WorldWideScience

Sample records for current negative ion

  1. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.

    1994-01-01

    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  2. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  3. High-current negative hydrogen ion beam production in a cesium-injected multicusp source

    International Nuclear Information System (INIS)

    Takeiri, Y.; Tsumori, K.; Kaneko, O.

    1997-01-01

    A high-current negative hydrogen ion source has been developed, where 16.2 A of the H - current was obtained with a current density of 31 mA/cm 2 . The ion source is a multicusp source with a magnetic filter for negative ion production, and cesium vapor is injected into the arc chamber, leading to enhancement of the negative ion yields. The cesium-injection effects are discussed, based on the experimental observations. Although the surface production of the negative ions on the cesium-covered plasma grid is thought to be a dominant mechanism of the H - current enhancement, the cesium effects in the plasma volume, such as the cesium ionization and the electron cooling, are observed, and could contribute to the improved operation of the negative ion source. (author)

  4. Lower hybrid drift instability in modified Harris current sheet with negative ions

    International Nuclear Information System (INIS)

    Huang Feng; Chen, Y-H; Shi Guifen; Hu, Z-Q; Yu, M Y

    2008-01-01

    The lower hybrid drift instability (LHDI) in a Harris current sheet with negative ions is investigated using the kinetic theory. Numerical results show that the negative ions have considerable effect on the LHDI. With increase of the negative-ion concentration, the growth rate of the LHDI increases and its real frequency decreases for any wave length. The Harris current sheet can thus be significantly modified

  5. Negative ion sources

    International Nuclear Information System (INIS)

    Ishikawa, Junzo; Takagi, Toshinori

    1983-01-01

    Negative ion sources have been originally developed at the request of tandem electrostatic accelerators, and hundreds of nA to several μA negative ion current has been obtained so far for various elements. Recently, the development of large current hydrogen negative ion sources has been demanded from the standpoint of the heating by neutral particle beam injection in nuclear fusion reactors. On the other hand, the physical properties of negative ions are interesting in the thin film formation using ions. Anyway, it is the present status that the mechanism of negative ion action has not been so fully investigated as positive ions because the history of negative ion sources is short. In this report, the many mechanisms about the generation of negative ions proposed so far are described about negative ion generating mechanism, negative ion source plasma, and negative ion generation on metal surfaces. As a result, negative ion sources are roughly divided into two schemes, plasma extraction and secondary ion extraction, and the former is further classified into the PIG ion source and its variation and Duoplasmatron and its variation; while the latter into reflecting and sputtering types. In the second half of the report, the practical negative ion sources of each scheme are described. If the mechanism of negative ion generation will be investigated more in detail and the development will be continued under the unified know-how as negative ion sources in future, the development of negative ion sources with which large current can be obtained for any element is expected. (Wakatsuki, Y.)

  6. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    International Nuclear Information System (INIS)

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2004-01-01

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source

  7. Negative ion sourcery

    International Nuclear Information System (INIS)

    Os, C.F.A. van.

    1989-01-01

    The work described in this thesis is involved by current research programs in the field of nuclear-fusion. A brief introduction to fusion is given, anticipated problems related to current drive of the fusion plasma are pinpointed and probable suggestions to overcome these problems are described. One probable means for current drive is highlighted; Neutral Beam Injection (NBI). This is based on injecting a 1 MeV neutral hydrogen or deuterium beam into a fusion plasma. Negative ions are needed as primary particles because they can easily be neutralized at 1 MeV. The two current schemes for production of negative ions are described, volume production and negative surface ionization. The latter method is extensively studied in this thesis. (author). 171 refs.; 55 figs.; 7 tabs

  8. High current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Onai, M.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Kanagawa 223-8522 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Okumura, Y. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Aomori 039-3212 (Japan)

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  9. Experimental study of high current negative ion sources D- / H-. Analysis based on the simulation of the negative ion transport in the plasma source

    International Nuclear Information System (INIS)

    Riz, D.

    1996-01-01

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm 2 of D - . The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm 2 have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H - /H + and of charge exchange H - /H 0 are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H - /D - and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author)

  10. Formation of hydrogen negative ions by surface and volume processes with application to negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1979-01-01

    During the last few decades interest in negative-hydrogen ion sources has been directed mainly toward synchrotron and other particle accelerator applications, with emphasis on high current densities delivered for short pulses. But within the last several years there has been an awareness in the magnetic fusion program of the future need for negative ions as a means for generating high energy neutral beams, beams with energies above a few hundred keV. Negative ions seem to be the only effective intermediary for efficiently producing such beams. Although methods for generating negative ion beams have relied upon synchrotron concepts, the requirements for fusion are very different: here one is interested in more moderate current densities, up to 100 m A cm -2 , but with continuous operation. Proposed source modules would accelerate of the order of 10 A of beam current and deliver several megawatts of beam power. Both H - and D - beams are being considered for application in different reactor systems. The conceptualization of negative ion sources is now in a very volatile stage. But of the great variety of proposals that have been offered to date, three general areas appear ready for development. These are: first, the double charge exchange method for converting a positive ion beam into a negative ion beam; second, electron-volume processes wherein low energy electrons interacting with molecular species lead to negative ion products via dissociative attachment or recombination; and third, generation of negative ions in surface interactions, principally via desorption and backscattering. Both our qualitative and our quantitative understanding of these processes diminishes as one proceeds from the first through the third. The physics of these three methods is considered in detail

  11. Cesium injection system for negative ion duoplasmatrons

    International Nuclear Information System (INIS)

    Kobayashi, M.; Prelec, K.; Sluyters, T.J.

    1978-01-01

    A design for admitting cesium vapor into a hollow hydrogen plasma discharge in a duoplasmatron ion source for the purpose of increasing the negative hydrogen ion output current is described. 60 mA beam currents for negative hydrogen ions are reported

  12. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  13. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  14. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  15. Fundamental properties of secondary negative ion emission by sputtering

    International Nuclear Information System (INIS)

    Shimizu, Toshiki; Tsuji, Hiroshi; Ishikawa, Junzo

    1989-01-01

    The report describes some results obtained from preliminary experiments on secondary negative ion emission from a cesiated surface by Xe-ion beam sputtering, which give the production probability. A measuring system is constructed for secondary negative ion emission. The system consists of a microwave ion source with a lens, a sputtering target holder with a heater, a cesium oven, a limiting aperture with a substrate for deposition, a negative-ion extractor and lens, and a ExB type mass separator. Observations are made on the dependence of negative ion current on cesium supply, dependence of negative ion current on target temperature, and negative ion production probability. The cesium supply and the target temperature are found to strongly influence the negative ion emission. By controlling these factors, the optimum condition for secondary negative ion emission is achieved with a minimum surface work function. The production probability of the negative ion is found to be very high, about 20% for carbon. Therefore, the secondary negative ion emission is considered a useful and highly efficient method to obtain high current ion beams. The constant in the Rasser's theoretical equation is experimentally determined to be 4.1 x 10 -4 eV sec/m. (N.K.)

  16. Honeycomb surface-plasma negative-ion source

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.

    1983-01-01

    A honeycomb surface-plasma source (SPS) of negative hydrogen ions the cathode of which consists of a great number of cells with spherical-concave surfaces, is described. Negative ions, knocked off the cathode by cesium-hydrogen discharge fast particles are accelerated in the near-cathode potential drop layer and focused geometrically on small emission apertures in the anode. Due to this, the gas and energy efficiency of the source is increased and the power density on the cathode is decreased. The H - yield is proportional to the number of celts. A pulse beam of negative ions with current up to 4 A is obtained and accelerated to 25 kV from the cathode effective area of 10.6 cm 2 through emission ports of 0.5 cm 2 total area. The honeycomb SPSs with a greater number of cells are promising as regards obtaining negative ion-beams with the current of scores of amperes

  17. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    International Nuclear Information System (INIS)

    Toi, Kazuo; Hiraki, Naoji; Nakamura, Kazuo; Mitarai, Osamu; Kawai, Yoshinobu

    1980-01-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence. (author)

  18. Efficient ion heating of tokamak plasma by application of positive and negative current pulse in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-02-01

    The efficient heating of bulk ions of tokamak plasma is observed by application of the pulsed toroidal electric field much higher than the Dreicer field with the positive and negative polarities for the ohmic heating field. No deleterious effect on the confinement properties of tokamak plasma appears by the heating. The decay time of ion temperature raised by the heating pulse agrees well with the prediction by the neoclassical transport theory. The magnitude of the current induced by the pulsed electric field with the positive polarity is limited by the violent current disruption. In the case of the negative polarity, this is limited by lack of the MHD equilibrium due to vanishing the total plasma current. The ratio of drift velocity to electron thermal one / attains around 0.5, which suggests that the efficient ion heating may be due to the current-driven turbulence.

  19. Negative Ion Density Fronts

    International Nuclear Information System (INIS)

    Igor Kaganovich

    2000-01-01

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas

  20. Plasma-surface interaction in negative hydrogen ion sources

    Science.gov (United States)

    Wada, Motoi

    2018-05-01

    A negative hydrogen ion source delivers more beam current when Cs is introduced to the discharge, but a continuous operation of the source reduces the beam current until more Cs is added to the source. This behavior can be explained by adsorption and ion induced desorption of Cs atoms on the plasma grid surface of the ion source. The interaction between the ion source plasma and the plasma grid surface of a negative hydrogen ion source is discussed in correlation to the Cs consumption of the ion source. The results show that operation with deuterium instead of hydrogen should require more Cs consumption and the presence of medium mass impurities as well as ions of the source wall materials in the arc discharge enlarges the Cs removal rate during an ion source discharge.

  1. Surface negative ion production in ion sources

    International Nuclear Information System (INIS)

    Belchenko, Y.

    1993-01-01

    Negative ion sources and the mechanisms for negative ion production are reviewed. Several classes of sources with surface origin of negative ions are examined in detail: surface-plasma sources where ion production occurs on the electrode in contact with the plasma, and ''pure surface'' sources where ion production occurs due to conversion or desorption processes. Negative ion production by backscattering, impact desorption, and electron- and photo-stimulated desorption are discussed. The experimental efficiencies of intense surface negative ion production realized on electrodes contacted with hydrogen-cesium or pure hydrogen gas-discharge plasma are compared. Recent modifications of surface-plasma sources developed for accelerator and fusion applications are reviewed in detail

  2. Observation of bulk-ion heating in a tokamak plasma by application of positive and negative current pulses in TRIAM-1

    Energy Technology Data Exchange (ETDEWEB)

    Toi, K; Hiraki, N; Nakamura, K; Mitarai, O; Kawai, Y; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1980-09-01

    A positive of negative current pulse induced by a pulsed toroidal electric field much higher than the Dreicer field increases the bulk-ion temperature of the plasma centre two to three times, without macroscopic plasma destruction. The decay time of the raised ion temperature agrees well with the prediction from neoclassical transport theory. The magnitude of the positive current pulse is limited by violent current disruption, and that of the negative current by a lack of MHD equilibrium which is due to a marked reduction of the total plasma current. The relevant current-driven instabilities in the turbulent heating of a tokamak plasma, skin heating and inward transfer of the energy deposition in the skin layer are briefly discussed.

  3. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  4. A future, intense source of negative hydrogen ions

    Science.gov (United States)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  5. Negative electrodes for Na-ion batteries.

    Science.gov (United States)

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  6. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  7. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  8. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  9. Development of a compact powdery sample negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Motoi [Doshisha Univ., Tanabe, Kyoto (Japan). Faculty of Engineering; Sasao, Mamiko; Kawano, Hiroyuki

    1997-02-01

    A gas-feed-free compact negative ion source can be realized by utilizing the process of electron stimulated desorption from powdery sample. A negative ion source of this type is designed to be attached to a standard 1.33 inch copper-gasket-flange. The ion source is operated stable with LiH powder for more than 10 hours with the mass-separated negative hydrogen ion current of 1 nA. The source causes minute gas emission, and particularly suitable for ion beam applications in which a good vacuum is required. The present status of the compact ion source development is briefly described. (author)

  10. Negative-ion-beam generation with the ORNL SITEX source

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.; Kim, J.

    1982-05-01

    Parametric studies were made on a hot cathode reflex discharge H - Surface Ionization source with Transverse Extraction (SITEX) in both the pure hydrogen and the mixed hydrogen-cesium mode. Extraction current density, beam current, gas efficiency, extracted electron-to-H - current ratio, heavy negative ion impurities, optics, and long pulse operation were investigated as a function of time, arc voltage, arc current, converter voltage, H 2 gas flow, cesium feed rate, and plasma generator geometries. Initial results of the research were an extracted H - beam current density of 56 mA/cm 2 at 23 mA for 5 s pulses and, gas efficiency of 3%, theta/sub perpendicular/ (1/e) approx. 2 +- 1 0 , theta/sub parallel/ (1/e) approx. 1 +- 1 0 , at a beam energy of 25 keV. Negative heavy ion beam impurities were reduced to - ions are produced prinicpally by positive ion surface conversion using elemental cesium fractional monolayer coverage on a molybdenum converter substrate, which is biased negatively with respect to the anode

  11. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  12. Negative-ion states

    International Nuclear Information System (INIS)

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures

  13. Two-dimensional particle simulation of negative ion extraction from a volume source

    International Nuclear Information System (INIS)

    Naitou, H.; Fukumasa, O.; Sakachou, K.; Mutou, K.

    1995-01-01

    Two-dimensional electrostatic particle simulation was done to study the extraction of negative ions from a volume plasma source. The simulation model is a rectangular system which consists of an extraction grid, a plasma grid, and a grounded wall. Full dynamics of electrons, ions, and negative ions are followed. Negative ions are extracted from the plasma region to the extraction grid through a slit in the plasma grid. For the lower value of extraction grid potential, the simulation results agree with the Child-Langumuir law, where the extracted negative ion current is proportional to the three-halves power of the potential of the extraction grid. For the higher value of extraction grid potential, the space charge effect of negative ions, which enter into the beamline at the top of the concavity of the positive ion boundary, reduces the negative ion current from the prediction of the Child-Langumuir law. ((orig.))

  14. Negative ion beam extraction in ROBIN

    International Nuclear Information System (INIS)

    Bansal, Gourab; Gahlaut, Agrajit; Soni, Jignesh; Pandya, Kaushal; Parmar, Kanu G.; Pandey, Ravi; Vuppugalla, Mahesh; Prajapati, Bhavesh; Patel, Amee; Mistery, Hiren; Chakraborty, Arun; Bandyopadhyay, Mainak; Singh, Mahendrajit J.; Phukan, Arindam; Yadav, Ratnakar K.; Parmar, Deepak

    2013-01-01

    Highlights: ► A RF based negative hydrogen ion beam test bed has been set up at IPR, India. ► Ion source has been successfully commissioned and three campaigns of plasma production have been carried out. ► Extraction system (35 kV) has been installed and commissioning has been initiated. Negative ion beam extraction is immediate milestone. -- Abstract: The RF based single driver −ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 10 12 cm −3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm 2 as observed in BATMAN. In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 10 11 cm −3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated

  15. Progress of the ''batman'' RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Heinemann, B.; Kraus, W.; Probst, F.; Speth, E.; Vollmer, O.; Bucalossi, J.; Trainham, R.

    1998-01-01

    The aim of a collaboration between CEA Cadarache and IPP Garching is to investigate the ability of an rf source to produce negative-ion current densities compatible with ITER NBI requirements (20 mA/cm 2 D-). A standard PlNI-size rf source developed for ASDEX-Upgrade and a three-grid extraction system form the basis of BATMAN (Bavarian Test Machine for Negative Ions). In the case of a pure hydrogen plasma a current density of 5.5 mA/cm 2 at elevated pressure (2.4 Pa) can be reached. Adding small amounts of argon ( 2 . In the low pressure range (0.7 Pa) the negative ion yield is strongly reduced, but with an admixture of argon and a cesium injection the current density is higher approx. by a factor 8 (4 mA/cm 2 ) compared to the pure hydrogen discharge. The negative ion yield shows a saturation with increasing rf power. (author)

  16. Improvement of JT-60U Negative Ion Source Performance

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kuriyama, M.; Kawai, M.; Itoh, T.; Umeda, N.

    2000-01-01

    The negative ion neutral beam system now operating on JT-60U was the first application of negative ion technology to the production of beams of high current and power for conversion to neutral beams, and has successfully demonstrated the feasibility of negative ion beam heating systems for ITER and future tokamak reactors [1, 2]. It also demonstrated significant electron heating[3] and high current drive efficiency in JT-60U[4]. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. We have explored the physical mechanisms responsible for these processes, and implemented solutions for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and nonuniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roug hly a third, and permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density, and in coping with the sensitivity of the cesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered

  17. Investigation of a large volume negative hydrogen ion source

    International Nuclear Information System (INIS)

    Courteille, C.; Bruneteau, A.M.; Bacal, M.

    1995-01-01

    The electron and negative ion densities and temperatures are reported for a large volume hybrid multicusp negative ion source. Based on the scaling laws an analysis is made of the plasma formation and loss processes. It is shown that the positive ions are predominantly lost to the walls, although the observed scaling law is n + ∝I 0.57 d . However, the total plasma loss scales linearly with the discharge current, in agreement with the theoretical model. The negative ion formation and loss is also discussed. It is shown that at low pressure (1 mTorr) the negative ion wall loss becomes a significant part of the total loss. The dependence of n - /n e versus the electron temperature is reported. When the negative ion wall loss is negligible, all the data on n - /n e versus the electron temperatures fit a single curve. copyright 1995 American Institute of Physics

  18. Production of negative helium ions

    International Nuclear Information System (INIS)

    Toledo, A.S. de; Sala, O.

    1977-01-01

    A negative helium ion source using potassium charge exchange vapor has been developed to be used as an injector for the Pelletron accelerator. 3 He and α beam currents of up to 2μA have been extracted with 75% particle transmission through the machine [pt

  19. Negative ion sources for tandem accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1980-08-01

    Four kinds of negative ion sources (direct extraction Duoplasmatron ion source, radial extraction Penniing ion source, lithium charge exchange ion source and Middleton-type sputter ion source) have been installed in the JAERI tandem accelerator. The ion sources can generate many negative ions ranging from Hydrogen to Uranium with the exception of Ne, Ar, Kr, Xe and Rn. Discussions presented in this report include mechanisms of negative ion formation, electron affinity and stability of negative ions, performance of the ion sources and materials used for negative ion production. Finally, the author will discuss difficult problems to be overcome in order to get any negative ion sufficiently. (author)

  20. Metal negative ion beam extraction from a radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  1. Effect of Cesium and Xenon Seeding in Negative Hydrogen Ion Sources

    International Nuclear Information System (INIS)

    Bacal, M.; Brunteau, A.M.; Deniset, C.; Elizarov, L.I.; Sube, F.; Tontegode, A.Y.; Whealton, J.H.

    1999-01-01

    It is well known that cesium seeding in volume hydrogen negative ion sources leads to a large reduction of the extracted electron current and in some cases to the enhancement of the negative ion current. The cooling of the electrons due to the addition of this heavy impurity was proposed as a possible cause of the mentioned observations. In order to verify this assumption, the authors seeded the hydrogen plasma with xenon, which has an atomic weight almost equal to that of cesium. The plasma properties were studied in the extraction region of the negative ion source Camembert III using a cylindrical electrostatic probe while the negative ion relative density was studied using laser photodetachment. It is shown that the xenon mixing does not enhance the negative ion density and leads to the increase of the electron density, while the cesium seeding reduces the electron density

  2. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  3. Extraction of low-energy negative oxygen ions for thin film formation

    International Nuclear Information System (INIS)

    Vasquez, M. Jr.; Sasaki, D.; Kasuya, T.; Wada, M.; Maeno, S.

    2011-01-01

    Coextraction of low-energy positive and negative ions were performed using a plasma sputter-type ion source system driven by a 13.56 MHz radio frequency (rf) power. Titanium (Ti) atoms were sputtered out from a target and the sputtered neutrals were postionized in oxygen/argon (O 2 /Ar) plasma prior to extraction. The negative O ions were surface-produced and self-extracted. Mass spectral analyses of the extracted ion beams revealed the dependence of the ion current on the incident rf power, induced target bias and O 2 /Ar partial pressure ratio. Ti + current was found to be dependent on Ar + current and reached a saturation value with increasing O 2 partial pressure while the O - current showed a peak current at around 1:9 O 2 /Ar partial pressure ratio. Ti + current was several orders of magnitude higher than that of the O - current.

  4. Volume generation of negative ions in high density hydrogen discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1983-01-01

    A parametric survey is made of a high-density tandem two-chamber hydrogen negative ion system. The optimum extracted negative ion current densities are sensitive to the atom concentration in the discharge and to the system scale length. For scale lengths ranging from 10 cm to 0.1 cm optimum current densities range from of order 1 to 100 mA cm -2 , respectively

  5. Transport of negative ions across a double sheath with a virtual cathode

    International Nuclear Information System (INIS)

    McAdams, R; King, D B; Surrey, E; Holmes, A J T

    2011-01-01

    A one-dimensional analytical model of the sheath in a negative ion source, such as those proposed for heating and diagnostic beams on present and future fusion devices, has been developed. The model, which is collisionless, describes the transport of surface produced negative ions from a cathode, across the sheath to a plasma containing electrons, positive ions and negative ions. It accounts for the situation where the emitted flux of negative ions is greater than the space charge limit, where the electric field at the cathode is negative, and a virtual cathode is formed. It is shown that, in the presence of a virtual cathode, there is a maximum current density of negative ions that can be transported across the sheath into the plasma. Furthermore, for high rates of surface production the virtual cathode persists regardless of the negative bias applied to the cathode, so that the current density transported across the sheath is limited. This is a significant observation and implies that present negative ion sources may not be exploiting all of the surface production available. The model is used to calculate the transported negative ion flux in a number of examples. The limitations of the model and proposed future work are also discussed.

  6. Design of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Kuriyama, M.; Araki, M.; Inoue, T.; Kunieda, S.; Matsuoka, M.; Mizuno, M.; Ohara, Y.; Okumura, Y.; Oohara, H.; Watanabe, K.

    1992-01-01

    This paper reports on a negative-ion based NBI system which is planned as a key device on the JT-60U in the experiments of current drive and plasma core heating with high density plasmas. The NBI system will inject neutral beams of 500keV, 10MW for 10sec from a beamline with two ion sources. The neutral beam will be injected tangentially in the codirection. Each ion source is a modified volume production-type negative-ion source with cesium vapor. The acceleration current is 22A with deuterium beam, and the current density is 13mA/cm 2 . An operational pressure in the negative-ion generator is less than 0.5 Pa. A three-stage electro static acceleration system is adopted as the accelerator. The beamline length between the ion source and the injection port is 24m. The beamline consists of an ion source tank, neutralizer cells of 10m in length, an ion dump tank and a drift duct. The ion source tank contains large cryopumps to maintain the exit of the ion source sufficiently low. The ion dump tank contains ion deflecting coils, ion dumps for positive and negative ions, a calorimeter, cryopumps and beam scrapers. Residual ions are deflected by the combined magnetic fields produced by the deflecting coils and the stray field form the tokamak. The two sources are connected to an acceleration power supply of 500kV/64A/10sec, while the negative-ion generator power, the extraction voltage, and electron-suppression voltage are fed individually

  7. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  8. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    Science.gov (United States)

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments.

  9. A 1D ion species model for an RF driven negative ion source

    Science.gov (United States)

    Turner, I.; Holmes, A. J. T.

    2017-08-01

    A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.

  10. Power supply system for negative ion source at IPR

    Science.gov (United States)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  11. Power supply system for negative ion source at IPR

    International Nuclear Information System (INIS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K G; Soni, Jignesh; Bandyopadhyay, M; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-01-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ∼5 x 10 12 cm -3 , from which ∼ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (∼15 to 35kV), and high current (∼ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (∼50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (∼ 50kV) isolated from the system. The paper shall

  12. Negative ion detachment processes

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1990-10-01

    This paper discusses the following topics: H - and D - collisions with atomic hydrogen; collisional decomposition of SF 6 - ; two-electron loss processes in negative ion collisions; associative electron detachment; and negative ion desorption from surfaces

  13. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  14. Ion exchange currents in vacuum accelerator tubes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Thorn, R.

    1978-01-01

    Ion exchange currents (microdischarges) have been observed in short lengths of accelerator tube. The occurrence of these discharges can be related to the trajectories of ions in the tube. High-resolution mass spectra of the negative and positive ion components have been obtained. (author)

  15. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  16. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.

    2008-01-01

    Some years ago it was suggested that halogen negative ions (1)could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion-ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component--positive ions, negative ions, and electrons--can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed

  17. Pulsed negative hydrogen source for currents up to one ampere

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    During the 2nd Symposium on Ion Sources and Formation of Ion Beams, the development of a Mk II pulsed double slit magnetron source for the production of negative hydrogen ions was discussed. The source was capable of yielding beam currents up to 125 milliamperes, corresponding to current densities of 1.25 A/cm 2 . In order to increase negative hydrogen beam intensities by an order of magnitude (this would be quite useful for initial high energy neutral injector systems on Tokamaks), a larger, Mk III magnetron has been constructed, with the number of slits increased up to six. The idea was to utilize in a more efficient way the plasma width. In addition, such a source geometry will be more adaptable for beam formation and acceleration than single slit structures. With three extraction slits, a negative hydrogen yield of 300 mA was obtained with current densities of 1.2 A/cm 2 ; preliminary results with six extraction slits showed beam currents in excess of half an ampere with averaged current densities in excess of 0.75 A/cm 2 . (U.S.)

  18. Effect of cesium seeding on hydrogen negative ion volume production

    International Nuclear Information System (INIS)

    Bacal, M.; Balghiti-Sube, F. El; Elizarov, L. I.; Tontegode, A. J.

    1998-01-01

    The effect of cesium vapor partial pressure on the plasma parameters has been studied in the dc hybrid negative ion source ''CAMEMBERT III.'' The cesium vapor pressure was varied up to 10 -5 Torr and was determined by a surface ionization gauge in the absence of the discharge. The negative ion relative density measured by laser photodetachment in the center of the plasma extraction region increases by a factor of four when the plasma is seeded with cesium. However the plasma density and the electron temperature (determined using a cylindrical electrostatic probe) are reduced by the cesium seeding. As a result, the negative ion density goes up by a factor of two at the lowest hydrogen pressure studied. The velocity of the directed negative ion flow to the plasma electrode, determined from two-laser beam photodetachment experiments, appears to be affected by the cesium seeding. The variation of the extracted negative ion and electron currents versus the plasma electrode bias will also be reported for pure hydrogen and cesium seeded plasmas. The cesium seeding leads to a dramatic reduction of the electron component, which is consistent with the reduced electron density and temperature. The negative ion current is enhanced and a goes through a maximum at plasma electrode bias lower than 1 V. These observations lead to the conclusion that the enhancement of pure volume production occurs in this type of plasma. Possible mechanisms for this type of volume process will be discussed

  19. Development of the long pulse negative ion source for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S.; Svensson, L.; Esch, H.P.L. de; Krylov, A.; Massmann, P. [Association EURATOM-CEA, CEA/DSM/DRFC, CEA-Cadarache, 13 - St Paul-lez-Durance (France); Boilson, D. [Association EURATOM -DCU, PRL/NCPST, Glasnevin, Dublin (Ireland); Fanz, U. [Association EURATOM-IPP, Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Zaniol, B. [CONSORZIO RFX Association EURATOM-ENEA, Padova (Italy)

    2005-07-01

    A model of the ion source designed for the neutral beam injectors of the International Thermonuclear Experimental Reactor (ITER), the KAMABOKO III ion source, is being tested on the MANTIS test stand at the DRFC Cadarache in collaboration with JAERI, Japan, who designed and supplied the ion source. The ion source is attached to a 3 grid 30 keV accelerator (also supplied by JAERI) and the accelerated negative ion current is determined from the energy deposited on a calorimeter located 1.6 m from the source. During experiments on MANTIS three adverse effects of long pulse operation were found. First the negative ion current to the calorimeter is {approx} 50% of that obtained from short pulse operation. Secondly increasing the plasma grid (PG) temperature results in {<=} 40% enhancement in negative ion yield, substantially below that reported for short pulse operation, {>=} 100%. And thirdly the caesium 'consumption' is up to 1500 times that expected. Results presented here indicate that each of these is, at least partially, explained by thermal effects. Additionally presented are the results of a detailed characterisation of the source, which enable the most efficient mode of operation to be identified. (authors)

  20. Prototype inverted sputter source for negative heavy ions

    International Nuclear Information System (INIS)

    Minehara, Eisuke; Kobayashi, Chiaki; Kikuchi, Shiroh

    1977-10-01

    A sputter source from which negative heavy ion beam is extracted through a tungsten wire and disc ionizer was built and tested. An alkali metal surface ionization gun with the ionizer is described, and also performance of the surface ionization gun and of the sputter source for negative heavy ions using the gun is reported. The gun was tested for three alkali metals, i.e. sodium, potassium and cesium. Total potassium beam current of 1-2mA was obtained at entrance aperture of the magnet. Sputtering materials and gases for producing negative heavy ions are carbon, copper, aluminium, molybdenum, oxygen and air. With carbon and leakage air, the beam intensities analyzed are: 2-5μA (at Faraday cup) and 4.6-11μA (at exit slit) for C - , 3-5μA (at Faraday cup) and 6.8-11μA (at exit slit) for 2C - , and 11-15μA (at Faraday cup) and 25-34μA (at exit slit) for O - . Total beam current at the entrance aperture was 200-400μA. (auth.)

  1. Charging of dust grains in a plasma with negative ions

    Science.gov (United States)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-05-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended SF6 is admitted into the vacuum system. The relatively cold (Te≈0.2eV ) readily attach to SF6 molecules to form SF6- negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ɛ, the ratio of the electron to positive ion density, is sufficiently small. The K+ positive ions (mass 39amu) and SF6- negative ions (mass 146amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains.

  2. Plasma diagnostic tools for optimizing negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Fantz, U.; Falter, H.D.; Franzen, P.; Speth, E.; Hemsworth, R.; Boilson, D.; Krylov, A.

    2006-01-01

    The powerful diagnostic tool of optical emission spectroscopy is used to measure the plasma parameters in negative hydrogen ion sources based on the surface mechanism. Results for electron temperature, electron density, atomic-to-molecular hydrogen density ratio, and gas temperature are presented for two types of sources, a rf source and an arc source, which are currently under development for a neutral beam heating system of ITER. The amount of cesium in the plasma volume is obtained from cesium radiation: the Cs neutral density is five to ten orders of magnitude lower than the hydrogen density and the Cs ion density is two to three orders of magnitude lower than the electron density in front of the grid. It is shown that monitoring of cesium lines is very useful for monitoring the cesium balance in the source. From a line-ratio method negative ion densities are determined. In a well-conditioned source the negative ion density is of the same order of magnitude as the electron density and correlates with extracted current densities

  3. An overview of negative hydrogen ion sources for accelerators

    Science.gov (United States)

    Faircloth, Dan; Lawrie, Scott

    2018-02-01

    An overview of high current (>1 mA) negative hydrogen ion (H-) sources that are currently used on particle accelerators. The current understanding of how H- ions are produced is summarised. Issues relating to caesium usage are explored. The different ways of expressing emittance and beam currents are clarified. Source technology naming conventions are defined and generalised descriptions of each source technology are provided. Examples of currently operating sources are outlined, with their current status and future outlook given. A comparative table is provided.

  4. Effect of negative ions on current growth and ionizing wave propagation in air

    International Nuclear Information System (INIS)

    Kline, L.E.

    1975-01-01

    The spatiotemporal development of electron and ion densities, electric fields, and luminosity are calculated for electron pulse experiments in overvolted parallel-plane gaps by numerically solving continuity equations together with Poisson's equation. Experimental coefficients for primary ionization, cathode photoemission, photoionization, and luminosity are used. Unambiguous determination of the coefficients for attachment, detachment, and charge transfer is not possible from available experimental results. Therefore, the calculations are repeated for three sets of coefficients for these processes, corresponding to the following assumptions: unstable negative ions, stable negative ions, and no negative ions. The results of the calculations show, in each case, that the electron pulse initiates an avalanche which grows exponentially until the onset of space-charge effects. The calculated growth rate is strongly affected by the assumed attachment, detachment, and charge-transfer coefficients. When the total number of electrons in the avalanche reaches approx.10 8 , anode- and cathode-directed ionizing waves, or streamers, develop from the avalanche and produce a weakly ionized filamentary plasma. The calculated ionizing wave velocities are strongly increasing functions of the space-charge--enhanced electric field within the waves and are insensitive to the assumed attachment, detachment, and charge-transfer coefficients. The numerically calculated ionizing wave velocities are in approximate agreement with a simple analytical theory

  5. A model for negative ion extraction and comparison of negative ion optics calculations to experimental results

    International Nuclear Information System (INIS)

    Pamela, J.

    1990-10-01

    Negative ion extraction is described by a model which includes electron diffusion across transverse magnetic fields in the sheath. This model allows a 2-Dimensional approximation of the problem. It is used to introduce electron space charge effects in a 2-D particle trajectory code, designed for negative ion optics calculations. Another physical effect, the stripping of negative ions on neutral gas atoms, has also been included in our model; it is found to play an important role in negative ion optics. The comparison with three sets of experimental data from very different negative ion accelerators, show that our model is able of accurate predictions

  6. First results from negative ion beam extraction in ROBIN in surface mode

    Science.gov (United States)

    Pandya, Kaushal; Gahlaut, Agrajit; Yadav, Ratnakar K.; Bhuyan, Manas; Bandyopadhyay, Mainak; Das, B. K.; Bharathi, P.; Vupugalla, Mahesh; Parmar, K. G.; Tyagi, Himanshu; Patel, Kartik; Bhagora, Jignesh; Mistri, Hiren; Prajapati, Bhavesh; Pandey, Ravi; Chakraborty, Arun. K.

    2017-08-01

    ROBIN, the first step in the Indian R&D program on negative ion beams has reached an important milestone, with the production of negative ions in the surface conversion mode through Cesium (Cs) vapor injection into the source. In the present set-up, negative hydrogen ion beam extraction is effected through an extraction area of ˜73.38 cm2 (146 apertures of 8mm diameter). The three grid electrostatic accelerator system of ROBIN is fed by high voltage DC power supplies (Extraction Power Supply System: 11kV, 35A and Acceleration Power Supply System: 35kV, 15A). Though, a considerable reduction of co-extracted electron current is usually observed during surface mode operation, in order to increase the negative ion current, various other parameters such as plasma grid temperature, plasma grid bias, extraction to acceleration voltage ratio, impurity control and Cs recycling need to be optimized. In the present experiments, to control and to understand the impurity behavior, a Cryopump (14,000 l/s for Hydrogen) is installed along with a Residual Gas Analyzer (RGA). To characterize the source plasma, two sets of Langmuir probes are inserted through the diagnostic flange ports available at the extraction plane. To characterize the beam properties, thermal differential calorimeter, Doppler Shift Spectroscopy and electrical current measurements are implemented in ROBIN. In the present set up, all the negative ion beam extraction experiments have been performed by varying different experimental parameters e.g. RF power (30-70 kW), source operational pressure (0.3 - 0.6Pa), plasma grid bias voltage, extraction & acceleration voltage combination etc. The experiments in surface mode operation is resulted a reduction of co-extracted electron current having electron to ion ratio (e/i) ˜2 whereas the extracted negative ion current density was increased. However, further increase in negative ion current density is expected to be improved after a systematic optimization of the

  7. Recent negative ion source developments

    International Nuclear Information System (INIS)

    Alton, G.D.

