric field, featuring the non-Ohm's law conductivity.

  12. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  13. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  14. Testing for causality between the foreign direct investment, current account deficit, GDP and total credit: Evidence from G7

    Directory of Open Access Journals (Sweden)

    Akbas Yusuf Ekrem

    2013-01-01

    Full Text Available In this study, countries were analyzed between 1990 and 2011 in order to determine whether a causal relationship exists among current account deficit, GDP, foreign direct investment, and total credits of G7. Analysis took into account the cross-sectional dependence and was applied to test the causality among the variables form the panel. Firstly, panel unit root tests were used for determining stationary of variables. As a result of the panel unit root tests, it was found that GDP and foreign direct investment have a stationary structure and that total credits and current account deficit contain unit root. In order to see whether there is a long-term relationship among the variables or not, the panel co-integration test was used. As a result of the test, it was concluded that there is a co-integration relationship among the series. The possibility of a causal relationship was analyzed among the variables using the causality test developed by Elena Ivona Dumitrescu and Christophe Hurlin (2012. Results of the analysis showed a unidirectional causal relationship from current account deficit and foreign direct investment to GDP. Bidirectional causality was found between current account deficit and total credits. Finally, a unidirectional relationship was found from foreign direct investment to current account deficit and total credits.

  15. Transcranial Direct Current Stimulation: Five Important Issues We Aren’t Discussing (But Probably Should Be

    Directory of Open Access Journals (Sweden)

    Jared Cooney Horvath

    2014-01-01

    Full Text Available Transcranial Direct Current Stimulation (tDCS is a neuromodulatory device often publicized for its ability to enhance cognitive and behavioral performance. These enhancement claims, however, are predicated upon electrophysiological evidence and descriptions which are far from conclusive. In fact, a review of the literature reveals a number of important experimental and technical issues inherent with this device that are simply not being discussed in any meaningful manner. In this paper, we will consider five of these topics. The first, inter-subject variability, explores the extensive between- and within-group differences found within the tDCS literature and highlights the need to properly examine stimulatory response at the individual level. The second, intra-subject reliability, reviews the lack of data concerning tDCS response reliability over time and emphasizes the importance of this knowledge for appropriate stimulatory application. The third, sham stimulation and blinding, draws attention to the importance (yet relative lack of proper control and blinding practices in the tDCS literature. The fourth, motor and cognitive interference, highlights the often overlooked body of research that suggests typical behaviors and cognitions undertaken during or following tDCS can impair or abolish the effects of stimulation. Finally, the fifth, electric current influences, underscores several largely ignored variables (such as hair thickness and electrode attachments methods influential to tDCS electric current density and flow.Through this paper, we hope to increase awareness and start an ongoing dialogue of these important issues which speak to the efficacy, reliability, and mechanistic foundations of tDCS.

  16. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.

    Science.gov (United States)

    Chae, Yooeun; An, Youn-Joo

    2018-05-09

    Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. In particular, the disposal of municipal wastewater effluent, sewage sludge landfill, and plastic mulch from agricultural activities is a serious issue and of major concern regarding soil pollution. Compared to plastic pollution in the marine and freshwater ecosystems, that in the soil ecosystem has been relatively neglected. In this study, we discussed plastic pollution in the soil environment and investigated research on the effects of plastic wastes, especially microplastics, on the soil ecosystem. We found that earthworms have been predominantly used as the test species in investigating the effects of soil plastic pollution on organisms. Therefore, further research investigating the effects of plastic on other species models (invertebrates, plants, microorganisms, and insects) are required to understand the effects of plastic pollution on the overall soil ecosystem. In addition, we suggest other perspectives for future studies on plastic pollution and soil ecotoxicity of plastics wastes, providing a direction for such research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  18. Current direction and CTD data from moored current meter and CTD casts in the Delaware Bay from 1984-01-01 to 1984-12-01 (NODC Accession 8600001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the Delaware Bay from January 1, 1984 to December 1, 1985. Data were...

