WorldWideScience

Sample records for current multiplication avalanche

  1. Single electron multiplication distribution in GEM avalanches

    CERN Document Server

    Laszlo, Andras; Kiss, Gabor; Varga, Dezso

    2016-01-01

    In this paper measurement results and experimental methodology is presented on the determination of multiplication distributions of avalanches in GEM foils initiated by a single electron. The measurement relies on the amplification of photoelectrons by the GEM under study, which is subsequently amplified in an MWPC. The intrinsic detector resolution, namely the sigma over mean ratio of this distribution is also elaborated. Small gain dependence of the avalanche size is observed in the range of net effective gain of 15 to 100. The distribution has an exponentially decaying tail at large amplitudes, whereas the applied working gas is seen to have a well visible effect on the shape of the multiplication distribution at low amplitudes; or equivalently, the working gas has an influence on the intrinsic detector resolution of GEMs via suppression of the low amplitude responses. A sigma over mean ratio down to 0.75 was reached using neon based mixture, whereas other gases provided an intrinsic detector resolution cl...

  2. Triaging multiple victims in an avalanche setting: the Avalanche Survival Optimizing Rescue Triage algorithmic approach.

    Science.gov (United States)

    Bogle, Lee B; Boyd, Jeff J; McLaughlin, Kyle A

    2010-03-01

    As winter backcountry activity increases, so does exposure to avalanche danger. A complicated situation arises when multiple victims are caught in an avalanche and where medical and other rescue demands overwhelm resources in the field. These mass casualty incidents carry a high risk of morbidity and mortality, and there is no recommended approach to patient care specific to this setting other than basic first aid principles. The literature is limited with regard to triaging systems applicable to avalanche incidents. In conjunction with the development of an electronic avalanche rescue training module by the Canadian Avalanche Association, we have designed the Avalanche Survival Optimizing Rescue Triage algorithm to address the triaging of multiple avalanche victims to optimize survival and disposition decisions.

  3. [Avalanche emergencies. Review of the current situation].

    Science.gov (United States)

    Paal, P; Beikircher, W; Brugger, H

    2006-03-01

    In North America and Europe around 140 persons die every year due to avalanches, approximately 35 in North America, 100 in the European Alps, and 5 in other parts of Europe. Most of the victims are skiers and snowboarders. This article outlines the specific pathophysiology of avalanche burials, such as hypoxia, hypercapnia, and hypothermia and also other factors which influence survival. Strategies to minimize the mortality due to avalanches and the on-site treatment of buried persons are discussed. Finally, possibilities to reduce the number of avalanche deaths are pointed out.

  4. X-ray imaging using avalanche multiplication in amorphous selenium: investigation of depth dependent avalanche noise.

    Science.gov (United States)

    Hunt, D C; Tanioka, Kenkichi; Rowlands, J A

    2007-03-01

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  5. Monte Carlo investigation of avalanche multiplication process in thin InP avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; MA YuXiang

    2009-01-01

    An ensemble Monte Carlo simulation is presented to investigate the avalanche multiplication process in thin InP avalanche photodiodes (APDs). Analytical band structures are applied to the description of the conduction and valence band, and impact ionization is treated as an additional scattering mecha-nism with the Keldysh formula. Multiplication gain and excess noise factor of InP p~+-i-n~+ APDs aresimulated and obvious excess noise reduction is found in the thinner devices. The effect of dead space on excess noise in thin APD structures is investigated by the distribution of impact ionization events within the multiplication region. It is found that the dead space can suppress the feedback ionization events resulting in a more deterministic avalanche multiplication process and reduce the excess noise in thinner APDs.

  6. InGaAs-InP avalanche photodiodes with dark current limited by generation-recombination.

    Science.gov (United States)

    Zhao, Yanli; Zhang, Dongdong; Qin, Long; Tang, Qi; Wu, Rui Hua; Liu, Jianjun; Zhang, Youping; Zhang, Hong; Yuan, Xiuhua; Liu, Wen

    2011-04-25

    Separate absorption grading charge multiplication avalanche photodiodes (SAGCM APDs) are widely accepted in photon starved optical communication systems due to the presence of large photocurrent gain. In this work, we present a detailed analysis of dark currents of planar-type SAGCM InGaAs-InP APDs with different thicknesses of multiplication layer. The effect of the diffusion process, the generation-recombination process, the tunneling process and the multiplication process on the total leakage current is discussed. A new empirical formula has been established to predict the optimal multiplication layer thickness of SAGCM APDs with dark current limited by generation-recombination at multiplication gain of 8.

  7. Reliability assessment of multiple quantum well avalanche photodiodes

    Science.gov (United States)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  8. Nano-multiplication region avalanche photodiodes and arrays

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2011-01-01

    An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.

  9. Motion of current filaments in avalanching PIN diodes

    Science.gov (United States)

    Xingrong, Ren; Changchun, Chai; Zhenyang, Ma; Yintang, Yang; Liping, Qiao; Chunlei, Shi; Lihua, Ren

    2013-04-01

    The motion of current filaments in avalanching PIN diodes has been investigated in this paper by 2D transient numerical simulations. The simulation results show that the filament can move along the length of the PIN diode back and forth when the self-heating effect is considered. The voltage waveform varies periodically due to the motion of the filament. The filament motion is driven by the temperature gradient in the filament due to the negative temperature dependence of the impact ionization rates. Contrary to the traditional understanding that current filamentation is a potential cause of thermal destruction, it is shown in this paper that the thermally-driven motion of current filaments leads to the homogenization of temperature in the diode and is expected to have a positive influence on the failure threshold of the PIN diode.

  10. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    Science.gov (United States)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W-1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K-1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  11. Substorm onset: Current sheet avalanche and stop layer

    Science.gov (United States)

    Haerendel, Gerhard

    2015-03-01

    A new scenario is presented for the onset of a substorm and the nature of the breakup arc. There are two main components, current sheet avalanche and stop layer. The first refers to an earthward flow of plasma and magnetic flux from the central current sheet of the tail, triggered spontaneously or by some unknown interaction with an auroral streamer or a suddenly appearing eastward flow at the end of the growth phase. The second offers a mechanism to stop the flow abruptly at the interface between magnetosphere and tail and extract momentum and energy to be partially processed locally and partially transmitted as Poynting flux toward the ionosphere. The stop layer has a width of the order of the ion inertial length. The different dynamics of the ions entering freely and the magnetized electrons create an electric polarization field which stops the ion flow and drives a Hall current by which flow momentum is transferred to the magnetic field. A simple formalism is used to describe the operation of the process and to enable quantitative conclusions. An important conclusion is that by necessity the stop layer is also highly structured in longitude. This offers a natural explanation for the coarse ray structure of the breakup arc as manifestation of elementary paths of energy and momentum transport. The currents aligned with the rays are balanced between upward and downward directions. While the avalanche is invoked for explaining the spontaneous substorm onset at the inner edge of the tail, the expansion of the breakup arc for many minutes is taken as evidence for a continued formation of new stop layers by arrival of flow bursts from the near-Earth neutral line. This is in line with earlier conclusions about the nature of the breakup arc. Small-scale structure, propagation speed, and energy flux are quantitatively consistent with observations. However, the balanced small-scale currents cannot constitute the substorm current wedge. The source of the latter must be

  12. Avalanche diode having reduced dark current and method for its manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Davids, Paul; Starbuck, Andrew Lee; Pomerene, Andrew T. S.

    2017-08-29

    An avalanche diode includes an absorption region in a germanium body epitaxially grown on a silicon body including a multiplication region. Aspect-ratio trapping is used to suppress dislocation growth in the vicinity of the absorption region.

  13. Multiplication theory for dynamically biased avalanche photodiodes: new limits for gain bandwidth product.

    Science.gov (United States)

    Hayat, Majeed M; Ramirez, David A

    2012-03-26

    Novel theory is developed for the avalanche multiplication process in avalanche photodiodes (APDs) under time-varying reverse-biasing conditions. Integral equations are derived characterizing the statistics of the multiplication factor and the impulse-response function of APDs, as well as their breakdown probability, all under the assumption that the electric field driving the avalanche process is time varying and spatially nonuniform. Numerical calculations generated by the model predict that by using a bit-synchronous sinusoidal biasing scheme to operate the APD in an optical receiver, the pulse-integrated gain-bandwidth product can be improved by a factor of 5 compared to the same APD operating under the conventional static biasing. The bit-synchronized periodic modulation of the electric field in the multiplication region serves to (1) produce large avalanche multiplication factors with suppressed avalanche durations for photons arriving in the early phase of each optical pulse; and (2) generate low avalanche gains and very short avalanche durations for photons arriving in the latter part of each optical pulse. These two factors can work together to reduce intersymbol interference in optical receivers without sacrificing sensitivity.

  14. Dark-current characteristics of GaN-based UV avalanche photodiodes

    Science.gov (United States)

    Xu, Jintong; Chang, Chao; Li, Xiangyang

    2015-04-01

    For UV detecting, it needs high ratio of signal to noise, which means high responsibility and low noise. GaN-based avalanche photodiodes can provide a high internal photocurrent gain. In this paper, we report the testing and characterization of GaN based thin film materials, optimization design of device structure, the device etching and passivation technology, and the photoelectric characteristics of the devices. Also, uniformity of the device was obtained. The relationship between dark current and material quality or device processes was the focus of this study. GaN based material with high aluminum components have high density defects. Scanning electron microscope, cathodoluminescence spectra, X-ray double crystal diffraction and transmission spectroscopy testing were employed to evaluate the quality of GaN-based material. It shows that patterned sapphire substrate or thick AlN buffer layer is more effective to get high quality materials. GaN-based materials have larger hole ionization coefficient, so back incident structure were adopted to maximize the hole-derived multiplication course and it was helped to get a smaller multiplication noise. The device with separate absorption and multiplication regions is also prospective to reduce the avalanche noise. According to AlGaN based material characteristics and actual device fabrication, device structure was optimized further. Low physical damage inductively coupled plasma (ICP) etching method was used to etch mesa and wet etching method was employed to treat mesa damage. Silica is passivation material of device mesa. For solar-blind ultraviolet device, it is necessary to adopt a wider bandgap material than AlGaN material. The current-voltage characteristics under reverse bias were measured in darkness and under UV illumination. The distribution of dark current and response of different devices was obtained. In short, for GaN-based UV avalanche photodiode, dark current was related to high density dislocation of

  15. Nano-Multiplication-Region Avalanche Photodiodes and Arrays

    Science.gov (United States)

    Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas

    2008-01-01

    Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be

  16. Comparison of risk assessment methods: multiple perspectives of flood and avalanche hazards in North East France

    Science.gov (United States)

    Giacona, Florie; Eleuterio, Julian

    2010-05-01

    Mountainous areas are exposed to several natural hazards such as snow avalanches, debris flows or floods. Such processes may be more frequent and intense in high mountains but they occur in medium-high mountains as well causing loss of life and materials. Thus, the Vosges range, a medium-high mountain located in the north-east of France, is concerned by two kind of natural hazards namely avalanches and floods. While the avalanches constitute the most murderous natural risk in Alsace, its management is paradoxically not a priority. Because it causes more material damages and affects larger places with multiple and complex consequences, the flood risk is more worrying for the administrators. They didn't have the same approach toward these two kinds of risk. So, two different approaches used to assess risk and two study cases are presented: flood risk in the river Bruche (located in the north of the Vosges range, Alsace) and avalanche risk in the Vosges range. The first one is mainly focused on economic aspects of risk. Flood risk analyses are discussed from a hydro-economical perspective. The second one focuses the analysis on human, material and environmental vulnerabilities. Avalanche risk analysis is discussed from a geo-historical point of view. About 300 avalanche events have been reported since the end of the 18th century. The two approaches that we describe illustrate the complementarity of human and physical science to improve the understanding and assessment of hazardous processes in medium-high mountain range. On the one hand, the geo-historical method developed for the avalanche risk could be extended to the flood hazard. Indeed, contrary to high mountains, no service is in charge of the systematic inventory of floods and avalanches in the Vosges mountains. The geo-historical approach could address this lack of data. On the other hand, the methods of damages assessment and vulnerability characterization could be a good tool for the human science.

  17. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    Science.gov (United States)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  18. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.

    Science.gov (United States)

    Farrell, Alan C; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M; Huffaker, Diana L

    2015-12-02

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  19. Simulation of avalanche electron multiplication in photodetectors with blocked jump conductivity

    CERN Document Server

    Sinitsa, S P

    2002-01-01

    The process of the avalanche electron multiplication in silicon BIB-structure is simulated by Monte Carlo method for the regime single-photon counting. The electron acceleration in the linear electric field, the elastic scattering of electrons on longitudinal acoustic phonons the inelastic scattering of electrons on intervalley phonons and ionization of neutral impurity centers are taken into account during electron motion. The simple algorithm is proposed to calculate coordinates of all ionized centers in the avalanche and the probability function of N electron yield from the avalanche at entering one electron into the multiplication range. It is shown that this function has maximum near the average value that correlates with experimental data

  20. Effect of surface charge on the dark current of InGaAs/InP avalanche photodiodes

    Science.gov (United States)

    Zeng, Q. Y.; Wang, W. J.; Wen, J.; Huang, L.; Liu, X. H.; Li, N.; Lu, W.

    2014-04-01

    The effects of surface charge on the dark current of the separate-absorption-grading-charge-multiplication InGaAs/InP avalanche photodiodes (APDs) are discussed using drift-diffusion simulation. The dark current increases exponentially with the increasing of surface charge density, and gets multiplied, thus influencing the performance of the APDs, especially in Geiger mode. The mechanism of the surface charge leakage current is discussed, and a floating guard ring structure is proposed to suppress the influence of surface charge effectively.

  1. Resonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes.

    Science.gov (United States)

    Dai, Daoxin; Chen, Hui-Wen; Bowers, John E; Kang, Yimin; Morse, Mike; Paniccia, Mario J

    2009-09-14

    In this work the impedance of separate-absorption-charge-multiplication Ge/Si avalanche photodiodes (APD) is characterized over a large range of bias voltage. An equivalent circuit with an inductive element is presented for modeling the Ge/Si APD. All the parameters for the elements included in the equivalent circuit are extracted by fitting the measured S(22) with the genetic algorithm optimization. Due to a resonance in the avalanche region, the frequency response of the APD has a peak enhancement when the bias voltage is relatively high, which is observed in the measurement and agrees with the theoretical calculation shown in this paper.

  2. Dramatic role of critical current anisotropy on flux avalanches in MgB2 films.

    Science.gov (United States)

    Albrecht, J; Matveev, A T; Strempfer, J; Habermeier, H-U; Shantsev, D V; Galperin, Y M; Johansen, T H

    2007-03-16

    Anisotropic penetration of magnetic flux in MgB(2) films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, the anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate perpendicular to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.

  3. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    Science.gov (United States)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  4. Study of frequency and time responses of a separated absorption and multiplication region avalanche photodiode

    CERN Document Server

    Banoushi, A; Setayeshi, S

    2003-01-01

    In this paper, the frequency and time responses of a separated absorption and multiplication avalanche photodiode are studied by solving the carrier continuity equations, in the low gain regime. The discrepancy between the carrier velocities in different layers is considered for the first time. It is shown that considerable error occurs, if the device d characteristics are calculated assuming uniformly distributed velocities in the depletion layer, especially when the different layers have almost equal thickness.

  5. Pixelated Geiger-Mode Avalanche Photo-Diode Characterization through Dark Current Measurement

    CERN Document Server

    Amaudruz, Pierre-André; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retière, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D; Thompson, Christopher J

    2013-01-01

    PIXELATED geiger-mode avalanche photodiodes(PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure...

  6. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    Science.gov (United States)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  7. Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation

    Science.gov (United States)

    Becker, Heidi N.; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.

  8. Ultraviolet emissions realized in ZnO via an avalanche multiplication process

    Institute of Scientific and Technical Information of China (English)

    Yu Ji; Shah Chong-Xin; Shen He; Zhang Xiang-Wei; Wang Shuang-Peng; Shen De-Zhen

    2013-01-01

    Au/MgO/ZnO/MgO/Au structures have been designed and constructed in this study.Under a bias voltage,a carrier avalanche multiplication will occur via an impact ionization process in the MgO layer.The generated holes will be drifted into the ZnO layer,and recombine radiatively with the electrons in the ZnO layer.Thus obvious emissions at around 387 nm coming from the near-band-edge emission of ZnO will be observed.The reported results demonstrate the ultraviolet (UV)emission realized via a carrier multiplication process,and so may provide an alternative route to efficient UV emissions by bypassing the challenging p-type doping issue of ZnO.

  9. A new method to improve multiplication factor in micro-pixel avalanche photodiodes with high pixel density

    Energy Technology Data Exchange (ETDEWEB)

    Sadygov, Z. [National Nuclear Research Center, Baku (Azerbaijan); Joint Institute for Nuclear Research, Dubna (Russian Federation); Ahmadov, F. [National Nuclear Research Center, Baku (Azerbaijan); Khorev, S. [Zecotek Photonics Inc., Vancouver (Canada); Sadigov, A., E-mail: saazik@yandex.ru [National Nuclear Research Center, Baku (Azerbaijan); Suleymanov, S. [National Nuclear Research Center, Baku (Azerbaijan); Madatov, R.; Mehdiyeva, R. [Institute of Radiation Problems, Baku (Azerbaijan); Zerrouk, F. [Zecotek Photonics Inc., Vancouver (Canada)

    2016-07-11

    Presented is a new model describing development of the avalanche process in time, taking into account the dynamics of electric field within the depleted region of the diode and the effect of parasitic capacitance shunting individual quenching micro-resistors on device parameters. Simulations show that the effective capacitance of a single pixel, which defines the multiplication factor, is the sum of the pixel capacitance and a parasitic capacitance shunting its quenching micro-resistor. Conclusions obtained as a result of modeling open possibilities of improving the pixel gain in micropixel avalanche photodiodes with high pixel density (or low pixel capacitance).

  10. Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field

    Science.gov (United States)

    Tarasenko, Victor F.; Rybka, Dmitrii V.; Baksht, Evgenii H.; Kostyrya, Igor'D.; Lomaev, Mikhail I.

    2008-01-01

    The gas diode current-voltage characteristics at the voltage pulses applied from the RADAN and SM-3NS pulsers, and generation of an supershort avalanche electron beam (SAEB) have been studied experimentally in an inhomogeneous electric field upon a nanosecond breakdown in an air gap at atmospheric pressure. Displacement currents with amplitude over 1 kA have been observed and monitored. It is shown that the displacement current amplitude gets increased due to movement of the dense plasma front and charging of a "capacitor" formed between plasma and anode. The SAEB generation time relatively to the discharge current pulses and the gap voltage were determined in the experiments. It is shown that the SAEB current maximum at the pulser voltages of hundreds kV is registered on the discharge current pulse front, before the discharge current peak of the gas diode capacitance, and the delay time of these peaks is determined by the value of an interelectrode spacing. The delay time in case of a gap of 16 mm and air breakdown at atmospheric pressure was ~100 ps, and in case of 10 mm it was less than 50 ps.

  11. An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-Insulator SiGe Heterojunction Bipolar Transistors

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-Bo; ZHANG He-Ming

    2011-01-01

    An analytical expression for avalanche multiplication of a novel vertical SiGe partially depleted heterojunction bipolar transistor (HBT) on a thin silicon-on-insulator (SOI) layer is obtained,considering vertical and horizontal impact ionization effects.The avalanche multiplication is found to be dependent on the collector width and doping concentration,and shows kinks with the increase of reverse base-collector bias,which is quite different from that of a conventional bulk HBT.The model is consistent with the experimental and simulation data and is found to be significant for the design and simulation of 0.13μm millimeter wave SiGe SOI BiCMOS technology.

  12. Statistical theory of hierarchical avalanche ensemble

    OpenAIRE

    Olemskoi, Alexander I.

    1999-01-01

    The statistical ensemble of avalanche intensities is considered to investigate diffusion in ultrametric space of hierarchically subordinated avalanches. The stationary intensity distribution and the steady-state current are obtained. The critical avalanche intensity needed to initiate the global avalanche formation is calculated depending on noise intensity. The large time asymptotic for the probability of the global avalanche appearance is derived.

  13. [Current therapy of multiple sclerosis].

    Science.gov (United States)

    Antonio García Merino, J

    2014-12-01

    Since the introduction of interferon beta 1 b for the treatment of multiple sclerosis, there has been a progressive increase in the number of drugs available for this disease. Currently, 11 drugs have been approved in Spain, and their indications depend on specific clinical characteristics. The present article reviews these indications and also discusses other medications without official approval that have also been used in multiple sclerosis. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  14. Avalanche speed in thin avalanche photodiodes

    Science.gov (United States)

    Ong, D. S.; Rees, G. J.; David, J. P. R.

    2003-04-01

    The duration of the avalanche multiplication process in thin GaAs avalanche photodiodes is investigated using a full band Monte Carlo (FBMC) model. The results are compared with those of a simple random path length (RPL) model which makes the conventional assumptions of a displaced exponential for the ionization path length probability distribution function and that carriers always travel at their saturated drift velocities. We find that the avalanche duration calculated by the RPL model is almost twice of that predicted by the FBMC model, although the constant drift velocities used in the former model are estimated using the latter. The faster response predicted by FBMC model arises partly from the reduced dead space but mainly from the velocity overshoot of ionizing carriers. While the feedback multiplication processes forced by the effects of dead space extend the avalanche duration in short structures, the effects of velocity overshoot in the realistic model more than compensate, significantly improving multiplication bandwidth.

  15. [Current description of multiple sclerosis].

    Science.gov (United States)

    Río, Jordi; Montalbán, Xavier

    2014-12-01

    Multiple sclerosis is a multifocal demyelinating disease leading to progressive neurodegeneration caused by an autoimmune response in genetically predisposed individuals. In the last few years, the knowledge and management of this disease has been revolutionized by a series of findings. The present article reviews pathological features of the disease, in which cortical involvement is increasingly implicated, and aspects related to novel pathogenic mechanisms, such as the role of the microbiota in the genesis of multiple sclerosis, as well as recent contributions from the fields of epidemiology and genetics. Also reviewed are the latest diagnostic criteria, which currently allow a much earlier diagnosis, with clear therapeutic implications. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  16. High temperature and wavelength dependence of avalanche gain of AlAsSb avalanche photodiodes.

    Science.gov (United States)

    Sandall, Ian C; Xie, Shiyu; Xie, Jingjing; Tan, Chee Hing

    2011-11-01

    The evolution of the dark currents and breakdown at elevated temperatures of up to 450  K are studied using thin AlAsSb avalanche regions. While the dark currents increase rapidly as the temperature is increased, the avalanche gain is shown to only have a weak temperature dependence. Temperature coefficients of breakdown voltage of 0.93 and 1.93  mV/K were obtained from the diodes of 80 and 230  nm avalanche regions (i-regions), respectively. These values are significantly lower than for other available avalanche materials at these temperatures. The wavelength dependence of multiplication characteristics of AlAsSb p-i-n diodes has also been investigated, and it was found that the ionization coefficients for electrons and holes are comparable within the electric field and wavelength ranges measured.

  17. Comparison of Measurement And Modeling Of Current Profile Changes Due To Neutral Bean Ion Redistribution During TAE Avalanches in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Douglas

    2013-07-09

    Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function

  18. Turn-on and turn-off voltages of an avalanche p—n junction

    Science.gov (United States)

    Guoqing, Zhang; Dejun, Han; Changjun, Zhu; Xuejun, Zhai

    2012-09-01

    Characteristics of the turn-on and turn-off voltage of avalanche p—n junctions were demonstrated and studied. As opposed to existing reports, the differences between the turn-on and turn-off voltage cannot be neglected when the size of the p—n junction is in the order of microns. The difference increases inversely with the area of a junction, exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions. Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases. Moreover, the “breakdown voltage" in the formula of the avalanche asymptotic current is, in essence, the avalanche turn-off voltage, and consequently, the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.

  19. Performance Dependences of Multiplication Layer Thickness for InP/InGaAs Avalanche Photodiodes Based on Time Domain Modeling

    Science.gov (United States)

    Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul

    2005-01-01

    InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.

  20. Steering Multiple Reverse Current into Unidirectional Current in Deterministic Ratchets

    Institute of Scientific and Technical Information of China (English)

    韦笃取; 罗晓曙; 覃英华

    2011-01-01

    Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the multiple reverse current to unidirectional current, an adaptive control law is presented inspired from the relation between multiple reversaJs current and the chaos-periodic/quasiperiodic transition of the transport velocity. The designed controller can stabilize the transport velocity of ratchets to steady state and suppress any chaos-periodic/quasiperiodic transition, namely, the stable transport in ratchets is achieved, which makes the current sign unchanged.

  1. Single-step metal-organic vapor-phase diffusion for low-dark-current planar-type avalanche photodiodes

    Science.gov (United States)

    Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Youngjo; Shin, Chan-Soo; Park, Kyung Ho; Park, Won-Kyu; Kim, Min-Su; Kim, Sangin; Han, Sang Wook; Moon, Sung

    2016-10-01

    In this paper, a p-type diffusion process based literally on single-step metal-organic vapor-phase diffusion (MOVPD) employing diethyl zinc as the diffusion source in combination with the recessetching technique is developed to improve the dark-current characteristics of planar-type avalanche photodiodes (APDs). The developed single-step MOVPD process exhibits on excellent linear relationship between the diffusion depth and the square root of the diffusion time, which mainly results from maintaining constant source diffusion. The single-step MOVPD process without any additional thermal activation process achieves a surface doping concentration of 1.9 × 1018 cm -3, which is sufficient to form ohmic contact. The measured diffusion profiles of the APDs clearly reveal the presence of a two-dimensional diffusion front formed by the recess-etched and guard-ring regions. The impact of this p-type diffusion process on the performance of the APD devices has also been demonstrated by exhibiting improved dark-current characteristics for the fabricated APDs.

  2. Saturated logistic avalanche model

    Science.gov (United States)

    Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Liberti, B.; Paoloni, A.; Santonico, R.

    2003-08-01

    The search for an adequate avalanche RPC working model evidenced that the simple exponential growth can describe the electron multiplication phenomena in the gas with acceptable accuracy until the external electric field is not perturbed by the growing avalanche. We present here a model in which the saturated growth induced by the space charge effects is explained in a natural way by a constant coefficient non-linear differential equation, the Logistic equation, which was originally introduced to describe the evolution of a biological population in a limited resources environment. The RPCs, due to the uniform and intense field, proved to be an ideal device to test experimentally the presented model.

  3. Ultraviolet avalanche photodiodes

    Science.gov (United States)

    McClintock, Ryan; Razeghi, Manijeh

    2015-08-01

    The III-Nitride material system is rapidly maturing; having proved itself as a material for LEDs and laser, and now finding use in the area of UV photodetectors. However, many UV applications are still dominated by the use of photomultiplier tubes (PMT). PMTs are capable of obtaining very high sensitivity using internal electron multiplication gain (typically ~106). It is highly desirable to develop a compact semiconductor-based photodetector capable of realizing this level of sensitivity. In principle, this can be obtained in III-Nitrides by taking advantage of avalanche multiplication under high electric fields - typically 2.7 MV/cm, which with proper design can correspond to an external reverse bias of less than 100 volts. In this talk, we review the current state-of-the-art in III-Nitride solar- and visible-blind APDs, and present our latest results on GaN APDs grown on both conventional sapphire and low dislocation density free-standing c- and m-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. The spectral response and Geiger-mode photon counting performance of UV APDs are studied under low photon fluxes, with single photon detection capabilities as much as 30% being demonstrated in smaller devices. Geiger-mode operation conditions are optimized for enhanced SPDE.

  4. Effect of tunneling current on the noise characteristics of a 4H-SiC Read Avalanche diode

    Institute of Scientific and Technical Information of China (English)

    Deepak K.Karan; Pranati Panda; G.N.Dash

    2013-01-01

    Noise characteristics of a Read Avalanche diode are analyzed by incorporating the tunneling mechanism of the electron into the avalanche mechanism.Analytical expressions are presented for the mean square noise voltage and noise measure in MITATT (mixed tunneling and avalanche transit time) mode operation.A wide band gap semiconductor (4H-SiC) based MITATT diode is considered to study the effect of tunneling on the noise characteristics and negative conductance.While exhibiting enough potential for 4H-SiC to be used as a terahertz source of power in the MITATT mode,our results record a noise measure of 35.18 dB at a frequency of 1.5 THz.

  5. Effect of variations in the doping profiles on the properties of doped multiple quantum well avalanche photodiodes

    Science.gov (United States)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1996-01-01

    The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.

  6. Aging Avalanches

    Science.gov (United States)

    Boettcher, Stefan; Paczuski, Maya

    1997-03-01

    We have shown that in an analytically solvable model of Self-Organized Criticality (SOC)(S. Boettcher & M. Paczuski, Phys. Rev. Lett. 76), 348 (1996). the evolving avalanche is governed by an equation of motion with a memory term that ranges over all past events.(S. Boettcher & M. Paczuski, Phys. Rev. E 54), 1082 (1996). The solution for the propagator shows sub-diffusive behavior with a broad exponential tail. Numerical studies of the temporal correlations during avalanches in a variety of SOC systems indicate that history dependence and hierarchical structures are generic features which emerge dynamically from simple local update rules. In particular, we find(S. Boettcher & M. Paczuski, ``Off-Equilibrium Behavior and Aging in Self-Organized Criticality'', (in preparation).) ``aging'' similar to the slow relaxation behavior in disordered systems that move through ``rugged landscapes'' in phase space, such as spin glasses.

  7. Current and Future Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Alireza Minagar

    2013-01-01

    Full Text Available With the introduction of interferon-β1b in 1993 as the first FDA-approved treatment for multiple sclerosis, the era of treatment of this incurable disease began, and its natural course was permanently changed. Currently, seven different treatments for patients with multiple sclerosis with different mechanisms of action and dissimilar side effect profiles exist. These medications include interferon-β1a intramuscular (Avonex, interferon-β1a subcutaneous (Rebif, interferon-β1b subcutaneous (Betaseron/Extavia, glatiramer acetate (Copaxone, natalizumab (Tysabri, fingolimod (Gilenya, teriflunomide (Aubagio, and mitoxantrone (Novantrone. In addition, a large number of clinical trials are being conducted to assess the safety and efficacy of various experimental agents in patients with multiple sclerosis, including alemtuzumab, dimethyl fumarate, laquinimod, rituximab, daclizumab, and cladribine. In this paper, the author presents a concise and comprehensive review of present and potential treatments for this incurable disease.

  8. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    Science.gov (United States)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  9. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!

  10. Avalanche multiplication noise in bulk and thin AI(x)Ga(1-x)As (x=0-0.8) PIN and NIP diodes

    Science.gov (United States)

    Ng, Beng K.; David, John P. R.; Tan, Chee H.; Plimmer, S. A.; Rees, Graham J.; Tozer, Richard C.; Hopkinson, Mark

    2001-06-01

    The avalanche multiplication noise characteristics of AlxGa1-xAs (x equals 0-0.8) have been measured in a wide range of PIN and NIP diodes. The study includes determining the effect of the alloy fraction, x, as it varies from 0 to 0.8 while the effect of the avalanche width, w, is investigated by varying it from 1 micrometers down to 0.05 micrometers . For x equals 0-0.6, the ratio of the electron to hole ionization coefficients, 1/k, decreases from 3 (for x equals 0) to 1 (for x equals 0.6), leading to higher noise in a local prediction as x increases. Measurements for x equals 0-0.6 in nominally 1um thick diodes indicates that the excess noise factor can be approximately predicted by the local model. However, as the avalanche width reduces, a lower than expected noise factor was measured. This behaviour is associated with the effect of deadspace, whereby carriers have insufficient energy to initiate ionization for a significant region of the device. The presence of deadspace leads to a more deterministic process, which acts to reduce excess noise. For x equals 0.8 however, its 1/k value is surprisingly high in a bulk structure, leading to noise performance that is primarily determined by the 1/k value and is comparable to that of silicon. Similar to the results of thin AlxGa1-xAs (x equals 0-0.6) diodes, thinner Al0.8Ga0.2As structures exhibit excess noise factor that is significantly reduced by the nonlocal deadspace effects.

  11. [Avalanche accidents and treatment of avalanche victims].

    Science.gov (United States)

    Skaiaa, Sven Christjar; Thomassen, Øyvind

    2016-03-15

    Avalanches may be provoked spontaneously or as a result of human activity, and they trigger the need for considerable rescue resources. Avalanche search and rescue operations are complex and characterised by physical and mental stress. The guidelines for resuscitation of avalanche victims may be perceived as complex and abstruse, which can lead to suboptimal treatment and an increased strain on rescue teams. The purpose of this article is to summarise the principles for medical treatment of avalanche victims.

  12. Integrated avalanche photodiode arrays

    Science.gov (United States)

    Harmon, Eric S.

    2015-07-07

    The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.

  13. Multiple Intelligences: Current Trends in Assessment

    Science.gov (United States)

    Harman, Marsha J.; Kordinak, S. Thomas; Bruce, A. Jerry

    2009-01-01

    With his theory of multiple intelligences, Howard Gardner challenged the presumption that intelligence is a single innate entity. He maintained that multiple intelligences exist and are related to specific brain areas and symbol systems. Each of the intelligences has its merits and limits, but by using a multiple intelligences approach, more…

  14. Assessment of the Perchertal avalanche in Tyrol, Austria

    OpenAIRE

    KURT, Tayfun

    2014-01-01

    The present study has been conducted to analyze the Perchertal avalanche area near Bärenkopf Mountain, which has several avalanche-prone areas on its slopes, within the area of Pertisau, Tyrol, in Austria. The main focus is on identifying the characteristics of the avalanche process itself to determine the potential risk to endangered objects, which include an important road and a hotel. Another focus is to evaluate the current local hazard map. Based on the dynamic avalanche models (Samos-AT...

  15. [Multiple sclerosis: current therapies and future perspectives].

    Science.gov (United States)

    Matsushita, Takuya

    2011-11-01

    Multiple sclerosis is characterized by temporal and spatial dissemination of demyelination in the central nervous system. After a discovery of disease modifying effects of interferon beta and glatiramer acetate for multiple sclerosis, many drugs for disease modifying therapy have been developed. Recently, some multicenter studies have shown that early introduction of interferon beta or glatiramer acetate into patients with clinically isolated syndrome delayed the conversion to clinically definite multiple sclerosis. Newly developed disease modifying therapies for multiple sclerosis have a specific molecular target changing an immunological reaction and many of them are oral preparations instead of injectable first line therapies. Treatment options for multiple sclerosis are increasing and it is essential for the optimal treatment choice to collect information of the long-term side effects and the combined effects with first line therapies and to acquire the knowledge of the pathomechanisms about multiple sclerosis.

  16. On the temporal organization of neuronal avalanches.

    Science.gov (United States)

    Lombardi, Fabrizio; Herrmann, Hans J; Plenz, Dietmar; De Arcangelis, Lucilla

    2014-01-01

    Spontaneous activity of cortex in vitro and in vivo has been shown to organize as neuronal avalanches. Avalanches are cascades of neuronal activity that exhibit a power law in their size and duration distribution, typical features of balanced systems in a critical state. Recently it has been shown that the distribution of quiet times between consecutive avalanches in rat cortex slice cultures displays a non-monotonic behavior with a power law decay at short time scales. This behavior has been attributed to the slow alternation between up and down-states. Here we further characterize the avalanche process and investigate how the functional behavior of the quiet time distribution depends on the fine structure of avalanche sequences. By systematically removing smaller avalanches from the experimental time series we show that size and quiet times are correlated and highlight that avalanche occurrence exhibits the characteristic periodicity of θ and β/γ oscillations, which jointly emerge in most of the analyzed samples. Furthermore, our analysis indicates that smaller avalanches tend to be associated with faster β/γ oscillations, whereas larger ones are associated with slower θ and 1-2 Hz oscillations. In particular, large avalanches corresponding to θ cycles trigger cascades of smaller ones, which occur at β/γ frequency. This temporal structure follows closely the one of nested θ - β/γ oscillations. Finally we demonstrate that, because of the multiple time scales characterizing avalanche dynamics, the distributions of quiet times between avalanches larger than a certain size do not collapse onto a unique function when rescaled by the average occurrence rate. However, when considered separately in the up-state and in the down-state, these distributions are solely controlled by the respective average rate and two different unique function can be identified.

  17. Turn-on and turn-off voltages of an avalanche p-n junction

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoqing; Han Dejun; Zhu Changjun; Zhai Xuejun

    2012-01-01

    Characteristics of the turn-on and turn-off voltage of avalanche p-n junctions were demonstrated and studied.As opposed to existing reports,the differences between the turn-on and turn-off voltage cannot be neglected when the size of the p-n junction is in the order of microns.The difference increases inversely with the area of a junction,exerting significant influences on characterizing some parameters of devices composed of small avalanche junctions.Theoretical analyses show that the mechanism for the difference lies in the increase effect of the threshold multiplication factor at the turn-on voltage of a junction when the area of a junction decreases.Moreover,the "breakdown voltage" in the formula of the avalanche asymptotic current is,in essence,the avalanche turn-off voltage,and consequently,the traditional expression of the avalanche asymptotic current and the gain of a Geiger mode avalanche photodiode were modified.

  18. Negative feedback avalanche diode

    Science.gov (United States)

    Itzler, Mark Allen (Inventor)

    2010-01-01

    A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.

  19. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  20. Multiple Currents in the Gulf Stream System

    OpenAIRE

    Fuglister, F. C.

    2011-01-01

    A new interpretation of the accumulated temperature and salinity data from the Gulf Stream Area indicates that the System is made up of a series of overlapping currents. These currents are separated by relatively weak countercurrents. Data from a recent survey are presented as supporting this hypothesis.DOI: 10.1111/j.2153-3490.1951.tb00804.x

  1. Comment on ``Monte Carlo investigation of current voltage and avalanche noise in GaN double-drift impact diodes'' [J. Appl. Phys. 97, 043709 (2005)

    Science.gov (United States)

    Dash, G. N.

    2005-11-01

    The avalanche noise behavior of impact avalanche transit-time (IMPATT) diodes has been modeled by Reklaitis and Reggiani [J. Appl. Phys. 97, 043709 (2005)]. They have obtained general agreement of their results with those of McIntyre [IEEE Trans. Electron Devices ED-13, 164 (1966)]. However, McIntyre's theory predicts the opposite noise behavior from that observed in the IMPATT diode. Hence the applicability of the noise model of Reklaitis and Reggiani to IMPATT diode is questionable.

  2. Statistics of Electron Avalanches and Streamers

    Directory of Open Access Journals (Sweden)

    T. Ficker

    2007-01-01

    Full Text Available We have studied the severe systematic deviations of populations of electron avalanches from the Furry distribution, which has been held to be the statistical law corresponding to them, and a possible explanation has been sought. A  new theoretical concept based on fractal avalanche multiplication has been proposed and is shown to be a convenient candidate for explaining these deviations from Furry statistics. 

  3. Simulations of avalanche breakdown statistics: probability and timing

    Science.gov (United States)

    Ng, Jo Shien; Tan, Chee Hing; David, John P. R.

    2010-04-01

    Important avalanche breakdown statistics for Single Photon Avalanche Diodes (SPADs), such as avalanche breakdown probability, dark count rate, and the distribution of time taken to reach breakdown (providing mean time to breakdown and jitter), were simulated. These simulations enable unambiguous studies on effects of avalanche region width, ionization coefficient ratio and carrier dead space on the avalanche statistics, which are the fundamental limits of the SPADs. The effects of quenching resistor/circuit have been ignored. Due to competing effects between dead spaces, which are significant in modern SPADs with narrow avalanche regions, and converging ionization coefficients, the breakdown probability versus overbias characteristics from different avalanche region widths are fairly close to each other. Concerning avalanche breakdown timing at given value of breakdown probability, using avalanche material with similar ionization coefficients yields fast avalanche breakdowns with small timing jitter (albeit higher operating field), compared to material with dissimilar ionization coefficients. This is the opposite requirement for abrupt breakdown probability versus overbias characteristics. In addition, by taking band-to-band tunneling current (dark carriers) into account, minimum avalanche region width for practical SPADs was found to be 0.3 and 0.2 μm, for InP and InAlAs, respectively.

  4. Single and few photon avalanche photodiode detection process study

    Science.gov (United States)

    Blazej, Josef; Prochazka, Ivan

    2009-07-01

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) pulse response risetime and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 μm active area and the correlation between the avalanche buildup time and the photon number involved in the avalanche trigger. The detection chip was operated in a passive quenching circuit with active gating. This setup enabled us to monitor the diode reverse current using an electrometer, a fast digitizing oscilloscope, and using a custom design comparator circuit. The electrometer reading enabled to estimate the photon number per detection event, independently on avalanche process. The avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented. The existing solid state photon counting detectors have been dedicated for picosecond resolution and timing stability of single photon events. However, the high timing stability is maintained for individual single photons detection, only. If more than one photon is absorbed within the detector time resolution, the detection delay will be significantly affected. This fact is restricting the application of the solid state photon counters to cases where single photons may be guaranteed, only. For laser ranging purposes it is highly desirable to have a detector, which detects both single photon and multi photon signals with picoseconds stability. The SPAD based photon counter works in a purely digital mode: a uniform output signal is generated once the photon is detected. If the input signal consists of several photons, the first absorbed one triggers the avalanche. Obviously, for multiple photon signals, the

  5. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    Science.gov (United States)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as "glowing avalanches", have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  6. Nearest neighbour models for local and regional avalanche forecasting

    Directory of Open Access Journals (Sweden)

    M. Gassner

    2002-01-01

    Full Text Available This paper presents two avalanche forecasting applications NXD2000 and NXD-REG which were developed at the Swiss Federal Institute for Snow and Avalanche Re-search (SLF. Even both are based on the nearest neighbour method they are targeted to different scales. NXD2000 is used to forecast avalanches on a local scale. It is operated by avalanche forecasters responsible for snow safety at snow sport areas, villages or cross country roads. The area covered ranges from 10 km2 up to 100 km2 depending on the climatological homogeneity. It provides the forecaster with ten most similar days to a given situation. The observed avalanches of these days are an indication of the actual avalanche danger. NXD-REG is used operationally by the Swiss avalanche warning service for regional avalanche forecasting. The Nearest Neighbour approach is applied to the data sets of 60 observer stations. The results of each station are then compiled into a map of current and future avalanche hazard. Evaluation of the model by cross-validation has shown that the model can reproduce the official SLF avalanche forecasts in about 52% of the days.

  7. Avalanche effects near nanojunctions

    Science.gov (United States)

    Nandigana, Vishal V. R.; Aluru, N. R.

    2016-07-01

    In this article, we perform a computational investigation of a nanopore connected to external fluidic reservoirs of asymmetric geometries. The asymmetry between the reservoirs is achieved by changing the cross-sectional areas, and the reservoirs are designated as the micropore reservoir and macropore reservoir. When an electric field is applied, which is directed from the macropore towards the micropore reservoir, we observe local nonequilibrium chaotic current oscillations. The current oscillations originate at the micropore-nanopore interface owing to the local cascade of ions; we refer to this phenomenon as the "avalanche effects." We mathematically quantify chaos in terms of the maximum Lyapunov exponent. The maximum Lyapunov exponent exhibits a monotonic increase with the applied voltage and the macropore reservoir diameter. The temporal power spectra maps of the chaotic currents depict a low-frequency "1 /f "-type dynamics for the voltage chaos and "1 /f2 "-type dynamics for the macropore reservoir chaos. The results presented here offer avenues to manipulate ionic diodes and fluidic pumps.

  8. Time-resolved photoluminescence measurements of InGaAs/ InP multiple-quantum-well structures at 1.3-µm wavelengths by use of germanium single-photon avalanche photodiodes.

    Science.gov (United States)

    Buller, G S; Fancey, S J; Massa, J S; Walker, A C; Cova, S; Lacaita, A

    1996-02-20

    A commercially available germanium avalanche photodiode operating in the single-photon-counting mode has been used to perform time-resolved photoluminescence measurements on InGaAs/lnP multiple-quantum-well structures. Photoluminescence in the spectral region of 1.3-1.48 µm was detected with picosecond timing accuracy by use of the time-correlated single-photon counting technique. The carrier dynamics were monitored for excess photogenerated carrier densities in the range 10(18)-10(15) cm(-3). The recombination time is compared for similar InGaAs-based quantum-well structures grown by use of different epitaxial processes.