    1978-01-01

    This report describes recent results obtained from studies associated with the development of negative ion sources which utilize sputtering in a diffuse cesium plasma as a means of ion beam generation. Data are presented which relate negative ion yield and important operational parameters such as cesium oven temperature and sputter probe voltage from each of the following sources: (1) A source based in principle according to the University of Aarhus design and (2) an axial geometry source. The important design aspects of the sources are given--along with a list of the negative ion intensities observed to date. Also a qualitative description and interpretation of the negative ion generation mechanism in sources which utilize sputtering in the presence of cesium is given

  8. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    Energy Technology Data Exchange (ETDEWEB)

    Kurutz, Uwe

    2017-01-19

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m{sup 2} from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the

  9. Investigations on Cs-free alternative materials for negative hydrogen ion formation

    International Nuclear Information System (INIS)

    Kurutz, Uwe

    2017-01-01

    Neutral beam injection (NBI) represents a main auxiliary heating and current drive system for thermonuclear fusion devices. For ITER, a total heating power of up to 33 MW will be delivered for up to one hour pulses at particle energies of up to 1 MeV by two NBI systems. The respective ion sources will therefore have to allow for the extraction and acceleration of negative hydrogen ions at a current density of 200 A/m 2 from a low pressure low temperature hydrogen plasma. Also for the succeeding demonstration reactor DEMO the application of NBI is currently discussed. Respective systems will, however, have to fulfil even higher demands, like higher powers (up to 135 MW), longer pulse lengths (2 h or even cw operation), and more restrictive constrains regarding the reliability and stability. Today efficient NBI negative hydrogen ion sources are based mainly on the conversion of positive hydrogen ions and/or hydrogen atoms at a grid surface coated with caesium. Cs is used for reducing the grid's work function which significantly enhances the particle conversion probability. However, the alkali metal is chemically very reactive and easily forms compounds with residual gas impurities. Furthermore, complex redistribution dynamics of the deposited Cs layer is given. This inherently links the application of Cs with a temporal and spatial non-stability of the negative ion yield, which contradicts the required reliability of a DEMO NBI system. Thus, for DEMO, Cs-free alternative materials for negative ion formation are investigated within this work at a flexible laboratory experiment. An ECR discharge is used which provides comparable parameters (pressure, densities, particle fluxes and -energies) to the NBI ion sources. Negative ion formation is measured above different material samples via laser photodetachment together with global plasma parameters using a Langmuir probe and optical emission spectroscopy. The plasma parameters are used for modelling the inherently

  10. SM-1 negative ion source

    International Nuclear Information System (INIS)

    Huang Zhenjun; Wang Jianzhen

    1987-01-01

    The working principle and characteristics of SM-1 Negative Ion Source is mainly introduced. In the instrument, there is a device to remove O 3 . This instrument can keep high density of negative ions which is generated by the electrical coronas setting out electricity at negative high voltage and can remove the O 3 component which is harmful to the human body. The density of negative ions is higher than 2.5 x 10 6 p./cm 3 while that of O 3 components is less than 1 ppb at the distance of 50 cm from the panel of the instrument. The instrument sprays negative ions automatically without the help of electric fan, so it works noiselessly. It is widely used in national defence, industry, agriculture, forestry, stock raising, sidelines and in the places with an equipment of low density of negative ion or high concentration of O 3 components. Besides, the instrument may also be used to treat diseases, to prevent against rot, to arrest bacteria, to purify air and so on

  11. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Kim, Su-Hyun; Merlino, Robert L.

    2006-01-01

    The effect of negative ions on the charging of dust particles in a plasma is investigated experimentally. A plasma containing a very low percentage of electrons is formed in a single-ended Q machine when SF 6 is admitted into the vacuum system. The relatively cold Q machine electrons (T e ≅0.2 eV) readily attach to SF 6 molecules to form SF 6 - negative ions. Calculations of the dust charge indicate that for electrons, negative ions, and positive ions of comparable temperatures, the charge (or surface potential) of the dust can be positive if the positive ion mass is smaller than the negative ion mass and if ε, the ratio of the electron to positive ion density, is sufficiently small. The Q machine plasma is operated with K + positive ions (mass 39 amu) and SF 6 - negative ions (mass 146 amu), and also utilizes a rotating cylinder to dispense dust into the plasma column. Analysis of the current-voltage characteristics of a Langmuir probe in the dusty plasma shows evidence for the reduction in the (magnitude) of the negative dust charge and the transition to positively charged dust as the relative concentration of the residual electrons is reduced. Some remarks are offered concerning experiments that could become possible in a dusty plasma with positive grains

  12. Extraction of negative lithium ions from a lithium-containing hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.; Sasao, M.

    1996-01-01

    Negative lithium ions (Li - ) were extracted from a 6-cm-diam 7-cm-long negative hydrogen ion (H - ) source to simulate the condition of Li - extraction from a Li vapor introduced ion source for the neutral beam heating. The amount of the Li - current extracted from a hydrogen plasma with Li vapor was comparable to that extracted from a pure Li plasma. However, the amount of the H - current decreased as the H 2 gas pressure in the source decreased due to a getter-pump effect of Li during the introduction of Li vapor. A heat shield installed to keep a high wall temperature was effective in mitigating the pressure decrease. However, the H - current extracted from the ion source equipped with the heat shield became 20% of the original value, as Li vapor was injected into the ion source. copyright 1996 American Institute of Physics

  13. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  14. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  15. Effect of high energy electrons on H{sup −} production and destruction in a high current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Onai, M., E-mail: onai@ppl.appi.keio.ac.jp; Fujita, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Etoh, H.; Aoki, Y. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Mattei, S.; Lettry, J. [CERN Rte de Meyrin, 1200 Geneva (Switzerland)

    2016-02-15

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H{sup −} production. The modelling results reasonably explains the dependence of the H{sup −} extraction current on the arc-discharge power in the experiments.

  16. Negative Ions in low pressure discharges

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Vender, D.; Haverlag, M.; Kroesen, G.M.W.; Hoog, de F.J.

    1995-01-01

    Several aspects of negative ions in low pressure discharges are treated. The elementary processes, in which negative ions are produced and destroyed, are summarized. The influence of negative ions on plasma operation is analyzed in terms of transport equations. It is shown that diffusion, electric

  17. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  18. Negative ion source improvement by introduction of a shutter mask

    International Nuclear Information System (INIS)

    Belchenko, Yu.I.; Oka, Y.; Kaneko, O.; Takeiri, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Asano, E.; Kawamoto, T.

    2004-01-01

    Studies of a multicusp source were recently done at the National Institute for Fusion Science by plasma grid masking. The maximal H - ion yield is ∼1.4 times greater for the shutter mask case than that for the standard source. Negative ion current evolution during the cesium feed to the masked plasma grid evidenced that about 60% of negative ions are produced on the shutter mask surface, while about 30% are formed on the plasma grid emission hole edges, exposed by cesium with the mask open

  19. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  20. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  1. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  2. System integration of RF based negative ion experimental facility at IPR

    Science.gov (United States)

    Bansal, G.; Bandyopadhyay, M.; Singh, M. J.; Gahlaut, A.; Soni, J.; Pandya, K.; Parmar, K. G.; Sonara, J.; Chakraborty, A.

    2010-02-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ~5 × 1012 cm-3. The source can deliver a negative ion beam of ~10 A with a current density of ~30 mA/cm2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  3. System integration of RF based negative ion experimental facility at IPR

    International Nuclear Information System (INIS)

    Bansal, G; Bandyopadhyay, M; Singh, M J; Gahlaut, A; Soni, J; Pandya, K; Parmar, K G; Sonara, J; Chakraborty, A

    2010-01-01

    The setting up of RF based negative ion experimental facility shall witness the beginning of experiments on the negative ion source fusion applications in India. A 1 MHz RF generator shall launch 100 kW RF power into a single driver on the plasma source to produce a plasma of density ∼5 x 10 12 cm -3 . The source can deliver a negative ion beam of ∼10 A with a current density of ∼30 mA/cm 2 and accelerated to 35 kV through an electrostatic ion accelerator. The experimental system is similar to a RF based negative ion source, BATMAN, presently operating at IPP. The subsystems for source operation are designed and procured principally from indigenous resources, keeping the IPP configuration as a base line. The operation of negative ion source is supported by many subsystems e.g. vacuum pumping system with gate valves, cooling water system, gas feed system, cesium delivery system, RF generator, high voltage power supplies, data acquisition and control system, and different diagnostics. The first experiments of negative ion source are expected to start at IPR from the middle of 2009.

  4. A feature of negative hydrogen ion production in the Uramoto-type sheet plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, Kouichi [Kyoto Univ., Uji (Japan). Inst. of Atomic Energy

    1997-02-01

    It seems that negative hydrogen ions H{sup -} are formed directly from atomic hydrogens H. When the chamber was biased more negative against the anode potential at constant are power, forming a much deeper electrostatic well in the Uramoto-type sheet plasma negative ion source, more negative hydrogen ion currents were extracted. The chamber potential V{sub B} was biased down to -100V in the 150V discharge. The negative ion current J{sup -} was evaluated by the JAERI-probe measurement. J{sup -} increases linearly with the chamber current I{sub B}. The largest J{sup -} value was obtained at absolute value of |V{sub prob,f}|=15V and absolute value of |V{sub B}|=100V; the discharge was not operated for absolute value of |V{sub B}|>100V. We speculate the following collisional (three-body) electron attachment to H as a possible production process for H{sup -}; e+e+H{yields}e+H{sup -}. This process may explain the linear increase of J{sup -} with absolute value of |V{sub prob,f}|. (S.Y.)

  5. Determination of the meniscus shape of a negative ion beam from an experimentally obtained beam profile

    Science.gov (United States)

    Ichikawa, M.; Kojima, A.; Chitarin, G.; Agostinetti, P.; Aprile, D.; Baltador, C.; Barbisan, M.; Delogu, R.; Hiratsuka, J.; Marconato, N.; Nishikiori, R.; Pimazzoni, A.; Sartori, E.; Serianni, G.; Tobari, H.; Umeda, N.; Veltri, P.; Watanabe, K.; Yoshida, M.; Antoni, V.; Kashiwagi, M.

    2017-08-01

    In order to understand the physics mechanism of a negative ion extraction in negative ion sources, an emission surface of the negative ions around an aperture at a plasma grid, so-called a meniscus, has been analyzed by an inverse calculation of the negative ion trajectory in a two dimensional beam analysis code. In this method, the meniscus is defined as the final position of the negative ion trajectories which are inversely calculated from the measured beam profile to the plasma grid. In a case of the volume-produced negative ions, the calculated meniscus by the inverse calculation was similar to that obtained in conventional beam simulation codes for positive ion extractions such as BEAMORBT and SLACCAD. The negative ion current density was uniform along the meniscus. This indicates that the negative ions produced in the plasma are transported to the plasma grid uniformly as considered in the transportation of the positive ions. However, in a surface production case of negative ions, where the negative ions are generated near the plasma grid with lower work function by seeding cesium, the current density in the peripheral region of the meniscus close to the plasma grid surface was estimated to be 2 times larger than the center region, which suggested that the extraction process of the surface-produced negative ions was much different with that for the positive ions. Because this non-uniform profile of the current density made the meniscus shape strongly concave, the beam extracted from the peripheral region could have a large divergence angle, which might be one of origins of so-called beam halo. This is the first results of the determination of the meniscus based on the experiment, which is useful to improve the prediction of the meniscus shape and heat loads based on the beam trajectories including beam halo.

  6. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  7. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    International Nuclear Information System (INIS)

    Abid, A. A.; Khan, M. Z.; Yap, S. L.; Terças, H.; Mahmood, S.

    2016-01-01

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q d  = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U 0 ) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0

  8. Development of versatile multiaperture negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M.; Minarello, A.; Sattin, M. [INFN-LNL, v.le dell' Universita n 2, I-35020, Legnaro (PD) Italy (Italy); Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S. [Consorzio RFX, Associazione Euratom-ENEA sulla fusione, c.so S. Uniti 4, 35127 Padova (Italy); and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  9. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    Science.gov (United States)

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  10. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  11. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  12. High-energy acceleration of an intense negative ion beam

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1995-02-01

    A high-current H - ion beam has been accelerated with the two-stage acceleration. A large negative hydrogen ion source with an external magnetic filter produces more than 10 A of the H - ions from the grid area of 25cm x 50cm with the arc efficiency of 0.1 A/kW by seeding a small amount of cesium. The H - ion current increases according to the 3/2-power of the total beam energy. A 13.6 A of H - ion beam has been accelerated to 125 keV at the operational gas pressure of 3.4 mTorr. The optimum beam acceleration is achieved with nearly the same electric fields in the first and the second acceleration gaps on condition that the ratio of the first acceleration to the extraction electric fields is adjusted for an aspect ratio of the extraction gap. The ratio of the acceleration drain current to the H - ion current is more than 1.7. That is mainly due to the secondary electron generated by the incident H - ions on the extraction grid and the electron suppression grid. The neutralization efficiency was measured and agrees with the theoretical calculation result. (author)

  13. Atomic processes, cross sections, and reaction rates necessary for modelling hydrogen-negative-ion sources and identification of optimum H- current densities

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The principal electron excitation cross sections for vibrational excitation in a hydrogen discharge are reported. In the first chamber of a two-chamber hydrogen negative-ion-source system subject to the beam-line constraint of a maximum gas pressure, the density of vibrationally excited molecules reaches an asymptote for increasing discharge current or the equivalent fast electron density. Operating near this first-chamber asymptote, there exists a spatially-dependent maximum negative-ion density in the second chamber. With the extraction grid placed at this maximum the optimum performance of a hydrogen-based system is determined. This optimum performance provides a criterion for the selection of differing source types for fusion applications

  14. Hypothesis for the mechanism of negative ion production in the surface-plasma negative hydrogen ion source

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1975-01-01

    An analysis of the surface-plasma negative hydrogen ion source has shown that the tungsten cathode supports approximately a monolayer of cesium. The backscattering of protons from the cathode as energetic neutrals and the subsequent backscattering of these neutrals from the anode provides for a flux of energetic atoms incident upon the cathode which is comparable to the ion flux. A hypothesis is proposed for the generation of negative ions during the collision of these energetic atoms with the cathode. Several mechanisms for negative ion production by proton collision with the surface are discussed. (U.S.)

  15. Experimental study of high current negative ion sources D{sup -} / H{sup -}. Analysis based on the simulation of the negative ion transport in the plasma source; Etude experimentale de sources a fort courant d`ions negatifs D{sup -} / H{sup -}. Analyse fondee sur la simulation du transport des ions dans le plasma de la source

    Energy Technology Data Exchange (ETDEWEB)

    Riz, D.

    1996-10-30

    In the frame of the development of a neutral beam injection system able to work the ITER tokamak (International Thermonuclear Experimental Reactor), two negative ion sources, Dragon and Kamaboko, have been installed on the MANTIS test bed in Cadarache, and studies in order to extract 20 mA/cm{sup 2} of D{sup -}. The two production modes of negative ions have been investigated: volume production; surface production after cesium injection in the discharge. Experiments have shown that cesium seeding is necessary in order to reach the requested performances for ITER. 20 mA/cm{sup 2} have been extracted from the Kamaboko source for an arc power density of 2.5 kW/liter. Simultaneously, a code called NIETZSCHE has been developed to simulate the negative ions transport in the source plasma, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collisions H{sup -}/H{sup +} and of charge exchange H{sup -}/H{sup 0} are handled at each time step by a Monte Carlo procedure. The code allows to obtain the extraction probability of a negative ion produced at a given location. The calculations performed with NIETZSCHE have allowed to explain several phenomena observed on negative ion sources, such as the isotopic effect H{sup -}/D{sup -} and the influence of the polarisation of the plasma grid and of the magnetic filter on the negative ions current. The code has also shown that, in the type of sources contemplated for ITER, working with large arc power densities (> 1 kW/liter), only negative ions produced in volume at a distance lower that 2 cm from the plasma grid and those produced at the grid surface have a chance of being extracted. (author). 122 refs.

  16. Ion acoustic waves in one- and two-negative ion species plasmas

    International Nuclear Information System (INIS)

    Ichiki, Ryuta; Shindo, Masako; Yoshimura, Shinji; Watanabe, Tsuguhiro; Kawai, Yoshinobu

    2001-01-01

    Ion acoustic waves in multi-ion plasmas including two negative ion species are investigated both numerically and experimentally. Numerically, the kinetic dispersion relation in two-negative ion plasmas is investigated. There are three modes of the ion acoustic waves in two-negative ion plasmas. In an Ar + -F - -SF 6 - plasma, only one of the three modes is dominant, regardless of the values of the electron and the ion temperatures. In a Xe + -F - -SF 6 - plasma, on the other hand, two modes can be important for a certain range of the electron-ion temperature ratio. The results also imply the possibility of the coexistence of the fast mode and the slow mode in one-negative ion plasmas. Experimentally, ion acoustic waves are observed in an Ar + -F - -SF 6 - plasma and are found to show a mode transition that agrees with the theoretical prediction for one of the three ion acoustic modes

  17. Prototype high current, high duty factor negative hydrogen ion source for LAMPF

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Hayward, T.D.; Jackson, J.A.

    1975-01-01

    Present plans for the high current proton storage ring at LAMPF incorporate charge changing (stripping) injection of H - ions in all modes of operation. Achievable stored current levels in this device will be strongly dependent on the maximum H - beam intensity which can be accelerated by the linac, consistent with acceptable beam spill. This requirement has stimulated a program to develop an H - ion source capable of providing a suitably high peak current (up to 25 mA) at high duty factor (up to 12 percent), with a normalized x,x' or y,y' emittance acceptable to the accelerating system. There are presently two main approaches which could lead to H - ion sources providing this kind of performance. These are (a) the charge exchange method, in which an intense proton beam is fractionally converted to H - beam in a suitable charge adding medium, and (b) the direct extraction method, in which H - ions are obtained by a surface emission process associated with a gas discharge plasma. While both approaches may eventually find optimum application in different situations, it is not obvious, at present, which scheme will turn out to be the most satisfactory for LAMPF. A prototype charge exchange H - ion source has been constructed as a first step in the development program and is presently being evaluated. Work on surface emission direct extraction techniques is in the planning stages. (U.S.)

  18. Heavy-ion induced current through an oxide layer

    International Nuclear Information System (INIS)

    Takahashi, Yoshihiro; Ohki, Takahiro; Nagasawa, Takaharu; Nakajima, Yasuhito; Kawanabe, Ryu; Ohnishi, Kazunori; Hirao, Toshio; Onoda, Shinobu; Mishima, Kenta; Kawano, Katsuyasu; Itoh, Hisayoshi

    2007-01-01

    In this paper, the heavy-ion induced current in MOS structure is investigated. We have measured the transient gate current in a MOS capacitor and a MOSFET induced by single heavy-ions, and found that a transient current can be observed when the semiconductor surface is under depletion condition. In the case of MOSFET, a transient gate current with both positive and negative peaks is observed if the ion hits the gate area, and that the total integrated charge is almost zero within 100-200 ns after irradiation. From these results, we conclude that the radiation-induced gate current is dominated by a displacement current. We also discuss the generation mechanism of the radiation-induced current through the oxide layer by device simulation

  19. Nonlinear waves in plasma with negative ion

    International Nuclear Information System (INIS)

    Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.

    1984-01-01

    The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)

  20. Intense negative hydrogen ion source for neutral injection into tokamaks

    International Nuclear Information System (INIS)

    Prelec, K.; Sluyters, T.

    1975-01-01

    In this scheme negative ions are extracted from a plasma source, accelerated to the required energy and then neutralized by stripping in a gas, metal vapor or plasma jet. One of the most promising direct extraction sources is the magnetron source, operating in the mixed hydrogen-cesium mode. In the present source cathode current densities are up to 20 A/cm 2 at arc voltages between 100 V and 150 V. In order to utilize the discharge more efficiently multislit extraction geometry was adopted. Highest currents were obtained by using six slits, with a total extraction area of 1.35 cm 2 . At an extraction voltage of 18 kV negative hydrogen ion currents close to 1 A were obtained, which corresponds to current densities of about 0.7 A/cm 2 at the extraction aperture. Pulse length was 10-20 ms and the repetition rate 0.1 Hz. The total extracted current was usually 2-3 times the H - current

  1. Numerical simulation research of 300 kV, 5 electrodes negative ion beam system

    International Nuclear Information System (INIS)

    Wang Huisan; Jian Guangde

    2001-01-01

    According to the characteristic of high current negative ion beam extraction and acceleration system for negative ion-based neutral beam injector, a numerical simulation model and a calculation code of the negative ion beam system are established in order to assist the design of the system. The movement behavior of the negative ion beam and accompanying electron beam in joint effect of the electric and magnetic field of the system is calculated. The effect of relative parameters on the negative ion beam optics characteristic is investigated, such as beam density, negative ion initial temperature and stripping losses, final electrode aperture displacement. The electromagnetic configuration in the system is optimized. The initial optimized results for the 300 kV, 5 electrodes negative ion beam system show that the magnetic field of this system can deflect the electron beam to the extraction electrode as electron acceptor at lower energy and that assuming 20% stripping losses of the H - ion in extraction region and 21 mA ·cm -2 extracted H - beam density, the r.m.s. divergence angle of all output beam lets and divergence angle of 85% output beam lets are 0.327 deg. and 0.460 deg., respectively

  2. JT-60 negative ion beam NBI apparatus. Present state of its construction and initial experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1997-02-01

    The NBI (Neutral Beam Injection) apparatus used for negative ion at first in the world, has an aim to actually prove heating and electric current drive with high density plasma at the JT-60 and to constitute physical and technical bases for selection and design of heating apparatus of ITER (International Thermal Nuclear Fusion Experimental Reactor). Construction of 500 KeV negative ion NBI apparatus for the JT-60 started to operate on 1993 was completed at March, 1996. On the way, at a preliminary test on forming and acceleration of the negative ion beam using a portion of this apparatus, 400 KeV and 13.5 A/D of the highest deuterium negative ion beam acceleration in the world was obtained successfully, which gave a bright forecasting of the plasma heating and electric current drive experiment using the negative ion NBI apparatus. After March, 1996, some plans to begin beam incident experiment at the JT-60 using the negative ion NBI apparatus and to execute the heating and electric current drive experiment at the JT-60 under intending increase of beam output are progressed. (G.K.)

  3. Negative ion test facility ELISE—Status and first results

    International Nuclear Information System (INIS)

    Heinemann, B.; Fantz, U.; Franzen, P.; Froeschle, M.; Kircher, M.; Kraus, W.; Martens, C.; Nocentini, R.; Riedl, R.; Ruf, B.; Schiesko, L.; Wimmer, C.; Wuenderlich, D.

    2013-01-01

    Highlights: ► The negative ion source test facility ELISE has been set up at IPP Garching. ► The Radio frequency source has half the ITER source size. ► It shall demonstrate the required ITER parameters (20 A D-, 0.3 Pa, electron to ion current ratio below 1). ► First plasma and beam operation is starting in October 2012. -- Abstract: The new test facility ELISE (Extraction from a Large Ion Source Experiment) has been designed and installed since November 2009 at IPP Garching to support the development of the radio frequency driven negative ion source for the Neutral Beam System on ITER. The test facility is now completely assembled; all auxiliary systems have been commissioned and are operational. First plasma and beam operation is starting in October 2012. The source is designed to deliver an ion beam of 20 A of D − ions, operating at 0.3 Pa source pressure at an electron to ion current ratio below 1. Beam extraction is limited to 60 kV for 10 s every 3 minutes, while plasma operation of the source can be performed continuously for 1 hour. The ion source and extraction system have the same width as the ITER source, but only half the height, i.e. 1 × 1 m 2 source area with an extraction area of 0.1 m 2 . The aperture pattern of the extraction system and the multi driver source concept stay as close as possible to the ITER design. Easy access to the source for diagnostic tools or modifications allows to analyze and optimize the source performance. Among other possibilities many different magnetic filter field configurations inside the source can be realized to enhance the negative ion extraction and to reduce the co-extraction of electrons. Beam power and profiles are measured by calorimetry and thermography on an inertially cooled target as well as by beam emission spectroscopy. Cs evaporation into the source is done via two dispenser ovens

  4. Improvements of the versatile multiaperture negative ion source NIO1

    Science.gov (United States)

    Cavenago, M.; Serianni, G.; De Muri, M.; Veltri, P.; Antoni, V.; Baltador, C.; Barbisan, M.; Brombin, M.; Galatá, A.; Ippolito, N.; Kulevoy, T.; Pasqualotto, R.; Petrenko, S.; Pimazzoni, A.; Recchia, M.; Sartori, E.; Taccogna, F.; Variale, V.; Zaniol, B.; Barbato, P.; Baseggio, L.; Cervaro, V.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Laterza, B.; Maniero, M.; Martini, D.; Migliorato, L.; Minarello, A.; Molon, F.; Moro, G.; Patton, T.; Ravarotto, D.; Rizzieri, R.; Rizzolo, A.; Sattin, M.; Stivanello, F.; Zucchetti, S.

    2017-08-01

    The ion source NIO1 (Negative Ion Optimization 1) was developed and installed as a reduced-size model of multi-aperture sources used in neutral beam injectors. NIO1 beam optics is optimized for a 135 mA H- current (subdivided in 9 beamlets) at a Vs = 60 kV extraction voltage, with an electron-to-ion current ratio Rj up to 2. Depending on gas pressure used, NIO1 was up to now operated with Vs qualitative agreement with theoretical and numerical models. A second bias voltage was tested for hydrogen. Beam footprints and a spectral emission sample are shown.

  5. Negative ion surface plasma source development for plasma trap injectors in Novosibirsk

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.; Kupriyanov, A.S.

    1989-01-01

    Work on high-current ion sources carried out at the Novosibirsk Institute of Nuclear Physics (INP) is presented. The INP investigations on ''pure plasma'' planotron and ''pure surface'' secondary emission systems of H - generation, which preceded the surface-plasma concept developed in Novosibirsk, are described. The physical basis of the surface-plasma method of negative-ion production is considered. The versions and operating characteristics of different surface-plasma sources including the multi-ampere (approx-gt 10A) source are discussed. Research on efficient large-area (∼10 2 cm 2 ) negative ion surface-plasma emitters is described. The INP long-pulse multiaperture surface- plasma generators, with a current of about 1A, are described. 38 refs., 17 figs

  6. Why the negative corona current in air decreases?

    International Nuclear Information System (INIS)

    Pavlik, M.; Skalny, J.D.; Strelle, D.

    1996-01-01

    The time dependence of negative corona current I, called by Gagarin like 'relaxing of CV-characteristics', is a observed phenomena. The observed phenomena was explained by two theoretical models considering the ion-molecule and chemical reactions in the negative corona discharges in air, especially the ozone production. In the presented paper the discrepancies of above mentioned models, re-examination the earlier experimental data and presumptions used in models in a light the latest experimentally confirmed facts are discussed

  7. Atomic negative ions

    International Nuclear Information System (INIS)

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given

  8. Observation of ion-acoustic rarefaction solitons in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Ludwig, G.O.; Ferreira, J.L.; Nakamura, Y.

    1984-01-01

    The propagation of ion-acoustic solitons in a plasma with negative ions has been observed. For sufficiently large concentration of negative ions, applied rarefactive (negative) voltage pulses break up into solitons, whereas compressive pulses evolve into wave trains, with exactly the opposite behavior as that for a plasma composed only of positive ions. There is a critical value of the negative-ion concentration for which a finite-amplitude pulse propagates without steepening

  9. Ion-acoustic double layers in multi-species plasmas maintained by negative ions

    International Nuclear Information System (INIS)

    Verheest, F.

    1989-01-01

    A study is made of ion-acoustic double layers in a plasma consisting of any number of cold positive and negative ion (and cold electron) species in addition to one isothermal electron population. The Sagdeev potential is obtained in general, together with limits on both compressive and rarefactive solutions for ion-acoustic double layers and/or solitons. Weak ion-acoustic double layers are described by a modified Korteweg-de Vries equation. Such double layers are not possible in plasmas with only positive ion species and one electron population. When one or more negative ion and/or cold electron species are included above a certain threshold density, rarefactive ion-acoustic double layers occur, but no compressive ones. The double-layer form of the potential is given, together with an application to a plasma with one positive and one negative ion component. It is shown that there is indeed such a threshold density for the negative ion density, depending on the charge-to-mass ratios of both types of ions. The threshold density is determined numerically for a range of such ratios and discussed in view of possible relevance to auroral and experimental plasmas. In the discussion, cold electrons can play the role of the negative ion species. (author)

  10. Charging of dust grains in a plasma with negative ions

    International Nuclear Information System (INIS)

    Mamun, A.A.; Shukla, P.K.

    2003-01-01

    The role of negative ions on the charging of dust grains in a plasma is examined. Two models for negative ion distributions are considered. These are streaming negative ions and Boltzmannian negative ions. It is found that the effects of the negative ion number density, negative ion charge, and negative ion streaming speed significantly affect the dust grain surface potential or the dust grain charge

  11. Transport of negative hydrogen and deuterium ions in RF-driven ion sources

    International Nuclear Information System (INIS)

    Gutser, R; Wuenderlich, D; Fantz, U

    2010-01-01

    Negative hydrogen ion sources are major components of neutral beam injection systems for plasma heating in future large-scale fusion experiments such as ITER. In order to fulfill the requirements of the ITER neutral beam injection, a high-performance, large-area RF-driven ion source for negative ions is being developed at the MPI fuer Plasmaphysik. Negative hydrogen ions are mainly generated on a converter surface by impinging neutral particles and positive ions under the influence of magnetic fields and the plasma sheath potential. The 3D transport code TrajAn has been applied in order to obtain the total and spatially resolved extraction probabilities for H - and D - ions under identical plasma parameters and the realistic magnetic field topology of the ion source. A comparison of the isotopes shows a lower total extraction probability in the case of deuterium ions, caused by a different transport effect. The transport calculation shows that distortions of the spatial distributions of ion birth and extraction by the magnetic electron suppression field are present for both negative hydrogen and deuterium ions.

  12. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    International Nuclear Information System (INIS)

    Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto; Grisham, Larry R.

    2014-01-01

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production

  13. Towards large and powerful radio frequency driven negative ion sources for fusion

    International Nuclear Information System (INIS)

    Heinemann, B; Fantz, U; Kraus, W; Schiesko, L; Wimmer, C; Wünderlich, D; Bonomo, F; Fröschle, M; Nocentini, R; Riedl, R

    2017-01-01

    The ITER neutral beam system will be equipped with radio-frequency (RF) negative ion sources, based on the IPP Garching prototype source design. Up to 100 kW at 1 MHz is coupled to the RF driver, out of which the plasma expands into the main source chamber. Compared to arc driven sources, RF sources are maintenance free and without evaporation of tungsten. The modularity of the driver concept permits to supply large source volumes. The prototype source (one driver) demonstrated operation in hydrogen and deuterium up to one hour with ITER relevant parameters. The ELISE test facility is operating with a source of half the ITER size (four drivers) in order to validate the modular source concept and to gain early operational experience at ITER relevant dimensions. A large variety of diagnostics allows improving the understanding of the relevant physics and its link to the source performance. Most of the negative ions are produced on a caesiated surface by conversion of hydrogen atoms. Cs conditioning and distribution have been optimized in order to achieve high ion currents which are stable in time. A magnetic filter field is needed to reduce the electron temperature and co-extracted electron current. The influence of different field topologies and strengths on the source performance, plasma and beam properties is being investigated. The results achieved in short pulse operation are close to or even exceed the ITER requirements with respect to the extracted ion currents. However, the extracted negative ion current for long pulse operation (up to 1 h) is limited by the increase of the co-extracted electron current, especially in deuterium operation. (paper)

  14. Direct extraction of negative lithium ions from a lithium plasma

    International Nuclear Information System (INIS)

    Wada, M.; Tsuda, H.; Sasao, M.

    1990-01-01

    Negative lithium ions (Li - ) were directly extracted from a lithium plasma in a multiline cusp plasma container. A pair of permanent magnets mounted near the extractor electrode created the filter magnetic field that separated the extraction region plasma from the main discharge plasma. The plasma electrode facing the extraction region plasma was biased with respect to the other parts of the chamber wall, which acted as discharge anodes. The larger filter magnetic field resulted larger Li - current. When the bias to the plasma electrode was several volts positive against the anode potential, extracted Li - current took the maximum for a fixed strength of the filter field. These dependences of Li - upon the filter magnetic field and the plasma electrode bias are similar to the ones of negative hydrogen ions

  15. A large-area RF source for negative hydrogen ions

    International Nuclear Information System (INIS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-01-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H - /D - ) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm 2 net extraction area. First results from BATMAN (Bavarian T lowbar est Machine for N lowbar egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm 2 H - (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature T e >2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way

  16. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-01-01

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r c , has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0 c and the rarefactive solitons in the range r>r c have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r c . A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results

  17. Current sensorless quick charger for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2011-01-01

    An efficient, simple and low cost quick charger based on the double-loop controller is proposed for the charging of lithium-ion (Li-ion) batteries. With positive and negative feedback of the battery voltage, charging profile similar to the constant current and constant voltage (CC-CV) charging strategy can be performed without actually sensing the charging current. The charging time can easily be shortened by raising the level of saturation in the primary voltage control loop. Experimental results are included to demonstrate the effectiveness of the battery charger. The charger could be a low cost and high performance replacement for existing Li-ion battery chargers.

  18. Recent progress of high-power negative ion beam development for fusion plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1997-03-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D{sup -} ion beam. Beam acceleration test started in July, 1995 using one ion source. In the preliminary experiment, D{sup -} ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D{sup -} beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/I{sub D}- <1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. Neutral beam injection starts in March, 1996 using two ion sources. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a high energy test facility called MeV Test Facility (MTF) was constructed. The system consists of a 1 MV, 1 A acceleration power supply and a 100 kW power supply system for negative ion production. Up to now, an H{sup -} ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator. (author)

  19. Negative ion formation and neutralization processes, (1)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-01-01

    This review has been made preliminary for the purpose of contribute to the plasma heating by ''negative ion based neutral beam injection'' in the magnetic confinement fusion reactor. A compilation includes the survey of the general processes of negative ion formation, the data of the cross section of H - ion formation and the neutralization of H - ion, and some of new processes of H - ion formation. The data of cross section are mainly experimental, but partly include the results of theoretical calculation. (author)

  20. The virtual cathode: Key to the numerical simulation of negative ion extraction

    International Nuclear Information System (INIS)

    Becker, R.; Leung, K.N.; Kunkel, W.

    1998-01-01

    The simulation of volume produced negative ions from a plasma is by far more complicated than the extraction of positive ions, while in experiments the only difficulty seemes to be connected with the power of the electrons, which are extracted at the same time. The reason for this complication in simple minded simulations is the infinite space charge, which builds up in the turning point of the positive ions in the extraction aperture for the negative ions. Smearing out the energy of the positive ions seems to help, however, this is mostly not justified by experiments, showing a low ion energy, especially in the region between the magnetic filter and the extraction hole. This difficulty may be overcome by using experience from virtual cathode formation in magnetically focused, decelerated electron beams. The decelerated electrons behave similarly to the reflected positive ions and are forming a virtual cathode in the reflection zone. From the analysis of the electron deceleration experiment, a simple power law is deduced to describe the decreasing electron current by the local potential. In turn, this power law may also be applied to the positive ion current, resulting in simulations without space charge singularity, even in the case of monoenergetic ions. As a first step towards the numerical simulation of negative ion extraction, a linear model has been made, using this power law. The transition from a Boltzmann distribution for the plasma electrons to a truncated one for the extracted beam electrons is considered as well, parallel to Langmuir close-quote s treatment of a thermal diode for electrons. copyright 1998 American Institute of Physics

  1. Kinetic effects in the propagation of ion-acoustic negative solitons in plasmas with negative ions

    International Nuclear Information System (INIS)

    Roberto, M.