  19. Current direction and CTD data from moored current meter and CTD casts in the Atlantic Ocean from 1980-08-04 to 1981-08-14 (NODC Accession 8200240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the Atlantic Ocean from August 4, 1980 to August 14, 1981. Data were...

  20. Efficacy of transcranial direct-current stimulation (tDCS) in women with provoked vestibulodynia: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Morin, Annie; Léonard, Guillaume; Gougeon, Véronique; Waddell, Guy; Bureau, Yves-André; Girard, Isabelle; Morin, Mélanie

    2016-05-14

    Provoked vestibulodynia is the most common form of vulvodynia. Despite its high prevalence and deleterious sexual, conjugal, and psychological repercussions, effective evidence-based interventions for provoked vestibulodynia remain limited. For a high proportion of women, significant pain persists despite the currently available treatments. Growing evidence suggests that the central nervous system (CNS) could play a key role in provoked vestibulodynia; thus, treatment targeting the CNS, rather than localized dysfunctions, may be beneficial for women suffering from provoked vestibulodynia. In this study, we aim to build on the promising results of a previous case report and evaluate whether transcranial direct-current stimulation, a non-invasive brain stimulation technique targeting the CNS, could be an effective treatment option for women with provoked vestibulodynia. This single-center, triple-blind, parallel group, randomized, controlled trial aims to compare the efficacy of transcranial direct-current stimulation with sham transcranial direct-current stimulation in women with provoked vestibulodynia. Forty women diagnosed with provoked vestibulodynia by a gynecologist, following a standardized treatment protocol, are randomized to either active transcranial direct-current stimulation treatment for ten sessions of 20 minutes at an intensity of 2 mA or sham transcranial direct-current stimulation over a 2-week period. Outcome measures are collected at baseline, 2 weeks after treatment and at 3-month follow-up. The primary outcome is pain during intercourse, assessed with a numerical rating scale. Secondary measurements focus on the sexual function, vestibular pain sensitivity, psychological distress, treatment satisfaction, and the patient's global impression of change. To our knowledge, this study is the first randomized controlled trial to examine the efficacy of transcranial direct-current stimulation in women with provoked vestibulodynia. Findings from this

  1. Twenty Years of Creativity Research in Human-Computer Interaction: Current State and Future Directions

    DEFF Research Database (Denmark)

    Frich Pedersen, Jonas; Biskjaer, Michael Mose; Dalsgaard, Peter

    2018-01-01

    Creativity has been a growing topic within the ACM community since the 1990s. However, no clear overview of this trend has been offered. We present a thorough survey of 998 creativity-related publications in the ACM Digital Library collected using keyword search to determine prevailing approaches......, topics, and characteristics of creativity-oriented Human-Computer Interaction (HCI) research. . A selected sample based on yearly citations yielded 221 publications, which were analyzed using constant comparison analysis. We found that HCI is almost exclusively responsible for creativity......-oriented publications; they focus on collaborative creativity rather than individual creativity; there is a general lack of definition of the term ‘creativity’; empirically based contributions are prevalent; and many publications focus on new tools, often developed by researchers. On this basis, we present three...

  2. Direct current magnetron sputter-deposited ZnO thin films

    International Nuclear Information System (INIS)

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong; Knipp, Dietmar

    2011-01-01

    Zinc oxide (ZnO) is a very promising electronic material for emerging transparent large-area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 150 nm to 750 nm were deposited on glass substrates. The deposition pressure and the substrate temperature were varied from 12 mTorr to 25 mTorr, and from room temperature to 450 deg. C, respectively. The influence of the film thickness, deposition pressure and the substrate temperature on structural and optical properties of the ZnO films was investigated using atomic force microscopy (AFM) and ultraviolet-visible (UV-Vis) spectrometer. The experimental results reveal that the film thickness, deposition pressure and the substrate temperature play significant role in the structural formation and the optical properties of the deposited ZnO thin films.