  9. Avalanche dynamics in silicon avalanche single- and few-photon sensitive photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Blazej, J; Prochazka, I, E-mail: blazej@fjfi.cvut.c [Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic)

    2009-11-15

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) avalanche pulse response rise-time and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 {mu}m active area, the character of avalanche, and the correlation between the avalanche build-up time and the photon number involved in the avalanche trigger. The detection chip was operated with bias higher then breakdown voltage, ie. in Geiger mode. The detection chip was operated in a passive quenching circuit with active gating. This set-up enabled us to monitor both the diode reverse current using an electrometer and a fast digitizing oscilloscope. The electrometer reading enabled to estimate the photon number per detection event, the avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented.

  10. Rock avalanches on glaciers

    OpenAIRE

    Shugar, Daniel

    2011-01-01

    This thesis examines relations between rock avalanches and the glaciers on which they are deposited. I have attempted to understand a geophysical phenomenon from two viewpoints: sedimentology and glaciology. The contributions are both methodological, and practical. I have used a GIS to quantify debris sheet geomorphology. A thorough characterization of rock avalanche debris is a necessary step in understanding the flow mechanics of large landslide. I have also developed a technique for solvin...

  11. A cooled avalanche photodiode with high photon detection probability

    Science.gov (United States)

    Robinson, D. L.; Metscher, B. D.

    1986-01-01

    An avalanche photodiode has been operated as a photon-counting detector with 2 to 3 times the sensitivity of currently-available photomultiplier tubes. APD (avalanche photodiodes) detection probabilities that exceed 27% and approach 50% have been measured at an optimum operating temperature which minimizes noise. The sources of noise and their dependence on operating temperature and bias voltage are discussed.

  12. Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes

    Science.gov (United States)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.

  13. An Atomically Layered InSe Avalanche Photodetector.

    Science.gov (United States)

    Lei, Sidong; Wen, Fangfang; Ge, Liehui; Najmaei, Sina; George, Antony; Gong, Yongji; Gao, Weilu; Jin, Zehua; Li, Bo; Lou, Jun; Kono, Junichiro; Vajtai, Robert; Ajayan, Pulickel; Halas, Naomi J

    2015-05-13

    Atomically thin photodetectors based on 2D materials have attracted great interest due to their potential as highly energy-efficient integrated devices. However, photoinduced carrier generation in these media is relatively poor due to low optical absorption, limiting device performance. Current methods for overcoming this problem, such as reducing contact resistances or back gating, tend to increase dark current and suffer slow response times. Here, we realize the avalanche effect in a 2D material-based photodetector and show that avalanche multiplication can greatly enhance the device response of an ultrathin InSe-based photodetector. This is achieved by exploiting the large Schottky barrier formed between InSe and Al electrodes, enabling the application of a large bias voltage. Plasmonic enhancement of the photosensitivity, achieved by patterning arrays of Al nanodisks onto the InSe layer, further improves device efficiency. With an external quantum efficiency approaching 866%, a dark current in the picoamp range, and a fast response time of 87 μs, this atomic layer device exhibits multiple significant advances in overall performance for this class of devices.

  14. High Resolution Radar Measurements of Snow Avalanches

    Science.gov (United States)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  15. Dune Avalanche Scars

    Science.gov (United States)

    2004-01-01

    05 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows large, low albedo (dark) sand dunes in Kaiser Crater near 47.2oS, 340.4oW. The dunes are--ever so slowly--moving east to west (right to left) as sand avalanches down the steeper, slip face slopes of each. Avalanching sand in the Kaiser dune field has left deep scars on these slopes, suggesting that the sand is not loose but is instead weakly cemented. The image covers an area approximately 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left.

  16. Modeling and monitoring avalanches caused by rain-on-snow events

    Science.gov (United States)

    Havens, S.; Marshall, H. P.; Trisca, G. O.; Johnson, J. B.; Nicholson, B.

    2014-12-01

    Direct-action avalanches occur during large storm cycles in mountainous regions, when stresses on the snowpack increase rapidly due to the load of new snow and outpace snow strengthening due to compaction. If temperatures rise above freezing during the storm and snowfall turns to rain, the near-surface snow undergoes rapid densification caused by the introduction of liquid water. This shock to the snowpack, if stability is near critical, can cause widespread immediate avalanching due to the large induced strain rates in the slab, followed by secondary delayed avalanches due to both the increased load as well as water percolation to the depth of a weak layer. We use the semi-empirical SNOow Slope Stability model (SNOSS) to estimate the evolution of stability prior to large avalanches during rain-on-snow events on Highway 21 north of Boise, Idaho. We have continuously monitored avalanche activity using arrays of infrasound sensors in the avalanche-prone section of HW21 near Stanley, in collaboration with the Idaho Transportation Department's avalanche forecasting program. The autonomous infrasound avalanche monitoring system provides accurate timing of avalanche events, in addition to capturing avalanche dynamics during some major releases adjacent to the array. Due to the remote location and low winter traffic volume, the highway is typically closed for multiple days during major avalanche cycles. Many major avalanches typically release naturally and reach the road, but due the complex terrain and poor visibility, manual observations are often not possible until several days later. Since most avalanche programs typically use explosives on a regular basis to control slope stability, the infrasound record of avalanche activity we have recorded on HW21 provides a unique opportunity to study large naturally triggered avalanches. We use a first-order physically based stability model to estimate the importance of precipitation phase, amount, and rate during major rain

  17. Multiplicity counting from fission chamber signals in the current mode

    Science.gov (United States)

    Pázsit, I.; Pál, L.; Nagy, L.

    2016-12-01

    In nuclear safeguards, estimation of sample parameters using neutron-based non-destructive assay methods is traditionally based on multiplicity counting with thermal neutron detectors in the pulse mode. These methods in general require multi-channel analysers and various dead time correction methods. This paper proposes and elaborates on an alternative method, which is based on fast neutron measurements with fission chambers in the current mode. A theory of "multiplicity counting" with fission chambers is developed by incorporating Böhnel's concept of superfission [1] into a master equation formalism, developed recently by the present authors for the statistical theory of fission chamber signals [2,3]. Explicit expressions are derived for the first three central auto- and cross moments (cumulants) of the signals of up to three detectors. These constitute the generalisation of the traditional Campbell relationships for the case when the incoming events represent a compound Poisson distribution. Because now the expressions contain the factorial moments of the compound source, they contain the same information as the singles, doubles and triples rates of traditional multiplicity counting. The results show that in addition to the detector efficiency, the detector pulse shape also enters the formulas; hence, the method requires a more involved calibration than the traditional method of multiplicity counting. However, the method has some advantages by not needing dead time corrections, as well as having a simpler and more efficient data processing procedure, in particular for cross-correlations between different detectors, than the traditional multiplicity counting methods.

  18. Abelian avalanches and Tutte polynomials

    Science.gov (United States)

    Gabrielov, Andrei

    1993-04-01

    We introduce a class of deterministic lattice models of failure, Abelian avalanche (AA) models, with continuous phase variables, similar to discrete Abelian sandpile (ASP) models. We investigate analytically the structure of the phase space and statistical properties of avalanches in these models. We show that the distributions of avalanches in AA and ASP models with the same redistribution matrix and loading rate are identical. For an AA model on a graph, statistics of avalanches is linked to Tutte polynomials associated with this graph and its subgraphs. In the general case, statistics of avalanches is linked to an analog of a Tutte polynomial defined for any symmetric matrix.

  19. Characterization of avalanche photodiodes for lidar atmospheric return signal detectors

    Science.gov (United States)

    Antill, C. W., Jr.; Holloway, R. M.

    1988-01-01

    Results are presented from tests to characterize noise, dark current, overload, and gain versus bias, relationships of ten avalanche photodiodes. The advantages of avalanche photodiodes over photomultiplier tubes for given laser wavelengths and return signal amplitudes are outlined. The relationship between responsivity and temperature and dark current and temperature are examined. Also, measurements of the noise equivalent power, the excess noise factor, and linearity are given. The advantages of using avalanche photodiodes in the Lidar Atmospheric Sensing Experiment and the Lidar In-Space Technology Experiment are discussed.

  20. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  1. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    Science.gov (United States)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  2. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    Science.gov (United States)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  3. Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)

    Science.gov (United States)

    Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.

    2015-08-01

    InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.

  4. Optimal management of multiple sclerosis during pregnancy: current perspectives

    Directory of Open Access Journals (Sweden)

    Borisow N

    2014-08-01

    Full Text Available Nadja Borisow, Friedemann Paul, Jan DörrNeuroCure Clinical Research Center and Clinical and Experimental Research Center for Multiple Sclerosis, Charité – Universitätsmedizin Berlin, Berlin, GermanyAbstract: Multiple sclerosis (MS is a common inflammatory demyelinating disorder of the central nervous system. It frequently affects females in their reproductive phase of life. Therefore, family planning, pregnancy, and breastfeeding are important issues in the management of MS, particularly with respect to counseling and drug treatment. This paper reviews currently available data on the outcome of pregnancies in MS patients and the influence of pregnancy on the course of the disease. We give an update on the use of various disease-modifying MS drugs during pregnancy and breastfeeding. In addition to established therapies such as interferon-β, glatiramer acetate, natalizumab, and fingolimod, we also discuss the state of knowledge about new agents such as dimethyl fumarate, teriflunomide, and alemtuzumab in the context of pregnancy and breastfeeding.Keywords: multiple sclerosis, pregnancy, lactation, disease-modifying therapy

  5. Multiple planetary systems: Properties of the current sample

    Science.gov (United States)

    Hobson, Melissa J.; Gomez, Mercedes

    2017-08-01

    We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.

  6. Snow avalanche detection and identification for near real-time application

    Science.gov (United States)

    Havens, S.; Johnson, J. B.; Marshall, H.; Nicholson, B.; Trisca, G. O.

    2013-12-01

    A near real-time avalanche detection system will provide highway avalanche forecasters with a tool to remotely monitor major avalanche paths and provide information about regional avalanche activity and timing. For the last three winters, a network of infrasound arrays has been remotely monitoring both avalanche and non-avalanche events along a 10 mile section of Highway 21 in Idaho. To provide the best results to avalanche forecasters, the system must be robust and detect all major avalanche events of interest that affect the highway. Over the last three winters, the infrasound arrays recorded multiple avalanche cycles and we explore different methods of event detection for both large dry avalanches (strong infrasound signal) and small wet avalanches (weak infrasound signal). We compare the F-statistic and cross-correlation techniques (i.e. PMCC) to determine the most robust method and develop computationally efficient algorithms to implement in near-real time using parallel processing and GPU computing. Once an event has been detected, we use the artificial intelligence method of recursive neural networks to classify based on similar characteristics to past known signals.

  7. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  8. Multiple endocrine neoplasia type 2: achievements and current challenges

    Directory of Open Access Journals (Sweden)

    Andreas Machens

    2012-01-01

    Full Text Available Incremental advances in medical technology, such as the development of sensitive hormonal assays for routine clinical care, are the drivers of medical progress. This principle is exemplified by the creation of the concept of multiple endocrine neoplasia type 2, encompassing medullary thyroid cancer, pheochromocytoma, and primary hyperparathyroidism, which did not emerge before the early 1960s. This review sets out to highlight key achievements, such as joint biochemical and DNA-based screening of individuals at risk of developing multiple endocrine neoplasia type 2, before casting a spotlight on current challenges which include: (i ill-defined upper limits of calcitonin assays for infants and young children, rendering it difficult to implement the biochemical part of the integrated DNA-based/biochemical concept; (ii our increasingly mobile society in which different service providers are caring for one individual at various stages in the disease process. With familial relationships disintegrating as a result of geographic dispersion, information about the history of the origin family may become sketchy or just unavailable. This is when DNA-based gene tests come into play, confirming or excluding an individual's genetic predisposition to multiple endocrine neoplasia type 2 even before there is any biochemical or clinical evidence of the disease. However, the unrivaled molecular genetic progress in multiple endocrine neoplasia type 2 does not come without a price. Screening may uncover unknown gene sequence variants representing either harmless polymorphisms or pathogenic mutations. In this setting, functional characterization of mutant cells in vitro may generate helpful ancillary evidence with regard to the pathogenicity of gene variants in comparison with established mutations.

  9. AVALANCHES - EXTREME WINTER EVENTS. MONITORING AND AVALANCHE RISK

    Directory of Open Access Journals (Sweden)

    NARCISA MILIAN

    2012-03-01

    Full Text Available This paper presents the avalanches monitored by the National Meteorological Administration within the nivo-meteorological program since february 2004. Daily observations and weekly snow measurements are made at the weather stations from Bucegi Mountains - Vârful Omu (2504 m, Sinaia (1500 m şi Predeal (1100m and Făgăraş Mountains – Bâlea-Lac (2055m, to provide data for avalanche risk estimation using the european avalanche danger scale. Increasing winter sport activities had led to several avalanche accidents, some of them fatal.

  10. III-V alloy heterostructure high speed avalanche photodiodes

    Science.gov (United States)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  11. A discriminator with a current-sum multiplicity output for the PHENIX multiplicity vertex detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.S.; Kennedy, E.J.; Jackson, R.G. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-01

    A current output multiplicity discriminator for use in the front-end electronics (FEE) of the Multiplicity Vertex Detector (MVD) for the PHENIX detector at RHIC has been fabricated in the a 1.2-{micro} CMOS, n-well process. The discriminator is capable of triggering on input signals ranging from 0.25 MIP to 5 MIP. Frequency response of the discriminator is such that the circuit is capable of generating an output for every bunch crossing (105 ns) of the RHIC collider. Channel-to-channel threshold matching was adjustable to {+-} 4 mV. One channel of multiplicity discriminator occupied an area of 85 {micro} x 630 {micro} and consumed 515 {micro}W from a single 5-V supply. Details of the design and results from prototype device testing are presented.

  12. Use of a magnetic field to modify and detect avalanche behavior on a conical bead pile

    Science.gov (United States)

    Johnson, Nathan; Lehman, Susan

    2015-03-01

    A conical bead pile subject to slow driving and an external magnetic field is used to test the effects of drop height and cohesion on avalanche statistics. Magnetically susceptible beads were dropped onto a pile from different heights and into different strengths of magnetic field. Avalanches were recorded by the change in mass as beads fall off the pile. For beads dropped from a low drop height with no cohesion, the avalanche size distribution follows a power law. As cohesion increases, we observe an increase in the probability of very large avalanches and decreases in the mid-size avalanches. The resulting bump in the avalanche distribution moves to larger avalanche size as the cohesion in the system is increased, matching the prediction by an analytic theory from a mean-field model of slip avalanches. The model also makes predictions for avalanche duration, which is not measurable with our current system. Since the steel beads are magnetized while in the applied magnetic field, their motion during an avalanche creates a change in magnetic flux. To detect this motion, we have placed a large-diameter pick-up coil around the pile. Results of the testing and calibration of this coil to measure avalanche duration are presented.

  13. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    Science.gov (United States)

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  14. Avalanche robustness of SiC Schottky diode

    OpenAIRE

    Dchar, Ilyas; Buttay, Cyril; Morel, Hervé

    2016-01-01

    International audience; Reliability is one of the key issues for the application of Silicon carbide (SiC) diode in high power conversion systems. For instance, in high voltage direct current (HVDC) converters, the devices can be submitted to high voltage transients which yield to avalanche. This paper presents the experimental evaluation of SiC diodes submitted to avalanche, and shows that the energy dissipation in the device can increase quickly and will not be uniformly distributed across t...

  15. Current status of myelin replacement therapies in multiple sclerosis.

    Science.gov (United States)

    Huang, Jeffrey K; Franklin, Robin J M

    2012-01-01

    Multiple sclerosis is an autoimmune disease of the human central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. There are two aspects to the treatment of MS-first, the prevention of damage by suppressing the maladaptive immune system, and second, the long-term preservation of axons by the promotion of remyelination, a regenerative process in which new axons are restored to demyelinated axons. Medicine has made significant progress in the first of these in recent years-there is an increasing number of ever more effective disease-modifying immunomodulatory interventions. However, there are currently no widely used regenerative therapies in MS. Conceptually, there are two approaches to remyelination therapy-transplantation of myelinogenic cells and promotion of endogenous remyelination mediated by myelinogenic cells present within the diseased tissue. In this chapter, in addition to describing why remyelination therapies are important, we review both these approaches, outlining their current status and future developments.

  16. Characteristics of avalanche accidents and a overview of avalanche equipment

    Directory of Open Access Journals (Sweden)

    Mateusz Biela

    2015-12-01

    Full Text Available Avalanches are one of the most spectacular phenomena which may occur in the mountains. Unfortunately they are often caused by humans and pose for him a big danger. In the Polish Tatras alone they represent 18% of all causes of death among 1996-2013. One fourth of the people caught by an avalanche dies, and their chances of survival depends on the depth of burial, burial time, the presence of an air pocket and the degree of injuries. The most common cause of death is asphyxiation, the next is injuries and hypothermia is the rarest cause of death. The fate of the buried people depends on their equipment such as avalanche transceiver, ABS backpack and AvaLung, and also from the equipment of the people who are seeking (avalanche probes, avalanche transceiver and shovels, which has been proven in practice and research.

  17. Avalanches in UGe 2

    Science.gov (United States)

    Lhotel, E.; Paulsen, C.; Huxley, A. D.

    2004-05-01

    In UGe 2 ferromagnetism and superconductivity co-exist for pressures in the range 1.0- 1.6 GPa. The magnetic state, however, has several unusual properties. Here we report measurements of hysteresis loops for fields parallel to the easy-axis at low temperature and ambient pressure, measured for two separate UGe 2 single crystals. Steps in the magnetization as the field is changed at low temperature are observed for both crystals. The general phenomenology associated with the steps strongly suggests that they correspond to avalanches of domain-wall motion.

  18. Trap-assisted tunneling in AlGaN avalanche photodiodes

    Directory of Open Access Journals (Sweden)

    Z. G. Shao

    2017-06-01

    Full Text Available We fabricated AlGaN solar-blind avalanche photodiodes (APDs that were based on separate absorption and multiplication (SAM structures. It was determined experimentally that the dark current in these APDs is rapidly enhanced when the applied voltage exceeds 52 V. Theoretical analyses demonstrated that the breakdown voltage at 52 V is mainly related to the local trap-assisted tunneling effect. Because the dark current is mainly dependent on the trap states as a result of modification of the lifetimes of the electrons in the trap states, the tunneling processes can be modulated effectively by tuning the trap energy level, the trap density, and the tunnel mass.

  19. Trap-assisted tunneling in AlGaN avalanche photodiodes

    Science.gov (United States)

    Shao, Z. G.; Gu, Q. J.; Yang, X. F.; Zhang, J.; Kuang, Y. W.; Zhang, D. B.; Yu, H. L.; Hong, X. K.; Feng, J. F.; Liu, Y. S.

    2017-06-01

    We fabricated AlGaN solar-blind avalanche photodiodes (APDs) that were based on separate absorption and multiplication (SAM) structures. It was determined experimentally that the dark current in these APDs is rapidly enhanced when the applied voltage exceeds 52 V. Theoretical analyses demonstrated that the breakdown voltage at 52 V is mainly related to the local trap-assisted tunneling effect. Because the dark current is mainly dependent on the trap states as a result of modification of the lifetimes of the electrons in the trap states, the tunneling processes can be modulated effectively by tuning the trap energy level, the trap density, and the tunnel mass.

  20. Electrothermal simulation of superconducting nanowire avalanche photodetectors

    Science.gov (United States)

    Marsili, Francesco; Najafi, Faraz; Herder, Charles; Berggren, Karl K.

    2011-02-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  1. Shot noise suppression in avalanche photodiodes.

    Science.gov (United States)

    Ma, Feng; Wang, Shuling; Campbell, Joe C

    2005-10-21

    We identify a new shot noise suppression mechanism in a thin (approximately 100 nm) heterostructure avalanche photodiode. In the low-gain regime the shot noise is suppressed due to temporal correlations within amplified current pulses. We demonstrate in a Monte Carlo simulation that the effective excess noise factors can be < 1, and reconcile the apparent conflict between theory and experiments. This shot noise suppression mechanism is independent of known mechanisms such as Coulomb interaction, or reflection at heterojunction interfaces.

  2. On possibilities of application of Miller formula for determination of parameters of Micropixel Avalanche Photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Mukhtarov, R; Sadygov, A; Titov, A; Zhezher, V

    2014-01-01

    Miller formula modified to take into account voltage drop on serial resistor of an avalanche photodiode is considered. It is proven by experimental data that modified Miller formula can describe operation of both regular and micropixel avalanche photodiodes with good enough precision. It is shown that operation parameters of the devices can be determined using a linear extrapolation of the voltage-current curve for both regular avalanche photodiode and the one operating in Geiger mode.

  3. On possibilities of application of Miller formula for determination of parameters of Micropixel Avalanche Photodiodes

    OpenAIRE

    Sadygov, Z.; Abdullaev, Kh.; Akhmedov, G.; Akhmedov, F.; Mukhtarov, R.; Sadygov, A.; Titov, A.; Zhezher, V.

    2014-01-01

    Miller formula modified to take into account voltage drop on serial resistor of an avalanche photodiode is considered. It is proven by experimental data that modified Miller formula can describe operation of both regular and micropixel avalanche photodiodes with good enough precision. It is shown that operation parameters of the devices can be determined using a linear extrapolation of the voltage-current curve for both regular avalanche photodiode and the one operating in Geiger mode.

  4. Exponential time response in analogue and Geiger mode avalanche photodiodes\\ud

    OpenAIRE

    Groves, C.; Tan, C H; David, J.P.R.; Rees, G J; Hayat, M.M.

    2005-01-01

    The mean avalanche current impulse response in an\\ud avalanche photodiode exhibits an initial transient and then grows or decays, above or below breakdown, at exponential rates which depend only on the probability distributions of the electron and hole ionization events. The process continues while the electric field profile remains unchanged by the applied bias or the evolving space\\ud charge. Below breakdown the distribution in the avalanche duration also exhibits an initial transient and t...

  5. Do Neural Avalanches Indicate Criticality After All?

    CERN Document Server

    Dehghani, Mohammad; Shahbazi, Farhad

    2016-01-01

    Neural avalanches in size and duration exhibit a power law distribution illustrating as a straight line when plotted on the logarithmic scales. The power-law exponent is interpreted as the signature of criticality and it is assumed that the resting brain operates near criticality. However, there is no clear evidence that supports this assumption, and even there are extensive research studies conflicting one another. The model of the current paper is an extension of a previous publication wherein we used an integrate-and-fire model on a regular lattice with periodic boundary conditions and introduced the temporal complexity as a genuine signature of criticality. However, in that model the power-law distribution of neural avalanches were manifestation of super-criticality rather than criticality. Here, however, we show that replacing the discrete noise in the model with a Gaussian noise and continuous time solution of the equation leads to coincidence of temporal complexity and spatiotemporal patterns of neural...

  6. Neuronal avalanches in spontaneous activity in vivo.

    Science.gov (United States)

    Hahn, Gerald; Petermann, Thomas; Havenith, Martha N; Yu, Shan; Singer, Wolf; Plenz, Dietmar; Nikolic, Danko

    2010-12-01

    Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.

  7. Linear arrays of InGaAs/InP avalanche photodiodes for 1.0-1.7 micron

    Science.gov (United States)

    Ackley, D. E.; Hladky, J.; Lange, M. J.; Mason, S.; Erickson, G.; Olsen, G. H.; Ban, V. S.; Forrest, S. R.; Staller, C.

    1990-01-01

    Separate absorption and multiplication InGaAs/InP avalanche photodiodes (SAM-APDs) with a floating guard ring structure that is well-suited to array applications have been successfully demonstrated. Individual APDs have breakdown voltages greater than 80 V, multiplications over 40 at 100 nA dark current, and uniform spatial gain profiles. Uniform I-V characteristics and gains have been measured over linear dimensions as large as 1.2 cm. Gains over 10 at low multiplied dark currents were measured on 21 consecutive devices at the wafer level.

  8. Technological advances in avalanche survival.

    Science.gov (United States)

    Radwin, Martin I; Grissom, Colin K

    2002-01-01

    Over the last decade, a proliferation of interest has emerged in the area of avalanche survival, yielding both an improved understanding of the pathophysiology of death after avalanche burial and technological advances in the development of survival equipment. The dismal survival statistics born out of the modern era of winter recreation unmistakably reveal that elapsed time and depth of burial are the most critical variables of survival and the focus of newer survival devices on the market. Although blunt trauma may kill up to one third of avalanche victims, early asphyxiation is the predominant mechanism of death, and hypothermia is rare. A survival plateau or delay in asphyxiation may be seen in those buried in respiratory communication with an air pocket until a critical accumulation of CO2 or an ice lens develops. The newest survival devices available for adjunctive protection, along with a transceiver and shovel, are the artificial air pocket device (AvaLung), the avalanche air bag system (ABS), and the Avalanche Ball. The artificial air pocket prolongs adequate respiration during snow burial and may improve survival by delaying asphyxiation. The ABS, which forces the wearer to the surface of the avalanche debris by inverse segregation to help prevent burial, has been in use in Europe for the last 10 years with an impressive track record. Finally, the Avalanche Ball is a visual locator device in the form of a spring-loaded ball attached to a tether, which is released from a fanny pack by a rip cord. Despite the excitement surrounding these novel technologies, avalanche avoidance through knowledge and conservative judgment will always be the mainstay of avalanche survival, never to be replaced by any device.

  9. CURRENT APPROACHES FOR RESEARCH OF MULTIPLE SCLEROSIS BIOMARKERS

    Directory of Open Access Journals (Sweden)

    Kolyada T.I

    2016-12-01

    Full Text Available Current data concerning features of multiple sclerosis (MS etiology, pathogenesis, clinical course and treatment of disease indicate the necessity of personalized approach to the management of MS patients. These features are the variety of possible etiological factors and mechanisms that trigger the development of MS, different courses of disease, and significant differences in treatment efficiency. Phenotypic and pathogenetic heterogeneity of MS requires, on the one hand, the stratification of patients into groups with different treatment depending on a number of criteria including genetic characteristics, disease course, stage of the pathological process, and forms of the disease. On the other hand, it requires the use of modern methods for assessment of individual risk of developing MS, its early diagnosis, evaluation and prognosis of the disease course and the treatment efficiency. This approach is based on the identification and determination of biomarkers of MS including the use of systems biology technology platforms such as genomics, proteomics, metabolomics and bioinformatics. Research and practical use of biomarkers of MS in clinical and laboratory practice requires the use of a wide range of modern medical and biological, mathematical and physicochemical methods. The group of "classical" methods used to study MS biomarkers includes physicochemical and immunological methods aimed at the selection and identification of single molecular biomarkers, as well as methods of molecular genetic analysis. This group of methods includes ELISA, western blotting, isoelectric focusing, immunohistochemical methods, flow cytometry, spectrophotometric and nephelometric methods. These techniques make it possible to carry out both qualitative and quantitative assay of molecular biomarkers. The group of "classical methods" can also include methods based on polymerase chain reaction (including multiplex and allele-specific PCR and genome sequencing

  10. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  11. Large-Area Superconducting Nanowire Single-Photon Detector with Double-Stage Avalanche Structure

    OpenAIRE

    2016-01-01

    We propose a novel design of superconducting nanowire avalanche photodetectors (SNAPs), which combines the advantages of multi-stage avalanche SNAPs to lower the avalanche current I_AV and that of series-SNAPs to reduce the reset time. As proof of principle, we fabricated 800 devices with large detection area (15 um * 15 um) and five different designs on a single silicon chip for comparison, which include standard SNSPDs, series-3-SNAPs and our modified series-SNAPs with double-stage avalanch...

  12. Imaging findings of avalanche victims

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Alexandra B.; Grosse, Claudia A.; Anderson, Suzanne [University Hospital of Berne, Inselspital, Department of Diagnostic, Pediatric and Interventional Radiology, Berne (Switzerland); Steinbach, Lynne S. [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Zimmermann, Heinz [University Hospital of Berne, Inselspital, Department of Trauma and Emergency Medicine, Berne (Switzerland)

    2007-06-15

    Skiing and hiking outside the boundaries remains an attractive wilderness activity despite the danger of avalanches. Avalanches occur on a relatively frequent basis and may be devastating. Musculoskeletal radiologists should be acquainted with these injuries. Fourteen avalanche victims (11 men and 3 women; age range 17-59 years, mean age 37.4 years) were air transported to a high-grade trauma centre over a period of 2 years. Radiographs, CT and MR images were prospectively evaluated by two observers in consensus. Musculoskeletal findings (61%) were more frequent than extraskeletal findings (39%). Fractures were most commonly seen (36.6%), involving the spine (14.6%) more frequently than the extremities (9.8%). Blunt abdominal and thoracic trauma were the most frequent extraskeletal findings. A wide spectrum of injuries can be found in avalanche victims, ranging from extremity fractures to massive polytrauma. Asphyxia remains the main cause of death along with hypoxic brain injury and hypothermia. (orig.)

  13. Nanopillar Optical Antenna Avalanche Detectors

    Science.gov (United States)

    2014-08-30

    68 , (11), 10. 51. Adachi, S., Properties of aluminium gallium ...bandwidth products > 100 GHz. 2 UNIVERSITY OF CALIFORNIA Los Angeles Nanopillar Optical Antenna Avalanche Detectors A dissertation... products > 100 GHz. 6 iii The dissertation of Pradeep

  14. Direct observation of avalanche scintillations in a THGEM-based two-phase Ar avalanche detector using Geiger-mode APD

    CERN Document Server

    Bondar, A; Grebenuk, A; Sokolov, A; Akimov, D; Alexandrov, I; Breskin, A

    2010-01-01

    A novel concept of optical signal recording in two-phase avalanche detectors, with Geiger-mode Avalanche Photodiodes (G-APD) is described. Avalanche-scintillation photons were measured in a thick Gas Electron Multiplier (THGEM) in view of potential applications in rare-event experiments. The effective detection of avalanche scintillations in THGEM holes has been demonstrated in two-phase Ar with a bare G-APD without wavelength shifter, i.e. insensitive to VUV emission of Ar. At gas-avalanche gain of 400 and under \\pm 70^\\circ viewing-angle, the G-APD yielded 640 photoelectrons (pe) per 60 keV X-ray converted in liquid Ar; this corresponds to 0.7 pe per initial (prior to multiplication) electron. The avalanche-scintillation light yield measured by the G-APD was about 0.7 pe per avalanche electron, extrapolated to 4pi acceptance. The avalanche scintillations observed occurred presumably in the near infrared (NIR) where G-APDs may have high sensitivity. The measured scintillation yield is similar to that observe...

  15. Model of single-electron performance of micropixel avalanche photodiodes

    CERN Document Server

    Sadygov, Z; Akhmedov, G; Akhmedov, F; Khorev, S; Mukhtarov, R; Sadigov, A; Sidelev, A; Titov, A; Zerrouk, F; Zhezher, V

    2014-01-01

    An approximate iterative model of avalanche process in a pixel of micropixel avalanche photodiode initiated by a single photoelectron is presented. The model describes development of the avalanche process in time, taking into account change of electric field within the depleted region caused by internal discharge and external recharge currents. Conclusions obtained as a result of modelling are compared with experimental data. Simulations show that typical durations of the front and rear edges of the discharge current have the same magnitude of less than 50 ps. The front of the external recharge current has the same duration, however duration of the rear edge depends on value of the quenching micro-resistor. It was found that effective capacitance of the pixel calculated as the slope of linear dependence of the pulse charge on bias voltage exceeds its real capacitance by a factor of two.

  16. Radiation damage effect on avalanche photodiodes

    CERN Document Server

    Baccaro, S; Cavallari, F; Da Ponte, V; Deiters, K; Denes, P; Diemoz, M; Kirn, Th; Lintern, A L; Longo, E; Montecchi, M; Musienko, Y; Pansart, J P; Renker, D; Reucroft, S; Rosi, G; Rusack, R; Ruuska, D; Stephenson, R; Torbet, M J

    1999-01-01

    Avalanche Photodiodes have been chosen as photon sensors for the electromagnetic calorimeter of the CMS experiment at the LHC. These sensors should operate in the 4T magnetic field of the experiment. Because of the high neutron radiation in the detector extensive studies have been done by the CMS collaboration on the APD neutron radiation damage. The characteristics of these devices after irradiation have been analized, with particular attention to the quantum efficiency and the dark current. The recovery of the radiation induced dark current has been studied carefully at room temperature and at slightly lower and higher temperatures. The temperature dependence of the defects decay-time has been evaluated.

  17. Multiple Sclerosis in Pediatrics: Current Concepts and Treatment Options

    NARCIS (Netherlands)

    Jancic, J. (Jasna); Nikolic, B. (Blazo); Ivancevic, N. (Nikola); Djuric, V. (Vesna); Zaletel, I. (Ivan); Stevanovic, D. (Dejan); Peric, S. (Sasa); J.N. van den Anker (John); J. Samardzic (Janko)

    2016-01-01

    textabstractMultiple sclerosis (MS) is a chronic, autoimmune, inflammatory, demyelinating disease of the central nervous system. MS is increasingly recognized in the pediatric population, and it is usually diagnosed around 15 years of age. The exact etiology of MS is still not known, although autoim

  18. Current multiple myeloma treatment strategies with novel agents

    DEFF Research Database (Denmark)

    Ludwig, Heinz; Beksac, Meral; Bladé, Joan

    2010-01-01

    The treatment of multiple myeloma (MM) has undergone significant developments in recent years. The availability of the novel agents thalidomide, bortezomib, and lenalidomide has expanded treatment options and has improved the outcome of patients with MM. Following the introduction of these agents...

  19. Temperature Dependence Study of Mesa-Type InGaAs/InAlAs Avalanche Photodiode Characteristics

    Directory of Open Access Journals (Sweden)

    Jack Jia-Sheng Huang

    2017-01-01

    Full Text Available Avalanche photodiodes (APDs are key optical receivers due to their performance advantages of high speed, high sensitivity, and low noise. The most critical device parameters of APD include the avalanche breakdown voltage and dark current. In this work, we study the temperature dependence of the breakdown voltage and dark current of the mesa-type APD over a wide temperature range of 20–145°C. We institute an empirical model based on impact ionization processes to account for the experimental data. It is shown that highly stable breakdown characteristics of mesa-type APD can be attained with the optimization of the multiplication layer design. We have achieved excellent stability of avalanche breakdown voltage with a temperature coefficient of 0.017 V/°C. The temperature dependence of dark current is attributed to generation-recombination mechanism. The bandgap energy is estimated to be about 0.71 eV based on the temperature variation of dark current, in good agreement with the value for InGaAs.

  20. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    Science.gov (United States)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.; Beggan, C.; Olsen, N.; Spain, T.; Aruliah, A.

    2013-09-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data. Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has implications for any future efforts to model their effects. We resolve persistent current intensifications between geomagnetic latitudes of 30 and 50° in the postmidnight, predawn sector, a region typically thought to be relatively free of electric currents. The cause of these unexpected intensifications remains an open issue. We compare our results with current density predictions made by the Coupled Thermosphere-Ionosphere-Plasmasphere model, a self-consistent, first-principles, three-dimensional numerical dynamic model of ionospheric composition and temperatures. This independent validation of our current density estimates highlights good agreement in the broad spatiotemporal trends we identify, which increases confidence in our results.

  1. Progress in simulations of micropattern gas avalanche detectors

    CERN Document Server

    Cwetanski, Peter

    2000-01-01

    Helpful for a better understanding of the intrinsic processes in the various gas avalanche detectors are simulations, involving three- dimensional Finite Element Method (FEM) field map computations in order to describe the more and more complex geometries. Drift, multiplication and attachment procedures are simulated using Monte Carlo techniques. Recent results show a remarkable agreement with gain and energy resolution measurements thanks to the refined computations of gas transport properties and improved avalanching models. As examples the influence of wire eccentricity on gas gain and energy resolution in the ATLAS TRT straws is shown as well as performed studies of the Micromegas detector. 8 Refs.

  2. Precise method for determining avalanche breakdown voltage of silicon photomultipliers

    Science.gov (United States)

    Chirikov-Zorin, I.

    2017-07-01

    A physically motivated method is proposed for determining the avalanche breakdown voltage of silicon photomultipliers (SiPM). The method is based on measuring the dependence of the relative photon detection efficiency (PDErel) on the bias voltage when one type of carriers (electron or hole) is injected into the avalanche multiplication zone of the p-n junction. The injection of electrons or holes from the base region of the SiPM semiconductor structure is performed using short-wave or long-wave light. At a low overvoltage (1-2 V) the detection efficiency is linearly dependent on the bias voltage; therefore, extrapolation to zero PDErel value determines the SiPM avalanche breakdown voltage with an accuracy within a few millivolts.

  3. Ionospheric midlatitude electric current density inferred from multiple magnetic satellites

    DEFF Research Database (Denmark)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.

    2013-01-01

    A method for inferring zonal electric current density in the mid-to-low latitude F region ionosphere is presented. We describe a method of using near-simultaneous overflights of the Ørsted and CHAMP satellites to define a closed circuit for an application of Ampère's integral law to magnetic data....... Zonal current density from sources in only the region between the two satellites is estimated for the first time. Six years of mutually available vector magnetic data allows overlaps spanning the full 24 h range of local time twice. Solutions are computed on an event-by-event basis after correcting...... for estimates of main and crustal magnetic fields. Current density in the range ±0.1 μA/m2 is resolved, with the distribution of electric current largely matching known features such as the Appleton anomaly. The currents appear unmodulated at times of either high-negative Dst or high F10.7, which has...

  4. Avalanche risk assessment in Russia

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla

    2017-04-01

    The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended

  5. Avalanche Effect in Improperly Initialized CAESAR Candidates

    Directory of Open Access Journals (Sweden)

    Martin Ukrop

    2016-12-01

    Full Text Available Cryptoprimitives rely on thorough theoretical background, but often lack basic usability features making them prone to unintentional misuse by developers. We argue that this is true even for the state-of-the-art designs. Analyzing 52 candidates of the current CAESAR competition has shown none of them have an avalanche effect in authentication tag strong enough to work properly when partially misconfigured. Although not directly decreasing their security profile, this hints at their security usability being less than perfect. Paper details available at crcs.cz/papers/memics2016

  6. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail: joseph.friedman@u-psud.fr; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)

    2015-11-15

    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  7. Current and emerging therapies in multiple sclerosis: a systematic review

    Science.gov (United States)

    Graves, Donna; Frohman, Teresa C.; Flores, Angela Bates; Hardeman, Paula; Logan, Diana; Orchard, Megan; Greenberg, Benjamin; Frohman, Elliot M.

    2012-01-01

    Multiple sclerosis (MS) is a potentially disabling chronic autoimmune neurological disease that mainly affects young adults. Our understanding of the pathophysiology of MS has significantly advanced in the past quarter of a century. This has led to the development of many disease-modifying therapies (DMTs) that prevent exacerbations and new lesions in patients with relapsing remitting MS (RRMS). So far there is no drug available that can completely halt the neurodegenerative changes associated with the disease. It is the purpose of this review to provide concise information regarding mechanism of action, indications, side effects and safety of Food and Drug Administration and European Medicines Agency approved agents for MS, emerging therapies, and drugs that can be considered for off-label use in MS. PMID:22783370

  8. Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma

    Science.gov (United States)

    Long, Chen; Jinyuan, Liu; Ping, Duan; Guangrui, Liu; Xingyu, Bian

    2017-02-01

    In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.

  9. Solitary granular avalanches: stability, fingering and theoretical modeling

    Science.gov (United States)

    Malloggi, Florent; Andreotti, Bruno; Clément, Eric; Aronson, Igor; Tsimring, Lev

    2008-03-01

    Avalanching processes do not only occur in the air as we know of snow avalanches, mud flows and land-slides. Such events frequently happen below the see level as they take many forms from turbidity currents to thick sediment waves. In this study we report results on laboratory scale avalanche experiments taking place both in the air and under-water. In both cases a family of stable solitary erosion/deposition waves is observed [1]. At higher inclination angles, we show the existence of a long wavelength transverse instability followed by a coarsening and the onset of a fingering pattern. While the experiments strongly differ by the spatial and time scales, the agreement between the stability diagrams, the wavelengths selection and the avalanche morphology suggest a common erosion/deposition scenario. We also use these erosion/deposition waves to investigate the dynamics of granular flow and jamming in the frame work of the Partial Fluidization Theory (PFT) proposed by Aronson et al. to describe the dynamics of granular matter near jamming [2]. [1] F. Malloggi et al. Europhysics Letters, 2006, Erosion waves: Transverse instabilities and fingering 75, 825-831 [2] I. S. Aranson et al.. Transverse instability of avalanches in granular flows down an incline. Physical Review E, 2006, 73, 050302; I.S.Aronson et al., Non rheological properties of granular flows: exploring the near jamming limit, preprint (2007).

  10. Observations and modelling of snow avalanche entrainment

    OpenAIRE

    2002-01-01

    In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal fric...

  11. Correlations in avalanche critical points

    Science.gov (United States)

    Cerruti, Benedetta; Vives, Eduard

    2009-07-01

    Avalanche dynamics and related power-law statistics are ubiquitous in nature, arising in phenomena such as earthquakes, forest fires, and solar flares. Very interestingly, an analogous behavior is associated with many condensed-matter systems, such as ferromagnets and martensites. Bearing it in mind, we study the prototypical random-field Ising model at T=0 . We find a finite correlation between waiting intervals and the previous avalanche size. This correlation is not found in other models for avalanches but it is experimentally found in earthquakes and in forest fires. Our study suggests that this effect occurs in critical points that are at the end of a first-order discontinuity separating two regimes: one with high activity from another with low activity.

  12. Cytotherapies in multiple myeloma: a complementary approach to current treatments?

    Science.gov (United States)

    Ciavarella, Sabino; Caselli, Anna; Savonarola, Annalisa; Tamma, Antonella Valentina; Tucci, Marco; Silvestris, Franco

    2013-06-01

    Based on their tumor tropism, mesenchymal stem cells (MSCs) have been proposed as carriers of cytotoxic molecules in pioneering strategies of anti-cancer gene therapy. Similar to solid tumors, MSCs, genetically modified to stably express the TNF-related apoptosis-inducing ligand (TRAIL), have been applied to counter-attack multiple myeloma (MM) in vitro and envisioned as a promising strategy for future anti-MM treatments. Accumulating evidence based on the detection of genetic and functional abnormalities in MSCs from MM patients points to the supportive function of MSCs in both the development and progression of MM, driven by chronic interplays with malignant cells within the marrow milieu. In this review, we revisit the function of MSCs in the pathophysiology of MM and explore the pivotal mechanisms of their interaction with myeloma cells. We also discuss the therapeutic significance of novel strategies using TRAIL-engineered MSCs in this cancer model, dissecting their role as new tools for future treatments against MM. A cytotherapy based on TRAIL-engineered MSCs against MM may be successfully combined with either conventional approaches of autologous stem cell transplantation or with novel anti-MM drugs. Intensive preclinical investigations are required to identify the best sources as well as modalities of MSC administration, thus defining the translational suitability of this strategy in the clinical setting.

  13. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  14. Controlling avalanche criticality in 2D nano arrays.

    Science.gov (United States)

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  15. AlGaN solar-blind avalanche photodiodes with AlInN/AlGaN distributed Bragg reflectors

    Science.gov (United States)

    Yao, Chujun; Ye, Xuanchao; Sun, Rui; Yang, Guofeng; Wang, Jin; Lu, Yanan; Yan, Pengfei; Cao, Jintao

    2017-06-01

    AlGaN solar-blind avalanche photodiodes (APDs) with AlInN/AlGaN distributed Bragg reflectors (DBRs) operated at lower avalanche breakdown voltage are numerically demonstrated. The p-type AlGaN layer and the multiplicative layer with low Al composition are introduced to construct the polarization-induced electric field, which can significantly reduce the avalanche breakdown voltage of the APDs. Calculated results exhibit that the avalanche breakdown voltage of the designed APDs decrease by 13% compared with the conventional device structure. Simultaneously, an improved solar-blind spectral responsivity is achieved due to the inserted AlInN/AlGaN DBRs.

