WorldWideScience

Sample records for current motor function

  1. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    Science.gov (United States)

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  2. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  3. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  4. Evaluation of Esophageal Motor Function With High-resolution Manometry

    Science.gov (United States)

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  5. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  6. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Enhancement of Cortical Excitability and Lower Limb Motor Function in Patients With Stroke by Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Chang, Min Cheol; Kim, Dae Yul; Park, Dae Hwan

    2015-01-01

    Motor dysfunction in the lower limbs is a common sequela in stroke patients. We used transcranial magnetic stimulation (TMS) to determine if applying transcranial direct current stimulation (tDCS) to the primary motor cortex helps enhance cortical excitability. Furthermore, we evaluate if combination anodal tDCS and conventional physical therapy improves motor function in the lower limbs. Twenty-four patients with early-stage stroke were randomly assigned to 2 groups: 1) the tDCS group, in which patients received 10 sessions of anodal tDCS and conventional physical therapy; and 2) the sham group, in which patients received 10 sessions of sham stimulation and conventional physical therapy. One day before and after intervention, the motor-evoked potential (MEP) of the affected tibialis anterior muscle was evaluated and motor function was assessed using the lower limb subscale of the Fugl-Meyer Assessment (FMA-LE), lower limb Motricity Index (MI-LE), Functional Ambulatory Category (FAC), Berg Balance Scale (BBS), and gait analysis. The MEPs in the tDCS group became shorter in latency and higher in amplitude after intervention in comparison with the sham group. Improvements in FMA-LE and MI-LE were greater in the tDCS group, but no significant differences in FAC or BBS scores were found. Also, the changes observed on the gait analyses did not significantly differ between the tDCS and sham groups. Combination anodal tDCS and conservative physical therapy appears to be a beneficial therapeutic modality for improving motor function in the lower limbs in patients with subacute stroke. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  9. Recovery of motor function after stroke.

    Science.gov (United States)

    Sharma, Nikhil; Cohen, Leonardo G

    2012-04-01

    The human brain possesses a remarkable ability to adapt in response to changing anatomical (e.g., aging) or environmental modifications. This form of neuroplasticity is important at all stages of life but is critical in neurological disorders such as amblyopia and stroke. This review focuses upon our new understanding of possible mechanisms underlying functional deficits evidenced after adult-onset stroke. We review the functional interactions between different brain regions that may contribute to motor disability after stroke and, based on this information, possible interventional approaches to motor stroke disability. New information now points to the involvement of non-primary motor areas and their interaction with the primary motor cortex as areas of interest. The emergence of this new information is likely to impact new efforts to develop more effective neurorehabilitative interventions using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) that may be relevant to other neurological disorders such as amblyopia. Copyright © 2010 Wiley Periodicals, Inc.

  10. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    Science.gov (United States)

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Motor current signature analysis for determining operational readiness of motor-operated valves (MOVs)

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1987-01-01

    Motor current signature analysis (MCSA) is a novel diagnostic process for condition monitoring of electric-motor-driven mechanical equipment (e.g., pumps, motor-operated valves, compressors, and processing machinery). The MCSA process identifies, characterizes, and trends over time the instantaneous load variations of mechanical equipment in order to diagnose changes in the condition of the equipment (e.g., due to degradation or service wear), which, if allowed to continue, may lead to failure. It monitors the instantaneous variations (noise content) in the electric current flowing through the power leads to the electric motor that drives the equipment. The motor itself thereby acts as a transducer, sensing both large and small, long-term and rapid, mechanical load variations and converting them to variations in the induced current generated in the motor windings. This motor current noise signature is detected, amplified, and further processed as needed to examine its time domain and frequency domain (spectral) characteristics. The operational principles of MCSA and the nonintrusive data collection apparatus and procedure used with MOVs will be described. Data collected from MOVs in both laboratory and in-plant environments will also be shown to illustrate the ability of MCSA to ''see'' the detailed inner workings of the valve and operator and thus to detect degraded performance at an incipient stage. (Set of 18 vugraphs)

  12. Sliding Mode Control of Induction Motor Phase Currents

    DEFF Research Database (Denmark)

    Hansen, R.B.; Hattel, T.; Bork, J

    1995-01-01

    Sliding mode control of induction motor phase currents are investigated through development of two control concepts.......Sliding mode control of induction motor phase currents are investigated through development of two control concepts....

  13. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  14. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  15. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    Science.gov (United States)

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  16. Condition monitoring of machinery using motor current signature analysis

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs

  17. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  18. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    Science.gov (United States)

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  19. Impairments of Motor Function While Multitasking in HIV.

    Science.gov (United States)

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  20. Application of drive circuit based on L298N in direct current motor speed control system

    Science.gov (United States)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  1. Current superimposition variable flux reluctance motor with 8 salient poles

    Science.gov (United States)

    Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira

    2017-12-01

    We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.

  2. Current superimposition variable flux reluctance motor with 8 salient poles

    Directory of Open Access Journals (Sweden)

    Takahara Kazuaki

    2017-12-01

    Full Text Available We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.

  3. Impairments of Motor Function While Multitasking in HIV

    Directory of Open Access Journals (Sweden)

    Cherie L. Marvel

    2017-04-01

    Full Text Available Human immunodeficiency virus (HIV became a treatable illness with the introduction of combination antiretroviral therapy (CART. As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND. The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing. Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  4. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  5. Torque harmonics of an asynchronous motor supplied by a voltage- or current-sourced inverter quasi-square operation

    Energy Technology Data Exchange (ETDEWEB)

    Kyyrae, J. [Helsinki University of Technology, Institute of Intelligent Power Electronics, Espoo (Finland)

    1997-12-31

    Voltage- and current-sourced dc-ac converters operating in quasi-square area are compared. Their characteristics are calculated with switching vector, which is space-vector of switching functions. When the load is an asynchronous motor various analytical equations, including torque, are calculated efficiently. Motor current and torque approximations are compared with the simulated ones. (orig.) 6 refs.

  6. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy

    OpenAIRE

    Park, Myoung-Ok

    2017-01-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification S...

  7. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  8. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Science.gov (United States)

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  9. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Science.gov (United States)

    Meinzer, Marcus; Lindenberg, Robert; Sieg, Mira M; Nachtigall, Laura; Ulm, Lena; Flöel, Agnes

    2014-01-01

    Language facilitation by transcranial direct current stimulation (tDCS) in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia). However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI), which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1) can enhance language functions. This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal) and bihemispheric (dual) tDCS in 18 healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects. Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions. Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. Functional magnetic resonance imaging revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in

  10. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  11. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    Science.gov (United States)

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  12. Motor function domains in alternating hemiplegia of childhood.

    Science.gov (United States)

    Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A

    2017-08-01

    To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.

  13. Soft commutated direct current motor [summary of proposed paper

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S.

    1998-10-22

    A novel soft commutated direct current (DC) motor is introduced. The current of the commutated coil is intentionally drained before the brush disconnects the coil. This prevents the spark generation that normally occurs in conventional DC motors. A similar principle can be applied for DC generators.

  14. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  15. PROTECTION OF HOUSEHOLD APPLIANCES INDUCTION MOTORS AGAINST OVERCURRENT TAKING INTO ACCOUNT NONLINEAR DISTORTION OF PHASE CURRENT

    Directory of Open Access Journals (Sweden)

    A.G. Sereda

    2015-06-01

    Full Text Available Purpose. Theoretical justification and engineering of induction motors heat protection method from overload currents taking into account nonlinear distortion of the phase current and implementation as a microprocessor device functioning algorithm. Methodology. To solve the problem used the theory of the representing complex harmonic oscillations analog signals expansion into the oscillation spectrum forming elementary harmonic components in order to compare their properties by applying the theory of discrete signals and systems, as well as methods of spectral analysis and discrete signals filtering. The harmonic analysis versatility is that any periodic signal may be synthesized from harmonic oscillation of certain amplitude, frequency and initial phase. A mathematical model for determining the phase current harmonic content of power supply networks with isolated neutral and non-linear loads types and, as a consequence, the distortion of sinusoidal phase current change is developed by multiplying the analog current in time dependency on the grate delta-function with different sampling intervals, in which the use of simple and widely used in relay protection units, in particular electronic overcurrent relays, mathematical operations of integration squares instantaneous current allows the most in harmony with the mathematical tools to build other network protection types. Findings. The necessity to increase the sensitivity of the induction motors heat protection from overload currents taking into account nonlinear distortion of the phase currents is proved. By nonlinear distortion harmonic analysis of the phase currents the motor protection reliability increasing provided by taking into account the higher harmonic components of the phase currents, which causes to additional losses and heating of the stator winding. It uses the simplest and widely used in protective relaying mathematical apparatus determining of most significant higher harmonics

  16. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  17. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  18. Current direction-dependent modulation of human hand motor function by intermittent theta burst stimulation (iTBS).

    Science.gov (United States)

    Shirota, Yuichiro; Dhaka, Suman; Paulus, Walter; Sommer, Martin

    2017-05-22

    Transcranial magnetic stimulation (TMS) with different current directions can activate different sets of neurons. Current direction can also affect the results of repetitive TMS. To test the influence of uni-directional intermittent theta burst stimulation (iTBS) using different current directions, namely posteroanterior (PA) and anteroposterior (AP), on motor behaviour. In a cross-over design, PA- and AP-iTBS was applied over the left primary motor cortex in 19 healthy, right-handed volunteers. Performance of a finger-tapping task was recorded before and 0, 10, 20, and 30min after the iTBS. The task was conducted with the right and left hands separately at each time point. As a control, AP-iTBS with reduced intensity was applied to 14 participants in a separate session (AP weak condition). The finger-tapping count with the left hand was decreased after PA-iTBS. Neither AP- nor AP weak -iTBS altered the performance. Current direction had a significant impact on the after-effects of iTBS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas

    2017-10-01

    Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.

  20. Enhancing transcranial direct current stimulation via motor imagery and kinesthetic illusion: crossing internal and external tools.

    Science.gov (United States)

    Bodranghien, Florian; Manto, Mario; Lebon, Florent

    2016-06-01

    Transcranial direct current stimulation is a safe technique which is now part of the therapeutic armamentarium for the neuromodulation of motor functions and cognitive operations. It is currently considered that tDCS is an intervention that might promote functional recovery after a lesion in the central nervous system, thus reducing long-term disability and associated socio-economic burden. A recent study shows that kinesthetic illusion and motor imagery prolong the effects of tDCS on corticospinal excitability, overcoming one of the limitations of this intervention. Because changes in excitability anticipate changes in structural plasticity in the CNS, this interesting multi-modal approach might very soon find applications in neurorehabilitation.

  1. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value.

    Science.gov (United States)

    Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas

    2015-05-01

    To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.

  2. Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults.

    Directory of Open Access Journals (Sweden)

    Marcus eMeinzer

    2014-09-01

    Full Text Available Language facilitation by transcranial direct current stimulation (tDCS in healthy individuals has generated hope that tDCS may also allow improving language impairment after stroke (aphasia. However, current stimulation protocols have yielded variable results and may require identification of residual language cortex using functional magnetic resonance imaging (fMRI, which complicates incorporation into clinical practice. Based on previous behavioral studies that demonstrated improved language processing by motor system pre-activation, the present study assessed whether tDCS administered to the primary motor cortex (M1 can enhance language functions.This proof-of-concept study employed a sham-tDCS controlled, cross-over, within-subject design and assessed the impact of unilateral excitatory (anodal and bihemispheric (dual tDCS in eighteen healthy older adults during semantic word-retrieval and motor speech tasks. Simultaneous fMRI scrutinized the neural mechanisms underlying tDCS effects.Both active tDCS conditions significantly improved word-retrieval compared to sham-tDCS. The direct comparison of activity elicited by word-retrieval vs. motor-speech trials revealed bilateral frontal activity increases during both anodal- and dual-tDCS compared to sham-tDCS. This effect was driven by more pronounced deactivation of frontal regions during the motor-speech task, while activity during word-retrieval trials was unaffected by the stimulation. No effects were found in M1 and secondary motor regions.Our results show that tDCS administered to M1 can improve word-retrieval in healthy individuals, thereby providing a rationale to explore whether M1-tDCS may offer a novel approach to improve language functions in aphasia. fMRI revealed neural facilitation specifically during motor speech trials, which may have reduced switching costs between the overlapping neural systems for lexical retrieval and speech processing, thereby resulting in improved

  3. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  4. Optimal current waveforms for brushless permanent magnet motors

    Science.gov (United States)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  5. Olfaction Is Related to Motor Function in Older Adults.

    Science.gov (United States)

    Tian, Qu; Resnick, Susan M; Studenski, Stephanie A

    2017-08-01

    Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Enhanced motor learning with bilateral transcranial direct current stimulation: Impact of polarity or current flow direction?

    Science.gov (United States)

    Naros, Georgios; Geyer, Marc; Koch, Susanne; Mayr, Lena; Ellinger, Tabea; Grimm, Florian; Gharabaghi, Alireza

    2016-04-01

    Bilateral transcranial direct current stimulation (TDCS) is superior to unilateral TDCS when targeting motor learning. This effect could be related to either the current flow direction or additive polarity-specific effects on each hemisphere. This sham-controlled randomized study included fifty right-handed healthy subjects in a parallel-group design who performed an exoskeleton-based motor task of the proximal left arm on three consecutive days. Prior to training, we applied either sham, right anodal (a-TDCS), left cathodal (c-TDCS), concurrent a-TDCS and c-TDCS with two independent current sources and return electrodes (double source (ds)-TDCS) or classical bilateral stimulation (bi-TDCS). Motor performance improved over time for both unilateral (a-TDCS, c-TDCS) and bilateral (bi-TDCS, ds-TDCS) TDCS montages. However, only the two bilateral paradigms led to an improvement of the final motor performance at the end of the training period as compared to the sham condition. There was no difference between the two bilateral stimulation conditions (bi-TDCS, ds-TDCS). Bilateral TDCS is more effective than unilateral stimulation due to its polarity-specific effects on each hemisphere rather than due to its current flow direction. This study is the first systematic evaluation of stimulation polarity and current flow direction of bi-hemispheric motor cortex TDCS on motor learning of proximal upper limb muscles. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Speed Control Analysis of Brushless DC Motor Based on Maximum Amplitude DC Current Feedback

    Directory of Open Access Journals (Sweden)

    Hassan M.A.A.

    2014-07-01

    Full Text Available This paper describes an approach to develop accurate and simple current controlled modulation technique for brushless DC (BLDC motor drive. The approach is applied to control phase current based on generation of quasi-square wave current by using only one current controller for the three phases. Unlike the vector control method which is complicated to be implemented, this simple current modulation technique presents advantages such as phase currents are kept in balance and the current is controlled through only one dc signal which represent maximum amplitude value of trapezoidal current (Imax. This technique is performed with Proportional Integral (PI control algorithm and triangular carrier comparison method to generate Pulse Width Modulation (PWM signal. In addition, the PI speed controller is incorporated with the current controller to perform desirable speed operation of non-overshoot response. The performance and functionality of the BLDC motor driver are verified via simulation by using MATLAB/SIMULINK. The simulation results show the developed control system performs desirable speed operation of non-overshoot and good current waveforms.

  8. Does transcranial direct current stimulation affect the learning of a fine sequential hand motor skill with motor imagery?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2017-01-01

    Learning a fine sequential hand motor skill, comparable to playing the piano or learning to type, improves not only due to physical practice, but also due to motor imagery. Previous studies revealed that transcranial direct current stimulation (tDCS) and motor imagery independently affect motor

  9. Technology-aided assessment of sensori-motor function in early infancy

    Directory of Open Access Journals (Sweden)

    Alessandro G Allievi

    2014-10-01

    Full Text Available There is a pressing need for new techniques capable of providing accurate information about sensori-motor function during the first 2 years of childhood. Here we review current clinical methods and challenges for assessing motor function in early infancy, and discuss the potential benefits of applying technology-assisted methods. We also describe how the use of these tools with neuroimaging, and in particular functional magnetic resonance imaging (fMRI, can shed new light on the intra-cerebral processes underlying neurodevelopmental impairment. This knowledge is of particular relevance in the early infant brain which has an increased capacity for compensatory neural plasticity. Such tools could bring a wealth of knowledge about the underlying pathophysiological processes of diseases such as cerebral palsy; act as biomarkers to monitor the effects of possible therapeutic interventions; and provide clinicians with much needed early diagnostic information.