  3. Research Experience in Psychiatry Residency Programs Across Canada: Current Status

    Science.gov (United States)

    Shanmugalingam, Arany; Ferreria, Sharon G; Norman, Ross M G; Vasudev, Kamini

    2014-01-01

    Objective: To determine the current status of research experience in psychiatry residency programs across Canada. Method: Coordinators of Psychiatric Education (COPE) resident representatives from all 17 psychiatry residency programs in Canada were asked to complete a survey regarding research training requirements in their programs. Results: Among the 17 COPE representatives, 15 completed the survey, representing 88% of the Canadian medical schools that have a psychiatry residency program. Among the 15 programs, 11 (73%) require residents to conduct a scholarly activity to complete residency. Some of these programs incorporated such a requirement in the past 5 years. Ten respondents (67%) reported availability of official policy and (or) guidelines on resident research requirements. Among the 11 programs that have a research requirement, 10 (91%) require residents to complete 1 scholarly activity; 1 requires completion of 2 scholarly activities. Eight (53%) residency programs reported having a separate research track. All of the programs have a research coordinator and 14 (93%) programs provide protected time to residents for conducting research. The 3 most common types of scholarly activities that qualify for the mandatory research requirement are a full independent project (10 programs), a quality improvement project (8 programs), and assisting in a faculty project (8 programs). Six programs expect their residents to present their final work in a departmental forum. None of the residency programs require publication of residents’ final work. Conclusions: The current status of the research experience during psychiatry residency in Canada is encouraging but there is heterogeneity across the programs. PMID:25565474

  4. Left Atrial Sphericity Index Predicts Early Recurrence of Atrial Fibrillation After Direct-Current Cardioversion

    DEFF Research Database (Denmark)

    Osmanagic, Armin; Möller, Sören; Osmanagic, Azra

    2016-01-01

    BACKGROUND: Attempts to achieve rhythm control using direct-current cardioversion (DCC) are common in those with persistent atrial fibrillation (AF). Although often successful, AF recurs within 1 month in as many as 57% of patients. The aim of this study was to assess whether a baseline left atri...

  5. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Bullock, M Ross

    2011-01-01

    , although prolonged events have not been observed in animal models. To determine whether detrimental penumbral-type depolarizations occur in human brain trauma, we analysed electrocorticographic recordings obtained by subdural electrode-strip monitoring during intensive care. Of 53 patients studied, 10......Cortical spreading depolarizations occur spontaneously after ischaemic, haemorrhagic and traumatic brain injury. Their effects vary spatially and temporally as graded phenomena, from infarction to complete recovery, and are reflected in the duration of depolarization measured by the negative direct...... current shift of electrocorticographic recordings. In the focal ischaemic penumbra, peri-infarct depolarizations have prolonged direct current shifts and cause progressive recruitment of the penumbra into the core infarct. In traumatic brain injury, the effects of spreading depolarizations are unknown...

  6. Key Challenges and Future Directions for Educational Research on Scientific Argumentation

    Science.gov (United States)

    Henderson, J. Bryan; McNeill, Katherine L.; González-Howard, María; Close, Kevin; Evans, Mat

    2018-01-01

    At the 2015 "NARST: A Worldwide Organization for Improving Science Teaching and Learning Through Research" Annual International Conference, a group of scholars held an extended pre-conference workshop to discuss key challenges and future directions faced by argumentation researchers around the world. This wide-ranging group of…

  7. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo

    Science.gov (United States)

    Shin, Da Wi; Khadka, Niranjan; Fan, Jie; Bikson, Marom; Fu, Bingmei M.