    1986-12-01

    The existence of ion-acoustic negative (rarefactive) solitons in plasmas was experimentally verified and explained by means of the Korteweg-de Vries equation, obtained from a fluid model. The experimental results obtained in a double-plasma machine of the Institute for Space Research, however, have provided values of Mach number larger than predicted by this simple model. In order to improve the analysis of the phenomenon, Kinetic effects resultant from the occurrence of reflected electrons and trapped ions in the soliton potential were considered, using the theory of Sagdeev potential. For the description of the negative ion dynamics the fluid model treatment was preserved. It was verified that the effects of the finite temperature and trapping of the positive ions modify the results predicted by the simple KdV model in such a way that the Mach number is reduced as the ion temperature increases. It was shown that reflection of electrons is consistent with the large experimental values of Mach number. (Author) [pt

  2. Dependence of Au- production upon the target work function in a plasma-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou; Sasao, Mamiko; Fujita, Junji; Yamaoka, Hitoshi; Wada, Motoi.

    1991-01-01

    A method to measure the work function of the target surface in a plasma-sputter-type negative ion source has been developed. The method can determine the work function by measuring the photoelectric current induced by two lasers (He-Ne, Ar + laser). The dependence of Au - production upon the work function of the target surface in the ion source was studied using this method. The time variation of the target work function and Au - production rate were measured during the cesium coverage decrease due to the plasma ion sputtering. The observed minimum work function of a cesiated gold surface in an Ar plasma was 1.3 eV. At the same time, the negative ion production rate (Au - current/target current) took the maximum value. The negative ion production rate indicated the same dependence on the incident ion energy as that of the sputtering rate when the work function was constant. (author)

  3. Emission characteristics of negative oxygen ions into vacuum from cerium oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Fujiwara, Yukio; Kaimai, Atsushi; Yashiro, Keiji; Matsumoto, Hiroshige; Nigara, Yutaka; Kawada, Tatsuya; Mizusaki, Junichiro

    2006-01-01

    The oxygen ion emission characteristics of CeO 2 were studied under electric field in a vacuum chamber to find a candidate material for a novel ion source, 'solid oxide ion source (SOIS)'. The emission current was observed from CeO 2 under a pressure of around 10 -3 Pa, at the temperature ranging from 973 K to 1173 K. It was found that the emission current increased with temperature and applied voltage. The ions emitted from CeO 2 were confirmed to be oxygen negative ions (O - ) by the use of quadrupole mass spectrometer. The emission current decreased with time as was observed in the earlier works with other oxide ion conductors such as stabilized zirconia or other materials . To enhance the emission current from CeO 2 , an introduction of donor into CeO 2 was tested using Ce 0.992 Nb 0.008 O 2 . For comparison, effect of acceptor doping was also tested using Ce 0.9 Gd 0.1 O 1.95 . The emission current from Ce 0.9 Gd 0.1 O 1.95 was smaller than that from donor-doped and pure CeO 2. Clear enhancement of the emission current was not observed with Ce 0.992 Nb 0.008 O 2

  4. Formation of thin film of negative and positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Tsubouchi, Nobuteru [Osaka National Research Inst., AIST, Ikeda (Japan)

    1997-02-01

    Positive and negative ions deposition apparatus (PANDA) was developed by us as new synthesis method of materials. This apparatus is able to form simultaneously or independently the positive and negative ion beams to separate the mass and to control the energy from 10 eV to 3 KeV. It consists of positive beam line, negative beam line and a film formation room. Microwave discharge ion source and plasma sputtering source are used as the positive ion and the negative ion source, respectably. The beam generation test was carried out. The negative ion beams were generated from silicon wafer (target) and measured by MS. The mass spectrum of extracted negative silicon beams showed mass number 28, 29, and 30 of Si{sup -} and Si{sub 2}{sup -}. It proved that ions were separated in the isotope level. Therefore, film, it`s purity is isotope level, may be formed by such ion beams. (S.Y.)

  5. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  6. A review of JAERI R and D activities on the negative-ion-based neutral beam injection system

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Akiba, Masato; Araki, Masanori

    1990-08-01

    R and D efforts to realize a negative-ion-based neutral beam injection system have been made intensively at JAERI for the past several years. Concerning a high current negative ion source which is one of the most important R and D items, a 10 A, 50 keV negative hydrogen ion beam has been produced successfully. The negative ion beam current and the current density correspond already to the value required for the negative-ion-based NBI system. In order to increase the beam energy further, a 350 keV, 0.1 A test stand has been constructed, and the test of a high energy negative ion accelerator has started. Concerning a high energy acceleration power supply, an inverter type power supply which has a high speed AC switch was proposed and applied to the 100 kV, 5 A power supply for JAERI Electron Beam Irradiation Stand. The reliable operation indicates that the concept of this system can be applied for a MV class acceleration power supply. As one of the promising candidates for a beam dump cooling element, an externally-finned swirl tube was proposed and tested to have a high burnout heat flux of 4.1 kW/cm 2 , which is high enough for the next NBI system. The R and Ds on the negative-ion-based NBI system have made great progress at JAERI in recent years. The construction of a 500 keV class NBI system has become realistic from the engineering point of view. (author)

  7. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources

    International Nuclear Information System (INIS)

    Christ-Koch, Sina

    2007-01-01

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields (∝ 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H - )=1.10 17 1/m 3 , which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  8. Negative ion beam processes

    International Nuclear Information System (INIS)

    Hayward, T.D.; Lawrence, G.P.; Bentley, R.F.; Malanify, J.J.; Jackson, J.A.

    1975-06-01

    Los Alamos Scientific Laboratory fiscal year 1975 work on production of intense, very bright, negative hydrogen (H - ), ion beams and conversion of a high-energy (a few hundred MeV) negative beam into a neutral beam are described. The ion source work has used a cesium charge exchange source that has produced H - ion beams greater than or equal to 10 mA (about a factor of 10 greater than those available 1 yr ago) with a brightness of 1.4 x 10 9 A/m 2 -rad 2 (about 18 times brighter than before). The high-energy, neutral beam production investigations have included measurements of the 800-MeV H - -stripping cross section in hydrogen gas (sigma/sub -10/, tentatively 4 x 10 -19 cm 2 ), 3- to 6-MeV H - -stripping cross sections in a hydrogen plasma (sigma/sub -10/, tentatively 2 to 4 x 10 -16 cm 2 ), and the small-angle scattering that results from stripping an 800-MeV H - ion beam to a neutral (H 0 ) beam in hydrogen gas. These last measurements were interrupted by the Los Alamos Meson Physics Facility shutdown in December 1974, but should be completed early in fiscal year 1976 when the accelerator resumes operation. Small-angle scattering calculations have included hydrogen gas-stripping, plasma-stripping, and photodetachment. Calculations indicate that the root mean square angular spread of a 390-MeV negative triton (T - ) beam stripped in a plasma stripper may be as low as 0.7 μrad

  9. Sheath structure in negative ion sources for fusion (invited)

    International Nuclear Information System (INIS)

    McAdams, R.; King, D. B.; Surrey, E.; Holmes, A. J. T.

    2012-01-01

    In fusion negative ion sources, the negative ions are formed on the caesiated plasma grid predominantly by hydrogen atoms from the plasma. The space charge of the negative ions leaving the wall is not fully compensated by incoming positive ions and at high enough emission a virtual cathode is formed. This virtual cathode limits the flux of negative ions transported across the sheath to the plasma. A 1D collisionless model of the sheath is presented taking into account the virtual cathode. The model will be applied to examples of the ion source operation. Extension of the model to the bulk plasma shows good agreement with experimental data. A possible role for fast ions is discussed.

  10. Characteristics and dynamics of the boundary layer in RF-driven sources for negative hydrogen ions

    International Nuclear Information System (INIS)

    Wimmer, Christian

    2014-01-01

    The design of the neutral beam injection system of the upcoming ITER fusion device is based on the IPP (Max-Planck-Institut fuer Plasmaphysik, Garching) prototype source for negative hydrogen ions. The latter consists of a driver, in which hydrogen (or deuterium) molecules are dissociated in a large degree in a hydrogen plasma; the plasma expands then towards the plasma grid, on which negative hydrogen ions are formed by conversion of atoms or positive ions by the surface process and are extracted in the following accompanied by the co-extraction of electrons via a three grid system. Electrons are removed out of the extracted beam prior full acceleration using deflection magnets, bending them onto the second grid. The thermal load limits the tolerable amount of co-extracted electrons. A magnetic filter field in the expansion chamber reduces the electron temperature and density, on the one hand in order to minimize the destruction process of negative hydrogen ions by electron collisions and on the other hand in order to reduce the co-extracted electron current density. Caesium is evaporated into the source for an effective production of negative hydrogen ions, lowering the work function of the plasma grid. Due to the high chemical reactivity of caesium, the high vacuum condition in the source and the plasma-wall interaction, complex redistribution processes of Cs take place in the ion source. The boundary layer is the plasma volume between the magnetic filter field and the plasma grid, in which the most important physics of the negative ion source takes place: the production of negative hydrogen ions at the plasma grid, their transport through the plasma and the following extraction. A deeper understanding of the plasma and Cs dynamics in the boundary layer is desirable in order to achieve a stable long-pulse operation as well as to identify possible future improvements. For this reason, the boundary layer of the prototype source has been characterized in this work

  11. High current pelletron for ion implantation

    International Nuclear Information System (INIS)

    Schroeder, J.B.

    1989-01-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MW Pelletron accelerators with this new 4-chain charging system. (orig.)

  12. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary); Biri, S.; Juhasz, Z.; Sulik, B. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); Palinkas, J. [University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary)

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  13. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  14. Experiments on ion-acoustic rarefactive solitons in a multi-component plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Ferreira, J.L.; Ludwig, G.O.

    1987-09-01

    Ion-acoustic solitons in a three-component plasma which consists of electrons, positive and negative ions have been investigated experimentally. When the concentration of negative ions is smaller than a certain value, positive or compressive solitons are observed. At the critical concentration, a broad pulse of small but finite amplitude propagates without changing its shape. When the concentration is larger than this value, negative or rarefactive solitons are excited. The velocity and the width of these solitons are measured and compared with predictions of the Korteweg- de Vries equation which takes the negative ions and the ion temperature into consideration. Head-ion and over-taking collisions of the rarefactive solitons have been observed to show that the solitons are not affected by these collisions. (author) [pt

  15. Negative ion photoelectron spectroscopy of SeO-

    International Nuclear Information System (INIS)

    Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H.

    1985-01-01

    Negative ion photoelectron spectroscopy (NIPES) involves a kinetic energy analysis of electrons which are photodetached when a mass selected beam of negative ions is crossed with a fixed frequency laser beam. The photodetachment spectra of SeO - displays transitions from the X 2 PI state of SeO - to both the X 3 Σ - and a 1 Δ states of SeO. The singlet-triplet splitting of SeO is readily observable since selection rules regarding spin do not apply in the bound to free state process of photodetachment. The electron affinity of SeO and the negative ion potential parameters of SeO - have been determined

  16. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  17. Ion pair formation in the vacuum ultraviolet region of NO studied by negative ion imaging spectroscopy

    International Nuclear Information System (INIS)

    Hikosaka, Y.; Kaneyasu, T.; Shigemasa, E.

    2007-01-01

    The pair formation of positive and negative fragment ions has been studied in the vacuum ultraviolet region of NO, with negative ion imaging spectroscopy. The negative ion yield curve obtained in the photon energy region of 19-25 eV exhibits many structures which are absent from the photoabsorption spectrum in the same region. The partial yields and asymmetry parameters associated with the dissociations into individual ion pair limits have been extracted from the negative ion images observed. On the basis of these quantities, the assignments for the structures exhibited on the negative ion yield curve are given and the dynamical properties on the ion pair dissociation are discussed

  18. Ion-impact secondary emission in negative corona with photoionization

    Directory of Open Access Journals (Sweden)

    B. X. Lu

    2017-03-01

    Full Text Available A corona discharge measurement system and simulation model are presented to investigate the effects of photoionization and ion-impact secondary emission process in negative corona discharge. The simulation results obtained is shown good agreement with experimental observations. Distribution of electron density along the symmetry axis at three critical moments is shown and the role of photoionization in negative corona discharge is clearly explained. Moreover, the current pulses are also presented under different secondary emission coefficients and the effect of the secondary emission coefficient is discussed.

  19. Controlling chaos in the current-driven ion acoustic instability

    International Nuclear Information System (INIS)

    Fukuyama, T.; Taniguchi, K.; Kawai, Y.

    2002-01-01

    Control of intermittent chaos caused by the current-driven ion acoustic instability is attempted and the controlling mechanism is investigated. When a small negative dc voltage is applied to the chaotic system as a perturbation, the system changes from a chaotic state to a periodic state while maintaining the instability, indicating that the chaotic state caused by the ion acoustic instability is well controlled by applying a small negative dc voltage. A hysteresis structure is observed on the V-I curve of the mesh grid to which the negative dc voltage to control is applied. Furthermore, when a negative dc voltage is applied to the state which shows a laminar structure existing under same experimental conditions, the system becomes chaotic via a bifurcation. Driven-chaos is excited when a negative dc voltage is applied to the laminar state. Applying a small negative dc voltage leads to controlling intermittent chaos while exciting driven-chaos

  20. Reflection of ion acoustic solitons in a plasma having negative ions

    International Nuclear Information System (INIS)

    Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.

    1996-01-01

    Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg endash deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. copyright 1996 American Institute of Physics

  1. 2D accelerator design for SITEX negative ion source

    International Nuclear Information System (INIS)

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined

  2. Design study of a negative-ion based NBI system for JT-60U

    International Nuclear Information System (INIS)

    Akino, Noboru; Araki, Masanori; Ebisawa, Noboru

    1994-03-01

    A high energy negative-ion based NBI system for JT-60U has been designed. The objective of the NBI system is to demonstrate mega-ampere level NB current drive and plasma core heating in a reactor-grade high density plasma. This is the first negative-ion based NBI system in the world. The required specifications of the NBI system are; a beam energy of 500 keV, an injection power of 10 MW, a beam pulse duration of 10 sec with a duty cycle of 1/60 and a beam species of deuterium or hydrogen. The neutral beam power of 10 MW is injected tangentially using one beam-line with two large negative-ion sources. The construction of the NBI system has been started, and will be operational in 1996. (author)

  3. Concepts of magnetic filter fields in powerful negative ion sources for fusion

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Heinemann, B.; Wünderlich, D.

    2016-01-01

    The performance of large negative ion sources used in neutral beam injection systems is in long pulses mainly determined by the increase of the currents of co-extracted electrons. This is in particular a problem in deuterium and limits the ion currents which are for long pulses below the requirements for the ITER source. In the source of the ELISE test facility, the magnetic field in front of the first grid, which is essential to reduce the electron current, is generated by a current of several kA flowing through the plasma facing grid. Weakening of this field by the addition of permanent magnets placed close to the lateral walls has led to a reduction of the electron current by a factor three without loss of ion current when source was operated in volume production. If this effect can be validated for the cesiated source, it would be a large step towards achieving the ITER parameter in long pulses

  4. Negative ion based neutral beams for plasma heating

    International Nuclear Information System (INIS)

    Prelec, K.

    1978-01-01

    Neutral beam systems based on negative ions have been considered because of a high expected power efficiency. Methods for the production, acceleration and neutralization of negative ions will be reviewed and possibilities for an application in neutral beam lines explored

  5. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  6. Effect of negative ions on the formation of weak ion acoustic double layers

    International Nuclear Information System (INIS)

    Kalita, M.K.; Bujarbarua, S.

    1985-01-01

    Using kinetic theory, small amplitude double layers associated with ion acoustic waves in a plasma containing negative species of ions were investigated. Analytic solution for the double layer potential was carried out. The limiting values of the negative ion density for the existence of this type of DL were calculated and the application of this result to space plasmas is discussed. (author)

  7. Ion-acoustic shock waves with negative ions in presence of dust particulates

    International Nuclear Information System (INIS)

    Sarma, Arun; Nakamura, Y.

    2009-01-01

    Dust acoustics shock waves have been investigated experimentally in a homogeneous unmagnetized dusty plasma device containing negative ions. When the negative ion density larger than a critical concentration 'r c ' negative shock waves were observed instead of positive shock waves. Again when it is nearly equal to 'r c ' both positive and negative shock waves propagate. The experimental findings are compared with modified KdV-Burgers equation. The velocity of the shock waves are also measured and compared with the numerical integration of modified KdV-Burgers equation.

  8. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    International Nuclear Information System (INIS)

    Goto, I.; Nishioka, S.; Hatayama, A.; Miyamoto, K.

    2015-01-01

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H − ions from the double-ion plasma in H − negative ion sources. The result shows the same tendency of the H − ion density n H − as that observed in the experiments, i.e.,n H − in the upstream region away from the plasma meniscus (H − emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H − transport will be studied in the future

  9. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I.; Nishioka, S.; Hatayama, A. [Graduate school of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  10. Negative Ion Sources: Magnetron and Penning

    CERN Document Server

    Faircloth, D.C.

    2013-12-16

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared.

  11. Negative Ion Sources: Magnetron and Penning

    International Nuclear Information System (INIS)

    Faircloth, D C

    2013-01-01

    The history of the magnetron and Penning electrode geometry is briefly outlined. Plasma generation by electrical discharge-driven electron impact ionization is described and the basic physics of plasma and electrodes relevant to magnetron and Penning discharges are explained. Negative ions and their applications are introduced, along with their production mechanisms. Caesium and surface production of negative ions are detailed. Technical details of how to build magnetron and Penning surface plasma sources are given, along with examples of specific sources from around the world. Failure modes are listed and lifetimes compared. (author)

  12. Comparison of experimental target currents with analytical model results for plasma immersion ion implantation

    International Nuclear Information System (INIS)

    En, W.G.; Lieberman, M.A.; Cheung, N.W.

    1995-01-01

    Ion implantation is a standard fabrication technique used in semiconductor manufacturing. Implantation has also been used to modify the surface properties of materials to improve their resistance to wear, corrosion and fatigue. However, conventional ion implanters require complex optics to scan a narrow ion beam across the target to achieve implantation uniformity. An alternative implantation technique, called Plasma Immersion Ion Implantation (PIII), immerses the target into a plasma. The ions are extracted from the plasma directly and accelerated by applying negative high-voltage pulses to the target. An analytical model of the voltage and current characteristics of a remote plasma is presented. The model simulates the ion, electron and secondary electron currents induced before, during and after a high voltage negative pulse is applied to a target immersed in a plasma. The model also includes analytical relations that describe the sheath expansion and collapse due to negative high voltage pulses. The sheath collapse is found to be important for high repetition rate pulses. Good correlation is shown between the model and experiment for a wide variety of voltage pulses and plasma conditions

  13. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments

    International Nuclear Information System (INIS)

    Bandyopadhyay, M.

    2004-01-01

    In the frame work of a development project for ITER neutral beam injection system a radio frequency (RF) driven negative hydrogen (H-/D-) ion source, (BATMAN ion source) is developed which is designed to produce several 10s of ampere of H-/D- beam current. This PhD work has been carried out to understand and optimize BATMAN ion source. The study has been done with the help of computer simulations, modeling and experiments. The complete three dimensional Monte-Carlo computer simulation codes have been developed under the scope of this PhD work. A comprehensive description about the volume production and the surface production of H- ions is presented in the thesis along with the study results obtained from the simulations, modeling and the experiments. One of the simulations is based on the volume production of H- ions, where it calculates the density profile of the vibrationally excited H2 molecules, the density profile of H- ions and the transport probability of those H- ions along the source axis towards the grid. The other simulation studies the transport of those H- ions which are produced on the surface of the plasma grid. It is expected that if there is a plasma flow in the source, the transport of plasma components (molecules and ions) would be influenced. Experimentally it is observed that there is a convective plasma flow exists in the ion source. A transverse magnetic filter field which is present near the grid inside the ion source reduces the flow velocity. Negative ions and electrons have the same sign of charge; therefore the electrons are co-extracted with the negative ions through the grid system, which is not desirable. It is observed that a magnetic field near the grid, magnetized the electrons and therefore reduce the co-extracted electron current. It is also observed experimentally that if the plasma grid is biased positively with respect to the source body, the electron density near the plasma grid is reduced and therefore the co

  14. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  15. Sheath-lens probe for negative ion detection in reactive plasmas

    International Nuclear Information System (INIS)

    Stamate, E.; Sugai, H.; Takai, O.; Ohe, K.

    2004-01-01

    A method that allows easy and inexpensive detection of negative ions is introduced. The method is based upon the electrostatic lens effect of the sheath layer evolving to a positively biased planar probe that focuses the negative charges to distinct regions on the surface. Trajectories of negative ions inside the sheath are obtained after computing the potential and electric field distribution by solving in three dimensions the nonlinear Poisson equation. The negative ions' flux to square and disk probes is developed in Ar/SF 6 and O 2 plasmas. The method allows negative ion detection with sensitivity higher than that of Langmuir probes

  16. Design of laser-aided diagnostics for the negative hydrogen ion source SPIDER

    International Nuclear Information System (INIS)

    Pasqualotto, R

    2012-01-01

    ITER nuclear fusion experiment requires additional heating via neutral beams by means of two injectors, delivering 16.5 MW each, up to one hour. This power level results from the neutralization of negative deuterium ions generated by an RF source and accelerated to 1 MeV. Such specifications have never been simultaneously achieved so far and therefore a test facility is being constructed at Consorzio RFX, to demonstrate the feasibility of a prototype neutral beam injector. The facility will host two experimental devices: SPIDER, a 100 kV negative hydrogen/deuterium RF source, full size prototype of the ITER source, and MITICA, a prototype of the full ITER injector. SPIDER will be devoted to optimize the extracted negative ion current density and its spatial uniformity and to minimize the co-extracted electron current. Negative hydrogen is mainly produced by conversion of hydrogen particles at the cesium coated surface of the plasma grid. The interplay of these two species is fundamental to understand and optimize the source performance. Two laser-aided diagnostics play an important role in measuring the negative hydrogen and cesium density: cavity ring down spectroscopy and laser absorption spectroscopy. Cavity ring down spectroscopy will use the photo-detachment process to measure the absolute line-of-sight integrated negative ion density in the extraction region of the source. Laser absorption spectroscopy will be employed to measure the line integrated neutral cesium density, allowing to study the cesium distribution in the source volume, during both the plasma and the vacuum phases. In this paper, the design of the laser-aided diagnostic systems on SPIDER is presented, supported by a review of results obtained in other operating experiments.

  17. Development of the High Current Ion Source for Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Ju; Kim, S. H.; Jang, D. H. [Jae Ju University, Jaeju (Korea, Republic of)

    1997-08-01

    The scope of the 1st year research is to design an 140keV deuterium ion source which has a beam current of 30-40A. According to the collected data, the model of an ion source for NBI of KSTAR was established. The negative ion source, which has good neutralization effecting in high energy, was selected. To generate a plasma, the thoriated tungsten filament was adopted. To increase the efficiency of plasma, the multi cusp type magnetic field was attached. The magnetic field was calculated by POISSON code. The extraction structure was designed with EGUN code, to extract the high quality ion beam. The design of a high current ion source for NBI was carried out. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If designed ion source would be fabricated, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the synthesis of new material and semiconductor industry. 18 refs., 11 tabs., 19 figs. (author)

  18. Alkali deuteride negative ion source development plan

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    A three phase program is described for the development of neutral beam systems. In the first phase, concluded in May, 1977, the laser initiated source was characterized. In phase two, scheduled for completion in September, 1978, negative ion confinement and extraction are investigated using laser energy deposition as a baseline method to produce D - . In addition other energy deposition schemes are studied in order to define a baseline energetic beam source system. The third phase is devoted to producing an integrated baseline system and scaling it up in current and energy to meet magnetic confinement system requirements

  19. Cross-field dust acoustic instability in a dusty negative ion plasma

    International Nuclear Information System (INIS)

    Rosenberg, M

    2010-01-01

    A cross-field dust acoustic instability in a dusty negative ion plasma in a magnetic field is studied using kinetic theory. The instability is driven by the ExB drifts of the ions. It is assumed that the negative ions are much heavier than the positive ions, and that the dust is negatively charged. The case where the positive ions and electrons are magnetized, the negative ions are marginally unmagnetized, and the dust is unmagnetized is considered. The focus is on a situation where Doppler resonances near harmonics of the positive ion gyrofrequency can affect the spectrum of unstable dust acoustic waves. Application to possible laboratory experimental parameters is discussed.

  20. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    Science.gov (United States)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-03-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D- and capable of delivering 16.5 MW of D0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option [1]. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H- to 100 keV will inject ≈15 A equivalent of H0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D- and H- current densities as well as long-pulse operation [2, 3]. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R&D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  1. Status of the Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    International Nuclear Information System (INIS)

    Schunke, B.; Bora, D.; Hemsworth, R.; Tanga, A.

    2009-01-01

    The current baseline of ITER foresees 2 Heating Neutral Beam (HNB's) systems based on negative ion technology, each accelerating to 1 MeV 40 A of D - and capable of delivering 16.5 MW of D 0 to the ITER plasma, with a 3rd HNB injector foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) accelerating 60 A of H - to 100 keV will inject ≅15 A equivalent of H 0 for charge exchange recombination spectroscopy and other diagnostics. Recently the RF driven negative ion source developed by IPP Garching has replaced the filamented ion source as the reference ITER design. The RF source developed at IPP, which is approximately a quarter scale of the source needed for ITER, is expected to have reduced caesium consumption compared to the filamented arc driven ion source. The RF driven source has demonstrated adequate accelerated D - and H - current densities as well as long-pulse operation. It is foreseen that the HNB's and the DNB will use the same negative ion source. Experiments with a half ITER-size ion source are on-going at IPP and the operation of a full-scale ion source will be demonstrated, at full power and pulse length, in the dedicated Ion Source Test Bed (ISTF), which will be part of the Neutral Beam Test Facility (NBTF), in Padua, Italy. This facility will carry out the necessary R and D for the HNB's for ITER and demonstrate operation of the full-scale HNB beamline. An overview of the current status of the neutral beam (NB) systems and the chosen configuration will be given and the ongoing integration effort into the ITER plant will be highlighted. It will be demonstrated how installation and maintenance logistics have influenced the design, notably the top access scheme facilitating access for maintenance and installation. The impact of the ITER Design Review and recent design change requests (DCRs) will be briefly discussed, including start-up and commissioning issues. The low current hydrogen phase now envisaged for start

  2. Modeling of negative ion extraction from a magnetized plasma source: Derivation of scaling laws and description of the origins of aberrations in the ion beam

    Science.gov (United States)

    Fubiani, G.; Garrigues, L.; Boeuf, J. P.

    2018-02-01

    We model the extraction of negative ions from a high brightness high power magnetized negative ion source. The model is a Particle-In-Cell (PIC) algorithm with Monte-Carlo Collisions. The negative ions are generated only on the plasma grid surface (which separates the plasma from the electrostatic accelerator downstream). The scope of this work is to derive scaling laws for the negative ion beam properties versus the extraction voltage (potential of the first grid of the accelerator) and plasma density and investigate the origins of aberrations on the ion beam. We show that a given value of the negative ion beam perveance correlates rather well with the beam profile on the extraction grid independent of the simulated plasma density. Furthermore, the extracted beam current may be scaled to any value of the plasma density. The scaling factor must be derived numerically but the overall gain of computational cost compared to performing a PIC simulation at the real plasma density is significant. Aberrations appear for a meniscus curvature radius of the order of the radius of the grid aperture. These aberrations cannot be cancelled out by switching to a chamfered grid aperture (as in the case of positive ions).

  3. Construction of negative-ion based NBI for JT-60U

    International Nuclear Information System (INIS)

    Kawai, Mikito; Akino, Noboru; Ebisawa, Noboru

    2001-11-01

    The world's first negative-ion based neutral beam injector (N-NBI) system has been developed for studies of non-inductive current drive and plasma core heating with high energy neutral beam injection in higher density plasma. Construction of the N-NBI system for JT-60U was completed in March 1996. The system is composed of a beamline with two ion sources, a set of ion source power supplies, control system and auxiliary sub-system such as cooling water, refrigeration and vacuum system. In July 2001, deuterium neutral beam injection of 400keV and 5.8MW into JT-60U plasma was achieved. In order to increase both beam power and energy we have to go on more improvement of the N-NBI. (author)

  4. Development of the work function monitoring method for a converter of a negative ion source

    International Nuclear Information System (INIS)

    Yamaoka, Hitoshi; Sasao, Mamiko; Wada, Motoi; Ramos, H.J.

    1988-07-01

    A method to monitor the change in the work function of the converter surface in a self-extraction negative ion source is developed. The photoelectron emission from the Cs-Mo surface in a plasma is detected by irradiating surface with laser lights. Negative ions produced at the surface shows a strong correlation with the photoelectron current from the surface in hydrogen and helium discharges. The photoelectron current induced by the Ar + laser is used to detect the change in the cesium coverage, or the work function, while that by the dye laser is found to be suitable to confirm the region of the work function minimum. (author)

  5. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  6. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    International Nuclear Information System (INIS)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H - ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H - ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H - ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H - ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  7. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    Science.gov (United States)

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H- ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H- ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H- ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H- ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  8. Deuterium results at the negative ion source test facility ELISE

    Science.gov (United States)

    Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.

    2018-05-01

    The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.

  9. Large area negative ion source for high voltage neutral beams

    International Nuclear Information System (INIS)

    Poulsen, P.; Hooper, E.B. Jr.

    1979-11-01

    A source of negative deuterium ions in the multi-ampere range is described that is readily extrapolated to reactor size, 10 amp or more of neutral beam, that is of interest in future experiments and reactors. The negative ion source is based upon the double charge exchange process. A beam of positive ions is created and accelerated to an energy at which the attachment process D + M → D - + M + proceeds efficiently. The positive ions are atomically neutralized either in D 2 or in the charge exchange medium M. Atomic species make a second charge exchange collision in the charge target to form D - . For a sufficiently thick target, the beam reaches an equilibrium fraction of negative ions. For reasons of efficiency, the target is typically alkali metal vapor; this experiment uses sodium. The beam of negative ions can be accelerated to high (>200 keV) energy, the electrons stripped from the ions, and a high energy neutral beam formed

  10. Negative ion formation processes: A general review

    International Nuclear Information System (INIS)

    Alton, G.D.

    1990-01-01

    The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs

  11. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    International Nuclear Information System (INIS)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O.

    2010-01-01

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  12. Proceedings of the workshop on negative ion formation and beam handling

    International Nuclear Information System (INIS)

    Takagi, A.; Mori, Y.

    1993-01-01

    The Workshop on Negative Ion Formation and Beam Handling was held at National Laboratory for High Energy Physics (KEK) on July 27 and 28. More than 40 participants attended the workshop. Negative ions and beams are becoming very useful and attractive in many fields of science, in particular in accelerator science and nuclear fusion and various types of negative ion sources have been developed so far. However, the fundamental mechanisms of negative ion generation in the ion sources and of beam formation are still not clear. This workshop aimed to discuss the problems on these points in details. (J.P.N.)

  13. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  14. Dosimetry and radiobiology of negative pions and heavy ions

    International Nuclear Information System (INIS)

    Raju, M.R.

    1978-01-01

    The depth dose distribution of pion beams has not been found superior to protons. Pion radiation quality at the plateau region is comparable to conventional low-LET radiations, and radiobiology results also indicate RBE values close to unity. In the pion stopping region, the radiation quality increases considerably. Radiobiology data for negative pions at the Bragg peak position clearly indicate the increase in RBE and the reduction in OER. Even at the Bragg peak position, compared to fast neutrons, the average LET of negative pions is lower. Pion radiobiology data have indicated lower RBE values and higher OER values compared to fast neutrons. The radiation quality of fast neutrons is in between that of carbon and neon ions at the peak region and that of neon ions at the plateau is lower than for fast neutrons. The mean LET value for helium ions, even at the distal end of the peak, is lower than for fast neutrons. Dose localization of heavy ions has been found to decrease slowly with increasing charge of the heavy ion. The intercellular contact that protects cells after exposure to low-LET radiations is not detected after exposure to heavy ions. Single and fractionated doses of heavy ions produce dose-response curves for heavy ions having reduced shoulders but similar slopes when compared to gamma rays. Fractionated treatments of heavy ions produce an enhanced effect in the peak region compared to the plateau region and could lead to a substantial gain in therapeutic ratio. The OER for protons was similar to that for x rays. The OER values for negative pions, helium ions, and carbon ions were larger, for neon ions similar, and for argon ions smaller when compared to fast neutrons.Negative pions, helium ions, and carbon ions may be very effective clinically because the radiation quality of these beams is similar to that of the mixed scheme of neutrons and x rays

  15. A 1MeV, 1A negative ion accelerator test facility

    International Nuclear Information System (INIS)

    Hanada, M.; Dairaku, M.; Inoue, T.; Miyamoto, K.; Ohara, Y.; Okumura, Y.; Watanabe, K.; Yokoyama, K.

    1995-01-01

    For the Proof-of-Principle test of negative ion acceleration up to 1 MeV, the beam energy required for ITER, a negative ion test facility named MeV Test Facility (MTF) and an ion source/accelerator have been designed and constructed. They are designed to produce a 1 MeV H- beam at a low source pressure of 0.13Pa. The MTF has a power supply system, which constituts of a 1MV, 1A, 60 s Cockcroft-Walton type dc high energy generator and power supplies for negative ion generation and extraction (ion source power supplies). The negative ion source/accelerator is composed of a cesiated volume source and a 5-stage, multi-aperture, electrostatic accelerator. The MTF and the ion source/accelerator have been completed, and the accelertion test up to 1 MeV of the H- ions has started. (orig.)

  16. The role of high Rydberg states in the generation of negative ions in negative-ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1995-01-01

    The generation of substantial yields of H - ions in a laser excited H 2 gas has been reported by Pinnaduwage and Christoforu. These H - yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10 -6 cm 3 sec -1 , values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper

  17. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  18. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    International Nuclear Information System (INIS)

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-01-01

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  19. Recent negative ion source developments at ORNL

    International Nuclear Information System (INIS)

    Alton, G.D.

    1979-01-01

    According to specifications written for the 25 MV ORNL tandem accelerator, the ion source used during acceptance testing must be capable of producing a negative ion beam of intensity greater than or equal to 7.5 μA within a phase space of less than or equal to 1 π cm-mrad (MeV)/sup 1/2/. The specifications were written prior to the development of an ion source with such capabilities but fortunately Andersen and Tykesson introduced a source in 1975 which could easily meet the specified requirements. The remarkable beam intensity and quality properties of this source has motivated the development of other sources which utilize sputtering in the presence of a diffuse cesium plasma - some of which will be described in these proceedings. This report describes results of studies associated with the development of a modified Aarhus geometry and an axial geometry source which utilize sputtering in the presence of a diffuse cesium plasma for the production of negative ion beams

  20. Negative ion detachment cross sections: Progress report, March 1, 1986-February 28, 1987

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1986-11-01

    Brief descriptions are given for research performed in (1) the electron detachment of alkali negative ions, (2) collisions of negative ions with alkali atoms, (3) charge exchange involving doubly charged ions, and (4) positive ion production in negative ion-atom collisions

  1. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    OpenAIRE

    G. Fubiani; H. P. L. de Esch; A. Simonin; R. S. Hemsworth

    2008-01-01

    The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER) is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses). The resulting seco...