  10. System and method for motor fault detection using stator current noise cancellation

    Science.gov (United States)

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  11. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    DEFF Research Database (Denmark)

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  12. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2001-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... without further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as experimentally on the actual induction motor, both in open-loop current control and when an outer...... speed control loop is closed around the current loop...

  13. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...... is closed around the current loop....

  14. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Exchange of rotor components in functioning bacterial flagellar motor

    International Nuclear Information System (INIS)

    Fukuoka, Hajime; Inoue, Yuichi; Terasawa, Shun; Takahashi, Hiroto; Ishijima, Akihiko

    2010-01-01

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s -1 , meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  16. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    Science.gov (United States)

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  17. Evaluating rodent motor functions: Which tests to choose?

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Dooley, Dearbhaile; Jahanshahi, Ali; Temel, Yasin; Hendrix, Sven

    2017-12-01

    Damage to the motor cortex induced by stroke or traumatic brain injury (TBI) can result in chronic motor deficits. For the development and improvement of therapies, animal models which possess symptoms comparable to the clinical population are used. However, the use of experimental animals raises valid ethical and methodological concerns. To decrease discomfort by experimental procedures and to increase the quality of results, non-invasive and sensitive rodent motor tests are needed. A broad variety of rodent motor tests are available to determine deficits after stroke or TBI. The current review describes and evaluates motor tests that fall into three categories: Tests to evaluate fine motor skills and grip strength, tests for gait and inter-limb coordination and neurological deficit scores. In this review, we share our thoughts on standardized data presentation to increase data comparability between studies. We also critically evaluate current methods and provide recommendations for choosing the best behavioral test for a new research line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Executive functioning, motor programming, and functional independence: accounting for variance, people, and time.

    Science.gov (United States)

    Kraybill, Matthew L; Suchy, Yana

    2011-02-01

    Assessing functional independence is an important part of making diagnostic decisions and treatment recommendations but is often complicated by the limitations of self-report and behavioral measures. Alternatively, it may be worthwhile to investigate neurocognitive correlates of incipient functional declines including using tests of executive functioning (EF) and motor programming (MP). The current study examined an electronic MP task and pitted it against other assessment instruments to evaluate its relative utility in assessing both EF and functional independence. Participants were 72 community-dwelling older adults. Results of this study showed that the MP task was correlated with other measures of EF, an efficient and reliable predictor of functionality, useful for identifying at-risk patients, and comparable to a longer battery in terms of sensitivity and specificity.

  19. Retrospectively Assessed Early Motor and Current Pragmatic Language Skills in Autistic and Neurotypical Children.

    Science.gov (United States)

    Stevenson, Jennifer L; Lindley, Caitlin E; Murlo, Nicole

    2017-08-01

    Autistic individuals often struggle developmentally, even in areas that are not explicit diagnostic criteria, such as motor skills. This study explored the relation between early motor skills, assessed retrospectively, and current pragmatic language skills. Caregivers of neurotypical and autistic children, matched on gender and age, completed assessments of their child's early motor development and current language abilities. Early motor skills were correlated with later pragmatic language skills, and autistic children exhibited fewer motor skills than neurotypical children. In fact, motor skills were a better predictor of an autism spectrum diagnosis than were scores on a measure of current pragmatic language. These results highlight the important role of motor skills in autism spectrum disorders.

  20. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  1. Intrasurgical mapping of complex motor function in the superior frontal gyrus.

    Science.gov (United States)

    Martino, J; Gabarrós, A; Deus, J; Juncadella, M; Acebes, J J; Torres, A; Pujol, J

    2011-04-14

    A lesion to the superior frontal gyrus (SFG) has been associated with long-lasting deficits in complex motor functions. The aim of this study was to analyze the functional role of the SFG by means of electrical cortical stimulation. Direct intraoperative electrical stimulation was used in a group of 21 subjects with lesions within or close to the SFG while they performed three motor tasks that require high skills or bimanual synergy. The results were compared to functional magnetic resonance imaging (fMRI). Ninety-four of the 98 (94.9%) labels identified were located on the convexity surface of the SFG and only four (4.1%) labels were located on the middle surface of the SFG. Areas of blockage of the three tasks were identified in six of the 12 (50%) hemispheres with lesions that had infiltrated the SFG, compared to all 10 of the 10 hemispheres (100%) with lesions that spared the SFG. The difference between these two proportions was statistically significant (P=0.015). fMRI activation was mainly located on the medial aspect of the SFG. We show that the convexity surface of the SFG has an important role in bilateral control of complex movements and in bimanual coordination. The infiltration of the posterior part of the SFG by a lesion disturbs some of the complex hand motor functions, which may be assumed by the contralesional homologous area. Finally, the current study emphasizes the discrepancies between fMRI and intraoperative electrical stimulation maps in complex hand motor function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Design of Controller for Reducing In-Rush Current of Single-Phase Induction Motor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Kang; Baek, Hyung Lae; Lee, Sang Il [Chosun University, Kwangju (Korea)

    2001-05-01

    During an AC motor's start-up accelerating period, a large amount of current is required to reach to the rating speed. This is called in-rush current. This peak in-rush current can be more than about several times the operating or steady-state current in the full load rating of the motor. In-rush current is present in both and electronic ballasts. The main area of concern is the tripping of circuit breaker and fuses which can affect electrical system components From this, we can see that the electrical power controllers will be rather concerned, since they have to supply the actual current necessary to start the motor. This paper presents a new method to reducing in-rush current and energy saving of the single-phase induction motor used in air-conditioner. It can be obtained that proposed system is low cost and small size as compared with other controller. Experiments are focused on a capacitor starting single-phase induction motor. The optimal power saving and in-rush current limiting by phase angle control are verified by experimental results. Also, auxiliary winding was controlled by electronic starting switch. (author). 10 refs., 13 figs., 2 tabs.

  3. Discrete-Time LPV Current Control of an Induction Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2003-01-01

    In this paper we apply a new method for gain-scheduled output feedback control of nonlinear systems to current control of an induction motor. The method relies on recently developed controller synthesis results for linear parameter-varying (LPV) systems, where the controller synthesis is formulated...... as a set of linear matrix inequalities with full-block multipliers. A standard nonlinear model of the motor is constructed and written on LPV form. We then show that, although originally developed in continuous time, the controller synthesis results can be applied to a discrete-time model as well without...... further complications. The synthesis method is applied to the model, yielding an LPV discrete-time controller. Finally, the efficiency of the control scheme is validated via simulations as well as on the actual induction motor, both in open-loop current control and when an outer speed control loop...

  4. Relationship between muscle strength and motor function in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Milene F. Nunes

    2016-07-01

    Full Text Available ABSTRACT Measuring muscle strength and motor function is part of Duchenne muscular dystrophy (DMD assessment. However, the relationship between these variables is controversial. Objective To investigate the relationship between muscle strength and motor function and between these variables and age. Method Muscle strength was measured by Medical Research Council (MRC scale and motor function, by Motor Function Measure (MFM, in 40 non-ambulatory patients. Spearman tests investigated the relationships between muscle strength, motor function and age. Results Total MRC and MFM scores were strongly related to each other (r = 0.94; p 0.05. Strong and moderate relationships between partial muscle strength and motor function scores were found. Higher correlation coefficients were found between total scores and Dimensions 2 (axial/ proximal control and 3 (distal control of MFM. Conclusion Muscle strength and motor function are strongly correlated and seem to decrease proportionally in DMD.

  5. Research on the induction motor current signature for centrifugal pump at cavitation condition

    Directory of Open Access Journals (Sweden)

    Yin Luo

    2015-11-01

    Full Text Available Cavitation is a major undesirable phenomenon for centrifugal pump because it can cause hydraulic performance deterioration, pump damage by pitting and material erosion, and structural vibration and noise. Cavitation can appear within the entire range of the operating conditions; therefore, it must be prevented by all means. Sensorless monitoring technology based on motor current signature analysis is non-intrusive and economic for monitoring motor-driven equipment. Thus, this technology is suitable for centrifugal pump systems. The motor current signature for centrifugal pump load at the cavitation condition is the basis of this technology. However, systematic research is lacking on sensorless monitoring technology based on motor current signature. As a result, the tentative exploration for motor current signature at cavitation load was conducted in this study. The results show that the stator current is still a sinusoidal alternating current strictly to the law of sine. Moreover, the root mean square of the current fluctuates because of different flow regimes in the cavitation progress and decreases because vapor density is smaller than water density when cavitation is fully formed. For the stator current spectrum, the noise level, noise distribution, rotation speed, and vane pass frequency components show features in the cavitation process. These indicator indexes change according to the stage of cavitation development. Thus, the motor current signature analysis is found to be a feasible and cost-effective method for the stages of cavitation condition.

  6. Relation between hand function and gross motor function in full term infants aged 4 to 8 months

    Science.gov (United States)

    Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.

    2015-01-01

    Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (pgross motor function (pgross motor function (R2=0.84; pgross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437

  7. Effects of mirror therapy through functional activites and motor standards in motor function of the upper limb after stroke

    OpenAIRE

    Medeiros, Candice Simões Pimenta de; Fernandes, Sabrina Gabrielle Gomes; Lopes, Johnnatas Mikael; Cacho, Enio Walker Azevedo; Cacho, Roberta de Oliveira

    2014-01-01

    The study aimed to evaluate the effects of mirror therapy through functional activities and motor standards in upper limb function of chronic stroke subjects. Six patients with paresis of the arm within at least six months after stroke were randomly to a group of functional activities (GAF - n=3) and group of motor standards (GPM - n=3). Both groups performed 15 sessions of mirror therapy for 30 minutes, but the first one (GAF) were instructed to do the bilateral and symmetrical movements bas...

  8. Effect of Transcranial Direct Current Stimulation on Severely Affected Arm-Hand Motor Function in Patients After an Acute Ischemic Stroke: A Pilot Randomized Control Trial.

    Science.gov (United States)

    Rabadi, Meheroz H; Aston, Christopher E

    2017-10-01

    The aim of this article was to determine whether cathodal transcranial direct current stimulation (c-tDCS) to unaffected primary motor cortex (PMC) plus conventional occupational therapy (OT) improves functional motor recovery of the affected arm hand in patients after an acute ischemic stroke compared with sham transcranial direct current stimulation plus conventional OT. In this prospective, randomized, double-blinded, sham-controlled trial of 16 severe, acute ischemic stroke patients with severe arm-hand weakness were randomly assigned to either experimental (c-tDCS plus OT; n = 8) or control (sham transcranial direct current stimulation plus OT; n = 8) groups. All patients received a standard 3-hr in-patient rehabilitation therapy, plus an additional ten 30-min sessions of tDCS. During each session, 1 mA of cathodal stimulation to the unaffected PMC is performed followed by the patient's scheduled OT. The primary outcome measure was change in Action Research Arm Test (ARAT) total and subscores on discharge. Application of c-tDCS to unaffected PMC resulted in a clinically relevant 10-point improvement in the affected arm-hand function based on ARAT total score compared with a 2-point improvement in the control group. Application of 30-min of c-tDCS to the unaffected PMC showed a 10-point improvement in the ARAT score. This corresponds to a large effect size in improvement of affected arm-hand function in patients with severe, acute ischemic stroke. Although not statistically significant, this suggests that larger studies, enrolling at least 25 patients in each group, and with a longer follow-up are warranted.

  9. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Aysegul Gunduz

    2017-01-01

    Full Text Available We conducted a systematic review of studies using non-invasive brain stimulation (NIBS: repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury (SCI under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.

  10. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  11. A novel method for assessing the development of speech motor function in toddlers with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Katherine eSullivan

    2013-03-01

    Full Text Available There is increasing evidence to show that indicators other than socio-cognitive abilities might predict communicative function in Autism Spectrum Disorders (ASD. A potential area of research is the development of speech motor function in toddlers. Utilizing a novel measure called ‘articulatory features’, we assess the abilities of toddlers to produce sounds at different timescales as a metric of their speech motor skills. In the current study, we examined 1 whether speech motor function differed between toddlers with ASD, developmental delay, and typical development; and 2 whether differences in speech motor function are correlated with standard measures of language in toddlers with ASD. Our results revealed significant differences between a subgroup of the ASD population with poor verbal skills, and the other groups for the articulatory features associated with the shortest time scale, namely place of articulation, (p<0.05. We also found significant correlations between articulatory features and language and motor ability as assessed by the Mullen and the Vineland scales for the ASD group. Our findings suggest that articulatory features may be an additional measure of speech motor function that could potentially be useful as an early risk indicator of ASD.

  12. Relation between hand function and gross motor function in full term infants aged 4 to 8 months

    Directory of Open Access Journals (Sweden)

    Solange F. Nogueira

    2015-02-01

    Full Text Available Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time of manipulation to an object were extracted from video synchronized with the Qualisys(r movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001, the time of manipulation (p<0.001 and gross motor function (p<0.001 over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001 and manipulation and gross motor function (R2=0.13; p=0.02 from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.

  13. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  14. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  15. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    Science.gov (United States)

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Increasing Mud Pump Motor Reliability against Malfunctions of DC Motor Excitation System

    Science.gov (United States)

    Nikulin, O. V.; Shabanov, V. A.

    2017-10-01

    The most widely used drilling machinery, such as mud pumps, draw-works, and rotors, use direct-current (DC) motors with independent excitation as the electric drive. Drilling machinery drives operate in harsh ambient conditions, including those with the presence of moisture, dust and vibration, which increases the malfunction rate of both drilling equipment and their electric drives. One of the frequently encountered malfunctions are DC motor excitation coil faults, which disrupt the normal functioning of electric drives, often leading to shutdown of the drilling process. In a four-pole DC motor, the malfunction of one coil leads to lack of excitation current in just one coil pair, while the other pair remains functional. In this case, DC motors and drilling equipment can remain operational, which would allow for continuing the drilling process. This paper considers the possibility of operation of a DC motor on a drilling rig in those cases when one pair of excitation coils is non-functional, and describes the device for switching between the excitation coils and the auxiliary winding in a DC motor with independent excitation.

  17. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  18. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    Science.gov (United States)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  19. Evaluation of esophageal motor function in clinical practice.

    Science.gov (United States)

    Gyawali, C P; Bredenoord, A J; Conklin, J L; Fox, M; Pandolfino, J E; Peters, J H; Roman, S; Staiano, A; Vaezi, M F

    2013-02-01

    Esophageal motor function is highly coordinated between central and enteric nervous systems and the esophageal musculature, which consists of proximal skeletal and distal smooth muscle in three functional regions, the upper and lower esophageal sphincters, and the esophageal body. While upper endoscopy is useful in evaluating for structural disorders of the esophagus, barium esophagography, radionuclide transit studies, and esophageal intraluminal impedance evaluate esophageal transit and partially assess motor function. However, esophageal manometry is the test of choice for the evaluation of esophageal motor function. In recent years, high-resolution manometry (HRM) has streamlined the process of acquisition and display of esophageal pressure data, while uncovering hitherto unrecognized esophageal physiologic mechanisms and pathophysiologic patterns. New algorithms have been devised for analysis and reporting of esophageal pressure topography from HRM. The clinical value of HRM extends to the pediatric population, and complements preoperative evaluation prior to foregut surgery. Provocative maneuvers during HRM may add to the assessment of esophageal motor function. The addition of impedance to HRM provides bolus transit data, but impact on clinical management remains unclear. Emerging techniques such as 3-D HRM and impedance planimetry show promise in the assessment of esophageal sphincter function and esophageal biomechanics. © 2013 Blackwell Publishing Ltd.

  20. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Directory of Open Access Journals (Sweden)

    Murer Kurt

    2011-06-01

    Full Text Available Abstract Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the

  1. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

    Science.gov (United States)

    Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2017-10-01

    To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. Functional thresholds are frequently above AD thresholds in younger children. These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Perceptual-motor functioning in children with phenylketonuria.