    2016-03-01

    Transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical stimulation technique investigated for a broad range of medical and performance indications. Whereas prior studies have focused exclusively on direct neuron polarization, our hypothesis is that tDCS directly modulates endothelial cells leading to transient changes in blood-brain-barrier (BBB) permeability (P) that are highly meaningful for neuronal activity. For this, we developed state-of-the-art imaging and animal models to quantify P to various sized solutes after tDCS treatment. tDCS was administered using a constant current stimulator to deliver a 1mA current to the right frontal cortex of rat (approximately 2 mm posterior to bregma and 2 mm right to sagittal suture) to obtain similar physiological outcome as that in the human tDCS application studies. Sodium fluorescein (MW=376), or FITC-dextrans (20K and 70K), in 1% BSA mammalian Ringer was injected into the rat (SD, 250-300g) cerebral circulation via the ipsilateral carotid artery by a syringe pump at a constant rate of ~3 ml/min. To determine P, multiphoton microscopy with 800-850 nm wavelength laser was applied to take the images from the region of interest (ROI) with proper microvessels, which are 100-200 micron below the pia mater. It shows that the relative increase in P is about 8-fold for small solute, sodium fluorescein, ~35-fold for both intermediate sized (Dex-20k) and large (Dex-70k) solutes, 10 min after 20 min tDCS pretreatment. All of the increased permeability returns to the control after 20 min post treatment. The results confirmed our hypothesis.

  8. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2015-12-31

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  9. Surface modification of polyacrylonitrile co-polymer membranes using pulsed direct current nitrogen plasma

    International Nuclear Information System (INIS)

    Pal, Dipankar; Neogi, Sudarsan; De, Sirshendu

    2015-01-01

    Low temperature plasma treatment using pulsed direct current discharge of nitrogen gas was employed to enhance hydrophilicity of the polyacrylonitrile co-polymer membranes. The membranes were characterized in terms of morphology, structure, hydrophilicity, and membrane performance. Properties and functional groups on the surface of polyacrylonitrile co-polymer membranes were investigated by contact angle, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Effects of plasma conditions, namely, pulsed voltage, duty cycle and treatment time on increase in membrane hydrophilicity were studied. Permeability of treated membrane was increased by 47% and it was retained up to 70 days. Surface etching due to plasma treatment was confirmed by weight loss of the treated membranes. Due to surface etching, average pore size increased and rejection of 200 kDa polyethylene glycol decreased to about 70% for the treated membrane. Oxygen and nitrogen functional groups were responsible for surface hydrophilicity. - Highlights: • Surface modification of polyacrylonitrile co-polymer membranes by pulsed direct current nitrogen plasma • Hydrophilic functional groups incorporated on the membrane surface • Significant enhancement of the permeability and wettability of the membranes • Water contact angle increased with storage time and finally stabilized.

  10. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  11. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang

    2008-01-01

    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  12. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the

  13. Directions of ICF research in the United States

    International Nuclear Information System (INIS)

    Hogan, W.J.; Campbell, E.M.

    1997-01-01

    Inertial confinement fusion (ICF) research in the United States is in a dramatic upswing. Technical progress continues at a rapid pace and with the start of the construction of the National Ignition Facility (NIF) this year the total U.S. budget for ICF for fiscal year 1997 stands at $380 million. The NIF is being built as an essential component of the U.S. Stockpile Stewardship and Management Program which has been formulated to assure the continued safety, reliability, and performance of the downsized nuclear weapons stockpile in the absence of nuclear tests. This paper will discuss some of the directions that the ICF research is now taking. (AIP) copyright 1997 American Institute of Physics

  14. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    International Nuclear Information System (INIS)

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process.

  15. New insights from direct monitoring of turbidity currents; and a proposal for co-ordinating international efforts at a series of global "turbidity current test sites"

    Science.gov (United States)

    Talling, Peter

    2015-04-01

    Turbidity currents, and other types of submarine sediment density flow, arguably redistribute more sediment across the surface of the Earth than any other flow process. It is now over 60 years since the seminal publication of Kuenen and Migliorini (1950) in which they made the link between sequences of graded bedding and turbidity currents. The deposits of submarine sediment density flows have been described in numerous locations worldwide, and this might lead to the view that these flows are well understood. However, it is sobering to note quite how few direct measurements we have from these submarine flows in action. Sediment concentration is the critical parameter controlling such flows, yet it has never been measured directly for flows that reach and build submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical simulations or analytical models? It is proposed here that international efforts are needed for an initiative to monitor active turbidity currents at a series of 'test sites' where flows occur frequently. The flows evolve significantly, such that source to sink data are needed. We also need to directly monitor flows in different settings with variable triggering factors and flow path morphologies because their character can vary significantly. Such work should integrate numerical and physical modelling with the collection of field observations in order to understand the significance of field observations. Such an international initiative also needs to include coring of deposits to link flow processes to deposit character, because in most global locations flow behaviour must be inferred from deposits alone. Collection of seismic datasets is also crucial for understanding the larger-scale evolution and resulting architecture of these systems, and to link with studies of subsurface reservoirs. Test site datasets should thus include a wide range of data types, not just from direct flow