  16. Current management of pain associated with multiple sclerosis.

    Science.gov (United States)

    Pöllmann, Walter; Feneberg, Wolfgang

    2008-01-01

    While pain is a common problem in patients with multiple sclerosis (MS), it is not frequently mentioned by patients and a more direct approach is required in order to obtain information about pain from patients. Many patients with MS experience more than one pain syndrome; combinations of dysaesthesia, headaches and/or back or muscle and joint pain are frequent. For each pain syndrome a clear diagnosis and therapeutic concept needs to be established. Pain in MS can be classified into four diagnostically and therapeutically relevant categories: (i) neuropathic pain due to MS (pain directly related to MS); (ii) pain indirectly related to MS; (iii) MS treatment-related pain; and (iv) pain unrelated to MS. Painful paroxysmal symptoms such as trigeminal neuralgia (TN), or painful tonic spasms are treated with antiepileptics as first choice, e.g. carbamazepine, oxcarbazepine, lamotrigine, gabapentin, pregabalin, etc. Painful 'burning' dysaesthesias, the most frequent chronic pain syndrome, are treated with TCAs such as amitriptyline, or antiepileptics such as gabapentin, pregabalin, lamotrigine, etc. Combinations of drugs with different modes of action can be particularly useful for reducing adverse effects. While escalation therapy may require opioids, there are encouraging results from studies regarding cannabinoids, but their future role in the treatment of MS-related pain has still to be determined. Pain related to spasticity often improves with adequate physiotherapy. Drug treatment includes antispastic agents such as baclofen or tizanidine and in patients with phasic spasticity, gabapentin or levetiracetam are administered. In patients with severe spasticity, botulinum toxin injections or intrathecal baclofen merit consideration. While physiotherapy may ameliorate malposition-induced joint and muscle pain, additional drug treatment with paracetamol (acetaminophen) or NSAIDs may be useful. Moreover, painful pressure lesions should be avoided by using optimally

  17. High quantum efficiency GaP avalanche photodiodes.

    Science.gov (United States)

    McIntosh, Dion; Zhou, Qiugui; Chen, Yaojia; Campbell, Joe C

    2011-09-26

    Gallium Phosphide (GaP) reach-through avalanche photodiodes (APDs) are reported. The APDs exhibited dark current less than a pico-ampere at unity gain. A quantum efficiency of 70% was achieved with a recessed window structure; this is almost two times higher than previous work. © 2011 Optical Society of America

  18. Avalanche dynamics on a rough inclined plane.

    Science.gov (United States)

    Börzsönyi, Tamás; Halsey, Thomas C; Ecke, Robert E

    2008-07-01

    The avalanche behavior of gravitationally forced granular layers on a rough inclined plane is investigated experimentally for different materials and for a variety of grain shapes ranging from spherical beads to highly anisotropic particles with dendritic shape. We measure the front velocity, area, and height of many avalanches and correlate the motion with the area and height. We also measure the avalanche profiles for several example cases. As the shape irregularity of the grains is increased, there is a dramatic qualitative change in avalanche properties. For rough nonspherical grains, avalanches are faster, bigger, and overturning in the sense that individual particles have down-slope speeds u p that exceed the front speed uf as compared with avalanches of spherical glass beads that are quantitatively slower and smaller and where particles always travel slower than the front speed. There is a linear increase of three quantities: (i) dimensionless avalanche height, (ii) ratio of particle to front speed, and (iii) the growth rate of avalanche speed with increasing avalanche size with increasing tan theta r where theta r is the bulk angle of repose, or with increasing beta P, the slope of the depth averaged flow rule, where both theta r and beta P reflect the grain shape irregularity. These relations provide a tool for predicting important dynamical properties of avalanches as a function of grain shape irregularity. A relatively simple depth-averaged theoretical description captures some important elements of the avalanche motion, notably the existence of two regimes of this motion.

  19. Experimental method to predict avalanches based on neural networks

    Directory of Open Access Journals (Sweden)

    V. V. Zhdanov

    2016-01-01

    Full Text Available The article presents results of experimental use of currently available statistical methods to classify the avalanche‑dangerous precipitations and snowfalls in the Kishi Almaty river basin. The avalanche service of Kazakhstan uses graphical methods for prediction of avalanches developed by I.V. Kondrashov and E.I. Kolesnikov. The main objective of this work was to develop a modern model that could be used directly at the avalanche stations. Classification of winter precipitations into dangerous snowfalls and non‑dangerous ones was performed by two following ways: the linear discriminant function (canonical analysis and artificial neural networks. Observational data on weather and avalanches in the gorge Kishi Almaty in the gorge Kishi Almaty were used as a training sample. Coefficients for the canonical variables were calculated by the software «Statistica» (Russian version 6.0, and then the necessary formula had been constructed. The accuracy of the above classification was 96%. Simulator by the authors L.N. Yasnitsky and F.М. Cherepanov was used to learn the neural networks. The trained neural network demonstrated 98% accuracy of the classification. Prepared statistical models are recommended to be tested at the snow‑avalanche stations. Results of the tests will be used for estimation of the model quality and its readiness for the operational work. In future, we plan to apply these models for classification of the avalanche danger by the five‑point international scale.

  20. Dynamic avalanche behavior of power MOSFETs and IGBTs under unclamped inductive switching conditions

    Institute of Scientific and Technical Information of China (English)

    Lu Jiang; Tian Xiaoli; Lu Shuojin; Zhou Hongyu; Zhu Yangjun; Han Zhengsheng

    2013-01-01

    The ability of high-voltage power MOSFETs and IGBTs to withstand avalanche events under unclamped inductive switching (UIS) conditions is measured.This measurement is to investigate and compare the dynamic avalanche failure behavior of the power MOSFETs and the IGBT,which occur at different current conditions.The UIS measurement results at different current conditions show that the main failure reason of the power MOSFETs is related to the parasitic bipolar transistor,which leads to the deterioration of the avalanche reliability of power MOSFETs.However,the results of the IGBT show two different failure behaviors.At high current mode,the failure behavior is similar to the power MOSFETs situation.But at low current mode,the main failure mechanism is related to the parasitic thyristor activity during the occurrence of the avalanche process and which is in good agreement with the experiment result.

  1. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    Science.gov (United States)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  2. STUDY ON SIMULATION METHOD OF AVALANCHE : FLOW ANALYSIS OF AVALANCHE USING PARTICLE METHOD

    OpenAIRE

    2015-01-01

    In this paper, modeling for the simulation of the avalanche by a particle method is discussed. There are two kinds of the snow avalanches, one is the surface avalanche which shows a smoke-like flow, and another is the total-layer avalanche which shows a flow like Bingham fluid. In the simulation of the surface avalanche, the particle method in consideration of a rotation resistance model is used. The particle method by Bingham fluid is used in the simulation of the total-layer avalanche. At t...

  3. Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection

    Science.gov (United States)

    Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin

    2010-01-01

    The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).

  4. Multiple myoma: current recommendations for imaging; Multiples Myelom: Aktuelle Empfehlungen fuer die Bildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Hillengass, J. [Medizinische Universitaetsklinik, Abteilung fuer Haematologie, Onkologie und Rheumatologie, Heidelberg (Germany); Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany); Delorme, S. [Deutsches Krebsforschungszentrum, Abteilung Radiologie E010, Heidelberg (Germany)

    2012-04-15

    Imaging in monoclonal plasma cell disease serves to detect end organ damage, i.e., osteoporosis or bone destruction. Diffuse or circumscribed bone marrow infiltration without damage to mineralized bone is so far not regarded as end organ damage. Skeletal plain x-ray film survey to detect bone destruction, osteoporosis or fractures. Whole body low-dose computed tomography (CT) and whole body magnetic resonance imaging (MRI) allow a more sensitive assessment of both mineralized bone and bone marrow, with greater patient comfort and in the case of MRI without ionizing radiation. According to the literature, cross-sectional imaging is clearly superior to skeletal surveys and MRI is more sensitive than CT. Every locally destructive lesion will be detectable with MRI but for assessing the damage to mineralized bone CT is indispensible. The sensitivities of positron emission tomography (PET)/CT and MRI are comparable. If available whole body MRI and whole body low dose CT should replace conventional skeletal surveys. This has already been implemented in several centers in Germany. For the initial diagnosis of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma or symptomatic multiple myeloma, a whole-body MRI and a whole body low-dose CT should be performed. For MGUS and asymptomatic myeloma, whole body MRI only should be performed for follow-up until detection of first bone destruction. Patients with symptomatic multiple myeloma and known bone destruction will usually have whole body low-dose CT, supplemented by MRI studies where clinically required. (orig.) [German] Aufgabe der bildgebenden Diagnostik monoklonaler Plasmazellerkrankungen ist der Nachweis der Endorganschaedigung, d. h. der Osteoporose oder der Destruktion des mineralisierten Knochens. Die alleinige umschriebene oder diffuse Markrauminfiltration ohne knoecherne Destruktion gilt nach heutiger Konvention nicht als Endorganschaedigung. Konventioneller Roentgenskelettstatus

  5. Gridded snow maps supporting avalanche forecasting in Norway

    Science.gov (United States)

    Müller, K.; Humstad, T.; Engeset, R. V.; Andersen, J.

    2012-04-01

    We present gridded maps indicating key parameters for avalanche forecasting with a 1 km x 1 km resolution. Based on the HBV hydrology model, snow parameters are modeled based on observed and interpolated precipitation and temperature data. Modeled parameters include for example new snow accumulated the last 24 and 72 hours, snow-water equivalent, and snow-water content. In addition we use meteorological parameters from the UK weather prediction model "Unified Model" such as wind and radiation to model snow-pack properties. Additional loading in lee-slopes by wind-transport is modeled based on prevailing wind conditions, snow-water content and snow age. A depth hoar index accounts for days with considerable negative temperature gradients in the snow pack. A surface hoar index based on radiation and humidity is currently under development. The maps are tested against field reports from avalanche observers throughout Norway. All data is available via a web-platform that combines maps for geo-hazards such as floods, landslides and avalanches. The maps are used by the Norwegian avalanche forecasting service, which is currently in a test phase. The service will be operational by winter 2012/2013.

  6. Avalanche hazard and control in Kazakhstan

    Directory of Open Access Journals (Sweden)

    V. P. Blagoveshchensky

    2014-01-01

    Full Text Available In Kazakhstan, area of 124 thousand km2 is prone to the avalanche hazard. Avalanches are released down in mountain regions situated along the eastern boundary of Kazakhstan. Systematic studies of avalanches here were started in 1958 by explorer I.S. Sosedov; later on, I.V. Seversky continued these investigations in Institute of Geography of the Kazakh Soviet Republic. Actually, he founded the Kazakh school of the avalanche studies. In 1970–1980s, five snow-avalanche stations operated in Kazakhstan: two in Il’ Alatau, two in Zhetysu Alatau, and one in the Altai. At the present time, only two stations and two snow-avalanche posts operate, and all of them are located in Il’ Alatau.Since 1951 to 2013, 75 avalanches took place in Kazakhstan, releases of them caused significant damages. For this period 172 people happened to be under avalanches, among them 86 perished. Large avalanche catastrophes causing human victims and destructions took place in Altai in 1977 and in Karatau in 1990. In spring of 1966, only in Il’ Alatau avalanches destroyed more 600 ha of mature fir (coniferous forest, and the total area of forest destroyed here by avalanches amounts to 2677 ha or 7% of the total forest area.For 48 years of the avalanche observations, there were 15 winters with increased avalanche activity in the river Almatinka basin when total volume of released snow exceeded annual mean value of 147 thousand m3. During this period, number of days with winter avalanches changed from three (in season of 1973/1974 to 28 (1986/1987, the average for a year is 16 days for a season. Winter with the total volume of snow 1300 thousand m3 occur once in 150 years. Individual avalanches with maximal volume of 350 thousand m3 happen once in 80 years.Preventive avalanche releases aimed at protection of roads and settlements are used in Kazakhstan since 1974. These precautions are taken in Il’ Alatau, Altai, and on Kalbinsky Range. Avalanches are released with the

  7. Avalanches in dry and saturated disordered media at fracture.

    Science.gov (United States)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  8. The prehospital management of avalanche victims.

    Science.gov (United States)

    Kornhall, Daniel K; Martens-Nielsen, Julie

    2016-12-01

    Avalanche accidents are frequently lethal events with an overall mortality of 23%. Mortality increases dramatically to 50% in instances of complete burial. With modern day dense networks of ambulance services and rescue helicopters, health workers often become involved during the early stages of avalanche rescue. Historically, some of the most devastating avalanche accidents have involved military personnel. Armed forces are frequently deployed to mountain regions in order to train for mountain warfare or as part of ongoing conflicts. Furthermore, military units are frequently called to assist civilian organised rescue in avalanche rescue operations. It is therefore important that clinicians associated with units operating in mountain regions have an understanding of, the medical management of avalanche victims, and of the preceding rescue phase. The ensuing review of the available literature aims to describe the pathophysiology particular to avalanche victims and to outline a structured approach to the search, rescue and prehospital medical management.

  9. Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications

    CERN Document Server

    Carulla, M.; Fernández-Martínez, P.; IMB-CNM (CSIC); Flores, D.; IMB-CNM (CSIC); González, J.; Hidalgo, S.; Jaramillo, R.; Merlos, A.; Palomo, F.R.; Pellegrini, G; Quirion, D.; Vila, I.

    2016-01-01

    ABSTRACT: The first Inverse Low Gain Avalanche Detector (iLGAD) have been fabricated at IMB-CNM (CSIC). The iLGAD structure includes the multiplication diffusions at the ohmic contact side while the segmentation is implemented at the front side with multiple P + diffusions. Therefore, iLGAD is P on P position-sensitive detector with a uniform electric field all along the device area that guarantees the same signal amplification wherever a particle passes through the sensitive bulk solving the main draw of the LGAD microstrip detector. However, the detection current is dominated by holes flowing back from the multiplication junction with the subsequent transient current pulse duration increase in comparison with conventional LGAD counterparts. Applications of iLGAD range from tracking and timing applications like determination of primary interaction vertex to medical imaging. The paper addresses the optimization of the iLGAD structure with the aid of TCAD simul...

  10. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  11. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  12. Remote detection of artificially triggered avalanches below a fixed avalanche control installation

    Science.gov (United States)

    van Herwijnen, Alec; Simioni, Stephan; Schweizer, Juerg

    2014-05-01

    Avalanche control by explosives is widely used as a temporary preventive measure to reduce avalanche hazard. The goal is to artificially trigger smaller less destructive avalanches, by detonating charges either above or on the snow surface. Hand charges are most often used, whereby the explosives are deployed by manually hand tossing or lowering onto the snow slope. Given the inherent dangers and limitations of this type of avalanche control, fixed avalanche control installations are increasingly used. These consist of strategically placed remote controlled installations that generate an explosion above the snow pack in an avalanche starting zone. While fixed installations can be used at any time and minimize the risk to avalanche control personnel, visual confirmation is still required to verify if an avalanche released. In order to remotely detect artificially triggered avalanches, we therefore developed a low-cost seismic monitoring system. We deployed the monitoring system in a ski area above the town of Davos , in the eastern Swiss Alps, below a Gazex installation, a remote controlled installation that generates an air blast by detonating a fuel-air explosive above the snow pack. The monitoring system consists of three vertical component geophones inserted in the ground at approximately 14, 27 and 46 meters from the Gazex installation. Our results show that, despite the relatively low precision of the monitoring equipment, both the detonation and the resulting avalanches can clearly be identified in the seismic data. Specifically, detonations are characterized by short, high amplitude broadband signals, while avalanches generate much longer, low frequency signals. Furthermore, information on the size of the artificially triggered avalanches is also obtained as it directly relates to the duration of the generated seismic signal. The overall goal is to assess the effectiveness of the fixed avalanche control installation with regards to yield (i.e. number of

  13. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    Science.gov (United States)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  14. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    OpenAIRE

    Fujita, Yoshio; Taguchi, Hiroaki

    2011-01-01

    Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens), carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1) the addition of f...

  15. Sequential dissection of multiple ionic currents in single cardiac myocytes under action potential-clamp.

    Science.gov (United States)

    Banyasz, Tamas; Horvath, Balazs; Jian, Zhong; Izu, Leighton T; Chen-Izu, Ye

    2011-03-01

    The cardiac action potential (AP) is shaped by myriad ionic currents. In this study, we develop an innovative AP-clamp Sequential Dissection technique to enable the recording of multiple ionic currents in the single cell under AP-clamp. This new technique presents a significant step beyond the traditional way of recording only one current in any one cell. The ability to measure many currents in a single cell has revealed two hitherto unknown characteristics of the ionic currents in cardiac cells: coordination of currents within a cell and large variation of currents between cells. Hence, the AP-clamp Sequential Dissection method provides a unique and powerful tool for studying individual cell electrophysiology.

  16. Silicon Geiger mode avalanche photodiodes

    Institute of Scientific and Technical Information of China (English)

    M. Mazzillo; S. Billotta; G. Bonanno; A. Campisi; L. Cosentino; P. Finocchiaro; F. Musumeci; S.Privitera; S. Tudisco; G. Condorelli; D. Sanfilippo; G. Fallica; E. Sciacca; S. Aurite; S. Lombardo; E. Rlmini; M. Belluso

    2007-01-01

    In this letter we present the results regarding the electrical and optical characterization of Geiger mode silicon avalanche photodiodes (GMAP) fabricated by silicon standard planar technology. Low dark count rates, negligible afterpulsing effects,good timing resolution and high quantum detection efficiency in all the visible range have been measured. The very good electro-optical performances of our photodiodes make them attractive for the fabrication of arrays with a large number of GMAP to be used both in the commercial and the scientific fields, as telecommunications and nuclear medical imaging.

  17. Avalanche!--Teachable Moments in Outdoor Education

    Science.gov (United States)

    Galloway, Shayne

    2005-01-01

    Rarely do outdoor educators get the opportunity to safely incorporate an avalanche while the topic of the day is actually avalanche awareness and forecasting. Many similar possibilities exist in the expeditionary context, but even brief excursions may result in incredible learning experiences. These "teachable moments" occur regularly in the…

  18. Observations and modelling of snow avalanche entrainment

    Directory of Open Access Journals (Sweden)

    B. Sovilla

    2002-01-01

    Full Text Available In this paper full scale avalanche dynamics measurements from the Italian Pizzac and Swiss Vallée de la Sionne test sites are used to develop a snowcover entrainment model. A detailed analysis of three avalanche events shows that snowcover entrainment at the avalanche front appears to dominate over bed erosion at the basal sliding surface. Furthermore, the distribution of mass within the avalanche body is primarily a function of basal friction. We show that the mass distribution in the avalanche changes the flow dynamics significantly. Two different dynamical models, the Swiss Voellmy-fluid model and the Norwegian NIS model, are used to back calculate the events. Various entrainment methods are investigated and compared to measurements. We demon-strate that the Norwegian NIS model is clearly better able to simulate the events once snow entrainment has been included in the simulations.

  19. Thermal energy in dry snow avalanches

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2015-09-01

    Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. For the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the effective elevation drop of the mass of the avalanche with a warming of approximately 0.3 °C per 100 vertical metres. Contrarily, the temperature change due to entrainment varied for the individual avalanches, from -0.08 to 0.3 °C, and depended on the temperature of the snow along the path and the erosion depth. Infrared radiation thermography (IRT) was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to identify the warmest temperatures to be located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  20. Thermal energy in dry snow avalanches

    Directory of Open Access Journals (Sweden)

    W. Steinkogler

    2014-11-01

    Full Text Available Avalanches can exhibit many different flow regimes from powder clouds to slush flows. Flow regimes are largely controlled by the properties of the snow released and entrained along the path. Recent investigations showed the temperature of the moving snow to be one of the most important factors controlling the mobility of the flow. The temperature of an avalanche is determined by the temperature of the released and entrained snow but also increases by frictional and collisional processes with time. For three artificially released avalanches, we conducted snow profiles along the avalanche track and in the deposition area, which allowed quantifying the temperature of the eroded snow layers. Infrared radiation thermography (IRT was used to assess the surface temperature before, during and just after the avalanche with high spatial resolution. This data set allowed to calculate the thermal balance, from release to deposition, and to discuss the magnitudes of different sources of thermal energy of the avalanches. We could confirm that, for the investigated dry avalanches, the thermal energy increase due to friction was mainly depending on the elevation drop of the avalanche with a warming of approximately 0.5 °C per 100 height meters. Contrary, warming due to entrainment was very specific to the individual avalanche and depended on the temperature of the snow along the path and the erosion depth ranging from nearly no warming to a maximum observed warming of 1 °C. Furthermore, we could observe the warmest temperatures are located in the deposits of the dense core. Future research directions, especially for the application of IRT, in the field of thermal investigations in avalanche dynamics are discussed.

  1. Equilibrium avalanches in spin glasses

    Science.gov (United States)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMmodel. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  2. Counteracting fatigue in multiple sclerosis with right parietal anodal transcranial direct current stimulation

    NARCIS (Netherlands)

    Hanken, K.; Bosse, M.; Möhrke, K.; Eling, P.A.T.M.; Kastrup, A.; Antal, A.; Hildebrandt, H.

    2016-01-01

    Background: Fatigue in multiple sclerosis (MS) patients appears to correlate with vigilance decrement as reflected in an increase in reaction time and errors with prolonged time-on-task. Objectives: The aim of this study was to investigate whether anodal transcranial direct current stimulation (tDCS

  3. WORKING FEATURES OF POWER SOURCE SYSTEMS – A MULTIPLE CURRENT PULSE GENERATOR

    Directory of Open Access Journals (Sweden)

    Shs.V. Argun

    2013-04-01

    Full Text Available An analysis of circuit designs as to connecting a magnetic pulse action tool to a power source has been carried out. Design features of a magnetic pulse installation control and monitoring system in a multiple current pulse mode have been revealed. The description of the control and monitoring system block diagrams has been presented.

  4. Spike avalanches exhibit universal dynamics across the sleep-wake cycle.

    Directory of Open Access Journals (Sweden)

    Tiago L Ribeiro

    Full Text Available BACKGROUND: Scale-invariant neuronal avalanches have been observed in cell cultures and slices as well as anesthetized and awake brains, suggesting that the brain operates near criticality, i.e. within a narrow margin between avalanche propagation and extinction. In theory, criticality provides many desirable features for the behaving brain, optimizing computational capabilities, information transmission, sensitivity to sensory stimuli and size of memory repertoires. However, a thorough characterization of neuronal avalanches in freely-behaving (FB animals is still missing, thus raising doubts about their relevance for brain function. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we employed chronically implanted multielectrode arrays (MEA to record avalanches of action potentials (spikes from the cerebral cortex and hippocampus of 14 rats, as they spontaneously traversed the wake-sleep cycle, explored novel objects or were subjected to anesthesia (AN. We then modeled spike avalanches to evaluate the impact of sparse MEA sampling on their statistics. We found that the size distribution of spike avalanches are well fit by lognormal distributions in FB animals, and by truncated power laws in the AN group. FB data surrogation markedly decreases the tail of the distribution, i.e. spike shuffling destroys the largest avalanches. The FB data are also characterized by multiple key features compatible with criticality in the temporal domain, such as 1/f spectra and long-term correlations as measured by detrended fluctuation analysis. These signatures are very stable across waking, slow-wave sleep and rapid-eye-movement sleep, but collapse during anesthesia. Likewise, waiting time distributions obey a single scaling function during all natural behavioral states, but not during anesthesia. Results are equivalent for neuronal ensembles recorded from visual and tactile areas of the cerebral cortex, as well as the hippocampus. CONCLUSIONS

  5. Frequency response and design consideration of GaN SAM avalanche photodiodes

    Science.gov (United States)

    Xie, Feng; Yang, Guofeng; Zhou, Dong; Lu, Hai; Wang, Guosheng

    2016-11-01

    In this work, a method is developed for estimating the frequency response characteristics of GaN avalanche photodiodes (APDs) with separated absorption and multiplication regions (SAM). The method calculates the total diode current with varying frequency by solving transport equations analytically and uses a commercial device simulator as a supplement for determining the exact electrical field profile within the device. Due to the high carrier saturation velocity of GaN, a high-gain-bandwidth product over THz is found achievable for GaN SAM-APDs. The potential performances of GaN SAM-APDs with different structural designs are further compared through numerical studies. It is found that a close-to-reach-through design is attractive for simultaneously achieving both relatively low operation voltage and high working frequency. In addition, transit-time limit and RC-delay limit for the frequency response of GaN SAM-APDs are also discussed.

  6. Design and fabrication of an optimum peripheral region for low gain avalanche detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Martínez, Pablo; Flores, D., E-mail: david.flores@imb-cnm.csic.es; Hidalgo, S.; Greco, V.; Merlos, A.; Pellegrini, G.; Quirion, D.

    2016-06-11

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects required to optimize the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral region improvement are also provided.

  7. Design and Fabrication of an Optimum Peripheral Region for Low Gain Avalanche Detectors

    CERN Document Server

    Fernandez-Martinez, Pablo; Hidalgo, Salvador; Greco, Virginia; Merlos, Angel; Pellegrini, Giulio; Quirion, David

    2015-01-01

    Low Gain Avalanche Detectors (LGAD) represent a remarkable advance in high energy particle detection, since they provide a moderate increase (gain ~10) of the collected charge, thus leading to a notable improvement of the signal-to-noise ratio, which largely extends the possible application of Silicon detectors beyond their present working field. The optimum detection performance requires a careful implementation of the multiplication junction, in order to obtain the desired gain on the read out signal, but also a proper design of the edge termination and the peripheral region, which prevents the LGAD detectors from premature breakdown and large leakage current. This work deals with the critical technological aspects when optimising the LGAD structure. The impact of several design strategies for the device periphery is evaluated with the aid of TCAD simulations, and compared with the experimental results obtained from the first LGAD prototypes fabricated at the IMB-CNM clean room. Solutions for the peripheral...

  8. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    Science.gov (United States)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  9. Modelling wet snow avalanche runout to assess road safety at a high-altitude mine in the central Andes

    Science.gov (United States)

    Valero, Cesar Vera; Wever, Nander; Bühler, Yves; Stoffel, Lukas; Margreth, Stefan; Bartelt, Perry

    2016-11-01

    Mining activities in cold regions are vulnerable to snow avalanches. Unlike operational facilities, which can be constructed in secure locations outside the reach of avalanches, access roads are often susceptible to being cut, leading to mine closures and significant financial losses. In this paper we discuss the application of avalanche runout modelling to predict the operational risk to mining roads, a long-standing problem for mines in high-altitude, snowy regions. We study the 35 km long road located in the "Cajón del rio Blanco" valley in the central Andes, which is operated by the Codelco Andina copper mine. In winter and early spring, this road is threatened by over 100 avalanche paths. If the release and snow cover conditions can be accurately specified, we find that avalanche dynamics modelling is able to represent runout, and safe traffic zones can be identified. We apply a detailed, physics-based snow cover model to calculate snow temperature, density and moisture content in three-dimensional terrain. This information is used to determine the initial and boundary conditions of the avalanche dynamics model. Of particular importance is the assessment of the current snow conditions along the avalanche tracks, which define the mass and thermal energy entrainment rates and therefore the possibility of avalanche growth and long runout distances.

  10. Dynamics of the Plasmoid-unstable Regime in Different Multiple-current Plasmas

    Science.gov (United States)

    Nemati, M. J.; Wang, Zheng-Xiong; Wei, Lai

    2017-02-01

    The dynamics of plasmoid instability in multiple-current plasmas with different system sizes is investigated by means of resistive magnetohydrodynamic simulations. As the system size is increased, the secondary current sheets become very long, producing more plasmoids. It is found that the dependence on resistivity η of the number of plasmoids changes from no clear scaling for small system size, to scaling in ∼ {η }-1 for large system size. Moreover, increasing the current length of the system weakens the negative dependence of the early growth rate of the monster plasmoid on η. This is qualitatively different from the reconnection rate for a single-current sheet, where it usually has a positive dependence on η or is independent of η. In addition, increasing the current length significantly increases the maximum width of the monster plasmoid in the low-η regime, manifesting a scaling ∼ {η }-0.4.

  11. Temporal correlations in neuronal avalanche occurrence

    Science.gov (United States)

    Lombardi, F.; Herrmann, H. J.; Plenz, D.; de Arcangelis, L.

    2016-04-01

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  12. Temporal correlations in neuronal avalanche occurrence.

    Science.gov (United States)

    Lombardi, F; Herrmann, H J; Plenz, D; de Arcangelis, L

    2016-04-20

    Ongoing cortical activity consists of sequences of synchronized bursts, named neuronal avalanches, whose size and duration are power law distributed. These features have been observed in a variety of systems and conditions, at all spatial scales, supporting scale invariance, universality and therefore criticality. However, the mechanisms leading to burst triggering, as well as the relationship between bursts and quiescence, are still unclear. The analysis of temporal correlations constitutes a major step towards a deeper understanding of burst dynamics. Here, we investigate the relation between avalanche sizes and quiet times, as well as between sizes of consecutive avalanches recorded in cortex slice cultures. We show that quiet times depend on the size of preceding avalanches and, at the same time, influence the size of the following one. Moreover we evidence that sizes of consecutive avalanches are correlated. In particular, we show that an avalanche tends to be larger or smaller than the following one for short or long time separation, respectively. Our analysis represents the first attempt to provide a quantitative estimate of correlations between activity and quiescence in the framework of neuronal avalanches and will help to enlighten the mechanisms underlying spontaneous activity.

  13. Avalanche Initiaition Mechanism - A Finite-element Approach

    Directory of Open Access Journals (Sweden)

    S. Senthil

    2003-01-01

    Full Text Available The Himalayas, the longest chain of mountains in the world, experiences extensive snowfall and avalanche activity during winter. Some of these areas are densely populated, and death and destruction on large scale due to avalanche activity has been reported in these areas. One of the ways of reducing the loss of life and material due to avalanches is through prediction of avalanches. An understanding of weather forecasting, terrain, and avalanche initiation mechanism is a prerequisite for avalanche prediction. In the present paper mathematical modelling of avalanche initiation mechanism has been discussed.

  14. Sixteen-year follow-up of childhood avalanche survivors

    Science.gov (United States)

    Thordardottir, Edda Bjork; Valdimarsdottir, Unnur Anna; Hansdottir, Ingunn; Hauksdóttir, Arna; Dyregrov, Atle; Shipherd, Jillian C.; Elklit, Ask; Resnick, Heidi; Gudmundsdottir, Berglind

    2016-01-01

    Background Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD) can provide a gateway to recovery as well as enhancement of preventive measures. Objective Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES) and PTSD symptoms in adulthood. Methods Childhood survivors (aged 2–19 at the time of exposure) of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results Response rate was 66% (108/163). Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, punemployment and/or disability (F=3.04, p<0.05). In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001) and traumatic reactions of caregivers (t=2.49, p<0.05) in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms. Highlights of the article PTSD symptoms following avalanche exposure during childhood were associated with poorer socioeconomic status in adulthood. Lack of social support and traumatic reactions of caregivers in the aftermath of avalanches predicted PTSD symptoms among childhood

  15. Temperature dependence of gain and excess noise in InAs electron avalanche photodiodes.

    Science.gov (United States)

    Ker, Pin Jern; David, John P R; Tan, Chee Hing

    2012-12-31

    Measurement and analysis of the temperature dependence of avalanche gain and excess noise in InAs electron avalanche photodiodes (eAPDs) at 77 to 250 K are reported. The avalanche gain, initiated by pure electron injection, was found to reduce with decreasing temperature. However no significant change in the excess noise was measured as the temperature was varied. For avalanche gain > 3, the InAs APDs with 3.5 µm i-region show consistently low excess noise factors between 1.45 and 1.6 at temperatures of 77 to 250 K, confirming that the eAPD characteristics are exhibited in the measured range of electric field. As the dark current drops much more rapidly than the avalanche gain and the excess noise remains very low, our results confirmed that improved signal to noise ratio can be obtained in InAs eAPDs by reducing the operating temperature. The lack of hole impact ionization, as confirmed by the very low excess noise and the exponentially rising avalanche gain, suggests that hole impact ionization enhancement due to band "resonance" does not occur in InAs APDs at the reported temperatures.

  16. Numerical simulation on the flux avalanche behaviors of microstructured superconducting thin films

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2017-01-01

    Controlling and suppressing the propagation of magnetic flux avalanches is an important issue for the application of type-II superconductors. The effects of engineered pinning centers (antidots) on the guidance of flux avalanche propagation paths in type-II superconducting thin films are numerically investigated by solving the coupled nonlinear Maxwell's equations and the thermal diffusion equations. The field dependence of critical current density is considered in the simulation in this paper. Dynamic propagations of the thermomagnetic avalanches within the superconducting films patterned with different arrangements of antidots (like random, periodic square, and conformal mapping arrays) are presented. We reveal that presence of the antidots significantly modifies the propagation paths of the avalanches. The flux avalanche patterns of the superconducting films change with the variation of the arrangements of antidots. The patterned antidots in the form of conformal mapping arrays within the superconducting film exhibit strong guidance to the thermomagnetic avalanches. In addition, introducing the antidots in the form of conformal mapping arrays into the superconducting film can effectively lower the magnetic flux jump sizes.

  17. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    Science.gov (United States)

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  18. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles

    Directory of Open Access Journals (Sweden)

    Taguchi Hiroaki

    2011-08-01

    Full Text Available Abstract Many studies are currently investigating the development of safe and effective vaccines to prevent various infectious diseases. Multiple antigen-presenting peptide vaccine systems have been developed to avoid the adverse effects associated with conventional vaccines (i.e., live-attenuated, killed or inactivated pathogens, carrier proteins and cytotoxic adjuvants. Recently, two main approaches have been used to develop multiple antigen-presenting peptide vaccine systems: (1 the addition of functional components, e.g., T-cell epitopes, cell-penetrating peptides, and lipophilic moieties; and (2 synthetic approaches using size-defined nanomaterials, e.g., self-assembling peptides, non-peptidic dendrimers, and gold nanoparticles, as antigen-displaying platforms. This review summarizes the recent experimental studies directed to the development of multiple antigen-presenting peptide vaccine systems.

  19. Longitudinal gradient coils with enhanced radial uniformity in restricted diameter: Single-current and multiple-current approaches

    Science.gov (United States)

    Romero, Javier A.; Domínguez, Gabriela A.; Anoardo, Esteban

    2017-03-01

    An important requirement for a gradient coil is that the uniformity of the generated magnetic field gradient should be maximal within the active volume of the coil. For a cylindrical geometry, the radial uniformity of the gradient turns critic, particularly in cases where the gradient-unit has to be designed to fit into the inner bore of a compact magnet of reduced dimensions, like those typically used in fast-field-cycling NMR. In this paper we present two practical solutions aimed to fulfill this requirement. We propose a matrix-inversion optimization algorithm based on the Biot-Savart law, that using a proper cost function, allows maximizing the uniformity of the gradient and power efficiency. The used methodology and the simulation code were validated in a single-current design, by comparing the computer simulated field map with the experimental data measured in a real prototype. After comparing the obtained results with the target field approach, a multiple-element coil driven by independent current sources is discussed, and a real prototype evaluated. Opposed equispaced independent windings are connected in pairs conforming an arrangement of independent anti-Helmholtz units. This last coil seizes 80% of its radial dimension with a gradient uniformity better than 5%. The design also provides an adaptable region of uniformity along with adjustable coil efficiency.

  20. Scale-free avalanches in the multifractal random walk

    Science.gov (United States)

    Bartolozzi, M.

    2007-06-01

    Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the question about the current state of reliability of SOC inference from time series analysis.

  1. Monitoring and modelling snow avalanches in Svalbard

    Science.gov (United States)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  2. Catastrophic avalanches and methods of their control

    Directory of Open Access Journals (Sweden)

    N. A. Volodicheva

    2014-01-01

    Full Text Available Definition of such phenomenon as “catastrophic avalanche” is presented in this arti-cle. Several situations with releases of catastrophic avalanches in mountains of Caucasus, Alps, and Central Asia are investigated. Materials of snow-avalanche ob-servations performed since 1960s at the Elbrus station of the Lomonosov Moscow State University (Central Caucasus were used for this work. Complex-valued measures of engineering protection demonstrating different efficiencies are consid-ered.

  3. Evolution of the average avalanche shape with the universality class.

    Science.gov (United States)

    Laurson, Lasse; Illa, Xavier; Santucci, Stéphane; Tore Tallakstad, Ken; Måløy, Knut Jørgen; Alava, Mikko J

    2013-01-01

    A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.

  4. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  5. Spatial aspects of vulnerability and risk resulting from snow avalanches

    Science.gov (United States)

    Fuchs, S.; Koltermann, P.; Sokratov, S.; Seliverstov, Y.; Shnyparkov, A.

    2012-04-01

    Mountain regions provide a significant proportion of areas used for human settlements, economic purpose, and recreation. Simultaneously, due to steep vertical gradients mountain areas are prone to mass movement processes. The intersection of such processes with areas used by human action turns them into hazards. In particular in arctic regions, which show a greater susceptibility to disturbances than many landscapes, considerable efforts have been undertaken in recent decades to reduce the adverse effects of mountain hazards. The concept of risk supplemented the traditional engineering approaches of technical mitigation since the 1990s to comprehensively manage these threats, and to develop strategies for a sustainable use of these areas. The concept of risk is based on a mathematical combination of hazards and consequences, but is static over time. However, three major dynamic systems interact in the field of mountain hazard risk management: the physical environment, which includes hazardous events; the social and demographic characteristics of the communities that experience them; and the values at risk such as buildings, roads, and other components of the built environment. These dynamics have not sufficiently been taken into account so far in natural hazard risk management, in particular with respect to industrialised artic regions. Within the city of Kirovsk, Kola Peninsula, Russian Federation, these dynamics were assessed by taking snow avalanche risk as an example. The test site is exposed to multiple avalanche tracks with repeated releases during individual winter seasons, endangering the built environment and any kind of infrastructure lines. The aim was to contribute to the development of a spatial risk model for mountain regions on different temporal scales. The spatial characteristics of the long-term avalanche risk, as a result of the evolution of the built environment, was analysed on an annual as well as inter-annual level. This long-term development

  6. Performance of multi-step avalanche chambers equipped with two-dimensional electronic readout

    NARCIS (Netherlands)

    Carlén, L.; El Chenawi, K.; Enosawa, K; Garpman, S; Gustafsson, H.A.; Kurata, M; Löhner, H.; Martin, M; Miake, Y; Miyamoto, Y; Naef, H; Nilsson, P; Nishimura, S; Nystrand, J; Oskarsson, A; Osterman, L; Otterlund, I.; Perrin, E; Rosselet, L; Rubio, JM; Sato, S; Soderstrom, K; Solomey, N; Stenlund, E; Svensson, T; Voros, S; Yagi, K; Yokota, Y

    1998-01-01

    We have developed large area multi-step avalanche chambers with electronic readout for tracking in a very high multiplicity environment in the WA98 experiment at the CERN SPS. The operational characteristics of the detection system is reported. The reconstruction efficiency of the chambers varies wi

  7. A new single-photon avalanche diode in 90nm standard CMOS technology

    NARCIS (Netherlands)

    Karami, M.A.; Gersbach, M.; Charbon, E.

    2010-01-01

    A single-photon avalanche diode (SPAD) fabricated in a 90nm standard CMOS process is reported. The detector comprises an octagonal multiplication region and a guard ring to prevent premature edge breakdown using exclusively standard layers. The proposed structure is the result of a systematic study

  8. Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays

    Science.gov (United States)

    Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim

    2015-11-01

    Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.

  9. SEMICONDUCTOR DEVICES: Off-state avalanche breakdown induced degradation in 20 V NLDMOS devices

    Science.gov (United States)

    Shifeng, Zhang; Koubao, Ding; Yan, Han; Chenggong, Han; Jiaxian, Hu; Bin, Zhang

    2010-09-01

    Degradation behaviors of 20 V NLDMOS operated under off-state avalanche breakdown conditions are presented. A constant current pulse stressing test is applied to the device. Two different degradation mechanisms are identified by analysis of electrical data, technology computer-aided design (TCAD) simulations and charge pumping measurements. The first mechanism is attributed to positive oxide-trapped charges in the N-type drift region, and the second one is due to decreased electron mobility upon interface state formation in the drift region. Both of the mechanisms are enhanced with increasing avalanche breakdown current.

  10. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures

    CERN Document Server

    Saveliev, V

    2000-01-01

    The development of a high quantum efficiency, fast photodetector, with internal gain amplification for the wavelength range 450-600 nm is one of the critical issues for experimental physics - registration of low-intensity light photons flux. The new structure of Silicon Avalanche Detectors with high internal amplification (10 sup 5 -10 sup 6) has been designed, manufactured and tested for registration of visible light photons and charge particles. The main features of Metal-Resistor-Semiconductor (MRS) structures are the high charge multiplication in nonuniform electric field near the 'needle' pn-junction and negative feedback for stabilization of avalanche process due to resistive layer.

  11. On-Chip Integrated, Silicon–Graphene Plasmonic Schottky Photodetector with High Responsivity and Avalanche Photogain

    Science.gov (United States)

    2016-01-01

    We report an on-chip integrated metal graphene–silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal–silicon Schottky photodetectors operated in the same conditions. At a reverse bias of 3 V, we achieve avalanche multiplication, with 0.37A/W responsivity and avalanche photogain ∼2. This paves the way to graphene integrated silicon photonics. PMID:27053042

  12. Silicon avalanche photodiodes on the base of metal-resistor-semiconductor (MRS) structures

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, V. E-mail: saveliev@mail.desy.de; Golovin, V

    2000-03-11

    The development of a high quantum efficiency, fast photodetector, with internal gain amplification for the wavelength range 450-600 nm is one of the critical issues for experimental physics - registration of low-intensity light photons flux. The new structure of Silicon Avalanche Detectors with high internal amplification (10{sup 5}-10{sup 6}) has been designed, manufactured and tested for registration of visible light photons and charge particles. The main features of Metal-Resistor-Semiconductor (MRS) structures are the high charge multiplication in nonuniform electric field near the 'needle' pn-junction and negative feedback for stabilization of avalanche process due to resistive layer.

  13. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength

    Institute of Scientific and Technical Information of China (English)

    Zhao Yong; Xu Chao; Jiang Xiaoqing; Ge Huiliang

    2013-01-01

    The photocurrent effect in pin silicon waveguides at 1550 nm wavelength is experimentally investigated.The photocurrent is mainly attributed to surface-state absorption,defect-state absorption and/or two-photon absorption.Experimental results show that the photocurrent is enhanced by the avalanche effect.A pin silicon waveguide with an intrinsic region width of 3.4 μm and a length of 2000 μm achieves a responsivity of 4.6 mA/W and an avalanche multiplication factor of about five.

  14. Supershort avalanche electron beam in SF6 and krypton

    Science.gov (United States)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  15. Information Measure for Size Distribution of Avalanches in the Bak-Sneppen Evolution Model

    Institute of Scientific and Technical Information of China (English)

    LI Wei; CAI Xu

    2003-01-01

    Information of avalanche size distribution is measured by calculating information entropy (IE) in the Bak-Sneppen evolution model. It is found that the IE increases as the model evolves. Specifically, we establish the relation between the IE and the self-organized threshold fc ? The variation of the IE near the critical point yields an exponent entropy index E = (T - l)/avalanche size distribution and avalanche size cutoff, respectively. A new quantity DT(g) (g = 1 - (fc - G)'r-1' , where G is the gap of the current state), denned as 1 - IT(g)/IT(l), with IT(g) and /T(l) being the IE for the current state and the critical one respectively, is suggested that it represents the distance between the state with gap G and the critical one.

  16. Multiple current sheet systems in the outer heliosphere: Energy release and turbulence

    CERN Document Server

    Burgess, David; Matteini, Lorenzo

    2016-01-01

    In the outer heliosphere, beyond the solar wind termination shock, it is expected that the warped heliospheric current sheet forms a region of closely-packed, multiple, thin current sheets. Such a system may be subject to the ion-kinetic tearing instability, and hence generate magnetic islands and hot populations of ions associated with magnetic reconnection. Reconnection processes in this environment have important implications for local particle transport, and for particle acceleration at reconnection sites and in turbulence. We study this complex environment by means of three-dimensional hybrid simulations over long time scales, in order to capture the evolution from linear growth of the tearing instability to a fully developed turbulent state at late times. The final state develops from the highly ordered initial state via both forward and inverse cascades. Component and spectral anisotropy in the magnetic fluctuations is present when a guide field is included. The inclusion of a population of new-born in...

  17. Rock avalanches: significance and progress (Invited)

    Science.gov (United States)

    Davies, T. R.