    Science.gov (United States)

    Koff, E; Boyle, P; Pueschel, S M

    1977-10-01

    Children with treated phenylketonuria (PKU) have been described as being at high risk for perceptual-motor dysfunction. In this study, the Wechsler Intelligence Scale for Children (WISC) and the Bender Gestalt test were administered to 19 school age children with treated PKU and of average intelligence who have been off diet from five months to six years four months. Perceptual-motor performance was evaluated, and school functioning was rated by classroom teachers. Substantial impairment of perceptual-motor functioning as measured by the Bender Gestalt test and lower WISC performance IQs than verbal IQs were observed in children of average intelligence. Quality of dietary control was found to be associated with performance on the Bender Gestalt test. These findings suggest the possibility of a specific deficit that could seriously interfere with academic progress, but which is not signalled by obvious impairment of overall intellectual functioning.

  3. Start Up Current Control of Buck-Boost Convertor-Fed Serial DC Motor

    Directory of Open Access Journals (Sweden)

    Yusuf SÖNMEZ

    2009-02-01

    Full Text Available Generally, DC motors are given preference for industrial applications such as electric locomotives, cranes, goods lifts. Because of they have high starting moment; they initially start with high current. This high start-up current must be decreased since it may damage windings of the motor and increases power consumption. It could be controlled by an appropriate driver system and controller. The nature of fuzzy logic control has adaptive characteristics that can achieve robust response to a system with uncertainty, parameter variation, and load disturbance. In this paper, fuzzy logic based control of start-up current of a Buck-Boost Converter fed serial DC motor is examined through computer simulation. In order to see the advantages of fuzzy logic control, classical PI control has applied to the same motor, under same circumstances and has been compared. C++ Builder software has been used for the simulation. According to the simulation results, plainly, fuzzy logic control has stronger responses than classical PI control and uses lower current at starting moment.

  4. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  5. Discrete Current Control Strategy of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2013-01-01

    Full Text Available A control strategy of permanent magnet synchronous motors (PMSMs, which is different from the traditional vector control (VC and direct torque control (DTC, is proposed. Firstly, the circular rotating magnetic field is analyzed on the simplified model and discredited into stepping magnetic field. The stepping magnetomotive force will drive the rotor to run as the stepping motor. Secondly, the stator current orientation is used to build the control model instead of rotor flux orientation. Then, the discrete current control strategy is set and adopted in positioning control. Three methods of the strategy are simulated in computer and tested on the experiment platform of PMSM. The control precision is also verified through the experiment.

  6. Development of Rotor Diagnosis Method via Motor Current Signature Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Seok; Huh, Hyung; Kim, Min Hwan; Jeong, Kyeong Hoon; Lee, Gyu Mhan; Park, Jin Ho; Park, Keun Bae; Lee, Cheol Kwon; Hur, S

    2006-01-15

    A study on motor current signature analysis has been performed to monitor a journal bearing fault due to increasing clearance. It was known that the journal bearing clearance produces side band frequencies, the supplied current frequency plus and minus rotational rotor frequency in motor current. But the existence information of the side band frequencies is not sufficient to diagnose whether the journal bearing is safe or not. Four journal bearing sets with different clearances are used to measure the side band frequency amplitude and the rotor vibration amplitude versus the journal bearing clearance. The side band frequency amplitude and the rotor vibration amplitude are increased as the journal bearing clearance is increasing. This trend assures that ASME OM vibration guide line can be applied to estimate the journal bearing clearance size. In this research, 2.5 times the reference side band amplitude is suggested as an indicator of a journal bearing fault. Further study is necessary to make out more specific quantitative relations between the side band frequency amplitude and the journal bearing clearance of a motor.

  7. Development of Rotor Diagnosis Method via Motor Current Signature Analysis

    International Nuclear Information System (INIS)

    Park, Jin Seok; Huh, Hyung; Kim, Min Hwan; Jeong, Kyeong Hoon; Lee, Gyu Mhan; Park, Jin Ho; Park, Keun Bae; Lee, Cheol Kwon; Hur, S.

    2006-01-01

    A study on motor current signature analysis has been performed to monitor a journal bearing fault due to increasing clearance. It was known that the journal bearing clearance produces side band frequencies, the supplied current frequency plus and minus rotational rotor frequency in motor current. But the existence information of the side band frequencies is not sufficient to diagnose whether the journal bearing is safe or not. Four journal bearing sets with different clearances are used to measure the side band frequency amplitude and the rotor vibration amplitude versus the journal bearing clearance. The side band frequency amplitude and the rotor vibration amplitude are increased as the journal bearing clearance is increasing. This trend assures that ASME OM vibration guide line can be applied to estimate the journal bearing clearance size. In this research, 2.5 times the reference side band amplitude is suggested as an indicator of a journal bearing fault. Further study is necessary to make out more specific quantitative relations between the side band frequency amplitude and the journal bearing clearance of a motor

  8. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  9. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  10. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    Science.gov (United States)

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  11. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  12. Enhanced motor learning following task-concurrent dual transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Sophia Karok

    Full Text Available OBJECTIVE: Transcranial direct current stimulation (tDCS of the primary motor cortex (M1 has beneficial effects on motor performance and motor learning in healthy subjects and is emerging as a promising tool for motor neurorehabilitation. Applying tDCS concurrently with a motor task has recently been found to be more effective than applying stimulation before the motor task. This study extends this finding to examine whether such task-concurrent stimulation further enhances motor learning on a dual M1 montage. METHOD: Twenty healthy, right-handed subjects received anodal tDCS to the right M1, dual tDCS (anodal current over right M1 and cathodal over left M1 and sham tDCS in a repeated-measures design. Stimulation was applied for 10 mins at 1.5 mA during an explicit motor learning task. Response times (RT and accuracy were measured at baseline, during, directly after and 15 mins after stimulation. Motor cortical excitability was recorded from both hemispheres before and after stimulation using single-pulse transcranial magnetic stimulation. RESULTS: Task-concurrent stimulation with a dual M1 montage significantly reduced RTs by 23% as early as with the onset of stimulation (p<0.01 with this effect increasing to 30% at the final measurement. Polarity-specific changes in cortical excitability were observed with MEPs significantly reduced by 12% in the left M1 and increased by 69% in the right M1. CONCLUSION: Performance improvement occurred earliest in the dual M1 condition with a stable and lasting effect. Unilateral anodal stimulation resulted only in trendwise improvement when compared to sham. Therefore, task-concurrent dual M1 stimulation is most suited for obtaining the desired neuromodulatory effects of tDCS in explicit motor learning.

  13. Motor skills and functional characteristics of students of different somatotypes

    Directory of Open Access Journals (Sweden)

    M.M. Kolokoltsev

    2018-02-01

    Full Text Available He purpose of the article is to study correlation of motor and functional characteristics of students of different somatotypes. Material : it was examined first year students (n=577, 17-18 years old. All students were trained in discipline “Physical education”. It was carried out somatotyping. It was considered motor skills and functional characteristics of students. Results : it was determined the reliable differences in values of parameters of motor tests and functional characteristics of students’ organism. It is determined that by the end of the first year of study the positive dynamics is registered: in sthenics (in two of seven motor tests; in asthenics (in four tests. It wasn’t found the reliable positive changes in group of hypersthenics. Students of sthenic and asthenic somatotypes have higher functional reserves of cardiorespiratory system, than girls of hypersthenics somatotype. Conclusions: constitutional features of motor skills and functional parameters of students of different somatotypes allow to concretize provisions of methodology of planning the individual differentiated training in discipline Physical education.

  14. Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives

    Directory of Open Access Journals (Sweden)

    Jelena Loncarski

    2015-04-01

    Full Text Available The standard solution for the traction system in battery powered electric vehicles (EVs is a two-level (2L inverter feeding a three-phase motor. A simple and effective way to achieve a three-level (3L inverter in battery-supplied electric vehicles consists of using two standard three-phase 2L inverters with the open-end winding connection of standard three-phase ac motors. The 3L inverter solution can be usefully adopted in EVs since it combines several benefits such as current ripple reduction, increment of phase motor voltage with limited voltage ratings of the two battery banks, improvement in system reliability, etc. The reduction in current ripple amplitude is particularly relevant since it is a source of electromagnetic interference and audio noise from the inverter-motor power connection cables and from the motor itself. By increasing the inverter switching frequency the ripple amplitude is reduced, but the drive efficiency decreases due to the proportionally increased switching losses. In this paper the peak-to-peak ripple amplitude of the dual-2L inverter is evaluated and compared with the corresponding ripple of the single-2L inverter, considering the same voltage and power motor ratings. The ripple analysis is carried out as a function of the modulation index to cover the whole modulation range of the inverter, and the theoretical results are verified with experimental tests carried out by an inverter-motor drive prototype.

  15. Motor function and incident dementia: a systematic review and meta-analysis.

    Science.gov (United States)

    Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel

    2017-09-01

    cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  16. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  17. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  18. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  19. Visual-motor integration functioning in a South African middle ...

    African Journals Online (AJOL)

    Visual-motor integration functioning has been identified as playing an integral role in different aspects of a child's development. Sensory-motor development is not only foundational to the physical maturation process, but is also imperative for progress with formal learning activities. Deficits in visual-motor integration have ...

  20. Correlation analysis of motor current and chatter vibration in grinding using complex continuous wavelet coherence

    International Nuclear Information System (INIS)

    Liu, Yao; Wang, Xiufeng; Lin, Jing; Zhao, Wei

    2016-01-01

    Motor current is an emerging and popular signal which can be used to detect machining chatter with its multiple advantages. To achieve accurate and reliable chatter detection using motor current, it is important to make clear the quantitative relationship between motor current and chatter vibration, which has not yet been studied clearly. In this study, complex continuous wavelet coherence, including cross wavelet transform and wavelet coherence, is applied to the correlation analysis of motor current and chatter vibration in grinding. Experimental results show that complex continuous wavelet coherence performs very well in demonstrating and quantifying the intense correlation between these two signals in frequency, amplitude and phase. When chatter occurs, clear correlations in frequency and amplitude in the chatter frequency band appear and the phase difference of current signal to vibration signal turns from random to stable. The phase lead of the most correlated chatter frequency is the largest. With the further development of chatter, the correlation grows up in intensity and expands to higher order chatter frequency band. The analyzing results confirm that there is a consistent correlation between motor current and vibration signals in the grinding chatter process. However, to achieve accurate and reliable chatter detection using motor current, the frequency response bandwidth of current loop of the feed drive system must be wide enough to response chatter effectively. (paper)

  1. Treatment of functional motor disorders

    NARCIS (Netherlands)

    Gelauff, Jeannette M.; Dreissen, Yasmine E. M.; Tijssen, Marina A. J.; Stone, Jon

    OPINION STATEMENT: For the treatment of functional motor disorder, we recommend a three-stage approach. Firstly, patients must be assessed and given an unambiguous diagnosis, with an explanation that helps them understand that they have a genuine disorder, with the potential for reversibility. A key

  2. Use of functional near-infrared spectroscopy to evaluate the effects of anodal transcranial direct current stimulation on brain connectivity in motor-related cortex

    Science.gov (United States)

    Yan, Jiaqing; Wei, Yun; Wang, Yinghua; Xu, Gang; Li, Zheng; Li, Xiaoli

    2015-04-01

    Transcranial direct current stimulation (tDCS) is a noninvasive, safe and convenient neuro-modulatory technique in neurological rehabilitation, treatment, and other aspects of brain disorders. However, evaluating the effects of tDCS is still difficult. We aimed to evaluate the effects of tDCS using hemodynamic changes using functional near-infrared spectroscopy (fNIRS). Five healthy participants were employed and anodal tDCS was applied to the left motor-related cortex, with cathodes positioned on the right dorsolateral supraorbital area. fNIRS data were collected from the right motor-related area at the same time. Functional connectivity (FC) between intracortical regions was calculated between fNIRS channels using a minimum variance distortion-less response magnitude squared coherence (MVDR-MSC) method. The levels of Oxy-HbO change and the FC between channels during the prestimulation, stimulation, and poststimulation stages were compared. Results showed no significant level difference, but the FC measured by MVDR-MSC significantly decreased during tDCS compared with pre-tDCS and post-tDCS, although the FC difference between pre-tDCS and post-tDCS was not significant. We conclude that coherence calculated from resting state fNIRS may be a useful tool for evaluating the effects of anodal tDCS and optimizing parameters for tDCS application.

  3. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy.

    Science.gov (United States)

    Cantarero, Gabriela; Spampinato, Danny; Reis, Janine; Ajagbe, Loni; Thompson, Tziporah; Kulkarni, Kopal; Celnik, Pablo

    2015-02-18

    The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation paradigms, a type of task that heavily relies on error-dependent motor learning mechanisms, its role during motor skill learning, a behavior that likely involves error-dependent as well as reinforcement and strategic mechanisms, is not completely understood. Here, in humans, we delivered cerebellar tDCS to modulate its activity during novel motor skill training over the course of 3 d and assessed gains during training (on-line effects), between days (off-line effects), and overall improvement. We found that excitatory anodal tDCS applied over the cerebellum increased skill learning relative to sham and cathodal tDCS specifically by increasing on-line rather than off-line learning. Moreover, the larger skill improvement in the anodal group was predominantly mediated by reductions in error rate rather than changes in movement time. These results have important implications for using cerebellar tDCS as an intervention to speed up motor skill acquisition and to improve motor skill accuracy, as well as to further our understanding of cerebellar function. Copyright © 2015 the authors 0270-6474/15/353285-06$15.00/0.

  4. Sex differences in anthropometric characteristics, motor and cognitive functioning in preschool children at the time of school enrolment.

    Science.gov (United States)

    Bala, Gustav; Katić, Ratko

    2009-12-01

    The study included a sample of 333 preschool children (162 male and 171 female) at the time of school enrolment. Study subjects were recruited from the population of children in kindergartens in the cities of Novi Sad, Sombor, Sremska Mitrovica and Backa Palanka (Province of Voivodina, Serbia). Eight anthropometric variables, seven motor variables and one cognitive variable were analyzed to identify quantitative and qualitative sex differences in anthropometric characteristics, motor and cognitive functioning. Study results showed statistically significant sex differences in anthropometric characteristics and motor abilities in favor of male children, whereas no such difference was recorded in cognitive functioning. Sex differences found in morphological and motor spaces contributed to structuring proper general factors according to space and sex. Somewhat stronger structures were observed in male children. The cognitive aspect of functioning yielded better correlation with motor functioning in female than in male children. Motor functioning correlated better with morphological growth and development in male children, whereas cognitive functioning was relatively independent. These results are not fully in accordance with the current concept of general conditions in preschool children, nor they fully confirm the theory of integral development of children, hence they should be re-examined in future studies. Although these study results cannot be applied to sports practice in general, since we believe that it is too early for preschool children to take up sports and sport competitions, they are relevant for pointing to the need of developing general motor ability and motor behavior in preschool children.

  5. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  6. Effects of motor imagery combined with functional electrical stimulation on upper limb motor function of patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shou-feng LIU

    2015-03-01

    Full Text Available Objective To explore the effects of motor imagery (MI combined with the third generation functional electrical stimulation (FES on upper limb motor function in acute ischemic stroke patients with hemiplegia.  Methods Forty acute ischemic stroke patients, within 48 h of onset, were randomly divided into FES group (N = 20 and combination group (FES combined with motor imagery, N = 20. All patients received basic routine rehabilitation training, for example, good limb positioning, accepting braces, balance training and training in the activities of daily living (ADL. FES group received the third generation FES therapy and the combination group also received motor imagery for 2 weeks. All of the patients were assessed with Fugl-Meyer Assessment (FMA, Action Research Arm Test (ARAT and active range of motion (AROM of wrist dorsiflexion before and after 2 weeks of treatment.  Results After 2 weeks of treatment, the 2 groups had significantly higher FMA score, ARAT score and AROM of wrist dorsiflexion than that in pre-treatment (P = 0.000, for all. Besides, the FMA score (t = - 2.528, P = 0.016, ARAT score (t = - 2.562, P = 0.014 and AROM of wrist dorsiflexion (t = - 2.469, P = 0.018 in the combination group were significantly higher than that in the FES group. There were interactions of treatment methods with observation time points (P < 0.05, for all.  Conclusions Motor imagery combined with the third generation FES can effectively promote the recovery of upper limb motor function and motion range of wrist dorsiflexion in patients with acute ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.008

  7. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo [Third Military Medical University, Department of Medical Imaging, College of Biomedical Engineering, Chongqing (China); Liu, Hongliang; Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Yang, Jun; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China)

    2016-05-15

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  8. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    International Nuclear Information System (INIS)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo; Liu, Hongliang; Yan, Rubing; Yang, Jun; Wang, Jian

    2016-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  9. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  10. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  11. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  12. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients.