  16. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  17. Alternatives for blocking direct current in AC system neutrals at the Radisson/LG2 complex

    International Nuclear Information System (INIS)

    Eitzmann, M.A.; Walling, R.A.; Sublich, M.; Kah, A.; Huynh, H.; Granger, M.; Dutil, A.

    1992-01-01

    Severe offset saturation results from the passage of direct current through power transformers. Such direct current can arise from geomagnetic disturbances, or resistive coupling of the substation ground to HVDC earth electrodes. This paper documents the development of alternative approaches for the design and application of blocking devices placed between transformer neutrals and the substation ground. System constraints on the impedance and overvoltage limitation of the neutral blocking device (NBD) are covered. Three alternative NBD schemes are developed and optimized. System performance of the NBD is discussed, as are the practical implementation considerations for this unconventional equipment application. Although the paper focuses on the NBD requirements of Hydro-Quebec's Radisson/LG2 complex, the fundamental information is applicable to any situation where dc must be clocked from a power transformer neutral in a system designed for effectively-grounded operation

  18. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  19. Proposal and Research Direction of Soil Mass Organic Reorganization

    Science.gov (United States)

    Zhang, Lu; Han, Jichang

    2018-01-01

    Land engineering as a new discipline has been temporarily outrageous. The proposition of soil body organic reorganization undoubtedly enriches the research content for the construction of land engineering disciplines. Soil body organic reconstruction is designed to study how to realize the ecological ecology of the land by studying the external force of nature, to study the influence of sunlight, wind and water on soil body, how to improve the soil physical structure, to further strengthen the research of biological enzymes and microbes, and promote the release and utilization of beneficial inert elements in soil body. The emerging of frontier scientific research issues with soil body organic reorganization to indicate directions for the future development of soil engineering.

  20. Topics in current aerosol research (part2)

    CERN Document Server

    Hidy, G M

    1972-01-01

    Topics in Current Aerosol Research, Part 2 contains some selected articles in the field of aerosol study. The chosen topics deal extensively with the theory of diffusiophoresis and thermophoresis. Also covered in the book is the mathematical treatment of integrodifferential equations originating from the theory of aerosol coagulation. The book is the third volume of the series entitled International Reviews in Aerosol Physics and Chemistry. The text offers significant understanding of the methods employed to develop a theory for thermophoretic and diffusiophoretic forces acting on spheres in t

  1. Pediatric neurology training in Canada: current status and future directions.

    Science.gov (United States)

    Doja, Asif

    2012-05-01

    Child neurology training in Canada has changed considerably over time, with increasing requirements for standardized teaching of the fundamentals of child neurology and the CanMEDS competencies. We sought to determine the current status of child neurology training in Canada as well future directions for training. A web-based survey was sent to program directors (PD's) of active pediatric neurology training programs. General questions about the programs were asked, as well as about success at the Royal College of Physicians and Surgeons of Canada (RCPSC) exam, breakdown of rotations, views on CanMEDS roles and questions on the future of pediatric neurology. 9/9 PD's completed the survey. 96.5% of all trainees successfully passed their RCPSC exam from 2001-2006. Breakdowns of the number and type of rotations for each year of training were provided. All CanMEDS roles were deemed to be important by PD's and programs have developed unique strategies to teach and assess these roles.92.6% of trainees chose to go into academic practice, with the most popular subspecialty being epilepsy. All PD's favour joint training sessions particularly for neurogenetics and neuromuscular disease. Overall, PD's suggest recruitment for future child neurologists at the medical student level but are divided as to whether we are currently training too few or too many child neurologists. This survey provides a view of the current state of pediatric neurology training in Canada and suggestions for further development of post-graduate training. In particular, attention should be given to joint educational programs as well as urgently assessing the manpower needs of child neurologists.