    2013-12-01

    1. The probability distribution of landslide volumes follows a power-law indicating that large rock avalanches dominate the terrestrial sediment supply from mountains, and that their source area morphologies dominate mountain topography. 2. Large rock slope failures (~ 106 m3 or greater) often mobilise into rock avalanches, which can travel extraordinarily long distances with devastating effect. This hypermobility has been the subject of many investigations; we have demonstrated that it can be explained quantitatively and accurately by considering the energetics of the intense rock fragmentation that always occurs during motion of a large rock mass. 3. Study of rock avalanche debris psd shows that the energy used in creating new rock surface area during fragmentation is not lost to surface energy, but is recycled generating a high-frequency elastic energy field that reduces the frictional resistance to motion during runout. 4. Rock avalanches that deposit on glaciers can eventually form large terminal moraines that have no connection with any climatic event; unless these are identified as rock-avalanche-influenced they can confuse palaeoclimatic inferences drawn from moraine ages. Rock-avalanche-derived fines, however, can be identified in moraine debris up to ten thousand years old by the characteristic micron-scale agglomerates that form during intense fragmentation, and which are absent from purely climatically-induced moraines; there is thus a strong case for re-examining existing palaeoclimatic databases to eliminate potentially rock-avalanche-influenced moraine ages. 5. Rock avalanches (especially coseismic ones) are a serious hazard, being very destructive in their own right; they also block river valleys, forming landslide dams and potentially devastating dambreak floods, and subsequent severe decade-scale aggradation of downstream fans and floodplains. Rock avalanches falling into lakes or fiords can cause catastrophic tsunami that pose a serious risk to

  18. Current and future imaging modalities for multiple myeloma and its precursor states

    Science.gov (United States)

    TAN, ESTHER; WEISS, BRENDAN M.; MENA, ESTHER; KORDE, NEHA; CHOYKE, PETER L.; LANDGREN, OLA

    2012-01-01

    Traditionally, the skeletal survey has been the standard modality for the detection of osteolytic bone disease in multiple myeloma. In addition to its poor sensitivity for the detection of osteolytic lesions, this modality is not able to identify extramedullary lesions and focal bone marrow involvement, nor measure response to therapy. The application of novel imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging such as fluorine-18 fluorodeoxyglucose positron emission tomography CT (18F-FDG PET/CT) and fluorine-18 sodium fluoride positron emission tomography CT (18F-NaF PET/CT) has the potential to overcome these limitations as well as provide prognostic information in precursor states and multiple myeloma. Also promising is the use of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) to measure vascular permeability, an important feature of myelomagenesis. This review summarizes the current status and possible future role of novel imaging modalities in multiple myeloma and its precursor states. PMID:21649546

  19. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  20. Deterministically Driven Avalanche Models of Solar Flares

    Science.gov (United States)

    Strugarek, Antoine; Charbonneau, Paul; Joseph, Richard; Pirot, Dorian

    2014-08-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick-slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy-loading process. The model design leads to a systematic deficit of small-scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.

  1. Deterministically Driven Avalanche Models of Solar Flares

    CERN Document Server

    Strugarek, Antoine; Joseph, Richard; Pirot, Dorian

    2014-01-01

    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global st...

  2. Currently approved and emerging oral therapies in multiple sclerosis: An update for the ophthalmologist.

    Science.gov (United States)

    Eckstein, Christopher; Bhatti, M Tariq

    2016-01-01

    Although our understanding of multiple sclerosis (MS) has grown substantially, its cause remains unknown. Nonetheless, in the past 3 decades, there have been tremendous advancements in the development of disease-modifying drugs (DMDs). In July 1993, the United States Food and Drug Administration approved the first disease-modifying drug-interferon β- and there are currently 13 medications approved for use in relapsing MS. All the early medications are administered either as a subcutaneous or intramuscular injection, and despite the clinical efficacy and safety of these medications, many patients were hampered by the inconvenience of injections and injection-related side effects. In September 2010, the first oral DMD-fingolimod-was approved. Since then, 2 additional oral DMDs (teriflunomide and dimethyl fumarate) have been approved, and several other oral medications are being evaluated in extensive MS development programs. Because of frequent ocular involvement, ophthalmologists are often involved in the care of MS patients and therefore need to be aware of the current treatment regimens prescribed by neurologists, some of which can have significant ophthalmic adverse events. We update the current advancements in the treatment of MS and discuss the published clinical data on the efficacy and safety of the currently approved and emerging oral therapies in MS.

  3. Quasi-steady multiple flux tubes induced by localized current perturbation in toroidal plasma

    Science.gov (United States)

    Yun, Gunsu

    2015-11-01

    Quasi-steady helical modes with dual, triple, or more flux tubes are easily produced by localized current drive in the core of sawtoothing plasma on the KSTAR tokamak. Individual flux tubes have m / n = 1 / 1 helicity, co-rotate around the magnetic axis, and later merge into a single m = 1 mode. The merged mode eventually crashes with rapid collapse of the core pressure and the next cycle repeats the same pattern, exhibiting sawtooth-like oscillations in the core pressure. The generation mechanism of multiple flux tubes (MFTs) has been studied in two different approaches to understand the observed trend that the number of flux tubes increases as the current drive location moves away from the magnetic axis up to about the magnetic surface of the safety factor q = 1 at the mode collapse: (1) nonlinear reduced MHD simulation with a localized current source modeling the time-varying interaction between the current source and flux tubes and (2) linear MHD simulation with a prescribed q profile with a radially localized current blip. Both studies show that MFTs can be produced only in plasmas with nearly flat q profile close to unity, suggesting the collapse of the m = 1 mode (i.e., sawtooth crash) is complete. Recent observation of long-lived MFTs induced by localized current drive in non-sawtoothing plasma suggests that q profile evolution toward lower- m instability is required for the merging and crash of MFTs. Work supported by the National Research Foundation of Korea, US D.O.E., and Japan Society for the Promotion of Science.

  4. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  5. Multiple resonances of a moving, oscillating surface disturbance on a shear current

    CERN Document Server

    Li, Yan

    2016-01-01

    We consider waves radiated by a disturbance of oscillating strength moving at constant velocity along the free surface of a shear flow which, when undisturbed, has uniform horizontal vorticity of magnitude $S$. When no current is present the problem is a classical one and much studied, and in deep water a resonance is known to occur when $\\tau=|\\boldsymbol{V}|\\omega_0/g$ equals the critical value $1/4$ ($\\boldsymbol{V}$: velocity of disturbance, $\\omega_0$: oscillation frequency, $g$: gravitational acceleration). We show that the presence of the sub-surface shear current can change this picture radically. Not only does the resonant value of $\\tau$ depend strongly on the angle between $\\boldsymbol{V}$ and the current's direction and the "shear-Froude number" $\\mathrm{Frs}=|\\boldsymbol{V}|S/g$; when $\\mathrm{Frs}>1/3$, multiple resonant values --- as many as $4$ --- can occur for some directions of motion. At sufficiently large values of $\\mathrm{Frs}$, the smallest resonance frequency tends to zero, representi...

  6. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  7. Adjoint method and runaway electron avalanche

    Science.gov (United States)

    Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava

    2017-02-01

    The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.

  8. Assessing the importance of terrain parameters on glide avalanche release

    Science.gov (United States)

    Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.

    2014-01-01

    Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide

  9. Influences of non-uniformities and anisotropies on the flux avalanche behaviors of type-II superconducting films

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    In this paper, the anisotropic flux avalanche processes in thin square-shaped type-II superconducting films are numerically investigated by solving the coupled nonlinear Maxwell’s equations and the thermal diffusion equations. Influences of the non-uniformities and intrinsic critical current density anisotropies originate from the manufacturing process are considered in the simulation. In addition, we also studied the effect of the extrinsic anisotropy induced by the in-plane magnetic field. The results demonstrate that the non-uniformities and anisotropies of the critical current density play significant roles in the flux avalanche process of the thin film superconductors. Slight anisotropy (either intrinsic or extrinsic) can dramatically change the propagation direction of avalanches in the superconducting film, which is consistent with the experimental results. Simulations on the thin square-shaped isotropic superconducting films show that the threshold magnetic field for the flux avalanches increases with the angle between the applied field and the superconducting film-plane. In addition, the flux avalanche patterns change with the angular variation of the in-plane component of external magnetic field. When the in-plane magnetic field component is along the diagonal lines of the superconducting square, symmetric flux avalanche penetration patterns occur to the film.

  10. Comprehensive Phenotyping in Multiple Sclerosis: Discovery Based Proteomics and the Current Understanding of Putative Biomarkers

    Directory of Open Access Journals (Sweden)

    Kevin C. O’Connor

    2006-01-01

    Full Text Available Currently, there is no single test for multiple sclerosis (MS. Diagnosis is confirmed through clinical evaluation, abnormalities revealed by magnetic resonance imaging (MRI, and analysis of cerebrospinal fluid (CSF chemistry. The early and accurate diagnosis of the disease, monitoring of progression, and gauging of therapeutic intervention are important but elusive elements of patient care. Moreover, a deeper understanding of the disease pathology is needed, including discovery of accurate biomarkers for MS. Herein we review putative biomarkers of MS relating to neurodegeneration and contributions to neuropathology, with particular focus on autoimmunity. In addition, novel assessments of biomarkers not driven by hypotheses are discussed, featuring our application of advanced proteomics and metabolomics for comprehensive phenotyping of CSF and blood. This strategy allows comparison of component expression levels in CSF and serum between MS and control groups. Examination of these preliminary data suggests that several CSF proteins in MS are differentially expressed, and thus, represent putative biomarkers deserving of further evaluation.

  11. A viscoplastic lubrication model for entrainment by avalanches and debris flows, and comparison with experiments

    Science.gov (United States)

    Bates, Belinda; Ancey, Christophe

    2015-04-01

    Recently, experiments were designed and carried out examining how a viscoplastic avalanche begins to entrain a shallow layer of identical fluid lying in its path, much like a snow avalanche or mud flow which suddenly encounters an entrainable layer, described as a yield stress material. This represents a simplified problem, investigated in order to gain some physical insight into entrainment by avalanches. These experiments serve as a test for mathematical models of entraining gravity currents. Two classes of entrainment behaviour were observed: either the avalanche ``glided'' out over the entrainable bed, immediately shearing it in the downstream direction and progressively incorporating fluid down to the rigid base, or the avalanche seemed to ``roll'' out onto the entrainable bed, with strong motion in the slope-normal direction in the bed after yield. This difference in behaviour was dictated by the magnitude of the flume's slope. For the steeper flows studied (20 and 24 degrees), entrainment was principally in the former class, whereas for shallower slope angle (12 and 16 degrees) entrainment more closely resembled the latter type. This would suggest that there is a competition between the normal and shear stresses exerted on the bed, with bed-yield and entrainment occurring when these stresses exceed a critical value. An interesting phenomenon that was observed in all cases was a sort of buckling of the bed, downstream of the avalanche front. This was far more significant in the flows down shallower slopes, and regular waves were created in the bed with wavelength dependent on the flow depth. Based on theoretical comparisons with non-entraining Herschel Bulkley flows, the physics of entraining flows are investigated numerically for shallow viscoplastic gravity currents on different slopes. The predictions are compared with the experimental values for velocity field and surface height. The model was successful in reproducing velocities of the correct order, but

  12. Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies.

    Science.gov (United States)

    Wingerchuk, Dean M; Carter, Jonathan L

    2014-02-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating central nervous system disease that typically strikes young adults, especially women. The pathobiology of MS includes inflammatory and neurodegenerative mechanisms that affect both white and gray matter. These mechanisms underlie the relapsing, and often eventually progressive, course of MS, which is heterogeneous; confident prediction of long-term individual prognosis is not yet possible. However, because revised MS diagnostic criteria that incorporate neuroimaging data facilitate early diagnosis, most patients are faced with making important long-term treatment decisions, most notably the use and selection of disease-modifying therapy (DMT). Currently, there are 10 approved MS DMTs with varying degrees of efficacy for reducing relapse risk and preserving neurological function, but their long-term benefits remain unclear. Moreover, available DMTs differ with respect to the route and frequency of administration, tolerability and likelihood of treatment adherence, common adverse effects, risk of major toxicity, and pregnancy-related risks. Thorough understanding of the benefit-risk profiles of these therapies is necessary to establish logical and safe treatment plans for individuals with MS. We review the available evidence supporting risk-benefit profiles for available and emerging DMTs. We also assess the place of individual DMTs within the context of several different MS management strategies, including those currently in use (sequential monotherapy, escalation therapy, and induction and maintenance therapy) and others that may soon become feasible (combination approaches and "personalized medicine"). We conducted this review using a comprehensive search of MEDLINE, PubMed, EMBASE, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials, from January 1, 1990, to August 31, 2013. The following search terms were used: multiple sclerosis, randomized controlled trials

  13. Numerical analysis of Ino.53Gao.47As/InP single photon avalanche diodes

    Institute of Scientific and Technical Information of China (English)

    Zhou Peng; Li Chun-Fei; Liao Chang-Jun; Wei Zheng-Jun; Yuan Shu-Qiong

    2011-01-01

    A rigorous theoretical model for In0.53Ga0.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition. In the model, low field impact ionizations in charge and absorption layers are allowed, while avalanche breakdown can occur only in the multiplication layer. The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition. When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value, generation-recombination in the absorption layer is the dominative mechanism; otherwise band-to-band tunneling in the multiplication layer dominates the dark counts. The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency. However, when the multiplication layer width exceeds 1 μm, the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes.

  14. The Vaigat Rock Avalanche Laboratory, west-central Greenland

    Science.gov (United States)

    Dunning, S.; Rosser, N. J.; Szczucinski, W.; Norman, E. C.; Benjamin, J.; Strzelecki, M.; Long, A. J.; Drewniak, M.

    2013-12-01

    Rock avalanches have unusually high mobility and pose both an immediate hazard, but also produce far-field impacts associated with dam breach, glacier collapse and where they run-out into water, tsunami. Such secondary hazards can often pose higher risks than the original landslide. The prediction of future threats posed by potential rock avalanches is heavily reliant upon understanding of the physics derived from an interpretation of deposits left by previous events, yet drawing comparisons between multiple events is normally challenging as interactions with complex mountainous terrain makes deposits from each event unique. As such numerical models and the interpretation of the underlying physics which govern landslide mobility is commonly case-specific and poorly suited to extrapolation beyond the single events the model is tuned to. Here we present a high-resolution LiDAR and hyperspectral dataset captured across a unique cluster of large rock avalanche source areas and deposits in the Vaigat straight, west central Greenland. Vaigat offers the unprecedented opportunity to model a sample of > 15 rock avalanches of various age sourced from an 80 km coastal escarpment. At Vaigat many of the key variables (topography, geology, post-glacial history) are held constant across all landslides providing the chance to investigate the variations in dynamics and emplacement style related to variable landslide volume, drop-heights, and thinning/spreading over relatively simple, unrestricted run-out zones both onto land and into water. Our data suggest that this region represents excellent preservation of landslide deposits, and hence is well suited to calibrate numerical models of run out dynamics. We use this data to aid the interpretation of deposit morphology, structure lithology and run-out characteristics in more complex settings. Uniquely, we are also able to calibrate our models using a far-field dataset of well-preserved tsunami run-up deposits, resulting from the 21

  15. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines

    Directory of Open Access Journals (Sweden)

    Holder Roger L

    2009-07-01

    Full Text Available Abstract Background Multiple imputation (MI provides an effective approach to handle missing covariate data within prognostic modelling studies, as it can properly account for the missing data uncertainty. The multiply imputed datasets are each analysed using standard prognostic modelling techniques to obtain the estimates of interest. The estimates from each imputed dataset are then combined into one overall estimate and variance, incorporating both the within and between imputation variability. Rubin's rules for combining these multiply imputed estimates are based on asymptotic theory. The resulting combined estimates may be more accurate if the posterior distribution of the population parameter of interest is better approximated by the normal distribution. However, the normality assumption may not be appropriate for all the parameters of interest when analysing prognostic modelling studies, such as predicted survival probabilities and model performance measures. Methods Guidelines for combining the estimates of interest when analysing prognostic modelling studies are provided. A literature review is performed to identify current practice for combining such estimates in prognostic modelling studies. Results Methods for combining all reported estimates after MI were not well reported in the current literature. Rubin's rules without applying any transformations were the standard approach used, when any method was stated. Conclusion The proposed simple guidelines for combining estimates after MI may lead to a wider and more appropriate use of MI in future prognostic modelling studies.

  16. Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Directory of Open Access Journals (Sweden)

    P. Prommee

    2013-06-01

    Full Text Available This paper describes the design of a current-mode single-input multiple-output (SIMO universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory.

  17. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.

    Science.gov (United States)

    Martin, Roland; Sospedra, Mireia; Rosito, Maria; Engelhardt, Britta

    2016-09-01

    Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease.

  18. Relativistic electron avalanches as a thunderstorm discharge competing with lightning.

    Science.gov (United States)

    Kelley, Nicole A; Smith, David M; Dwyer, Joseph R; Splitt, Michael; Lazarus, Steven; Martinez-McKinney, Forest; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alexander; Rassoul, Hamid K

    2015-08-12

    Gamma-ray 'glows' are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≥9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500.

  19. Silicon Avalanche Pixel Sensor for High Precision Tracking

    CERN Document Server

    D'Ascenzo, N; Moon, C S; Morsani, F; Ratti, L; Saveliev, V; Navarro, A Savoy; Xie, Q

    2013-01-01

    The development of an innovative position sensitive pixelated sensor to detect and measure with high precision the coordinates of the ionizing particles is proposed. The silicon avalanche pixel sensors (APiX) is based on the vertical integration of avalanche pixels connected in pairs and operated in coincidence in fully digital mode and with the processing electronics embedded on the chip. The APiX sensor addresses the need to minimize the material budget and related multiple scattering effects in tracking systems requiring a high spatial resolution in the presence of a large occupancy. The expected operation of the new sensor features: low noise, low power consumption and suitable radiation tolerance. The APiX device provides on-chip digital information on the position of the coordinate of the impinging charged particle and can be seen as the building block of a modular system of pixelated arrays, implementing a sparsified readout. The technological challenges are the 3D integration of the device under CMOS ...

  20. The avalanche-mode superjunction LED

    NARCIS (Netherlands)

    Dutta, Satadal; Steeneken, Peter G.; Agarwal, Vishal Vishal; Schmitz, Jurriaan; Annema, Anne J.; Hueting, Raymond Josephus Engelbart

    2017-01-01

    Avalanche-mode light-emitting diodes (AMLEDs) in silicon (Si) are potential light sources to enable monolithic optical links in standard CMOS technology, due to the large overlap of their electroluminescent (EL) spectra with the responsivity of Si photodiodes. These EL spectra depend on the reverse

  1. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  2. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  3. Possible effects of ongoing and predicted climate change on snow avalanche activity in western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.

    2016-04-01

    As snow avalanche formation is mainly governed by meteorological conditions as, e.g., air temperature fluctuations, heavy precipitation and wind conditions, it is likely that the frequency and magnitude of both ordinary and extreme snow avalanche events is modified through the documented effects of current and future climate change. In the Northern Hemisphere, 1983-2013 was likely the warmest 30-year period of the last 1400 years (IPCC, 2013). Meteorological records of western Norway show the general trend that the last 100 years, especially the last three decades, have been warmer and wetter than the time periods before. However, it is not evident that snow avalanche activity will increase in the near future. Today, the number of studies assessing the impact of climate change on the occurrence and magnitude of snow avalanches is limited. This work focuses on recent and possible future effects of climate change on snow avalanche activity along the western side of the Jostedalsbreen ice cap representing one of the areas with the highest snow avalanche activity in entire Norway. We have analyzed long-term homogenized meteorological data from five meteorological stations in different elevations above sea level, three of them with a long-term record of 120 years (1895-2015). In addition to the statistical analyses of long-term datasets, gained results and insights from a four-year (2009-2012) high-resolution snow avalanche monitoring study conducted in the same study area are incorporated. The statistical analyses of mean monthly air temperature, monthly precipitation sums and mean monthly snow depths showed that there is a trend of increasing air temperatures and precipitation sums whereas no clear trend was found for mean snow depths. Magnitude-frequency analyses conducted for three defined time intervals (120, 90, 60 years) of monthly precipitation sums exhibit an increase of precipitation especially during the last 30 years with the tendency that more precipitation

  4. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    Science.gov (United States)

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  5. Short-term spatial and temporal forecast of dry snow avalanches of sublimation recrystallization and mixed origin

    Directory of Open Access Journals (Sweden)

    Yu. B. Andreev

    2013-01-01

    Full Text Available A possibility of space-temporary short-term forecast-diagnosis of dry sublimative recrystallization and mixed (recrystallization plus fresh snow avalanches is under consideration. The special discriminate analog–macrophysical models of the short-term background forecast is verified on correlation degree with probabilistic zoning of avalanche site № 22 in Khibiny. Аs a result we have correlation coefficients of order –(0.6÷0.7. The statistical significance of correlation coefficients (an order of 0.02–0.07 are checked and a conclusion on likelihood of assumed hypothesis is made. So by the current and predicted meteorological data such kind of forecast for such genetic avalanche types release in concrete sites becomes possible. The short-term forecast function transformation of the examined in the article avalanche types into long-term ones by averaging perennial realized forecast function values on slipping optimal 5-years intervals shows avalanche activity trend with probable 8–10 and 32-years harmonics during selected observation period. But in comparison with purely dry and wet fresh snow avalanches forecast analysed before the examined here above types are less precisely predicted. So it is needed an improvement of correspondent forecast functions on the base of theory contribution and future observations by increasing their series

  6. Current impulse response of thin InP p+-i-n+ diodes using full band structure Monte Carlo method

    Science.gov (United States)

    You, A. H.; Cheang, P. L.

    2007-02-01

    A random response time model to compute the statistics of the avalanche buildup time of double-carrier multiplication in avalanche photodiodes (APDs) using full band structure Monte Carlo (FBMC) method is discussed. The effect of feedback impact ionization process and the dead-space effect on random response time are included in order to simulate the speed of APD. The time response of InP p+-i-n+ diodes with the multiplication region of 0.2μm is presented. Finally, the FBMC model is used to calculate the current impulse response of the thin InP p+-i-n+ diodes with multiplication lengths of 0.05 and 0.2μm using Ramo's theorem [Proc. IRE 27, 584 (1939)]. The simulated current impulse response of the FBMC model is compared to the results simulated from a simple Monte Carlo model.

  7. Characterization of midwave infrared InSb avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Abautret, J., E-mail: johan.abautret@ies.univ-montp2.fr; Evirgen, A. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); SOFRADIR, BP 21, 38113 Veurey-Voroize (France); Perez, J. P.; Christol, P. [Université Montpellier, IES, UMR 5214, F-34095 Montpellier (France); CNRS, IES, UMR 5214, F-34095 Montpellier (France); Rothman, J. [CEA-LETI, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Cordat, A. [SOFRADIR, BP 21, 38113 Veurey-Voroize (France)

    2015-06-28

    This paper focuses on the InSb material potential for the elaboration of Avalanche Photodiodes (APD) for high performance infrared imaging applications, both in passive or active mode. The first InSb electron-APD structure was grown by molecular beam epitaxy, processed and electrically characterized. The device performances are at the state of the art for the InSb epi-diode technology, with a dark current density J(−50 mV) = 32 nA/cm{sup 2} at 77 K. Then, a pure electron injection was performed, and an avalanche gain, increasing exponentially, was observed with a gain value near 3 at −4 V at 77 K. The Okuto–Crowell model was used to determine the electron ionization coefficient α(E) in InSb, and the InSb gain behavior is compared with the one of InAs and MCT APDs.

  8. Smartphone applications for communicating avalanche risk information - a review of existing practices

    Science.gov (United States)

    Charrière, M. K. M.; Bogaard, T. A.

    2015-11-01

    Every year, in all mountainous regions, people are victims of avalanches. One way to decrease those losses is believed to be informing about danger levels. The paper presents a study on current practices in the development of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of smartphone apps highlights the context of their development, how choices of content and visualization were made as well as how their effectiveness is evaluated. It appears that although the communicators agree on the message to disseminate, its representation triggers debate. Moreover, only simple evaluation processes are conducted but there is a clear awareness that further scientific efforts are needed to analyze the effectiveness of the smartphone apps. Finally, the current or planned possibility for non-experts users to report feedback on the snow and avalanches conditions open the doors to a transition of these apps from one-way communication tools to two-ways communication platforms. This paper also indicates the remaining challenges that avalanche risk communication is facing, although it is disputably the most advanced and standardized practice compared to other natural hazards. Therefore, this research is of interest for the entire field of natural hazards related risk communication.

  9. Geomorphological analysis, monitoring and modeling of large rock avalanches in northern Chile (Iquique area) for regional hazard assessment.

    Science.gov (United States)

    Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.

    2012-04-01

    Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been

  10. Technology developments and first measurements on inverse Low Gain Avalanche Detector (iLGAD) for high energy physics applications

    Science.gov (United States)

    Carulla, M.; Fernández-García, M.; Fernández-Martínez, P.; Flores, D.; González, J.; Hidalgo, S.; Jaramillo, R.; Merlos, A.; Palomo, F. R.; Pellegrini, G.; Quirion, D.; Vila, I.

    2016-12-01

    The first Inverse Low Gain Avalanche Detector (iLGAD) have been fabricated at IMB-CNM (CSIC). The iLGAD structure includes the multiplication diffusions at the ohmic contact side while the segmentation is implemented at the front side with multiple p+ diffusions. Therefore, iLGAD is p on p position-sensitive detector with a uniform electric field all along the device area that guarantees the same signal amplification wherever a particle passes through the sensitive bulk solving the main draw of the LGAD microstrip detector. However, the detection current is dominated by holes flowing back from the multiplication junction with the subsequent increase of the transient current pulse duration in comparison with conventional LGAD counterparts. Applications of iLGAD range from tracking and timing applications, like determination of primary interaction vertex, to medical imaging. The paper addresses the optimization of the iLGAD structure with the aid of TCAD simulations, focusing on the electric field profiles of iLGAD and LGAD microstrip structures and the corresponding gain. The electrical performance of the first fabricated samples is also provided. For the first time, we have the experimental demonstration of the signal amplification of these novel iLGAD detectors.

  11. Avalanches in functional materials and geophysics

    CERN Document Server

    Saxena, Avadh; Planes, Antoni

    2017-01-01

    This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.

  12. Fractal properties of LED avalanche breakdown

    Directory of Open Access Journals (Sweden)

    Antonina S. Shashkina

    2016-12-01

    Full Text Available The conventional model of the processes occurring in the course of a p–n-junction's partial avalanche breakdown has been analyzed in this paper. Microplasma noise spectra of industrially produced LEDs were compared with those predicted by the model. It was established that the data obtained experimentally on reverse-biased LEDs could not be described in terms of this model. The degree to which the fractal properties were pronounced was shown to be variable by changing the reverse voltage. The discovered fractal properties of microplasma noise can serve as the basis for further studies which are bound to explain the breakdown characteristics of real LEDs and to correct the conventional model of p–n-junction's avalanche breakdown.

  13. Anomalous winter snow amplified earthquake induced disaster of the 2015 Langtang avalanche in Nepal

    OpenAIRE

    Fujita, Koji; Inoue, Hiroshi; Izumi, Takeki; Yamaguchi, Satoru; Sadakane, Ayako; Sunako, Sojiro; Nishimura, Kouichi; Immerzeel, Walter W.; Shea, Joseph M.; Kayashta, Rijan B.; SAWAGAKI, Takanobu; Breashears, David F.; Yagi, Hiroshi; Sakai, Akiko

    2016-01-01

    Co-seismic avalanches and rock falls, and their simultaneous air blasts, which were induced by the 2015 Gorkha earthquake in Nepal, destroyed the village of Langtang. In order to reveal volume and structure of the deposit covering the village, and sequence of the multiple events, we conducted an intensive in-situ observation in October 2015. Multi-temporal digital elevation models created from photographs taken by helicopter and unmanned aerial vehicles reveal that the deposit volumes of the ...

  14. Edge effect on the power law distribution of granular avalanches.

    Science.gov (United States)

    Lorincz, Kinga A; Wijngaarden, Rinke J

    2007-10-01

    Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic system-spanning avalanches. Conversely, by removing ledges the incidence of system-spanning avalanches is significantly reduced. This may offer a perspective on new avalanche prevention schemes. In addition, our findings may help to explain why the archetype of SOC, the sandpile, was found to have power-law-distributed avalanches in some experiments, while in other experiments quasiperiodic system-spanning avalanches were found.

  15. Breaking the buildup-time limit of sensitivity in avalanche photodiodes by dynamic biasing.

    Science.gov (United States)

    Hayat, Majeed M; Zarkesh-Ha, Payman; El-Howayek, Georges; Efroymson, Robert; Campbell, Joe C

    2015-09-07

    Avalanche photodiodes (APDs) are the preferred photodetectors for direct-detection, high data-rate long-haul optical telecommunications. APDs can detect low-level optical signals due to their internal amplification of the photon-generated electrical current, which is attributable to the avalanche of electron and hole impact ionizations. Despite recent advances in APDs aimed at reducing the average avalanche-buildup time, which causes intersymbol interference and compromises receiver sensitivity at high data rates, operable speeds of commercially available APDs have been limited to 10Gbps. We report the first demonstration of a dynamically biased APD that breaks the traditional sensitivity-versus-speed limit by employing a data-synchronous sinusoidal reverse-bias that drastically suppresses the average avalanche-buildup time. Compared with traditional DC biasing, the sensitivity of germanium APDs at 3Gbps is improved by 4.3 dB, which is equivalent to a 3,500-fold reduction in the bit-error rate. The method is APD-type agnostic and it promises to enable operation at rates of 25Gbps and beyond.

  16. Transformation of the critical state in hard superconductors resulting from thermomagnetic avalanches

    Science.gov (United States)

    Chabanenko, V. V.; Kuchuk, E. I.; Rusakov, V. F.; Abaloszewa, I.; Nabiałek, A.; Pérez-Rodríguez, F.

    2016-04-01

    The results of experimental studies of magnetic flux dynamics in finite-size superconductors, obtained using integral and local measurements methods, are presented. Local methods were aimed at clarifying the role of the demagnetizing factor in the dynamic formation of a complex magnetic structure of the critical state of hard superconductors. To understand the reasons for drastic transformation of the magnetic induction, we further analyzed the literature data on the visualization of flux dynamics in the presence of avalanches, obtained by magneto-optical methods. New features in the behavior of the magnetic flux during and after an avalanche were revealed and characterized: two stages in the formation of the magnetic induction distribution inside the avalanche region were established—homogeneous and heterogeneous filling with magnetic flux; the mechanism of inversion of the induction profile; velocity oscillations in the propagating magnetic flux front; transformation of the critical state band near the edge of the sample; and the role of the thermal effects and demagnetizing factor in the dissipative flux dynamics. The generalized information allowed us to present, within the framework of the Bean concept, a model of the transformation of the patterns of magnetic induction in the critical state and superconducting currents in a finite superconductor occurring as a result of flux avalanches in two different regimes—shielding and trapping of magnetic flux.

  17. Modelling avalanche danger and understanding snow depth variability

    OpenAIRE

    2010-01-01

    This thesis addresses the causes of avalanche danger at a regional scale. Modelled snow stratigraphy variables were linked to [1] forecasted avalanche danger and [2] observed snowpack stability. Spatial variability of snowpack parameters in a region is an additional important factor that influences the avalanche danger. Snow depth and its change during individual snow fall periods are snowpack parameters which can be measured at a high spatial resolution. Hence, the spatial distribution of sn...

  18. Determining avalanche modelling input parameters using terrestrial laser scanning technology

    OpenAIRE

    2013-01-01

    International audience; In dynamic avalanche modelling, data about the volumes and areas of the snow released, mobilized and deposited are key input parameters, as well as the fracture height. The fracture height can sometimes be measured in the field, but it is often difficult to access the starting zone due to difficult or dangerous terrain and avalanche hazards. More complex is determining the areas and volumes of snow involved in an avalanche. Such calculations require high-resolution spa...

  19. New advances for modelling the debris avalanches

    Science.gov (United States)

    Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio

    2013-04-01

    Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the

  20. Correcting for accidental correlations in saturated avalanche photodiodes

    National Research Council Canada - National Science Library

    Grieve, J A; Chandrasekara, R; Tang, Z; Cheng, C; Ling, A

    2016-01-01

    .... As an example, we provide a detailed high-level model for the behaviour of passively quenched avalanche photodiodes, and demonstrate effective background subtraction at rates commonly associated...

  1. Current Evidence for a Role of the Kynurenine Pathway of Tryptophan Metabolism in Multiple Sclerosis.

    Science.gov (United States)

    Lovelace, Michael D; Varney, Bianca; Sundaram, Gayathri; Franco, Nunzio F; Ng, Mei Li; Pai, Saparna; Lim, Chai K; Guillemin, Gilles J; Brew, Bruce J

    2016-01-01

    The kynurenine pathway (KP) is the major metabolic pathway of the essential amino acid tryptophan (TRP). Stimulation by inflammatory molecules, such as interferon-γ (IFN-γ), is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites, and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson's disease, AIDS-related dementia, motor neurone disease, schizophrenia, Huntington's disease, and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS) has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes, indoleamine 2,3-dioxygenase (IDO-1) and tryptophan dioxygenase (highest expression in hepatic cells), are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain barrier, even if transient, allows the entry of blood monocytes into the brain parenchyma. Similar to microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes, including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid. These metabolites circulate systemically or are released locally in the brain and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at N-methyl-d-aspartic acid receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several KP

  2. Current evidence for a role of the Kynurenine pathway of tryptophan metabolism in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael D. Lovelace

    2016-08-01

    Full Text Available The kynurenine pathway (KP is the major metabolic pathway of the essential amino acid tryptophan (TRP. Stimulation by inflammatory molecules such as interferon-γ (IFN-γ is the trigger for induction of the KP, driving a complex cascade of production of both neuroprotective and neurotoxic metabolites and in turn, regulation of the immune response and responses of brain cells to the KP metabolites. Consequently, substantial evidence has accumulated over the past couple of decades that dysregulation of the KP and the production of neurotoxic metabolites are associated with many neuroinflammatory and neurodegenerative diseases, including Parkinson’s disease, AIDS-related dementia, motor neurone disease (MND, schizophrenia, Huntington’s disease and brain cancers. In the past decade, evidence of the link between the KP and multiple sclerosis (MS has rapidly grown and has implicated the KP in MS pathogenesis. KP enzymes indoleamine 2,3-dioxygenase (IDO-1 and tryptophan dioxygenase (TDO; highest expression in hepatic cells are the principal enzymes triggering activation of the KP to produce kynurenine from TRP. This is in preference to other routes such as serotonin and melatonin production. In neurological disease, degradation of the blood-brain-barrier (BBB, even if transient, allows the entry of blood monocytes into the brain parenchyma. Like microglia and macrophages, these cells are highly responsive to IFN-γ, which upregulates the expression of enzymes including IDO-1, producing neurotoxic KP metabolites such as quinolinic acid (QUIN. These metabolites circulate systemically or are released locally in the brain, and can contribute to the excitotoxic death of oligodendrocytes and neurons in neurological disease principally by virtue of their agonist activity at NMDA receptors. The latest evidence is presented and discussed. The enzymes that control the checkpoints in the KP represent an attractive therapeutic target, and consequently several

  3. Heterogeneous nucleation and heat flux avalanches in La(Fe, Si)13 magnetocaloric compounds near the critical point

    Science.gov (United States)

    Bennati, C.; Gozzelino, L.; Olivetti, E. S.; Basso, V.

    2016-12-01

    The phase transformation kinetics of LaFe11.41Mn0.30Si1.29-H1.65 magnetocaloric compound is addressed by low rate calorimetry experiments. Scans at 1 mK/s show that its first order phase transitions are made by multiple heat flux avalanches. Getting very close to the critical point, when the transition becomes of the second order type, the step-like discontinuous behaviour associated with avalanches is smoothed out and the thermal hysteresis disappears. This result is confirmed by magneto-resistivity measurements and allows to obtain accurate values of the temperature hysteresis (ΔThyst = 0.37 K) at zero external magnetic field and of the critical field (Hc = 1.19 T). The number and magnitude of heat flux avalanches change as the magnetic field strength is increased, showing the interplay between the intrinsic energy barrier between phases and the microstructural disorder of the sample.

  4. InAs/InAsSb Avalanche Photodiode (APD) for applicaions in long-wavelength infrared region

    Institute of Scientific and Technical Information of China (English)

    P.K.Maurya; H.Agarwal; A.Singh; P.Chakrabarti

    2008-01-01

    A generic numerical model of a long-wavelength Avalanche Photodiode (APD) based on narrow bandgap semiconductor InAsSb on lnAs substrate is reported for the first time. This model has been applied for theoretical characterization of a proposed N+ InAS/P-InAsSb avalanche photodiode structure for possible application in 2-5 μm wavelength region. The parameters such as gain, excess noise factor and their trade-offwith variation of doping concentration and bias voltage have been estimated for the APD taking into account history-dependent theory of avalanche multiplication process. The LWIR APD is expected to find application in optical gas sensor and in future generation of optical communication system.

  5. Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators.

    Science.gov (United States)

    Li, Yu; Feng, Shaoqi; Zhang, Yu; Poon, Andrew W

    2013-12-01

    We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of ~72.8 mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of ~72 relative to the responsivity of ~1.0 mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of ~7 GHz and an open eye diagram at 15 Gbit/s upon 8 V.

  6. Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler

    Science.gov (United States)

    Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.

    1999-01-01

    Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.

  7. Single-photon avalanche photodiodes with integrated quenching resistor

    Energy Technology Data Exchange (ETDEWEB)

    Mazzillo, M. [STMicroelectronics, IMS R and D Stradale Primosole 50, 95121 Catania (Italy)], E-mail: massimo.mazzillo@st.com; Condorelli, G.; Piazza, A.; Sanfilippo, D.; Valvo, G.; Carbone, B.; Fallica, G. [STMicroelectronics, IMS R and D Stradale Primosole 50, 95121 Catania (Italy); Billotta, S.; Belluso, M.; Bonanno, G. [INAF-Osservatorio Astrofisico di Catania, Via Santa Sofia 78, 95123 Catania (Italy); Pappalardo, A.; Cosentino, L.; Finocchiaro, P. [INFN-Laboratori Nazionali del Sud, Via Santa Sofia 64, 95125 Catania (Italy)

    2008-06-21

    In this paper we present the results of the first electrical and optical characterization performed on STMicroelectronics new photosensor technology based on silicon single-photon avalanche photodiodes (SPAD). On the prospective of the design and the manufacturing of large-area silicon photomultipliers to be used as photodetectors for nuclear medicine imaging applications, we have modified our previous SPAD technology by means of the integration of a high-value quenching resistor to the photodiode. Moreover, an appropriate antireflective coating layer and the reduction of the quasi-neutral region thickness above the thin junction depletion layer have been introduced in the process flow of the device to enhance its spectral response in blue and near ultraviolet wavelength ranges. High gain, low leakage currents, low dark noise, very good quantum detection efficiency in blue-near UV ranges and a good linearity of the photodiode response to the incident luminous flux are the main characterization results.

  8. Rapid sequestration of rock avalanche deposits within glaciers.

    Science.gov (United States)

    Dunning, Stuart A; Rosser, Nicholas J; McColl, Samuel T; Reznichenko, Natalya V

    2015-08-19

    Topographic development in mountainous landscapes is a complex interplay between tectonics, climate and denudation. Glaciers erode valleys to generate headwall relief, and hillslope processes control the height and retreat of the peaks. The magnitude-frequency of these landslides and their long-term ability to lower mountains above glaciers is poorly understood; however, small, frequent rockfalls are currently thought to dominate. The preservation of rarer, larger, landslide deposits is exceptionally short-lived, as they are rapidly reworked. The 2013 Mount Haast rock avalanche that failed from the slopes of Aoraki/Mount Cook, New Zealand, onto the glacier accumulation zone below was invisible to conventional remote sensing after just 3 months. Here we use sub-surface data to reveal the now-buried landslide deposit, and suggest that large landslides are the primary hillslope erosion mechanism here. These data show how past large landslides can be identified in accumulation zones, providing an untapped archive of erosive events in mountainous landscapes.

  9. Control Strategies for Islanded Microgrid using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes

    DEFF Research Database (Denmark)

    Han, Yang; Shen, Pan; Zhao, Xin

    2017-01-01

    In this paper, the modeling, controller design, and stability analysis of the islanded microgrid (MG) using enhanced hierarchical control structure with multiple current loop damping schemes is proposed. The islanded MG is consisted of the parallel-connected voltage source inverters using LCL...

  10. Sixteen-year follow-up of childhood avalanche survivors

    Directory of Open Access Journals (Sweden)

    Edda Bjork Thordardottir

    2016-08-01

    Full Text Available Background: Every year a substantial number of children are affected by natural disasters worldwide. However, data are scarce on long-term psychological impact of natural disasters on children's health. Identifying risk factors and outcomes associated with the long-term sequelae of posttraumatic stress disorder (PTSD can provide a gateway to recovery as well as enhancement of preventive measures. Objective: Among childhood avalanche survivors, we aimed to investigate risk factors for PTSD symptoms and the relationship between socioeconomic status (SES and PTSD symptoms in adulthood. Methods: Childhood survivors (aged 2–19 at the time of exposure of two avalanches were identified through nationwide registers 16 years later. The Posttraumatic Diagnostic Scale was used to assess current PTSD symptoms. One-way ANOVA was used to explore PTSD symptoms by background and trauma-specific factors, as well as associations with current SES. Predictors of PTSD symptoms were examined by multivariable regression analysis. Results: Response rate was 66% (108/163. Results from univariate ANOVA analysis revealed that female sex was associated with PTSD symptoms (F=5.96, p<0.05. When adjusted for age and sex, PTSD symptoms were associated with lower education (F=7.62, p<0.001, poor financial status (F=12.21, p<0.001, and unemployment and/or disability (F=3.04, p<0.05. In a multivariable regression model, when adjusting for age and sex, lack of social support (t=4.22, p<0.001 and traumatic reactions of caregivers (t=2.49, p<0.05 in the aftermath of the disaster independently predicted PTSD 16 years post-trauma. Conclusions: Lingering PTSD symptoms after childhood exposure to a disaster may negatively influence socioeconomic development in adulthood. Strengthening children's support systems post-disaster may prevent the long-term sequelae of symptoms.

  11. GIS FOR PREDICTING THE AVALANCHE ZONES IN THE MOUNTAIN REGIONS OF KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Zh. T. Omirzhanova

    2015-10-01

    Full Text Available Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  12. GIS for Predicting the Avalanche Zones in the Mountain Regions of Kazakhstan

    Science.gov (United States)

    Omirzhanova, Zh. T.; Urazaliev, A. S.; Aimenov, A. T.

    2015-10-01

    Foothills of Trans Ili Alatau is a recreational area with buildings and sports facilities and resorts, sanatoriums, etc. In summer and winter there are a very large number of skiers, climbers, tourists and workers of organizations which located in the mountains. In this regard, forecasting natural destructive phenomena using GIS software is an important task of many scientific fields. The formation of avalanches, except meteorological conditions, such as temperature, wind speed, snow thickness, especially affecting mountainous terrain. Great importance in the formation of avalanches play steepness (slope) of the slope and exposure. If steep slopes contribute to the accumulation of snow in some places, increase the risk of flooding of the slope, the various irregularities can delay an avalanche. According to statistics, the bulk of the avalanche is formed on the slopes steeper than 30°. In the course of research a 3D model of the terrain was created with the help of programs ArcGIS and Surfer. Identified areas with steep slopes, the exposure is made to the cardinal. For dangerous terrain location is divided into three groups: favorable zone, danger zone and the zone of increased risk. The range of deviations from 30-45° is dangerous, since the angle of inclination of more than 30°, there is a maximum thickness of sliding snow, water, the upper layer of the surface and there is an increase rate of moving array, and the mountain slopes at an angle 450 above are the area increased risk. Created on DTM data are also plotted Weather Service for the winter of current year. The resulting model allows to get information upon request and display it on map base, assess the condition of the terrain by avalanches, as well as to solve the problem of life safety in mountainous areas, to develop measures to prevent emergency situations and prevent human losses.