    Science.gov (United States)

    Boggio, Paulo S; Nunes, Alice; Rigonatti, Sergio P; Nitsche, Michael A; Pascual-Leone, Alvaro; Fregni, Felipe

    2007-01-01

    Recent evidence has suggested that a simple technique of noninvasive brain stimulation - transcranial direct current stimulation (tDCS) - is associated with a significant motor function improvement in stroke patients. We tested the motor performance improvement in stroke patients following 4 weekly sessions of sham, anodal- and cathodal tDCS (experiment 1) and the effects of 5 consecutive daily sessions of cathodal tDCS (experiment 2). A blinded rater evaluated motor function using the Jebsen-Taylor Hand Function Test. There was a significant main effect of stimulation condition (p=0.009) in experiment 1. Furthermore there was a significant motor function improvement after either cathodal tDCS of the unaffected hemisphere (p=0.016) or anodal tDCS of the affected hemisphere (p=0.046) when compared to sham tDCS. There was no cumulative effect associated with weekly sessions of tDCS, however consecutive daily sessions of tDCS (experiment 2) were associated with a significant effect on time (pmotor function improvement in stroke patients; and support that consecutive daily sessions of tDCS might increase its behavioral effects. Because the technique of tDCS is simple, safe and non-expensive; our findings support further research on the use of this technique for the rehabilitation of patients with stroke.

  13. Motor functions and adaptive behaviour in children with childhood apraxia of speech.

    Science.gov (United States)

    Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin

    2015-01-01

    Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.

  14. Disentangling the relationship between children's motor ability, executive function and academic achievement.

    Directory of Open Access Journals (Sweden)

    Mirko Schmidt

    Full Text Available Even though positive relations between children's motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination, core executive functions (t2: updating, inhibition, shifting, and academic achievement (t3: mathematics, reading, spelling. Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children's academic achievement. However, only in the case of children's motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children's physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning.

  15. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    Science.gov (United States)

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  16. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  17. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  18. Double-temperature ratchet model and current reversal of coupled Brownian motors

    Science.gov (United States)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang

    2017-12-01

    On the basis of the transport features and experimental phenomena observed in studies of molecular motors, we propose a double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and asynchrony between two motor heads are taken into account. We investigate the collective unidirectional transport of coupled system and find that the direction of motion can be reversed under certain conditions. Reverse motion can be achieved by modulating the coupling strength, coupling free length, and asymmetric coefficient of the periodic potential, which is understood in terms of the effective potential theory. The dependence of the directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting the pulsation period or the phase shift of the pulsation temperature.

  19. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.

    Science.gov (United States)

    Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L

    2009-01-01

    Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.

  20. Statistical mechanical characteristics of slip-ring induction motors when direct current braking

    Energy Technology Data Exchange (ETDEWEB)

    Kedzior, W; Muchorowski, J; Pienkowski, K

    1980-09-01

    This paper evaluates methods of braking high capacity belt conveyors used in brown coal surface mines in Poland. Complications associated with belt conveyor braking, particularly when a conveyor moves down a slope, are analyzed. A method of calculating mechanical characteristics of wound-rotor induction motors during direct current braking taking into account saturation of magnetic circuit is presented. Characteristics of the SZUr motor with 630 kW power, used in brown coal mining, are also given. Analyses show that motor operation can be efficiently braked in two ways: 1. by changing additional resistance in rotor circuit (e.g. using thyristor controller); 2. by changing intensity of electric current supplied to stator winding (e.g. using a rectifier). (3 refs.) (In Polish)

  1. The single- and double-particle properties and the current reversal of coupled Brownian motors

    International Nuclear Information System (INIS)

    Li, Chen-Pu; Chen, Hong-Bin; Zheng, Zhi-Gang; Fan, Hong; Shen, Wen-Mei

    2017-01-01

    In this paper, we investigate the directed transport of coupled Brownian motors composed of two identical particles which is individually subject to a time-symmetric rocking force in spatially-symmetric periodic potentials. We find that both the coupling free length and the coupling strength can induce the reversed motion of the coupled Brownian motors, the essence of which is the coupled Brownian motors can exhibit completely different single- or double-particle properties under certain conditions. Namely, the current reversal is the result of the mutual conversion between the single- and double-particle properties of the coupled Brownian motors. Moreover, the directed current of coupled Brownian motors can be optimized and manipulated by adjusting the strength, the period, the phase difference of the rocking forces, and the noise intensity. (paper)

  2. Enhanced motor skill acquisition in the non-dominant upper extremity using intermittent theta burst stimulation and transcranial direct current stimulation.

    Science.gov (United States)

    Butts, Raymond J; Kolar, Melissa B; Newman-Norlund, Roger D

    2014-01-01

    Individuals suffering from motor impairments often require physical therapy (PT) to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS) and bihemispheric transcranial direct current stimulation (tDCS) may increase the speed and extent of motor learning/relearning. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-h, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15) or control group (n = 12). iTBS (20 trains of 10 pulse triplets each delivered at 80% active motor threshold (AMT) / 50 Hz over 191.84 s) and bihemispheric tDCS (1.0 ma for 20 min) were used as a primer to, and in conjunction with, 20 min of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function (JTHF) test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-h post training (p = 0.055), and were significant at 7-days post training (p iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.

  3. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task.

    Science.gov (United States)

    Fan, Julie; Voisin, Julien; Milot, Marie-Hélène; Higgins, Johanne; Boudrias, Marie-Hélène

    2017-09-01

    Recovery of handgrip is critical after stroke since it is positively related to upper limb function. To boost motor recovery, transcranial direct current stimulation (tDCS) is a promising, non-invasive brain stimulation technique for the rehabilitation of persons with stroke. When applied over the primary motor cortex (M1), tDCS has been shown to modulate neural processes involved in motor learning. However, no studies have looked at the impact of tDCS on the learning of a grip task in both stroke and healthy individuals. To assess the use of tDCS over multiple days to promote motor learning of a grip task using a learning paradigm involving a speed-accuracy tradeoff in healthy individuals. In a double-blinded experiment, 30 right-handed subjects (mean age: 22.1±3.3 years) participated in the study and were randomly assigned to an anodal (n=15) or sham (n=15) stimulation group. First, subjects performed the grip task with their dominant hand while following the pace of a metronome. Afterwards, subjects trained on the task, at their own pace, over 5 consecutive days while receiving sham or anodal tDCS over M1. After training, subjects performed de novo the metronome-assisted task. The change in performance between the pre and post metronome-assisted task was used to assess the impact of the grip task and tDCS on learning. Anodal tDCS over M1 had a significant effect on the speed-accuracy tradeoff function. The anodal tDCS group showed significantly greater improvement in performance (39.28±15.92%) than the sham tDCS group (24.06±16.35%) on the metronome-assisted task, t(28)=2.583, P=0.015 (effect size d=0.94). Anodal tDCS is effective in promoting grip motor learning in healthy individuals. Further studies are warranted to test its potential use for the rehabilitation of fine motor skills in stroke patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. The relationship between motor function, cognition, independence and quality of life in myelomeningocele patients.

    Science.gov (United States)

    Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee

    2017-08-01

    Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.

  5. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  6. Infant motor and cognitive abilities and subsequent executive function.

    Science.gov (United States)

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  8. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  9. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    OpenAIRE

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has ...

  10. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  11. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  12. Organization of the human motor system as studied by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mattay, Venkata S.; Weinberger, Daniel R.

    1999-01-01

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI), because of its superior resolution and unlimited repeatability, can be particularly useful in studying functional aspects of the human motor system, especially plasticity, and somatotopic and temporal organization. In this survey, while describing studies that have reliably used BOLD fMRI to examine these aspects of the motor system, we also discuss studies that investigate the neural substrates underlying motor skill acquisition, motor imagery, production of motor sequences; effect of rate and force of movement on brain activation and hemispheric control of motor function. In the clinical realm, in addition to the presurgical evaluation of neurosurgical patients, BOLD fMRI has been used to explore the mechanisms underlying motor abnormalities in patients with neuropsychiatric disorders and the mechanisms underlying reorganization or plasticity of the motor system following a cerebral insult

  13. Development of the pump protection system against cavitation on the basis of the stator current signature analysis of drive electric motor

    Science.gov (United States)

    Kipervasser, M. V.; Gerasimuk, A. V.; Simakov, V. P.

    2018-05-01

    In the present paper a new registration method of such inadmissible phenomenon as cavitation in the operating mode of centrifugal pump is offered. Influence of cavitation and extent of its development on the value of mechanical power consumed by the pump from the electric motor is studied. On the basis of design formulas the joint mathematical model of centrifugal pumping unit with the synchronous motor is created. In the model the phenomena accompanying the work of a pumping installation in the cavitation mode are considered. Mathematical modeling of the pump operation in the considered emergency operation is carried out. The chart of stator current of the electric motor, depending on the degree of cavitation development of is received. On the basis of the analysis of the obtained data the conclusion on the possibility of registration of cavitation by the current of drive electric motor is made and the functional diagram of the developed protection system is offered, its operation principle is described.

  14. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  15. Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.

    Science.gov (United States)

    Gupta, Disha; Barachant, Alexandre; Gordon, Andrew M; Ferre, Claudio; Kuo, Hsing-Ching; Carmel, Jason B; Friel, Kathleen M

    2017-11-01

    We tested the hypothesis that somatosensory system injury would more strongly affect movement than motor system injury in children with unilateral cerebral palsy (USCP). This hypothesis was based on how somatosensory and corticospinal circuits adapt to injury during development; whereas the motor system can maintain connections to the impaired hand from the uninjured hemisphere, this does not occur in the somatosensory system. As a corollary, cortical injury strongly impairs sensory function, so we hypothesized that cortical lesions would impair hand function more than subcortical lesions. Twenty-four children with unilateral cerebral palsy had physiological and anatomical measures of the motor and somatosensory systems and lesion classification. Motor physiology was performed with transcranial magnetic stimulation and somatosensory physiology with vibration-evoked electroencephalographic potentials. Tractography of the corticospinal tract and the medial lemniscus was performed with diffusion tensor imaging, and lesions were classified by magnetic resonance imaging. Anatomical and physiological results were correlated with measures of hand function using 2 independent statistical methods. Children with disruptions in the somatosensory connectivity and cortical lesions had the most severe upper extremity impairments, particularly somatosensory function. Motor system connectivity was significantly correlated with bimanual function, but not unimanual function or somatosensory function. Both sensory and motor connectivity impact hand function in children with USCP. Somatosensory connectivity could be an important target for recovery of hand function in children with USCP. Ann Neurol 2017;82:766-780. © 2017 American Neurological Association.

  16. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  17. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    Science.gov (United States)

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  18. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    Science.gov (United States)

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  20. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  1. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  2. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  3. Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.

    Science.gov (United States)

    Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin

    2013-08-01

    Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  4. Decreased function of survival motor neuron protein impairs endocytic pathways.

    Science.gov (United States)

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  5. Relationships Between Gross Motor Skills and Social Function in Young Boys With Autism Spectrum Disorder.

    Science.gov (United States)

    Holloway, Jamie M; Long, Toby M; Biasini, Fred

    2018-05-02

    The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.

  6. Evaluation of esophageal motor function in clinical practice

    NARCIS (Netherlands)

    Gyawali, C. P.; Bredenoord, A. J.; Conklin, J. L.; Fox, M.; Pandolfino, J. E.; Peters, J. H.; Roman, S.; Staiano, A.; Vaezi, M. F.

    2013-01-01

    Esophageal motor function is highly coordinated between central and enteric nervous systems and the esophageal musculature, which consists of proximal skeletal and distal smooth muscle in three functional regions, the upper and lower esophageal sphincters, and the esophageal body. While upper

  7. Comparison of Unmodulated Current Control Characteristics of Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Anwar Muqorobin

    2014-12-01

    Full Text Available This paper discusses comparison of unmodulated current controls in PMSM, more specifically, on-off, sliding mode, predictive and hybrid controls. The purpose of this study is to select the most appropriate control technique to be adopted. The comparison method is preceded by modeling the motor and entering the values of the motor parameters. PI control is used for speed control and zero d-axis current is employed. Furthermore, performing simulation for each type ofthe selected current controls and analyzing their responses in terms of dq and abc currents, q-axis current response with step reference, as well as THD. Simulation results show that the on-off control gives the best overall performance based on its abc-axis current ripple and THD at large load torque. The hybrid control shows the best response occurring only at the fastest transient time of q-axis current but its response exhibits bad qualities compared with other controls. The predictive control yields the best responses offering the smallest d-axis ripple current and THD at small load torque condition. The sliding mode control, however, does not exhibit any prominent performance compared to the others. Results presented in this paper further indicate that for the PMSM used in the simulation the most appropriate control is the predictive control.

  8. The micro-step motor controller

    International Nuclear Information System (INIS)

    Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu

    2004-11-01

    The developed micro-step motor controller can handle 4 axes stepping motor drivers simultaneously and provide high power bipolar driving mechanism with constant current mode. It can be easily controlled by manual key functions and the motor driving status is displayed by the front panel VFD. Due to the development of several kinds of communication and driving protocol, PC can operate even several micro-step motor controllers at once by multi-drop connection

  9. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    Directory of Open Access Journals (Sweden)

    Thais Botossi Scalha

    2011-08-01

    Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.

  10. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Current Nondopaminergic Therapeutic Options for Motor Symptoms of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Juan-Juan Du; Sheng-Di Chen

    2017-01-01

    Objective:The aim of this study was to summarize recent studies on nondopaminergic options for the treatment of motor symptoms in Parkinson's disease (PD).Data Sources:Papers in English published in PubMed,Cochrane,and Ovid Nursing databases between January 1988 and November 2016 were searched using the following keywords:PD,nondopaminergic therapy,adenosine,glutamatergic,adrenergic,serotoninergic,histaminic,and iron chelator.We also reviewed the ongoing clinical trials in the website of clinicaltrials.gov.Study Selection:Articles related to the nondopaminergic treatment of motor symptoms in PD were selected for this review.Results:PD is conventionally treated with dopamine replacement strategies,which are effective in the early stages of PD.Long-term use oflevodopa could result in motor complications.Recent studies revealed that nondopaminergic systems such as adenosine,glutamatergic,adrenergic,serotoninergic,histaminic,and iron chelator pathways could include potential therapeutic targets for motor symptoms,including motor fluctuations,levodopa-induced dyskinesia,and gait disorders.Some nondopaminergic drugs,such as istradefylline and amantadine,are currently used clinically,while most such drugs are in preclinical testing stages.Transitioning of these agents into clinically beneficial strategies requires reliable evaluation since several agents have failed to show consistent results despite positive findings at the preclinical level.Conclusions:Targeting nondopaminergic transmission could improve some motor symptoms in PD,especially the discomfort ofdyskinesia.Although nondopaminergic treatments show great potential in PD treatment as an adjunct therapy to levodopa,further investigation is required to ensure their success.

  12. The influence of viscosity on the functioning of molecular motors

    NARCIS (Netherlands)

    Klok, Martin; Janssen, Leon P.B.M.; Browne, Wesley R.; Feringa, Ben L.