  2. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    Science.gov (United States)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  3. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  4. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  5. Nevada Test Site-Directed Research and Development: FY 2006 Report

    International Nuclear Information System (INIS)

    Wil Lewis, editor

    2007-01-01

    The Nevada Test Site Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R and D projects, as presented in this report

  6. Nevada Test Site-Directed Research and Development: FY 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    Wil Lewis, editor

    2007-08-01

    The Nevada Test Site–Directed Research and Development (SDRD) program completed its fifth successful year of research and development activities in FY 2006. Forty new projects were selected for funding this year, and ten FY 2005 projects were brought to conclusion. The total funds expended by the SDRD program were $6 million, for an average per-project cost of $120 thousand. Beginning in May, 2006 programmatic burden rates were applied to SDRD project costs. An external audit conducted in September 2006 verified that appropriate accounting practices were applied to the SDRD program. Highlights for the year included: the filing of 27 invention disclosures for intellectual property generated by FY 2006 projects; programmatic adoption of four FY 2005 SDRD-developed technologies; participation in the tri-Lab Laboratory Directed Research and Development (LDRD) and SDRD program review that was broadly attended by NTS, NNSA, LDRD, and U.S. Department of Homeland Security representatives; peer reviews of all FY 2006 projects; and the successful completion of 50 R&D projects, as presented in this report.

  7. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  8. Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory.

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E.; Trumbo, Michael Christopher Stefan

    2014-10-01

    Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memory for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.

  9. Shaping pseudoneglect with transcranial cerebellar direct current stimulation and music listening

    Directory of Open Access Journals (Sweden)

    Silvia ePicazio

    2015-03-01

    Full Text Available Non-invasive brain stimulation modulates cortical excitability depending on the initial activation state of the structure being stimulated. Combination of cognitive with neurophysiological stimulations has been successfully employed to modulate responses of specific brain regions. The present research combined a neurophysiological pre-conditioning with a cognitive conditioning stimulation to modulate behavior. We applied this new state-dependency approach to investigate the cerebellar role in musical and spatial information processing, given that a link between musical perception and visuo-spatial abilities and a clear cerebellar involvement in music perception and visuo-spatial tasks have been reported. Cathodal, anodal or sham transcranial cerebellar Direct Current Stimulation (tcDCS pre-conditioning was applied on the left cerebellar hemisphere followed by conditioning stimulation through music or white noise listening in a sample of healthy subjects performing a Line Bisection Task (LBT. The combination of the cathodal stimulation with music listening resulted in a marked attentional shift toward the right hemispace, compensating thus the natural leftward bias of the baseline condition (pseudoneglect. Conversely, the anodal or sham pre-conditioning stimulations combined with either music and white noise conditioning listening did not modulate spatial attention. The efficacy of the combined stimulation (cathodal pre-conditioning and music conditioning and the absence of any effect of the single stimulations provide a strong support to the state-dependency theory. They propose that tcDCS in combination with music listening could act as a rehabilitative tool to improve cognitive functions in the presence of neglect or other spatial disorders.

  10. The Uses of Mass Communications: Current Perspectives on Gratifications Research. Sage Annual Reviews of Communication Research Volume III.

    Science.gov (United States)

    Blumler, Jay G., Ed.; Katz, Elihu, Ed.

    The essays in this volume examine the use of the mass media and explore the findings of the gratifications approach to mass communication research. Part one summaries the achievements in this area of mass media research and proposes an agenda for discussion of the future direction of this research in terms of a set of theoretical, methodological,…

  11. Thermal infrared remote sensing for riverscape analysis of water temperature heterogeneity: current research and future directions

    Science.gov (United States)

    Dugdale, S.; Hannah, D. M.; Malcolm, I.; Bergeron, N.; St-Hilaire, A.