  2. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons

    International Nuclear Information System (INIS)

    Sabry, R.; Shukla, P. K.; Moslem, W. M.

    2009-01-01

    Properties of fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive the energy integral equation with a new Sagdeev potential. The latter is analyzed to examine the existence regions of the solitary pulses. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as the nonthermal electron parameter. Numerical solution of the energy integral equation clears that both positive and negative potentials exist together. It is found that faster solitary pulses are taller and narrower. Furthermore, increasing the electron nonthermality parameter (negative-to-positive ions density ratio) decreases (increases) the localized excitation amplitude but increases (decreases) the pulse width. The present model is used to investigate the solitary excitations in the (H + ,O 2 - ) and (H + ,H - ) plasmas, where they are presented in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the fully nonlinear ion-acoustic solitary waves in space and in laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  3. Electron-capture negative-ion mass spectrometry: a technique for environmental contaminant identification

    International Nuclear Information System (INIS)

    Stemmler, E.A.

    1986-01-01

    Electron capture negative ion mass spectrometry (ECNIMS) is a method used to generate negative ions in a mass spectrometer by electron-molecule reactions. This technique facilitates the sensitive and selective detection of many toxic contaminants in environmental samples. Applications of this technique have been hindered by the limited understanding of instrumental parameters, by the questionable reproducibility of negative ion mass spectra, and by the inability to interpret negative ion mass spectra. Instrumental parameters which were important to control include the ion source temperature, ion source pressure, sample concentration, and the focus lens potential. The ability to obtain reproducible spectra was demonstrated by measurement of the spectrum of decafluorotriphenylphosphine (DFTPP) over a period of one year. Negative ion fragmentation mechanisms were studied by measuring the spectra of structurally related classes of compounds and isotopically labelled compounds. These results were combined with data obtained by other researchers. Fragmentations characteristic of particular functional groups or molecular structures have been summarized. From this data set, guidelines for the interpretation of electron capture negative ion mass spectra have been developed

  4. Negative ion sound solitary waves revisited

    Science.gov (United States)

    Cairns, R. A.; Cairns

    2013-12-01

    Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

  5. The production and destruction of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.

    1991-01-01

    During the present grant period we are continuing our measurements of cross sections and asymmetry parameters for single photon-single electron detachment from atomic negative ions. In this period we have studied the stable ions B - and Li - . As a by product of these measurements we have investigated a new technique for measuring electron affinities. As in our previous work, we have made energy- and angle-resolved spectroscopic measurements of the yields and angular distributions of photoelectrons ejected at the intersection of perpendicularly crossed laser and negative ion beams. A combination of measurements of photoelectron yields, which are proportional to differential cross sections, and angular distributions allow us to determine angle-integrated cross sections for the photodetachment process. Cross sections for the inverse process of radiative attachment can be obtained from the photodetachment data by applying the principle of detailed balance

  6. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    Energy Technology Data Exchange (ETDEWEB)

    Gutser, Raphael

    2010-07-21

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  7. Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI

    International Nuclear Information System (INIS)

    Gutser, Raphael

    2010-01-01

    The injection of fast neutral particles (NBI) into a fusion plasma is an important method for plasma heating and current drive. A source for negative deuterium ions delivering an 1 MeV beam that is accelerated to a specific energy and neutralized by a gas target is required for the ITER-NBI. Cesium seeding is required to extract high negative ion current densities from these sources. The optimization of the cesium homogeneity and control are major objectives to achieve the source requirements imposed by ITER. Within the scope of this thesis, the Monte Carlo based numerical transport simulation CsFlow3D was developed, which is the first computer model that is capable of simulating the flux and the accumulation of cesium on the surfaces of negative-ion sources. Basic studies that support the code development were performed at a dedicated experiment at the University of Augsburg. Input parameters of the ad- and desorption of cesium at ion source relevant conditions were taken from systematic measurements with a quartz micro balance, while the injection rate of the cesium oven at the ion source was determined by surface ionization detection. This experimental setup was used for further investigations of the work function of cesium-coated samples during plasma exposure. (orig.)

  8. Installation and first operation of the negative ion optimization experiment

    International Nuclear Information System (INIS)

    De Muri, Michela; Cavenago, Marco; Serianni, Gianluigi; Veltri, Pierluigi; Bigi, Marco; Pasqualotto, Roberto; Barbisan, Marco; Recchia, Mauro; Zaniol, Barbara; Kulevoy, Timour; Petrenko, Sergey; Baseggio, Lucio; Cervaro, Vannino; Agostini, Fabio Degli; Franchin, Luca; Laterza, Bruno; Minarello, Alessandro; Rossetto, Federico; Sattin, Manuele; Zucchetti, Simone

    2015-01-01

    Highlights: • Negative ion sources are key components of the neutral beam injectors. • The NIO1 experiment is a RF ion source, 60 kV–135 mA hydrogen negative ion beam. • NIO1 can contribute to beam extraction and optics thanks to quick replacement and upgrading of parts. • This work presents installation, status and first experiments results of NIO1. - Abstract: Negative ion sources are key components of the neutral beam injectors for thermonuclear fusion experiments. The NIO1 experiment is a radio frequency ion source generating a 60 kV–135 mA hydrogen negative ion beam. The beam is composed of nine beamlets over an area of about 40 × 40 mm"2. This experiment is jointly developed by Consorzio RFX and INFN-LNL, with the purpose of providing and optimizing a test ion source, capable of working in continuous mode and in conditions similar to those foreseen for the larger ion sources of the ITER neutral beam injectors. At present research and development activities on these ion sources still address several important issues related to beam extraction and optics optimization, to which the NIO1 test facility can contribute thanks to its modular design, which allows for quick replacement and upgrading of components. This contribution presents the installation phases, the status of the test facility and the results of the first experiments, which have demonstrated that the source can operate in continuous mode.

  9. Study of Au- production in a plasma-sputter type negative ion source

    International Nuclear Information System (INIS)

    Okabe, Yushirou.

    1991-10-01

    A negative ion source of plasma-sputter type has been constructed for the purpose of studying physical processes which take place in the ion source. Negative ions of gold are produced on the gold target which is immersed in an argon discharge plasma and biased negatively with respect to the plasma. The work function of the target surface was lowered by the deposition of Cs on the target. An in-situ method has been developed to determine the work function of the target surface in the ion source under discharge conditions. The observed minimum work function of a cesiated gold surface in an argon plasma was 1.3 eV, when the negative ion production rate took the maximum value. The production rate increased monotonically and saturated when the surface work function was reduced from 1.9 eV to 1.3 eV. The dependence of Au - production rate on the incident ion energy and on the number of the incident ion was studied. From the experimental results, it is shown that the sputtering process is an important physical process for the negative ion production in the plasma-sputter type negative ion source. The energy distribution function was also measured. When the bias voltage was smaller than 280 V, the high energy component in the distribution decreased as the target voltage was decreased. Therefore, the energy spread ΔE, of the observed negative ion energy distribution also decreased. This tendency is also seen in the energy spectrum of Cu atoms sputtered in normal direction by Ar + ions. (J.P.N.)

  10. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  11. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    International Nuclear Information System (INIS)

    Fubiani, G.; Boeuf, J. P.

    2013-01-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  12. Overview of the LBL/LLNL negative-ion-based neutral beam program

    International Nuclear Information System (INIS)

    Pyle, R.V.

    1980-01-01

    The LBL/LLNL negative-ion-based neutral beam development program and status are described. The emphasis has shifted in some details since the first symposium in 1977, but our overall objectives remain the same, namely, the development of megawatt d.c. injection systems. Previous emphasis was on a system in which the negative ions were produced by double charge exchange in sodium vapor. At present, the emphasis is on a self-extraction source in which the negative ions are produced on a biased surface imbedded in a plasma. A one-ampere beam will be accelerated to at least 40 keV next year. Studies of negative-ion formation and interactions help provide a data base for the technology program

  13. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  14. Negative ions in the auroral mesosphere during a PCA event around sunset

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the `raw' electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.

    Key words. Ionosphere (auroral ionosphere; ion chemistry and composition; particle precipitation.

  15. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  16. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  17. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  18. The emittance and brightness characteristics of negative ion sources suitable for MeV ion implantation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1987-01-01

    This paper provides the description and beam properties of ion sources suitable for use with ion implantation devices. Particular emphasis is placed on the emittance and brightness properties of state-of-the-art, high intensity, negative ion sources based on the cesium ion sputter principle

  19. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  20. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  1. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.

    1978-05-01

    A conceptual design of a neutral beam line based on the neutralization of negative deuterium ions is presented. This work is a detailed design of a complete neutral beam line based on using negative ions from a direct extraction source. Anticipating major technological advancements, beam line components have been scaled including the negative ion sources and components for the direct energy recovery of charged beams and high speed cryogenic pumping. With application to the next step in experimental fusion reactors (TNS), the neutral beam injector system that has been designed provides 10 MW of 200 keV neutral deuterium atoms. Several arms are required for plasma ignition

  2. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  3. Design of a negative ion neutral beam system for TNS

    International Nuclear Information System (INIS)

    Easoz, J.R.; Sink, D.A.

    1979-01-01

    A design is presented that suggests that a negative ion neutral beam based on direct extraction is applicable to TNS, assuming technological advancements in several areas. Improvements in negative ion sources, direct energy conversion of charged beams, and high speed cryogenic pumping are needed. The increase in efficiency over a positive ion system and the encouraging results of the first attempt at a total design justify increased effort in the development of the above mentioned areas

  4. Installation of spectrally selective imaging system in RF negative ion source

    International Nuclear Information System (INIS)

    Ikeda, K.; Kisaki, M.; Nagaoka, K.; Nakano, H.; Osakabe, M.; Tsumori, K.; Kaneko, O.; Takeiri, Y.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Geng, S.

    2016-01-01

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (H α ) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of H α emission near the bias plate has been clearly observed. The same time trend on H α intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed

  5. Electronically excited negative ion resonant states in chloroethylenes

    Energy Technology Data Exchange (ETDEWEB)

    Khvostenko, O.G., E-mail: khv@mail.ru; Lukin, V.G.; Tuimedov, G.M.; Khatymova, L.Z.; Kinzyabulatov, R.R.; Tseplin, E.E.

    2015-02-15

    Highlights: • Several novel dissociative negative ion channels were revealed in chloroethylenes. • The electronically excited resonant states were recorded in all chloroethylenes under study. • The states were assigned to the inter-shell types, but not to the core-excited Feshbach one. - Abstract: The negative ion mass spectra of the resonant electron capture by molecules of 1,1-dichloroethylene, 1,2-dichloroethylene-cis, 1,2-dichloroethylene-trans, trichloroethylene and tetrachloroethylene have been recorded in the 0–12 eV range of the captured electron energy using static magnetic sector mass spectrometer modified for operation in the resonant electron capture regime. As a result, several novel low-intensive dissociation channels were revealed in the compounds under study. Additionally, the negative ion resonant states were recorded at approximately 3–12 eV, mostly for the first time. These resonant states were assigned to the electronically excited resonances of the inter-shell type by comparing their energies with those of the parent neutral molecules triplet and singlet electronically excited states known from the energy-loss spectra obtained by previous studies.

  6. A Multi-Sample Cs-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-01-01

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report

  7. A Multi-Sample Cs-Sputter Negative Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Alton, G.D.; Ball, J.A.; Bao, Y.; Cui, B.; Reed, C.A.; Williams, C.

    1998-10-05

    A multi-sample Cs sputter negative-ion source, equipped with a conical-geometry, W-surface-ionizer has been designed and fabricated that permits sample changes without disruption of on-line accelerator operation. Sample changing is effected by actuating an electro-pneumatic control system located at ground potential that drives an air-motor-driven sample-indexing-system mounted at high voltage; this arrangement avoids complications associated with indexing mechanisms that rely on electronic power-supplies located at high potential. In-beam targets are identified by LED indicator lights derived from a fiber-optic, Gray-code target-position sensor. Aspects of the overall source design and details of the indexing mechanism along with operational parameters, ion optics. intensities, and typical emittances for a variety of negative-ion species will be presented in this report.

  8. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  9. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  10. High-ion temperature experiments with negative-ion-based NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Tsumori, K.; Ikeda, K.; Oka, Y.; Osakabe, M.; Nagaoka, K.; Goto, M.; Miyazawa, J.; Masuzaki, S.; Ashikawa, N.; Yokoyama, M.; Narihara, K.; Yamada, I.; Kubo, S.; Shimozuma, T.; Inagaki, S.; Tanaka, K.; Peterson, B.J.; Ida, K.; Kaneko, O.; Komori, A.; Murakami, S.

    2005-01-01

    High-Z plasmas have been produced with Ar- and/or Ne-gas fuelling to increase the ion temperature in the LHD plasmas heated with the high-energy negative-ion-based NBI. Although the electron heating is dominant in the high-energy NBI heating, the direct ion heating power is much enhanced effectively in low-density plasmas due to both an increase in the beam absorption (ionisation) power and a reduction of the ion density in the high-Z plasmas. Intensive Ne- and/or Ar-glow discharge cleaning works well to suppress dilution of the high-Z plasmas with the wall-absorbed hydrogen. As a result, the ion temperature increases with an increase in the ion heating power normalized by the ion density, and reaches 10 keV. An increase in the ion temperature is also observed with an addition of the centrally focused ECRH to the low-density and high-Z NBI plasma, suggesting improvement of the ion transport. The results obtained in the high-Z plasma experiments with the high-energy NBI heating indicate that an increase in the direct ion heating power and improvement of the ion transport are essential to the ion temperature rise, and that a high-ion temperature would be obtained as well in hydrogen plasmas with low-energy positive-NBI heating which is planed in near future in LHD. (author)

  11. Negative ion detachment cross sections

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1992-10-01

    The authors have measured absolute cross sections for electron detachment and charge exchange for collision of O and S with atomic hydrogen, have investigated the sputtering and photodesorption of negative ions from gas covered surfaces, and have begun an investigation of photon-induced field emission of electrons from exotic structures. Brief descriptions of these activities as well as future plans for these projects are given below

  12. Solitons in a relativistic plasma with negative ions--

    International Nuclear Information System (INIS)

    Das, G.C.; Karmakar, B.; Ibohanbi Singh, KH.

    1990-01-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized

  13. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1988-03-01

    A dc negative hydrogen and/or deuterium ion source is needed to prouce high-power, high-energy neutral beams for alpha diagnostics and current drive applicatiosn in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radio-frequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions effeciently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summariezed. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  14. Design considerations for a negative ion source for dc operation of high-power, multi-megaelectron-volt neutral beams

    International Nuclear Information System (INIS)

    Tsai, C.C.; Stirling, W.L.; Akerman, M.A.; Becraft, W.R.; Dagenhart, W.K.; Haselton, H.H.; Ryan, P.M.; Schechter, D.E.; Whealton, J.H.

    1987-01-01

    A dc negative hydrogen and/or deuterium ion source is needed to produce high-power, high-energy neutral beams for alpha diagnostics and current drive applications in fusion devices. The favorable beam particle energy for such applications extends to 1.5 MeV/amu. Continuous-wave (cw) radiofrequency quadrupole (RFQ) accelerators have been proposed to accelerate negative ions efficiently to this energy range. In this paper, the desired beam properties for ion beams injected into cw RFQ accelerators are summarized. A number of candidate ion sources being developed at Culham, JAERI, LBL, and ORNL may prove useful for these applications. The properties of the Volume Ionization with Transverse Extraction (VITEX) ion sources being developed at ORNL are presented. Scaling such a dc ion source to produce ampere beams is discussed. 53 refs., 4 figs., 2 tabs

  15. Negative hydrogen ion sources for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab; Peters, J.; /DESY; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  16. Thorium molecular negative ion production in a cesium sputter source at BARC-TIFR pelletron accelerator ion source test set up

    International Nuclear Information System (INIS)

    Gupta, A.K.; Mehrotra, N.; Kale, R.M.; Alamelu, D.; Aggarwal, S.K.

    2005-01-01

    Ion source test set up at Pelletron Accelerator facility has been utilized extensively for the production and characterization of negative ions, with particular emphasis being place at the species of experimental users interest. The attention have been focussed towards the formation of rare earth negative ions, due to their importance in the ongoing accelerator mass spectroscopy program and isotopic abundance measurements using secondary negative ion mass spectrometry

  17. Method of generating intense nuclear polarized beams by selective photodetachment of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.

    1986-01-01

    A novel method for production of nuclear polarized negative hydrogen ions by selective neutralization with a laser of negative hydrogen ions in a magnetic field is described. This selectivity is possible since a final state of the neutralized atom, and hence the neutralization energy, depends on its nuclear polarization. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility of neutralizing negative ions with very high efficiency. An assessment of the required laser power indicates that this method is in principle feasible with today's technology

  18. High-current negative-ion sources for pulsed spallation neutron sources: LBNL workshop, October 1994

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-09-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The I to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. The Workshop reported on here, held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R ampersand D efforts to bridge the gap

  19. Kinetic modeling of particle dynamics in H− negative ion sources (invited)

    International Nuclear Information System (INIS)

    Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.

    2014-01-01

    Progress in the kinetic modeling of particle dynamics in H − negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H − ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H − production, and (ii) extraction physics of H − ions and beam optics

  20. H- production from non-cesiated converter-type negative ion sources

    International Nuclear Information System (INIS)

    van Os, C.F.A.; Leung, K.N.; Lietzke, A.F.; Stearns, J.W.; Kunkel, W.B.

    1989-11-01

    Recent results of surface produced negative ions are presented. Two low work function metal surfaces have been studied, barium and magnesium, in combination with several plasma generators; rf- and dc-filament discharges. The negative ion yield for barium is about 5 to 6 times larger than magnesium. This ratio is confirmed by model calculations on resonant charge exchange. 32 refs., 9 figs

  1. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  2. Recent advancements in sputter-type heavy negative ion sources

    International Nuclear Information System (INIS)

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few μA to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab

  3. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  4. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1977-01-01

    The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion

  5. Modeling of the negative ions extraction from a hydrogen plasma source. Application to ITER Neutral Beam Injector

    International Nuclear Information System (INIS)

    Mochalskyy, S.

    2011-12-01

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of a Neutral Beam Injector of the future fusion reactor ITER. NI source should deliver 40 A of H - or of D - . To address this problem in a realistic way, a 3D particles-in-cell electrostatic collisional code was developed. Binary collisions between the particles are introduced using Monte-Carlo collision scheme. This code called ONIX was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture. Results obtained from this code are presented in this thesis. They include negative ions and electrons 3D trajectories. The ion and electron current density profiles are shown for different local magnetic field configurations. Results of production, destruction, and transport of H - in the extraction region are also presented. The production of H - is investigated via 3 atomic processes: 1) electron dissociative attachment to the vibrationally excited molecules H 2 (v) in the volume, 2) interaction of the positive ions H + and H 2 + with the aperture wall and 3) collisions of the neutral gas H, H 2 with aperture wall. The influence of each process on the total extracted NI current is discussed. The extraction efficiency of H - from the volume is compared to the one of H - coming from the wall. Moreover, a parametric study of the H - surface production is presented. Results show the role of sheath behavior in the vicinity of the aperture developing a double layer structure responsible of the NI extraction limitations. The 2 following issues are also analysed. First the influence of the external extracted potential value on the formation of negative sheath and secondly the strength of the magnetic filter on the total extracted NI and co-extracted electron current. The suppression of the electron beam by the negative ion produced at the plasma grid wall is also discussed. Results are in good agreement

  6. Improvements of the magnetic field design for SPIDER and MITICA negative ion beam sources

    International Nuclear Information System (INIS)

    Chitarin, G.; Agostinetti, P.; Aprile, D.; Marconato, N.; Veltri, P.

    2015-01-01

    The design of the magnetic field configuration in the SPIDER and MITICA negative ion beam sources has evolved considerably during the past four years. This evolution was driven by three factors: 1) the experimental results of the large RF-driven ion sources at IPP, which have provided valuable indications on the optimal magnetic configurations for reliable RF plasma source operation and for large negative ion current extraction, 2) the comprehensive beam optics and heat load simulations, which showed that the magnetic field configuration in the accelerator is crucial for keeping the heat load due to electrons on the accelerator grids within tolerable limits, without compromising the optics of the negative ion beam in the foreseen operating scenarios, 3) the progress of the detailed mechanical design of the accelerator, which stimulated the evaluation of different solutions for the correction of beamlet deflections of various origin and for beamlet aiming. On this basis, new requirements and solution concepts for the magnetic field configuration in the SPIDER and MITICA beam sources have been progressively introduced and updated until the design converged. The paper presents how these concepts have been integrated into a final design solution based on a horizontal “long-range” field (few mT) in combination with a “local” vertical field of some tens of mT on the acceleration grids

  7. Optimization of negative ion accelerators

    International Nuclear Information System (INIS)

    Pamela, J.

    1991-01-01

    We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off

  8. Electron and ion currents relevant to accurate current integration in MeV ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Matteson, S.; Nicolet, M.A.

    1979-01-01

    The magnitude and characteristics of the currents which flow in the target and the chamber of an MeV ion backscattering spectrometer are examined. Measured energy distributions and the magnitude of high-energy secondary electron currents are reported. An empirical universal curve is shown to fit the energy distribution of secondary electrons for several combinations of ion energy, targets and ion species. The magnitude of tertiary electron currents which arise at the vacuum vessel walls is determined for various experimental situations and is shown to be non-negligible in many cases. An experimental arrangement is described which permits charge integrations to 1% arruracy without restricting access to the target as a Faraday cage does. (Auth.)

  9. Study of a new source for positive and negative ions. Final report

    International Nuclear Information System (INIS)

    Freedman, A.; Davidovits, P.

    1985-05-01

    This study has focused on the feasibility of a novel ion source based on the technique of photodissociation, which could provide both positive and negative ions at considerably higher intensities (potentially 10 15 cm -3 ) than are currently available. Ions are produced by irradiating a sample of a gaseous thallium halide salt with an argon fluoride excimer laser operating at 193 nm. At this wavelength, both thallium bromide and iodide will produce atomic ion pairs in a single photon process and molecular positive ions and an electron in a two-photon induced process. The potential traits of such an excimer-laser pumped thallium salt ion source include the following: high intensity and pulse rate, good spatial and temporal resolution, low temperature, good focusing properties, and production of heavy ions. This report describes a Phase I effort investigating the efficacy of this approach. A review of the relevant photophysics pertaining to laser excitation of thallium halide salts is presented, followed by a description of both experimental and theoretical efforts involving thallium bromide in particular. The last section will summarize the basic conclusions derived from these studies, as well as discuss potential advantages of an ion source derived from photolyzing thallium halide salts

  10. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  11. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Fantz, U.; Franzen, P.; Minea, T.

    2014-10-01

    The development of a large area (Asource,ITER = 0.9 × 2 m2) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (Asource,BATMAN ≈ 0.32 × 0.59 m2) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child-Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion-ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated extracted currents, both ions

  12. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    Energy Technology Data Exchange (ETDEWEB)

    Oudini, N. [Laboratoire des plasmas de décharges, Centre de Développement des Technologies Avancées, Cité du 20 Aout BP 17 Baba Hassen, 16081 Algiers (Algeria); Sirse, N.; Ellingboe, A. R. [Plasma Research Laboratory, School of Physical Sciences and NCPST, Dublin City University, Dublin 9 (Ireland); Benallal, R. [Unité de Recherche Matériaux et Energies Renouvelables, BP 119, Université Abou Bekr Belkaïd, Tlemcen 13000 (Algeria); Taccogna, F. [Istituto di Metodologie Inorganiche e di Plasmi, CNR, via Amendola 122/D, 70126 Bari (Italy); Aanesland, A. [Laboratoire de Physique des Plasmas, (CNRS, Ecole Polytechnique, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud), École Polytechnique, 91128 Palaiseau Cedex (France); Bendib, A. [Laboratoire d' Electronique Quantique, Faculté de Physique, USTHB, El Alia BP 32, Bab Ezzouar, 16111 Algiers (Algeria)

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  13. Polyatomic ions from a high current ion implanter driven by a liquid metal ion source

    Science.gov (United States)

    Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.

    2017-12-01

    High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.

  14. Calculation of von Neumann entropy for hydrogen and positronium negative ions

    International Nuclear Information System (INIS)

    Lin, Chien-Hao; Ho, Yew Kam

    2014-01-01

    In the present work, we carry out calculations of von Neumann entropies and linear entropies for the hydrogen negative ion and the positronium negative ion. We concentrate on the spatial (electron–electron orbital) entanglement in these ions by using highly correlated Hylleraas functions to represent their ground states, and to take care of correlation effects. We apply the Schmidt decomposition method on the partial-wave expanded two-electron wave functions, and from which the one-particle reduced density matrix can be obtained, leading to the quantifications of linear entropy and von Neumann entropy in the H − and Ps − ions. - Highlights: • We calculate von Neumann entropies and linear entropies for hydrogen and positronium negative ions. • We employ highly correlated Hylleraas functions to take into account of correlation effects. • Spatial (electron–electron orbital) entanglement is quantified using the Schmidt decomposition method. • The eigenvalues of the one-particle reduced density matrix are calculated

  15. Generation of intense polarized beams by selective neutralization of negative ions

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Hinds, E.A.

    1983-01-01

    A novel scheme is proposed. This method is based on selective neutralization by laser negative hydrogen ions in a magnetic field. This selectivity is based on the fact that the final state of the neutralized atom depends on nuclear polarization in the magnetic field. A two-scenario approach is to be followed: one in which the resulting neutral atom is in the ground state, and in the other the neutral atom is in the n = 2 level. Limiting factors are discussed. The main advantages of this scheme are the availability of multi-ampere negative ion sources and the possibility to neutralize negative ions with very high efficiency. 15 references, 2 figures

  16. Development of a 20 mA negative hydrogen ion source for cyclotrons

    Science.gov (United States)

    Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.

    2017-08-01

    A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).

  17. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  18. Simulations of negative hydrogen ion sources

    Science.gov (United States)

    Demerdjiev, A.; Goutev, N.; Tonev, D.

    2018-05-01

    The development and the optimisation of negative hydrogen/deuterium ion sources goes hand in hand with modelling. In this paper a brief introduction on the physics and types of different sources, and on the Kinetic and Fluid theories for plasma description is made. Examples of some recent models are considered whereas the main emphasis is on the model behind the concept and design of a matrix source of negative hydrogen ions. At the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences a new cyclotron center is under construction which opens new opportunities for research. One of them is the development of plasma sources for additional proton beam acceleration. We have applied the modelling technique implemented in the aforementioned model of the matrix source to a microwave plasma source exemplifying a plasma filled array of cavities made of a dielectric material with high permittivity. Preliminary results for the distribution of the plasma parameters and the φ component of the electric field in the plasma are obtained.

  19. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    Bruneteau, A.M.

    1983-07-01

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10 -3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H - ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H - ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model [fr

  20. Study on a negative hydrogen ion source with hot cathode arc discharge.

    Science.gov (United States)

    Lin, S H; Fang, X; Zhang, H J; Qian, C; Ma, B H; Wang, H; Li, X X; Zhang, X Z; Sun, L T; Zhang, Z M; Yuan, P; Zhao, H W

    2014-02-01

    A negative hydrogen (H(-)) ion source with hot cathode arc discharge was designed and fabricated as a primary injector for a 10 MeV PET cyclotron at IMP. 1 mA dc H(-) beam with ɛ N, RMS = 0.08 π mm mrad was extracted at 25 kV. Halbach hexapole was adopted to confine the plasma. The state of arc discharge, the parameters including filament current, arc current, gas pressure, plasma electrode bias, and the ratio of I(e(-))/I(H(-)) were experimentally studied. The discussion on the result, and opinions to improve the source were given.

  1. Physical principles of the surface-plasma method of producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    A study is made of the processes used to produce intensive beams of negative ions from surface-plasma sources (SPS). The concepts now being formulated concerning the formation of negative ions upon interaction of bombarding particles with the surface of a solid are analyzed. The peculiarities of the realization of optimal conditions for the production of beams of negative ions in SPS of various designs are discussed

  2. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  3. Current control for magnetized plasma in direct-current plasma-immersion ion implantation

    International Nuclear Information System (INIS)

    Tang Deli; Chu, Paul K.

    2003-01-01

    A method to control the ion current in direct-current plasma-immersion ion implantation (PIII) is reported for low-pressure magnetized inductively coupled plasma. The ion current can be conveniently adjusted by applying bias voltage to the conducting grid that separates plasma formation and implantation (ion acceleration) zones without the need to alter the rf input power, gas flux, or other operating conditions. The ion current that diminishes with an increase in grid bias in magnetized plasmas can be varied from 48 to 1 mA by increasing the grid voltage from 0 to 70 V at -50 kV sample bias and 0.5 mTorr hydrogen pressure. High implantation voltage and monoenergetic immersion implantation can now be achieved by controlling the ion current without varying the macroscopic plasma parameters. The experimental results and interpretation of the effects are presented in this letter. This technique is very attractive for PIII of planar samples that require on-the-fly adjustment of the implantation current at high implantation voltage but low substrate temperature. In some applications such as hydrogen PIII-ion cut, it may obviate the need for complicated sample cooling devices that must work at high voltage

  4. Status of the IPP RF Negative Ion Source Development for the ITER NBI System

    International Nuclear Information System (INIS)

    Peter Franzen, P.; Falter, H.-D.; Fantz, U.

    2006-01-01

    For heating and current drive the ITER neutral beam system requires negative hydrogen ion sources capable of delivering above 40 A of D - ions from a 1.5 x 0.6 m 2 source for up to one hour pulses with an accelerated current density of 200 A/m 2 . In order to reduce the losses by electron stripping in the acceleration system and the power loading of the grids, the source pressure is required to be 0.3 Pa at an electron/ion ratio 2 H - / 230 A/m 2 D - ) in excess of the ITER requirements have been already achieved on the small test facility '' BATMAN '' (Bavarian Test Machine for Negative Ions) at the required source pressure (0.3 Pa) and electron/ion ratio ( 2 ) and limited pulse length ( 2 and the pulse length up to 3600 s, using the same source as it is used at BATMAN. In order to demonstrate the required homogeneity of a large RF plasma source as well as the operation of an ITER relevant RF circuit, a so called '' half-size source '' - with roughly the width and half the height of the ITER source - was designed and went into operation on a dedicated plasma source test bed ('' RADI ''). An extensive diagnostic and modelling programme is accompanying those activities. The paper will present as an overview a summary of the latest results of the RF source development, with an emphasis on the first results of the operation of the half size ITER source and on the status of the long pulse operation. The details will be presented in several other papers. (author)

  5. Comparison of ONIX simulation results with experimental data from the BATMAN testbed for the study of negative ion extraction

    Science.gov (United States)

    Mochalskyy, Serhiy; Fantz, Ursel; Wünderlich, Dirk; Minea, Tiberiu

    2016-10-01

    The development of negative ion (NI) sources for the ITER neutral beam injector is strongly accompanied by modelling activities. The ONIX (Orsay Negative Ion eXtraction) code simulates the formation and extraction of negative hydrogen ions and co-extracted electrons produced in caesiated sources. In this paper the 3D geometry of the BATMAN extraction system, and the source characteristics such as the extraction and bias potential, and the 3D magnetic field were integrated in the model. Calculations were performed using plasma parameters experimentally obtained on BATMAN. The comparison of the ONIX calculated extracted NI density with the experimental results suggests that predictive calculations of the extraction of NIs are possible. The results show that for an ideal status of the Cs conditioning the extracted hydrogen NI current density could reach ~30 mA cm-2 at 10 kV and ~20 mA cm-2 at 5 kV extraction potential, with an electron/NI current density ratio of about 1, as measured in the experiments under the same plasma and source conditions. The dependency of the extracted NI current on the NI density in the bulk plasma region from both the modeling and the experiment was investigated. The separate distributions composing the NI beam originating from the plasma bulk region and the PG surface are presented for different NI plasma volume densities and NI emission rates from the plasma grid (PG) wall, respectively. The extracted current from the NIs produced at the Cs covered PG surface, initially moving towards the bulk plasma and then being bent towards the extraction surfaces, is lower compared to the extracted NI current from directly extracted surface produced ions.

  6. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  7. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  8. Development of high performance negative ion sources and accelerators for MeV class neutral beam injectors

    International Nuclear Information System (INIS)

    Taniguchi, M.; Hanada, M.; Iga, T.

    2003-01-01

    Operation of accelerator at low pressure is an essential requirement to reduce stripping loss of the negative ions, which in turn results in high efficiency of the NB systems. For this purpose, a vacuum insulated beam source (VIBS) has been developed at JAERI, which reduces the gas pressure in the accelerator by enhanced gas conductance through the accelerator. The VIBS achieves the high voltage insulation of 1 MV by immersing the whole structure of accelerator in vacuum with long (∼ 1.8 m) insulation distance. Results of the voltage holding test using a long vacuum gap of 1.8 m indicate that a transition from vacuum discharge to gas discharge occurs at around 0.2 Pa m in the long vacuum gap. So far, the VIBS succeeded in acceleration of 20 mA (H - ) beam up to 970 keV for 1 s. The high voltage holding capability of the VIBS was drastically improved by installing a new large stress ring, which reduces electric field concentration at the triple junction of the accelerator column. At present the VIBS sustains 1 MV stably for more than 1200 s. Acceleration of ampere class H- beams at high current density is to be started soon to demonstrate ITER relevant beam optics. Operation of negative ion source at low pressure is also essential to reduce the stripping loss. However, it was not so easy to attain high current density H - ions at low pressure, since destruction cross section of the negative ions becomes large if the electron temperature is > 1 eV, in low pressure discharge. Using strong magnetic filter to lower the electron temperature, and putting higher arc discharge power to compensate reduction of plasma density through the filter, an H - ion beam of 310 A/m 2 was extracted at very low pressure of 0.1Pa. This satisfies the ITER requirement of current density at 1/3 of the ITER design pressure (0.3 Pa). (author)

  9. High voltage holding in the negative ion sources with cesium deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.; Sanin, A.; Sotnikov, O., E-mail: O.Z.Sotnikov@inp.nsk.su [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  10. Development of negative heavy ion sources for plasma potential measurement

    International Nuclear Information System (INIS)

    Sasao, M.; Okabe, Y.; Fujisawa, A.; Iguchi, H.; Fujita, J.; Yamaoka, H.; Wada, M.

    1991-10-01

    A plasma sputter negative ion source was studied for its applicability to the potential measurement of a fusion plasma. Both the beam current density and the beam energy spread are key issues. Energy spectra of a self extracted Au - beam from the source were measured under the condition of a constant work function of the production surface. The full width of half maximum (FWHM) increases from 3 eV to 9 eV monotonically as the target voltage increases from 50 V to 300 V, independently from the target surface work function of 2.2 - 3 eV. (author)

  11. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    Science.gov (United States)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  12. Negative ion beam formation using thermal contact ionization type plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Fukuura, Yoshiyuki; Murakami, Kazutugu; Masuoka, Toshio; Katsumata, Itsuo [Osaka City Univ. (Japan). Faculty of Engineering

    1997-02-01

    The small ion sources utilizing thermal ionization have been already developed, and at present, in order to increase ion yield, that being developed to the cylindrical plasma prototype having the inner surface of a Re foil cylinder as the ionization surface, and stably functioning at 3,000 K has been developed, and by using this plasma source, the research on the formation of various ions has been carried out. At present, the research on the formation of Li negative ion beam is carried out. The separation of negative ions from electrons is performed with the locally limited magnetic field using a small iron core electromagnet placed behind the electrostatic accelerating lens system. So for, the formation of about 2 {mu}A at maximum of negative ions was confirmed. It was decided to identify the kinds of ions by time of flight (TOF) process, and the various improvements for this purpose were carried out. The experimental setup, the structure of the plasma source, the circuits for TOF measurement and so on are explained. The experimental results are reported. The problems are the possibility of the formation of alkali metals, the resolution of the time axis of the TOF system and so on. (K.I.)