    2009-01-01

    Light driven molecular motors based on sterically overcrowded alkenes achieve repetitive unidirectional rotation through a sequential series of photochemical and thermal steps. The influence of highly viscous environments on the functioning of unidirectional light driven molecular motors is

  13. Precision electronic speed controller for an alternating-current motor

    Science.gov (United States)

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  14. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  15. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy.

    Science.gov (United States)

    Park, Eun Sook; Rha, Dong Wook; Shin, Jung Soon; Kim, Soohyeon; Jung, Soojin

    2014-11-01

    The purpose of our study was to investigate the effects of hippotherapy on gross motor function and functional performance in children with spastic cerebral palsy (CP). We recruited 34 children (M:F=15:19, age: 3-12 years) with spastic CP who underwent hippotherapy for 45 minutes twice a week for 8 weeks. Twenty-one children with spastic CP were recruited for control group. The distribution of gross motor function classification system level and mean age were not significantly different between the two groups. Outcome measures, including the Gross Motor Function Measure (GMFM)-66, GMFM-88 and the Pediatric Evaluation of Disability Inventory: Functional Skills Scale (PEDI-FSS), were assessed before therapy and after the 8-weeks intervention as outcome measures. There were no significant differences between intervention and control groups in mean baseline total scores of GMFM-66, GMFM-88 or PEDI-FSS. After the 8-weeks intervention, mean GMFM-66 and GMFM-88 scores were significantly improved in both groups. However, the hippotherapy group had significantly greater improvement in dimension E and GMFM-66 total score than the control group. The total PEDI-FSS score and the sub-scores of its 3 domains were significantly improved in the hippotherapy group, but not in the control group. The results of our study demonstrate the beneficial effects of hippotherapy on gross motor function and functional performance in children with CP compared to control group. The significant improvement in PEDI-FSS scores suggests that hippotherapy may be useful to maximize the functional performance of children with CP.

  16. Global motion perception is associated with motor function in 2-year-old children.

    Science.gov (United States)

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, Pmotor scores (r 2 =0.06, pmotor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    Science.gov (United States)

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.

  18. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active har...

  19. Speed controller for an alternating - current motor

    International Nuclear Information System (INIS)

    Bolie, V.W.

    1984-01-01

    A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)

  20. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  1. Methylphenidate improves motor functions in children diagnosed with Hyperkinetic Disorder

    Directory of Open Access Journals (Sweden)

    Iversen Synnøve

    2009-05-01

    Full Text Available Abstract Background A previous study showed that a high percentage of children diagnosed with Hyperkinetic Disorder (HKD displayed a consistent pattern of motor function problems. The purpose of this study was to investigate the effect of methylphenidate (MPH on such motor performance in children with HKD Methods 25 drug-naïve boys, aged 8–12 yr with a HKD-F90.0 diagnosis, were randomly assigned into two groups within a double blind cross-over design, and tested with a motor assessment instrument, during MPH and placebo conditions. Results The percentage of MFNU scores in the sample indicating 'severe motor problems' ranged from 44–84%, typically over 60%. Highly significant improvements in motor performance were observed with MPH compared to baseline ratings on all the 17 subtests of the MFNU 1–2 hr after administration of MPH. There were no significant placebo effects. The motor improvement was consistent with improvement of clinical symptoms. Conclusion The study confirmed our prior clinical observations showing that children with ADHD typically demonstrate marked improvements of motor functions after a single dose of 10 mg MPH. The most pronounced positive MPH response was seen in subtests measuring either neuromotor inhibition, or heightened muscular tone in the gross movement muscles involved in maintaining the alignment and balance of the body. Introduction of MPH generally led to improved balance and a generally more coordinated and controlled body movement.

  2. Use of the Maximum Torque Sensor to Reduce the Starting Current in the Induction Motor

    Directory of Open Access Journals (Sweden)

    Muchlas

    2010-03-01

    Full Text Available Use of the maximum torque sensor has been demonstrated able to improve the standard ramp-up technique in the induction motor circuit system. The induction motor used was of a three-phase squirrel-cage motor controlled using a microcontroller 68HC11. From the simulation done, it has been found that this innovative technique could optimize the performance of motor by introducing low stator current and low power consumption over the standard ramp-up technique.

  3. The count of losses by eddy currents in the windings of electric motors with hollow anchor

    Directory of Open Access Journals (Sweden)

    N. V. Pribylova

    2017-01-01

    Full Text Available Given the rationale of taking into account losses on eddy currents in the windings of a low-inertia DC motors with offered magnetoelectric systems. Increased in recent years, the power of these motors (through the use of highly coercive magnets permanent caused an increase in the volume of copper in the air gap and the magnetic induction values. All this has values given rise to significant eddy currents in the windings made in the air gap, and hence the necessity of taking into account losses from these currents. The experimentally obtained dependence of the losses on eddy currents on the frequency of rotation for a DC motor with a hollow anchor with a power of 350 watts. The magnitude of these losses can reach 30% of the nominal power of the motor. Described mechanism of occurrence of losses. Eddy currents occur in areas with variable magnetic flux and cause the appearance of force, which is directed toward the velocity vector and inhibits the anchor. The directions of these currents, the vectors of magnetic induction, magnetic field and force acting on the conductor winding and a braking anchor. The proposed methods reduce losses: crushing contours of eddy currents and achieve uniform distribution of magnetic induction in the interpolar space of the motor. Shows their strengths and weaknesses. The crushing circuits of windings occur surge currents. To eliminate the losses on the surge currents it is necessary to apply a transposition of the conductors. Given a refined formula for finding the losses on eddy currents in the armature winding, the conductors of which is made in the form of a harness of several wires. Formula has shown a good convergence with experimental data.

  4. Enhanced Motor Skill Acquisition in the Non-dominant Upper Extremity using Intermittent Theta Burst Stimulation and Transcranial Direct Current Stimulation

    Directory of Open Access Journals (Sweden)

    Ray eButts

    2014-06-01

    Full Text Available Individuals suffering from motor impairments often require physical therapy (PT to help improve their level of function. Previous investigations suggest that both intermittent theta burst stimulation (iTBS and bihemispheric transcranial direct current stimulation may increase the speed and extent of motor learning/relearning and that this increase may be related to brain derived neurotrophic factor (BDNF. The purpose of the current study was to explore the feasibility and effectiveness of a novel, non-invasive brain stimulation approach that combined an iTBS primer, and bihemispheric stimulation coupled with motor training. We hypothesized that individuals exposed to this novel treatment would make greater functional improvements than individuals undergoing sham stimulation when tested immediately following, 24-hours, and 7-days post-training. A total of 26 right-handed, healthy young adults were randomly assigned to either a treatment (n = 15 or control group (n = 12. iTBS (20 trains of 10 pulse triplets each delivered at 80% AMT / 50Hz over 191.84 seconds and bihemispheric tDCS (1.0 ma for 20 minutes were used as a primer to, and in conjunction with, 20 minutes of motor training, respectively. Our primary outcome measure was performance on the Jebsen-Taylor Hand Function Test. Participants tolerated the combined iTBS/bihemispheric stimulation treatment without complaint. While performance gains in the sham and stimulation group were not significant immediately after training, they were nearly significant 24-hours post training (p = 0.055, and were significant at 7-days post training (p < 0.05. These results suggest that the combined iTBS/bihemispheric stimulation protocol is both feasible and effective. Future research should examine the mechanistic explanation of this approach as well as the potential of using this approach in clinical populations.

  5. Alcohol hangover: type and time-extension of motor function impairments.

    Science.gov (United States)

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (pwalking deficiencies from the beginning to 16 h after hangover onset (popen field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (ptime-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Progressive motor cortex functional reorganization following 6-hydroxydopamine lesioning in rats.

    Science.gov (United States)

    Viaro, Riccardo; Morari, Michele; Franchi, Gianfranco

    2011-03-23

    Many studies have attempted to correlate changes of motor cortex activity with progression of Parkinson's disease, although results have been controversial. In the present study we used intracortical microstimulation (ICMS) combined with behavioral testing in 6-hydroxydopamine hemilesioned rats to evaluate the impact of dopamine depletion on movement representations in primary motor cortex (M1) and motor behavior. ICMS allows for motor-effective stimulation of corticofugal neurons in motor areas so as to obtain topographic movements representations based on movement type, area size, and threshold currents. Rats received unilateral 6-hydroxydopamine in the nigrostriatal bundle, causing motor impairment. Changes in M1 were time dependent and bilateral, although stronger in the lesioned than the intact hemisphere. Representation size and threshold current were maximally impaired at 15 d, although inhibition was still detectable at 60-120 d after lesion. Proximal forelimb movements emerged at the expense of the distal ones. Movement lateralization was lost mainly at 30 d after lesion. Systemic L-3,4-dihydroxyphenylalanine partially attenuated motor impairment and cortical changes, particularly in the caudal forelimb area, and completely rescued distal forelimb movements. Local application of the GABA(A) antagonist bicuculline partially restored cortical changes, particularly in the rostral forelimb area. The local anesthetic lidocaine injected into the M1 of the intact hemisphere restored movement lateralization in the lesioned hemisphere. This study provides evidence for motor cortex remodeling after unilateral dopamine denervation, suggesting that cortical changes were associated with dopamine denervation, pathogenic intracortical GABA inhibition, and altered interhemispheric activity.

  7. Motor function and respiratory capacity in patients with late-onset pompe disease

    DEFF Research Database (Denmark)

    Illes, Zsolt; Mike, Andrea; Trauninger, Anita

    2014-01-01

    Introduction: The relationship between skeletal muscle strength and respiratory dysfunction in Pompe disease has not been examined by quantitative methods. We investigated correlations among lower extremity proximal muscle strength, respiratory function, and motor performance. Methods: Concentric...... strength of the knee extensor and flexor muscles were measured with a dynamometer, and pulmonary function was evaluated using spirometry in 7 adult patients. The six-minute walk test and the four-step stair-climb test were used for assessing aerobic endurance and anaerobic power, respectively. Results......: Anaerobic motor performance correlated with strength of both thigh muscles. Respiratory function did not correlate with either muscle strength or motor function performance. Conclusions: Respiratory and lower extremity proximal muscles could be differentially affected by the disease in individual patients...

  8. Effects of occupational therapy services on fine motor and functional performance in preschool children.

    Science.gov (United States)

    Case-Smith, J

    2000-01-01

    This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.

  9. Myoelectric hand prosthesis force control through servo motor current feedback.

    Science.gov (United States)

    Sono, Tálita Saemi Payossim; Menegaldo, Luciano Luporini

    2009-10-01

    This paper presents the prehension force closed-loop control design of a mechanical finger commanded by electromyographic signal (EMG) from a patient's arm. The control scheme was implemented and tested in a mechanical finger prototype with three degrees of freedom and one actuator, driven by arm muscles EMG of normal volunteers. Real-time indirect estimation of prehension force was assessed by measuring the DC servo motor actuator current. A model of the plant comprising finger, motor, and grasped object was proposed. Model parameters were identified experimentally and a classical feedback phase-lead compensator was designed. The controlled mechanical finger was able to provide a more accurate prehension force modulation of a compliant object when compared to open-loop control.

  10. Association between fine motor skills and binocular visual function in children with reading difficulties.

    Science.gov (United States)

    Niechwiej-Szwedo, Ewa; Alramis, Fatimah; Christian, Lisa W

    2017-12-01

    Performance of fine motor skills (FMS) assessed by a clinical test battery has been associated with reading achievement in school-age children. However, the nature of this association remains to be established. The aim of this study was to assess FMS in children with reading difficulties using two experimental tasks, and to determine if performance is associated with reduced binocular function. We hypothesized that in comparison to an age- and sex-matched control group, children identified with reading difficulties will perform worse only on a motor task that has been shown to rely on binocular input. To test this hypothesis, motor performance was assessed using two tasks: bead-threading and peg-board in 19 children who were reading below expected grade and age-level. Binocular vision assessment included tests for stereoacuity, fusional vergence, amplitude of accommodation, and accommodative facility. In comparison to the control group, children with reading difficulties performed significantly worse on the bead-threading task. In contrast, performance on the peg-board task was similar in both groups. Accommodative facility was the only measure of binocular function significantly associated with motor performance. Findings from our exploratory study suggest that normal binocular vision may provide an important sensory input for the optimal development of FMS and reading. Given the small sample size tested in the current study, further investigation to assess the contribution of binocular vision to the development and performance of FMS and reading is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional significance of ipsilesional motor deficits after unilateral stroke.

    Science.gov (United States)

    Chestnut, Caitilin; Haaland, Kathleen Y

    2008-01-01

    To determine whether ipsilesional motor skills, which have been related to independent functioning, are present chronically after unilateral stroke and are more common in people with apraxia than in those without apraxia. Observational cohort comparing the performance of an able-bodied control group, stroke patients with left- or right-hemisphere damage matched for lesion volume, and left-hemisphere stroke patients with and without ideomotor limb apraxia. Primary care Veterans Affairs and private medical center. Volunteer right-handed sample; stroke patients with left- or right-hemisphere damage about 4 years poststroke; a control group of demographically matched, able-bodied adults. Not applicable. Total time to perform the (1) Williams doors test and the (2) timed manual performance test (TMPT), which includes parts of the Jebsen-Taylor Hand Function Test. Ipsilesional motor deficits were present after left- or right-hemisphere stroke when using both measures, but deficits were consistently more common in patients with limb apraxia only for the TMPT. These findings add to a growing literature that suggests that ipsilesional motor deficits may have a functional impact in unilateral stroke patients, especially in patients with ideomotor limb apraxia.

  12. Music-supported therapy (MST) in improving post-stroke patients' upper-limb motor function: a randomised controlled pilot study.

    Science.gov (United States)

    Tong, Yanna; Forreider, Brian; Sun, Xinting; Geng, Xiaokun; Zhang, Weidong; Du, Huishan; Zhang, Tong; Ding, Yuchuan

    2015-05-01

    Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of "mute" musical instruments allowed for the study of music as an independent factor. Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music's independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received "mute" musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl-Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out. All participants in both groups showed significant improvements in motor functions of upper limbs after 4  weeks' treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks' treatment, but subjects in MG demonstrated greater improvement than those in CG. This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving

  13. Ocular Motor Score (OMS): a clinical tool to evaluating ocular motor functions in children. Intrarater and inter-rater agreement.

    Science.gov (United States)

    Olsson, Monica; Teär Fahnehjelm, Kristina; Rydberg, Agneta; Ygge, Jan

    2015-08-01

    Ocular motor score (OMS) is a new clinical test protocol for evaluating ocular motor functions in children and young adults. OMS is a set of 15 important and relevant non-invasive ocular motor function parameters derived from clinical practice. The aim of the study was to evaluate OMS according to intrarater and inter-rater agreement. Forty children aged 4-10 years, 23 girls median age 6.5 (range 4.3-9.3) and 17 boys median age 5.8 (range 4.1-9.8) were included. The ocular motor functions were assessed and scored according to the OMS protocol. The examinations were videotaped. To obtain the intrarater agreement, the first author examined and scored the children twice, first in the clinic and 2 weeks later by watching the videotape. To obtain the inter-rater agreement, three other raters independently scored the ocular motor function of the children by watching the videotapes. The overall observed intrarater agreement was 88%, and the observed inter-rater agreement between the three raters was 80%. For none of the subtests was there an observed intrarater agreement lower than 65%. Three of the subtests had an observed inter-rater agreement of 65% or below. Overall there was high observed intra- and inter-rater agreement for the OMS test protocol. Subtests such as saccades and smooth pursuit were more difficult for raters to score similarly according the clinical OMS test protocol. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Gastrointestinal motor function in patients with portal hypertension

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Brinch, K; Hansen, Erik Feldager

    2000-01-01

    BACKGROUND: Existing data on gastric emptying and small-intestinal transit rates in portal-hypertensive patients are scarce and contradictory, and so far, the motor function of the colon has not been assessed in these patients. In this study we evaluated the propulsive effect of all main segments...... of the gastrointestinal tract in patients with well-characterized portal hypertension. METHODS: Eight patients with a postsinusoidal hepatic pressure gradient of at least 13 mmHg and eight age- and sex-matched healthy controls participated in the study. Gastric emptying, small-intestinal transit, and colonic transit...... the test meal between patients and controls. CONCLUSIONS: These data suggest that the colonic transit is often accelerated in patients with portal hypertension, whereas the motor function of the stomach and the small intestine is unaffected....