    2016-12-01

    Climate change will increase summer water temperatures in northern latitude rivers. It is likely that this will have a negative impact on fish species such as salmonids, which are sensitive to elevated temperatures. Salmonids currently avoid heat stress by opportunistically using cool water zones that arise from the spatio-temporal mosaic of thermal habitats present within rivers. However, there is a general lack of information about the processes driving this thermal habitat heterogeneity or how these spatio-temporal patterns might vary under climate change. In this paper, we document how thermal infrared imaging has previously been used to better understand the processes driving river temperature patterns. We then identify key knowledge gaps that this technology can help to address in the future. First, we demonstrate how repeat thermal imagery has revealed the role of short-term hydrometeorological variability in influencing longitudinal river temperature patterns, showing that precipitation depth is strongly correlated with the degree of longitudinal temperature heterogeneity. Second, we document how thermal infrared imagery of a large watershed in Eastern Canada has shed new light on the landscape processes driving the spatial distribution of cool water patches, revealing that the distribution of cool patches is strongly linked to channel confinement, channel curvature and the proximity of dry tributary valleys. Finally, we detail gaps in current understanding of spatio-temporal patterns of river temperature heterogeneity. We explain how advances in unmanned aerial vehicle technology and deterministic temperature modelling will be combined to address these current limitations, shedding new light on the landscape processes driving geographical variability in patterns of river temperature heterogeneity. We then detail how such advances will help to identify rivers that will be resilient to future climatic warming, improving current and future strategies for

  12. Grading of direct laryngoscopy. A survey of current practice.

    Science.gov (United States)

    Cohen, A M; Fleming, B G; Wace, J R

    1994-06-01

    One hundred and twenty anaesthetists (30 of each grade), from three separate regions, were interviewed as to how they recorded the appearance of laryngeal structures at direct laryngoscopy and about their knowledge of the commonly used numerical grading system. About two-thirds of anaesthetists surveyed (69.2%) used the numerical grading system, but of these, over half could not identify a 'grade 2' laryngoscopic appearance correctly. Of anaesthetists who did not use the numerical method, over half could not correctly state the difference between a 'grade 2' and a 'grade 3' laryngoscopic appearance. Over 40% of anaesthetists stated incorrectly that the grading should be made on the initial view, even when laryngeal pressure had been needed. Junior anaesthetists were more likely to use the numerical method of recording. The results show that there is unacceptable uncertainty and inaccuracy in the use of the numerical grading system by users as well as non-users, which makes the current routine clinical use of the numerical grading system unsatisfactory.

  13. Management options for pediatric patients who stutter: current challenges and future directions

    Directory of Open Access Journals (Sweden)

    Donaghy MA

    2016-07-01

    Full Text Available Michelle A Donaghy,1 Kylie A Smith,2,3 1Faculty of Health Sciences, Australian Catholic University, North Sydney, NSW, 2Murdoch Childrens Research Institute, Royal Childrens Hospital, 3Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia Abstract: Stuttering is a speech disorder, with onset often occurring in the preschool years. The prevalence of stuttering in young children is much higher than that in the general population, suggesting a high rate of recovery. However, we are unable to predict which children will recover without treatment, and it is widely acknowledged that stuttering therapy during childhood provides the best safeguard against chronic stuttering. This review reports on current evidence-based stuttering treatment options for preschoolers through to adolescents. We discuss the clinical challenges associated with treating pediatric clients who stutter at different stages of development and explore potential areas of treatment research that might serve to advance current clinical practice in the future. Keywords: stuttering, stammering, pediatric, therapy, evidence based

  14. Cyberbullying Prevention and Intervention Efforts: Current Knowledge and Future Directions

    Science.gov (United States)

    Hong, Jun Sung

    2016-01-01

    Bullying is a serious public health concern that is associated with significant negative mental, social, and physical outcomes. Technological advances have increased adolescents’ use of social media, and online communication platforms have exposed adolescents to another mode of bullying—cyberbullying. Prevention and intervention materials, from websites and tip sheets to classroom curriculum, have been developed to help youth, parents, and teachers address cyberbullying. While youth and parents are willing to disclose their experiences with bullying to their health care providers, these disclosures need to be taken seriously and handled in a caring manner. Health care providers need to include questions about bullying on intake forms to encourage these disclosures. The aim of this article is to examine the current status of cyberbullying prevention and intervention. Research support for several school-based intervention programs is summarised. Recommendations for future research are provided. PMID:28562094