  13. Enhanced Phase-Shifted Current Control for Harmonic Cancellation in Three-Phase Multiple Adjustable Speed Drive Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2017-01-01

    A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies on......-shifted current control is a cost-effective solution to multiple ASD systems in terms of harmonic cancellation.......A phase-shifted current control can be employed to mitigate certain harmonics induced by the Diode Rectifiers (DR) and Silicon-Controlled Rectifiers (SCR) as the front-ends of multiple parallel Adjustable Speed Drive (ASD) systems. However, the effectiveness of the phase-shifted control relies...... on the loading condition of each drive unit as well as the number of drives in parallel. In order to enhance the harmonic cancellation by means of the phase-shifted current control, the currents drawn by the rectifiers should be maintained almost at the same level. Thus, this paper firstly analyzes the impact...

  14. Current immune therapies of autoimmune disease of the nervous system with special emphasis to multiple sclerosis.

    Science.gov (United States)

    Vass, Karl

    2012-01-01

    Autoimmune diseases of the nervous system such as myasthenia gravis, inflammatory demyelinating polyneuropathies, multiple sclerosis and others are still not curable. Yet the introduction of modern immune therapies could significantly improve the prospects of many patients affected by these disorders. In addition to steroids and immunosuppression i.v. immunoglobulins are used for treatment of myasthenia gravis and chronic inflammatory demyelinating polyneuropathy. Interferons, glatiramer acetate, natalizumab and fingolimod are applied in multiple sclerosis. The ever-improving efficacy of the drugs has to be balanced against the increasing risk of possible severe adverse effects.

  15. Performance of InGaAs/InP Avalanche Photodiodes as Gated-Mode Photon Counters.

    Science.gov (United States)

    Ribordy, G; Gautier, J D; Zbinden, H; Gisin, N

    1998-04-20

    We investigate the performance of separate absorption multiplication InGaAs/InP avalanche photodiodes as single-photon detectors for 1.3- and 1.55-mum wavelengths. First we study afterpulses and choose experimental conditions to limit this effect. Then we compare the InGaAs/InP detector with a germanium avalanche photodiode; the former shows a lower dark-count rate. The effect of operating temperature is studied for both wavelengths. At 173 K and with a dark-count probability per gate of 10(-4), detection efficiencies of 16% for 1.3 mum and 7% for 1.55 mum are obtained. Finally, a timing resolution of less than200 ps is demonstrated.

  16. Potential slab avalanche release area identification from estimated winter terrain: a multi-scale, fuzzy logic approach

    Science.gov (United States)

    Veitinger, Jochen; Purves, Ross Stuart; Sovilla, Betty

    2016-10-01

    Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.

  17. Response of the waterlouse Asellus aquaticus to multiple stressors : effects of current velocity and mineral substratum

    NARCIS (Netherlands)

    Peeters, E.T.H.M.; Camu, J.M.; Beijer, J.A.J.; Scheffer, M.; Gardeniers, J.J.P.

    2002-01-01

    Experiments were performed to study the individual and combined effects of current velocity and substratum composition on the waterlouse Asellus aquaticus (L.). Both factors affected growth, mortality, behavior, and food consumption of A. aquaticus. Short-term effects of increasing current velocity

  18. Photon detection with cooled avalanche photodiodes

    Science.gov (United States)

    Robinson, D. L.; Metscher, B. D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5-3 times more sensitive than presently available photomultiplier tubes (PMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than twice that of a PMT were obtained with detector noise levels below 100 counts per second. Higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  19. Cooled avalanche photodiode used for photon detection

    Science.gov (United States)

    Robinson, Deborah L.; Metscher, Brian D.

    1987-01-01

    Commercial avalanche photodiodes have been operated as single-photon detectors at an optimum operating temperature and bias voltage. These detectors were found to be 1.5 to 3 times more sensitive than presently-available photomultiplier tubes (PPMTs). Both single-photon detection probability and detector noise increase with bias voltage; detection probabilities greater than 25 percent were obtained with detector noise levels comparable to the noise of a PMT; higher probabilities were measured at higher noise levels. The sources of noise and their dependence on temperature and bias voltage are discussed.

  20. Avalanche Photodiode Arrays for Optical Communications Receivers

    Science.gov (United States)

    Srinivasan, M.; Vilnrotter, V.

    2001-01-01

    An avalanche photodiode (APD) array for ground-based optical communications receivers is investigated for the reception of optical signals through the turbulent atmosphere. Kolmogorov phase screen simulations are used to generate realistic spatial distributions of the received optical field. It is shown that use of an APD array for pulse-position modulation detection can improve performance by up to 4 dB over single APD detection in the presence of turbulence, but that photon-counting detector arrays yield even greater gains.

  1. Avalanches in UGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lhotel, E. E-mail: lhotel@grenoble.cnrs.fr; Paulsen, C.; Huxley, A.D

    2004-05-01

    In UGe{sub 2} ferromagnetism and superconductivity co-exist for pressures in the range 1.0-1.6 GPa. The magnetic state, however, has several unusual properties. Here we report measurements of hysteresis loops for fields parallel to the easy-axis at low temperature and ambient pressure, measured for two separate UGe{sub 2} single crystals. Steps in the magnetization as the field is changed at low temperature are observed for both crystals. The general phenomenology associated with the steps strongly suggests that they correspond to avalanches of domain-wall motion.

  2. TCAD simulation of Low Gain Avalanche Detectors

    Science.gov (United States)

    Dalal, Ranjeet; Jain, Geetika; Bhardwaj, Ashutosh; Ranjan, Kirti

    2016-11-01

    In the present work, detailed simulation using Technology Computer Aided Design (TCAD) tool, Silvaco for non-irradiated and irradiated LGAD (Low Gain Avalanche Detector) devices has been carried out. The effects of different design parameters and proton irradiation on LGAD operation are discussed in detail. An already published effective two trap bulk damage model is used to simulate the radiation damage without implementing any acceptor removal term. The TCAD simulation for irradiated LGAD devices produce decreasing gain with increasing fluence, similar to the measurement results. The space charge density and electric field distribution are used to illustrate the possible reasons for the degradation of gain of the irradiated LGAD devices.

  3. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis?

    Science.gov (United States)

    Farooqi, Nasr; Gran, Bruno; Constantinescu, Cris S

    2010-11-01

    The precise aetio-pathology of multiple sclerosis remains elusive. However, important recent advances have been made and several therapies have been licensed for clinical use. Many of these were developed, validated or tested in the animal model, experimental autoimmune encephalomyelitis (EAE). This systematic review aims to assess whether the current disease modifying treatments and those that are the closest to the clinic are justified on the basis of the results of EAE studies. We discuss some aspects of the utility and caveats of EAE as a model for multiple sclerosis drug development.

  4. Validation of DEM prediction for granular avalanches on irregular terrain

    Science.gov (United States)

    Mead, Stuart R.; Cleary, Paul W.

    2015-09-01

    Accurate numerical simulation can provide crucial information useful for a greater understanding of destructive granular mass movements such as rock avalanches, landslides, and pyroclastic flows. It enables more informed and relatively low cost investigation of significant risk factors, mitigation strategy effectiveness, and sensitivity to initial conditions, material, or soil properties. In this paper, a granular avalanche experiment from the literature is reanalyzed and used as a basis to assess the accuracy of discrete element method (DEM) predictions of avalanche flow. Discrete granular approaches such as DEM simulate the motion and collisions of individual particles and are useful for identifying and investigating the controlling processes within an avalanche. Using a superquadric shape representation, DEM simulations were found to accurately reproduce transient and static features of the avalanche. The effect of material properties on the shape of the avalanche deposit was investigated. The simulated avalanche deposits were found to be sensitive to particle shape and friction, with the particle shape causing the sensitivity to friction to vary. The importance of particle shape, coupled with effect on the sensitivity to friction, highlights the importance of quantifying and including particle shape effects in numerical modeling of granular avalanches.

  5. Avalanche Statistics of Driven Granular Slides in a Miniature Mound

    CERN Document Server

    Juanico, D E; Batac, R; Monterola, C

    2008-01-01

    We examine avalanche statistics of rain- and vibration-driven granular slides in miniature soil mounds using experimental and numerical approaches. A crossover from power-law to non power-law avalanche-size statistics is demonstrated as a generic driving rate $\

  6. Avalanches mediate crystallization in a hard-sphere glass.

    Science.gov (United States)

    Sanz, Eduardo; Valeriani, Chantal; Zaccarelli, Emanuela; Poon, Wilson C K; Cates, Michael E; Pusey, Peter N

    2014-01-07

    By molecular-dynamics simulations, we have studied the devitrification (or crystallization) of aged hard-sphere glasses. First, we find that the dynamics of the particles are intermittent: Quiescent periods, when the particles simply "rattle" in their nearest-neighbor cages, are interrupted by abrupt "avalanches," where a subset of particles undergo large rearrangements. Second, we find that crystallization is associated with these avalanches but that the connection is not straightforward. The amount of crystal in the system increases during an avalanche, but most of the particles that become crystalline are different from those involved in the avalanche. Third, the occurrence of the avalanches is a largely stochastic process. Randomizing the velocities of the particles at any time during the simulation leads to a different subsequent series of avalanches. The spatial distribution of avalanching particles appears random, although correlations are found among avalanche initiation events. By contrast, we find that crystallization tends to take place in regions that already show incipient local order.

  7. Outpatient Art Therapy with Multiple Personality Disorder: A Survey of Current Practice.

    Science.gov (United States)

    Mills, Anne

    1995-01-01

    Reports findings of a 1993 questionnaire completed by 46 North American art therapists that focuses on the outpatient treatment of multiple personality disorder. Includes information on role in diagnosing, fees and third-party payment, and therapeutic activities. Treatment issues include pacing and containment, and managing the client's chronic…

  8. Reporting Multiple Individual Injuries in Studies of Team Ball Sports : A Systematic Review of Current Practice

    NARCIS (Netherlands)

    Fortington, Lauren V; van der Worp, Henk; van den Akker-Scheek, Inge; Finch, Caroline F

    Background To identify and prioritise targets for injury prevention efforts, injury incidence studies are widely reported. The accuracy and consistency in calculation and reporting of injury incidence is crucial. Many individuals experience more than one injury but multiple injuries are not

  9. Reporting Multiple Individual Injuries in Studies of Team Ball Sports : A Systematic Review of Current Practice

    NARCIS (Netherlands)

    Fortington, Lauren V; van der Worp, Henk; van den Akker-Scheek, Inge; Finch, Caroline F

    2017-01-01

    Background To identify and prioritise targets for injury prevention efforts, injury incidence studies are widely reported. The accuracy and consistency in calculation and reporting of injury incidence is crucial. Many individuals experience more than one injury but multiple injuries are not consiste

  10. Current status and future directions in the treatment of multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    HOU Jian; Michael Wang

    2007-01-01

    @@ Multiple myeloma (MM), a malignancy of clonal plasma cells, is characterized by proliferation and accumulation of abnormal plasmacytes in bone marrow,monoclonal immunoglobulin or its fragment secretions (M-protein) in serum or urine and concomitant extensive osteolytic lesions and/or osteoporosis, anemia, infection or renal dysfunction.

  11. Intraverbal Training for Individuals with Autism: The Current Status of Multiple Control

    Science.gov (United States)

    Stauch, Tiffany; LaLonde, Kate; Plavnick, Joshua B.; Savana Bak, M. Y.; Gatewood, Kenzie

    2017-01-01

    Teaching complex intraverbal responding to children with autism spectrum disorder (ASD) can be challenging and often requires careful programming. Divergent and convergent multiple control are particularly important elements to incorporate into intraverbal training programs, as well as procedures to ensure responding is under control of both…

  12. Outpatient Art Therapy with Multiple Personality Disorder: A Survey of Current Practice.

    Science.gov (United States)

    Mills, Anne

    1995-01-01

    Reports findings of a 1993 questionnaire completed by 46 North American art therapists that focuses on the outpatient treatment of multiple personality disorder. Includes information on role in diagnosing, fees and third-party payment, and therapeutic activities. Treatment issues include pacing and containment, and managing the client's chronic…

  13. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    Science.gov (United States)

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  14. Snow drift: acoustic sensors for avalanche warning and research

    Science.gov (United States)

    Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.

    Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long

  15. Snow drift: acoustic sensors for avalanche warning and research

    Directory of Open Access Journals (Sweden)

    M. Lehning

    2002-01-01

    Full Text Available Based on wind tunnel measurements at the CSTB (Jules Verne facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b, or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a. On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966 are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations

  16. Manipulation of multiple 360o domain wall structures and its current-driven motion in a magnetic nanostripe

    Directory of Open Access Journals (Sweden)

    Wenjun Dong

    2015-11-01

    Full Text Available Dynamics of multiple transverse walls (TWs in a magnetic nanostripe is studied by micromagnetic simulations. It shows that, when TWs are arranged in a stripe with same orientation, they will attract each other and finally annihilate. However, when adjacent TWs are arranged with opposite orientation, a metastable complex wall can be formed, e.g., two TWs lead to 360o wall. For three or more TWs, the formed complex wall includes a number of 360o substructures, which is called multiple 360o structure (M360S here. The M360S itself may be used to store multiple logical data since each 360o substructure can act as logical ”0” or ”1”. On the other hand, the M360S may behave like single TW under an applied current, namely, the M360S can be driven steadily by current like that of single TW. A parity effect of the number of 360o substructures on the critical current for the annihilation is found. Namely, when the number is odd or even, the critical current increase or decrease with the increasing of the number, respectively. The parity effect is relevant to the out-of-plane magnetic moment of the M360S.

  17. Avalanche behavior of power MOSFETs under different temperature conditions

    Institute of Scientific and Technical Information of China (English)

    Lu Jiang; Wang Lixin; Lu Shuojin; Wang Xuesheng; Han Zhengsheng

    2011-01-01

    The ability of high-voltage power MOSFETs to withstand avalanche events under different temperature conditions are studied by experiment and two-dimensional device simulation. The experiment is performed to investigate dynamic avalanche failure behavior of the domestic power MOSFETs which can occur at the rated maximum operation temperature range (-55 to 150 ℃). An advanced ISE TCAD two-dimensional mixed mode simulator with thermodynamic non-isothermal model is used to analyze the avalanche failure mechanism. The unclamped inductive switching measurement and simulation results show that the parasitic components and thermal effect inside the device will lead to the deterioration of the avalanche reliability of power MOSFETs with increasing temperature. The main failure mechanism is related to the parasitic bipolar transistor activity during the occurrence of the avalanche behavior.

  18. Immunomodulatory therapies for relapsing-remitting multiple sclerosis: monoclonal antibodies, currently approved and in testing.

    Science.gov (United States)

    Craddock, Jessica; Markovic-Plese, Silva

    2015-05-01

    Relapsing-remitting multiple sclerosis (RRMS), a CNS inflammatory demyelinating disease, is one of the most prevalent causes of chronic disability in young adults. Studies of the disease pathogenesis have identified multiple therapeutic targets. The number of approved disease modifying therapies has almost doubled within the past 5 years, which creates a challenge for medical professionals to stay abreast of their use in everyday practice. This manuscript provides an overview of available injectable, oral, and intravenous therapies for RRMS, and offers guidance in selecting an appropriate therapy. Focus is on the recently approved and emerging monoclonal antibody therapies, because they offer more selective and superior therapeutic efficacy compared with injectable and oral disease modifying therapies. We discuss the outlook for monoclonal antibodies and their role in RRMS treatment in the future.

  19. Multiple, sclerosis: clinical feature, pathogenesis and current therapeutical approaches; Encephalomyelitis disseminata: Klinik, Pathogenese und aktuelle Therapiekonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, S.; Koelmel, C.; Schimrigk, K. [Universitaet des Saarlandes, Homburg/Saar (Germany). Neurologische Klinik

    2000-11-01

    Multiple sclerosis (MS) is considered as a T-cell mediated autoimmune disease. Caused by central nervous system demyelination and axonal damage varying clinical signs do occur either with relapsing-remitting or with chronic progressive course. Based on pathogenetic considerations immunomodulative and immunosuppressive therapeutical approaches are used to limit the disease progression. Clinical symptoms, diagnostic criteria, pathogenetical considerations, and consecutive therapeutical interventions are summarized. (orig.) [German] Die Encephalomyelitis disseminata oder Multiple Sklerose (ED oder MS) gilt als T-Zell-vermittelte Autoimmunerkrankung. Schubfoermig oder chronisch progredient kommt es im Zentralnervensystem infolge einer Demyelinisierung der weissen Substanz und axonaler Schaedigungen zu einer Vielzahl neurologischer Symptome. Basierend auf pathogenetischen Erkenntnissen werden derzeit immunmodulative und immunsuppressive Therapien eingesetzt, die den Krankheitsverlauf zumindest bremsen. Klinische Symptome, diagnostische Kriterien, pathogenetische Ueberlegungen und sich daraus ableitende Therapiekonzepte werden zusammenfassend dargestellt. (orig.)

  20. Lateral Current Reduction by Voltage Drop Compensator for Multiple Autonomously Controlled UPS Connected in Parallel

    Science.gov (United States)

    Sato, Eduardo Kazuhide; Kawamura, Atsuo

    An autonomous control for redundant parallelism of uninterruptible power supplies (UPS) connected in parallel has successfully been proposed and discussed in theoretical and experimental terms. This independent control only requires the measurement of the output current. With the computation of the active and reactive currents, proportional-integral-based controllers provide the phase angle and amplitude, respectively, of the output voltage. However, when voltage difference between UPS exists, there is a flow of reactive lateral current, which makes the load sharing disproportional. A preliminary approach to reduce this circulating current considers a high proportional gain in the control equation for output voltage amplitude in order to reduce the offset error. Nevertheless it implies in high variation of the voltage amplitude, so that voltage levels easily reaches the limit, and the respective control equation becomes incapable to compensate any voltage difference. This paper proposes a compensator to counterbalance the voltage drop caused by the proportional gain of the control equation for the voltage amplitude. Implementation in an experimental setup with three UPS with different output rating connected in parallel shows significant reduction of the reactive lateral current, and consequent improvement of the current distribution, including employment of voltage limiters (1%), under various conditions.

  1. The genetics of multiple sclerosis: review of current and emerging candidates

    Directory of Open Access Journals (Sweden)

    Muñoz-Culla M

    2013-08-01

    Full Text Available Maider Muñoz-Culla,1,2 Haritz Irizar,1,2 David Otaegui1,2 1Multiple Sclerosis Unit, Instituto Biodonostia, San Sebastián, Spain; 2Red Española de Esclerosis Múltiple (REEM, Barcelona, Spain Abstract: Multiple sclerosis (MS is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. Keywords: multiple sclerosis, genetics, gene expression, microRNA

  2. Recent Sand Avalanching on Rabe Crater Dunes

    Science.gov (United States)

    2000-01-01

    Dark streaks on the steep, down-wind slopes of sand dunes in Rabe Crater are seen at several locations in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. These streaks indicate relatively recent (i.e., in the past few years or less) movement of sand down these slopes.Sand dunes move forward by the combined action of wind that drives sand up the shallow slope on the windward side of the dune (in this case, the slopes that face toward the lower right) and the avalanching of this sand down the steeper, lee-side slope. The steep slope is also known as the slip face. The dark streaks indicated by arrows are evidence for sand avalanches that occurred within a few months or years of the time when the picture was taken in March 1999. Other streaks which are seen criss-crossing the dunes may be the result of passing dust devils. This image is illuminated from the upper left and located in Rabe Crater of the Hellespontus-Noachis region near 44.2oS, 325.6oW.

  3. Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep.

    Directory of Open Access Journals (Sweden)

    Nima eDehghani

    2012-08-01

    Full Text Available Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes, monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes in epileptic patients. In neuronal avalanches defined from units (up to 160 single units, the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs and in particular LFP negative peaks (nLFPs among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices. In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.

  4. Interaction of Avalanche Photodiodes (APDs Devices With Thermal Irradiation Environments

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-04-01

    Full Text Available This paper has been examined the high temperature irradiation variations testing in order to be used to determine avalanche photodiode lifetime, even though APD failure mechanisms are more sensitive to increases in current density. As a measured parameter of degradation, the current density is of great significance when searching for failure modes in APD. Raising the current density however, is not really indicative of lifetime since it is more likely a situation to be avoided than one that simulates normal lifetime degradation. The reliability of semiconductor detectors is very dependent on the degradation modes. This paper has investigated deeply some of the degradation performance and capabilities of typical APDs currently used in many communication and sensing systems over wide range of the affecting parameters. APDs are used in systems that require coherent and often single mode light such as high data rate communications and sensing applications. APDs are an attractive receiver choice for photon-starved (low signal applications, because their internal gain mechanism can improve signal to noise ratio. An optical receiver must also be appropriate for the laser wavelength being used. The near infrared is the preferred wavelength regime for deep space optical communications largely due to the wavelengths of available laser technologies that meet the optical power requirements of a deep space optical link

  5. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russia Electrical Engineering Institute (Russian Federation)

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  6. Multiple pole electromagnetic propulsion system with separated ballistic guidance and electrical current contact surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sims, Jr., James R. (Los Alamos, NM)

    2008-07-15

    An electromagnetic propulsion system is disclosed having separate rails for ballistic guidance and for carrying current. In this system, one or more pairs of ballistic guidance rails are provided, with each ballistic guidance rail having a pair of current carrying rails joined to it to form a combined rail. Each combined rail is separated electrically from adjacent combined rails by electrically insulating blocks. Each of the current carrying rails in a given combined rail pair have the same electrical polarity, and the polarities alternate between adjacent combined rails. Armatures contact current carrying rails to complete the circuit to generate the accelerating Lorentz force on the armatures. Bore riders on the sabot and/or projectile are in contact with the ballistic guide rails. Separation of the current carrying and ballistic guidance functions increases resistance of the system to rail movement and bending, as well as reduced wear/damage to the rails. In further embodiments, a circumferential over wrap providing compressive force on the rails further increases resistance of the system to rail movement and bending.

  7. DESIGN OF MULTIPLE-LOOP FEEDBACK HIGH-ORDER CURRENT-MODE FILTER BASED ON FTFNS

    Institute of Scientific and Technical Information of China (English)

    Xi Yanhui; Peng Liangyu

    2009-01-01

    A general multiple-loop feedback approach for realization of Four-Terminal Floating Nullor C (FTFN-RC) filter is presented.The proposed filter is constructed by multi-output FTFNs,capacitors and resistors.It can simultaneously realize slow-pass,band-pass(if order is even number),and high-pass filter responses.With RC elements grounded and requiring no component matching constraints,it is fully integrated conveniently.Simulations are performed for the fourth-order Butterworth filter to verify the validity of the circuit.

  8. Design and realization of a facility for the characterization of Silicon Avalanche PhotoDiodes

    CERN Document Server

    Celentano, Andrea; De Vita, Raffaella; Fegan, Stuart; Mini, Giuseppe; Nobili, Gianni; Ottonello, Giacomo; Parodi, Franco; Rizzo, Alessandro; Zonta, Irene

    2015-01-01

    We present the design, construction, and performance of a facility for the characterization of Silicon Avalanche Photodiodes in the operating temperature range between -2 $^\\circ$C and 25 $^\\circ$C. The system can simultaneously measure up to 24 photo-detectors, in a completely automatic way, within one day of operations. The measured data for each sensor are: the internal gain as a function of the bias voltage and temperature, the gain variation with respect to the bias voltage, and the dark current as a function of the gain. The systematic uncertainties have been evaluated during the commissioning of the system to be of the order of 1%. This paper describes in detail the facility design and layout, and the procedure employed to characterize the sensors. The results obtained from the measurement of the 380 Avalanche Photodiodes of the CLAS12-Forward Tagger calorimeter detector are then reported, as the first example of the massive usage of the facility.

  9. Statistics of avalanches with relaxation and Barkhausen noise: A solvable model

    Science.gov (United States)

    Dobrinevski, Alexander; Le Doussal, Pierre; Wiese, Kay Jörg

    2013-09-01

    We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a Brownian force landscape, including retardation effects. We show that under monotonous driving the particle moves forward at all times, as it does in absence of retardation (Middleton's theorem). This remarkable property allows us to develop an analytical treatment. The model with an exponentially decaying memory kernel is realized in Barkhausen experiments with eddy-current relaxation and has previously been shown numerically to account for the experimentally observed asymmetry of Barkhausen pulse shapes. We elucidate another qualitatively new feature: the breakup of each avalanche of the standard ABBM model into a cluster of subavalanches, sharply delimited for slow relaxation under quasistatic driving. These conditions are typical for earthquake dynamics. With relaxation and aftershock clustering, the present model includes important ingredients for an effective description of earthquakes. We analyze quantitatively the limits of slow and fast relaxation for stationary driving with velocity v>0. The v-dependent power-law exponent for small velocities, and the critical driving velocity at which the particle velocity never vanishes, are modified. We also analyze nonstationary avalanches following a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size, the duration distribution of the first subavalanche, and the time dependence of the mean velocity. We propose to study these observables in experiments, allowing a direct measurement of the shape of the memory kernel and tracing eddy current relaxation in Barkhausen noise.

  10. Disordered artificial spin ices: Avalanches and criticality (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Libál, Andras [Faculty of Mathematics and Computer Science, Babes-Bolyai University, RO-400591 Cluj-Napoca (Romania)

    2015-05-07

    We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.

  11. A PMT-like high gain avalanche photodiode based on GaN/AlN periodical stacked structure

    CERN Document Server

    Zheng, Ji-yuan; Yang, Di; Yu, Jia-dong; Meng, Xiao; E, Yan-xiong; Wu, Chao; Hao, Zhi-biao; Sun, Chang-zheng; Xiong, Bing; Luo, Yi; Han, Yan-jian; Wang, Jian; Li, Hong-tao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jian-chang; Wei, Tong-bo; Zhang, Yun; Wang, Jun-xi

    2016-01-01

    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace photomultiplier tubes (PMT) for weak light detection. However, in conventional APDs, a large portion of carrier energy drawn from the electric field is thermalized, and the multiplication efficiencies of electron and hole are low and close. In order to achieve high gain, the device should work under breakdown bias, where carrier multiplication proceeds bi-directionally to form a positive feedback multiplication circle. However, breakdown is hard to control, in practice, APDs should work under Geiger mode as a compromise between sustainable detection and high gain. The complexity of system seriously restricts the application. Here, we demonstrate an avalanche photodiode holding high gain without breakdown, which means no quenching circuit is needed for sustainable detection. The device is based on a GaN/AlN periodically-stacked-structure (PSS), wherein electron holds much higher efficiency than hole to draw energy ...

  12. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging

    Directory of Open Access Journals (Sweden)

    Tomislav Resetar

    2016-08-01

    Full Text Available This work explores the benefits of linear-mode avalanche photodiodes (APDs in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under −32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  13. Development of Gated Pinned Avalanche Photodiode Pixels for High-Speed Low-Light Imaging.

    Science.gov (United States)

    Resetar, Tomislav; De Munck, Koen; Haspeslagh, Luc; Rosmeulen, Maarten; Süss, Andreas; Puers, Robert; Van Hoof, Chris

    2016-08-15

    This work explores the benefits of linear-mode avalanche photodiodes (APDs) in high-speed CMOS imaging as compared to different approaches present in literature. Analysis of APDs biased below their breakdown voltage employed in single-photon counting mode is also discussed, showing a potentially interesting alternative to existing Geiger-mode APDs. An overview of the recently presented gated pinned avalanche photodiode pixel concept is provided, as well as the first experimental results on a 8 × 16 pixel test array. Full feasibility of the proposed pixel concept is not demonstrated; however, informative data is obtained from the sensor operating under -32 V substrate bias and clearly exhibiting wavelength-dependent gain in frontside illumination. The readout of the chip designed in standard 130 nm CMOS technology shows no dependence on the high-voltage bias. Readout noise level of 15 e - rms, full well capacity of 8000 e - , and the conversion gain of 75 µV / e - are extracted from the photon-transfer measurements. The gain characteristics of the avalanche junction are characterized on separate test diodes showing a multiplication factor of 1.6 for red light in frontside illumination.

  14. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Directory of Open Access Journals (Sweden)

    Silvia Scarpetta

    Full Text Available We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain. Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  15. Neural avalanches at the critical point between replay and non-replay of spatiotemporal patterns.

    Science.gov (United States)

    Scarpetta, Silvia; de Candia, Antonio

    2013-01-01

    We model spontaneous cortical activity with a network of coupled spiking units, in which multiple spatio-temporal patterns are stored as dynamical attractors. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatio-temporal patterns.

  16. Weak avalanche discrimination for gated-mode single-photon avalanche photodiodes.

    Science.gov (United States)

    Cho, Seok-Beom; Kang, Sae-Kyoung

    2011-09-12

    The after-pulsing effect is a common problem that needs to be overcome for high-speed single-photon detection based on gated-mode single-photon avalanche photodiodes (SPADs). This paper presents a simple and practical method for suppression of the after-pulsing probability using an auxiliary signal to discriminate quite weak avalanches. The detection efficiency and after-pulse probability of an InGaAs/InP SPAD are investigated with a 10 MHz gating for conventional and proposed methods, and a sharp decrease of after-pulse probability is demonstrated with the application of the proposed method. At a gating frequency of 100 MHz, a detection efficiency of 10.4% is achieved with an after-pulse probability of 5.6% without dead time.

  17. The genetics of multiple sclerosis: review of current and emerging candidates

    Science.gov (United States)

    Muñoz-Culla, Maider; Irizar, Haritz; Otaegui, David

    2013-01-01

    Multiple sclerosis (MS) is a complex disease in which environmental, genetic, and epigenetic factors determine the risk of developing the disease. The human leukocyte antigen region is the strongest susceptibility locus linked to MS, but it does not explain the whole heritability of the disease. To find other non-human leukocyte antigen loci associated with the disease, high-throughput genotyping, sequencing, and gene-expression studies have been performed, producing a valuable quantity of information. An overview of the genomic and expression studies is provided in this review, as well as microRNA-expression studies, highlighting the importance of combining all the layers of information in order to elucidate the causes or pathological mechanisms occurring in the disease. Genetics in MS is a promising field that is presumably going to be very productive in the next decade understanding the cross talk between all the factors contributing to the development of MS. PMID:24019748

  18. Statistical analyses support power law distributions found in neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Andreas Klaus

    Full Text Available The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii model parameter estimation to determine the specific exponent of the power law, and (iii comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect. This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  19. Statistical analyses support power law distributions found in neuronal avalanches.

    Science.gov (United States)

    Klaus, Andreas; Yu, Shan; Plenz, Dietmar

    2011-01-01

    The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.

  20. IFKIS a basis for organizational measures in avalanche risk management

    Science.gov (United States)

    Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.

    2003-04-01

    The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.

  1. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery

    Directory of Open Access Journals (Sweden)

    C. Huggel

    2005-01-01

    Full Text Available A massive rock/ice avalanche of about 100x106m3 volume took place on the northern slope of the Kazbek massif, North Ossetia, Russian Caucasus, on 20 September 2002. The avalanche started as a slope failure, that almost completely entrained Kolka glacier, traveled down the Genaldon valley for 20km, was stopped at the entrance of the Karmadon gorge, and was finally succeeded by a distal mudflow which continued for another 15km. The event caused the death of ca. 140 people and massive destruction. Several aspects of the event are extraordinary, i.e. the large ice volume involved, the extreme initial acceleration, the high flow velocity, the long travel distance and particularly the erosion of a valley-type glacier, a process not known so far. The analysis of these aspects is essential for process understanding and worldwide glacial hazard assessments. This study is therefore concerned with the analysis of processes and the evaluation of the most likely interpretations. The analysis is based on QuickBird satellite images, field observations, and ice-, flow- and thermo-mechanical considerations. QuickBird is currently the best available satellite sensor in terms of ground resolution (0.6 m and opens new perspectives for assessment of natural hazards. Evaluation of the potential of QuickBird images for assessment of high-mountain hazards shows the feasibility for detailed avalanche mapping and analysis of flow dynamics, far beyond the capabilities of conventional satellite remote sensing. It is shown that the avalanche was characterized by two different flows. The first one was comparable to a hyperconcentrated flow and was immediately followed by a flow with a much lower concentration of water involving massive volumes of ice. The high mobility of the avalanche is likely related to fluidization effects at the base of the moving ice/debris mass with high pore pressures and a continuous supply of water due to frictional melting of ice. The paper

  2. Smartphone applications for communicating avalanche risk information - a study on how they are developed and evaluated by their providers

    Science.gov (United States)

    Charrière, Marie K. M.; Bogaard, Thom A.

    2016-05-01

    Every year, people are victims of avalanches. It is commonly assumed that one way to decrease those losses is to inform about danger levels. This paper presents a study on current practices in the development and evaluation of smartphones applications that are dedicated to avalanche risk communication. The analysis based on semi-structured interviews with developers of six smartphone apps highlights the context of their development, how choices of content and visualization were made and how their effectiveness is evaluated by the developers themselves. It appears that all these communicators agree on the message to disseminate and the general representation concepts (i.e., use of the international avalanche danger scale and of a tiered approach). However, the specific ways this message is presented (e.g., maps, icons) is not uniform. Moreover, only simple evaluation processes (e.g., usage monitoring) are conducted by the developers. However, they are well aware that further efforts need to be made in order to thoroughly analyze the effectiveness of the smartphone apps in terms of their real impact (e.g., increase in awareness or change in behavior). This work also highlighted that the smartphone applications are in transition from being one-way communication tools to becoming two-way communication platforms, with the possibility for non-experts users to report on snow and avalanche conditions. This paper indicates challenges that avalanche risk communication is facing, although it is indisputably the most advanced and standardized practice compared to communication tools for other natural hazards. In addition to being relevant for the avalanche risk communication community, this research is therefore of interest for scientists and practitioners working on risk communication related to natural hazards.

  3. Novel Low-Power Switched-Current Matched Filter for Direct-Sequence Code-Division-Multiple-Access Wireless Communication

    Science.gov (United States)

    Togura, Kenji; Kubota, Koji; Nakase, Hiroyuki; Masu, Kazuya; Tsubouchi, Kazuo

    2000-04-01

    We have proposed the current-cut switched-current matched filter (CC-SIMF) with a low power consumption of less than 10 mW for mobile terminals in direct-sequence code-division-multiple-access. The parallel SIMF configuration is proposed for the reduction of the current transfer error accumulation in the conventional serial SIMF@. In order to evaluate the fundamental operation of the parallel SIMF, we have designed and fabricated a 32-chip parallel SIMF using 0.8-μm complementary-metal-oxide-semiconductor (CMOS) technology. The autocorrelation performance of a 32-chip orthogonal m-sequence has been clearly observed to be more than 5 Mcps. The measured dynamic range is improved to 12 dB as compared with that of the conventional SIMF, even though each current memory cell has a current transfer error of over 10% per chip. Since the current sources in the parallel SIMF can be reduced to be one-third of those in the serial SIMF, the power consumption of the parallel SIMF can be reduced to one-third of that of the serial SIMF.

  4. Anthropogenic effect on avalanche and debris flow activity

    Directory of Open Access Journals (Sweden)

    S. A. Sokratov

    2013-01-01

    Full Text Available The paper presents examples of the change in snow avalanches and debris flows activity due to the anthropogenic pressure on vegetation and relief. The changes in dynamical characteristics of selected snow avalanches and debris flows due to the anthropogenic activity are quantified. The conclusion is made that the anthropogenic effects on the snow avalanches and debris flows activity are more pronounced than the possible effects of the climate change. The necessity is expressed on the unavoidable changes of the natural environment as the result of a construction and of use of the constructed infrastructure to be account for in corresponding planning of the protection measures.

  5. Seeded excitation avalanches in off-resonantly driven Rydberg gases

    CERN Document Server

    Simonelli, Cristiano; Masella, Guido; Asteria, Luca; Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    2016-01-01

    We report an experimental investigation of the facilitated excitation dynamics in off-resonantly driven Rydberg gases by separating the initial off-resonant excitation phase from the facilitation phase, in which successive facilitation events lead to excitation avalanches. We achieve this by creating a controlled number of initial seed excitations. Greater insight into the avalanche mechanism is obtained from an analysis of the full counting distributions. We also present simple mathematical models and numerical simulations of the excitation avalanches that agree well with our experimental results.

  6. Avalanche of particles in evaporating coffee drops

    CERN Document Server

    Marin, Alvaro G; Snoeijer, Jacco; Lohse, Detlef

    2010-01-01

    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.

  7. Photon counting techniques with silicon avalanche photodiodes.

    Science.gov (United States)

    Dautet, H; Deschamps, P; Dion, B; Macgregor, A D; Macsween, D; McIntyre, R J; Trottier, C; Webb, P P

    1993-07-20

    The properties of avalanche photodiodes and associated electronics required for photon counting in the Geiger and the sub-Geiger modes are reviewed. When the Geiger mode is used, there are significant improvements reported in overall photon detection efficiencies (approaching 70% at 633 nm), and a timing jitter (under 200 ps) is achieved with passive quenching at high overvoltages (20-30 V). The results obtained by using an active-mode fast quench circuit capable of switching overvoltages as high as 15 V (giving photon detection efficiencies in the 50% range) with a dead time of less than 50 ns are reported. Larger diodes (up to 1 mm in diameter) that are usable in the Geiger mode and that have quantum efficiencies over 80% in the 500-800-nm range are also reported.

  8. Avalanche photodiodes now and possible developments

    CERN Document Server

    Britvitch, I; Ingram, Q; Kuznetsov, A; Musienko, Y; Renker, D; Reucroft, S; Sakhelashvili, T M; Swain, J

    2004-01-01

    Avalanche Photodiodes (APDs) are now out of their infancy and are used in large numbers in the electromagnetic calorimeter of CMS where they have to stand the extremely hostile environment of LHC. This type - with smaller sensitive area and arranged in monolithic arrays - is an excellent candidate for the read out of scintillating crystals in medical imaging and a PET scanner operates already successfully since more than 3 years. We present the properties of the device used in CMS and possible improvements of the structure, which could open the door for new applications. Operating APDs at low temperatures or in Geiger mode will allow single photon counting and in future they could replace photomultiplier tubes.

  9. Overspill avalanching in a dense reservoir network

    CERN Document Server

    Mamede, G L; Schneider, C M; de Araújo, J C; Herrmann, H J

    2012-01-01

    Sustainability of communities, agriculture, and industry is strongly dependent on an effective storage and supply of water resources. In some regions the economic growth has led to a level of water demand which can only be accomplished through efficient reservoir networks. Such infrastructures are not always planned at larger scale but rather made by farmers according to their local needs of irrigation during droughts. Based on extensive data from the upper Jaguaribe basin, one of the world's largest system of reservoirs, located in the Brazilian semiarid northeast, we reveal that surprisingly it self-organizes into a scale-free network exhibiting also a power-law in the distribution of the lakes and avalanches of discharges. With a new self-organized-criticality-type model we manage to explain the novel critical exponents. Implementing a flow model we are able to reproduce the measured overspill evolution providing a tool for catastrophe mitigation and future planning.

  10. Lautaret avalanche test site: outcomes from the 11th april 2012 event

    OpenAIRE

    2012-01-01

    International audience; The Lautaret full-scale avalanche test site has been used by Cemagref-Irstea since the early 70's. The first studies were dedicated to avalanche released systems. Later, experiments focused on avalanche dynamics and avalanche impact pressures both in relation with the fundamental knowledge of snow flow rheology and the engineering of defense structures and avalanche hazard zoning. Recent instrumentation developments now provide rich-documented in situ measurements of a...

  11. Mixer-settler counter-current chromatography with multiple spiral disk assembly.

    Science.gov (United States)

    Ito, Yoichiro; Clary, Robert; Sharpnak, Frank; Metger, Howard; Powell, Jimmie

    2007-11-23

    A novel system for performing high-speed counter-current chromatography has been developed for separation of biopolymers using polymer phase systems. The spiral disk assembly consisting of eight units, each equipped with over 300 mixer-settler sets, was constructed and performance evaluated in terms of retention of the stationary phase and separation efficiency. A series of experiments was performed with a polymer phase system composed of polyethylene glycol 1000 (12.5%, w/w) and dibasic potassium phosphate (12.5%, w/w) using two stable protein samples of myoglobin and lysozyme at various experimental conditions of flow rates and revolution speeds. The best results were obtained with revolution speeds of 800-1000rpm at flow rates of 0.25-0.5ml/min where the partition efficiency of several 100 theoretical plates was achieved with over 50% stationary phase retention.

  12. Current and future therapies targeting the immune system in multiple sclerosis.

    Science.gov (United States)

    Loleit, Verena; Biberacher, Viola; Hemmer, Bernhard

    2014-01-01

    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The exact pathomechanism is unknown, but an aberrant immune response against CNS antigens, leading to inflammation in brain and spinal cord followed by demyelination, axonal damage and scar formation, seems to play a major role. Later in the disease course, inflammation decreases, while neurodegeneration proceeds. Approximately 80% of the patients initially show a relapsing-remitting disease course (RRMS), but the majority of them later develops a secondary progressive MS (SPMS). A minority suffers from primary progressive MS (PPMS). Primary goals of long-term MS therapy are to prevent relapses and disease progression. Assuming that MS is an autoimmune disease, most therapeutics aim to modulate or suppress the immune system. Until now many drugs have proven efficacy in RRMS, but none in PPMS. Interferon-β (IFN-β) and glatiramer acetate are known in RRMS therapy for years. Based on preclinical research and clinical trials, new treatment strategies have emerged and have been transferred from bench to bedside. The α4β-integrin-antagonist natalizumab was approved in 2005. Fingolimod, dimethyl fumarate and teriflunomide were the first oral drugs introduced in MS therapy. Recently alemtuzuab, another monoclonal antibody, was approved in Europe. Promising future perspectives are alemtuzumab, daclizumab, and laquinimod. Here, we review drug mechanisms in the therapy of MS. The mechanisms of action and the effect of the drugs on the immune system are summarized. We report recent results of clinical trials, highlight special features of different treatment strategies, and discuss future perspectives and ongoing clinical trials.

  13. Teriparatide Treatment Following Osteoporotic Hip Fracture in a Male Patient with Multiple Sclerosis and Current Recommendations

    Directory of Open Access Journals (Sweden)

    Sibel Başaran

    2015-12-01

    Full Text Available A 58-year-old male patient with a diagnosis of multiple sclerosis (MS who had been operated due to a low-energy subtrochanteric femoral fracture was admitted in order to plan anti-osteoporotic treatment and rehabilitation at post-operative first week. Although the patient had a history of glucocorticoid use, he had never received any preventative treatment for osteoporosis. T-scores detected by Dual energy x-ray absorptiometry (DXA method were -4.7, -4.9 and -3.3 at femoral neck, total hip and L1-L4 vertebrae, respectively. Since the patient had severe osteoporosis, teriparatide treatment was planned. Following vitamin D supplementation, teriparatide 20 mcg/day was started. After 6 months of treatment, patient improved significantly in terms of symptoms and DXA scores. T-scores of the femoral neck, total hip and L1-L4 vertebrae improved to -3.4, -3.9 and -3.0, respectively. When teriparatide therapy was continued up to 18 months, further increase in DXA values was observed (T-scores of femoral neck, total hip and L1-L4 vertebrae were -2.9, -2.4 and -2.2, respectively. No adverse event was seen during the treatment period. Following the cessation of teriparatide therapy, alendronate and cholecalciferol combination (70 mg/2800 IU was started. Bone health and vitamin D level are affected negatively in patients with MS due to multifactorial reasons. In order to avoid serious consequences such as hip fracture, awareness about osteoporosis should be increased and preventative strategies should be tailored from the early stages of the disease

  14. The state of multiple sclerosis: current insight into the patient/health care provider relationship, treatment challenges, and satisfaction

    Directory of Open Access Journals (Sweden)

    Tintoré M

    2016-12-01

    Full Text Available Mar Tintoré,1 Maggie Alexander,2 Kathleen Costello,3 Martin Duddy,4 David E Jones,5 Nancy Law,6 Gilmore O’Neill,7 Antonio Uccelli,8 Robert Weissert,9 Sibyl Wray10 1Multiple Sclerosis Centre of Catalonia, Hospital Vall d’Hebron, Barcelona, Spain; 2European Multiple Sclerosis Platform, Brussels, Belgium; 3National Multiple Sclerosis Society, Denver, CO, USA; 4Royal Victoria Infirmary, Newcastle-upon-Tyne, UK; 5Department of Neurology, University of Virginia, Charlottesville, VA, USA; 6Nancy Law Consulting LLC, Parker, CO, USA; 7Biogen, Cambridge, MA, USA; 8Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; 9Department of Neurology, University of Regensburg, Regensburg, Germany; 10Hope Neurology Multiple Sclerosis Center, Knoxville, TN, USA Background: Managing multiple sclerosis (MS treatment presents challenges for both patients and health care professionals. Effective communication between patients with MS and their neurologist is important for improving clinical outcomes and quality of life. Methods: A closed-ended online market research survey was used to assess the current state of MS care from the perspective of both patients with MS (≥18 years of age and neurologists who treat MS from Europe and the US and to gain insight into perceptions of treatment expectations/goals, treatment decisions, treatment challenges, communication, and satisfaction with care, based on current clinical practice. Results: A total of 900 neurologists and 982 patients completed the survey, of whom 46% self-identified as having remitting-relapsing MS, 29% secondary progressive MS, and 11% primary progressive MS. Overall, patients felt satisfied with their disease-modifying therapy (DMT; satisfaction related to comfort in speaking with their neurologist and participation in their DMT decision-making process. Patients who self-identified as having relapsing-remitting MS were more likely to be very satisfied with their treatment

  15. Foliage penetration optimization for Geiger-mode avalanche photodiode lidar

    Science.gov (United States)

    Johnson, Steven E.