  15. A review of monopolar motor mapping and a comprehensive guide to continuous dynamic motor mapping for resection of motor eloquent brain tumors.

    Science.gov (United States)

    Schucht, P; Seidel, K; Jilch, A; Beck, J; Raabe, A

    2017-06-01

    Monopolar mapping of motor function differs from the most commonly used method of intraoperative mapping, i.e. bipolar direct electrical stimulation at 50-60Hz (Penfield technique mapping). Most importantly, the monopolar probe emits a radial, homogenous electrical field different to the more focused inter-tip bipolar electrical field. Most users combine monopolar stimulation with the short train technique, also called high frequency stimulation, or train-of-five techniques. It consists of trains of four to nine monopolar rectangular electrical pulses of 200-500μs pulse length with an inter stimulus interval of 2-4msec. High frequency short train stimulation triggers a time-locked motor-evoked potential response, which has a defined latency and an easily quantifiable amplitude. In this way, motor thresholds might be used to evaluate a current-to-distance relation. The homogeneous electrical field and the current-to-distance approximation provide the surgeon with an estimate of the remaining distance to the corticospinal tract, enabling the surgeon to adjust the speed of resection as the corticospinal tract is approached. Furthermore, this stimulation paradigm is associated with a lower incidence of intraoperative seizures, allowing continuous stimulation. Hence, monopolar mapping is increasingly used as part of a strategy of continuous dynamic mapping: ergonomically integrated into the surgeon's tools, the monopolar probe reliably provides continuous/uninterrupted feedback on motor function. As part of this strategy, motor mapping is not any longer a time consuming interruption of resection but rather a radar-like, real-time information system on the spatial relationship of the current resection site to eloquent motor structures. Copyright © 2017. Published by Elsevier Masson SAS.

  16. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Effects of blueberries on inflammation, motor performance and cognitive function

    Science.gov (United States)

    Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...

  18. Design of motors for inverter operation

    Energy Technology Data Exchange (ETDEWEB)

    Haring, T. [ABB Motors OY, Vaasa (Finland)

    2000-07-01

    This paper describes very practical principles of how an induction motor should be designed for converter application. The main focus targets the efficiency of the motor and drive. The results presented are based on actual test motors and FEM-calculation simulations. FEM-calculation together with a time-stepping function is a powerful tool for estimating magnetic flux densities, iron losses, current densities and corresponding losses in windings, in other words a tool for optimisation of the motor design. Time-stepping is rather time consuming because all the circuit equations must be solved for each time-step, but it provides a way to estimate the iron losses; hysteresis and eddy current losses as well as current distribution and current losses. The calculation tool also provides the possibility to check if an existing motor is feasible for a converter drive. Alternatively if a motor is only to be supplied by a converter there are many more degrees of freedom in the electrical design and the motor may be optimised for that converter drive by incorporationg rather simple design changes. Additionally a design compromise, ''a general purpose motor'' useable for DOL and feasible for converter drive can be produced following the principles presented herewith. The converter types which are considered are indirect types and mainly voltage source converters since they are the most common on the market and are ''general purpose converters'' and providing a certain freedom to select the motor for the drive. Current source converters require ''matching'' with the motor and therefore need a precise knowledge of the motor equivalent circuit, making the selection of the motor more complicated. (orig.)

  19. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome.

    Science.gov (United States)

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19-49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation ( p =0.001, and p =0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task ( p =0.12). Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test.

  20. Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening.

    Directory of Open Access Journals (Sweden)

    Iballa Burunat

    Full Text Available Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.

  1. Effects of transcranial direct current stimulation on motor learning in healthy individuals: a systematic review

    Directory of Open Access Journals (Sweden)

    Águida Foerster

    Full Text Available Introduction Transcranial direct current stimulation (tDCS has been used to modify cortical excitability and promote motor learning. Objective To systematically review published data to investigate the effects of transcranial direct current stimulation on motor learning in healthy individuals. Methods Randomized or quasi-randomized studies that evaluated the tDCS effects on motor learning were included and the risk of bias was examined by Cochrane Collaboration’s tool. The following electronic databases were used: PubMed, Scopus, Web of Science, LILACS, CINAHL with no language restriction. Results It was found 160 studies; after reading the title and abstract, 17 of those were selected, but just 4 were included. All studies involved healthy, right-handed adults. All studies assessed motor learning by the Jebsen Taylor Test or by the Serial Finger Tapping Task (SFTT. Almost all studies were randomized and all were blinding for participants. Some studies presented differences at SFTT protocol. Conclusion The result is insufficient to draw conclusions if tDCS influences the motor learning. Furthermore, there was significant heterogeneity of the stimulation parameters used. Further researches are needed to investigate the parameters that are more important for motor learning improvement and measure whether the effects are long-lasting or limited in time.

  2. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury PRINCIPAL...TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord...care. However, despite these drastic interventions, the cervical injured patient is still susceptible to death due to respiratory complications

  3. Roentgenological characteristics of motor-evacuatory stomach function after selective proximal vagotomy (SPV)

    International Nuclear Information System (INIS)

    Rustamov, Eh.A.; Manafov, S.S.

    1988-01-01

    An x-ray picture of motor-evacuatory stomach function was studied in patients with pyloroduodenal ulcers after SPV with and without drainage (435 patients aged 16 to 80). Methods of investigation included polyprojectional radioscopy and panoramic and spot films at various time intervals after barium suspension intake. Stomach investigation was performed before operation as well as 2-3 weeks, 3-6 mos, 1-2 yrs, 3-5 yrs, and 7-10 yrs after it. Motor-evacuatory stomach function was studied over time. The least changes in motor-evacuatory fucntion were observed after SPV without drainage as a result of preserving pyloric contractility

  4. ELECTRIC MOTOR DIAGNOSTICS OF SWITCHES BASED ON THE NEURAL NETWORK DATA MODELING THE SPECTRAL DECOMPOSITION OF THE CURRENTS

    Directory of Open Access Journals (Sweden)

    O. M. Shvets

    2009-07-01

    Full Text Available The method of automated diagnostics of electric motors is offered. It uses a neural network revealing the electric motor faults on the basis of analysis of frequency spectrum of current flowing through the motor.

  5. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  6. Impacts of Sensation, Perception, and Motor Abilities of the Ipsilesional Upper Limb on Hand Functions in Unilateral Stroke: Quantifications From Biomechanical and Functional Perspectives.

    Science.gov (United States)

    Hsu, Hsiu-Yun; Ke, Chia-Wen; Kuan, Ta-Shen; Yang, Hsiu-Ching; Tsai, Ching-Liang; Kuo, Li-Chieh

    2018-02-01

    The presence of subtle losses in hand dexterity after stroke affects the regaining of independence with regard to activities of daily living. Therefore, awareness of ipsilesional upper extremity (UE) function may be of importance when developing a comprehensive rehabilitation program. However, current hand function tests seem to be unable to identify asymptomatic UE impairments. To assess the motor coordination as well as the sensory perception of an ipsilesional UE using biomechanical analysis of performance-oriented tasks and conducting a Manual Tactile Test (MTT). Case-controlled study. A university hospital. A total of 21 patients with unilateral stroke, along with 21 matched healthy control subjects, were recruited. Each participant was requested to perform a pinch-holding-up activity (PHUA) test, object-transport task, and reach-to-grasp task via motion capture, as well as the MTT. The kinetic data of the PHUA test, kinematics analysis of functional movements, and time requirement of MTT were analyzed. Patients with ipsilesional UE had an inferior ability to scale and produce pinch force precisely when conducting the PHUA test compared to the healthy controls (P perception (P sensation-perception-motor system in the ipsilesional UE. Integration of sensorimotor training programs for ipsilesional UE in future neuro-rehabilitation strategies may provide more beneficial effects to regain patients' motor recovery and to promote daily living activity independence than focusing on paretic arm motor training alone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. submitter Estimation of stepping motor current from long distances through cable-length-adaptive piecewise affine virtual sensor

    CERN Document Server

    Oliveri, Alberto; Masi, Alessandro; Storace, Marco

    2015-01-01

    In this paper a piecewise affine virtual sensor is used for the estimation of the motor-side current of hybrid stepper motors, which actuate the LHC (Large Hadron Collider) collimators at CERN. The estimation is performed starting from measurements of the current in the driver, which is connected to the motor by a long cable (up to 720 m). The measured current is therefore affected by noise and ringing phenomena. The proposed method does not require a model of the cable, since it is only based on measured data and can be used with cables of different length. A circuit architecture suitable for FPGA implementation has been designed and the effects of fixed point representation of data are analyzed.

  8. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  9. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Directory of Open Access Journals (Sweden)

    Vincenzo eDi Lazzaro

    2016-01-01

    Full Text Available The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization.We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH and unaffected hemisphere (UH by measuring resting and active motor threshold and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI, to evidence hemispheric asymmetry. Active motor threshold differed significantly between AH and UH only in the male group (p=0.004, not in females (p>0.200, and both LIAMT and LIRMT were significantly higher in males than in females (respectively p=0.033 and p=0.042. LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.

  10. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    Science.gov (United States)

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  11. Towards an ankle neuroprosthesis for hybrid robotics: Concepts and current sources for functional electrical stimulation.

    Science.gov (United States)

    Casco, S; Fuster, I; Galeano, R; Moreno, J C; Pons, J L; Brunetti, F

    2017-07-01

    Hybrid rehabilitation robotics combine neuro-prosthetic devices (close-loop functional electrical stimulation systems) and traditional robotic structures and actuators to explore better therapies and promote a more efficient motor function recovery or compensation. Although hybrid robotics and ankle neuroprostheses (NPs) have been widely developed over the last years, there are just few studies on the use of NPs to electrically control both ankle flexion and extension to promote ankle recovery and improved gait patterns in paretic limbs. The aim of this work is to develop an ankle NP specifically designed to work in the field of hybrid robotics. This article presents early steps towards this goal and makes a brief review about motor NPs and Functional Electrical Stimulation (FES) principles and most common devices used to aid the ankle functioning during the gait cycle. It also shows a current sources analysis done in this framework, in order to choose the best one for this intended application.

  12. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  13. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  14. Brain implants for substituting lost motor function: state of the art and potential impact on the lives of motor-impaired seniors.

    Science.gov (United States)

    Ramsey, N F; Aarnoutse, E J; Vansteensel, M J

    2014-01-01

    Recent scientific achievements bring the concept of neural prosthetics for reinstating lost motor function closer to medical application. Current research involves severely paralyzed people under the age of 65, but implications for seniors with stroke or trauma-induced impairments are clearly on the horizon. Demographic changes will lead to a shortage of personnel to care for an increasing population of senior citizens, threatening maintenance of an acceptable level of care and urging ways for people to live longer at their home independent from personal assistance. This is particularly challenging when people suffer from disabilities such as partial paralysis after stroke or trauma, where daily personal assistance is required. For some of these people, neural prosthetics can reinstate some lost motor function and/or lost communication, thereby increasing independence and possibly quality of life. In this viewpoint article, we present the state of the art in decoding brain activity in the service of brain-computer interfacing. Although some noninvasive applications produce good results, we focus on brain implants that benefit from better quality brain signals. Fully implantable neural prostheses for home use are not available yet, but clinical trials are being prepared. More sophisticated systems are expected to follow in the years to come, with capabilities of interest for less severe paralysis. Eventually the combination of smart robotics and brain implants is expected to enable people to interact well enough with their environment to live an independent life in spite of motor disabilities. © 2014 S. Karger AG, Basel.

  15. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  16. Protocol study for a randomised, controlled, double-blind, clinical trial involving virtual reality and anodal transcranial direct current stimulation for the improvement of upper limb motor function in children with Down syndrome.

    Science.gov (United States)

    Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; Moura, Renata Calhes Franco de; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; Melo, Gileno Edu Lameira de; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia

    2017-08-11

    Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of

  17. Functional compensation of motor function in pre-symptomatic Huntington's disease

    DEFF Research Database (Denmark)

    Klöppel, Stefan; Draganski, Bogdan; Siebner, Hartwig R

    2009-01-01

    the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned...... with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition...

  18. Task-specific effect of transcranial direct current stimulation on motor learning

    Directory of Open Access Journals (Sweden)

    Cinthia Maria Saucedo Marquez

    2013-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a relatively new non-invasive brain stimulation technique that modulates neural processes. When applied to the human primary motor cortex (M1, tDCS has beneficial effects on motor skill learning and consolidation in healthy controls and in patients. However, it remains unclear whether tDCS improves motor learning in a general manner or whether these effects depend on which motor task is acquired. Here we compare whether the effect of tDCS differs when the same individual acquires (1 a Sequential Finger Tapping Task (SEQTAP and (2 a Visual Isometric Pinch Force Task (FORCE. Both tasks have been shown to be sensitive to tDCS applied over M1, however, the underlying processes mediating learning and memory formation might benefit differently from anodal-tDCS. Thirty healthy subjects were randomly assigned to an anodal-tDCS group or sham-group. Using a double-blind, sham-controlled cross-over design, tDCS was applied over M1 while subjects acquired each of the motor tasks over 3 consecutive days, with the order being randomized across subjects. We found that anodal-tDCS affected each task differently: The SEQTAP task benefited from anodal-tDCS during learning, whereas the FORCE task showed improvements only at retention. These findings suggest that anodal tDCS applied over M1 appears to have a task-dependent effect on learning and memory formation.

  19. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    Directory of Open Access Journals (Sweden)

    Fernando B. R. da Silva

    2018-05-01

    Full Text Available Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF, pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  20. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-05-01

    Full Text Available What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS and brain oscillations (electroencephalography—EEG. In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  1. A novel solid-state control system for the minimization of re-switching transient currents of induction motor

    International Nuclear Information System (INIS)

    Abro, M.R.; Larik, A.S.; Mahar, M.A.

    2005-01-01

    This work is an investigation into the minimizing re-closure transient currents of induction motors by activating NOVEL solid state control system switching at a matched condition. This emphasis is placed upon-circuit transition starting of cage motors, particularly star-delta switching. The initial study is carried out on single-phase induction motion. This system is capable of effective sensing re-closure of a switched off running single-phase induction motor. Further this scheme could be developed to give sequential delta closure of a switched off running three-phase induction motor during 1st cycles following the opening of the star mode. Consideration is also given to the possibility of using sensed re-closure to minimize transient whenever the supply to a running induction motor is briefly interrupted, irrespective of whether the interruption is by accident design. A brief study is made into the type of transient currents generated by opening the circuit of a running induction motor. The importance of the switching pattern for star-delta starting is explained and emphasized. (author)

  2. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  3. Hemispheric surgery for refractory epilepsy in children and adolescents: outcome regarding seizures, motor skills and adaptive function.

    Science.gov (United States)

    Hamad, Ana Paula; Caboclo, Luís Otávio; Centeno, Ricardo; Costa, Livia Vianez; Ladeia-Frota, Carol; Junior, Henrique Carrete; Gomez, Nicolas Garofalo; Marinho, Murilo; Yacubian, Elza Márcia Targas; Sakamoto, Américo Ceiki

    2013-11-01

    The aim of the study was to report the seizure outcome, motor skills and adaptive motor functions in a series of children and adolescents who underwent hemispheric surgery, analysing the risk-benefits of surgery. The clinical course, seizure and motor function outcomes of 15 patients who underwent hemispheric surgery were reviewed. The mean age at surgery was 9.5, with 1-9 years follow-up. The underlying pathologies were Rasmussen encephalitis, vascular disorders, and hemimegalencephaly. All the patients presented with severe epilepsy and different degrees of hemiparesis, although motor functionality was preserved in 80% of the patients. At last follow-up, 67% were seizure free, and 20% rarely experienced seizures. Antiepileptic drugs were reduced in 60%, and complete withdrawal from such drugs was successful in 20% of the patients. The motor outcome following the surgery varied between the patients. Despite the motor deficit after surgery, the post-operative motor function showed unchanged for gross motor function in most (60%), while 27% improved. Similar results were obtained for the ability to handle objects in daily life activities. Sixty percent of the children were capable of handling objects, with somewhat reduced coordination and/or motor speed. Pre-surgical motor function continues to play a role in the pre-surgical evaluation process in order to provide a baseline for outcome. Hemispheric surgery, once regarded as a radical intervention and last treatment resource, may become routinely indicated for refractory hemispheric epilepsy in children and adolescents, with oftentime favourable motor outcomes. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Environmental exposure to manganese and motor function of children in Mexico.