  15. Cyberbullying Prevention and Intervention Efforts: Current Knowledge and Future Directions.

    Science.gov (United States)

    Espelage, Dorothy L; Hong, Jun Sung

    2017-06-01

    Bullying is a serious public health concern that is associated with significant negative mental, social, and physical outcomes. Technological advances have increased adolescents' use of social media, and online communication platforms have exposed adolescents to another mode of bullying- cyberbullying. Prevention and intervention materials, from websites and tip sheets to classroom curriculum, have been developed to help youth, parents, and teachers address cyberbullying. While youth and parents are willing to disclose their experiences with bullying to their health care providers, these disclosures need to be taken seriously and handled in a caring manner. Health care providers need to include questions about bullying on intake forms to encourage these disclosures. The aim of this article is to examine the current status of cyberbullying prevention and intervention. Research support for several school-based intervention programs is summarised. Recommendations for future research are provided.

  16. Current direction and CTD data from moored current meter and CTD casts in the North Pacific Ocean from 1979-02-05 to 1980-12-01 (NODC Accession 8300042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction and CTD data were collected using moored current meter and CTD casts in the North Pacific Ocean from February 5, 1979 to December 1, 1980. Data...

  17. Supply chain management models, applications, and research directions

    CERN Document Server

    Pardalos, Panos; Romeijn, H

    2005-01-01

    This work brings together some of the most up to date research in the application of operations research and mathematical modeling te- niques to problems arising in supply chain management and e-Commerce. While research in the broad area of supply chain management enc- passes a wide range of topics and methodologies, we believe this book provides a good snapshot of current quantitative modeling approaches, issues, and trends within the field. Each chapter is a self-contained study of a timely and relevant research problem in supply chain mana- ment. The individual works place a heavy emphasis on the application of modeling techniques to real world management problems. In many instances, the actual results from applying these techniques in practice are highlighted. In addition, each chapter provides important mana- rial insights that apply to general supply chain management practice. The book is divided into three parts. The first part contains ch- ters that address the new and rapidly growing role of the inte...

  18. Research on Hearing and Balance--Current and Future Developments.

    Science.gov (United States)

    Snow, James B., Jr.

    1997-01-01

    This article reviews current research that has located disease genes causing hearing impairments, discovered the ability of sensory cells of the inner ear to regenerate, developed vaccines to prevent otitis media, developed programmable hearing aids, improved cochlear implants, and demonstrated the positive effects of physical therapy with balance…

  19. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  20. FOREIGN DIRECT INVESTMENTS DURING FINANCIAL CRISES

    Directory of Open Access Journals (Sweden)

    VINTILA DENISIA MARIANA

    2011-12-01

    Full Text Available The fundamental idea of International capital flows is that short-term flows can be easily reversed, while flows on a longer time horizon are more stable. Crises are associated with withdrawals of short-term capital flows and growth of the foreign direct investment flows. The current crisis has meant a major decline of international capital flows, also of the foreign direct investment. The analysis in this article tries to establish if and under which conditions foreign direct investments can bring greater stability during the crisis, comparing the evolution of foreign direct investments in the current crisis with their response in previous crises. We show that during previous crises foreign direct investments were stable, behaving differently from other types of capital. Yet, during the current crisis, foreign direct investments have proven to be not so stable and all the components declined, raising questions about the resumption of the positive trend. The stability of foreign direct investments in the past was given by the increase of mergers and acquisitions during the crisis, reflecting fire-sale FDI. This feature is not found in the current crisis as mergers and acquisitions were severe affected by the crises and recorded a major decline. The current paper is realized in the doctoral program entitled PhD in economics at the standards of European knowledge- DoEsEc, scientific coordinator Prof. PhD Rodica Zaharia, institution The Academy of Economic Studies Bucharest, Faculty of International Business, period of research 2009-2012.