    2013-05-01

    Geiger-mode avalanche photodiode (GMAPD) Lidar systems can be used to image targets that are partially concealed by foliage. This application of GMAPD Lidar is challenging because most APDs operating in Geiger- mode report only one range measurement per transmitted laser pulse. If a GMAPD makes a foliage range measurement, it cannot make a range measurement to a target concealed by the foliage. When too much laser energy is received, the vast majority of range measurements are from the foliage and only a small percentage are from the target. Some GMAPD Lidar systems can report their average detection probability during operation. The average detection probability, which is often called "P-det", is calculated over an array of GMAPDs, over multiple laser pulses, or over both. However, the detection probability does not distinguish between target range measurements, foliage range measurements, and noise events. In this paper, it is shown that when certain collection parameters are known, that the probability of detecting a target obscured by foliage can be maximized by selecting the appropriate "P-det". It is also shown that for a typical foliage penetration scenario where most of the reflected laser energy is from the foliage that operating with a "P-det" between 65% and 80% produces a near-maximum target detection probability.

  16. Measurement of multiplicity and momentum spectra in the current fragmentation region of the Breit frame at HERA

    CERN Document Server

    Derrick, Malcolm; Magill, S; Mikunas, D; Musgrave, B; Repond, J; Stanek, R; Talaga, R L; Zhang, H; Ayad, R; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Bruni, P; Cara Romeo, G; Castellini, G; Chiarini, M; Cifarelli, Luisa; Cindolo, F; Contin, A; Gialas, I; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Nemoz, C; Palmonari, F; Polini, A; Sartorelli, G; Timellini, R; Zamora-Garcia, Yu E; Zichichi, Antonino; Bargende, A; Crittenden, James Arthur; Desch, Klaus; Diekmann, B; Doeker, T; Eckert, M; Feld, L; Frey, A; Geerts, M; Geitz, G; Grothe, M; Haas, T; Hartmann, H; Haun, D; Heinloth, K; Hilger, E; Jakob, H P; Katz, U F; Mari, S M; Mass, A; Mengel, S; Mollen, J; Paul, E; Rembser, C; Schattevoy, R; Schramm, D; Stamm, J; Wedemeyer, R; Campbell-Robson, S; Cassidy, A; Dyce, N; Foster, B; George, S; Gilmore, R; Heath, G P; Heath, H F; Llewellyn, T J; Morgado, C J S; Norman, D J P; O'Mara, J A; Tapper, R J; Wilson, S S; Yoshida, R; Rau, R R; Arneodo, M; Iannotti, L; Schioppa, M; Susinno, G; Bernstein, A M; Caldwell, A; Parsons, J A; Ritz, S; Sciulli, F; Straub, P B; Wai, L; Yang, S; Zhu, Q; Borzemski, P; Chwastowski, J; Eskreys, Andrzej; Piotrzkowski, K; Zachara, M; Zawiejski, L; Adamczyk, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Zajac, J; Kotanski, Andrzej; Przybycien, M B; Bauerdick, L A T; Behrens, U; Beier, H; Bienlein, J K; Coldewey, C; Deppe, O; Desler, K; Drews, G; Flasinski, M; Gilkinson, D J; Glasman, C; Göttlicher, P; Grosse-Knetter, J; Gutjahr, B; Hain, W; Hasell, D; Hessling, H; Hultschig, H; Iga, Y; Joos, P; Kasemann, M; Klanner, Robert; Koch, W; Köpke, L; Kötz, U; Kowalski, H; Labs, J; Ladage, A; Löhr, B; Loewe, M; Lüke, D; Manczak, O; Ng, J S T; Nickel, S; Notz, D; Ohrenberg, K; Roco, M T; Rohde, M; Roldán, J; Schneekloth, U; Schulz, W; Selonke, F; Stiliaris, E; Surrow, B; Voss, T; Westphal, D; Wolf, G; Youngman, C; Zhou, J F; Grabosch, H J; Kharchilava, A I; Leich, A; Mattingly, M C K; Meyer, A; Schlenstedt, S; Barbagli, G; Pelfer, P G; Anzivino, Giuseppina; Maccarrone, G D; De Pasquale, S; Votano, L; Bamberger, Andreas; Eisenhardt, S; Freidhof, A; Söldner-Rembold, S; Schröder, J; Trefzger, T M; Brook, N H; Bussey, Peter J; Doyle, A T; Fleck, I; Jamieson, V A; Saxon, D H; Utley, M L; Wilson, A S; Dannemann, A; Holm, U; Horstmann, D; Neumann, T; Sinkus, R; Wick, K; Badura, E; Burow, B D; Hagge, L; Lohrmann, E; Mainusch, J; Milewski, J; Nakahata, M; Pavel, N; Poelz, G; Schott, W; Zetsche, F; Bacon, Trevor C; Butterworth, Ian; Gallo, E; Harris, V L; Hung, B Y H; Long, K R; Miller, D B; Morawitz, P P O; Prinias, A; Sedgbeer, J K; Whitfield, A F; Mallik, U; McCliment, E; Wang, M Z; Wang, S M; Wu, J T; Zhang, Y; Cloth, P; Filges, D; An Shiz Hong; Hong, S M; Nam, S W; Park, S K; Suh, M H; Yon, S H; Imlay, R; Kartik, S; Kim, H J; McNeil, R R; Metcalf, W; Nadendla, V K; Barreiro, F; Cases, G; Graciani, R; Hernández, J M; Hervás, L; Labarga, L; Del Peso, J; Puga, J; Terrón, J; De Trocóniz, J F; Smith, G R; Corriveau, F; Hanna, D S; Hartmann, J; Hung, L W; Lim, J N; Matthews, C G; Patel, P M; Sinclair, L E; Stairs, D G; Saint-Laurent, M G; Ullmann, R T; Zacek, G; Bashkirov, V; Dolgoshein, B A; Stifutkin, A; Bashindzhagian, G L; Ermolov, P F; Gladilin, L K; Golubkov, Yu A; Kobrin, V D; Kuzmin, V A; Proskuryakov, A S; Savin, A A; Shcheglova, L M; Solomin, A N; Zotov, N P; Botje, M; Chlebana, F S; Dake, A P; Engelen, J; De Kamps, M; Kooijman, P M; Kruse, A; Tiecke, H G; Verkerke, W; Vreeswijk, M; Wiggers, L; De Wolf, E; Van Woudenberg, R; Acosta, D; Bylsma, B G; Durkin, L S; Honscheid, K; Li Chuan; Ling, T Y; McLean, K W; Murray, W N; Park, I H; Romanowsky, T A; Seidlein, R; Bailey, D S; Blair, G A; Byrne, A; Cashmore, Roger J; Cooper-Sarkar, A M; Daniels, D C; Devenish, R C E; Harnew, N; Lancaster, M; Luffman, P; Lindemann, L; McFall, J D; Nath, C; Quadt, A; Uijterwaal, H; Walczak, R; Wilson, F F; Yip, T; Abbiendi, G; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; De Giorgi, M; Dosselli, U; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Bulmahn, J; Butterworth, J M; Feild, R G; Oh, B Y; Whitmore, J; D'Agostini, Giulio; Marini, G; Nigro, A; Tassi, E; Hart, J C; McCubbin, N A; Prytz, K; Shah, T P; Short, T L; Barberis, E; Cartiglia, N; Dubbs, T; Heusch, C A; Van Hook, M; Hubbard, B; Lockman, W; Rahn, J T; Sadrozinski, H F W; Seiden, A; Biltzinger, J; Seifert, R J; Walenta, Albert H; Zech, G; Abramowicz, H; Briskin, G M; Dagan, S; Levy, A; Hasegawa, T; Hazumi, M; Ishii, T; Kuze, M; Mine, S; Nagasawa, Y; Nakao, M; Susuki, I; Tokushuku, K; Yamada, S; Yamazaki, Y; Chiba, M; Hamatsu, R; Hirose, T; Homma, K; Kitamura, S; Nakamitsu, Y; Yamauchi, K; Cirio, R; Costa, M; Ferrero, M I; Lamberti, L; Maselli, S; Peroni, C; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Bandyopadhyay, D; Bénard, F; Brkic, M; Crombie, M B; Gingrich, D M; Hartner, G F; Joo, K K; Levman, G M; Martin, J F; Orr, R S; Sampson, C R; Teuscher, R; Catterall, C D; Jones, T W; Kaziewicz, P B; Lane, J B; Saunders, R L; Shulman, J; Blankenship, K; Kochocki, J A; Lu, B; Mo, L W; Bogusz, W; Charchula, K; Ciborowski, J; Gajewski, J; Grzelak, G; Kasprzak, M; Krzyzanowski, M; Muchorowski, K; Nowak, R J; Pawlak, J M; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Zarnecki, A F; Adamus, M; Eisenberg, Y; Karshon, U; Revel, D; Zer-Zion, D; Shapira, A; Ali, I; Badgett, W F; Behrens, B H; Dasu, S; Fordham, C; Foudas, C; Goussiou, A; Loveless, R J; Reeder, D D; Silverstein, S; Smith, W H; Vaiciulis, A W; Wodarczyk, M; Tsurugai, T; Bhadra, S; Cardy, M L; Fagerstroem, C P; Frisken, W R; Furutani, K M; Khakzad, M; Schmidke, W B; Levy, Aharon

    1995-01-01

    Charged particle production has been measured in Deep Inelastic Scattering (DIS) events using the ZEUS detector over a large range of Q^2 from 10 to 1280 {\\rm\\ GeV}^2. The evolution with Q of the charged multiplicity and scaled momentum has been investigated in the current fragmentation region of the Breit frame. The data are used to study QCD \\linebreak coherence effects in DIS and are compared with corresponding \\ee~data in order to test the universality of quark fragmentation.

  17. SiC Avalanche Photodiodes and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aymont Technology, Inc. (Aymont) will demonstrate the feasibility of SiC p-i-n avalanche photodiodes (APD) arrays. Aymont will demonstrate 4 x 4 arrays of 2 mm2 APDs...

  18. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  19. Dynamic intermittency in discrete erodible-bed avalanches

    Science.gov (United States)

    Arran, Matthew; Vriend, Nathalie

    2016-11-01

    The coexistence of fluid-like and solid-like behaviour in granular matter allows avalanches of grains to flow on the surface of a static but erodible bed. For sufficiently slow inflow, these avalanches are discrete, with previous experimentalists reporting that avalanche fronts pass a given point quasi-periodically. We report instead observations of dynamic intermittency between two regimes, one in which avalanches occur quasi-periodically and another in which the intervals between them are irregular. Finding the first regime consistent with existing models, we introduce a model for the second regime within the framework of Self-Organised Criticality, and describe the transition between the regimes with reference to the state of the erodible bed.

  20. Avalanche statistics from data with low time resolution.

    Science.gov (United States)

    LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J; Gu, Xiaojun; Uhl, J T; Dahmen, Karin A

    2016-11-01

    Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.

  1. UNIQUENESS OF SOLUTIONS FOR SEMICONDUCTOR EQUATIONS WITH AVALANCHE TERM

    Institute of Scientific and Technical Information of China (English)

    Xing Jiasheng; Wang Yuanming

    2000-01-01

    In this paper, we consider the initial and mixed boundary value problems for the semiconductor equations with avalanche term, the uniqueness of the weak solution for the semiconductor equation has been proved.

  2. Multiple modes of clearing one's mind of current thoughts: overlapping and distinct neural systems.

    Science.gov (United States)

    Banich, Marie T; Mackiewicz Seghete, Kristen L; Depue, Brendan E; Burgess, Gregory C

    2015-03-01

    This study used the power of neuroimaging to identify the neural systems that remove information from working memory, a thorny issue to examine because it is difficult to confirm that individuals have actually modified their thoughts. To overcome this problem, brain activation as measured via fMRI was assessed when individuals had to clear their mind of all thought (global clear), clear their mind of a particular thought (targeted clear), or replace the current thought (replace), relative to maintaining an item in working memory. The pattern of activity in posterior sensory regions across these conditions confirmed compliance with task demands. A hierarchy of brain regions involved in cognitive control, including parietal, dorsolateral prefrontal and frontopolar regions, were engaged to varying degrees depending on the manner in which information was removed from working memory. In addition, individuals with greater difficulty in controlling internal thoughts exhibited greater activity in prefrontal brain regions associated with cognitive control, as well as in left lateral prefrontal areas including Broca's area, which is associated with inner speech. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 μm technology

    Science.gov (United States)

    Pellion, D.; Jradi, K.; Brochard, N.; Prêle, D.; Ginhac, D.

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 μm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm2) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters1

  4. Geological history and within-island diversity: a debris avalanche and the Tenerife lizard Gallotia galloti.

    Science.gov (United States)

    Brown, Richard P; Hoskisson, Paul A; Welton, John-Henry; Báez, Marcos

    2006-10-01

    Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides

  5. Development of avalanche risk between 1950 and 2000 in the Municipality of Davos, Switzerland

    Science.gov (United States)

    Fuchs, S.; Bründl, M.; Stötter, J.

    2004-04-01

    In recent years, risk assessment has become increasingly important for the protection of settlements against natural hazards because the public authorities have to economise their budgets and therefore to legitimate their investments. To quantify risk, information is needed on both, recurrence intervals of the potentially damaging natural processes and on the associated damage potential. In the past, high efforts were undertaken to assess the former, while the latter was almost ignored. The aim of this study was to determine the development of the avalanche risk in the inhabited areas of the municipality of Davos, canton of Grisons, Switzerland, for the period between 1950 and 2000. The extent of avalanche prone areas was quantified using the numerical avalanche model AVAL-1D and the current legal hazard maps. The damage potential was quantified by the number and reinstatement values of buildings and by the number of persons per building. It has been demonstrated that, contrary to the frequently expressed statement that the vulnerability of communities has increased, the risk for this settlement in fact decreased substantially. This can mainly be attributed to the realisation of mitigation measures, such as defence structures in avalanche starting zones. The only exception regarding the development of risk was in the category of residential buildings, were an increase in risk was already detectable at medium recurrence intervals. This is remarkable because methods of land use planning, such as hazard mapping, are intended to protect residential buildings from the impact of hazardous processes. However, general statements referring to a larger area (region, country) might be difficult to make, since small-scale disparities have a very important influence on the diversification of risk and risk management. Furthermore, it has to be emphasized that the results are highly dependent on the assumptions made in this study.

  6. Distance protection of multiple-circuit shared tower transmission lines with different voltages. Part I: Fault current magnitude

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2017-01-01

    Multiple-circuit transmission lines combining different voltage levels in one tower present extra challenges when setting a protection philosophy, as faults between voltage levels are possible. This paper presents a detailed theoretical analysis of such combined faults, including the development...... of a formula for estimating the magnitude of the short-circuit current. It is demonstrated that if the faulted phase from the higher voltage level leads the faulted phase from the lower voltage level, a distance relay at the higher voltage level sees the fault in the forward direction, whereas a distance relay...... at the lower voltage level sees the fault in the reverse direction. The opposite happens if the lower voltage level leads the higher voltage level. It is also demonstrated that the magnitude of fault currents of combined faults is normally slightly larger than of equivalent single-phase-to-ground fault...

  7. Geiger-Mode Avalanche Photodiodes in Particle Detection

    OpenAIRE

    Vilella, E.; Alonso, O.; Trenado, J.; Vilà, A.; De Vos, M.; Garrido, L.; Diéguez, A.

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite sensitivity and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection remains still unexplored. In this contribution, we are going to expose the different steps that we have taken in order to prove the efficiency of Geiger mode avalanche photodiodes in the aforementioned field. In particula...

  8. Wavelength dependence of silicon avalanche photodiode fabricated by CMOS process

    Science.gov (United States)

    Mohammed Napiah, Zul Atfyi Fauzan; Hishiki, Takuya; Iiyama, Koichi

    2017-07-01

    Avalanche photodiodes fabricated by CMOS process (CMOS-APDs) have features of high avalanche gain below 10 V, wide bandwidth over 5 GHz, and easy integration with electronic circuits. In CMOS-APDs, guard ring structure is introduced for high-speed operation by canceling photo-generated carriers in the substrate at the sacrifice of the responsivity. We describe here wavelength dependence of the responsivity and the bandwidth of the CMOS-APDs with shorted and opened guard ring structure.

  9. Influence of snow-cover properties on avalanche dynamics

    Science.gov (United States)

    Steinkogler, W.; Sovilla, B.; Lehning, M.

    2012-04-01

    Snow avalanches with the potential of reaching traffic routes and settlements are a permanent winter threat for many mountain communities. Snow safety officers have to take the decision whether to close a road, a railway line or a ski slope. Those decisions are often very difficult as they demand the ability to interpret weather forecasts, to establish their implication for the stability and the structure of the snow cover and to evaluate the influence of the snow cover on avalanche run-out distances. In the operational programme 'Italy-Switzerland, project STRADA' we focus on the effects of snow cover on avalanche dynamics, and thus run-out distance, with the aim to provide a better understanding of this influence and to ultimately develop tools to support snow safety officers in their decision process. We selected five avalanches, measured at the Vallée de la Sionne field site, with similar initial mass and topography but different flow dynamics and run-out distances. Significant differences amongst the individual avalanches could be observed for front and internal velocities, impact pressures, flow regimes, deposition volumes and run-out distances. For each of these avalanches, the prevailing snow conditions at release were reconstructed using field data from local snowpits or were modeled with SNOWPACK. Combining flow dynamical data with snow cover properties shows that erodible snow depth, snow density and snow temperature in the snow pack along the avalanche track are among the decisive variables that appear to explain the observed differences. It is further discussed, how these influencing factors can be quantified and used for improved predictions of site and time specific avalanche hazard.

  10. Effect of volume fraction on granular avalanche dynamics.

    Science.gov (United States)

    Gravish, Nick; Goldman, Daniel I

    2014-09-01

    We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.

  11. Avalanche Phenomenon of Runaway Electrons During Additional Fuelling

    Institute of Scientific and Technical Information of China (English)

    杨进蔚; 曹建勇; 曾庆希; 张炜; 唐年益; 董贾福; 邓中朝; 肖正贵; 姚良骅

    2002-01-01

    During pellet injection and supersonic molecular beam injection, we have observed the increase of electron density and the enhancement of hard x-ray radiation, but the runaway electrons normally decrease without additional fuelling when the density of plasma increases. This phenomenon may come from the synergetic effects of Dreicer and avalanche runaway electrons. The experimental results are consistent with the calculation based on the theory of avalanche runaway in the HL-1M tokamak.

  12. Spatio-temporal avalanche forecasting with Support Vector Machines

    Directory of Open Access Journals (Sweden)

    A. Pozdnoukhov

    2011-02-01

    Full Text Available This paper explores the use of the Support Vector Machine (SVM as a data exploration tool and a predictive engine for spatio-temporal forecasting of snow avalanches. Based on the historical observations of avalanche activity, meteorological conditions and snowpack observations in the field, an SVM is used to build a data-driven spatio-temporal forecast for the local mountain region. It incorporates the outputs of simple physics-based and statistical approaches used to interpolate meteorological and snowpack-related data over a digital elevation model of the region. The interpretation of the produced forecast is discussed, and the quality of the model is validated using observations and avalanche bulletins of the recent years. The insight into the model behaviour is presented to highlight the interpretability of the model, its abilities to produce reliable forecasts for individual avalanche paths and sensitivity to input data. Estimates of prediction uncertainty are obtained with ensemble forecasting. The case study was carried out using data from the avalanche forecasting service in the Locaber region of Scotland, where avalanches are forecast on a daily basis during the winter months.

  13. Repertoires of spike avalanches are modulated by behavior and novelty

    Directory of Open Access Journals (Sweden)

    Tiago Lins Ribeiro

    2016-03-01

    Full Text Available Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here we show that spike avalanches, recorded from hippocampus and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  14. Repertoires of Spike Avalanches Are Modulated by Behavior and Novelty.

    Science.gov (United States)

    Ribeiro, Tiago L; Ribeiro, Sidarta; Copelli, Mauro

    2016-01-01

    Neuronal avalanches measured as consecutive bouts of thresholded field potentials represent a statistical signature that the brain operates near a critical point. In theory, criticality optimizes stimulus sensitivity, information transmission, computational capability and mnemonic repertoires size. Field potential avalanches recorded via multielectrode arrays from cortical slice cultures are repeatable spatiotemporal activity patterns. It remains unclear whether avalanches of action potentials observed in forebrain regions of freely-behaving rats also form recursive repertoires, and whether these have any behavioral relevance. Here, we show that spike avalanches, recorded from hippocampus (HP) and sensory neocortex of freely-behaving rats, constitute distinct families of recursive spatiotemporal patterns. A significant number of those patterns were specific to a behavioral state. Although avalanches produced during sleep were mostly similar to others that occurred during waking, the repertoire of patterns recruited during sleep differed significantly from that of waking. More importantly, exposure to novel objects increased the rate at which new patterns arose, also leading to changes in post-exposure repertoires, which were significantly different from those before the exposure. A significant number of families occurred exclusively during periods of whisker contact with objects, but few were associated with specific objects. Altogether, the results provide original evidence linking behavior and criticality at the spike level: spike avalanches form repertoires that emerge in waking, recur during sleep, are diversified by novelty and contribute to object representation.

  15. A revision of the Haiming rock avalanche (Eastern Alps)

    Science.gov (United States)

    Dufresne, Anja; Ostermann, Marc; Kelfoun, Karim; Ring, Max; Asam, Dario; Prager, Christoph

    2016-04-01

    The carbonate Haiming rock avalanche is directly neighbouring the larger Tschirgant rock avalanche deposit, both located in the upper Inn valley (Tyrol, Austria). Based on detailed morpho-lithologic mapping of the deposit, which has not been done at Haiming before, the sedimentology of the Holocene landslide debris is characterised. Structural-tectonic elements of the bedrock units at the scarp area are supplemented with borehole data from drillings at the source area giving valuable insights into the complex geological bedrock composition and structure. New source and runout reconstructions allow updated volumetric calculations, which are subsequently integrated into numerical runout modelling. Haiming is one of few topographically unobstructed rock avalanches, yet its morphology was greatly influenced by fluvial terraces, which are still discernible through the deposit on LiDAR hillshade images. We also address the influence of the rock avalanche on the valley floor and local river system as a short-lived dam and its interaction with fluvial incision. Finally, we discuss the Haiming rock avalanche in view of the other massive rock slope failures in the area ("Fernpass cluster"), their spatio-temporal distribution, and point out further highlights of this simple(?) rock avalanche deposit.

  16. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    Science.gov (United States)

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  17. Avalanches and hysteresis in frustrated superconductors and XY spin glasses.

    Science.gov (United States)

    Sharma, Auditya; Andreanov, Alexei; Müller, Markus

    2014-10-01

    We study avalanches along the hysteresis loop of long-range interacting spin glasses with continuous XY symmetry, which serves as a toy model of granular superconductors with long-range and frustrated Josephson couplings. We identify sudden jumps in the T=0 configurations of the XY phases as an external field is increased. They are initiated by the softest mode of the inverse susceptibility matrix becoming unstable, which induces an avalanche of phase updates (or spin alignments). We analyze the statistics of these events and study the correlation between the nonlinear avalanches and the soft mode that initiates them. We find that the avalanches follow the directions of a small fraction of the softest modes of the inverse susceptibility matrix, similarly as was found in avalanches in jammed systems. In contrast to the similar Ising spin glass (Sherrington-Kirkpatrick) studied previously, we find that avalanches are not distributed with a scale-free power law but rather have a typical size which scales with the system size. We also observe that the Hessians of the spin-glass minima are not part of standard random matrix ensembles as the lowest eigenvector has a fractal support.

  18. Optimization of InGaAs/InAlAs Avalanche Photodiodes

    Science.gov (United States)

    Chen, Jun; Zhang, Zhengyu; Zhu, Min; Xu, Jintong; Li, Xiangyang

    2017-01-01

    In this paper, we report a two-dimensional (2D) simulation for InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and study the effect of the charge layer and multiplication layer on the operating voltage ranges of APD. We find that with the increase of the thicknesses as well as the doping concentrations of the charge layer and the multiplication layer, the punchthrough voltage increases; with the increase of the doping concentrations of two layers and the thickness of the charge layer, the breakdown voltage decreases; with the increase of the thickness of the multiplication layer, the breakdown voltage first rapidly declines and then slightly rises.

  19. On the analytical formulation of excess noise in avalanche photodiodes with dead space.

    Science.gov (United States)

    Jamil, Erum; Cheong, Jeng S; David, J P R; Hayat, Majeed M

    2016-09-19

    Simple, approximate formulas are developed to calculate the mean gain and excess noise factor for avalanche photodiodes using the dead-space multiplication theory in the regime of small multiplication width and high applied electric field. The accuracy of the approximation is investigated by comparing it to the exact numerical method using recursive coupled integral equations and it is found that it works for dead spaces up to 15% of the multiplication width, which is substantial. The approximation is also tested for real materials such as GaAs, InP and Si for various multiplication widths, and the results found are accurate within ∼ 15% of the actual noise, which is a significant improvement over the local-theory noise formula. The results obtained for the mean gain also confirm the recently reported relationship between experimentally determined local ionization coefficients and the enabled non-local ionization coefficients.

  20. Modeling of snow avalanches for protection measures designing

    Science.gov (United States)

    Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton

    2017-04-01

    Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in

  1. Multigate single-photon detection and timing discrimination with an InGaAs/lnP avalanche photodiode.

    Science.gov (United States)

    Zhou, Chunyuan; Wu, Guang; Zeng, Heping

    2006-03-10

    Multigate detection of single photons at 1550 nm is achieved by using capacitor-balanced InGaAs/InP avalanche photodiodes, with which we experimentally demonstrate the efficient discrimination of single-photon timing by counting single-photon clicks and the corresponding afterpulses within the multiple gates. Results show that the technique of multigate detection is a practical method for the single-photon timing information process.

  2. Skier triggering of backcountry avalanches with skilled route selection

    Science.gov (United States)

    Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce

    2015-04-01

    Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for

  3. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    Science.gov (United States)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  4. Avalanches in a granular stick-slip experiment: detection using wavelets

    Science.gov (United States)

    Abed Zadeh, Aghil; Barés, Jonathan; Behringer, Robert P.

    2017-06-01

    Avalanches have been experimentally investigated in a wide range of physical systems from granular physics to friction. Here, we measure and detect avalanches in a 2D granular stick-slip experiment. We discuss the conventional way of signal processing for avalanche extraction and how statistics depend on several parameters that are chosen in the analysis process. Then, we introduce another way of detecting avalanches using wavelet transformations that can be applied in many other systems. We show that by using this method and measuring Lipschitz exponents, we can intelligently detect noise in a signal, which leads to a better avalanche extraction and more reliable avalanche statistics.

  5. First approximations in avalanche model validations using seismic information

    Science.gov (United States)

    Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty

    2017-04-01

    Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position

  6. Avalanche outbreaks emerging in cooperative contagions

    Science.gov (United States)

    Cai, Weiran; Chen, Li; Ghanbarnejad, Fakhteh; Grassberger, Peter

    2015-11-01

    The spreading of contagions can exhibit a percolation transition, which separates transitory prevalence from outbreaks that reach a finite fraction of the population. Such transitions are commonly believed to be continuous, but empirical studies have shown more violent spreading modes when the participating agents are not limited to one type. Striking examples include the co-epidemic of the Spanish flu and pneumonia that occurred in 1918 (refs , ), and, more recently, the concurrent prevalence of HIV/AIDS and a host of diseases. It remains unclear to what extent an outbreak in the presence of interacting pathogens differs from that due to an ordinary single-agent process. Here we study a mechanistic model for understanding contagion processes involving inter-agent cooperation. Our stochastic simulations reveal the possible emergence of a massive avalanche-like outbreak right at the threshold, which is manifested as a discontinuous phase transition. Such an abrupt change arises only if the underlying network topology supports a bottleneck for cascaded mutual infections. Surprisingly, all these discontinuous transitions are accompanied by non-trivial critical behaviours, presenting a rare case of hybrid transition. The findings may imply the origin of catastrophic occurrences in many realistic systems, from co-epidemics to financial contagions.

  7. The structure of powder snow avalanches

    Science.gov (United States)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  8. Granular avalanches down inclined and vibrated planes

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  9. Infrasonic monitoring of snow avalanches in the Alps

    Science.gov (United States)

    Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.

    2012-04-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.

  10. Avalanches in a stochastic model of spiking neurons.

    Directory of Open Access Journals (Sweden)

    Marc Benayoun

    Full Text Available Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons. When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  11. Avalanches in a stochastic model of spiking neurons.

    Science.gov (United States)

    Benayoun, Marc; Cowan, Jack D; van Drongelen, Wim; Wallace, Edward

    2010-07-08

    Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be "critical" for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.

  12. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies

    Directory of Open Access Journals (Sweden)

    Rokhsareh Meamar

    2016-01-01

    Full Text Available The complexity of multiple sclerosis (MS and the incompetence of a large number of promised treatments for MS urge us to plan new and more effective therapeutic approaches that aim to suppress ongoing autoimmune responses and induction of local endogenous regeneration. Emerging data propose that hematopoietic, mesenchymal, and neural stem cells have the potential to restore self-tolerance, provide in situ immunomodulation and neuroprotection, as well as promote regeneration. Thus, in this article, we will first provide an overview of the cell sources for proposed mechanisms that contribute to the beneficial effects of stem cell transplantation, the ideal route and/or timing of stem cell-based therapies for each main stem cell group, and finally, an overview of the current status of stem cell research in clinical trial stages in MS by comparable and healthy therapeutic effects of different stem cell therapies for MS patients.

  13. A Personalized Approach in Progressive Multiple Sclerosis: The Current Status of Disease Modifying Therapies (DMTs) and Future Perspectives

    Science.gov (United States)

    D’Amico, Emanuele; Patti, Francesco; Zanghì, Aurora; Zappia, Mario

    2016-01-01

    Using the term of progressive multiple sclerosis (PMS), we considered a combined population of persons with secondary progressive MS (SPMS) and primary progressive MS (PPMS). These forms of MS cannot be challenged with efficacy by the licensed therapy. In the last years, several measures of risk estimation were developed for predicting clinical course in MS, but none is specific for the PMS forms. Personalized medicine is a therapeutic approach, based on identifying what might be the best therapy for an individual patient, taking into account the risk profile. We need to achieve more accurate estimates of useful predictors in PMS, including unconventional and qualitative markers which are not yet currently available or practicable routine diagnostics. The evaluation of an individual patient is based on the profile of disease activity.Within the neurology field, PMS is one of the fastest-moving going into the future. PMID:27763513

  14. A Personalized Approach in Progressive Multiple Sclerosis: The Current Status of Disease Modifying Therapies (DMTs and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Emanuele D’Amico

    2016-10-01

    Full Text Available Using the term of progressive multiple sclerosis (PMS, we considered a combined population of persons with secondary progressive MS (SPMS and primary progressive MS (PPMS. These forms of MS cannot be challenged with efficacy by the licensed therapy. In the last years, several measures of risk estimation were developed for predicting clinical course in MS, but none is specific for the PMS forms. Personalized medicine is a therapeutic approach, based on identifying what might be the best therapy for an individual patient, taking into account the risk profile. We need to achieve more accurate estimates of useful predictors in PMS, including unconventional and qualitative markers which are not yet currently available or practicable routine diagnostics. The evaluation of an individual patient is based on the profile of disease activity.Within the neurology field, PMS is one of the fastest-moving going into the future.

  15. Risk stratification in multiple myeloma, part 2: the significance of genetic risk factors in the era of currently available therapies.

    Science.gov (United States)

    Biran, Noa; Jagannath, Sundar; Chari, Ajai

    2013-01-01

    Multiple myeloma (MM) is a heterogeneous disease, and a variety of risk factors at the time of initial diagnosis can be used to stratify patients. In the first part of this 2-part series, we reviewed the currently identified prognostic factors, characterized by disease burden, host factors, tumor biology, and depth of response to therapy. However, these risk factors cannot be interpreted independently of therapies. Novel therapies have the potential to worsen or improve outcomes compared with conventional therapy in high-risk patients, or actually overcome the high-risk status, thereby resulting in reclassification as standard risk. For example, thalidomide (Thalomid, Celgene) is associated with worse outcomes in patients with high-risk cytogenetic abnormalities, such as deletion of chromosomes 13 and 17p, whereas proteasome inhibitors appear to overcome t(4;14). The second part of this series reviews the significance of various genetic risks in the era of novel therapies for MM.

  16. The sustainability of current account in the presence of endogenous multiple structural breaks: Evidence from developed and developing countries

    Directory of Open Access Journals (Sweden)

    Dülger Fikret

    2016-01-01

    Full Text Available The purpose of this study is to test for the sustainability of current account in 18 developed and 10 developing countries. The stability of the relationship between export (inflows and import (outflows is assessed using the tests proposed by Mohitosh Kejriwal and Pierre Perron (2010. In particular, the nature of the long-run relationship, when multiple regime shifts are identified endogenously, is analyzed using the residual-based test of the null hypothesis of cointegration with multiple breaks proposed by Kejriwal (2008. The results clearly indicate that, for all countries, (i the stability tests reject the null of coefficient stability of the long-run relationship between exports and imports; (ii the cointegration tests that correspond to the number of breaks selected reject the null of cointegration (weak form of sustainability; and (iii the strong form of sustainability hypothesis is not supported by the data for all countries in most regimes but not for 20 of 28 countries especially in the last regime (the post-2000 era. For eight countries (Canada, New Zealand, Spain, Brazil, Mexico, South Africa, Thailand, and Turkey, the findings may be perceived as a warning to creditors and policymakers unless there are policy distortions or permanent productivity shocks to the domestic economies.

  17. High-Order Current-Mode and Transimpedance-Mode Universal Filters with Multiple-Inputs and Two-Outputs Using MOCCIIs

    Directory of Open Access Journals (Sweden)

    J. Horng

    2009-12-01

    Full Text Available A high-order current-mode and transimpedance-mode universal filter with multiple-inputs and two-outputs based on multiple output second-generation current conveyors (MOCCIIs is introduced. By choosing the input current terminals appropriately, the current-mode and transimpedance-mode lowpass, bandpass, highpass, notch or allpass filters can be obtained without component matching conditions. The proposed nth order universal filter requires (n+1 MOCCIIs, (n+1 resistors and n grounded capacitors. As examples, the first-order, biquadratic and third-order universal filters are given and compared with previous published works.

  18. Transistorized Marx bank pulse circuit provides voltage multiplication with nanosecond rise-time

    Science.gov (United States)

    Jung, E. A.; Lewis, R. N.

    1968-01-01

    Base-triggered avalanche transistor circuit used in a Marx bank pulser configuration provides voltage multiplication with nanosecond rise-time. The avalanche-mode transistors replace conventional spark gaps in the Marx bank. The delay time from an input signal to the output signal to the output is typically 6 nanoseconds.

  19. Sediment Transport by Spring Avalanches in the Southern Swiss Alps

    Science.gov (United States)

    Egloff, J. M.; Hunziker, M.; Moore, J. R.; Christen, M.

    2010-12-01

    Dense wet-snow avalanches breaking through to the base of the snow pack or overriding snow-free surfaces can entrain basal material and act as important agents of sediment transport in steep Alpine catchments. As part of an ongoing study, we investigated two debris fans in the Matter Valley of southern Switzerland during spring 2009 and 2010, with emphasis on quantifying avalanche sediment transport. Deposited debris ranged from soil parcels and plant material to cobbles and boulders greater than 1 m3. Large boulders were generally angular and fresh with clear signs of recent impacts. The seasonal sediment load transported by avalanches was estimated at one fan by sampling the debris content within a number of representative areas, and then extrapolating the cumulative volume. Results reveal a total transported sediment volume of ~150 m3 in 2009 and ~15 m3 in 2010, which likely reflects varying snowfall and avalanche frequency between years. When distributed over the deposition area on the fan, these results imply an average accumulated sediment thickness of 12 mm in 2009 and 3 mm in 2010. Calculated catchment-wide erosion rates are ~0.1 mm/yr for 2009 and ~0.01 mm/yr for 2010. Cross-sections through avalanche debris revealed that transported sediment generally resides on top of the snow surface. As the avalanches melt, entrained sediment is set down gently, often resulting in precariously balanced boulders and rows of blocks perched on the walls of the fan’s channels. In flat lying areas, snowmelt resulted in sparse sediment deposits with no clear structure or sorting. Observations show that the fan surface is usually protected from erosion by snow and older avalanche deposits, which provide a smooth gliding plane for new events. Within the bedrock gulley adjacent to the fan, and in the avalanche source region above, signs of abrasive wear were evident on exposed bedrock surfaces. These include rounded and scoured bedrock, fresh signs of boulder impacts, and

  20. Implications of Grainfall for Avalanches and Barchan Dune Morphodynamics

    Science.gov (United States)

    Nield, J. M.; Wiggs, G.; Baddock, M. C.; Hipondoka, M.

    2016-12-01

    Sediment accumulation on aeolian dunes is predominately though avalanching (or grainflow). This grainflow is initiated by the accumulation of grainfall deposits, close to the dune brink. When the accumulation, or `bulge', exceeds an angle of repose, avalanches are initiated and sediment is transported down the lee of the dune. The location of sediment accumulation, or avalanche initiation point, is determined by the distance that grainfall can travel from the dune brink. While previous studies have focused on determining angles at which avalanches occur, along with depositional flux rates, technical constraints have limited the testing of models to predict grainfall zone dynamics under varying wind conditions. Here we use terrestrial laser scanning (TLS) to measure both grainfall distance and associated lee slope surface change of a 5 m high barchan dune under variable wind speeds, on the Skeleton Coast, Namibia. We find that under stronger winds, the distance that grainfall can travel from the brink expands (by up to 0.45 m for a 3 m/s increase in wind speed). Along with this expansion of the grainfall distance there is an increase in saltation flux over the brink. The increased grainfall distance shifts sand further from the brink resulting in dominant avalanche initiation point locations expanding from 0.3 m to 0.4 m for wind speeds above 6 m/s. This shift also corresponds to the appearance of secondary avalanches, which are initiated by primary avalanche lobe deposits extending outside of the main grainfall zone. Ultimately, under stronger winds the expansion of the grainfall distance contributes to the destabilisation and movement of increased sediment volumes down the lee slope. Avalanches under stronger wind speeds, therefore, increase in thickness, width and length, while during weaker wind speeds, most of the grainfall and grainflow is limited to the upper section of the lee slope. The implication of this dual avalanche behaviour under variable wind

  1. Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data: Bingham Canyon Rock Avalanches

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Pankow, Kristine L. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Ford, Sean R. [Atmospheric, Earth, and Energy Division, Lawrence Livermore National Laboratory, Livermore California USA; Koper, Keith D. [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Hale, J. Mark [Department of Geology and Geophysics, University of Utah, Salt Lake City Utah USA; Aaron, Jordan [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver British Columbia Canada; Larsen, Chris F. [Geophysical Institute, University of Alaska Fairbanks, Fairbanks Alaska USA

    2017-03-01

    The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~104–105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.

  2. Large rock avalanches in southern Perù: the Cerro Caquilluco - Cerrillos Negros rock slide - avalanche (Tacna, Tomasiri, Perù)

    Science.gov (United States)

    Crosta, G.; Hermanns, R. L.; Murillo, P. V.

    2012-04-01

    the area the deposit could be up to 2-2.3 Ma old. The morphology of this lower lobe is contrasting to the upper lobes which smooth out the landscape. The minimum volume involved in the giant rockslide-avalanche complex amounts to about 9 km3. The headscarp area is affected by smaller and likely younger rock avalanche lobes overlying the more massive rock-avalanche lobe complex. These features are well preserved also to the west of the main slide complex, along the E-W trending high scarp cutting the old paleosurface, where more pristine rock avalanche lobes with more blocky surfaces overlie older lobes characterized by a smooth topography cut by high scarps. Conditioning factors of the slope instabilities could have been: the SW dipping of weak formations (tuffs and conglomerates), the presence of ENE trending sinistral faults offsetting the primitive drainage network close to the headscarp, the intense seismicity and/or a wetter climate, the continuous uplift (min. 0.04-0.3 mm/yr). This area is less than 230 km away from the subduction trench and magnitude 7 to 9 earthquakes occur on average every 100 years on the subduction segment. Megathrust earthquakes are quite common in the area on geological time scales and no big landslides of that site has been reported during multiple historic subduction earthquakes in southern Peru and northern Chile. Some results concerning slope stability analyses and runout modelling are presented to support possible failure mechanisms and to understand the exceptional avalanche mobility.

  3. Solid-state flat panel imager with avalanche amorphous selenium

    Science.gov (United States)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  4. Snow avalanche friction relation based on extended kinetic theory

    Science.gov (United States)

    Rauter, Matthias; Fischer, Jan-Thomas; Fellin, Wolfgang; Kofler, Andreas

    2016-11-01

    Rheological models for granular materials play an important role in the numerical simulation of dry dense snow avalanches. This article describes the application of a physically based model from the field of kinetic theory to snow avalanche simulations. The fundamental structure of the so-called extended kinetic theory is outlined and the decisive model behavior for avalanches is identified. A simplified relation, covering the basic features of the extended kinetic theory, is developed and implemented into an operational avalanche simulation software. To test the obtained friction relation, simulation results are compared to velocity and runout observations of avalanches, recorded from different field tests. As reference we utilize a classic phenomenological friction relation, which is commonly applied for hazard estimation. The quantitative comparison is based on the combination of normalized residuals of different observation variables in order to take into account the quality of the simulations in various regards. It is demonstrated that the extended kinetic theory provides a physically based explanation for the structure of phenomenological friction relations. The friction relation derived with the help of the extended kinetic theory shows advantages to the classic phenomenological friction, in particular when different events and various observation variables are investigated.

  5. Infrasound monitoring of snow avalanches in the Italian Alps

    Science.gov (United States)

    Ripepe, Maurizio; Ulivieri, Giacomo; Marchetti, Emanuele; Chiambretti, Igor; Segor, Valerio; Pitet, Luca

    2010-05-01

    Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2009 we installed a temporary 4-element, small aperture (100 m), infrasound array in the Alps. The array has been deployed south of Mt. Rosa, at an elevation of 2000 m a.s.l. in the valley of Gressoney, where natural avalanches are expected and triggered ones are regularly programmed. The array consists into 4 absolute pressure transducers with a sensitivity of 0.01 Pa in the 0.1-50 Hz frequency band and a 7 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. The array is completely buried in snow. Gel cell batteries and 200 W solar panels provide the array power requirements (~3 W) and should allow a continuous operation during the winter season. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This pilot experiment in Italy will allow to verify the efficiency of the system, and might represent an important validation to modeled avalanches activity during this winter season.

  6. The effectiveness of mean-field theory for avalanche distributions

    Science.gov (United States)

    Lee, Edward; Raju, Archishman; Sethna, James

    We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.

  7. The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne

    Science.gov (United States)

    Köhler, A.; McElwaine, J. N.; Sovilla, B.; Ash, M.; Brennan, P.