    Science.gov (United States)

    Hernández-Bonilla, D; Schilmann, A; Montes, S; Rodríguez-Agudelo, Y; Rodríguez-Dozal, S; Solís-Vivanco, R; Ríos, C; Riojas-Rodríguez, H

    2011-10-01

    Occupational manganese (Mn) exposure has been associated with motor deficits in adult workers, but data on the potential effects of environmental exposure to Mn on the developing motor function for a children population is scarce. The aim of this study was to evaluate the association between exposure to Mn and motor function of school aged children. We conducted a cross-sectional study selecting 195 children (100 exposed and 95 unexposed) between 7 and 11 years old. The following tests were used to evaluate the motor function: Grooved pegboard, finger tapping, and Santa Ana test. Mn exposure was assessed by blood (MnB) and hair concentrations (MnH). We constructed linear regression models to evaluate the association between exposure to Mn and the different test scores adjusting for age, sex, maternal education, hemoglobin and blood lead. The median concentration of MnH and MnB was significantly higher in exposed (12.6 μg/g and 9.5 μg/L) compared to unexposed children (0.6 μg/g and 8.0 μg/L). The exposed children on average performed the grooved pegboard test faster, but made more errors, although these results did not reach statistical significance with neither one of the Mn exposure biomarkers. MnB showed an inverse association on the execution of the finger tapping test (average in 5 trials β -0.4, p=0.02), but no association was observed with MnH. A subtle negative association of Mn exposure on motor speed and coordination was shown. In adults, the main effect of environmental Mn exposure has been associated with motor skills, but these results suggest that such alterations are not the main effect on children. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement

    Science.gov (United States)

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…

  6. Early uneven ear input induces long-lasting differences in left-right motor function.

    Science.gov (United States)

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  7. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  8. Motor relearning program and Bobath method improve motor function of the upper extremities in patients with stroke

    Institute of Scientific and Technical Information of China (English)

    Jinjing Liu; Fengsheng Li; Guihua Liu

    2006-01-01

    BACKGROUND: In the natural evolution of cerebrovascular disease, unconscious use of affected extremity during drug treatment and daily life can improve the function of affected upper extremity partially, but it is very slow and alsc accompanied by the formation of abnormal mode. Therefore, functional training should be emphasized in recovering the motor function of extremity.OBJECTIVE: To observe the effects of combination of motor relearning program and Bobath method on motor function of upper extremity of patients with stroke.DESIGN: Comparison of therapeutic effects taking stroke patients as observation subjects.SETTING: Department of Neurology, General Hospital of Beijing Jingmei Group.PARTICIPANTS: Totally 120 stroke patients, including 60 males and 60 females, averaged (59±3) years, who hospitalized in the Department of Neurology, General Hospital of Beijing Jingmei Group between January 2005 and June 2006 were recruited. The involved patients met the following criteria: Stroke attack within 2 weeks;diagnosis criteria of cerebral hemorrhage or infarction made in the 4th National Cerebrovascular Disease Conference; confirmed by skull CT or MRI; Informed consents of therapeutic regimen were obtained. The patients were assigned into 2 groups according to their wills: rehabilitation group and control group, with 30 males and 30 females in each group. Patients in rehabilitation group averaged (59±2)years old, and those in the control group averaged (58±2)years old.METHODS: ① Patients in two groups received routine treatment in the Department of Neurology. When the vital signs of patients in the rehabilitation group were stable, individualized treatment was conducted by combined application of motor relearning program and Bobath method. Meanwhile, training of activity of daily living was performed according to the disease condition changes of patients at different phases, including the nursing and instruction of body posture, the maintenance of good extremity

  9. Effect of Hippotherapy on Motor Proficiency and Function in Children with Cerebral Palsy Who Walk.

    Science.gov (United States)

    Champagne, Danielle; Corriveau, Hélène; Dugas, Claude

    2017-02-01

    To evaluate the effects of hippotherapy on physical capacities of children with cerebral palsy. Thirteen children (4-12 years old) with cerebral palsy classified in Gross Motor Function Classification System Level I or II were included in this prospective quasi-experimental ABA design study. Participants received 10 weeks of hippotherapy (30 min per week). Gross motor function and proficiency were measured with the Bruininks-Oseretski Motor Proficiency short form [BOT2-SF]) and the Gross Motor Function Measure-88 [GMFM-88] (Dimension D and E) twice before the program (T1 and T1'), immediately after (T2), and 10 weeks following the end of the program (T3). Mean scores for dimensions D and E of the GMFM-88 Dimension scores (p = .005) and three out of the eight items of the BOT2-SF (fine motor precision (p = .013), balance (p = .025), and strength (p = .012) improved between baseline and immediately after intervention; mean scores immediately following and 10 weeks following intervention did not differ. Hippotherapy provided by a trained therapist who applies an intense and graded session for 10 weeks can improve body functions and performance of gross motor and fine motor activities in children with cerebral palsy.

  10. Motor performance of children with mild intellectual disability and borderline intellectual functioning

    NARCIS (Netherlands)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and

  11. Eigenvector/eigenvalue analysis of a 3D current referential fault detection and diagnosis of an induction motor

    International Nuclear Information System (INIS)

    Pires, V. Fernao; Martins, J.F.; Pires, A.J.

    2010-01-01

    In this paper an integrated approach for on-line induction motor fault detection and diagnosis is presented. The need to insure a continuous and safety operation for induction motors involves preventive maintenance procedures combined with fault diagnosis techniques. The proposed approach uses an automatic three step algorithm. Firstly, the induction motor stator currents are measured which will give typical patterns that can be used to identify the fault. Secondly, the eigenvectors/eigenvalues of the 3D current referential are computed. Finally the proposed algorithm will discern if the motor is healthy or not and report the extent of the fault. Furthermore this algorithm is able to identify distinct faults (stator winding faults or broken bars). The proposed approach was experimentally implemented and its performance verified on various types of working conditions.

  12. Motor ability and adaptive function in children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Hui-Yi Wang

    2011-10-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a common neuropsychiatric disorder. Previous studies have reported that children with ADHD exhibit deficits of adaptive function and insufficient motor ability. The objective of this study was to investigate the association between adaptive function and motor ability in children with ADHD compared with a group of normal children. The study group included 25 children with ADHD (19 boys and 6 girls, aged from 4.6 years to 8.6 years (mean±standard deviation, 6.5±1.2. A group of 24 children without ADHD (normal children were selected to match the children with ADHD on age and gender. The Movement Assessment Battery for Children, which includes three subtests, was used to assess the motor ability of the children of both groups. The Chinese version of Adaptive Behavior Scales, which consists of 12 life domains, was used to assess adaptive function of the children with ADHD. Compared with the normal children, children with ADHD exhibited poorer motor ability on all the three subtests of motor assessment. In the ADHD group, nine (36% children had significant motor impairments and seven (28% were borderline cases. A total of 10 (40% children with ADHD had definite adaptive problems in one or more adaptive domains. With statistically controlling of IQ for the ADHD group, those children with impaired motor ability had significantly poorer behaviors in the adaptive domain of home living (p=0.035. Moreover, children with ADHD who had severely impaired manual dexterity performed worse than the control group in the adaptive domains of home living (r=−0.47, p=0.018, socialization (r=−0.49, p=0.013, and self-direction (r=−0.41, p=0.040. In addition, children with poorer ball skills had worse home living behavior (r=−0.56, p=0.003. Children who had more impaired balance exhibited poorer performance in social behavior (r=−0.41, p=0.040. This study found significant correlation between motor ability and

  13. Rotational hysteresis and eddy current losses in electrical motor stators under non-conventional supply

    International Nuclear Information System (INIS)

    Bottauscio, Oriano.; Canova, Aldo; Chiampi, Mario; Repetto, Maurizio

    2003-01-01

    The magnetic analysis of stators of electrical motors is performed through an innovative 2D finite element formulation that takes into account the effects of eddy currents within the laminations by means of a generalized constitutive relationship also including vector hysteresis. This approach is applied to a deep estimation of magnetic flux distribution and magnetic losses in stator of induction motors supplied by high-frequency sinusoidal or six-step voltage sources

  14. Decoupling control of a five-phase fault-tolerant permanent magnet motor by radial basis function neural network inverse

    Science.gov (United States)

    Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir

    2018-05-01

    This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.

  15. Primary motor cortex functionally contributes to language comprehension: An online rTMS study.

    Science.gov (United States)

    Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury

    2017-02-01

    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    Science.gov (United States)

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  17. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    Science.gov (United States)

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  18. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    International Nuclear Information System (INIS)

    Welch, Kevin D.; Pfister, James A.; Lima, Flavia G.; Green, Benedict T.; Gardner, Dale R.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  19. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  20. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  1. On the functional organization and operational principles of the motor cortex

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl

    2013-01-01

    of the movements evoked by activation of each point on its own. This operational principle may simplify the synthesis of motor commands. We will discuss two possible mechanisms that may explain linear summation of outputs. We have observed that the final posture of the arm when pointing to a given spatial location......Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles...... appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled...

  2. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    Directory of Open Access Journals (Sweden)

    Sahil eBajaj

    2015-03-01

    Full Text Available Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (< 0.1 Hz, even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP or both mental practice and physical therapy (MP + PT within 14-51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1, the right primary motor area (RM1, the left pre-motor cortex (LPMC, the right pre-motor cortex (RPMC and the supplementary motor area (SMA. We discovered that (i the network activity dominated in the frequency range 0.06 Hz – 0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii the flow did not increase significantly after MP alone and (iv the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke

  3. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  4. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  5. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    Science.gov (United States)

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    Science.gov (United States)

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  7. Human brain mapping of language-related function on 1.5T magnetic resonance system: focused on motor language function

    International Nuclear Information System (INIS)

    Jung, Hee Young; Kim, Jae Hyoung; Shin, Taemin; Piao, Xiang Hao; Kim, Jae Soo; Lee, Gyung Kyu; Park, Il Soon; Park, Ji Hoon; Kang, Su Jin; You, Jin Jong; Chung, Sung Hoon

    1998-01-01

    To investigate the feasibility of functional MR imaging of motor language function and its usefulness in the determination of hemispheric language dominance. In order to activate the motor center of language, six subjects ( 5 right-handed, 1 left-handed: 3 males: 3 females) generated words. They were requested to do this silently, without physical articulation, in response to English letters presented visually. Gradient-echo images (TR/TE/flip angle, 80/60/40 deg; 64 x 128 matrix; 10 mm thickness) were obtained in three axial planes including the inferior frontal gyrus. Functional maps were created by the postprocessing of gradient-echo images, including subtraction and statistics. Areas of activation were topographically analyzed and numbers of activated pixels in each region were compared between right and left sides. The reproducibility of functional maps was tested by repetition of functional imaging in the same subjects. Our results suggest that functional MR imaging can depict the activation of motor language function in the brain and can be used a useful non-invasive method for determining the hemispheric dominance of language. (author). 26 refs., 3 figs

  8. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  9. [Formula: see text]Current knowledge on motor disorders in children with autism spectrum disorder (ASD).

    Science.gov (United States)

    Paquet, A; Olliac, B; Golse, B; Vaivre-Douret, L

    2016-01-01

    Motor symptomatology in autism is currently poorly understood, and still not included in the autism spectrum disorder (ASD) diagnostic criteria, although some studies suggest the presence of motor disturbances in this syndrome. We provide here a literature review on early motor symptoms in autism, focusing on studies on psychomotor issues (tone, postural control, manual dexterity, handedness, praxis). The approach adopted in research to study altered motor behaviors is generally global and there is no detailed semiology of the motor or neuromotor disorders observed in people with ASD. This global approach does not enable understanding of the neuro-developmental mechanisms involved in ASD. Identification of clinical neuro-psychomotor profiles in reference to a standard would help to better understand the origin and the nature of the disorders encountered in ASD, and would thus give new directions for treatment.

  10. The sensory side of post-stroke motor rehabilitation.

    Science.gov (United States)

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  11. Relationship between communication skills and gross motor function in preschool-aged children with cerebral palsy.

    Science.gov (United States)

    Coleman, Andrea; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2013-11-01

    To explore the communication skills of children with cerebral palsy (CP) at 24 months' corrected age with reference to typically developing children, and to determine the relationship between communication ability, gross motor function, and other comorbidities associated with CP. Prospective, cross-sectional, population-based cohort study. General community. Children with CP (N=124; mean age, 24mo; functional severity on Gross Motor Function Classification System [GMFCS]: I=47, II=14, III=22, IV=19, V=22). Not applicable. Parents reported communication skills on the Communication and Symbolic Behavior Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Two independent physiotherapists classified motor type, distribution, and GMFCS. Data on comorbidities were obtained from parent interviews and medical records. Children with mild CP (GMFCS I/II) had mean CSBS-DP scores that were 0.5 to 0.6 SD below the mean for typically developing peers, while those with moderate-severe impairment (GMFCS III-V) were 1.4 to 2.6 SD below the mean. GMFCS was significantly associated with performance on the CSBS-DP (F=18.55, Pgross motor ability accounting for 38% of the variation in communication. Poorer communication was strongly associated with gross motor function and full-term birth. Preschool-aged children with CP, with more severe gross motor impairment, showed delayed communication, while children with mild motor impairment were less vulnerable. Term-born children had significantly poorer communication than those born prematurely. Because a portion of each gross motor functional severity level is at risk, this study reinforces the need for early monitoring of communication development for all children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Impairment of complex upper limb motor function in de novo parkinson's disease.

    NARCIS (Netherlands)

    Ponsen, M.M.; Daffertshofer, A.; Wolters, E.C.M.J.; Beek, P.J.; Berendse, H.W.

    2008-01-01

    The aim of the present study was to evaluate complex upper limb motor function in newly diagnosed, untreated Parkinson's disease (PD) patients. Four different unimanual upper limb motor tasks were applied to 13 newly diagnosed, untreated PD patients and 13 age- and sex-matched controls. In a

  13. Impact of a Community-Based Programme for Motor Development on Gross Motor Skills and Cognitive Function in Preschool Children from Disadvantaged Settings

    Science.gov (United States)

    Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.

    2012-01-01

    The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…

  14. The Inpatient Assessment and Management of Motor Functional Neurological Disorders: An Interdisciplinary Perspective.

    Science.gov (United States)

    McKee, Kathleen; Glass, Sean; Adams, Caitlin; Stephen, Christopher D; King, Franklin; Parlman, Kristin; Perez, David L; Kontos, Nicholas

    2018-01-08

    Motor functional neurologic disorders (FND)-previously termed "hysteria" and later "conversion disorder"-are exceedingly common and frequently encountered in the acute hospital setting. Despite their high prevalence, patients with motor FND can be challenging to diagnose accurately and manage effectively. To date, there is limited guidance on the inpatient approach to the neuropsychiatric evaluation of patients with functional (psychogenic) neurologic symptoms. The authors outline an inpatient multidisciplinary approach, involving neurology, psychiatry, and physical therapy, for the assessment and acute inpatient management of motor FND. A vignette of a patient with motor FND is presented followed by a discussion of general assessment principles. Thereafter, a detailed description of the neurologic and psychiatric assessments is outlined. Delivery of a "rule-in" diagnosis is emphasized and specific guidance for what can be accomplished postdiagnosis in the hospital is suggested. We encourage an interdisciplinary approach beginning at the early stages of the diagnostic assessment once an individual is suspected of having motor FND. Practical suggestions for the inpatient assessment of motor FND are presented. It is also important to individualize the diagnostic assessment. Future research should be conducted to test best practices for motor FND management in the acute inpatient hospital setting. Copyright © 2018 Academy of Consultation-Liaison Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Fine motor skills and executive function both contribute to kindergarten achievement

    Science.gov (United States)

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276

  16. Motor Performance of Children with Mild Intellectual Disability and Borderline Intellectual Functioning

    Science.gov (United States)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and healthy lifestyles. The present study compares…

  17. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  19. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  20. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  1. The Written-Pole{sup TM} motor: high efficiency - low start current

    Energy Technology Data Exchange (ETDEWEB)

    Beck, B. [C.Eng. Precise Power Corp., Bradenton, FL (United States); Friesen, D. [P.E. Manitoba Hydro, Winnipeg (Canada)

    2000-07-01

    Written-Pole{sup TM} technology is a patented machine technology, which changes the magnetic polarity of the rotor field in a rotating machine, while the machine is operating. The number of poles is thereby changed, resulting in a constant frequency - variable speed machine. When operating as a motor, a Written-Pole machine has inherently low starting current and high operating efficiency. (orig.)