  13. Surface potential measurement of insulators in negative-ion implantation by secondary electron energy-peak shift

    International Nuclear Information System (INIS)

    Nagumo, Shoji; Toyota, Yoshitaka; Tsuji, Hiroshi; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1993-01-01

    Negative-ion implantation is expected to realize charge-up free implantation. In this article, about a way to specify surface potential of negative-ion implanted insulator by secondary-electron-energy distribution, its principle and preliminary experimental results are described. By a measuring system with retarding field type energy analyzer, energy distribution of secondary electron from insulator of Fused Quartz in negative-carbon-ion implantation was measured. As a result the peak-shift of its energy distribution resulted according with the surface potential of insulator. It was found that surface potential of insulator is negatively charged by only several volts. Thus, negative-ion implanted insulator reduced its surface charge-up potential (without any electron supply). Therefore negative-ion implantation is considered to be much more effective method than conventional positive-ion implantation. (author)

  14. Modeling of secondary emission processes in the negative ion based electrostatic accelerator of the International Thermonuclear Experimental Reactor

    Directory of Open Access Journals (Sweden)

    G. Fubiani

    2008-01-01

    Full Text Available The negative ion electrostatic accelerator for the neutral beam injector of the International Thermonuclear Experimental Reactor (ITER is designed to deliver a negative deuterium current of 40 A at 1 MeV. Inside the accelerator there are several types of interactions that may create secondary particles. The dominating process originates from the single and double stripping of the accelerated negative ion by collision with the residual molecular deuterium gas (≃29% losses. The resulting secondary particles (positive ions, neutrals, and electrons are accelerated and deflected by the electric and magnetic fields inside the accelerator and may induce more secondaries after a likely impact with the accelerator grids. This chain of reactions is responsible for a non-negligible heat load on the grids and must be understood in detail. In this paper, we will provide a comprehensive summary of the physics involved in the process of secondary emission in a typical ITER-like negative ion electrostatic accelerator together with a precise description of the numerical method and approximations involved. As an example, the multiaperture-multigrid accelerator concept will be discussed.

  15. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  16. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  17. Modelling of caesium dynamics in the negative ion sources at BATMAN and ELISE

    Science.gov (United States)

    Mimo, A.; Wimmer, C.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The knowledge of Cs dynamics in negative hydrogen ion sources is a primary issue to achieve the ITER requirements for the Neutral Beam Injection (NBI) systems, i.e. one hour operation with an accelerated ion current of 40 A of D- and a ratio between negative ions and co-extracted electrons below one. Production of negative ions is mostly achieved by conversion of hydrogen/deuterium atoms on a converter surface, which is caesiated in order to reduce the work function and increase the conversion efficiency. The understanding of the Cs transport and redistribution mechanism inside the source is necessary for the achievement of high performances. Cs dynamics was therefore investigated by means of numerical simulations performed with the Monte Carlo transport code CsFlow3D. Simulations of the prototype source (1/8 of the ITER NBI source size) have shown that the plasma distribution inside the source has the major effect on Cs dynamics during the pulse: asymmetry of the plasma parameters leads to asymmetry in Cs distribution in front of the plasma grid. The simulated time traces and the general simulation results are in agreement with the experimental measurements. Simulations performed for the ELISE testbed (half of the ITER NBI source size) have shown an effect of the vacuum phase time on the amount and stability of Cs during the pulse. The sputtering of Cs due to back-streaming ions was reproduced by the simulations and it is in agreement with the experimental observation: this can become a critical issue during long pulses, especially in case of continuous extraction as foreseen for ITER. These results and the acquired knowledge of Cs dynamics will be useful to have a better management of Cs and thus to reduce its consumption, in the direction of the demonstration fusion power plant DEMO.

  18. Collective phenomena in negative ion photodetachment

    International Nuclear Information System (INIS)

    Ivanov, V.K.

    1996-01-01

    The many-electron collective effects in negative ion photodetachment are discussed. The calculations of photodetachment cross sections and photoelectron angular distributions have been performed within the Many-Body Theory Methods. It is shown that the role of many-electron interactions leading to the collective effects like dynamical polarizability, interchannel interaction, core polarization, core relaxation, is very important to describe the photodetachment processes. (author)

  19. Atomic processes in hydrogen and deuterium negative ion discharges

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1992-01-01

    A knowledge of the atomic processes active in a hydrogen negative ion discharge and their respective rates is an essential component of the interpretation, modeling, and enhancement of negative ion systems. The generation of the cross sections and rate processes appropriate to this problem has been a principal activity at several laboratories. In this paper is discussed those collision processes that are of major importance for the destruction of the vibrationally excited molecules generated in the discharge, processes that are essential to the valuation of the optimization procedure that is to be discussed in this paper

  20. Stability of Modified K-dV soliton in plasma with negative ion

    International Nuclear Information System (INIS)

    Matsukawa, Michiaki; Watanabe, Shinsuke

    1988-01-01

    The K-P and Modified K-P equations for ion acoustic wave are derived from the fluid equations for plasma with negative ion. At the critical density of the negative ion where the nonlinearity of the K-P equation vanishes, the ion acoustic soliton is described by the Modified K-P equation. The stability of Modified K-dV soliton against bending are investigated by using the Modified K-P equation. It is found that the soliton is stable, independent of the sign of amplitude. (author)

  1. An improved value for the electron affinity of the negative hydrogen ion

    International Nuclear Information System (INIS)

    Scherk, L.R.

    1979-01-01

    An expression is derived for the lifetime of a negative ion in a weak and static electric field. Using this expression, existing experimental data are analyzed to improve the empirical value of the electron affinity of the negative hydrogen ion by an order of magnitude. (author)

  2. Negative hydrogen ion sources for neutral beam injectors

    International Nuclear Information System (INIS)

    Prelec, K.

    1977-01-01

    Negative ion sources offer an attractive alternative in the design of high energy neutral beam injectors. The requirements call for a single source unit capable of yielding H - or D - beam currents of up to 10 A, operating with pulses of 1 s duration or longer, with gas and power efficiencies comparable to or better than achievable with double electron capture systems. H - beam currents of up to 1 A have already been achieved in pulses of 10 ms; gas and power efficiencies were, however, lower than required. In order to increase the H - yield, extend the pulse length and improve gas and power efficiencies fundamental processes in the source plasma and on cesium covered electrode surfaces have to be analyzed; these processes will be briefly reviewed and scaling rules established. Based on these considerations as well as on results obtained with 1 A source models a larger model was designed and constructed, having a 7.5 cm long cathode with forced cooling. Results of initial tests will be presented and possible scaling up to 10 A units discussed

  3. Development of an intense negative hydrogen ion source with a wide-range of external magnetic filter field

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1994-09-01

    An intense negative hydrogen ion source has been developed, which has a strong external magnetic filter field in the wide area of 35 cm x 62 cm produced by a pair of permanent magnet rows located with 35.4 cm separation. The filter strength is 70 G in the center and the line-integrated filter strength is 850 G cm, which keeps the low electron temperature in the extraction region. Strong cusp magnetic field, 1.8 kG on the chamber surface, is generated for improvement of the plasma confinement. These resulted in the high arc efficiency at the low operational gas pressure. A 16.2 A of the H - ion current with the energy of 47 keV was obtained at the arc efficiency of 0.1 A/kW at the gas pressure of 3.8 mTorr in the cesium-mode operation. The magnetic field in the extraction gap is also strong, 450 G, for the electron suppression. The ratio of the extraction to the negative ion currents was less than 2.2 at the gas pressure of 3 mTorr. The two-stage acceleration was tried, and a 13.6 A of the H - ion beam was accelerated to 125 keV. (author)

  4. Efficient cesiation in RF driven surface plasma negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A., E-mail: sanin@inp.nsk.su; Sotnikov, O. [Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  5. Autoconditioning system for BNL negative ion sources

    International Nuclear Information System (INIS)

    Larson, R.A.

    1979-01-01

    The autoconditioning system at BNL is being used to condition negative ion sources now under development. A minicomputer with appropriate interface hardware is employed to implement simple algorithims, slowly increasing the operating point of the source. This paper gives a brief description of the hardware and the software system

  6. The technique of negative ions in mass spectrometry. Application to aromatics

    International Nuclear Information System (INIS)

    George, G.

    1984-01-01

    The author examines the application of NCI (study of negative ions created by chemical ionization and particularly by a reacting negative ion) on a model popular at the present time: the passion fruit. The author stresses that this technique has its limitations and should be considered as auxiliary to electron impact. However, it seems destined for a promising future for the analysis of natural produce [fr

  7. Effects of the weak magnetic field and electron diffusion on the spatial potential and negative ion transport in the negative ion source

    International Nuclear Information System (INIS)

    Sakurabayashi, T.; Hatayama, A.; Bacal, M.

    2004-01-01

    The effects of the weak magnetic field on the negative ion (H - ) extraction in a negative ion source have been studied by means of a two-dimensional electrostatic particle simulation. A particle-in-cell model is used which simulates the motion of the charged particles in their self-consistent electric field. In addition, the effect of the electron diffusion across the weak magnetic field is taken into account by a simple random-walk model with a step length Δx per time step Δt; Δx=√(2D perpendicular )Δt)·ξ x , where D perpendicular ) and ξ x are the perpendicular diffusion coefficient and normal random numbers. Under this simple diffusion model, the electron diffusion has no significant effects on the H - transport. Most electrons are magnetized by the weak magnetic field and lost along the field line. As a result, more H - ions arrive instead of electrons in the region close to the plasma grid in order to ensure the plasma neutrality

  8. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  9. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  10. Massive parallel 3D PIC simulation of negative ion extraction

    Science.gov (United States)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  11. Charge steering of laser plasma accelerated fast ions in a liquid spray — creation of MeV negative ion and neutral atom beams

    International Nuclear Information System (INIS)

    Schnürer, M.; Abicht, F.; Priebe, G.; Braenzel, J.; Prasad, R.; Borghesi, M.; Andreev, A.; Nickles, P. V.; Jequier, S.; Tikhonchuk, V.; Ter-Avetisyan, S.

    2013-01-01

    The scenario of “electron capture and loss” has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, et al., Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source

  12. Investigation of the Decelerating Field of an Electron Multiplier under Negative Ion Impact

    DEFF Research Database (Denmark)

    Larsen, Elfinn; Kjeldgaard, K.

    1973-01-01

    The effect of the decelerating field of an electron multiplier towards negative ions was investigated under standard mass spectrometric conditions. Diminishing of this decelerating field by changing of the potential of the electron multiplier increased the overall sensitivity to negative ions...

  13. Time-resolved measurements of highly-polymerised negative ions in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Sansonnens, L.; Dorier, J.L.; Hollenstein, C.

    1993-07-01

    The time-resolved fluxes of negative polysilicon hydride ions from a power-modulated rf silane plasma have been measured by quadrupole mass spectrometry and modeled using a simple polymerisation scheme. Experiments were performed with plasma parameters suitable for high-quality amorphous silicon deposition. Polysilicon hydride anions diffuse from the plasma with low energy (approximately 0.5 eV) during the afterglow after the electron density has decayed and the sheath fields have collapsed. The mass-dependence of the temporal behavior of the anion loss flux demonstrates that the plasma composition is influenced by the modulation frequency. The negative species attain much higher masses than the positive or neutral species, and anions containing as many as sixteen silicon atoms have been observed, corresponding to the 500 amu limit of the mass spectrometer. This suggests that negative ions could be the precursors to particle formation. Ion-molecule and ion-ion reactions are discussed and a simple negative ion polymerisation scheme is proposed which qualitatively reproduces the experimental results. The model shows that the densities of high mass negative ions in the plasma are strongly reduced by modulation frequencies near 1 kHz. Each plasma period is then too short for the polymerisation chain to propagate to high masses before the elementary anions are lost in each subsequent afterglow period. This explains why modulation of the rf power can reduce particle contamination. We conclude that, for the case of silane rf plasmas, the initiation steps which ultimately lead to particle contamination proceed by negative ion polymerisation. (author) 15 figs., 72 refs

  14. Physical principles of the surface plasma method for producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    1977-01-01

    The processes which are important for the production of intense beams of negative ions from surface plasma sources (SPS) are examined. The formation of negative ions when atomic particles interact with a surface is analyzed on the basis of both experimental results obtained when a surface was bombarded with beams and recently developed theoretical considerations of reflection, scattering, and electron exchange. The characteristic features of these processes in SPS, when a surface is bombarded with intense fluxes of plasma particles, are revealed in special experiments. The characteristics of generation and acceleration of the bombarding particles in a gas discharge SPS plasma, the characteristics of transportation of negative ions through the plasma toward the beam forming system, the role of cesium in SPS, and the characteristics of formation of the intense negative ion beams as well as the removal of parasite electrons from the beam

  15. Measurement of negative ion mobilities in O2 and O3 mixtures at atmospheric pressure

    International Nuclear Information System (INIS)

    Itoh, H.; Norimoto, K.; Hayashi, T.

    1998-01-01

    Mobility measurements of negative molecular oxygen ions in pure oxygen and in an oxygen-ozone mixture are reported. A cascaded gap consisting of an ion drift gap and an ion detection gap was used in the experiment. The ion detection gap was formed by a positive point and a grounded plane electrode was operated at atmospheric pressure. The zero field mobility of negative molecular oxygen ions was determined to be 2.07+-0.02 cm 2 /V.s. A somewhat higher value of oxygen mobility was found at higher electric field/pressure ratios; this is presumed to be due to negative ozone ions. When changing the electric field/pressure ratio the mobility of negative oxygen ions in oxygen-ozone mixtures becomes smaller than that in pure oxygen; this is probably due to the cumulative effect of other particles produced by silent discharges. (J.U.)

  16. Current status of ion source development

    International Nuclear Information System (INIS)

    Ishikawa, Junzo

    2001-01-01

    In this report, the current status of ion source development will be discussed. In September 2001, the 9th International Conference on Ion Sources (ICIS01) was held in Oakland, U.S.A. Referring the talks presented at ICIS01, recent topics in the ion source research fields will be described. (author)

  17. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kai, E-mail: kaixie@mail.xidian.edu.cn; Liu, Yan; Li, XiaoPing [School of Aerospace Science and Technology, Xidian University, Xi’an 710071 (China); Guo, Lixin [School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071 (China); Zhang, Hanlu [School of Communication & Information Engineering, Xi’an University of Posts & Telecommunication, Xi’an 710121 (China)

    2016-04-15

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier’s bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  18. Note: Expanding the bandwidth of the ultra-low current amplifier using an artificial negative capacitor.

    Science.gov (United States)

    Xie, Kai; Liu, Yan; Li, XiaoPing; Guo, Lixin; Zhang, Hanlu

    2016-04-01

    The bandwidth and low noise characteristics are often contradictory in ultra-low current amplifier, because an inevitable parasitic capacitance is paralleled with the high value feedback resistor. In order to expand the amplifier's bandwidth, a novel approach was proposed by introducing an artificial negative capacitor to cancel the parasitic capacitance. The theory of the negative capacitance and the performance of the improved amplifier circuit with the negative capacitor are presented in this manuscript. The test was conducted by modifying an ultra-low current amplifier with a trans-impedance gain of 50 GΩ. The results show that the maximum bandwidth was expanded from 18.7 Hz to 3.3 kHz with more than 150 times of increase when the parasitic capacitance (∼0.17 pF) was cancelled. Meanwhile, the rise time decreased from 18.7 ms to 0.26 ms with no overshot. Any desired bandwidth or rise time within these ranges can be obtained by adjusting the ratio of cancellation of the parasitic and negative capacitance. This approach is especially suitable for the demand of rapid response to weak current, such as transient ion-beam detector, mass spectrometry analysis, and fast scanning microscope.

  19. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  20. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  1. High electronegativity multi-dipolar electron cyclotron resonance plasma source for etching by negative ions

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, M.

    2012-01-01

    A large area plasma source based on 12 multi-dipolar ECR plasma cells arranged in a 3 x 4 matrix configuration was built and optimized for silicon etching by negative ions. The density ratio of negative ions to electrons has exceeded 300 in Ar/SF6 gas mixture when a magnetic filter was used...... to reduce the electron temperature to about 1.2 eV. Mass spectrometry and electrostatic probe were used for plasma diagnostics. The new source is free of density jumps and instabilities and shows a very good stability for plasma potential, and the dominant negative ion species is F-. The magnetic field...... in plasma volume is negligible and there is no contamination by filaments. The etching rate by negative ions measured in Ar/SF6/O-2 mixtures was almost similar with that by positive ions reaching 700 nm/min. (C) 2012 American Institute of Physics...

  2. A research of possibility for negative muon production by a low energy electron beam accompanying ion beam

    International Nuclear Information System (INIS)

    Uramoto, Joshin.

    1993-12-01

    A low energy electron beam (≤ 2000 eV) is injected perpendicularly to a uniform magnetic field, together with a low energy positive ion beam. On this magnetic mass analysis (using the uniform magnetic field), a peak of secondary electron current to the beam collector (arranging as a mass analyzer of 90deg type), appears at an analyzing magnetic field which corresponds exactly to a relation of negative muon μ - (the mass m=207 m e and the charge q=e, where m e and e are mass and charge of electron). The ion beam is essential for the peak appearance, which is produced by decelerating electrically the electron beam in front of the entrance slit of the mass analyzer, and by introducing a neutral gas into the electron beam region and producing a plasma through the ionization. We consider that a very small amount of negative muons may be produced through local cyclotron motions of the injected beam electrons in the ion beam or by an interaction between the bunched beam electrons and beam ions. (author)

  3. Kinetic modeling of particle dynamics in H{sup −} negative ion sources (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hatayama, A., E-mail: akh@ppl.appi.keio.ac.jp; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Fukano, A. [Monozukuri Department, Tokyo Metropolitan College of Industrial Technology, Shinagawa, Tokyo 140-0011 (Japan); Mizuno, T. [Department of Management Science, College of Engineering, Tamagawa University, Machida, Tokyo 194-8610 (Japan)

    2014-02-15

    Progress in the kinetic modeling of particle dynamics in H{sup −} negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H{sup −} ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H{sup −} production, and (ii) extraction physics of H{sup −} ions and beam optics.

  4. On the meniscus formation and the negative hydrogen ion extraction from ITER neutral beam injection relevant ion source

    International Nuclear Information System (INIS)

    Mochalskyy, S; Wünderlich, D; Ruf, B; Fantz, U; Franzen, P; Minea, T

    2014-01-01

    The development of a large area (A source,ITER  = 0.9 × 2 m 2 ) hydrogen negative ion (NI) source constitutes a crucial step in construction of the neutral beam injectors of the international fusion reactor ITER. To understand the plasma behaviour in the boundary layer close to the extraction system the 3D PIC MCC code ONIX is exploited. Direct cross checked analysis of the simulation and experimental results from the ITER-relevant BATMAN source testbed with a smaller area (A source,BATMAN  ≈ 0.32 × 0.59 m 2 ) has been conducted for a low perveance beam, but for a full set of plasma parameters available. ONIX has been partially benchmarked by comparison to the results obtained using the commercial particle tracing code for positive ion extraction KOBRA3D. Very good agreement has been found in terms of meniscus position and its shape for simulations of different plasma densities. The influence of the initial plasma composition on the final meniscus structure was then investigated for NIs. As expected from the Child–Langmuir law, the results show that not only does the extraction potential play a crucial role on the meniscus formation, but also the initial plasma density and its electronegativity. For the given parameters, the calculated meniscus locates a few mm downstream of the plasma grid aperture provoking a direct NI extraction. Most of the surface produced NIs do not reach the plasma bulk, but move directly towards the extraction grid guided by the extraction field. Even for artificially increased electronegativity of the bulk plasma the extracted NI current from this region is low. This observation indicates a high relevance of the direct NI extraction. These calculations show that the extracted NI current from the bulk region is low even if a complete ion–ion plasma is assumed, meaning that direct extraction from surface produced ions should be present in order to obtain sufficiently high extracted NI current density. The calculated

  5. Photodetachment of negative C60- ions

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G.

    1998-01-01

    A model that describes the electron structure of negative fullerene C 60 - ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C 60 . In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C 60 - photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.)

  6. Surface potential measurement of the insulator with secondary electron caused by negative ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Toyota, Yoshitaka; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kohji.

    1994-01-01

    Ion implantation has the merit of the good controllability of implantation profile and low temperature process, and has been utilized for the impurity introduction in LSI production. However, positive ion implantation is carried out for insulator or insulated conductor substrates, their charged potential rises, which is a serious problem. As the requirement for them advanced, charge compensation method is not the effective means for resolving it. The negative ion implantation in which charging is little was proposed. When the experiment on the negative ion implantation into insulated conductors was carried out, it was verified that negative ion implantation is effective as the implantation process without charging. The method of determining the charged potential of insulators at the time of negative ion implantation by paying attention to the energy distribution of the secondary electrons emitted from substrates at the time was devised. The energy analyzer for measuring the energy distribution of secondary electrons was made, and the measurement of the charged potential of insulators was carried out. The principle of the measurement, the measuring system and the experimental results are reported. (K.I.)

  7. Profiles of plasma parameters and density of negative hydrogen ions by laser detachment measurements in RF-driven ion sources; Profile der Plasmaparameter und Dichte negativer Wasserstoffionen mittels Laserdetachmentmessungen in HF-angeregten Ionenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Christ-Koch, Sina

    2007-12-20

    This work shows the application of the Laserdetachment method for spatially resolved measurements of negative Hydrogen/Deuterium ion density. It was applied on a high power low pressure RF-driven ion source. The Laser detachment method is based on the measurement of electron currents on a positively biased Langmuir probe before and during/after a laser pulse. The density ratio of negative ions to electrons can be derived from the ratio of currents to the probe. The absolute density of negative ions can be obtained when the electron density is measured with the standard Langmuir probe setup. Measurements with the Langmuir probe additionally yield information about the floating and plasma potential, the electron temperature and the density of positive ions. The Laser detachment setup had to be adapted to the special conditions of the RF-driven source. In particular the existence of RF fields (1 MHz), high source potential (-20 kV), magnetic fields ({proportional_to} 7 mT) and caesium inside the source had to be considered. The density of negative ions could be identified in the range of n(H{sup -})=1.10{sup 17} 1/m{sup 3}, which is in the same order of magnitude as the electron density. Only the application of the Laser detachment method with the Langmuir probe measurements will yield spatially resolved plasma parameters and H- density profiles. The influence of diverse external parameters, such as pressure, RF-power, magnetic fields on the plasma parameters and their profiles were studied and explained. Hence, the measurements lead to a detailed understanding of the processes inside the source. (orig.)

  8. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  9. New source of MeV negative ion and neutral atom beams

    International Nuclear Information System (INIS)

    Ter-Avetisyan, S.; Braenzel, J.; Schnürer, M.; Prasad, R.; Borghesi, M.; Jequier, S.; Tikhonchuk, V.

    2016-01-01

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities

  10. New source of MeV negative ion and neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Ter-Avetisyan, S., E-mail: sargis@gist.ac.kr [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 500-712 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 500-712 (Korea, Republic of); Braenzel, J.; Schnürer, M. [Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin 12489 (Germany); Prasad, R. [Institute for Laser and Plasma Physics, Heinrich Heine University, Duesseldorf 40225 (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen’s University of Belfast, Belfast BT7-1NN (United Kingdom); Jequier, S.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, CEA, CNRS, University of Bordeaux, 33405 Talence (France)

    2016-02-15

    The scenario of “electron-capture and -loss” was recently proposed for the formation of negative ion and neutral atom beams with MeV kinetic energies. However, it does not explain why the formation of negative ions in a liquid spray is much more efficient than with an isolated atom. The role of atomic excited states in the charge-exchange processes is considered, and it is shown that it cannot account for the observed phenomena. The processes are more complex than the single electron-capture and -loss approach. It is suggested that the shell effects in the electronic structure of the projectile ion and/or target atoms may influence the capture/loss probabilities.

  11. Ion-Acoustic Cnoidal Waves In A Plasma With Negative Ions

    International Nuclear Information System (INIS)

    Yadav, Lakhan Lal

    2003-01-01

    Using the reductive perturbation method, we present a theory of different nonlinear periodic waves, viz. the Korteweg-de Vries and modified KdV (mKdV) cnoidal waves, in a plasma with negative ions, which in the limiting case reduce to localized structures, namely KdV compressive or rarefactive solitons, and mKdV compressive and rarefactive solitons, respectively. It is found that the amplitude dependence of frequency is different for KdV and mKdV cnoidal waves

  12. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    International Nuclear Information System (INIS)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T.; Guharay, S.K.

    1997-01-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H - ) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  13. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  14. Study of the secondary negative ion emission of copper and several of its alloys by impact with Cs+ ions

    International Nuclear Information System (INIS)

    Vallerand, P.; Baril, M.

    1977-01-01

    Secondary ion emission studies have been undertaken using Cs + as the primary ion beam. A good vacuum (ca. 10 -8 torr) is needed to eliminate contamination by residual gases. Negative ion emission of pure copper is compared with its alloys. The thermodynamic equilibrium model of Andersen is discussed. For low element concentrations, the experimental data show enhancement in negative emission of P, Al, Fe, Sn, Ni, and attenuation for Zn, Pb. The order of magnitude of ionic efficiency S - for copper is evaluated at 10 -4 . (Auth.)

  15. Ion current reduction in pinched electron beam diodes

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1977-01-01

    A new version of a particle-in-cell diode code has been written which permits the accurate treatment of higher-current diodes with greater physical dimensions. Using this code, we have studied ways to reduce the ion current in large-aspect-ratio pinched electron beam diodes. In particular, we find that allowing the ions to reflex in such diodes lowers the ion to electron current ratio considerably. In a 3-MV R/d=24 case this ratio was lowered by a factor of 6--8 compared with the corresponding nonreflexing-ion diode, while still producing a superpinched electron beam

  16. On the electron extraction in a large RF-driven negative hydrogen ion source for the ITER NBI system

    International Nuclear Information System (INIS)

    Franzen, P; Wünderlich, D; Fantz, U

    2014-01-01

    The test facility ELISE, equipped with a large RF-driven ion source (1 × 0.9 m 2 ) of half the size of the ion source for the ITER neutral beam injection (NBI) system, has been constructed over the last three years at the Max-Planck-Institut für Plasmaphysik (IPP), Garching, and is now operational. The first measurements of the dependence of the co-extracted electron currents on various operational parameters have been performed. ELISE has the unique feature that the electron currents can be measured individually on both extraction grid segments, leading to vertical spatial resolution. Although performed in volume operation, where the negative hydrogen ions are created in the plasma volume solely, the results are very encouraging for operation with caesium, this being necessary in order to achieve the relevant negative ion currents for the ITER NBI injectors. The amount of co-extracted electrons could be suppressed sufficiently with moderate magnetic filter fields and by plasma grid bias. Furthermore, the electron extraction is more or less decoupled from the main plasma, as the observed vertical asymmetry of electron extraction is not correlated at all with the plasma asymmetry, which is anyway rather small. Both effects are superior to the experience from the small IPP prototype source; the reason for these encouraging results is most probably the larger size of the source as well as the new geometry of the source having unbiased areas in its centre. The reasons, however, for the observed asymmetry of the extracted electron currents and their dependencies on various operational parameters are not well understood. (paper)

  17. A High-Intensity, RF Plasma-Sputter Negative Ion Source

    International Nuclear Information System (INIS)

    Alton, G.D.; Bao, Y.; Cui, B.; Lohwasser, R.; Reed, C.A.; Zhang, T.

    1999-01-01

    A high-intensity, plasma-sputter negative-ion source based on the use of RF power for plasma generation has been developed that can be operated in either pulsed or dc modes. The source utilizes a high-Q, self-igniting, inductively coupled antenna system, operating at 80 MHz that has been optimized to generate Cs-seeded plasmas at low pressures (typically, - (610 microA); F - (100 microA); Si - (500 microA); S - (500 microA); P - (125 microA); Cl - (200 microA); Ni - (150 microA); Cu - (230 microA); Ge - (125 microA); As - (100 microA); Se - (200 microA); Ag - (70 microA); Pt - (125 microA); Au - (250 microA). The normalized emittance var e psilon n of the source at the 80% contour is: var e psilon n = 7.5 mm.mrad.(MeV) 1/2 . The design principles of the source, operational parameters, ion optics, emittance and intensities for a number of negative-ion species will be presented in this report

  18. On tokamak equilibria with a zero current or negative current central region

    International Nuclear Information System (INIS)

    Chu, M.S.; Parks, P.B.

    2002-01-01

    Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). The straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids 14, 671 (1971)] on a tokamak equilibrium to these plasmas leads to the apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e., no negative currents can be driven in the central region

  19. Sources of polarized negative ions: progress and prospects

    International Nuclear Information System (INIS)

    Haeberli, W.

    1980-01-01

    A summary of recent progress in the art of producing beams of polarized ions is given. In all sources of polarized ions, one first produces (or selects) neutral atoms which are polarized in electron spin. Those types of sources which use a beam of thermal polarized hydrogen atoms are discussed. Progress made in the preparation of the atomic beam and the methods used to convert the neutral atoms to polarized ions is summarized. The second type of source discussed is based on fast (keV) polarized hydrogen atoms. Conversion to negative ions is very simple because one only needs to pass the fast atoms through a suitable charge exchange medium (gas or vapor). However, the production of the polarized atoms is more difficult in this case. The proposal to employ polarized alkali vapor to form a beam of polarized fast H atoms, where the polarized alkali atoms are produced either by an atomic beam apparatus or by optical pumping is discussed

  20. Conceptual design of a calorimeter and residual ion dump for the ITER negative ion injectors

    International Nuclear Information System (INIS)

    Watson, M.

    1998-01-01

    A conceptual design for the ITER Negative Ion Injectors' Calorimeter and Residual Ion Dump systems has been carried out. The work was undertaken in support of detailed studies performed by the Russian Federation. Concepts for both systems incorporate actively water cooled hypervapotrons as the primary beam stopping elements. The Calorimeter drive has been based on the utilisation of a novel force translation system via magnetic coupling. The Residual Ion Dump necessitates the use of double sided hypervapotron elements in order to cater for the restricted space envelope defined by the Accelerator Grid hole pattern. (author)

  1. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail: kfliuhust@hust.edu.cn; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi

    2017-01-15

    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  2. Vacancies and negative ions in GaAs

    International Nuclear Information System (INIS)

    Corbel, C.

    1991-01-01

    We use positron lifetime studies performed in GaAs materials to show the defect properties which can be investigated by implanting positive positrons in semiconductors. The studies concern native and electron irradiation induced defects. These studies show that vacancy charge state and vacancy ionization levels can be determined from positron annihilation. They show also that positrons are trapped by negative ions and give information on their concentration

  3. New stable multiply charged negative atomic ions in linearly polarized superintense laser fields

    International Nuclear Information System (INIS)

    Wei Qi; Kais, Sabre; Moiseyev, Nimrod

    2006-01-01

    Singly charged negative atomic ions exist in the gas phase and are of fundamental importance in atomic and molecular physics. However, theoretical calculations and experimental results clearly exclude the existence of any stable doubly-negatively-charged atomic ion in the gas phase, only one electron can be added to a free atom in the gas phase. In this report, using the high-frequency Floquet theory, we predict that in a linear superintense laser field one can stabilize multiply charged negative atomic ions in the gas phase. We present self-consistent field calculations for the linear superintense laser fields needed to bind extra one and two electrons to form He - , He 2- , and Li 2- , with detachment energies dependent on the laser intensity and maximal values of 1.2, 0.12, and 0.13 eV, respectively. The fields and frequencies needed for binding extra electrons are within experimental reach. This method of stabilization is general and can be used to predict stability of larger multiply charged negative atomic ions

  4. Review of particle-in-cell modeling for the extraction region of large negative hydrogen ion sources for fusion

    Science.gov (United States)

    Wünderlich, D.; Mochalskyy, S.; Montellano, I. M.; Revel, A.

    2018-05-01

    Particle-in-cell (PIC) codes are used since the early 1960s for calculating self-consistently the motion of charged particles in plasmas, taking into account external electric and magnetic fields as well as the fields created by the particles itself. Due to the used very small time steps (in the order of the inverse plasma frequency) and mesh size, the computational requirements can be very high and they drastically increase with increasing plasma density and size of the calculation domain. Thus, usually small computational domains and/or reduced dimensionality are used. In the last years, the available central processing unit (CPU) power strongly increased. Together with a massive parallelization of the codes, it is now possible to describe in 3D the extraction of charged particles from a plasma, using calculation domains with an edge length of several centimeters, consisting of one extraction aperture, the plasma in direct vicinity of the aperture, and a part of the extraction system. Large negative hydrogen or deuterium ion sources are essential parts of the neutral beam injection (NBI) system in future fusion devices like the international fusion experiment ITER and the demonstration reactor (DEMO). For ITER NBI RF driven sources with a source area of 0.9 × 1.9 m2 and 1280 extraction apertures will be used. The extraction of negative ions is accompanied by the co-extraction of electrons which are deflected onto an electron dump. Typically, the maximum negative extracted ion current is limited by the amount and the temporal instability of the co-extracted electrons, especially for operation in deuterium. Different PIC codes are available for the extraction region of large driven negative ion sources for fusion. Additionally, some effort is ongoing in developing codes that describe in a simplified manner (coarser mesh or reduced dimensionality) the plasma of the whole ion source. The presentation first gives a brief overview of the current status of the ion

  5. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  6. Structure and Dynamics of Negative Ions

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model

  7. Hysteresis and negative differential resistance of the current-voltage characteristic of a water bridge

    Science.gov (United States)

    Oshurko, V. B.; Fedorov, A. N.; Ropyanoi, A. A.; Fedosov, M. V.

    2014-06-01

    It is found experimentally that the properties of nanoporous ion-exchange membranes (hysteresis of the current-voltage characteristic in the solution and negative differential resistance), which have been discussed in recent years, are not associated with the properties of the membrane. It is shown that these effects are also observed in a floating water bridge and in water-filled tubes and are apparently determined by the geometrical shape of the liquid conductor. The observed effects are explained qualitatively.

  8. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    International Nuclear Information System (INIS)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-01-01

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles

  9. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima, 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1,Mukoyama, Naka, 319-0913 (Japan)

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  10. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  11. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    Science.gov (United States)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  12. Development of the negative ion source at the National Laboratory for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Akira [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-02-01

    On formation of direct high frequency chopped negative hydrogen ion beam from surface forming type negative hydrogen ion source, incident acceleration due to proton synchrotron was tried for a forming experiment and its application. By overlapping a high frequency pulse onto a bias DC voltage of convertor electrode, control of formation of negative hydrogen ion with high speed RF pulse of 2 MHz could be realized. And, incidence into 12 GeV proton accelerator to catch RF particles with waiting bucket system due to booster synchrotron, was effective for control of longitudinal emittance in the booster synchrotron. As a result, controls of the beam width and shape emitted from the booster synchrotron were possible. On application of high speed chopped negative hydrogen ion beam to accelerator, improvement of beam capture efficiency to the accelerated RF bucket, control of longitudinal emittance of accelerated beam, beam measurement at incidence into the accelerator and so forth were conducted. In this paper, results of the high speed chopped beam formation experiment using surface plasma forming type negative ion source and application of high speed beam chopping method synchronized with high frequency pulse at the National Laboratory of High Energy Physics are described. (G.K.)