    2016-11-01

    Five avalanches were artificially released at the Vallée de la Sionne test site in the west of Switzerland on 3 February 2015 and recorded by the GEOphysical flow dynamics using pulsed Doppler radAR Mark 3 radar system. The radar beam penetrates the dilute powder cloud and measures reflections from the underlying denser avalanche features allowing the tracking of the flow at 111 Hz with 0.75 m downslope resolution. The data show that the avalanches contain many internal surges. The large or "major" surges originate from the secondary release of slabs. These slabs can each contain more mass than the initial release, and thus can greatly affect the flow dynamics, by unevenly distributing the mass. The small or "minor" surges appear to be a roll wave-like instability, and these can greatly influence the front dynamics as they can repeatedly overtake the leading edge. We analyzed the friction acting on the fronts of minor surges using a Voellmy-like, simple one-dimensional model with frictional resistance and velocity-squared drag. This model fits the data of the overall velocity, but it cannot capture the dynamics and especially the slowing of the minor surges, which requires dramatically varying effective friction. Our findings suggest that current avalanche models based on Voellmy-like friction laws do not accurately describe the physics of the intermittent frontal region of large mixed avalanches. We suggest that these data can only be explained by changes in the snow surface, such as the entrainment of the upper snow layers and the smoothing by earlier flow fronts.

  8. Numerical Examination of Silicon Avalanche Photodiodes Operated in Charge Storage Mode

    Science.gov (United States)

    Parks, Joseph W., Jr.; Brennan, Kevin F.

    1998-01-01

    The behavior of silicon-based avalanche photodiodes (APD's) operated in the charge storage mode is examined. In the charge storage mode, the diodes are periodically biased to a sub-breakdown voltage and then open-circuited. During this integration period, photo-excited and thermally generated carriers are accumulated within the structure. The dynamics of this accumulation and its effects upon the avalanching of the diode warrants a detailed, fully numerical analysis. The salient features of this investigation include device sensitivity to the input photo-current including the self-quenching effect of the diode and its limitations in sensing low light levels, the dependence of the response on the bulk lifetime and hence on the generation current within the device, the initial gain, transient response, dependence of the device uniformity upon performance, and the quantity of storable charge within the device. To achieve these tasks our device simulator, STEBS-2D, was utilized. A modified current-controlled boundary condition is employed which allows for the simulation of the isolated diode after the initial reset bias has been applied. With this boundary condition, it is possible to establish a steady-state voltage on the ohmic contact and then effectively remove the device from the external circuit while still including effects from surface recombination, trapped surface charge, and leakage current from the read-out electronics.

  9. State-of-the-art performance of GaAlAs/GaAs avalanche photodiodes

    Science.gov (United States)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Ga(0.15)Al(0.85)As/GaAs avalanche photodiodes have been successfully fabricated. The performance of these detectors is characterized by a rise time of less than 35 ps, an external quantum efficiency with an antireflection coating of 95% at 0.53 microns, and a microwave optical gain of 42 dB. The dark current density is in the low range (10 to the minus A/sq cm) at one-half the breakdown voltages, and rises to 0.0001 A/sq cm at 42 dB optical gain.

  10. Precision Blasting Techniques For Avalanche Control

    Science.gov (United States)

    Powell, Kevin M.

    Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.

  11. Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product.

    Science.gov (United States)

    Zaoui, Wissem Sfar; Chen, Hui-Wen; Bowers, John E; Kang, Yimin; Morse, Mike; Paniccia, Mario J; Pauchard, Alexandre; Campbell, Joe C

    2009-07-20

    In this work we report a separate-absorption-charge-multiplication Ge/Si avalanche photodiode with an enhanced gain-bandwidth-product of 845 GHz at a wavelength of 1310 nm. The corresponding gain value is 65 and the electrical bandwidth is 13 GHz at an optical input power of -30 dBm. The unconventional high gain-bandwidth-product is investigated using device physical simulation and optical pulse response measurement. The analysis of the electric field distribution, electron and hole concentration and drift velocities in the device shows that the enhanced gain-bandwidth-product at high bias voltages is due to a decrease of the transit time and avalanche build-up time limitation at high fields.

  12. EXTREME WINTERS IN XX–XXI CENTURIES AS INDICATORS OF SNOWINESS AND AVALANCHE HAZARD IN THE PAST AND EXPECTED CLIMATE CHANGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    A. D. Oleynikov

    2012-01-01

    Full Text Available Currently, due to the global climate change and increasing frequency of weather events focus is on prediction of climate extremes. Large-scale meteorological anomalies can cause long-term paralysis of social and economic infrastructure of the major mountain regions and even individual states. In winter periods, these anomalies are associated with prolonged heavy snowfalls and associated with them catastrophic avalanches which cause significant social and economic damage. The climate system maintains a certain momentum during periods of adjustment and transition to other conditions in the ratio of heat and moisture and contains a climate «signal» of the climates of the past and the future. In our view seasonal and yearly extremes perform the role of these indicators, study of which enables for a deeper understanding and appreciation of the real situation of the climate periods related to the modern ones. The paper provides an overview of the criteria for selection of extreme winters. Identification of extremely cold winters during the period of instrumental observation and assessment of their snowiness and avalanche activity done for the Elbrus region, which is a model site for study of the avalanche regime in the Central Caucasus. The studies aim to identify the extreme winters in the Greater Caucasus, assess their frequency of occurrence, characterize the scale and intensity of the avalanche formation. The data obtained can be used to identify winter-analogues in the reconstruction and long-term forecast of avalanches

  13. Towards an automated detection of avalanche deposits using their directional properties

    OpenAIRE

    2009-01-01

    Snow avalanches killed more people in the Swiss alpine area during the past decades than any other natural hazard. To further improve the avalanche prediction and the protection of people and infrastructure, information about the occurrence and the distribution of avalanche activity is crucial. Nevertheless this information is missing for large parts of the Alpine area. The surface roughness of avalanche deposits differs considerably from the adjacent undisturbed snow cover and is an impor...

  14. Elementary excitations and avalanches in the Coulomb glass

    Science.gov (United States)

    Palassini, Matteo; Goethe, Martin

    2012-07-01

    We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.

  15. [Death by avalanche in the minor mountain range].

    Science.gov (United States)

    Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Pollak, Stefan

    2015-01-01

    On 30 Jan 2015, two avalanche accidents happened in the Black Forest (at the foot of the 1493 m high Feldberg and the Herzogenhorn situated next to it), in which experienced ski tourers--a 58-year-old woman and a 20-year-old man--were completely buried by snow masses. Both victims were recovered dead after nearly 2 hours under the snow. The avalanches were promoted by strong snowfalls, snowdrift by the wind and steep downwind slopes. One of the victims, the 20-year-old man, underwent a forensic autopsy. The findings suggested death by protracted asphyxiation with agonal hypothermia. A mechanical traumatization with internal injuries suspected by the emergency doctor at the scene could not be confirmed at autopsy. The possible causes of death in the avalanche are discussed using the reported case as an example and in reference to the relevant literature.

  16. Flux avalanches in Nb superconducting shifted strip arrays

    Science.gov (United States)

    Tsuchiya, Y.; Mawatari, Y.; Ibuka, J.; Tada, S.; Pyon, S.; Nagasawa, S.; Hidaka, M.; Maezawa, M.; Tamegai, T.

    2013-09-01

    Flux penetrations into three-dimensional Nb superconducting strip arrays, where two layers of strip arrays are stacked by shifting a half period, are studied using a magneto-optical imaging method. Flux avalanches are observed when the overlap between the top and bottom layers is large even if the width of each strip is well below the threshold value. In addition, anomalous linear avalanches perpendicular to the strip are observed in the shifted strip array when the overlap is very large and the thickness of the superconductor is greater than the penetration depth. We discuss possible origins for the flux avalanches, including linear ones, by considering flux penetration calculated by the Campbell method assuming the Bean model.

  17. Spectral method for characterization of avalanche photodiode working as single-photon detector.

    Science.gov (United States)

    Cavalcanti, Maria Daniela Santabaia; Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2011-09-01

    In this Letter, a new method for avalanche photodiode characterization, based on the spectral analysis of the photocurrent produced during an avalanche, is proposed. The theory is developed, and an experimental characterization of an avalanche photodiode working in the Geiger mode with CW laser is performed.

  18. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2011-12-01

    Practitioners working in avalanche terrain may never witness an extreme event, but understanding extreme events is important for categorizing avalanches that occur within a given season. Historical records of avalanche incidents and direct observations are the most reliable evidence of avalanche activity, but patterns in vegetation can be used to further quantify and map the frequency and magnitude of past events. We surveyed published literature to synthesize approaches for using vegetation sampling to characterize avalanche terrain, and developed examples to identify the benefits and caveats of using different practical field methods to estimate avalanche frequency and magnitude. Powerful avalanches can deposit massive piles of snow, rocks, and woody debris in runout zones. Large avalanches (relative to the path) can cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking trees. Discs and cores can be collected from downed trees to detect signals of past avalanche disturbance recorded in woody plant tissue. Signals of disturbance events recorded in tree rings can include direct impact scars from the moving snow and wind blast, development of reaction wood in response to tilting, and abrupt variation in the relative width of annual growth rings. The relative ages of trees in avalanche paths and the surrounding landscape can be an indicator of the area impacted by past avalanches. Repeat photography can also be useful to track changes in vegetation over time. For Colorado, and perhaps elsewhere, several vegetation ecology methods can be used in combination to accurately characterize local avalanche frequency and magnitude.

  19. SNOW AVALANCHE ACTIVITY IN PARÂNG SKI AREA REVEALED BY TREE-RINGS

    Directory of Open Access Journals (Sweden)

    F. MESEȘAN

    2014-11-01

    Full Text Available Snow Avalanche Activity in Parâng Ski Area Revealed by Tree-Rings. Snow avalanches hold favorable conditions to manifest in Parâng Mountains but only one event is historically known, without destructive impact upon infrastructure or fatalities and this region wasn’t yet the object of avalanche research. The existing ski infrastructure of Parâng resort located in the west of Parâng Mountains is proposed to be extended in the steep slopes of subalpine area. Field evidence pinpoints that these steep slopes were affected by snow avalanches in the past. In this study we analyzed 11 stem discs and 31 increment cores extracted from 22 spruces (Picea abies (L. Karst impacted by avalanches, in order to obtain more information about past avalanches activity. Using the dendrogeomorphological approach we found 13 avalanche events that occurred along Scărița avalanche path, since 1935 until 2012, nine of them produced in the last 20 years. The tree-rings data inferred an intense snow avalanche activity along this avalanche path. This study not only calls for more research in the study area but also proves that snow avalanches could constitute an important restrictive factor for the tourism infrastructure and related activities in the area. It must be taken into consideration by the future extension of tourism infrastructure. Keywords: snow avalanche, Parâng Mountains, dendrogeomorphology, ski area.

  20. Large-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiency

    Science.gov (United States)

    Murphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.

    2015-05-01

    Superconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.

  1. The 1.06 optical receiver. [avalanche photodiodes for laser range finders

    Science.gov (United States)

    Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.

    1978-01-01

    High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.

  2. Charge multiplication effect in thin diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.; Jakšić, M. [Division of Experimental Physics, Ruđer Bošković Institute, 10000 Zagreb (Croatia); Pomorski, M. [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette F-91191 (France); Kada, W.; Kambayashi, Y.; Andoh, Y. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Makino, T.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T. [National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma 370-1292 (Japan)

    2016-07-25

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  3. High gain multigap avalanche detectors for Cerenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, R.S.; Lavender, W.M.; Leith, D.W.G.S.; Williams, S.H.

    1980-10-01

    We report on a continuing study of multigap parallel plate avalanche chambers, primarily as photoelectron detectors for use with Cerenkov ring imaging counters. By suitable control of the fields in successive gaps and by introducing screens to reduce photon feedback to the cathode the gain many be increased considerably. We have obtained gains in excess of 6 x 10/sup 7/ for photoelectrons with a good pulse height spectrum and expect to increase this further. We discuss the use of resistive anodes to give avalanche positions in two dimensions by charge division.

  4. Geiger-Mode Avalanche Photodiodes in Particle Detection

    CERN Document Server

    Vilella, E; Trenado, J; Vila, A; Vos, M; Garrido, L; Dieguez, A

    2012-01-01

    It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite sensitivity and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection remains still unexplored. In this contribution, we are going to expose the different steps that we have taken in order to prove the efficiency of Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present an array of pixels of 1mmx1mm fabricated with a standard CMOS technology for characterization in a test beam.

  5. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  6. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  7. Test of BESⅢ RPC in the avalanche mode

    Institute of Scientific and Technical Information of China (English)

    HAN Ji-Feng; ZHANG Jia-Wen; CHEN Jin; ZHANG Qing-Min; LIU Qian; XIE Yu-Guang; QIAN Sen; MA Lie-Hua

    2008-01-01

    The installation of the BESⅢ RPC system has been completed.Cosmic ray test results show that they perform very well in streamer mode and meet the BESⅢ requirements.We have tested several RPCs in the avalanche mode with the addition of extra SF6 in the gas mixture.We find an efficiency plateau that reaches~95%.and a time resolution of 1.8 ns.This demonstrates that the BESⅢ-type RPC can work in the avalanche mode as well.

  8. Magnetar Outbursts from Avalanches of Hall Waves and Crustal Failures

    CERN Document Server

    Li, Xinyu; Belovorodov, Andrei M

    2016-01-01

    We explore the interaction between Hall waves and mechanical failures inside a magnetar crust, using detailed one-dimentional models that consider temperature-sensitive plastic flow, heat transport and cooling by neutrino emission, as well as the coupling of the crustal motion to the magnetosphere. We find that the dynamics is enriched and accelerated by the fast, short-wavelength Hall waves that are emitted by each failure. The waves propagate and cause failures elsewhere, triggering avalanches. We argue that these avalanches are the likely sources of outbursts in transient magnetars.

  9. Assessing risk based on uncertain avalanche activity patterns

    Science.gov (United States)

    Zeidler, Antonia; Fromm, Reinhard

    2015-04-01

    Avalanches may affect critical infrastructure and may cause great economic losses. The planning horizon of infrastructures, e.g. hydropower generation facilities, reaches well into the future. Based on the results of previous studies on the effect of changing meteorological parameters (precipitation, temperature) and the effect on avalanche activity we assume that there will be a change of the risk pattern in future. The decision makers need to understand what the future might bring to best formulate their mitigation strategies. Therefore, we explore a commercial risk software to calculate risk for the coming years that might help in decision processes. The software @risk, is known to many larger companies, and therefore we explore its capabilities to include avalanche risk simulations in order to guarantee a comparability of different risks. In a first step, we develop a model for a hydropower generation facility that reflects the problem of changing avalanche activity patterns in future by selecting relevant input parameters and assigning likely probability distributions. The uncertain input variables include the probability of avalanches affecting an object, the vulnerability of an object, the expected costs for repairing the object and the expected cost due to interruption. The crux is to find the distribution that best represents the input variables under changing meteorological conditions. Our focus is on including the uncertain probability of avalanches based on the analysis of past avalanche data and expert knowledge. In order to explore different likely outcomes we base the analysis on three different climate scenarios (likely, worst case, baseline). For some variables, it is possible to fit a distribution to historical data, whereas in cases where the past dataset is insufficient or not available the software allows to select from over 30 different distribution types. The Monte Carlo simulation uses the probability distribution of uncertain variables

  10. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies.

    Science.gov (United States)

    Melzer, N; Meuth, S G

    2014-03-01

    Multiple sclerosis (MS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) represent chronic, autoimmune demyelinating disorders of the central and peripheral nervous system. Although both disorders share some fundamental pathogenic elements, treatments do not provide uniform effects across both disorders. We aim at providing an overview of current and future disease-modifying strategies in these disorders to demonstrate communalities and distinctions. Intravenous immunoglobulins (IVIG) have demonstrated short- and long-term beneficial effects in CIDP but are not effective in MS. Dimethyl fumarate (BG-12), teriflunomide and laquinimod are orally administered immunomodulatory drugs that are already approved or likely to be approved in the near future for the basic therapy of patients with relapsing-remitting MS (RRMS) due to positive results in Phase III clinical trials. However, clinical trials with these drugs in CIDP have not (yet) been initiated. Natalizumab and fingolimod are approved for the treatment of RRMS, and trials to evaluate their safety and efficacy in CIDP are now planned. Alemtuzumab, ocrelizumab and daclizumab respresent monoclonal antibodies in advanced stages of clinical development for their use in RRMS patients. Attempts to study the safety and efficacy of alemtuzumab and B cell-depleting anti-CD20 antibodies, i.e. rituximab, ocrelizumab or ofatumumab, in CIDP patients are currently under way. We provide an overview of the mechanism of action and clinical data available on disease-modifying immunotherapy options for MS and CIDP. Enhanced understanding of the relative effects of therapies in these two disorders may aid rational treatment selection and the development of innovative treatment approaches in the future.

  11. The state of multiple sclerosis: current insight into the patient/health care provider relationship, treatment challenges, and satisfaction

    Science.gov (United States)

    Tintoré, Mar; Alexander, Maggie; Costello, Kathleen; Duddy, Martin; Jones, David E; Law, Nancy; O’Neill, Gilmore; Uccelli, Antonio; Weissert, Robert; Wray, Sibyl

    2017-01-01

    Background Managing multiple sclerosis (MS) treatment presents challenges for both patients and health care professionals. Effective communication between patients with MS and their neurologist is important for improving clinical outcomes and quality of life. Methods A closed-ended online market research survey was used to assess the current state of MS care from the perspective of both patients with MS (≥18 years of age) and neurologists who treat MS from Europe and the US and to gain insight into perceptions of treatment expectations/goals, treatment decisions, treatment challenges, communication, and satisfaction with care, based on current clinical practice. Results A total of 900 neurologists and 982 patients completed the survey, of whom 46% self-identified as having remitting-relapsing MS, 29% secondary progressive MS, and 11% primary progressive MS. Overall, patients felt satisfied with their disease-modifying therapy (DMT); satisfaction related to comfort in speaking with their neurologist and participation in their DMT decision-making process. Patients who self-identified as having relapsing-remitting MS were more likely to be very satisfied with their treatment. Top challenges identified by patients in managing their DMT were cost, side effects/tolerability of treatment, and uncertainty if treatment was working. Half of the patients reported skipping doses, but only 68% told their health care provider that they did so. Conclusion Several important differences in perception were identified between patients and neurologists concerning treatment selection, satisfaction, expectations, goals, and comfort discussing symptoms, as well as treatment challenges and skipped doses. The study results emphasize that patient/neurologist communication and patient input into the treatment decision-making process likely influence patient satisfaction with treatment. PMID:28053511

  12. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    Science.gov (United States)

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  13. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda

    2016-03-03

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57–96 %) was the largest electron sink and methane (0–2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  14. Current Understanding on the Role of Standard and Immunoproteasomes in Inflammatory/Immunological Pathways of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Elena Bellavista

    2014-01-01

    Full Text Available The ubiquitin-proteasome system is the major intracellular molecular machinery for protein degradation and maintenance of protein homeostasis in most human cells. As ubiquitin-proteasome system plays a critical role in the regulation of the immune system, it might also influence the development and progression of multiple sclerosis (MS. Both ex vivo analyses and animal models suggest that activity and composition of ubiquitin-proteasome system are altered in MS. Proteasome isoforms endowed of immunosubunits may affect the functionality of different cell types such as CD8+ and CD4+ T cells and B cells as well as neurons during MS development. Furthermore, the study of proteasome-related biomarkers, such as proteasome antibodies and circulating proteasomes, may represent a field of interest in MS. Proteasome inhibitors are already used as treatment for cancer and the recent development of inhibitors selective for immunoproteasome subunits may soon represent novel therapeutic approaches to the different forms of MS. In this review we describe the current knowledge on the potential role of proteasomes in MS and discuss the pro et contra of possible therapies for MS targeting proteasome isoforms.

  15. Electric field distribution and simulation of avalanche formation due to the passage of heavy ions in a parallel grid avalanche counter

    Indian Academy of Sciences (India)

    D Kanjilal; S Saha

    2009-05-01

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed grid geometry has marginally higher gain at larger electric fields close to the avalanche region. The spatial uniformity of response in the two wire grid configurations is also compared.

  16. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions.

    Directory of Open Access Journals (Sweden)

    Shan Yu

    Full Text Available Identification of cortical dynamics strongly benefits from the simultaneous recording of as many neurons as possible. Yet current technologies provide only incomplete access to the mammalian cortex from which adequate conclusions about dynamics need to be derived. Here, we identify constraints introduced by sub-sampling with a limited number of electrodes, i.e. spatial 'windowing', for well-characterized critical dynamics-neuronal avalanches. The local field potential (LFP was recorded from premotor and prefrontal cortices in two awake macaque monkeys during rest using chronically implanted 96-microelectrode arrays. Negative deflections in the LFP (nLFP were identified on the full as well as compact sub-regions of the array quantified by the number of electrodes N (10-95, i.e., the window size. Spatiotemporal nLFP clusters organized as neuronal avalanches, i.e., the probability in cluster size, p(s, invariably followed a power law with exponent -1.5 up to N, beyond which p(s declined more steeply producing a 'cut-off' that varied with N and the LFP filter parameters. Clusters of size s≤N consisted mainly of nLFPs from unique, non-repeated cortical sites, emerged from local propagation between nearby sites, and carried spatial information about cluster organization. In contrast, clusters of size s>N were dominated by repeated site activations and carried little spatial information, reflecting greatly distorted sampling conditions. Our findings were confirmed in a neuron-electrode network model. Thus, avalanche analysis needs to be constrained to the size of the observation window to reveal the underlying scale-invariant organization produced by locally unfolding, predominantly feed-forward neuronal cascades.

  17. Bounce-averaged Fokker-Planck Simulation of Runaway Avalanche from Secondary Knock-on Production

    Science.gov (United States)

    Chiu, S. C.; Chan, V. S.; Harvey, R. W.; Rosenbluth, M. N.

    1996-11-01

    It has been pointed out that secondary production of runaway electrons by knock-on collisions with very energetic confined electrons can significantly change the runaway rate,(M.N. Rosenbluth, Bull. Amer. Phys. Soc. 40), 1804 (1995).^,(N.T. Besedin, I.M. Pankratov, Nucl. Fusion 26), 807 (1986).^,(R. Jaspers, K.H. Finden, G. Mank et al.), Nucl. Fusion 33, 1775 (1993). and is potentially a serious problem in reactors. Previous calculations of the effect have only partially included important effects such as toroidal trapping, synchrotron radiation, and bremsstrahlung. Furthermore, in a normal constant current operation, the increase of the density of runaway electrons causes a decrease of the ohmic field and all these effects can balance to a steady-state. The purpose of the present paper is to present results on bounce-averaged Fokker-Planck simulations of knock-on avalanching runaways including these effects. Initially, an energetic seed component is inserted to initiate knock-on avalanching. Results on the dependence of the steady-state runaway current on Z_eff, density, and radial location will be presented.

  18. Observing and characterizing avalanche activity in the Khumbu Himal, Nepal, using Pleiades and airborne HDR imagery

    Science.gov (United States)

    Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg

    2017-04-01

    In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.

  19. A study of the runaway relativistic electron avalanche and the feedback theory using GEANT4

    Science.gov (United States)

    Broberg Skeltved, Alexander; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas

    2014-05-01

    This study investigate the Runaway Relativistic Electron Avalanche (RREA) and the feedback process as well as the production of Bremsstrahlung photons from Runaway Electrons (REs). These processes are important to understand the production of the intense bursts of gamma-rays known as Terrestrial Gamma-Ray Flashes (TGFs). Results are obtained from Monte Carlo (MC) simulations using the GEometry ANd Tracking 4 (GEANT4) programming toolkit. The simulations takes into account the effects of electron ionisation, electron by electron scattering (Møller scattering) as well as positron and photon interactions, in the 250 eV-100 GeV energy range. Several physics libraries or 'physics lists' are provided with GEANT4 to implement these physics processes in the simulations. We give a detailed analysis of the electron and the feedback multiplication, in particular the avalanche lengths, Λ, the energy distribution and the feedback factor, γ. We also find that our results vary significantly depending on which physics list we implement. In order to verify our results and the GEANT4 programming toolkit, we compare them to previous results from existing models. In addition we present the ratio of the production of bremsstrahlung photons to runaway electrons. From this ratio we obtain the parameter, α, which describe the electron to photon relation.

  20. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection.

    Science.gov (United States)

    Hayden, Oliver; Agarwal, Ritesh; Lieber, Charles M

    2006-05-01

    Integrating nanophotonics with electronics could enhance and/or enable opportunities in areas ranging from communications and computing to novel diagnostics. Light sources and detectors are important elements for integration, and key progress has been made using semiconducting nanowires and carbon nanotubes to yield electrically driven sources and photoconductor detectors. Detection with photoconductors has relatively poor sensitivity at the nanometre scale, and thus large amplification is required to detect low light levels and ultimately single photons with reasonable response time. Here, we report avalanche multiplication of the photocurrent in nanoscale p-n diodes consisting of crossed silicon-cadmium sulphide nanowires. Electrical transport and optical measurements demonstrate that the nanowire avalanche photodiodes (nanoAPDs) have ultrahigh sensitivity with detection limits of less than 100 photons, and subwavelength spatial resolution of at least 250 nm. Crossed nanowire arrays also show that nanoAPDs are reproducible and can be addressed independently without cross-talk. NanoAPDs and arrays could open new opportunities for ultradense integrated systems, sensing and imaging applications.

  1. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  2. High-speed imaging and wavefront sensing with an infrared avalanche photodiode array

    CERN Document Server

    Baranec, Christoph; Riddle, Reed; Hall, Donald; Jacobson, Shane; Law, Nicholas M; Chun, Mark

    2015-01-01

    Infrared avalanche photodiode arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared avalanche photodiode array that achieves a correlated double sampling read noise of 0.73 e- in the lab, and a total noise of 2.52 e- on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics system at the Palomar Observatory 1.5-m telescope. We report here on the improved image quality achieved simultaneously at visible and infrared wavelengths by using the array as part of an image stabilization control-loop with adaptive-optics sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity as well as future uses of this technology in other adaptive optics and high-contrast imaging applications.

  3. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    Directory of Open Access Journals (Sweden)

    Hall David

    2015-11-01

    Full Text Available While silicon single-photon avalanche diodes (SPAD have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  4. Catastrophic debris avalanche deposit of Socompa volcano, northern Chile

    Science.gov (United States)

    Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.

    1985-01-01

    Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.

  5. Electron avalanche structure determined by random walk theory

    Science.gov (United States)

    Englert, G. W.

    1973-01-01

    A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.

  6. Hybrid phase transition into an absorbing state: Percolation and avalanches.

    Science.gov (United States)

    Lee, Deokjae; Choi, S; Stippinger, M; Kertész, J; Kahng, B

    2016-04-01

    Interdependent networks are more fragile under random attacks than simplex networks, because interlayer dependencies lead to cascading failures and finally to a sudden collapse. This is a hybrid phase transition (HPT), meaning that at the transition point the order parameter has a jump but there are also critical phenomena related to it. Here we study these phenomena on the Erdős-Rényi and the two-dimensional interdependent networks and show that the hybrid percolation transition exhibits two kinds of critical behaviors: divergence of the fluctuations of the order parameter and power-law size distribution of finite avalanches at a transition point. At the transition point global or "infinite" avalanches occur, while the finite ones have a power law size distribution; thus the avalanche statistics also has the nature of a HPT. The exponent β_{m} of the order parameter is 1/2 under general conditions, while the value of the exponent γ_{m} characterizing the fluctuations of the order parameter depends on the system. The critical behavior of the finite avalanches can be described by another set of exponents, β_{a} and γ_{a}. These two critical behaviors are coupled by a scaling law: 1-β_{m}=γ_{a}.

  7. Group Dynamics and Decision Making: Backcountry Recreationists in Avalanche Terrain

    Science.gov (United States)

    Bright, Leslie Shay

    2010-01-01

    The purpose of this study was to describe and determine the prevalence of decision-making characteristics of recreational backcountry groups when making a decision of where to travel and ride in avalanche terrain from the perspective of individuals. Decision-making characteristics encompassed communication, decision-making processes, leadership,…

  8. Teaching Avalanche Safety Courses: Instructional Techniques and Field Exercises.

    Science.gov (United States)

    Watters, Ron

    This paper discusses course structure, teaching techniques, and field exercises for enhancing winter travelers' avalanche knowledge and skills. In two class sessions, the course typically consists of a historical perspective; a section on snow physics (clouds, types of snow crystals, effects of riming, identification of precipitated snow crystals,…

  9. Reducing the Odds: Backcountry Powder Skiing in Avalanche Terrain.

    Science.gov (United States)

    Daffern, Tony

    This paper provides information and strategies to reduce the risk of encountering an avalanche when skiing or climbing on steep slopes. Skiers must recognize that the risk exists, be aware of their own tolerance for risk, and not allow companions to pressure them into taking more risk than they can tolerate. Ideally, one should ski with a small…

  10. THE SNOW CONDITION, THE AVALANCHES CAUSED AND THE DYNAMIC OF THE AVALANCHES CORRIDORS DURING THE WINTER 2007-2008. CASE STUDY, PADINILE FRUMOASE (PIATRA CRAIULUI MOUNTAINS, ROMANIA

    Directory of Open Access Journals (Sweden)

    ANCA MUNTEANU

    2013-04-01

    Full Text Available The snow condition, the avalanches caused and the dynamic of the avalanches corridors during the winter 2007-2008. Case study, Padinile Frumoase (Piatra Craiului Mountains, Romania. In this paper we aim to present in detail the situations generated by meteorological and morphological parameters, which determined the generation of avalanches of different intensities, on five avalanches corridors in the winter 2007-2008. These are situated in the area named Padinile Frumoase, in the north-eastern part of the Piatra Craiului Mountains, which are situated in the central part of Romania and which belong to the Meridional Carpathians. The relief is represented by a calcareous- conglomeratic ridge, in the high part, the peak reaches over 2000 m altitude. Local conditions determine the forming of avalanches, which are oriented on well defined corridors, along the temporary hydrographic network. By studying the evolution of meteorological parameters and their overlapping with local morphological parameters, the existence of some favourable conditions for the apparition of avalanches were detected. There were noticed both active corridors with traces of avalanches, and inactive corridors on which it was not noticed the manifestation of these phenomena. The material adds up to the data base about the avalanches from this massif, being the second situation of analysed avalanches for this mountainous space totally situated in the National Park Piatra Craiului.

  11. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    Science.gov (United States)

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two

  12. Rock avalanches clusters along the northern Chile coastal scarp

    Science.gov (United States)

    Crosta, G. B.; Hermanns, R. L.; Dehls, J.; Lari, S.; Sepulveda, S.

    2017-07-01

    Rock avalanche clusters can be relevant indicators of the evolution of specific regions. They can be used to define: the type and intensity of triggering events, their recurrence and potential probability of occurrence, the progressive damage of the rock mass, the mechanisms of transport and deposition, as well as the environmental conditions at the time of occurrence. This paper tackles these subjects by analyzing two main clusters of rock avalanches (each event between 0.6 and 30 Mm3), separated by few kilometers and located along the coastal scarp of Northern Chile, south of Iquique. It lies, hence, within a seismic area characterized by a long seismic gap that ended on April 1st, 2014 with a Mw 8.2 earthquake. The scar position, high along the coastal cliff, supports seismic triggering for these clusters. The deposits' relative positions are used to obtain the sequence of rock avalanching events for each cluster. The progressive decrease of volume in the sequence of rock avalanches forming each cluster fits well the theoretical models for successive slope failures. These sequences seem to agree with those derived by dating the deposits with ages spanning between 4 kyr and 60 kyr. An average uplift rate of 0.2 mm/yr in the last 40 kyr is estimated for the coastal plain giving a further constraint to the rock avalanche deposition considering the absence of reworking of the deposits. Volume estimates and datings allow the estimation of an erosion rate contribution of about 0.098-0.112 mm km- 2 yr- 1 which is well comparable to values presented in the literature for earthquake induced landslides. We have carried out numerical modeling in order to analyze the mobility of the rock avalanches and examine the environmental conditions that controlled the runout. In doing so, we have considered the sequence of individual rock avalanches within the specific clusters, thus including in the models the confining effect caused by the presence of previous deposits. Bingham

  13. Dealing with the white death: avalanche risk management for traffic routes.

    Science.gov (United States)

    Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob

    2009-01-01

    This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.

  14. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K.

  15. Laboratory study of avalanches in a magnetized plasma

    Science.gov (United States)

    van Compernolle, Bart

    2015-11-01

    Results of a basic heat transport experiment [] involving an off-axis heat source are presented. Experiments are performed in the Large Plasma Device (LAPD) at UCLA. A ring-shaped electron beam source injects low energy electrons (below ionization energy) along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated electron temperature embedded in a colder plasma, and far from the machine walls. It is demonstrated that this heating configuration provides an ideal environment to study avalanche phenomena under controlled conditions. The avalanches are identified as sudden rearrangements of the pressure profile following the growth of fluctuations from ambient noise. The intermittent collapses of the plasma pressure profile are associated with unstable drift-Alfvén waves and exhibit both radial and azimuthal dynamics. After each collapse the plasma enters a quiescent phase in which the pressure profile slowly recovers and steepens until a threshold is exceeded, and the process repeats. The use of reference probes as time markers allows for the visualization of the 2D spatio-temporal evolution of the avalanche events. Avalanches are only observed for a limited combination of heating powers and magnetic fields. At higher heating powers the system transitions from the avalanche regime into a regime dominated by sustained drift-Alfvén wave activity. The pressure profile then transitions to a near steady-state in which anomalous transport balances the external pressure source. Performed at the Basic Plasma Science Facility at UCLA, supported jointly by DOE and NSF.

  16. Radiation damage of multipixel Geiger-mode avalanche photodiodes irradiated with low-energy γ's and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y.; Yun, Y. B. [Yonsei University, Seoul (Korea, Republic of); Ha, J. M. [Yonsei University, Seoul (Korea, Republic of); Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Lee, J. S.; Yoon, Y. S. [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Eun, J. W. [Namseoul University, Cheonan (Korea, Republic of)

    2012-05-15

    A few types of multipipixel Geiger-mode avalanche photodiodes (also referred to as silicon photomultipliers SiPMs) are irradiated with 1 to 2.5 MeV γ's and electrons. We characterize radiation damage effects appearing in the reverse bias current, the dark current and count rate, the pixel gain, and the photon detection efficiency of the devices. An interesting observation on the dark current and count rate is made and linked to the specific damage caused by the irradiation.

  17. ALS-based hummock size-distance relationship assessment of Mt Shasta debris avalanche deposit, Northern California, USA

    Science.gov (United States)

    Tortini, Riccardo; Carn, Simon; van Wyk de Vries, Benjamin

    2015-04-01

    The failure of destabilized volcano flanks is a likely occurrence during the lifetime of a stratovolcano, generating large debris avalanches and drastically changing landforms around volcanoes. The significant hazards associated with these events in the Cascade range were demonstrated, for example, by the collapse of Mt St Helens (WA), which triggered its devastating explosive eruption in 1980. The rapid modification of the landforms due to these events makes it difficult to estimate the magnitude of prehistoric avalanches. However, the widespread preservation of hummocks along the course of rockslide-debris avalanches is highly significant for understanding the physical characteristics of these landslides. Mt Shasta is a 4,317 m high, snow-capped, steep-sloped stratovolcano located in Northern California. The current edifice began forming on the remnants of an ancestral Mt Shasta that collapsed ~300-380k years ago producing one of the largest debris avalanches known on Earth. The debris avalanche deposit (DAD) covers a surface of ~450 km2 across the Shasta valley, with an estimated volume of ~26 km3. We analyze ALS data on hummocks from the prehistoric Shasta valley DAD in northern California (USA) to derive the relationship between hummock size and distance from landslide source, and interpret the geomorphic significance of the intercept and slope coefficients of the observed functional relationships. Given the limited extent of the ALS survey (i.e. 40 km2), the high-resolution dataset is used for validation of the morphological parameters extracted from freely available, broader coverage DTMs such as the National Elevation Dataset (NED). The ALS dataset also permits the identification of subtle topographic features not apparent in the field or in coarser resolution datasets, including a previously unmapped fault, of crucial importance for both seismic and volcanic hazard assessment in volcanic areas. We present evidence from the Shasta DAD of neotectonic

  18. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    Science.gov (United States)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  19. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  20. Automated identification of potential snow avalanche release areas based on digital elevation models

    Directory of Open Access Journals (Sweden)

    Y. Bühler

    2013-05-01

    Full Text Available The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.

  1. A multi path, weather independent avalanche monitoring tool using distributed acoustic fiber optic sensing

    Science.gov (United States)

    Prokop, Alexander; Wirbel, Anna

    2013-04-01

    Information on avalanche activity is a paramount parameter in avalanche forecasting. When avalanches are released spontaneously, the risk of avalanches is very high. Triggering avalanches by artificial means, such as explosives launched from helicopter or avalanche towers, can also give information on the stability of the snow pack. Hence, monitoring of avalanches released naturally or artificially, is an important quantity in avalanche forecasting. This information is also needed when deciding whether to close or not endangered ski runs, roads or railway lines. So far monitoring systems lack certain benefits. Either they monitor only large avalanches, can only be used for single avalanche tracks or are weather/sight dependant. Therefore a new tool for avalanche- monitoring, a distributed fiber optic system, is for the first time installed and adapted for the purpose of monitoring snow avalanche activity. The method is based on an optical time domain reflectometer (OTDR) system, which dates back to the 1970`s and detects seismic vibrations and acoustic signals on a fiber optic cable that can have a length of up to 30 km. An appropriate test slope for this configuration has been found in the ski area of "Lech am Arlberg". In this work a detailed description of the theoretical background, the system implementation, the field installation, realization of tests and an investigation of the recorded data is presented. We conducted 100 tests and triggered 41 avalanches so far with a runout distances ranging from a few meters to approximately 250 meters, all of which were detected by the system, as well as the 59 not successful attempts of artificial triggering. Moreover we measured properly if critical infrastructure (in our case a ski run) was reached by the avalanches or not. The spatial distributed sensing approach allowed us to relate the amplitude and spectral content of the signals to avalanche size, avalanche speed and snow properties of the avalanches. In

  2. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  3. Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes.

    Science.gov (United States)

    Lawrence, William G; Varadi, Gyula; Entine, Gerald; Podniesinski, Edward; Wallace, Paul K

    2008-08-01

    Polychromatic flow cytometry enables detailed identification of cell phenotype using multiple fluorescent parameters. The photomultiplier tubes (PMTs) used to detect fluorescence in current instruments limit the sensitivity in the long wavelength spectral range. We demonstrate the flow cytometric applications of silicon avalanche photodiodes (APDs), which have improved red sensitivity and a working fluorescence detection range beyond 1,000 nm. A comparison of the wavelength-dependent performance of the APD and PMT was carried out using pulsed light-emitting diode sources, calibrated test beads, and biological samples. A breadboard flow cytometer test bench was constructed to compare the performance of PMTs and APD detectors. The APD used an additional amplifier stage to match the internal gain of the PMT. The resolution of the APD and PMT was compared for flow cytometry applications using a pulsed light-emitting diode source over the 500-1060 nm spectral range. These measurements showed the relative changes in the signal-to-noise performance of the APD and PMT over a broad spectral range. Both the APD and PMTs were used to measure the signal-to-noise response for a set of six peak calibration beads over the 530-800 nm wavelength range. CD4-positive cells labeled with antibody-conjugated phycoerythrin or 800 nm quantum dots were identified by simultaneous detection using the APD and the PMT. The ratios of the intensities of the CD4- and CD4+ populations were found to be similar for both detectors in the visible wavelengths, but only the APD was able to separate these populations at wavelengths above 800 nm. These measurements illustrate the differences in APD and PMT performance at different wavelengths and signal intensity levels. While the APD and PMT show similar signal-to-noise performance in the visible spectral range, the dark noise of the APD detector reduces the sensitivity at low signal levels. At wavelengths longer than 650 nm, the high quantum efficiency

  4. Model of turn-on characteristics of InP-based Geiger-mode avalanche photodiodes suitable for circuit simulations

    Science.gov (United States)

    Jordy, George; Donnelly, Joseph

    2015-05-01

    A model for the turn-on characteristics of separate-absorber-multiplier InP-based Geiger-mode Avalanche Photodiodes (APDs) has been developed. Verilog-A was used to implement the model in a manner that can be incorporated into circuit simulations. Rather than using SPICE elements to mimic the voltage and current characteristics of the APD, Verilog-A can represent the first order nonlinear differential equations that govern the avalanche current of the APD. This continuous time representation is fundamentally different than the piecewise linear characteristics of other models. The model is based on a driving term for the differential current, which is given by the voltage overbias minus the voltage drop across the device's space-charge resistance RSC. This drop is primarily due to electrons transiting the separate absorber. RSC starts off high and decreases with time as the initial breakdown filament spreads laterally to fill the APD. With constant bias voltage, the initial current grows exponentially until space charge effects reduce the driving function. With increasing current the driving term eventually goes to zero and the APD current saturates. On the other hand, if the APD is biased with a capacitor, the driving term becomes negative as the capacitor discharges, reducing the current and driving the voltage below breakdown. The model parameters depend on device design and are obtained from fitting the model to Monte-Carlo turn-on simulations that include lateral spreading of the carriers of the relevant structure. The Monte-Carlo simulations also provide information on the probability of avalanche, and jitter due to where the photon is absorbed in the APD.

  5. Maximum speeds and alpha angles of flowing avalanches

    Science.gov (United States)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  6. Stress and temperature dependence of the avalanche dynamics during creep deformation of metallic glasses.

    Science.gov (United States)

    Herrero-Gómez, Carlos; Samwer, Konrad

    2016-09-22

    The understanding of the mesoscopic origin of plasticity in metallic glasses remains still an open issue. At the microscopic level, Shear Transformation Zones (STZ), composed by dozens of atoms, have been identified as the basic unit of the deformation process. Macroscopically, metallic glasses perform either homogeneous or inhomogeneous flow depending on the experimental conditions. However, the emergence of macroscopic behavior resulting from STZ interactions is still an open issue and is of great interest. In the current work we present an approach to analyze the different interaction mechanisms of STZ's by studying the statistics of the avalanches produced by a metallic glass during tensile creep deformation. We identified a crossover between different regimes of avalanches, and we analyzed the dependence of such crossover on the experimental conditions, namely stress and temperature. We interpret such crossover as a transition from 3D random STZ activity to localized 2D nano-shear bands. The experimental time at which the crossover takes place seems to depend on the overall strain and strain rate in the sample.

  7. Structural vulnerability assessment using reliability of slabs in avalanche area

    Science.gov (United States)

    Favier, Philomène; Bertrand, David; Eckert, Nicolas; Naaim, Mohamed

    2013-04-01

    Improvement of risk assessment or hazard zoning requires a better understanding of the physical vulnerability of structures. To consider natural hazard issue such as snow avalanches, once the flow is characterized, highlight on the mechanical behaviour of the structure is a decisive step. A challenging approach is to quantify the physical vulnerability of impacted structures according to various avalanche loadings. The main objective of this presentation is to introduce methodology and outcomes regarding the assessment of vulnerability of reinforced concrete buildings using reliability methods. Reinforced concrete has been chosen as it is one of the usual material used to build structures exposed to potential avalanche loadings. In avalanche blue zones, structures have to resist to a pressure up to 30kPa. Thus, by providing systematic fragility relations linked to the global failure of the structure, this method may serve the avalanche risk assessment. To do so, a slab was numerically designed. It represented the avalanche facing wall of a house. Different configuration cases of the element in stake have been treated to quantify numerical aspects of the problem, such as the boundary conditions or the mechanical behaviour of the structure. The structure is analysed according to four different limit states, semi-local and global failures are considered to describe the slab behaviour. The first state is attained when cracks appear in the tensile zone, then the two next states are described consistent with the Eurocode, the final state is the total collapse of the structure characterized by the yield line theory. Failure probability is estimated in accordance to the reliability framework. Monte Carlo simulations were conducted to quantify the fragility to different loadings. Sensitivity of models in terms of input distributions were defined with statistical tools such as confidence intervals and Sobol's indexes. Conclusion and discussion of this work are established to

  8. Hummocks: how they form and evolve in debris avalanches (Invited)

    Science.gov (United States)

    Paguican, E. R.; van Wyk de Vries, B.; Lagmay, A.