  13. Mass spectrometric analysis of small negative ions (e/m < 100) produced by Trichel pulse negative corona discharge fed by ozonised air

    OpenAIRE

    Skalny, J.D.; Horvath, G.; Mason, N.

    2007-01-01

    Mass spectrometric analysis of small negative ions (e/m < 100) produced by DC negative corona discharge in ozonised wet air both in flow and flow-stopped regimes was conducted at pressure of 30 kPa. The point-to-plain electrode system has been used. The yield of individual ions is strongly affected by trace concentrations of ozone in both regimes. Ozone concentration greater than 25 ppm is sufficient to completely suppress the appearance of O2- and a NO2- ion as well as theirs clusters in the...

  14. Some high-current ion sources for materials modification

    International Nuclear Information System (INIS)

    Taylor, T.

    1989-01-01

    Ion sources for materials modification have evolved through three distinct generations. The first generation was adopted from research accelerators. These cold-cathode plasma-discharge devices generate beam currents of less than 100 μA. The hot-cathode plasma-discharge ion sources, originally developed for isotope separation, comprise the second generation. They produce between 100 μA and 10 mA of beam current. The third generation ion sources give beam currents in excess of 10 mA. This technology, transferred from industrial accelerators, has already made SIMOX (Separation by IMplanted OXygen) into a commercially viable semiconductor process and promises to do the same for ion implantation of metals and insulators. The author focuses on the third generation technology that will play a key role in the future of ion implantation. 10 refs.; 5 figs.; 2 tabs

  15. Cross-B convection of artificially created, negative-ion clouds and plasma depressions: Low-speed flow

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by the collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole. These processes may be observed experimentally with optical and backscatter-radar diagnostics

  16. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  17. Simple method for determining fullerene negative ion formation★

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  18. BRIEF COMMUNICATION: The negative ion flux across a double sheath at the formation of a virtual cathode

    Science.gov (United States)

    McAdams, R.; Bacal, M.

    2010-08-01

    For the case of negative ions from a cathode entering a plasma, the maximum negative ion flux and the positive ion flux before the formation of a virtual cathode have been calculated for particular plasma conditions. The calculation is based on a simple modification of an analysis of electron emission into a plasma containing negative ions. The results are in good agreement with a 1d3v PIC code model.

  19. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Chacon-Golcher, E.

    2002-01-01

    This dissertation develops diverse research on small (diameter ∼ few mm), high current density (J ∼ several tens of mA/cm 2 ) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield ( ) at different operating conditions are presented for K + and Cs + contact ionization sources and potassium aluminum silicate sources. Maximum values for a K + beam of ∼90 mA/cm 2 were observed in 2.3 (micro)s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (∼ 1 (micro)s), high current densities (∼ 100 mA/cm 2 ) and low operating pressures ( e psilon) n (le) 0.006 π mm · mrad) although measured currents differed from the desired ones (I ∼ 5mA) by about a factor of 10

  20. Negative-ion-based neutral beams for fusion

    International Nuclear Information System (INIS)

    Cooper, W.S.; Anderson, O.A.; Chan, C.F.

    1987-10-01

    To maximize the usefulness of an engineering test reactor (e.g., ITER, TIBER), it is highly desirable that it operate under steady-state conditions. The most attractive option for maintaining the circulating current needed in the center of the plasma is the injection of powerful beams of neutral deuterium atoms. The beam simultaneously heats the plasma. At the energies required, in excess of 500 keV, such beams can be made by accelerating D - ions and then removing the electron. Sources are being developed that generate the D - ions in the volume of a specially constructed plasma discharge, without the addition of cesium. These sources must operate with minimum gas flow, to avoid stripping the D - beam, and with minimum electron output. We are designing at LBL highly efficient electrostatic accelerators that combine electric strong-focusing with dc acceleration and offer the possibility of varying the beam energy at constant current while minimizing breakdown. Some form of rf acceleration may also be required. To minimize irradiation of the ion sources and accelerators, the D - beam can be transported through a maze in the neutron shielding. The D - ions can be converted to neutrals in a gas or plasma target, but advances in laser and mirror technology may make possible very efficient photodetachment systems by the time an ETR becomes operational. 9 refs., 4 figs

  1. Study of the secondary negative ion emission of copper and several of its alloys by impact with Cs/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Vallerand, P; Baril, M [Laval Univ., Quebec City (Canada). Dept. de Physique

    1977-07-01

    Secondary ion emission studies have been undertaken using Cs/sup +/ as the primary ion beam. A good vacuum (ca. 10/sup -8/ torr) is needed to eliminate contamination by residual gases. Negative ion emission of pure copper is compared with its alloys. The thermodynamic equilibrium model of Andersen is discussed. For low element concentrations, the experimental data show enhancement in negative emission of P, Al, Fe, Sn, Ni, and attenuation for Zn, Pb. The order of magnitude of ionic efficiency S/sup -/ for copper is evaluated at 10/sup -4/.

  2. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    Science.gov (United States)

    Fubiani, G.; Boeuf, J. P.

    2015-10-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric.

  3. Three-dimensional modeling of a negative ion source with a magnetic filter: impact of biasing the plasma electrode on the plasma asymmetry

    International Nuclear Information System (INIS)

    Fubiani, G; Boeuf, J P

    2015-01-01

    The effect on the plasma characteristics of biasing positively the plasma electrode (PE) in negative ion sources with a magnetic filter is analysed using a 3D particle-in-cell model with Monte-Carlo collisions (PIC-MCC). We specialize to the one driver (i.e. one inductively coupled radio-frequency discharge) BATMAN negative ion source and the 4-drivers (large volume) ELISE device. Both are ITER prototype high power tandem-type negative ion sources developed for the neutral beam injector (NBI) system. The plasma is generated in the driver and diffuses inside the second chamber which is magnetized. Asymmetric plasma profiles originate from the formation of an electric field transverse to the electron current flowing through the magnetic filter (Hall effect). The model shows that the importance of the asymmetry increases with the PE bias potential, i.e. with the electron flow from the driver to the extraction region and depends on the shape of the magnetic filter field. We find that although the plasma density and potential profiles may be more or less asymmetric depending on the filter field configuration, the electron current to the plasma grid is always strongly asymmetric. (paper)

  4. Magnetized retarding field energy analyzer measuring the particle flux and ion energy distribution of both positive and negative ions

    International Nuclear Information System (INIS)

    Rafalskyi, Dmytro; Aanesland, Ane; Dudin, Stanislav

    2015-01-01

    This paper presents the development of a magnetized retarding field energy analyzer (MRFEA) used for positive and negative ion analysis. The two-stage analyzer combines a magnetic electron barrier and an electrostatic ion energy barrier allowing both positive and negative ions to be analyzed without the influence of electrons (co-extracted or created downstream). An optimal design of the MRFEA for ion-ion beams has been achieved by a comparative study of three different MRFEA configurations, and from this, scaling laws of an optimal magnetic field strength and topology have been deduced. The optimal design consists of a uniform magnetic field barrier created in a rectangular channel and an electrostatic barrier consisting of a single grid and a collector placed behind the magnetic field. The magnetic barrier alone provides an electron suppression ratio inside the analyzer of up to 6000, while keeping the ion energy resolution below 5 eV. The effective ion transparency combining the magnetic and electrostatic sections of the MRFEA is measured as a function of the ion energy. It is found that the ion transparency of the magnetic barrier increases almost linearly with increasing ion energy in the low-energy range (below 200 eV) and saturates at high ion energies. The ion transparency of the electrostatic section is almost constant and close to the optical transparency of the entrance grid. We show here that the MRFEA can provide both accurate ion flux and ion energy distribution measurements in various experimental setups with ion beams or plasmas run at low pressure and with ion energies above 10 eV

  5. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    Science.gov (United States)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.

    2011-07-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  6. Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source

    International Nuclear Information System (INIS)

    Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Froeschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Staebler, A.; Wuenderlich, D.

    2011-01-01

    The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 x 0.9 m 2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( ∼ 1/8 of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density-being consistent with ion trajectory calculations-and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.

  7. Modified Korteweg-deVries soliton evolution at critical density of negative ions in an inhomogeneous magnetized cold plasma

    International Nuclear Information System (INIS)

    Singh, Dhananjay K.; Malik, Hitendra K.

    2007-01-01

    Soliton propagation at critical density of negative ions is studied for weakly inhomogeneous magnetized cold plasma having positive ions, negative ions, and electrons. A general phase velocity relation is obtained and possible modes are studied for different cases involving different constituents of the plasma. Two types of modes (fast and slow) are found to propagate for the equal mass of the positive and negative ions. However, a limit on the obliqueness of magnetic field is obtained for the propagation of slow mode. For both types of modes, a variable coefficient modified Korteweg-deVries equation with an additional term arisen due to the density gradient is realized, which admits solutions for compressive solitons and rarefactive solitons of the same amplitudes at critical negative ion density. The propagation characteristics of these solitons are studied under the effect of densities of ions, magnetic field, and its obliqueness. The amplitudes of fast and slow wave solitons show their opposite behavior with the negative ion concentration, which is consistent with the variation of phase velocities with the negative ion density

  8. Chemistry of radio-frequency source of negative hydrogen ions; Chemia radio-frekvencneho zdroja negativnych ionov vodika

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J.; Cernusak, I. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    International Thermonuclear Experimental Reactor (ITER) is a prototype of nuclear fusion reactor Tokamak currently build in Cadarache. It will use as one of primary plasma heating components a radiofrequency driven negative ion source of deuterium. The purpose of cesium evaporated in the part of this ion source is to react with free electrons which can incidentally destroy generated hydrogen ions and are co-extracted with the hydrogen beam. Goal of this work is to investigate majority of processes which might have impact on hydrogen anion in either formative or destructive way associated with cesium. Generally the caesium dynamics is very complex in such sources and the interplay of the individual contributions and their control to establish optimum caesium coverage of the plasma grid is still an open issue. (authors)

  9. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  10. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  11. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    Science.gov (United States)

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  12. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  13. Negative electrode materials for lithium-ion solid-state microbatteries

    NARCIS (Netherlands)

    Baggetto, L.

    2010-01-01

    Electronic portable devices are becoming more and more important in our daily life. Many portable types of electronic equipment rely on rechargeable lithium-ion batteries as they can reversibly deliver the highest gravimetric and volumetric energy densities. Lithium-ion batteries are currently

  14. Charging-delay induced dust acoustic collisionless shock wave: Roles of negative ions

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Bharuthram, R.; Khan, Manoranjan; Gupta, M. R.

    2006-01-01

    The effects of charging-delay and negative ions on nonlinear dust acoustic waves are investigated. It has been found that the charging-delay induced anomalous dissipation causes generation of dust acoustic collisionless shock waves in an electronegative dusty plasma. The small but finite amplitude wave is governed by a Korteweg-de Vries Burger equation in which the Burger term arises due to the charging-delay. Numerical investigations reveal that the charging-delay induced dissipation and shock strength decreases (increases) with the increase of negative ion concentration (temperature)

  15. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  16. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  17. Status and plans for the development of a RF negative ion source for ITER NBI

    International Nuclear Information System (INIS)

    Franzen, P.; Falter, H.D.; Speth, E.; Kraus, W.; Bandyopadhyay, M.; Encheva, A.; Fantz, U.; Franke, Th.; Heinemann, B.; Holtum, D.; Martens, C.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    IPP Garching is currently developing a RF driven negative ion source for the ITER neutral beam injection system as an alternative to the present design with filamented sources. This paper reports an overview on the present status and the further prospects of the RF source development. Current densities of 26 mA/cm 2 and 15 mA/cm 2 have been achieved for hydrogen and deuterium, respectively, at a pressure of less than 0.5 Pa and an electron/ion ratio of 1. Size scaling experiments indicate a maximum extraction area which can be illuminated by a driver without losses of beam quality and uniformity. The preparation of a test facility for pulse lengths of up to 3600 s is proceeding; commissioning is expected end of 2004. As an intermediate step tests of a large source with the half size of the ITER source are foreseen to be commissioned in 2005

  18. Reconstruction of negative hydrogen ion beam properties from beamline diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ruf, Benjamin

    2014-09-25

    For the experimental fusion reactor ITER, which should show the feasibility of sustaining a fusion plasma with a positive power balance, some technology still has to be developed, amongst others also the plasma heating system. One heating technique is the neutral beam injection (NBI). A beam of fast deuterium atoms is injected into the fusion plasma. By heavy particle collisions the beam particles give their energy to the plasma. A NBI system consists of three major components. First, deuterium ions are generated in a low temperature, low pressure plasma of an ion source. At ITER, the requirements on the beam energy of 1 MeV cause the necessity of negative charged deuterium ions. Secondly, the ions are accelerated within an acceleration system with several grids, where the plasma grid is the first grid. The grids are on different descending high voltage potentials. The source itself is on the highest negative potential. Thirdly, the fast deuterium ions have to be neutralised. This thesis deals with the second step in the mentioned beam system, the ion acceleration and beam formation. The underlying experiments and measurements were carried out at the testbeds BATMAN (BAvarianTest MAchine for Negative ions) and ELISE (Extraction from a Large Ion Source Experiment) at the Max-Planck-Institut fuer Plasmaphysik Garching (IPP Garching). The main goal of this thesis is to provide a tool which allows the determination of the beam properties. These are beam divergence, stripping losses and beam inhomogeneity. For this purpose a particle trajectory code has been developed from scratch, namely BBC-NI (Bavarian Beam Code for Negative Ions). The code is able to simulate the whole beam and the outcome of several beam diagnostic tools. The data obtained from the code together with the measurements of the beam diagnostic tools should allow the reconstruction of the beam properties. The major beam diagnostic tool, which is used in this thesis, is the beam emission spectroscopy

  19. National negative-ion-based neutral-beam development plan

    International Nuclear Information System (INIS)

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades

  20. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  1. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  2. Status and plans for the development of an RF negative ion source for ITER NBI

    International Nuclear Information System (INIS)

    Falter, H.D.; Franzen, P.; Speth, E.; Kraus, W.; Bandyopadhyay, M.; Encheva, A.; Fantz, U.; Franke, Th.; Heinemann, B.; Holtum, D.; Martens, C.; McNeely, P.; Riedl, R.; Tanga, A.; Wilhelm, R.

    2005-01-01

    Inductively coupled RF ion sources are being developed at IPP for the production of negatively charged hydrogen ions. The source volume is approximately 50 litres. The extraction area varies between 70 and 300 cm 2 . With an extraction area of 70 cm 2 current densities of 26 mA/cm 2 for hydrogen and 16 mA/cm 2 for deuterium have been achieved. Experiments in deuterium have so far been very limited and the system is not yet optimised for deuterium. The RF source requires a pressure of at least 0.1 Pa in the driver. It is expected, that the ITER requirement of 0.3 Pa filling pressure can be met in a source with a relevant extraction area and gas flow. The co-extracted electron current can be kept at or near the level of the ion current. The extracted current scales almost linearly with extraction area and a current of 7.5 A has been extracted from a 306 cm 2 area. Due to the strong variation in filter field over the width of the grid so far only part of this current passes through the accelerator and is detected on the calorimeter. One of the test beds is at present being upgraded to allow one hour pulses and deuterium operation with approximately 250 cm 2 extraction area. A third test bed is being assembled to house a half size ITER source with approximately 1000 cm 2 extraction area. This so-called half size ITER source is being manufactured and will be used to demonstrate scalability of the RF source concept. (author)

  3. Electronegative plasma diagnostic by laser photo-detachment combined with negatively biased Langmuir probe

    Science.gov (United States)

    Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.

    2018-05-01

    We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 1.

  4. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Guo, Yanling, E-mail: guoyanling@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China); Chen, Ximeng, E-mail: chenxm@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, 730000 (China); Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, 730000 (China)

    2016-11-30

    Highlights: • We first observe that negative-ion fractions present no variation with the doping concentration, which is very different from the results of low energy Li neutralization from doped Si samples. • Our work shows that the affinity levels and collision time significantly counteract the band gap effect on negative ion formation. The work will improve our understanding on electron transfer on semiconductor surfaces associated with doping. • In addition, we build a complete theoretical framework to quantitatively calculate the negative-ion fractions. • Our work is related to charge transfer on semiconductor surfaces, which will be of interest to a broad audience due to the wide necessity of the knowledge of charge exchange on semiconductor surfaces in different fields. - Abstract: Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5–22.5 keV C{sup −} and F{sup −} ions scattering on H{sub 2}O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  5. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  6. On Ion Cyclotron Current Drive for sawtooth control

    International Nuclear Information System (INIS)

    Eriksson, L.-G.; Johnson, T.; Hellsten, T.; Mayoral, M.-L.; McDonald, D.; Santala, M.; Vries, P. de; Coda, S.; Sauter, O.; Mueck, A.; Buttery, R.J.; Mantsinen, M.J.; Noterdaeme, J.-M.; Westerhof, E.

    2006-01-01

    Experiments using Ion Cyclotron Current Drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in [L.-G. Eriksson et al., Physical Review Letters 92, 235004 (2004)] by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase of the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations. (author)

  7. Theoretical study of the electrostatic lens aberrations of a negative ion accelerator for a neutral beam injector

    International Nuclear Information System (INIS)

    Miyamoto, Kenji; Hatayama, Akiyoshi

    2009-01-01

    Aberrations due to the electrostatic lenses of a negative ion accelerator for a neutral beam injector and the space charge effect are theoretically investigated. A multi-stage extractor/accelerator is modeled and the aberration coefficients are numerically calculated using the eikonal method, which is conventionally used in electron optics. The aberrations are compared with the radii of a beam core with good beam divergence and a beam halo with poor beam divergence. H - beamlet profile measurements give the 1/e radii of the beam core and beam halo of 5.8 mm (beam divergence angel: 6 mrad) and 11.5 mm (beam divergence angel: 12 mrad), respectively. When the beam divergence angle of the beam core is 5 mrad and the beam energy is 406 keV, the aberrations due to the electrostatic lenses are less than a few millimeters, thus are less than the radii of the beam core and beam halo. The geometrical aberrations due to te space charge effect (negative ion current density: 10 mA/cm 2 ), however, are estimated to be much larger than the radius of the beam halo. Although the aperture radii of the grids are not taken into account in this estimation, the results indicate that the space charge effect is an important factor in the aberration or beam halo in a negative ion accelerator. (author)

  8. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    International Nuclear Information System (INIS)

    Phukan, Ananya; Goswami, K. S.; Bhuyan, P. J.

    2014-01-01

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ D )

  9. Design study of prototype accelerator and MeV test facility for demonstration of 1 MeV, 1 A negative ion beam production

    International Nuclear Information System (INIS)

    Inoue, Takashi; Hanada, Masaya; Miyamoto, Kenji; Ohara, Yoshihiro; Okumura, Yoshikazu; Watanabe, Kazuhiro; Maeno, Shuichi.

    1994-08-01

    In fusion reactors such as ITER, a neutral beam injector of MeV class beam energy and several tens MW class power is required as one of candidates of heating and current drive systems. However, the beam energy of existing high power accelerators are one order of magnitude lower than the required value. In order to realize a neutral beam injector for the fusion reactor, 'Proof-of-Principle' of such high energy acceleration is a critical issue at a reactor relevant beam current and pulse length. An accelerator and an accelerator facility which are necessary to demonstrate the Proof-of-Principle acceleration of negative ion beams up to 1 MeV, have been designed in the present study. The accelerator is composed of a cesium-volume type ion source and a multi-stage electrostatic acceleration system [Prototype Accelerator]. A negative hydrogen ion beam with the current of about one ampere (1 A) can be accelerated up to 1 MeV at a low operating pressure. Two types of acceleration system, a multi-multi type and a multi-single type, have been studied. The test facility has sufficient capability for the test of the Prototype Accelerator [MeV Test Facility]. The dc high voltage generator for negative ion acceleration is a Cockcroft-Walton type and capable of delivering 1 A at 1 MV (=1 MW) for 60 s. High voltage components including Prototype Accelerator are installed in a SF 6 vessel pressurized at 6 kg/cm 2 to overcome high voltage gradients. The vessel and the beamline are installed in a X-ray shield. (author)

  10. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

    Science.gov (United States)

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-01

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.

  11. The new BNL polarized negative ion source

    International Nuclear Information System (INIS)

    Hershcovitch, A.I.; Alessi, J.G.; DeVito, B.; Kponou, A.E.

    1991-01-01

    A new ground state source of negative hydrogen ions with polarized nuclei (rvec H - ) is being developed at BNL. Extensive developmental research has been aimed at improving each element of (rvec H - ) production: cold H degrees beam, spin selection and focusing magnets, and ionizer. These elements have recently been integrated into a source. A first test with the accommodator nozzle cooled only to liquid nitrogen temperatures resulted in 5 μA of H - . Tests at liquid helium temperatures are now beginning. 7 refs., 1 fig

  12. Numerical simulation of simultaneous acceleration of positive and negative ions in an RFQ

    International Nuclear Information System (INIS)

    Oguri, Y.

    1994-01-01

    By means of a numerical method, beam dynamics was analyzed for an RFQ, where mixtures of positive and negative ions were injected into the quadrupole channel. In order to simulate simultaneous bunching of ions with opposite charges, motion of particles injected into the cavity during two RF periods were traced under consideration of 3D Coulomb forces between particles. Effects of neighbor bunches were also taken into account. In the radial matching section of the structure, beam divergence due to space charge force was completely suppressed by the charge neutralization. However, it has been found that the attractive forces between positive and negative ions prevent bunch formation in the bunching section, leading to longitudinal beam loss. Dependence of the beam transmission efficiency on the input beam intensity is reported. These results are compared with those obtained when injecting single ion species

  13. Ring current instabilities excited by the energetic oxygen ions

    International Nuclear Information System (INIS)

    Kakad, A. P.; Singh, S. V.; Lakhina, G. S.

    2007-01-01

    The ring current instabilities driven by the energetic oxygen ions are investigated during the magnetic storm. The electrons and protons are considered to have Maxwellian distributions, while energetic oxygen ions are having loss-cone distribution. Dispersion relation for the quasielectrostatic modes with frequencies ω>ω cp (proton cyclotron frequency) and propagating obliquely to the magnetic field is obtained. Dispersion relation is studied numerically for the storm time ring current parameters and it is found that these instabilities are most prominent during intense storms when the oxygen ions become the dominant constituents of the ring current plasma. For some typical storm-time ring current parameters, these modes can produce quasielectrostatic noise in the range of 17-220 Hz, thus providing a possible explanation of the electrostatic noise observed at the inner boundary of the ring current during magnetic storms. Further, these modes can attain saturation electric fields of the order of 100-500 μV/m, and therefore, are expected to scatter O + ions into the loss-cone giving rise to their precipitation into the atmosphere, thus contributing to the ring current decay

  14. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  15. Ion source techniques for high-speed processing of material surface by ion beams

    International Nuclear Information System (INIS)

    Ishikawa, Junzo

    1990-01-01

    The present paper discusses some key or candidate techniques for future ion source development and such ion sources developed by the author. Several types of microwave ion sources for producing low charge state ions have been developed in Japan. When a microwave plasma cathode developed by the author is adapted to a Kaufman type ion source, the electron emission currents are found to be 2.5 A for argon gas and 0.5-0.9 A for oxygen gas. An alternative ionization method for metal atoms is strongly required for high-speed processing of material surface by metal-ion beams. Detailed discussion is made of collisional ionization of vaporized atoms, and negative-ion production (secondary negative-ion emission by sputtering). An impregnated electrode type liquid-metal ion source developed by the author, which has a porous tip structure, is described. The negative-ion production efficiency is quite high. The report also presents a neutral and ionized alkaline-metal bombardment type heavy negative-ion source, which consists of a cesium plasma ion source, suppressor, target electrode, negative-ion extraction electrode, and einzel lens. (N.K.)

  16. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    Science.gov (United States)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  17. Mass spectrometric study of the negative and positive secondary ions emitted from ethanol microdroplets by MeV-energy heavy ion impact

    Science.gov (United States)

    Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu

    2018-06-01

    We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.

  18. The use of isoprene as a novel dopant in negative ion atmospheric pressure photoionization mass spectrometry coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Dousty, Faezeh; O'Brien, Rob

    2015-06-15

    As in the case with positive ion atmospheric pressure photoionization (PI-APPI), the addition of dopants significantly improves the sensitivity of negative ion APPI (NI-APPI). However, the research on dopant-assisted-NI-APPI has been quite limited compared to the studies on dopant-assisted PI-APPI. This work presents the potential of isoprene as a novel dopant for NI-APPI. Thirteen compounds, possessing suitable gas-phase ion energetic properties in order to make stable negative ions, were selected. Dopants were continuously introduced into a tee junction prior to the ion source through a fused-silica capillary, while analytes were directly injected into the same tee. Then both were mixed with the continuous solvent from high-performance liquid chromatography (HPLC), nebulized, and entered the source. The nebulized stream was analyzed by APPI tandem quadrupole mass spectrometry in the negative ion mode. The results obtained using isoprene were compared with those obtained by using toluene as a dopant and dopant-free NI-APPI. Isoprene enhanced the ionization intensities of the studied compounds, which were found to be comparable and, in some cases, more effective than toluene. The mechanisms leading to the observed set of negative analyte ions were also discussed. Because in NI-APPI, thermal electrons, which are produced during the photoionization of a dopant, are considered the main reagent ions, both isoprene and toluene promoted the ionization of analytes through the same mechanisms, as expected. Isoprene was shown to perform well as a novel dopant for NI-APPI. Isoprene has a high photoabsorption cross section in the VUV region; therefore, its photoionization leads to a highly effective production of thermal electrons, which further promotes the ionization of analytes. In addition, isoprene is environmentally benign and less toxic compared to currently used dopants. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Relaxation effects in ionic mobility and cluster formation: negative ions in SF6 at high pressures

    International Nuclear Information System (INIS)

    Juarez, A M; De Urquijo, J; Hinojosa, G; Hernandez-Avila, J L; Basurto, E

    2010-01-01

    The relaxation effects of the ionic mobility and the formation of negative-ion clusters in SF 6 are studied in this work. For this purpose, we have measured the mobility of negative ions in SF 6 over the pressure range 100-800 Torr at a fixed value of density-normalized electric field, E/N, of 20 Td (1 Townsend = 10 -17 V cm 2 ). The data obtained show a clear dependence of the negative-ion drift velocity on drift distance. It is observed that the drift velocity (mobility) reaches a steady-state value only for drift distances above 2 cm, over the studied pressure range. In addition to this, we have observed that the ionic mobility depends strongly on the gas pressure. An explanation of this dependence of the ionic mobility on gas pressure is given in terms of a negative-ion clustering formation process. It was found that the assumption of a linear dependence of the cluster ion mass on pressure provides a satisfactory explanation for the observed mobilities.

  20. Negative Ion Source Development and Photodetachment Studies at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2254068; Hanstorp, Dag; Rothe, Sebastian

    Astatine is one of the rarest elements on earth. The small amount of existing astatine is either created in decay chains of heavier elements or artificially. One of its longer lived isotopes, 211At, is of interest for targeted alpha therapy, a method of treating cancer by using the alpha decay of radioactive elements directly at the location of a tumor. However, its chemical properties are yet to be determined due to the short life time of astatine. A milestone towards the determination of the electronegativity of astatine was the measurement of its ionization potential (IP) at CERN-ISOLDE. However, its electron affinity (EA, the binding energy of the additional electron in a negative ion), is still to be measured. In order to determine the EA of radioisotopes by laser photodetachment spectroscopy, the Gothenburg ANion Detector for Affinity measurements by Laser Photodetachment (GANDALPH) has been built in recent years. As a proof-of-principle, the EA of the 128I negative ion, produced at the CERN-ISOLDE rad...

  1. Depletion of the excited state population in negative ions using laser photodetachment in a gas-filled RF quadrupole ion guide

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, A O; Hanstorp, D [Department of Physics, University of Gothenburg, SE-412 96 Gothenburg (Sweden); Forstner, O [VERA Laboratory, Faculty of Physics, Universitaet Wien, Vienna (Austria); Gibson, N D [Department of Physics and Astronomy, Denison University, Granville, OH 43023 (United States); Gottwald, T; Wendt, K [Institut fuer Physik, Johannes Gutenberg-Universitaet, Mainz, 55099 Mainz (Germany); Havener, C C; Liu, Y, E-mail: Dag.Hanstorp@physics.gu.s [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6368 (United States)

    2010-06-14

    The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio-frequency quadrupole ion guide filled with helium. The high-lying, loosely bound {sup 2}D excited state in C{sup -} was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si{sup -} the combined signal from the population in the {sup 2}P and {sup 2}D excited states was only partly depleted through collisions in the cooler. The loosely bound {sup 2}P state was likely to be completely depopulated, and the more tightly bound {sup 2}D state was partly depopulated through collisions. 98(2)% of the remaining {sup 2}D population was removed by photodetachment in the cooler using less than 2 W laser power. The total reduction of the excited population in Si{sup -}, including collisional detachment and photodetachment, was estimated to be 99(1)%. Employing this novel technique to produce a pure ground state negative ion beam offers possibilities of enhancing selectivity, as well as accuracy, in high-precision experiments on atomic as well as molecular negative ions.

  2. A high-intensity plasma-sputter heavy negative ion source

    International Nuclear Information System (INIS)

    Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

    1989-01-01

    A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs

  3. Ion clusters, REB, and current sheath characteristics in focused discharges

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Zeng, D.

    1990-01-01

    Small fluctuations in the current sheath characteristics (peak current density, FWHM of leading sheath, control parameters of sheath internal structure) are linked to wide fluctuations of ion and ion cluster emission from the pinch. Magnetic probe data are used for correlating variations of current sheath parameters with particle emission intensity, Z/M composition, particle energy spectrum. The emission of ion and ion clusters at 90 degrees from the axis of a plasma focus discharge is monitored simultaneously with the 0 degrees emission. The particle energy spectrum is analyzed with a Thomson (parabola) spectrometer (time resolution ∼ 1 nanosec). The cross-sectional structure of the REB at 180 degrees along the discharge axis is monitored via the deposition of collective-field accelerated ions on a target in the REB direction. Etched tracks of ion and ion clusters are in all cases recorded on CR-39 plates. Sharp peaks of the D + -ion spectrum at 90 degrees are found for E > 200 keV/unit charge in all focused discharges. These peaks are due to ion crossing of the azimuthal magnetic field of the pinch region, in a predominant ion cluster structure

  4. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the

  5. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  6. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    International Nuclear Information System (INIS)

    Zheng, Chenlong; Wang, Guangfu; Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi

    2016-01-01

    Highlights: • The radiation effect has a greater influence than doping effect on the hydrophilicity of RTV SR. • The implanted ions result in a new surface atomic bonding state and morphology. • Generating hydrophilic functional groups is a reason for the improved cell biocompatibility. • The micro roughness makes the hydrophilicity should be reduced due to the lotus effect. • Cell culture demonstrates that negative-ion implantation can improve biocompatibility. - Abstract: A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C_1"− implantation dose was increased to 1 × 10"1"6 ions/cm"2, and the effects of C_1"−, C_2"− and O_1"− implantation result in only small differences in the water contact angle at 3 × 10"1"5 ions/cm"2. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Si−CH_3, Si−O−Si, C−H) of RTV SR and generates hydrophilic functional groups (−COOH, −OH, Si−(O)_x (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method to improve the cell biocompatibility of RTV SR.

  7. Flame Atmospheric Pressure Chemical Ionization Coupled with Negative Electrospray Ionization Mass Spectrometry for Ion Molecule Reactions.

    Science.gov (United States)

    Cheng, Sy-Chyi; Bhat, Suhail Muzaffar; Shiea, Jentaie

    2017-07-01

    Flame atmospheric pressure chemical ionization (FAPCI) combined with negative electrospray ionization (ESI) mass spectrometry was developed to detect the ion/molecule reactions (IMRs) products between nitric acid (HNO 3 ) and negatively charged amino acid, angiotensin I (AI) and angiotensin II (AII), and insulin ions. Nitrate and HNO 3 -nitrate ions were detected in the oxyacetylene flame, suggesting that a large quantity of nitric acid (HNO 3 ) was produced in the flame. The HNO 3 and negatively charged analyte ions produced by a negative ESI source were delivered into each arm of a Y-shaped stainless steel tube where they merged and reacted. The products were subsequently characterized with an ion trap mass analyzer attached to the exit of the Y-tube. HNO 3 showed the strongest affinity to histidine and formed (M histidine -H+HNO 3 ) - complex ions, whereas some amino acids did not react with HNO 3 at all. Reactions between HNO 3 and histidine residues in AI and AII resulted in the formation of dominant [M AI -H+(HNO 3 )] - and [M AII -H+(HNO 3 )] - ions. Results from analyses of AAs and insulin indicated that HNO 3 could not only react with basic amino acid residues, but also with disulfide bonds to form [M-3H+(HNO 3 ) n ] 3- complex ions. This approach is useful for obtaining information about the number of basic amino acid residues and disulfide bonds in peptides and proteins. Graphical Abstract ᅟ.

  8. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  9. Quadrature detection for the separation of the signals of positive and negative ions in fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Schweikhard, Lutz; Drader, Jared J.; Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    2002-01-01

    Positive and negative ions may be confined simultaneously in a nested open cylindrical Malmberg-Penning trap. However, ion charge sign cannot be distinguished by conventional dipolar (linearly-polarized) detection with a single pair of opposed electrodes. Here, the signals from each of two orthogonal pairs of opposed detection electrodes are acquired simultaneously and stored as real and imaginary parts of mathematically complex data. Complex Fourier transformation yields separate spectra for positive and negative ions. For a fullerene sample, experimental quadrature detection yields C 60 + and C 60 - signals separated by ∼1440 u rather than by the mass of two electrons, ∼0.001 u in conventional dipolar detection

  10. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  11. Development of an energy analyzer as diagnostic of beam-generated plasma in negative ion beam systems

    Science.gov (United States)

    Sartori, E.; Carozzi, G.; Veltri, P.; Spolaore, M.; Cavazzana, R.; Antoni, V.; Serianni, G.

    2017-08-01

    The measurement of the plasma potential and the energy spectrum of secondary particles in the drift region of a negative ion beam offers an insight into beam-induced plasma formation and beam transport in low pressure gasses. Plasma formation in negative-ion beam systems, and the characteristics of such a plasma are of interest especially for space charge compensation, plasma formation in neutralizers, and the development of improved schemes of beam-induced plasma neutralisers for future fusion devices. All these aspects have direct implications in the ITER Heating Neutral Beam and the operation of the prototypes, SPIDER and MITICA, and also have important role in the conceptual studies for NBI systems of DEMO, while at present experimental data are lacking. In this paper we present the design and development of an ion energy analyzer to measure the beam plasma formation and space charge compensation in negative ion beams. The diagnostic is a retarding field energy analyzer (RFEA), and will measure the transverse energy spectra of plasma molecular ions. The calculations that supported the design are reported, and a method to interpret the measurements in negative ion beam systems is also proposed. Finally, the experimental results of the first test in a magnetron plasma are presented.

  12. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    International Nuclear Information System (INIS)

    Draghici, M.; Stamate, E.

    2010-01-01

    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF 6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive and negative ions are evaluated on silicon substrate for different Ar/SF 6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.

  13. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.......Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...

  14. Measurement of negative ion mobility in O2 at high pressures using a point plate gap as an ion detector

    International Nuclear Information System (INIS)

    Okuyama, Y; Kimura, T; Suzuki, S; Itoh, H

    2012-01-01

    This paper describes the experimental results for negative ion mobility in O 2 at 0.5-2.0 atm. The ion mobility is observed using a high-pressure ion drift tube with a positive corona gap (Geiger counter), which is constructed from a point plate gap and acts as a negative ion detector. The variation of waveforms in the burst pulse is observed by varying the voltage applied to the ion detector to find the optimum voltage that must be applied across the ion detector in O 2 . This is investigated carefully to ensure the precise determination of mobility. The distortion of the electric field near the mesh electrode, which operates as the cathode of the ion detector and as the anode of the ion drift gap, is then examined to determine the optimum applied voltage to suppress its effect on the measurement of mobility. The mobility is subsequently measured at a reduced electric field intensity of 2.83 × 10 -3 to 2.83. The observed mobility of 2.31 ± 0.03 cm 2 V -1 s -1 in O 2 is concluded to be that of O 2 - . This value is also obtained in experiments over a wide range of gas pressures (0.5-2.0 atm) and drift lengths (1.00-9.00 cm). The mobilities of O 3 - and O - are also obtained experimentally. (paper)

  15. Effects of dust size distribution on dust negative ion acoustic solitary waves in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Ma, Yi-Rong; Qi, Xin; Sun, Jian-An; Duan, Wen-Shan; Yang, Lei

    2013-01-01

    Dust negative ion acoustic solitary waves in a magnetized multi-ion dusty plasma containing hot isothermal electron, ions (light positive ions and heavy negative ions) and extremely massive charge fluctuating dust grains are investigated by employing the reductive perturbation method. How the dust size distribution affect the height and the thickness of the nonlinear solitary wave are given. It is noted that the characteristic of the solitary waves are different with the different dust size distribution. The magnitude of the external magnetic field also affects the solitary wave form

  16. Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion

    Science.gov (United States)

    Astapenko, V. A.; Moroz, N. N.

    2018-05-01

    Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.

  17. High intensity negative proton beams from a SNICS ion source

    International Nuclear Information System (INIS)

    Evans, C.R.; Hollander, M.G.

    1991-01-01

    For the past year we have been involved in a project to develop an intense (> 100μA) negative proton beam from a SNICS (Source of Negative Ions by Cesium Sputtering) ion source. This report will cover how we accomplished and exceeded this goal by more than 40%. Included in these observations will be the following: A description of an effective method for making titanium hydride cathodes. How to overcome the limitations of the titanium hydride cathode. The modification of the SNICS source to improve output; including the installation of the conical ionizer and the gas cathode. A discussion of problems including: poisoning the proton beam with oxygen, alternative gas cathode materials, the clogging of the gas inlet, long burn-in times, and limited cathode life times. Finally, how to optimize source performance when using a gas cathode, and what is the mechanism by which a gas cathode operates; facts, fantasies, or myth

  18. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  19. Neuron attachment properties of carbon negative-ion implanted bioabsorbable polymer of poly-lactic acid

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Sasaki, Hitoshi; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo

    2002-01-01

    Modification of a bioabsorbable polymer of poly-lactic acid (PLA) by negative carbon ion implantation was investigated with resect to radiation effects on surface physical properties and nerve-cell attachment properties. Carbon negative ions were implanted to PLA at energy of 5-30 keV with a dose of 10 14 -10 16 ions/cm 2 . Most C-implanted PLA samples showed contact angles near 80 deg. and almost same as that of unimplanted PLA, although a few samples at 5 keV and less 3x10 14 ions/cm 2 had contact angles larger than 90 deg. The attachment properties of nerve cells of PC-12h (rat adrenal phechromocytoma) in vitro were studied. PC-12h cells attached on the unimplanted region in C-implanted PLA samples at 5 and 10 keV. On the contrary, the nerve cells attached on only implanted region for the C-implanted PLA sample at 30 keV and 1x10 15 ions/cm 2

  20. Techniques for the detection of photodesorbed negative ions

    International Nuclear Information System (INIS)

    Young, C.E.; Schweitzer, E.L.; Pellin, M.J.; Gruen, D.M.; Hurych, Z.; Soukiassian, P.; Bakshi, M.H.; Bommannavar, A.S.

    1987-01-01

    This paper reports the direct observation of H - ions released from a Cs-dosed W(100) crystal by photon-stimulated desorption (PSD). This study utilized the 3m toroidal grating monochromator beamline at the University of Wisconsin-Madison Synchrotron Radiation Center. The main technical problem to be overcome in such experiments is the large background from photoemitted electrons which dominate the weak anion signal by many orders of magnitude. The solution ultimately employed utilized both magnetic suppression of photoelectrons and time-of-flight (TOF) mass separation. No internal modifications to the basic cylindrical mirror analyzer (CMA) were required. We are not aware of any previous reports of the detection of negative ions released from surfaces via photon bombardment, with the exception of high flux laser experiments, in which plasma formation is involved in the ionization process. 16 refs., 3 figs

  1. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  2. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  3. Measurements of scattering processes in negative ion-atom collisions

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1992-01-01

    This Technical Progress Report describes the progress made on the research objectives during the past twelve months. This research project is designed to provide measurements of various scattering processes which occur in H - collisions with atomic (specifically, noble gas and atomic hydrogen) targets at intermediate energies. These processes include: elastic scattering,single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H - is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements in progress will provide either experimentally-determined cross sections or set upper limits to those cross sections. In either case, these measurements will be stringent tests of our understanding in energetic negative ion-atom collisions. This series of experiments required the construction of a new facility and the initial ion beam was accelerated through the apparatus in April 1991

  4. Radial transport of storm time ring current ions

    Science.gov (United States)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  5. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Li Xinxia; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by neutral beam injection (NBI) is investigated in a large-aspect-ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are reported. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current taken into consideration, the net current density obviously decreases; at the same time, the peak of the current moves towards the central plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the NBI but also on the ratio of the velocity of fast ions to the critical velocity: the value of the net current is small for neutral beam parallel injection, but increases severalfold for perpendicular injection, and increases with increasing beam energy. (paper)

  6. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    Science.gov (United States)

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  7. Plasma flow between equipotential electrodes in an ion current transport mode

    International Nuclear Information System (INIS)

    Zimin, A.M.; Morozov, A.I.

    1995-01-01

    The paper deals with calculation of parameters in accelerator channel and near electrodes, when realizing ion current transport mode. Model on the basis of two-dimensional two-liquid nondissipative magnetohydrodynamics was formulated, and its solution for isomagnetic flow in smooth channel approximation was conducted. Change of parameters near anode surface was considered in detail. It is shown that regular joining of flow with equipotential electrodes without large near-electrode jumps is performed during ion current transport. Current distribution along accelerator length was calculated when determining ion intake through anode surface due to inertial-drift emission. It is shown that this mechanism can provide rather high current density in ion current transport. 10 refs.; 6 figs

  8. Storing keV negative ions for hours: Lifetime measurements in new time domains

    International Nuclear Information System (INIS)

    Kaminska, M; Bäckström, E; Hole, O M; Nascimento, R F; Blom, M; Björkhage, M; Källberg, A; Löfgren, P; Reinhed, P; Rosèn, S; Thomas, R D; Mannervik, S; Schmidt, H T; Cederquist, H; Hanstorpt, D

    2015-01-01

    We have used one of the cryogenic ion storage rings of DESIREE to measure the lifetime of the 2 P° 1/2 level in the sulfur anion to be 503 ± 43 seconds. This is orders of magnitude longer than any previously measured lifetime in a negatively charged ion. (paper)

  9. Chronicle of ion-current instabilities: old and new

    International Nuclear Information System (INIS)

    Landau, R.W.

    1975-07-01

    For counter-streaming ion currents along a uniform magnetic field, a purely growing instability exists with a growth rate as high as 16 times the ion gyrofrequency. When the streaming ions are only 1 percent of the stationary ions, the growth rate is still 4 times the gyrofrequency, but the real part is near the lower hybrid frequency. These instabilities are in addition to the Drummond-Rosenbluth ion mode. Finite β effects increase the growth rate and can be important for β greater than 10 -4 . In all this, T/sub parallel,+/ = T/sub parallel,-/ and T/sub perpendicular to/ = 0. (U.S.)

  10. K-shell photodetachment of the negative ion of beryllium

    International Nuclear Information System (INIS)

    Carlin, N M; Ramsbottom, C A; Bell, K L; Hibbert, A

    2003-01-01

    The partial and total cross sections for photodetachment of the metastable 1s 2 2s2p 2 4 P e bound state of the negative ion of beryllium are presented for a range of initial photon energies across and beyond the 1s detachment threshold. The cross sections are computed using a multichannel close-coupling R-matrix approximation, where sophisticated configuration-interaction wavefunctions are used to represent the initial and final states. Twelve target eigenstates with configurations 1s 2 2s2p, 1s 2 2p 2 , 1s2s 2 2p, 1s2s2p 2 and 1s2p 3 are included in the expansion of the total wavefunction describing the neutral Be atom. A number of prominent resonance structures have been identified in the partial cross sections for the three total system symmetry transitions of interest: 4 P e - 4 S o , 4 P o and 4 D o . No comparison can be made at this stage with other theoretical or experimental measurements due to a lack of data describing the inner shell photodetachment of the negative ion of beryllium

  11. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  12. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  13. Bootstrap current of fast ions in neutral beam injection heating

    International Nuclear Information System (INIS)

    Huang Qianhong; Gong Xueyu; Yang Lei; Li Xinxia; Lu Xingqiang; Yu Jun

    2012-01-01

    The bootstrap current of fast ions produced by the neutral beam injection is investigated in a large aspect ratio tokamak with circular cross-section under specific parameters. The bootstrap current density distribution and the total bootstrap current are figured out. In addition, the beam bootstrap current always accompanies the electron return current due to the parallel momentum transfer from fast ions. With the electron return current considered, the net current density obviously decreases due to electron return current, at the same time the peak of current moves towards the centre plasma. Numerical results show that the value of the net current depends sensitively not only on the angle of the neutral beam injection but also on the ratio of the velocity of fast ions to the critical velocity: the value of net current is small for the neutral beam parallel injection but increases multipliedly for perpendicular injection, and increases with beam energy increasing. (authors)

  14. Ion beams from high-current PF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Pulsed beams of fast deuterons and impurity or admixture ions emitted from high-current PF-type facilities operated in different laboratories are dealt with. A short comparative analysis of time-integrated and time-resolved studies is presented. Particular attention is paid to the microstructure of such ion beams, and to the verification of some theoretical models. (author). 5 figs., 19 refs.

  15. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  16. A high current metal vapour vacuum arc ion source for ion implantation studies

    International Nuclear Information System (INIS)

    Evans, P.J.; Noorman, J.T.; Watt, G.C.; Cohen, D.D.; Bailey, G.M.

    1989-01-01

    The main features of the metal vapour vacuum arc(MEVA) as an ion source are presented. The technology utilizes the plasma production capabilities of a vacuum arc cathode. Some of the ions produced in this discharge flow through the anode and the 3 extraction grids to form an extracted ion beam. The high beam current and the potential for generating broad beams, make this technology suitable for implantation of large surface areas. The composition of the vacuum arc cathode determines the particular ions obtained from the MEVA source. 3 refs., 1 tab., 2 figs

  17. RTV silicone rubber surface modification for cell biocompatibility by negative-ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Chenlong [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China); Wang, Guangfu, E-mail: 88088@bnu.edu.cn [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China); Beijing Radiation Center, 100875 Beijing (China); Chu, Yingjie; Xu, Ya; Qiu, Menglin; Xu, Mi [Key Laboratory of Beam Technology and Material Modification Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, 100875 Beijing (China)

    2016-03-01

    Highlights: • The radiation effect has a greater influence than doping effect on the hydrophilicity of RTV SR. • The implanted ions result in a new surface atomic bonding state and morphology. • Generating hydrophilic functional groups is a reason for the improved cell biocompatibility. • The micro roughness makes the hydrophilicity should be reduced due to the lotus effect. • Cell culture demonstrates that negative-ion implantation can improve biocompatibility. - Abstract: A negative cluster ion implantation system was built on the injector of a GIC4117 tandem accelerator. Next, the system was used to study the surface modification of room temperature vulcanization silicone rubber (RTV SR) for cell biocompatibility. The water contact angle was observed to decrease from 117.6° to 99.3° as the C{sub 1}{sup −} implantation dose was increased to 1 × 10{sup 16} ions/cm{sup 2}, and the effects of C{sub 1}{sup −}, C{sub 2}{sup −} and O{sub 1}{sup −} implantation result in only small differences in the water contact angle at 3 × 10{sup 15} ions/cm{sup 2}. These findings indicate that the hydrophilicity of RTV SR improves as the dose is increased and that the radiation effect has a greater influence than the doping effect on the hydrophilicity. There are two factors influence hydrophilicity of RTV: (1) based on the XPS and ATR-FTIR results, it can be inferred that ion implantation breaks the hydrophobic functional groups (Si−CH{sub 3}, Si−O−Si, C−H) of RTV SR and generates hydrophilic functional groups (−COOH, −OH, Si−(O){sub x} (x = 3,4)). (2) SEM reveals that the implanted surface of RTV SR appears the micro roughness such as cracks and wrinkles. The hydrophilicity should be reduced due to the lotus effect (Zhou Rui et al., 2009). These two factors cancel each other out and make the C-implantation sample becomes more hydrophilic in general terms. Finally, cell culture demonstrates that negative ion-implantation is an effective method

  18. Impact of Negative Sequence Current Injection by Wind Power Plants

    DEFF Research Database (Denmark)

    Chaudhary, Sanjay; Göksu, Ömer; Teodorescu, Remus

    2013-01-01

    This paper presents an analysis of the impact from negative sequence current injection by wind power plants in power systems under steady-state and short-term unbalanced conditions, including faults. The separate positive and negative sequence current control capability of the grid-side converters...... of full scale converter type wind turbines may be utilized to alter voltage imbalance at the point of connection and further into the grid, in turn changing the resultant negative sequence current flow in the grid. The effects of such control actions have been analyzed and discussed through theoretical...

  19. Ion currents to cylindrical Langmuir probes for finite ion temperature values: Theory

    International Nuclear Information System (INIS)

    Ballesteros, J.; Palop, J.I.F.; Colomer, V.; Hernandez, M.A.

    1995-01-01

    As it is known, the experimental ion currents to a cylindrical Langmuir probe fit quite well to the radial motion theory, developed by Allen, Boyd and Reynolds (ABR Model) and generalized by Chen for the cylindrical probe case. In this paper, we are going to develop a generalization of the ABR theory, taking into account the influence of a finite ion temperature value

  20. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  1. Ion Demagnetization in the Magnetopause Current Layer Observed by MMS

    Science.gov (United States)

    Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert; hide

    2016-01-01

    We report ion velocity distribution functions (VDfs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X llne, as well as near the current sheet midlplane about tens of ion skin depths (d(sub 1)) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.

  2. System upgradation for surface mode negative ion beam extraction experiments in ROBIN

    International Nuclear Information System (INIS)

    Pandya, Kaushal; Bansal, Gourab; Soni, Jignesh

    2015-01-01

    ROBIN (Replica Of BATMAN source in India) is a replica of BATMAN source of IPP, Garching. Plasma production (inductively coupled, RF produced plasma), plasma diagnostic (langmuir probe, optical emission spectroscopy), negative ion beam extraction in volume mode with reduced extraction area of 2 cm 2 (4 apertures) using small bench top type power supply (10kV, 400mA), with increase extraction area of 73 cm 2 (146 apertures) and using actual power supplies (Extraction Power Supply System, EPSS (11kV, 35A), and Accelerator Power Supply System, APSS (35kV, 15A)) and beam diagnostic etc have been performed successfully in ROBIN. This paper will describe the details of the system upgradation for surface mode negative ion experiments and its performance in ROBIN

  3. Design and fabrication of a Transverse Field Focussing (TFF) 180 keV negative ion accelerator

    International Nuclear Information System (INIS)

    Matuk, C.A.; Anderson, O.A.; Owren, H.M.; Paterson, J.A.; Purgalis, P.

    1985-11-01

    The 180 keV Transverse Field Focussing (TFF) negative ion accelerator described is the final component of a negative ion based neutral beam acceleration system which is being developed as proof-of-principle demonstration of a radiation hardened neutral beamline. The 180 keV beamline consists of: a surface conversion negative ion source, a 80 keV pre-accelerator, a TFF pumping, matching, and transport section, and the 180 keV TFF accelerator presented. This beamline is expected to provide 1 A of H - at 180 keV. In the design of the accelerator, particular importance was given to the rigidity of the accelerator electrode mounting structures and to the electrical isolation of the electrodes along with their related cooling lines. An optical alignment scheme was developed to assemble and to insure precision alignment of the electrodes

  4. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1976-01-01

    We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars

  5. Photodetachment of negative C{sub 60}{sup -} ions

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Baltenkov, A.S.; Krakov, B.G. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)]|[U.A. Arifov Institute of Electronics, Tashkent, 700143 (Uzbekistan)

    1998-06-15

    A model that describes the electron structure of negative fullerene C{sub 60}{sup -} ions is proposed. The model contains only two experimentally observed parameters, namely the fullerene radius and the affinity energy of the electron to neutral C{sub 60}. In the frame of this model, cross sections are calculated of elastic scattering of slow electrons on neutral fullerene, of C{sub 60}{sup -} photodetachment near the threshold of this process and of radiative recombination of slow electrons with neutral fullerenes. (orig.) 21 refs.

  6. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Caichao; Hu, Chundong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Wei, Jianglong, E-mail: jlwei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xie, Yahong; Xu, Yongjian; Liang, Lizhen; Chen, Shiyong; Liu, Sheng; Liu, Zhimin; Xie, Yuanlai [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2017-04-15

    Highlights: • A supporting power supply system was designed in details for a RF-driven prototype negative ion source at ASIPP. • The RF power supply for plasma generation adopts an all-solid-state power supply structure. • The extraction grid power supply adopts the pulse step modulator (PSM) technology. - Abstract: In order to study the generation and extraction of negative ions for neutral beam injection application, a prototype RF-driven negative ion source and the corresponding test bed are under construction at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). The target of the negative ion source is extracting a negation ion beam of 350 A/m{sup 2} for 3600 s plasma duration and 100 s beam duration. According to the required parameters of test bed, the design of power supply system is put forward for earlier study. In this paper, the performance requirements and design schemes of RF power supply for plasma generation, impedance matching network, bias voltage power supply, and extraction voltage power supply for negative beam extraction are introduced in details. The schemes provide a reference for the construction of power supply system and lay a foundation for the next phase of experimental operation.

  7. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-01

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  8. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  9. Design and setup of an experiment to investigate the properties of the positronium negative ion

    International Nuclear Information System (INIS)

    Plenge, F.

    2000-01-01

    This diploma thesis describes the design and setup of an experiment to investigate the properties of the positronium negative ion Ps - . The positronium negative ion consists of two electrons in singlet spin state and a positron. It represents the simplest three-boby-system with a bound state. It allows tests of quantum electrodynamics practically free from complications due to strong interactions and is of particular interest as its investigation might contribute to a solution of the o-Ps-lifetime-puzzle. The present work particularly focuses on the preparation of the experimental tools necessary to study the Ps - -formation mechanisms and to measure the lifetime of the positronium ion. (orig.) [de

  10. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    International Nuclear Information System (INIS)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.; Cavenago, M.

    2016-01-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained

  11. Analysis of the beam halo in negative ion sources by using 3D3V PIC code

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K., E-mail: kmiyamot@naruto-u.ac.jp [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Nishioka, S.; Goto, I.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A.; Hiratsuka, J. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2016-02-15

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  12. Trapping of positron in gallium arsenide: evidencing of vacancies and of ions with a negative charge

    International Nuclear Information System (INIS)

    Pierre, F.

    1989-12-01

    Vacancy type defects in Ga As as grown and irradiated by electrons are characterized by lifetime of positrons. Positron lifetime increases from 230 ps to 258 and 295 ps in presence of native vacancies in n type Ga As. Configuration of native vacancies changes when Fermi level crosses energy levels localized in the forbidden zone at 0.035eV and at 0.10eV from the bottom of the conduction band. Native vacancies are identified to arsenic vacancies with or without other point defects. Positron lifetime increases from 230 to 260 ps in presence of vacancies produced by low temperature irradiation negative ions are also produced. In irradiated Ga As, these ions trap positrons in competition with vacancies produced by irradiation, showing they have a negative charge. Two annealing zones between 180-300K and 300-600K are presented by vacancies. Ions do not anneal below ambient temperature. Vacancies and negative ions are identified respectively to gallium vacancies and gallium antisite [fr

  13. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  14. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  15. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    International Nuclear Information System (INIS)

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-01-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10 18 /m 3 , at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  16. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    Science.gov (United States)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  17. Photodetachment from negative ions with ns2 subshells

    International Nuclear Information System (INIS)

    Ivanov, V.K.; Ipatov, A.N.; Krukovskaya, L.P.

    1997-01-01

    The theoretical study on multielectron effects in processes of electrons photodetachment from the Cu - and Cr - negative ions is carried out. The calculations were accomplished within the frames of the model, based on the approximation of random phases with exchange with simultaneous account for impact of the static polarization potential and the shell static rearrangement. The calculational results of photodetachment cross sections of the external 4s-electrons from Cu - and Cr - are presented and comparison with the available experimental data and the results of other calculations is carried out

  18. The production and destruction of negative ions. Progress report, September 1, 1996 - August 31, 1997

    International Nuclear Information System (INIS)

    Pegg, D.J.

    1997-01-01

    During the grant period, 1994--97, the author continued to investigate the structure of few-electron atomic negative ions and the manner in which they interact with electromagnetic radiation. The experimental procedures and the results of this work have been described in detail in the published papers cited in Section G. Two complementary laser-ion beam apparatus were used in the measurements. A crossed beam apparatus, situated at Oak Ridge National Laboratory (ORNL), was used to perform a spectroscopic study of the electrons ejected, in the forward direction, from moving negative ions in the photodetachment process. In this work, the author isolated specific detachment channels by energy analyzing the electrons. The apparatus was used to investigate photodetachment of an electron from a negative ion in an excited state. The C - ion is unusual in that it can be produced in a bound excited state as well as the ground state. The author also used this apparatus, with ba gaseous target replacing the laser beam, to study resonances in collisional detachment cross sections. In particular, he investigated the simplest of all shape resonances, the 3 P O state in Li - . This state was produced in Li - -He collisions. A collinear beam apparatus, situated at Chalmers University of Technology (CUT) in Gothenburg, Sweden, has been used in spectroscopic studies of the He - and Li - ion in the ultraviolet. Here, the emphasis is on the production and detection of highly correlated, doubly excited states

  19. Formation of Negative Metal Ions in a Field-Free Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, E

    1969-02-15

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of {sup 3}He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10{sup -13} cm{sup 3}/s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He{sup +}{sub 2} may therefore be dissociative. A difference in recombination behaviour between {sup 3}He and {sup 4}He at high pressures may therefore exist considering results from previous work on {sup 4}He.

  20. Formation of Negative Metal Ions in a Field-Free Plasma

    International Nuclear Information System (INIS)

    Larsson, E.

    1969-02-01

    A field-free and homogeneous plasma of a large volume is formed by neutron irradiation of 3 He at a density corresponding to NTP and at gas temperatures in the range 300-1600 deg K. The accuracy and ease by which the source density of free electrons can be varied and controlled offers special possibilities to study recombination and attachment phenomena in the absence of diffusion. These possibilities are described and utilized for the study of the effects of mixing the helium gas with metal vapours. Attachment of electrons to neutral metal atoms is found to be the dominant cause of electron removal for metal concentrations above certain limits. Negative metal ions are formed and the rate of their formation was determined to be about 10 -13 cm 3 /s. Evidence is also presented, that for such conditions where formation of negative metal ions does not occur, the electrons are lost in electron-ion recombinations, in which the third body is not an electron. No molecular helium spectrum is observed from the plasma when it is very close to spectroscopic purity. Instead, between 3,000-7,000 A only one atomic helium line at 5875 A is observed. The recombination of He + 2 may therefore be dissociative. A difference in recombination behaviour between 3 He and 4 He at high pressures may therefore exist considering results from previous work on 4 He

  1. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  2. Current neutralization in ballistic transport of light ion beams

    International Nuclear Information System (INIS)

    Hubbard, R.F.; Slinker, S.P.; Lampe, M.; Joyce, G.; Ottinger, P.

    1992-01-01

    Intense light ion beams are being considered as drivers to ignite fusion targets in the Laboratory Microfusion Facility (LMF). Ballistic transport of these beams from the diode to the target is possible only if the beam current is almost completely neutralized by plasma currents. This paper summarizes related work on relativistic electron beam and heavy ion beam propagation and describes a simple simulation model (DYNAPROP) which has been modified to treat light ion beam propagation. DYNAPROP uses an envelope equation to treat beam dynamics and uses rate equations to describe plasma and conductivity generation. The model has been applied both to the high current, 30 MeV Li +3 beams for LMF as well as low current, 1.2 MeV proton beams which are currently being studied on GAMBLE B at the Naval Research Laboratory. The predicted ratio of net currents to beam current is ∼0.1--0.2 for the GAMBLE experiment and ∼0.01 for LMF. The implications of these results for LMF and the GAMBLE experiments art discussed in some detail. The simple resistive model in DYNAPROP has well-known limitations in the 1 torr regime which arise primarily from the neglect of plasma electron transport. Alternative methods for treating the plasma response are discussed

  3. Resonance hairpin and Langmuir probe-assisted laser photodetachment measurements of the negative ion density in a pulsed dc magnetron discharge

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, James W.; Dodd, Robert; You, S.-D.; Sirse, Nishant; Karkari, Shantanu Kumar [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool (United Kingdom); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9, Republic of Ireland and Institute for Plasma Research, Bhat Gandhinagar, Gujarat (India)

    2011-05-15

    The time-resolved negative oxygen ion density n{sub -} close to the center line in a reactive pulsed dc magnetron discharge (10 kHz and 50% duty cycle) has been determined for the first time using a combination of laser photodetachment and resonance hairpin probing. The discharge was operated at a power of 50 W in 70% argon and 30% oxygen gas mixtures at 1.3 Pa pressure. The results show that the O{sup -} density remains pretty constant during the driven phase of the discharge at values typically below 5x10{sup 14} m{sup -3}; however, in the off-time, the O{sup -} density grows reaching values several times those in the on-time. This leads to the negative ion fraction (or degree of electronegativity) {alpha}=n{sub -}/n{sub e} being higher in the off phase (maximum value {alpha}{approx}1) than in the on phase ({alpha}=0.05-0.3). The authors also see higher values of {alpha} at positions close to the magnetic null than in the more magnetized region of the plasma. This fractional increase in negative ion density during the off-phase is attributed to the enhanced dissociative electron attachment of highly excited oxygen molecules in the cooling plasma. The results show that close to the magnetic null the photodetached electron density decays quickly after the laser pulse, followed by a slow decay over a few microseconds governed by the negative ion temperature. However, in the magnetized regions of the plasma, this decay is more gradual. This is attributed to the different cross-field transport rates for electrons in these two regions. The resonance hairpin probe measurements of the photoelectron densities are compared directly to photoelectron currents obtained using a conventional Langmuir probe. There is good agreement in the general trends, particularly in the off-time.

  4. Negative ion collisions. Progress report, April 1, 1994 - March 31, 1997

    International Nuclear Information System (INIS)

    Champion, R.L.

    1996-08-01

    During the last three years, the experimental activities have concentrated on several somewhat distinct projects. First, the author has measured total cross sections for electron detachment and charge transfer for collisions of various negative ions with atomic hydrogen and the molecular target, O 3 (ozone). The second type of gas phase experiments investigated the collisional decomposition of the molecular ion H 3 + . Specifically he has measured total cross sections for dissociation and proton transfer with an apparatus utilizing a static gas target cell. The targets include hydrogen, deuterium and the rare gases. He has extended these experiments to include D 3 + in a crossed beam configuration in order to provide a more detailed understanding of the collisional dynamics for these reactants. In the area of ion-surface collisions he has measured sputtering yields for O - and electrons arising from collisions of ions with an Al/O surface. The amount of oxygen on the surface is carefully controlled and the kinetic energy distributions of the ejected anions and electrons have been determined. He has been able to develop a theoretical model which, to a large degree, can describe the process. In a slightly speculative endeavor, he has begun investigating the role of atom-catalyzed field emission, i.e., the extent to which an unoccupied negative ion state for an atom near a surface--under the influence of a strong electric field--can serve as a stepping-stone for electron field emission. Very brief accounts of these activities will be given in this report in section 2. Detailed discussions of the experimental results and their analyses published during the contract period may be found in the following articles which have appeared in the archival literature. Copies of these publications are appended to this report as section 4

  5. Analysis of intensities of positive and negative ion species from silicon dioxide films using time-of-flight secondary ion mass spectrometry and electronegativity of fragments

    International Nuclear Information System (INIS)

    Chiba, Kiyoshi

    2010-01-01

    Intensities of positive and negative ion species emitted from thermally oxidized and plasma-enhanced chemical vapor deposited (PECVD) SiO 2 films were analyzed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) and the Saha-Boltzmann equation. Intensities of positive and negative secondary ion species were normalized to those of 28 Si + and 28 Si - ions, respectively, and an effective temperature of approximately (7.2 ± 0.1) x 10 3 K of the sputtered region bombarded with pulsed 22 kV Au 3 + primary ions was determined. Intensity spectra showed polarity dependence on both n and m values of Si n O m fragments, and a slight shift to negative polarity for PECVD SiO 2 compared to thermally oxidized SiO 2 films. By dividing the intensity ratios of negative-to-positive ions for PECVD SiO 2 by those for thermally oxidized SiO 2 films to cancel statistical factors, the difference in absolute electronegativity (half the sum of ionization potential and electron affinity of fragments) between both films was obtained. An increase in electronegativity for SiO m (m = 1, 2) and Si 2 O m (m = 1-4) fragments for PECVD SiO 2 films compared to thermally oxidized films was obtained to be 0.1-0.2 Pauling units, indicating a more covalent nature of Si-O bonds for PECVD SiO 2 films compared to the thermally oxidized SiO 2 films.

  6. Development of an rf-driven plasma neutralizer for negative ions

    International Nuclear Information System (INIS)

    Moses, K.G.

    1989-01-01

    The assertion that beams of negative ions can be neutralized more efficiently by impacting a plasma, rather than a cold gas target, is confirmed scientifically by the work of K.H. Berkner et al. What remains to be done is the realization of practical means of generating plasmas efficiently with appropriate integrated line densities (target thickness). The work performed by JAYCOR, under this grant, over the past few years has made significant progress towards that goal. In this work, large volumes of plasma are generated using low-frequency pulsed inductive rf discharges within a ring cusp multipole-magnetic field geometry. These plasmas exhibit sufficient line-integrated electron densities and degrees of ionization to neutralize beams of energetic negative ions whose energies exceed 500 keV. The method of plasma generation and the cell configuration used in these studies are directly applicable to higher energy neutral beam injector systems (NBIS). Innate scalability and modularity of the system design facilitates linear stacking to achieve a desired target thickness. Further, the plasma formation process is accomplished with an electrical economy consistent with increased overall electrical efficiency of the NBIS compared to that possible using a cold gas target. 5 refs., 16 figs

  7. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors

    International Nuclear Information System (INIS)

    Zhang, Jin; Liu, Xifeng; Wang, Jing; Shi, Jingli; Shi, Zhiqiang

    2016-01-01

    Highlights: • Two types of HC materials with different properties as negative electrode. • Lithium ion intercalation plateau of HC affects electrochemical performance of LIC. • The electrochemical performance of LIC is operated at different potential ranges. • The selection of HC and appropriate potential range of LIC have been proposed. - ABSTRACT: Lithium-ion capacitors (LICs) are assembled with activated carbon (AC) cathode and pre-lithiated hard carbon (HC) anode. Two kinds of HC materials with different physical and electrochemical behaviors have been investigated as the negative electrodes for LIC. Compared with spherical HC, the irregular HC shows a distinct lithium ion intercalation plateau in the charge–discharge process. The existence of lithium ion intercalation plateau for irregular HC greatly affects the electrochemical behavior of HC negative electrode and AC positive electrode. The effect of working potential range on the electrochemical performance of LIC-SH and LIC-IH is investigated by the galvanostatic charging–discharging, electrochemical impedance tests and cycle performance testing. The charge–discharge potential range of the irregular HC negative electrode is lower than the spherical HC electrode due to the existence of lithium ion intercalation plateau, which is conducive to the sufficient utilization of the AC positive electrode. The working potential range of LIC should be controlled to realize the optimization of electrochemical performance of LIC. LIC-IH at the working potential range of 2.0-4.0 V exhibits the optimal electrochemical performance, high energy density up to 85.7 Wh kg −1 and power density as high as 7.6 kW kg −1 (based on active material mass of two electrodes), excellent capacity retention about 96.0% after 5000 cycles.

  8. Enhancement of H{sup -}/D{sup -} volume production in a double plasma type negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Fukumasa, Osamu; Nishimura, Hideki; Sakiyama, Satoshi [Yamaguchi Univ., Ube (Japan). Faculty of Engineering

    1997-02-01

    H{sup -}/D{sup -} production in a pure volume source has been studied. In our double plasma type negative ion source, both energy and density of fast electrons are well controlled. With the use of this source, the enhancement of H{sup -}/D{sup -} production has been observed. Namely, under the same discharge power, the extracted H{sup -}/D{sup -} current in the double plasma operation is higher than that in the single plasma operation. At the same time, measurements of plasma parameters have been made in the source and the extractor regions for these two cases. (author)

  9. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  10. Detection and clearing of trapped ions in the high current Cornell photoinjector

    Directory of Open Access Journals (Sweden)

    S. Full

    2016-03-01

    Full Text Available We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.

  11. Mobility of negative ions in superfluid 3He-B

    International Nuclear Information System (INIS)

    Baym, G.; Pethick, C.J.; Salomaa, M.

    1979-01-01

    We calculate the mobility of negative ions in superfluid 3 He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle: ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data

  12. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  13. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    Science.gov (United States)

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  14. Large amplitude solitary waves in a multicomponent plasma with negative ions

    International Nuclear Information System (INIS)

    Nakamura, Y.; Tsukabayashi, I.; Ludwig, G.O.; Ferreira, J.L.

    1987-09-01

    When the concentration of negative ions is larger than a critical value, a small compressive pulse evolves into a subsonic wave train and a large pulse develops into a solitary wave. The threshold amplitude and velocity of the solitary waves are measured and compared with predictions using the pseudopotential method. (author) [pt

  15. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  16. Negative-ion beam surface modification of tissue-culture polystyrene dishes for changing hydrophilic and cell-attachment properties

    International Nuclear Information System (INIS)

    Tsuji, H.; Satoh, H.; Ikeda, S.; Ikemura, S.; Gotoh, Y.; Ishikawa, J.

    1999-01-01

    Negative-silver-ion implantation into tissue-culture polystyrene (TCPS) dishes was investigated and it was found to modify hydrophilic and cell attachment properties of the dishes. Negative-ion implantation has an advantage of being almost free of surface charging, and is a suitable method for implantation into insulators such as polymers. Negative silver ions are used due to the antibacterial property of silver. Ag-implanted TCPS dishes had a contact angle larger than the normal value of 66 deg. of unimplanted dishes. The contact angle of water had a strong dependence on the ion energy rather than the dose. As a cell-culture experiment, human umbilical vascular endothelial cell (HUVEC) was used in unimplanted and Ag-implanted TCPS dishes, the implantation removed the cell-attachment property of the surface. In implantation with a mask with a striped pattern, most attached cells of HUVEC were in the unimplanted region aligned along a stripe direction

  17. Detection of negative ions in glow discharge mass spectrometry for analysis of solid specimens

    DEFF Research Database (Denmark)

    Canulescu, Stela; Molchan, Igor S.; Tauziede, C.