    2013-12-01

    Hummocks are topographic features of large landslides and rockslide-debris avalanches common in volcanic settings. We use scaled analog models to study hummock formation and explore their importance in understanding landslide kinematics and dynamics. The models are designed to replicate large-scale volcanic collapses but are relevant also to non-volcanic settings. We characterize hummocks in terms of their evolution, spatial distribution, and internal structure from slide initiation to final arrest. Hummocks initially form by extensional faulting as a landslide begins to move. During motion, individual large blocks develop and spread, creating an initial distribution, with small hummocks at the landslide front and larger ones at the back. As the mass spreads, hummocks remain as discrete entities. They can get wider but may decrease in height, break up, or merge to form bigger and long anticlinal hummocks when confined. In areas of transverse movement within a landslide, elongate hummocks develop between strike-slip flower structures. Absence of hummocks and fault-like features in the deposit may imply a more fluidal flow of emplacement or very low cohesion of lithologies. Hummock size depends on their position in the initial mass, modified by subsequent breakup or coalescence. Hummock size, shape and spatial distribution vary between and within deposits. Such a universal structure with clear connection to the deformation process should provide a framework with which to study avalanche emplacement dynamics and conditions. We study well-preserved and well-sectioned hummocks in the Mt Iriga rockslide-debris avalanches (Philippines), to characterise the internal structure and relate hummocks to the landslide-avalanche behaviour. All the model structures are consistent with field observations and suggest a general brittle-slide emplacement for most landslide avalanches. The upper and outer hummock surface is destabilised by minor slumps and scree formation forming a

  9. Informal social networks of people with profound intellectual and multiple disabilities : Relationship with age, communicative abilities and current living arrangements

    NARCIS (Netherlands)

    Kamstra, A.; van der Putten, A.A.J.; Post, W.J.; Vlaskamp, C.

    2015-01-01

    BACKGROUND: People with profound intellectual and multiple disabilities (PIMD) have limited informal social contacts. Research to determine the factors which can positively influence establishing sound informal social contacts is required. MATERIALS AND METHODS: Regression analysis for 200 people wi

  10. Informal social networks of people with profound intellectual and multiple disabilities : Relationship with age, communicative abilities and current living arrangements

    NARCIS (Netherlands)

    Kamstra, A.; van der Putten, A.A.J.; Post, W.J.; Vlaskamp, C.

    2015-01-01

    BACKGROUND: People with profound intellectual and multiple disabilities (PIMD) have limited informal social contacts. Research to determine the factors which can positively influence establishing sound informal social contacts is required. MATERIALS AND METHODS: Regression analysis for 200 people wi

  11. A new web-based system to improve the monitoring of snow avalanche hazard in France

    Science.gov (United States)

    Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael

    2016-05-01

    Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.

  12. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    Science.gov (United States)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  13. Rescue missions for totally buried avalanche victims: conclusions from 12 years of experience.

    Science.gov (United States)

    Hohlrieder, Matthias; Thaler, Stephanie; Wuertl, Walter; Voelckel, Wolfgang; Ulmer, Hanno; Brugger, Hermann; Mair, Peter

    2008-01-01

    The planning and execution of avalanche rescue missions to search for totally buried avalanche victims are mostly based on personal experience and preference, as evidence-based information from literature is almost completely missing. Hence, the aim of this study was to identify major factors determining the survival probability of totally buried victims during avalanche rescue missions carried out by organized rescue teams (Austrian Mountain Rescue Service, Tyrol). During the 12-year period studied, 109 totally buried persons (56 off-piste, 53 backcountry), were rescued or recovered; 18.3% survived to hospital discharge. Median depth of burial was 1.25 m; median duration of burial was 85 min. The majority (61.6%) of the rescue missions were conducted under considerably dangerous avalanche conditions. The probability of survival was highest when located visually and lowest for those located by avalanche transceiver; survival did not significantly differ between those found by rescue dogs and those located with avalanche probes. Multivariate analysis revealed short duration of burial and off-piste terrain to be the two independent predictors of survival. Whenever companion rescue fails, snow burial in an avalanche is associated with extraordinarily high mortality. Searching the avalanche debris with probe lines seems to be equally effective as compared to searching with rescue dogs. The potential hazard for rescuers during avalanche rescue missions comes mainly from self-triggered avalanches, hence thorough mission planning and critical risk-benefit assessment are of utmost importance for risk reduction.

  14. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  15. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    Science.gov (United States)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  16. [Life-saving air supported avalanche mission at night in high alpine terrain].

    Science.gov (United States)

    Koppenberg, J; Brugger, H; Esslinger, A; Albrecht, R

    2012-10-01

    This is a case report about a helicopter emergency medical service (HEMS) operation during the night in response to an avalanche accident with two completely buried victims. One of the victims was rescued alive after 9.2 h presenting with a patent airway and an air pocket and was successfully rewarmed with forced air from 23°C core temperature without any neurological deficits. After the rescue the patient developed lung edema which resolved spontaneously within 2 days. The second victim was found dead presenting with an air pocket but solid frozen thorax. The special circumstances of the rescue operation and treatment are presented and discussed. The impact of a frozen chest on resuscitation decisions is presented and discussed with an emphasis on the triage of multiple victims.

  17. Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise

    Science.gov (United States)

    Zhao, Kai; Lo, YuHwa; Farr, William

    2010-01-01

    This design constitutes a self-resetting (gain quenching), room-temperature operational semiconductor single-photon-sensitive detector that is sensitive to telecommunications optical wavelengths and is scalable to large areas (millimeter diameter) with high bandwidth and efficiencies. The device can detect single photons at a 1,550-nm wavelength at a gain of 1 x 10(exp 6). Unlike conventional single photon avalanche detectors (SPADs), where gain is an extremely sensitive function to the bias voltage, the multiplication gain of this device is stable at 1 x 10(exp 6) over a wide range of bias from 30.2 to 30.9 V. Here, the multiplication gain is defined as the total number of charge carriers contained in one output pulse that is triggered by the absorption of a single photon. The statistics of magnitude of output signals also shows that the device has a very narrow pulse height distribution, which demonstrates a greatly suppressed gain fluctuation. From the histograms of both pulse height and pulse charge, the equivalent gain variance (excess noise) is between 1.001 and 1.007 at a gain of 1 x 10(exp 6). With these advantages, the device holds promise to function as a PMT-like photon counter at a 1,550- nm wavelength. The epitaxial layer structure of the device allows photons to be absorbed in the InGaAs layer, generating electron/hole (e-h) pairs. Driven by an electrical field in InGaAs, electrons are collected at the anode while holes reach the multiplication region (InAlAs p-i-n structure) and trigger the avalanche process. As a result, a large number of e-h pairs are created, and the holes move toward the cathode. Holes created by the avalanche process gain large kinetic energy through the electric field, and are considered hot. These hot holes are cooled as they travel across a p -InAlAs low field region, and are eventually blocked by energy barriers formed by the InGaAsP/ InAlAs heterojunctions. The composition of the InGaAsP alloy was chosen to have an 80 me

  18. Arrest of Avalanche Propagation by Discontinuities on Snow Cover

    Science.gov (United States)

    Frigo, B.; Chiaia, B.

    2009-04-01

    Considering the spatial variability of the snow cover, the paper analyses, in the framework of Fracture Mechanics, the Mode II fracture propagation on snow cover that leads to large dry slab avalanches. Under the hypothesis of a perfectly brittle phenomenon, avalanche triggering is usually investigated numerically by means of Linear Elastic Fracture Mechanics (McClung, 1979; Chiaia et al., 2008). Since, however, the real phenomenon is intrinsically dynamical, another aspect to investigate is represented by dynamic fracture propagation. In this paper, we model dynamic crack propagation into a dry snow slab, to assess the possibility of crack arrest due to the presence of weak zones distributed along the snow slope. As a consequence of the first triggering mechanism (the Mode II fracture propagation on the weak plane), the secondary Mode I crack propagation in the crown is studied by means of numerical simulations based on Dynamic Elastic Fracture Mechanics and on the theory of crack arresters. By taking into account kinetic energy and using the FEM software FRANC 2D (Wawrzynek and Ingraffea, 1993), several paths of crown fracture propagation and their stability have been investigated. The snowpack is considered as a linear-elastic plate (2D problem), whose physical and mechanical parameters are chosen according to classical literature values. To investigate the possible arrest of crown fracture, we apply the theory of crack arresters, usually adopted for pipelines and perforated steel sheets fracture problems. To study crack arrest, different crack paths are simulated, in discontinuous (equipped with different shapes and geometries of artificial voids) snowpacks. The simulations show the effectiveness of these weak zones, to reduce substantially the crack driving force of the propagating fracture. This means that, increasing spatial variability tends to stabilize the snow slope, eventually splitting a major avalanche event into smaller, independent avalanches. Our

  19. Measurement of multiplicity and momentum spectra in the current and target regions of the Breit frame in Deep Inelastic Scattering at HERA

    CERN Document Server

    Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Beier, H; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Bromley, J T; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; Deffner, R; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Göttlicher, P; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, J C; Hartmann, H; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Löhr, B; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Ma, K J; Maccarrone, G; MacDonald, N; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Mönig, K; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Piccioni, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Redondo, I; Reeder, D D; Repond, J; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Salehi, H; Sampson, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Westphal, D; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wills, H H; Wing, M; Wodarczyk, M; Wolf, G; Wölfle, S; Wollmer, U; Wróblewski, A K; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, Antonino; Zotkin, S A; De Wolf, E; Del Peso, J; Van Sighem, A

    1999-01-01

    Charged particle production in neutral current deep inelastic scattering (DIS) has been studied using the ZEUS detector.The evolution of the mean multiplicities, scaled momenta and transverse momenta in Q^2 and x for $10 6\\times 10^{-4}$ has been investigated in the current and target fragmentation regions of the Breit frame. Distributions in the target region, using HERA data for the first time, are compared to distributions in the current region. Predictions based on MLLA and LPHD are inconsistent with the data.

  20. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  1. GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate.

    Science.gov (United States)

    Chuang, Linus C; Sedgwick, Forrest G; Chen, Roger; Ko, Wai Son; Moewe, Michael; Ng, Kar Wei; Tran, Thai-Truong D; Chang-Hasnain, Connie

    2011-02-09

    Monolithic integration of III-V compound semiconductor devices with silicon CMOS integrated circuits has been hindered by large lattice mismatches and incompatible processing due to high III-V epitaxy temperatures. We report the first GaAs-based avalanche photodiodes (APDs) and light emitting diodes, directly grown on silicon at a very low, CMOS-compatible temperature and fabricated using conventional microfabrication techniques. The APDs exhibit an extraordinarily large multiplication factor at low voltage resulting from the unique needle shape and growth mode.

  2. Spontaneous avalanche ionization of a strongly blockaded Rydberg gas

    CERN Document Server

    Robert-de-Saint-Vincent, M; Schempp, H; Günter, G; Whitlock, S; Weidemüller, M

    2012-01-01

    We report the sudden and spontaneous evolution of an initially correlated gas of repulsively interacting Rydberg atoms to an ultracold plasma. Under continuous laser coupling we create a Rydberg ensemble in the strong blockade regime, which at longer times undergoes an ionization avalanche. By combining optical imaging and ion detection, we access the full information on the dynamical evolution of the system, including the rapid increase in the number of ions and a sudden depletion of the Rydberg and ground state densities. Rydberg-Rydberg interactions are observed to strongly affect the dynamics of plasma formation. Using a coupled rate-equation model to describe our data, we extract the average energy of electrons trapped in the plasma, and an effective cross-section for ionizing collisions between Rydberg atoms and atoms in low-lying states. Our results suggest that the initial correlations of the Rydberg ensemble should persist through the avalanche. This would provide the means to overcome disorder-induc...

  3. Avalanche effect and gain saturation in high harmonic generation

    CERN Document Server

    Serrat, Carles; Budesca, Josep M; Seres, Jozsef; Seres, Enikoe; Aurand, Bastian; Hoffmann, Andreas; Namba, Shinichi; Kuehl, Thomas; Spielmann, Christian

    2015-01-01

    Optical amplifiers in all ranges of the electromagnetic spectrum exhibit two essential characteristics: i) the input signal during the propagation in the medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth and ii) the amplification saturates at increasing input signal. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of both the avalanche and saturation effects in the amplification of extreme ultraviolet attosecond pulse trains. We confirm that the amplification takes place only if the seed pulses are perfectly synchronized with the driving strong field in the amplifier. We performed an experimental study and subsequent model calculation on He gas driven by intense 30-fs-long laser pulses, which was seeded with an attosecond pulse train at 110 eV generated in a separated Ne gas jet. The comparison of the performed calculations with the measurements clearly demonstrates that the pumped He gas med...

  4. Stability of the discretization of the electron avalanche phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Andrea, E-mail: andrea.villa@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Barbieri, Luca, E-mail: luca.barbieri@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Gondola, Marco, E-mail: marco.gondola@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy); Leon-Garzon, Andres R., E-mail: andresricardo.leon@polimi.it [CMIC Department “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano (Italy); Malgesini, Roberto, E-mail: roberto.malgesini@rse-web.it [Ricerca Sul Sistema Energetico (RSE), Via Rubattino 50, 20134, Milano (Italy)

    2015-09-01

    The numerical simulation of the discharge inception is an active field of applied physics with many industrial applications. In this work we focus on the drift-reaction equation that describes the electron avalanche. This phenomenon is one of the basic building blocks of the streamer model. The main difficulty of the electron avalanche equation lies in the fact that the reaction term is positive when a high electric field is applied. It leads to exponentially growing solutions and this has a major impact on the behavior of numerical schemes. We analyze the stability of a reference finite volume scheme applied to this latter problem. The stability of the method may impose a strict mesh spacing, therefore a proper stabilized scheme, which is stable whatever spacing is used, has been developed. The convergence of the scheme is treated as well as some numerical experiments.

  5. Magnetic avalanches in granular ferromagnets: thermal activated collective behavior

    Science.gov (United States)

    Chern, Gia-Wei

    2017-02-01

    We present a numerical study on the thermal activated avalanche dynamics in granular materials composed of ferromagnetic clusters embedded in a non-magnetic matrix. A microscopic dynamical simulation based on the reaction-diffusion process is developed to model the magnetization process of such systems. The large-scale simulations presented here explicitly demonstrate inter-granular collective behavior induced by thermal activation of spin tunneling. In particular, we observe an intriguing criticality controlled by the rate of energy dissipation. We show that thermal activated avalanches can be understood in the framework of continuum percolation and the emergent dissipation induced criticality is in the universality class of 3D percolation transition. Implications of these results to the phase-separated states of colossal magnetoresistance materials and other artificial granular magnetic systems are also discussed.

  6. Photon avalanche up-conversion in holmium doped fluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.H.; Liu, G.K.; Beitz, J.V. [Argonne National Lab., IL (United States). Chemistry Division; Jie Wang [Shanghai Institute of Optics and Fine Mechanics, Shanghai (China)

    1996-08-01

    Photon avalanche green up-conversion emission centered at 545 nm has been observed in Ho{sup 3+} doped and Ho{sup 3+}, Tm{sup 3+} co-doped ZrF{sub 4}-based fluoride glasses when excited near 585 nm which is off resonance with any ground state absorption bands of either Ho{sup 3+} or Tm{sup 3+} ions. Detailed spectral measurements and analysis suggest that the 545 nm emission occurs from the {sup 5}S{sub 2},{sup 5}F{sub 4} states of Ho{sup 3+} that are populated by excited state absorption from the {sup 5}I{sub 7} state of Ho{sup 3+}. Strong cross-relaxation that efficiently populates the {sup 5}I{sub 7} state makes the photon avalanche process possible in this system.

  7. Robust Quantum Random Number Generator Based on Avalanche Photodiodes

    Science.gov (United States)

    Wang, Fang-Xiang; Wang, Chao; Chen, Wei; Wang, Shuang; Lv, Fu-Sheng; He, De-Yong; Yin, Zhen-Qiang; Li, Hong-Wei; Guo, Guang-Can; Han, Zheng-Fu

    2015-08-01

    We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.

  8. Investigation of avalanche photodiodes radiation hardness for baryonic matter studies

    CERN Document Server

    Kushpil, V; Ladygin, V P; Kugler, A; Kushpil, S; Svoboda, O; Tlustý, P

    2015-01-01

    Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in \\v{R}e\\v{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.

  9. Simulation of a flowing snow avalanche using molecular dynamics

    OpenAIRE

    2010-01-01

    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2010. Thesis (Master's) -- Bilkent University, 2010. Includes bibliographical references leaves 45-50. This thesis presents an approach for modeling and simulation of a flowing snow avalanche, which is formed of dry and liquefied snow that slides down a slope, by using molecular dynamics and discrete element method. A particle system is utilized as a base method for th...

  10. A micropixel avalanche phototransistor for time of flight measurements

    Science.gov (United States)

    Sadigov, A.; Suleymanov, S.; Ahmadov, F.; Ahmadov, G.; Abdullayev, K.; Akberov, R.; Heydarov, N.; Madatov, R.; Mukhtarov, R.; Nazarov, M.; Valiyev, R.

    2017-02-01

    This paper presents results of studies of the silicon based new micropixel avalanche phototransistor (MAPT). MAPT is a modification of well-known silicon photomultipliers (SiPMs) and differs since each photosensitive pixel of the MAPT operates in Geiger mode and comprises an individual micro-transistor operating in binary mode. This provides a high amplitude single photoelectron signal with significantly shorter rise time. The obtained results are compared with appropriate parameters of known SiPMs.

  11. Photon detection efficiency of Geiger-mode avalanche photodiodes

    OpenAIRE

    Gentile, Simonetta; Kuznetsova, Ekaterina; Meddi, Franco

    2010-01-01

    The photon detection efficiencies of multi-pixel Geiger-mode avalanche photodiodes manufactured by different produ cers are estimated. A new fit method of the response spectra to low-intensity light, taking into ac count after-pulse and cross-talk effects is proposed to yield the initial number of photons. The value of photon detection efficiency is calculated using a calibrated photodetector as a reference.

  12. Automated characterization of single-photon avalanche photodiode

    CERN Document Server

    Ghazali, Aina M M; Sauge, Sebastien; Makarov, Vadim

    2012-01-01

    We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH). The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 uW), dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer.

  13. Receiver characteristics of laser altimeters with avalanche photodiodes

    Science.gov (United States)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  14. Gullies and avalanche scars on Martian dark dunes

    OpenAIRE

    Reiss, D.; Jaumann, Ralf; Kereszturi, A.,; Sik, A.; Neukum, G.

    2007-01-01

    Gullies on Mars occur on slopes of impact craters, pits, valleys and hills. However, in some cases gullies are cut into dark dune slopes. Other mass movement features on dark dune slopes are avalanche scars which occur on most dune fields beside the gully features. We classified the mass movement features based on their morphology and analyzed them with respect to their distribution, slope angle, orientation and seasonal climatic conditions to constrain the possible formation process causing ...

  15. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  16. Particle-size segregation in dense granular avalanches

    Science.gov (United States)

    Gray, John Mark Nicholas Timm; Gajjar, Parmesh; Kokelaar, Peter

    2015-01-01

    Particles of differing sizes are notoriously prone to segregate, which is a chronic problem in the manufacture of a wide variety of products that are used by billions of people worldwide every day. Segregation is the single most important factor in product non-uniformity, which can lead to significant handling problems as well as complete batches being discarded at huge financial loss. It is generally regarded that the most important mechanism for segregation is the combination of kinetic sieving and squeeze expulsion in shallow granular avalanches. These free-surface flows are more common than one might expect, often forming part of more complicated flows in drums, heaps and silos, where there is mass exchange with underlying regions of static or slowly moving grains. The combination of segregation and solid-fluid granular phase transitions creates incredibly complicated and beautiful patterns in the resulting deposits, but a full understanding of such effects lies beyond our capabilities at present. This paper reviews recent advances in our ability to model the basic segregation processes in a single avalanche (without mass exchange) and the subtle feedback effects that they can have on the bulk flow. This is particularly important for geophysical applications, where segregation can spontaneously self-channelize and lubricate the flow, significantly enhancing the run-out of debris-flows, pyroclastic flows, rock-falls and snow-slab avalanches.

  17. Meshfree simulation of avalanches with the Finite Pointset Method (FPM)

    Science.gov (United States)

    Michel, Isabel; Kuhnert, Jörg; Kolymbas, Dimitrios

    2017-04-01

    Meshfree methods are the numerical method of choice in case of applications which are characterized by strong deformations in conjunction with free surfaces or phase boundaries. In the past the meshfree Finite Pointset Method (FPM) developed by Fraunhofer ITWM (Kaiserslautern, Germany) has been successfully applied to problems in computational fluid dynamics such as water crossing of cars, water turbines, and hydraulic valves. Most recently the simulation of granular flows, e.g. soil interaction with cars (rollover), has also been tackled. This advancement is the basis for the simulation of avalanches. Due to the generalized finite difference formulation in FPM, the implementation of different material models is quite simple. We will demonstrate 3D simulations of avalanches based on the Drucker-Prager yield criterion as well as the nonlinear barodesy model. The barodesy model (Division of Geotechnical and Tunnel Engineering, University of Innsbruck, Austria) describes the mechanical behavior of soil by an evolution equation for the stress tensor. The key feature of successful and realistic simulations of avalanches - apart from the numerical approximation of the occurring differential operators - is the choice of the boundary conditions (slip, no-slip, friction) between the different phases of the flow as well as the geometry. We will discuss their influences for simplified one- and two-phase flow examples. This research is funded by the German Research Foundation (DFG) and the FWF Austrian Science Fund.

  18. Automated Characterization of Single-Photon Avalanche Photodiode

    Directory of Open Access Journals (Sweden)

    Aina Mardhiyah M. Ghazali

    2012-01-01

    Full Text Available We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH. The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 µW, dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer. ABSTRAK: Kami melaporkan pencirian pengesan foton tunggal secara automatik berdasarkan kepada diod foto runtuhan silikon (silicon avalanche photodiode (PerkinElmer C30902SH komersial. Pencirian  diod foto adalah berdasarkan kepada plot arus-voltan (I-V pada tahap pencahayaan yang berbeza (kelam - tanpa cahaya, 10pW, dan 10µW, kadar bacaan latar belakang, kecekapan pengesanan foton pada voltan picuan yang berbeza. Pengaturcaraan C++ digunakan di dalam rutin pencirian automatik melalui komputer dengan sistem pengendalian LINUX.KEYWORDS: avalanche photodiode (APD; single photon detector; photon counting; experiment automation

  19. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    Energy Technology Data Exchange (ETDEWEB)

    Hood, A. W.; Cargill, P. J.; Tam, K. V. [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom); Browning, P. K., E-mail: awh@st-andrews.ac.uk [School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-01-20

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread and this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.

  20. Scale-free avalanches in the multifractal random walk

    CERN Document Server

    Bartolozzi, M

    2007-01-01

    Avalanches, or Avalanche-like, events are often observed in the dynamical behaviour of many complex systems which span from solar flaring to the Earth's crust dynamics and from traffic flows to financial markets. Self-organized criticality (SOC) is one of the most popular theories able to explain this intermittent charge/discharge behaviour. Despite a large amount of theoretical work, empirical tests for SOC are still in their infancy. In the present paper we address the common problem of revealing SOC from a simple time series without having much information about the underlying system. As a working example we use a modified version of the multifractal random walk originally proposed as a model for the stock market dynamics. The study reveals, despite the lack of the typical ingredients of SOC, an avalanche-like dynamics similar to that of many physical systems. While, on one hand, the results confirm the relevance of cascade models in representing turbulent-like phenomena, on the other, they also raise the ...

  1. Avalanche photodiodes and quenching circuits for single-photon detection.

    Science.gov (United States)

    Cova, S; Ghioni, M; Lacaita, A; Samori, C; Zappa, F

    1996-04-20

    Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called singlephoton avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540- to 850-nm wavelength and still ~3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

  2. A novel stream encryption scheme with avalanche effect

    Science.gov (United States)

    Min, Lequan; Chen, Guanrong

    2013-11-01

    This paper proposes a novel stream encryption scheme with avalanche effect (SESAE). Using this scheme and an ideal pseudorandom number generator (PRNG) to generate d-bit segment binary key streams, one can encrypt a plaintext such that by using any key stream generated from a different seed to decrypt the ciphertext, the decrypted plaintext will become an avalanche-like text which has 2 d - 1 consecutive one's with a high probability. As a cost, the required bits of the ciphertext are d times those of the plaintext. A corresponding avalanche-type encryption theorem is established. Two chaotic 12-bit segment PRNGs are designed. A generalized FIPS140 test and SESAE test for the two chaotic PRNGs, RC4 12-bit segment PRNG and 12-bit segment Matlab PRNG are implemented. The SESAE tests for 16-bit segment PRNGs are also compared. The results suggest that those PRNGs are able to generate the SESAEs which are similar to those generated via ideal PRNGs.

  3. Avalanche photodiodes and quenching circuits for single-photon detection

    Science.gov (United States)

    Cova, S.; Ghioni, M.; Lacaita, A.; Samori, C.; Zappa, F.

    1996-04-01

    Avalanche photodiodes, which operate above the breakdown voltage in Geiger mode connected with avalanche-quenching circuits, can be used to detect single photons and are therefore called single-photon avalanche diodes SPAD's. Circuit configurations suitable for this operation mode are critically analyzed and their relative merits in photon counting and timing applications are assessed. Simple passive-quenching circuits (PQC's), which are useful for SPAD device testing and selection, have fairly limited application. Suitably designed active-quenching circuits (AQC's) make it possible to exploit the best performance of SPAD's. Thick silicon SPAD's that operate at high voltages (250-450 V) have photon detection efficiency higher than 50% from 540-to 850-nm wavelength and still approximately 3% at 1064 nm. Thin silicon SPAD's that operate at low voltages (10-50 V) have 45% efficiency at 500 nm, declining to 10% at 830 nm and to as little as 0.1% at 1064 nm. The time resolution achieved in photon timing is 20 ps FWHM with thin SPAD's; it ranges from 350 to 150 ps FWHM with thick SPAD's. The achieved minimum counting dead time and maximum counting rate are 40 ns and 10 Mcps with thick silicon SPAD's, 10 ns and 40 Mcps with thin SPAD's. Germanium and III-V compound semiconductor SPAD's extend the range of photon-counting techniques in the near-infrared region to at least 1600-nm wavelength.

  4. Estimating the avalanche contribution to the mass balance of debris covered glaciers

    Directory of Open Access Journals (Sweden)

    A. Banerjee

    2014-01-01

    Full Text Available Avalanche from high head walls dominates the net accumulation in many debris covered glaciers in the Himalaya. These avalanche contributions are difficult to directly measure and may cause a systematic bias in glaciological mass balance measurements. In this paper we develop a method to estimate the avalanche contribution using available data, within the context of an idealised flowline model of the glacier. We focus on Hamtah glacier in Western Himalaya and estimate the magnitude of the avalanche accumulation to its specific mass balance profile. Our estimate explains the reported discrepancy between values of recent glaciological and geodetic net mass balance for this glacier. Model estimate of accumulation area ratio (AAR for this glacier is small (0.1 even at a steady state. This shows that empirical mass balance–AAR relationships derived from glaciers which do not have a significant avalanche contribution will not apply to a large region containing a significant fraction avalanche fed ones.

  5. Informal Social Networks of People with Profound Intellectual and Multiple Disabilities: Relationship with Age, Communicative Abilities and Current Living Arrangements

    Science.gov (United States)

    Kamstra, A.; van der Putten, A. A. J.; Post, W. J.; Vlaskamp, C.

    2015-01-01

    Background: People with profound intellectual and multiple disabilities (PIMD) have limited informal social contacts. Research to determine the factors which can positively influence establishing sound informal social contacts is required. Materials and Methods: Regression analysis for 200 people with PIMD was used to analyse how age,…

  6. Informal Social Networks of People with Profound Intellectual and Multiple Disabilities: Relationship with Age, Communicative Abilities and Current Living Arrangements

    NARCIS (Netherlands)

    Kamstra, Aafke; van der Putten, Annette; Post, Wendy; Vlaskamp, Carla

    2014-01-01

    People with profound intellectual and multiple disabilities (PIMD) have limited informal social contacts. Research to determine the factors which can positively influence establishing sound informal social contacts is required.Materials and Methods Regression analysis for 200 people with PIMD was us

  7. Informal Social Networks of People with Profound Intellectual and Multiple Disabilities: Relationship with Age, Communicative Abilities and Current Living Arrangements

    Science.gov (United States)

    Kamstra, A.; van der Putten, A. A. J.; Post, W. J.; Vlaskamp, C.

    2015-01-01

    Background: People with profound intellectual and multiple disabilities (PIMD) have limited informal social contacts. Research to determine the factors which can positively influence establishing sound informal social contacts is required. Materials and Methods: Regression analysis for 200 people with PIMD was used to analyse how age,…

  8. The Tancitaro Debris Avalanche: Characterization, propagation and modeling

    Science.gov (United States)

    Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola

    2010-06-01

    The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field

  9. Information processing occurs via critical avalanches in a model of the primary visual cortex

    Science.gov (United States)

    Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.

    2016-01-01

    We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.

  10. Snow Avalanche Disturbance Ecology: Examples From the San Juan Mountains, Colorado.

    Science.gov (United States)

    Simonson, S.; Fassnacht, S. R.

    2008-12-01

    We evaluated landscape ecology approaches to characterize snow avalanche paths based on patterns of plant species composition and evidence of disturbance. Historical records of avalanche incidents, patterns in the annual growth layers of woody plants, and distributions of plant species can be used to quantify and map the frequency and magnitude of snow slide events. Near Silverton, Colorado, a series of snow storms in January of 2005 resulted in many avalanche paths running full track at 30 and 100 year return frequency. Many avalanches cut fresh trimlines, widening their tracks by uprooting, stripping, and breaking mature trees. Powerful avalanches deposited massive piles of snow, rocks, and woody debris in their runout zones. We used cross-section discs and cores of representative downed trees to detect dendro-ecological signals of past snow avalanche disturbance. Avalanche signals included impact scars from the moving snow and associated wind blast, relative width of annual growth rings, and development of reaction wood in response to tilting. Initial measurements of plant diversity and disturbance along the elevation gradient of an avalanche path near Silverton indicate that avalanche activity influences patterns of forest cover, contributes to the high local plant species diversity, and provides opportunities for new seedling establishment.

  11. IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland

    Directory of Open Access Journals (Sweden)

    M. Bründl

    2004-01-01

    Full Text Available After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc. in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.

  12. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report highly efficient avalanche multiphoton luminescence(MPL)from ordered-arrayed gold nanowires(NWs).The time-average excitation intensity I_(exc) is as low as 5.0-9.1 kW/cm~2.The intensity of avalanche MPL I_(MPL) is about 10~4 times larger than that of three-photon luminescence,the slope ■logI_(MPL)/■logI_(exc) of avalanche MPL reaches as high as 18.3 and the corresponding polarization dependence of I_(MPL) has a form of cos~(50)■_p.The emission dynamics of avalanche MPL and three-photon luminesc...

  13. Should the current DSM-IV-TR definition for PTSD be expanded to include serial and multiple microtraumas as aetiologies?

    Science.gov (United States)

    Seides, R

    2010-10-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops from events that are interpreted as traumatic. It may be secondary to witnessing trauma to someone close, an event that threatens one's life or childhood sexual trauma. Resultant feelings can be fear, helplessness or horror. Thresholds at which traumatic events cause PTSD, the individual's coping ability and support systems help determine occurrence and severity of symptoms. According to DSM-IV-TR (DSM) definition, PTSD can occur after childhood sexual abuse or a single trauma threatening life or safety. However, it is becoming clearer that symptoms of PTSD can arise from multiple less severe traumas ('microtraumas'), which can be a consequence of a history of longstanding emotional neglect, humiliation or inaccurate attribution of blame. The DSM should consider modifying the criteria to include multiple microtraumas that can lead to PTSD symptoms and may even be more destructive to psychological health.

  14. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. C.; Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal)

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  15. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    Science.gov (United States)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  16. Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    Full Text Available Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation.

  17. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4

    Science.gov (United States)

    Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien

    2014-01-01

    This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437

  18. Prediction of avalanches on the basis of the 27‐day Solar activity variations

    Directory of Open Access Journals (Sweden)

    N. A. Kazakov

    2015-01-01

    Full Text Available Many natural processes on the Earth are the cyclic ones and they are self-sustaining within a system of the Sun–Earth relations. To verify our hypothesis on a cyclic occurrence of the avalanche processes and to estimate a possibility to predict avalanches as a cyclic process we had analyzed information about avalanches and meteorological processes (number of avalanches per a day, their total and maximal volumes, and daily sums of precipitation using the method of 27-day Sun (solar calendars by A. Chizhevskiy. Analysis of results of such studies obtained in Khibini (Kola peninsula, for 1935–1986 and on a Chamginskiy mountain pass (the Sakhalin Island, Vostochno-Sakhalinskie Mountains, for 1982–1992 had shown that activity of the avalanche processes and the atmospheric precipitation had evident 27-day solar cycle. Cyclicity of appearance and volume of avalanches of both syngenetic and epigenetic types is established as well as of the precipitation in quantitative gradations. Procedures of prediction of number and volume of avalanches and daily precipitation were developed on the basis of their relationship with the Sun cycles. Verification of the method proposed in this article by the data obtained in Khibini (Kukisvum mountain pass, 1987–1988 and on the Sakhalin Island (Chamginskiy mountain pass, 1993–1995; Yuzhno-Sahalinsk; Tomari, 1991–1999 had demonstrated that correctness of such forecast with earliness of 60 days is as follows: for precipitation – 85–90%; the new snow avalanches of new snow – 90–95%; avalanches of recrystallization snow – 75–80%. At that with earliness of 10 days: precipitation – 90–95%; avalanches of new snow – 95%; avalanches of r recrystallization snow – 75–80%. 

  19. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    Science.gov (United States)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  20. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  1. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  2. High-efficiency and low-jitter Silicon single-photon avalanche diodes based on nanophotonic absorption enhancement

    CERN Document Server

    Ma, Jian; Yu, Zongfu; Jiang, Xiao; Huo, Yijie; Zang, Kai; Zhang, Jun; Harris, James S; Jin, Ge; Zhang, Qiang; Pan, Jian-Wei

    2015-01-01

    Silicon single-photon avalanche diode (SPAD) is a core device for single-photon detection in the visible and the near-infrared range, and widely used in many applications. However, due to limits of the structure design and device fabrication for current silicon SPADs, the key parameters of detection befficiency and timing jitter are often forced to compromise. Here, we propose a nanostructured silicon SPAD, which achieves high detection efficiency with excellent timing jitter simultaneously over a broad spectral range. The optical and electric simulations show significant performance enhancement compared with conventional silicon SPAD devices. This nanostructured devices can be easily fabricated and thus well suited for practical applications.

  3. Single-Photon Avalanche Diodes (SPAD) in CMOS 0.35 µm technology

    Energy Technology Data Exchange (ETDEWEB)

    Pellion, D.; Jradi, K.; Brochard, N. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France); Prêle, D. [APC – CNRS/Univ. Paris Diderot, Paris (France); Ginhac, D. [Le2i – CNRS/Univ. de Bourgogne, Dijon (France)

    2015-07-01

    Some decades ago single photon detection used to be the terrain of photomultiplier tube (PMT), thanks to its characteristics of sensitivity and speed. However, PMT has several disadvantages such as low quantum efficiency, overall dimensions, and cost, making them unsuitable for compact design of integrated systems. So, the past decade has seen a dramatic increase in interest in new integrated single-photon detectors called Single-Photon Avalanche Diodes (SPAD) or Geiger-mode APD. SPAD are working in avalanche mode above the breakdown level. When an incident photon is captured, a very fast avalanche is triggered, generating an easily detectable current pulse. This paper discusses SPAD detectors fabricated in a standard CMOS technology featuring both single-photon sensitivity, and excellent timing resolution, while guaranteeing a high integration. In this work, we investigate the design of SPAD detectors using the AMS 0.35 µm CMOS Opto technology. Indeed, such standard CMOS technology allows producing large surface (few mm{sup 2}) of single photon sensitive detectors. Moreover, SPAD in CMOS technologies could be associated to electronic readout such as active quenching, digital to analog converter, memories and any specific processing required to build efficient calorimeters (Silicon PhotoMultiplier – SiPM) or high resolution imagers (SPAD imager). The present work investigates SPAD geometry. MOS transistor has been used instead of resistor to adjust the quenching resistance and find optimum value. From this first set of results, a detailed study of the dark count rate (DCR) has been conducted. Our results show a dark count rate increase with the size of the photodiodes and the temperature (at T=22.5 °C, the DCR of a 10 µm-photodiode is 2020 count s{sup −1} while it is 270 count s{sup −1} at T=−40 °C for a overvoltage of 800 mV). A small pixel size is desirable, because the DCR per unit area decreases with the pixel size. We also found that the adjustment

  4. Determination of breakdown voltage of In 0.53Ga 0.47As/InP single photon avalanche diodes

    Institute of Scientific and Technical Information of China (English)

    Peng Zhou; Changjun Liao; Zhengjun Wei; Chunfei Li; Shuqiong Yuan

    2011-01-01

    @@ We examine the saturation of relative current gain of In0.53Ga0.47 As/InP single photon avalanche diodes (SPADs) operated in Geiger mode. The punch-through voltage and breakdown voltage of the SPADs can be measured using a simple and accurate method. The analysis method is temperature-independent and can be applied to most SPADs.%We examine the saturation of relative current gain of In0.53Ga0.47As/InP single photon avalanche diodes (SPADs) operated in Geiger mode. The punch-through voltage and breakdown voltage of the SPADs can be measured using a simple and accurate method. The analysis method is temperature-independent and can be applied to most SPADs.

  5. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  6. Subsampling effects in neuronal avalanche distributions recorded in vivo

    Directory of Open Access Journals (Sweden)

    Munk Matthias HJ

    2009-04-01

    Full Text Available Abstract Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s, and sigma = 1, are hallmark features of self-organized critical (SOC systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s and sigma by imposing subsampling on three different SOC models. We then compared f(s and sigma of the subsampled models with those of multielectrode local field potential (LFP activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s. Both, f(s and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s and sigma calculated from the physiological

  7. Magnetic field modification to the relativistic runaway electron avalanche length

    Science.gov (United States)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  8. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  9. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    infer full- water column density profiles (&p/&z), and horizontal gradients in -r have been used to infer velocity-shear using the thermal wind...sit on the seafloor in a rigid anchor stand in water depths D ranging between 500 and 6700 m. The current sensor is tethered to the glass sphere...reflectors are detected (e.g., the air-sea interface is detected, whereas the pycnocline within the water column is not). Subsurface echoes that arrive

  10. Current and future potential of retinal optical coherence tomography in multiple sclerosis with and without optic neuritis.

    Science.gov (United States)

    Balk, Lisanne J; Petzold, Axel

    2014-01-01

    Multiple sclerosis (MS) is a disorder characterized by inflammation and neuroaxonal degeneration. The latter is held responsible for the irreversible disability in patients with MS. The eye is a unique window into the brain. With the advent of optical coherence tomography, accurate quantification of retinal layer thickness has become feasible. Neuroaxonal degeneration affecting the retinal layers is structurally and functionally related to pathology in the visual pathways, which is most severe following MS optic neuritis. This is relevant to recognize because MS optic neuritis may mask the subtle thinning of retinal layers associated with global CNS atrophy, which is also related to more global loss of neurological function. Taken together, optical coherence tomography stands at the brink of becoming a validated imaging biomarker for monitoring neurodegeneration in MS and to provide end points for clinical trials.

  11. Continuous separation of multiple size microparticles using alternating current dielectrophoresis in microfluidic device with acupuncture needle electrodes

    Science.gov (United States)

    Tao, Ye; Ren, Yukun; Yan, Hui; Jiang, Hongyuan

    2016-03-01

    The need to continuously separate multiple microparticles is required for the recent development of lab-on-chip technology. Dielectrophoresis(DEP)-based separation device is extensively used in kinds of microfluidic applications. However, such conventional DEP-based device is relatively complicated and difficult for fabrication. A concise microfluidic device is presented for effective continuous separation of multiple size particle mixtures. A pair of acupuncture needle electrodes are creatively employed and embedded in a PDMS(poly-dimethylsiloxane) hurdle for generating non-uniform electric field thereby achieving a continuous DEP separation. The separation mechanism is that the incoming particle samples with different sizes experience different negative DEP(nDEP) forces and then they can be transported into different downstream outlets. The DEP characterizations of particles are calculated, and their trajectories are numerically predicted by considering the combined action of the incoming laminar flow and the nDEP force field for guiding the separation experiments. The device performance is verified by successfully separating a three-sized particle mixture, including polystyrene microspheres with diameters of 3 μm, 10 μm and 25 μm. The separation purity is below 70% when the flow rate ratio is less than 3.5 or more than 5.1, while the separation purity can be up to more than 90% when the flow rate ratio is between 3.5 and 5.1 and meanwhile ensure the voltage output falls in between 120 V and 150 V. Such simple DEP-based separation device has extensive applications in future microfluidic systems.

  12. Linking snow depth to avalanche release area size: measurements from the Vallée de la Sionne field site

    OpenAIRE

    2016-01-01

    One of the major challenges in avalanche hazard assessment is the correct estimation of avalanche release area size, which is of crucial importance to evaluate the potential danger that avalanches pose to roads, railways or infrastructure. Terrain analysis plays an important role in assessing the potential size of avalanche releases areas and is commonly based on digital terrain models (DTMs) of a snow-free summer terrain. However, a snow-covered winter terrain can significa...

  13. 400-ps time resolution with a passively quenched avalanche photodiode.

    Science.gov (United States)

    Grayson, T P; Wang, L J

    1993-06-01

    Avalanche photodiodes (APD's) operated in a single-photon-counting Geiger mode are becoming attractive alternatives to photomultiplier tubes for low-light-level detection and signal timing. By paying careful attention to the design and construction of a simple APD passive quenching circuit to reduce stray capacitances, we directly measured a time resolution of 410 ps FWHM for a commercial APD. A more detailed data analysis shows the actual time resolution to be ~ 390 ps FWHM. This is believed to be the most accurate time response for such a simple, inexpensive, and widely available device achieved to date.

  14. Silicon avalanche photodiode operation and lifetime analysis for small satellites.

    Science.gov (United States)

    Tan, Yue Chuan; Chandrasekara, Rakhitha; Cheng, Cliff; Ling, Alexander

    2013-07-15

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (γ-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  15. Photon counting modules using RCA silicon avalanche photodiodes

    Science.gov (United States)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  16. Silicon avalanche photodiode operation and lifetime analysis for small satellites

    CERN Document Server

    Tan, Yue Chuan; Cheng, Cliff; Ling, Alexander

    2013-01-01

    Silicon avalanche photodiodes (APDs) are sensitive to operating temperature fluctuations and are also susceptible to radiation flux expected in satellite-based quantum experiments. We introduce a low power voltage adjusting mechanism to overcome the effects of in-orbit temperature fluctuations. We also present data on the performance of Si APDs after irradiation (gamma-ray and proton beam). Combined with an analysis of expected orbital irradiation, we propose that a Si APD in a 400 km equatorial orbit may operate beyond the lifetime of the satellite.

  17. A 1.06 micrometer avalanche photodiode receiver

    Science.gov (United States)

    Eden, R. C.

    1975-01-01

    The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.

  18. Silicon avalanche photodiodes for direct detection of X-rays.

    Science.gov (United States)

    Baron, Alfred Q R; Kishimoto, Shunji; Morse, John; Rigal, Jean Marie

    2006-03-01

    Silicon avalanche photodiodes (APDs) are discussed as fast X-ray detectors for synchrotron radiation. The emphasis is on ;direct' detection, where the X-ray is absorbed within the silicon APD itself, and, therefore, on use with medium-energy X-rays, <30 keV. The impact of APD structure on device performance is examined, and representative data from many different commercial devices are presented. Specific areas discussed include signal shapes, high-rate behavior, time resolution and pulse-height response. Data from several APD arrays are also presented, as is a detailed description of an integrated package system. Tables are included comparing commercially available devices, including arrays.

  19. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  20. Correcting for accidental correlations in saturated avalanche photodiodes

    CERN Document Server

    Grieve, James A; Tang, Zhongkan; Ling, Alexander

    2015-01-01

    In this paper we present a high-level numerical model for estimating rates of accidental correlations between a pair of passively quenched Geiger mode avalanche photodiodes operating in the saturated regime. By considering the recovery time of both the diodes and the detection circuit we introduce the concept of an "effective duty cycle" and show that it may be estimated by numeric simulation. The impact of effective duty cycle on the observed accidental rate is examined and we demonstrate that the updated model leads to an improved correction factor in actual experiments. This will improve the signal-to-noise ratio in applications depending on correlation measurements.