    2010-01-01

    A new method is presented for elemental and molecular analysis of halogen-containing samples by glow discharge time-of-flight mass spectrometry, consisting of detection of negative ions from a pulsed RF glow discharge in argon. Analyte signals are mainly extracted from the afterglow regime...... be used to study the distribution of a tantalum fluoride layer within the anodized tantala layer. Further, comparison is made with data obtained using glow-discharge optical emission spectroscopy, where elemental fluorine can only be detected using a neon plasma. The ionization mechanisms responsible...... for the formation of negative ions in glow discharge time-of-flight mass spectrometry are briefly discussed....

  18. Positive and negative ion mode comparison for the determination of DNA/peptide noncovalent binding sites through the formation of "three-body" noncovalent fragment ions.

    Science.gov (United States)

    Brahim, Bessem; Tabet, Jean-Claude; Alves, Sandra

    2018-02-01

    Gas-phase fragmentation of single strand DNA-peptide noncovalent complexes is investigated in positive and negative electrospray ionization modes.Collision-induced dissociation experiments, performed on the positively charged noncovalent complex precursor ions, have confirmed the trend previously observed in negative ion mode, i.e. a high stability of noncovalent complexes containing very basic peptidic residues (i.e. R > K) and acidic nucleotide units (i.e. Thy units), certainly incoming from the existence of salt bridge interactions. Independent of the ion polarity, stable noncovalent complex precursor ions were found to dissociate preferentially through covalent bond cleavages of the partners without disrupting noncovalent interactions. The resulting DNA fragment ions were found to be still noncovalently linked to the peptides. Additionally, the losses of an internal nucleic fragment producing "three-body" noncovalent fragment ions were also observed in both ion polarities, demonstrating the spectacular salt bridge interaction stability. The identical fragmentation patterns (regardless of the relative fragment ion abundances) observed in both polarities have shown a common location of salt bridge interaction certainly preserved from solution. Nonetheless, most abundant noncovalent fragment ions (and particularly three-body ones) are observed from positively charged noncovalent complexes. Therefore, we assume that, independent of the preexisting salt bridge interaction and zwitterion structures, multiple covalent bond cleavages from single-stranded DNA/peptide complexes rely on an excess of positive charges in both electrospray ionization ion polarities.

  19. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  20. Improved beam extraction for a negative hydrogen ion source for the LHC injector chain upgrade, Linac4

    CERN Document Server

    Midttun, Øystein; Scrivens, Richard

    In the scope of an upgrade of the injector chain of CERN’s accelerator complex, a new linear accelerator, Linac4, is under construction. This accelerator will replace the existing 50 MeV proton linac, Linac2. By increasing the beam energy to 160 MeV, Linac4 makes it possible to double the brightness in the PSB, and ultimately increase the luminosity in the LHC. Linac4 will accelerate beams of negative hydrogen (H-) to be injected into the PSB by multi-turn, charge exchange injection. The ion source was initially based on the non-caesiated RF-volume source from DESY. However, the beam extraction from this source could not handle the 45 keV beam energy required by the RFQ. A new beam extraction system has therefore been designed, via IBSimu simulations [1], to extract and transport the H- ion beam respecting the Linac4 requirements. Key features of the extraction system is a tuneable puller voltage to adapt the extraction field to the ion and electron beam currents, and a magnetized Einzel lens to dump the co...

  1. Characterization of ion implanted silicon by the electrolytic reverse current

    International Nuclear Information System (INIS)

    Hueller, J.; Pham, M.T.

    1977-01-01

    The current voltage behaviour of ion implanted silicon electrodes in HF electrolyte is investigated. The electrolytic reverse current, i.e. the reaction rate of the minority carrier limited reactions is found to increase. The current increase depends on the implanted dose and layer stripping. Reason for the increased reverse current can be referred to radiation damage acting as generation centres for minority carriers. Measurement of the electrolytic reverse current can be used for determining damage profiles. Layer stripping is carried out by anodic dissolution in the same electrolyte. The sensitivity of this new method for characterizing ion implanted silicon layers lies at 10 11 to 10 12 atoms/cm 2 . (author)

  2. Development of the computer system for the JT-60 negative-ion based NBI

    International Nuclear Information System (INIS)

    Kawai, Mikito; Oohara, Hiroshi; Honda, Atsushi; Kuriyama, Masaaki; Aoyagi, Tetsuo.

    1997-03-01

    The negative-ion based NBI system (N-NBI) for JT-60 is the first NBI system using a negative-ion source in the world. The N-NBI is designed do deliver a neutral beam injection power of 10 MW at 500 keV. The computer for the N-NBI system is composed of UNIX workstations and VMEbus systems, and has the functions of ion source operation and data acquisition and processing. Since a real-time operating system compatible with the UNIX is adopted for the VMEbus systems, the software development environment both for the workstation and the VMEbus system is unified with the UNIX. The software has been developed with a priority to the software required for the verification tests which are performed in accordance with the progress of the N-NBI construction. The first beam injection with the N-NBI has been conducted in March using the newly developed software, and the deuterium neutral beam injection of 350 keV, 2.5 MW has achieved as of the end of October 1996. (author)

  3. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  4. Negative ion molecule reactions of WF6: evidence for a pressure dependent branching ratio

    International Nuclear Information System (INIS)

    Viggiano, A.A.; Paulson, J.F.

    1984-01-01

    Rate coefficients have been measured in a selected ion flow tube (SIFT) for reactions of several negative ions with WF 6 . With the exception of SF - 5 , all the reactant ions studied having an electron detachment energy less than 3.36 eV reacted rapidly by charge exchange. SF - 5 transferred a fluoride ion producing WF - 7 . Ions with detachment energies greater than 3.36 eV associated rapidly with WF - 6 . Br - , with a detachment energy of 3.36 eV, reacted with WF 6 both by ion-neutral association and by charge exchange. The branching ratio for these two channels was found to depend on temperature and pressure. All these data indicate that the electron affinity of WF 6 is nearly equal to that of Br

  5. Theoretical study of β-decay of a negative tritium ion

    International Nuclear Information System (INIS)

    Goryaev, F.F.; Sukhanov, L.P.

    1997-01-01

    A calculation of the probability of the main β-decay channel of a negative tritium ion is described as one of the processes that can affect the β-spectrum of a tritium source near the end point. The appropriate energy parameters have been calculated. This process should be taken into account in interpreting measured β-spectra near the end point in connection with determining the neutrino rest mass

  6. Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX

    CERN Document Server

    Mochalskyy, S; Minea, T; Lifschitz, AF; Schmitzer, C; Midttun, O; Steyaert, D

    2013-01-01

    At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons’ temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contrib...

  7. Present status on the ion collective acceleration and high-current beam transport in the Lebedev's Physical Institute USSR

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1982-01-01

    The results of investigations into the ion collective acceleration and transport of high-current electron beams (HCEB) in vacuum channels with dielectric walls (VCDW) are presented. The physical principle of transport is in the partial neutralization of spatial charge of electrons with ions escaped from the prewall plasma and the compression of the beam with its own magnetic field. A problem of obtaining the intensive beams of negative ions in diode with magnetic isolation is considered. The mechanism of ion acceleration in VCDW is considered. It is shown that there are two regions with different mechanisms of acceleration. In the first region (''plasma'') ion acceleration in the quasipotential HCEB field up to energy of the order of the electron energy takes place. In the second region (''beam'') the acceleration takes place in the wave fields that can be excited due to the mechanism of the two-beam type instability. The mechanism of ion acceleration in direct electron beams is considered. This mechanism is based on the concept of relaxation oscillations of the virtual cathode and corresponding the reconstruction of the spatial charge distribution

  8. Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.

    Science.gov (United States)

    Adonin, A A; Hollinger, R

    2014-02-01

    In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.

  9. Multiplex Mass Spectrometric Imaging with Polarity Switching for Concurrent Acquisition of Positive and Negative Ion Images

    Science.gov (United States)

    Korte, Andrew R.; Lee, Young Jin

    2013-06-01

    We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.

  10. Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system

    International Nuclear Information System (INIS)

    Fantz, U.; Franzen, P.; Kraus, W.; Berger, M.; Christ-Koch, S.; Falter, H.; Froeschle, M.; Gutser, R.; Heinemann, B.; Martens, C.; McNeely, P.; Riedl, R.; Speth, E.; Staebler, A.; Wuenderlich, D.

    2009-01-01

    For heating and current drive the neutral beam injection (NBI) system for ITER requires a 1 MeV deuterium beam for up to 1 h pulse length. In order to inject the required 17 MW the large area source (1.9 m x 0.9 m) has to deliver 40 A of negative ion current at the specified source pressure of 0.3 Pa. In 2007, the IPP RF driven negative hydrogen ion source was chosen by the ITER board as the new reference source for the ITER NBI system due to, in principle, its maintenance free operation and the progress in the RF source development. The performance analysis of the IPP RF sources is strongly supported by an extensive diagnostic program and modelling of the source and beam extraction. The control of the plasma chemistry and the processes in the plasma region near the extraction system are the most critical topics for source optimization both for long pulse operation as well as for the source homogeneity. The long pulse stability has been demonstrated at the test facility MANITU which is now operating routinely at stable pulses of up to 10 min with parameters near the ITER requirements. A quite uniform plasma illumination of a large area source (0.8 m x 0.8 m) has been demonstrated at the ion source test facility RADI. The new test facility ELISE presently planned at IPP is being designed for long pulse plasma operation and short pulse, but large-scale extraction from a half-size ITER source which is an important intermediate step towards ITER NBI.

  11. Negative ions formed in N2/CH4/Ar discharge – a simulation of Titan's atmosphere chemistry

    OpenAIRE

    Horvath, G.; Aranda-Gonzalvo, Y.; Mason, N. J.; Zahoran, M.; Matejcik, S.

    2010-01-01

    The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2//CH4/ gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN ? anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavier negative ions such as C3/N ? and C5/N ? . The most likely pathway for the formation of such mo...

  12. A Model for Negative Ion Chemistry in Titan’s Ionosphere

    Science.gov (United States)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-04-01

    We developed a one-dimensional photochemical model for the dayside ionosphere of Titan for calculating the density profiles of negative ions under steady-state photochemical equilibrium condition. We concentrated on the T40 flyby of the Cassini orbiter and used the in situ measurements from instruments on board Cassini as input to the model. Using the latest available reaction rate coefficients and dissociative electron attachment cross sections, the densities of 10 anions are calculated. Our study shows CN‑ as the dominant anion, followed by C3N‑, which agrees with the results of previous calculations. We suggest that H‑ could be an important anion in Titan’s ionosphere and is the second most abundant anion at altitudes greater than 1200 km. The main production channel of the major ion CN‑ is the reaction of H‑ with HCN. The H‑ also play a major role in the production of anions C2H‑, C6H‑, and OH‑. We present a comparison of the calculated ion density profiles with the relative density profiles derived using recently reported Cassini CAPS/ELS observations.

  13. Description and calibration beamline SEM/Ion Chamber Current Digitizer

    International Nuclear Information System (INIS)

    Schoo, D.

    1994-05-01

    This report discusses the following on beamline SEM/ion chamber current digitizers: Module description; testing and calibration; common setup procedures; summary of fault indications and associated causes; summary of input and output connections; SEM conversion constant table; ion chamber conversion constant table; hexadecimal to decimal conversion table; and schematic diagram

  14. Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection

    Science.gov (United States)

    Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.; hide

    2016-01-01

    In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.

  15. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  16. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  17. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  18. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    Science.gov (United States)

    Serianni, G.; Bonomo, F.; Brombin, M.; Cervaro, V.; Chitarin, G.; Cristofaro, S.; Delogu, R.; De Muri, M.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Franzen, P.; Ghiraldelli, R.; Molon, F.; Muraro, A.; Pasqualotto, R.; Ruf, B.; Schiesko, L.; Tollin, M.; Veltri, P.

    2015-04-01

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.

  19. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    International Nuclear Information System (INIS)

    Serianni, G.; Brombin, M.; Cervaro, V.; Chitarin, G.; Delogu, R.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Tollin, M.; Veltri, P.; Bonomo, F.; Cristofaro, S.; De Muri, M.; Franzen, P.; Ruf, B.; Schiesko, L.; Muraro, A.

    2015-01-01

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented

  20. Negative ion formation in collisions involving excited alkali atoms

    International Nuclear Information System (INIS)

    Cheret, M.

    1988-01-01

    Ion-pair production is considered as the prototype of the crossing problem between potential energy curves. In general an alkali atom is one of the reactants the other being an halogen, hydrogen atom or molecule. Experimental results are generally analyzed in the framework of the Landau-Zener-Stuekelberg theory, ionization potential and electron affinity, being the most important parameters. In order to vary these parameters over a wide range two experimental works have been devoted to systems of excited alkali atoms colliding with ground state alkali atoms. In the first study Rb atoms are excited to various ns or nd states from Rb(5d) to Rb(9s) in a cell. The second study is devoted to the Na(3p)-Na(3s) system, in this study also the possibility of creating excited negative ions (Na - (3s3p)) has been investigated. These results are presented and analyzed. Finally further developments of the subject are suggested. 17 refs.; 8 figs.; 1 table

  1. Production of intensive negative lithium beam with caesium sputter-type ion source

    Science.gov (United States)

    Lobanov, Nikolai R.

    2018-01-01

    Compounds of lithium oxide, hydroxide and carbonate, mixed with silver, were prepared for use as a cathode in caesium-sputter ion source. The intention was to determine the procedure which would produce the highest intensity negative lithium beams over extended period and with maximum stability. The chemical composition and properties of the samples were analysed using mass-spectrometry, optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analyses (EDX) and Raman spectroscopy. These analyses showed that the chemical transformations with components resulted from pressing, storage and bake out were qualitatively in agreement with expectations. Intensive negative lithium ion beams >1 μA were delivered using cathodes fabricated from materials with multicomponent chemical composition when the following conditions were met: (i) use of components with moderate enthalpy of formation; (ii) low moisture content at final stage of cathode production and (iii) small concentration of water molecules in hydrate phase in the cathode mixture.

  2. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  3. Halogeno-substituted 2-aminobenzoic acid derivatives for negative ion fragmentation studies of N-linked carbohydrates.

    Science.gov (United States)

    Harvey, David J

    2005-01-01

    Negative ion electrospray mass spectra of high-mannose N-linked glycans derivatised with 2-aminobenzoic acids and ionised from solutions containing ammonium hydroxide gave prominent [M-H](-) ions accompanied by weaker [M-2H](2-) ions. Fragmentation of both types of ions gave prominent singly charged glycosidic cleavage ions containing the derivatised reducing terminus and ions from the non-reducing terminus that appeared to be products of cross-ring cleavages. Differentiation of these two groups of ions was conveniently achieved in a single spectrum by use of chloro- or bromo-substituted benzoic acids in order to label ions containing the derivative with an atom with a distinctive isotope pattern. Fragmentation of the doubly charged ions gave more abundant fragments, both singly and doubly charged, than did fragmentation of the singly charged ions, but information of chain branching was masked by the appearance of prominent ions produced by internal cleavages. Copyright (c) 2005 John Wiley & Sons, Ltd.

  4. Non-existence of Normal Tokamak Equilibria with Negative Central Current

    International Nuclear Information System (INIS)

    Hammett, G.W.; Jardin, S.C.; Stratton, B.C.

    2003-01-01

    Recent tokamak experiments employing off-axis, non-inductive current drive have found that a large central current hole can be produced. The current density is measured to be approximately zero in this region, though in principle there was sufficient current-drive power for the central current density to have gone significantly negative. Recent papers have used a large aspect-ratio expansion to show that normal MHD equilibria (with axisymmetric nested flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields and/or hollow pressure profiles that may be spontaneously generated

  5. Formation of negative hydrogen ion: polarization electron capture and nonthermal shielding.

    Science.gov (United States)

    Ki, Dae-Han; Jung, Young-Dae

    2012-09-07

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H(-)) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  6. Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding

    International Nuclear Information System (INIS)

    Ki, Dae-Han; Jung, Young-Dae

    2012-01-01

    The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H − ) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

  7. Direction for the Future - Successive Acceleration of Positive and Negative Ions Applied to Space Propulsion

    CERN Document Server

    Aanesland, A.; Popelier, L.; Chabert, P.

    2013-12-16

    Electrical space thrusters show important advantages for applications in outer space compared to chemical thrusters, as they allow a longer mission lifetime with lower weight and propellant consumption. Mature technologies on the market today accelerate positive ions to generate thrust. The ion beam is neutralized by electrons downstream, and this need for an additional neutralization system has some drawbacks related to stability, lifetime and total weight and power consumption. Many new concepts, to get rid of the neutralizer, have been proposed, and the PEGASES ion-ion thruster is one of them. This new thruster concept aims at accelerating both positive and negative ions to generate thrust, such that additional neutralization is redundant. This chapter gives an overview of the concept of electric propulsion and the state of the development of this new ion-ion thruster.

  8. Production of atomic negative ion beams of the Group IA elements

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1988-01-01

    A method has been developed which enables the direct sputter generation of atomic negative ion beams of all members of the Group IA elements (Li, Na, K, Rb, and Cs). The method consists of the use of sputter samples formed by pressing mixtures of the carbonates of the Group IA elements and 10% (atomic) Cu, Ag, or other metal powder. The following intensities are typical of those observed from carbonate samples subjected to /approximately/3 KeV cesium ion bombardment: Li - : ≥0.5 μA; Na - : ≥0.5 μA; K - : ≥0.5 μA; Rb - : ≥0.5 μA; Cs - : ≥0.2 μA. 7 refs., 2 figs., 1 tab

  9. A Langmuir probe system for high power RF-driven negative ion sources on high potential

    International Nuclear Information System (INIS)

    McNeely, P; Christ-Koch, S; Fantz, U; Dudin, S V

    2009-01-01

    A fully automated Langmuir probe system capable of operating simultaneously with beam extraction has been developed and commissioned for the negative hydrogen ion source testbeds at IPP Garching. It allows the measurement of temporal and spatial distributions of the plasma parameters within a single plasma pulse ( 10 18 m -3 ) and hot (T e > 10 eV) plasma with bi-Maxwellian electron energy distribution at low pressures. The plasma found near the plasma grid is very different being of low density (≤10 17 m -3 ) and very cold (T e < 2 eV). This plasma is also strongly influenced by the presence of caesium, the potential of the plasma grid, and if an ion beam is extracted from the source. Caesium strongly reduces the plasma potential of the source and enhances the negative ion density near the plasma grid. Extracting an ion beam is observed to reduce the electron density and increase the potential near the plasma grid. Applying a potential greater than the plasma potential to the plasma grid is found to significantly decrease the electron density near the plasma grid.

  10. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  11. Calculation of ion currents across the inner membrane of functionally intact mitochondria

    Science.gov (United States)

    Kane, Daniel A; Pavlov, Evgeny V

    2013-01-01

    Mitochondrial ion transport systems play a central role in cell physiology. Rates of Ca2+ and K+ transport across the inner mitochondrial membrane have been derived from the measurement of ion accumulation over time within functional isolated mitochondria or mitochondria of cultured cells. Alternatively, the electrical currents generated by ionic flux have been directly measured in purified and swollen mitochondrial samples (mitoplasts) or reconstituted channels, and typically range from 1 pA to several 100s pA. However, the direct electrophysiological approach necessarily requires extensive processing of the mitochondria prior to measurement, which can only be performed on isolated mitoplasts. To compare rates of mitochondrial ion transport measured in electrophysiological experiments to those measured in intact mitochondria and cells, we converted published rates of mitochondrial ion uptake into units of ionic current. We estimate that for monovalent ions, uptake by intact mitochondria at the rate of 1 nmol ∙ mg−1 protein ∙ min−1 is equivalent to 0.2 fA of current per whole single mitochondrion (0.4 fA for divalent ions). In intact mitochondria, estimated rates of electrogenic cation uptake are limited to 1–100 fA of integral current per single mitochondrion. These estimates are orders of magnitude lower than the currents through mitochondrial channels directly measured via patch-clamp or artificial lipid bilayer approaches. PMID:24037064

  12. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    The project of a high current pulsed linear ion accelerator is described in this paper. The accelerator consists of an ion injector, a system of charge and energy separation, an inductor accelerator and an output system. The ion source with explosive ion emission can produce all kinds of ions. The separation system includes a pulsed magnetic system. The inductors are based on amorphous iron with inside magnetic elements. 3 refs., 3 figs.

  13. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    International Nuclear Information System (INIS)

    Korenev, S.A.; Puzynin, I.V.; Samoilov, V.N.; Sissakian, A.N.

    1997-01-01

    The project of a high current pulsed linear ion accelerator is described in this paper. The accelerator consists of an ion injector, a system of charge and energy separation, an inductor accelerator and an output system. The ion source with explosive ion emission can produce all kinds of ions. The separation system includes a pulsed magnetic system. The inductors are based on amorphous iron with inside magnetic elements. 3 refs., 3 figs

  14. Current neutralization of converging ion beams

    International Nuclear Information System (INIS)

    Mosher, D.

    1978-01-01

    It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently

  15. Experimental investigation of the formation of negative hydrogen ions in collisions between positive ions and atomic or molecular targets

    International Nuclear Information System (INIS)

    Lattouf, Elie

    2013-01-01

    The formation of the negative hydrogen ion (H - ) in collisions between a positive ion and a neutral atomic or molecular target is studied experimentally at impact energies of a few keV. The doubly-differential cross sections for H - formation are measured as a function of the kinetic energy and emission angle for the collision systems OH + + Ar and O + + H 2 O at 412 eV/a.m.u. These H - ions can be emitted at high energies (keV) in hard quasi-elastic two-body collisions involving a large momentum transfer to the H center. However, H - anions are preferentially emitted at low energy (eV) due to soft many-body (≥ 2) collisions resulting in a low momentum transfer. The formation of H - ions by electron capture follows excitation or ionization of the molecule. The molecular fragmentation dynamics is modeled to simulate the emission of H - ions. The overall good agreement between the simulation and the experiment leads to the understanding of most of the experimental observations. (author) [fr

  16. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok

    2006-01-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  17. Ring Current He Ion Control by Bounce Resonant ULF Waves

    Science.gov (United States)

    Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.

    2017-12-01

    Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.

  18. Theoretical investigation of the β decay of a negative tritium ion

    International Nuclear Information System (INIS)

    Goryaev, F.F.; Sukhanov, L.P.

    1997-01-01

    Calculation of probability of the main channel β decay of tritium negative ion as one of the possible process influencing the β spectrum form is carried out. The corresponding energy characteristics are estimated. The necessity of accounting for the investigated process by interpretation of the β spectrum experimental curves near the end point in connection with the problem of determining the neutrino rest mass, is pointed out

  19. Novel Faraday cup for the simultaneous observation and measurement of ion-beam currents

    International Nuclear Information System (INIS)

    Wei, C.; Seidman, D.N.

    1977-01-01

    A novel Faraday cup is described which allows the simultaneous observation and measurement of ion-beam currents. The Faraday cup is constructed around a Galileo channel electron multiplier array (CEMA), which serves as the basis of an internal image intensification system (a gain of >10 4 ) for the observation of the ion beam; the CEMA also acts as a collector for the ion current which is measured by a Keithley 602 electrometer. The ion current is integrated by a simple and inexpensive dosimeter; the electronic circuit for the dosimeter is described. The application of the Faraday cup to the observation and measurement of a 30-keV Ar + ion beam is presented as an illustrative example. We have also employed this Faraday cup to observe and measure 30-keV Cr + , Mo + , or W + , and 18-keV Au + ion beams employed for the in situ irradiation of field-ion microscope specimens

  20. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  1. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S A; Puzynin, I V; Samojlov, V N; Sissakyan, A N [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1997-12-31

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs.

  2. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    International Nuclear Information System (INIS)

    Korenev, S.A.; Puzynin, I.V.; Samojlov, V.N.; Sissakyan, A.N.

    1996-01-01

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs

  3. Negative ion detachment cross sections: Progress report, March 1, 1985--February 29, 1988

    International Nuclear Information System (INIS)

    Champion, R.L.; Doverspike, L.D.

    1987-08-01

    The purpose of the experimental investigations undertaken during the past three years was to perform an extensive and comprehensive study of the collisional dynamics of reactants which involve collisions of negative ions and neutral atomic and molecular targets. The (laboratory) collision energies for these studies ranged from about 1 eV up to 500 eV and the experiments involved measurements of both absolute total cross sections and doubly-differential cross sections. The various processes investigated included electron detachment, charge transfer, dissociative charge transfer and reactive (or rearrangement) scattering. Reactants which were the subject of these investigations included the negative ions O/sup minus/, S/sup minus/, Na/sup minus /, K/sup minus/, Cs/sup minus/, H/sup minus/, D/sup minus/ in collisions with H 2 , D 2 , O 2 , N 2 , CO, CO 2 , CH 4 and the alkali atoms Na, K and Cs

  4. Secondary emission of negative ions and electrons resulting from electronic sputtering of cesium salts

    International Nuclear Information System (INIS)

    Allali, H.; Nsouli, B.; Thomas, J.P.

    1993-04-01

    Secondary ion emission of negative ions and electrons from alkali salts bombarded with high energy (9 MeV) Ar +++ is discussed. Quite different features are observed according to the nature of the salt investigated (halide or oxygenated). In the case of cesium, the electron emission from halides is characterized by intense electron showers (several hundred electrons) with narrow distributions in intensity and orientation. Conversely, for oxygenated salts, these distributions are broader, much less intense (one order of magnitude), and the ion emission exhibits an dissymmetry, which has never been observed for inorganics. This last result is interpreted in terms of radiolysis of the oxygenated salt, a process well documented for gamma-ray irradiation, but not yet reported in secondary ion emission. (author) 17 refs.; 10 figs

  5. Confinement improvement in high-ion temperature plasmas heated with high-energy negative-NBI in LHD

    International Nuclear Information System (INIS)

    Takeiri, Y.; Morita, S.; Ikeda, K.

    2006-10-01

    The increase in the ion temperature due to transport improvement has been observed in plasmas heated with high-energy negative-NBI, in which electrons are dominantly heated, in Large Helical Device (LHD). When the centrally focused ECRH is superposed on the NBI plasma, the ion temperature is observed to rise, accompanied by formation of the electron-ITB. This is ascribed to the ion transport improvement with the transition to the neoclassical electron root with a positive radial electric field. In high-Z plasmas, the ion temperature is increased with an increase in the ion heating power, and reaches 13.5keV. The central ion temperature increases with an increase in a gradient of the electron temperature in an outer plasma region of ρ=0.8, suggesting the ion transport improvement in the outer plasma region induced by the neoclassical electron root. These results indicate the effectiveness of the electron-root scenario for obtaining high-ion temperature plasmas in helical systems. (author)

  6. Current trends in ion implantation

    International Nuclear Information System (INIS)

    Gwilliam, R.M.

    2001-01-01

    As semiconductor device dimensions continue to shrink, the drive beyond 250 nm is creating significant problems for the device processor. In particular, trends toward shallower-junctions, lower thermal budgets and simplified processing steps present severe challenges to ion implantation. In parallel with greater control of the implant process goes the need for a better understanding of the physical processes involved during implantation and subsequent activation annealing. For instance, the need for an understanding of dopant-defect interaction is paramount as defects mediate a number of technologically important phenomena such as transient enhanced diffusion and impurity gettering. This paper will outline the current trends in the ion implantation and some of the challenges it faces in the next decade, as described in the semiconductor roadmap. It will highlight some recent positron annihilation work that has made a contribution to addressing one of these challenges, namely the need for tighter control of implant uniformity and dose. Additionally, some vacancy-mediated processes are described with the implication that these may provide areas in which positron annihilation spectroscopy could make a significant contribution. (orig.)

  7. Electronics system for the 150 kV negative ion test stand at BNL

    International Nuclear Information System (INIS)

    Larson, R.A.

    1977-01-01

    The 150 kV test stand at BNL is being used to investigate the extraction, acceleration and transport problems associated with the development of intense negative ion beams. The power supplies associated with these functions as well as the control and monitoring electronics are described

  8. Manipulation of high-current pulses for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Griedman, A.; Grote, D.P.

    1996-01-01

    For efficient induction-driven heavy-ion fusion, the current profile along a pulse must be modified in a non-selfsimilar manner between the accelerator and the target. In the accelerator, the pulse should have a duration of at least 50 ns in order to make efficient use of the induction cores, and the current should by nearly uniform along the pulse to minimize the aperture. In contrast, the optimal current profile on target consists of a main pulse of about 10 ns preceded by a longer low-current 'foot.' This pulse-shape manipulation must be carried out at the final pulse energy (5-10 GeV for 200 amu ions) in the presence of a large nonlinear longitudinal space-charge field. A straightforward method is presented here for doing the required pulse shaping. Induction-ceU voltages are generated using idealized beam profiles both in the accelerator and on target, and they are verified and checked for error sensitivity using the fluid/envelope code CIRCE

  9. The Effects of Hydrogen Band EMIC Waves on Ring Current H+ Ions

    Science.gov (United States)

    Wang, Zhiqiang; Zhai, Hao; Gao, Zhuxiu

    2017-12-01

    Hydrogen band electromagnetic ion cyclotron (EMIC) waves have received much attention recently because they are found to frequently span larger spatial areas than the other band EMIC waves. Using test particle simulations, we study the nonlinear effects of hydrogen band EMIC waves on ring current H+ ions. A dimensionless parameter R is used to characterize the competition between wave-induced and adiabatic motions. The results indicate that there are three regimes of wave-particle interactions for typical 35 keV H+ ions at L = 5: diffusive (quasi-linear) behavior when αeq ≤ 35° (R ≥ 2.45), the nonlinear phase trapping when 35° < αeq < 50° (0.75 < R < 2.45), and both the nonlinear phase bunching and phase trapping when αeq ≥ 50° (R ≤ 0.75). The phase trapping can transport H+ ions toward large pitch angle, while the phase bunching has the opposite effect. The phase-trapped H+ ions can be significantly accelerated (from 35 keV to over 500 keV) in about 4 min and thus contribute to the formation of high energy components of ring current ions. The results suggest that the effect of hydrogen band EMIC waves is not ignorable in the nonlinear acceleration and resonance scattering of ring current H+ ions.

  10. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  11. Considerations involved in the design of negative-ion-based neutral beam systems

    International Nuclear Information System (INIS)

    Cooper, W.S.

    1983-11-01

    We consider the requirements and constraints for negative-ion-based neutral beam injection systems, and show how these are reflected in design considerations. We will attempt to develop a set of guidelines for users and developers to use to see how well (in a qualitative sense, at least) a particular neutral beam system fits a particular proposed need

  12. Deformation Study of Lean Methane-Air Premixed Spherically Expanding Flames under a Negative Direct Current Electric Field

    Directory of Open Access Journals (Sweden)

    Chao Li

    2016-09-01

    Full Text Available This paper compares numerical simulations with experiments to study the deformation of lean premixed spherically expanding flames under a negative direct current (DC electric field. The experiments, including the flame deformation and the ionic distribution on the flame surface were investigated in a mesh to mesh electric field. Besides, a numerical model of adding an electric body force to the positive ions on the flame surface was also established to perform a relevant simulation. Results show that the spherical flame will acquire an elliptical shape with a marked flame stretch in the horizontal direction and a slight inhibition in the vertical direction under a negative DC electric field. Meanwhile, a non-uniform ionic distribution on the flame surface was also detected by the Langmuir probe. The simulation results from the numerical model show good agreement with experimental data. According to the velocity field analysis in simulation, it was found the particular motion of positive ions and neutral molecules on the flame surface should be responsible for the special flame deformation. When a negative DC electric field was applied, the majority of positive ions and colliding neutral molecules will form an ionic flow along the flame surface by a superposition of the electric field force and the aerodynamic drag. The ionic flow was not uniform and mainly formed on the upper and lower sides, so it will lead to a non-uniform ionic distribution along the flame surface. What’s more, this ionic flow will also induce two vortexes both inside and outside of the flame surface due to viscosity effects. The external vortexes could produce an entraining effect on the premixed gas and take away the heat from the flame surface by forced convection, and then suppress the flame propagation in the vertical direction, while, the inner vortexes would scroll the burned zones and induce an inward flow at the horizontal center, which could be the reason for the

  13. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  14. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  15. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current

  16. Improvement of voltage holding capability in the 500 keV negative ion source for JT-60SA.

    Science.gov (United States)

    Tanaka, Y; Hanada, M; Kojima, A; Akino, N; Shimizu, T; Ohshima, K; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Grisham, L R

    2010-02-01

    Voltage holding capability of JT-60 negative ion source that has a large electrostatic negative ion accelerator with 45 cm x 1.1 m acceleration grids was experimentally examined and improved to realize 500 keV, 22 A, and 100 s D- ion beams for JT-60 Super Advanced. The gap lengths in the acceleration stages were extended to reduce electric fields in a gap between the large grids and at the corner of the support flanges from the original 4-5 to 3-4 kV/mm. As a result, the voltage holding capability without beam acceleration has been successfully improved from 400 to 500 kV. The pulse duration to hold 500 kV reached 40 s of the power supply limitation.

  17. Simple method for determining binding energies of fullerene and complex atomic negative ions

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred

    2017-04-01

    A robust potential which embeds fully the vital core polarization interaction has been used in the Regge pole method to explore low-energy electron scattering from C60, Eu and Nb through the total cross sections (TCSs) calculations. From the characteristic dramatically sharp resonances in the TCSs manifesting negative ion formation in these systems, we extracted the binding energies for the C60, Euand Nbanions they are found to be in outstanding agreement with the measured electron affinities of C60, Eu and Nb. Common among these considered systems, including the standard atomic Au is the formation of their ground state negative ions at the second Ramsauer-Townsend (R-T) minima of their TCSs. Indeed, this is a signature of all the fullerenes and complex atoms considered thus far. Shape resonances, R-T minima and binding energies of the resultant anions are presented. This work was supported by U.S. DOE, Basic Energy Sciences, Office of Energy Research.

  18. Numerical simulation on multi-peak magnetic field configuration for negative hydrogen ion source

    International Nuclear Information System (INIS)

    Wang Xiaomin; Yang Chao; Liu Dagang; Wang Xueqiong

    2011-01-01

    Based on the magnetic charge model, the numerical algorithm of three-dimensional permanent magnets was derived by the finite difference method. Then combining the full three-dimensional particle-in-cell/Monte Carlo algorithm (PIC/MCC), two multi-peak magnetic field configurations, external magnetic filter and tent-shaped filter, were analyzed respectively, and their influences on electron energy distribution were compared. The simulation results show that both configurations can confine the diffusion of particles and can extract negative hydrogen ions; their electron energy distributions are basically similar, presenting double energy state, which are consistent with the basic mechanism of plasma discharge. The former configuration is stronger in confining and can produce more particles, whose total number is approximately four times that of the latter. The tent-shaped magnetic filter can efficiently prevent electron drift caused by inhomogeneous longitudinal magnetic field, leading to more uniform spatial distribution of negative hydrogen ions. The results of simulation are consistent with those from the foreign experiment. (authors)

  19. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  20. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    Science.gov (United States)

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.