  2. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  3. Parental questionnaire as a screening instrument for motor function at age five.

    Science.gov (United States)

    Nordbye-Nielsen, Kirsten; Kesmodel, Ulrik Schiøler

    2014-12-01

    No standardised method is used to determine motor function in children in general practice in Denmark. Our aim was to evaluate the correlation between a parental questionnaire assessing motor function at the age of five years and the clinical test Movement Assessment Battery for Children (M-ABC), and to assess whether one or more questions could be used to screen for motor problems at the age of five years. This study was based on a parental questionnaire containing ten questions. The M-ABC was used as the gold standard. n = 755 children. The Mann-Whitney rank sum test, Pearson's χ(2)-test, logistic regression analyses and sensitivity and specificity were used to assess the correlation between the questionnaire and the M-ABC test. The best screening tool was six questions in combination: sensitivity 39.8%, specificity 87.1%. Asking if a health professional ever expressed concern about the childs motor development had a sensitivity of 17.0% and a specificity of 93.9%. A parental questionnaire used as a screening instrument to identify children with motor problems has a reasonable specificity, but a low sensitivity. The six questions can be used to identify children who do not have motor function difficulties with a relatively high certainty, and it can fairly well identify children with motor function problems. This study was primarily supported by the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Additional support was obtained from The Danish Health and Medicines Authority, the Lundbeck Foundation, Ludvig & Daara Elsass Foundation, the Augustinus Foundation, and Aase & Ejnar Danielsens Foundation. The Danish National Research Foundation has established the Danish Epidemiology Science Centre that initiated and created the Danish National Birth Cohort. The cohort is furthermore a result of a major grant from this Foundation. Additional support for the Danish National Birth Cohort is obtained from the Pharmacy Foundation, the Egmont

  4. Model reference adaptive vector control for induction motor without speed sensor

    Directory of Open Access Journals (Sweden)

    Bo Fan

    2017-01-01

    Full Text Available The wide applications of vector control improve the high-accuracy performance of alternating current (AC adjustable speed system. In order to obverse the full-order flux and calculate the real-time speed, this article introduces the motor T equivalent circuit to build a full-order flux observer model, where the current and flux variables of stator and rotor are adopted. Model reference adaptive control is introduced to build the AC motor flux observer. The current output is used as feedback to build the feedback matrix. The calculation method of motor speed, which is part of the inputs of flux observation, is applied to realize the adaptive control. The concept of characteristic function is introduced to calculate the flux, of which the foundation is the variables of composite form of voltage and current models. The characteristic function is deduced as a relative-state variable function. The feedback matrix is improved and designed to ensure the motor flux observer is a smooth switch between current and voltage model in low and high speeds, respectively. Experimental results show that the feedback and characteristic model are feasible, and the vector control with speed sensorless based on the full-order flux observer has better performance and anti-disturbance.

  5. Fault Diagnosis System of Induction Motors Based on Neural Network and Genetic Algorithm Using Stator Current Signals

    Directory of Open Access Journals (Sweden)

    Tian Han

    2006-01-01

    Full Text Available This paper proposes an online fault diagnosis system for induction motors through the combination of discrete wavelet transform (DWT, feature extraction, genetic algorithm (GA, and neural network (ANN techniques. The wavelet transform improves the signal-to-noise ratio during a preprocessing. Features are extracted from motor stator current, while reducing data transfers and making online application available. GA is used to select the most significant features from the whole feature database and optimize the ANN structure parameter. Optimized ANN is trained and tested by the selected features of the measurement data of stator current. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origins on the induction motors. The results of the test indicate that the proposed system is promising for the real-time application.

  6. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. De Gross Motor Function Measure (GMFM): een onderzoek naar de betrouwbaarheid van de Nederlandse vertaling.

    NARCIS (Netherlands)

    Veenhof, C.; Ketelaar, M.; Petegem-van Beek, E. van

    2003-01-01

    This article is about the psychometric characteristics of the Dutch translation of the Gross Motor Function Measure (GMFM). It describes the reliability of the instrument. The article "Gross Motor Function Measure" (GMFM): a validity study of the Dutch translation focusses on the responsiveness of

  8. De Gross Motor Function Measure (GMFM): een onderzoek naar de responsiviteit van de Nederlandse vertaling.

    NARCIS (Netherlands)

    Veenhof, C.; Ketelaar, M.; Petegem-van Beek, E. van; Vermeer, A.

    2003-01-01

    This article is about the psychometric characteristics of the Dutch translation of the Gross Motor Function Measure (GMFM). It describes the responsiveness to change. The article "Gross Motor Function Measure (GMFM): a reliability study of the Dutch translation" focuses on the reliability of the

  9. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  10. Laterality of cerebral hemispheres on CT scan and gross motor function in severely handicapped children

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Nobuaki; Hamano, Kenzo; Nakamoto, Natsue; Okada, Yusuke [Tsukuba Univ., Ibaraki (Japan); Takeya, Toshiki

    1997-06-01

    The relation between brain damage and gross motor function in severely handicapped children (spastic type) was studied. The subjects were fifteen cases with laterality in their cerebral hemisphere CT scans (laterality group) and 28 cases with no laterality (control group). All cases were divided into four groups according to the level of gross motor function. The grade of brain damage was estimated based on CT scan analysis using the following parameters and index: maximum frontal extracerebral space (ES), maximum width of Sylvian fissure (SY), Evans` ratio, and cella media index. In the laterality group, the parameters and index were measured for both cerebral hemispheres, respectively. In the more severely disturbed hemisphere of the laterality group, ES and SY were significantly enlarged compared with those of the cases with the same level of motor function in the control group (p<0.01). In the less severely disturbed hemisphere of the laterality group, the ES, SY, Evans` ratio and cell media index were not significantly enlarged compared to cases with the same level of motor function as the control group. These findings may indicate that gross motor function of severely handicapped children is closely related to the less severely disturbed cerebral hemisphere. (author)

  11. Laterality of cerebral hemispheres on CT scan and gross motor function in severely handicapped children

    International Nuclear Information System (INIS)

    Iwasaki, Nobuaki; Hamano, Kenzo; Nakamoto, Natsue; Okada, Yusuke; Takeya, Toshiki.

    1997-01-01

    The relation between brain damage and gross motor function in severely handicapped children (spastic type) was studied. The subjects were fifteen cases with laterality in their cerebral hemisphere CT scans (laterality group) and 28 cases with no laterality (control group). All cases were divided into four groups according to the level of gross motor function. The grade of brain damage was estimated based on CT scan analysis using the following parameters and index: maximum frontal extracerebral space (ES), maximum width of Sylvian fissure (SY), Evans' ratio, and cella media index. In the laterality group, the parameters and index were measured for both cerebral hemispheres, respectively. In the more severely disturbed hemisphere of the laterality group, ES and SY were significantly enlarged compared with those of the cases with the same level of motor function in the control group (p<0.01). In the less severely disturbed hemisphere of the laterality group, the ES, SY, Evans' ratio and cell media index were not significantly enlarged compared to cases with the same level of motor function as the control group. These findings may indicate that gross motor function of severely handicapped children is closely related to the less severely disturbed cerebral hemisphere. (author)

  12. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  13. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  14. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  15. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Han Tong; Cui Shimin; Tong Xiaoguang; Liu Li; Xue Kai; Liu Meili; Liang Siquan; Zhang Yunting; Zhi Dashi

    2011-01-01

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ = 7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS u c = 2.664, P=0.008; Zubrod -ECOG -WHO u c =2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate

  16. State of motor function of stomach in patients with cervix uteri carcinoma in combined radiotherapy

    International Nuclear Information System (INIS)

    Zhidovtseva, M.I.; Shutilova, A.A.; Dynnik, M.S.; Lugovskaya, K.A.; Duma, V.A.

    1978-01-01

    Data on studying stomach motor function in patients with carvix uteri carcinoma of 2 and 3 stages in combined radiotherapy are given. The patients were examined before radiotherapy and directly after it as well as in 1-2 years using the X-ray method for 50 patients and electrogastrography for 68 patients. Revealed changes in stomach motor function, being considered as a response to irradiation, were manifested more often in decreasing motility, evacuatory function and bioelectric stomach activity. These functional changes result in disturbance of general state of patients, appearance of symptomatology of stomach dysfunction and serve as indications for the prescription of correcting therapy, which includes diet and preparations strengthening stomach motor activity

  17. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kwon, Jeong-Yi; Chang, Hyun Jung; Yi, Sook-Hee; Lee, Ji Young; Shin, Hye-Yeon; Kim, Yun-Hee

    2015-01-01

    To examine whether hippotherapy has a clinically significant effect on gross motor function in children with cerebral palsy (CP). Randomized controlled trial. Outpatient therapy center. Ninety-two children with CP, aged 4-10 years, presenting variable function (Gross Motor Function Classification System [GMFCS] levels I-IV). Hippotherapy (30 minutes twice weekly for 8 consecutive weeks). Gross Motor Function Measure (GMFM)-88, GMFM-66, and Pediatric Balance Scale. Pre- and post-treatment measures were completed by 91 children (45 in the intervention group and 46 in the control group). Differences in improvement on all three measures significantly differed between groups after the 8-week study period. Dimensions of GMFM-88 improved significantly after hippotherapy varied by GMFCS level: dimension E in level I, dimensions D and E in level II, dimensions C and D in level III, and dimensions B and C in level IV. Hippotherapy positively affects gross motor function and balance in children with CP of various functional levels.

  18. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  19. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment : A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI)

    NARCIS (Netherlands)

    Salavati, M.; Rameckers, E. A. A.; Waninge, A.; Krijnen, W. P.; Steenbergen, B.; van der Schans, C. P.

    Purpose: To investigate whether the adapted version of the Gross Motor Function Measure 88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result

  20. An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats.

    Science.gov (United States)

    Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H

    2015-08-15

    Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Strategy for Embedding Functional Motor and Early Numeracy Skill Instruction into Physical Education Activities

    Science.gov (United States)

    Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy

    2016-01-01

    This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…

  2. Detection of mechanical failures in induction motors by current spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokansky, K; Novak, P; Bilos, J; Labaj, J [Technical University Ostrava, Moraviasilesian Power Stations s.h.c. (Czech Republic)

    1998-12-31

    From the diagnostic point of view, an electric machine can be understood as an electromechanical system. It means that any manifestations of mechanical failures do not have to show themselves only in mechanical quantities, i.e. vibration in our case. Mechanical failures can also manifest themselves in electrical quantities, namely in electric current in our case. This statement is valid inversely too, which means that faults occurring in electric circuits can be measured through mechanical quantities. This presentation deals with measuring the current spectra of induction motors with short circuited armatures that are drives used in the industries most. (orig.) 3 refs.

  3. Detection of mechanical failures in induction motors by current spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sokansky, K.; Novak, P.; Bilos, J.; Labaj, J. [Technical University Ostrava, Moraviasilesian Power Stations s.h.c. (Czech Republic)

    1997-12-31

    From the diagnostic point of view, an electric machine can be understood as an electromechanical system. It means that any manifestations of mechanical failures do not have to show themselves only in mechanical quantities, i.e. vibration in our case. Mechanical failures can also manifest themselves in electrical quantities, namely in electric current in our case. This statement is valid inversely too, which means that faults occurring in electric circuits can be measured through mechanical quantities. This presentation deals with measuring the current spectra of induction motors with short circuited armatures that are drives used in the industries most. (orig.) 3 refs.

  4. 3-D analysis of eddy current in permanent magnet of interior permanent magnet motors

    International Nuclear Information System (INIS)

    Kawase, Yoshihiro; Yamaguchi, Tadashi; Fukanaga, Hiromu; Ito, Shokichi

    2002-01-01

    Interior permanent magnet motors are widely used in various fields. However, in high-speed operations, it is important to decrease the eddy current loss in the permanent magnet. In order to decrease the eddy current loss, we propose to divide the permanent magnet. In this paper, we clarified the effect of division of permanent magnet on the eddy current loss using the 3-D finite element method. (Author)

  5. Functional BOLD MRI: comparison of different field strengths in a motor task

    International Nuclear Information System (INIS)

    Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.

    2008-01-01

    The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)

  6. Functional Communication Profiles in Children with Cerebral Palsy in Relation to Gross Motor Function and Manual and Intellectual Ability.

    Science.gov (United States)

    Choi, Ja Young; Park, Jieun; Choi, Yoon Seong; Goh, Yu Ra; Park, Eun Sook

    2018-07-01

    The aim of the present study was to investigate communication function using classification systems and its association with other functional profiles, including gross motor function, manual ability, intellectual functioning, and brain magnetic resonance imaging (MRI) characteristics in children with cerebral palsy (CP). This study recruited 117 individuals with CP aged from 4 to 16 years. The Communication Function Classification System (CFCS), Viking Speech Scale (VSS), Speech Language Profile Groups (SLPG), Gross Motor Function Classification System (GMFCS), Manual Ability Classification System (MACS), and intellectual functioning were assessed in the children along with brain MRI categorization. Very strong relationships were noted among the VSS, CFCS, and SLPG, although these three communication systems provide complementary information, especially for children with mid-range communication impairment. These three communication classification systems were strongly related with the MACS, but moderately related with the GMFCS. Multiple logistic regression analysis indicated that manual ability and intellectual functioning were significantly related with VSS and CFCS function, whereas only intellectual functioning was significantly related with SLPG functioning in children with CP. Communication function in children with a periventricular white matter lesion (PVWL) varied widely. In the cases with a PVWL, poor functioning was more common on the SLPG, compared to the VSS and CFCS. Very strong relationships were noted among three communication classification systems that are closely related with intellectual ability. Compared to gross motor function, manual ability seemed more closely related with communication function in these children. © Copyright: Yonsei University College of Medicine 2018.

  7. Dynamic eccentricity fault diagnosis in round rotor synchronous motors

    International Nuclear Information System (INIS)

    Ebrahimi, Bashir Mahdi; Etemadrezaei, Mohammad; Faiz, Jawad

    2011-01-01

    Research highlights: → We have presented a novel approach to detect dynamic eccentricity in round rotor synchronous motors. → We have introduced an efficient index based on processing torque using time series data mining method. → The stator current spectrum of the motor under different levels of fault and load are computed. → Winding function method has been employed to model healthy and faulty synchronous motors. -- Abstract: In this paper, a novel approach is presented to detect dynamic eccentricity in round rotor synchronous motors. For this, an efficient index is introduced based on processing developed torque using time series data mining (TSDM) method. This index can be utilized to diagnose eccentricity fault and its degree. The capability of this index to predict dynamic eccentricity is illustrated by investigation of load variation impacts on the nominated index. Stator current spectrum of the faulty synchronous motor under different loads and dynamic eccentricity degrees are computed. Effects of the dynamic eccentricity and load variation simultaneously are scrutinized on the magnitude of 17th and 19th harmonic components as traditional indices for eccentricity fault diagnosis in synchronous motors. Necessity signals and parameters for processing and feature extraction are evaluated by winding function method which is employed to model healthy and faulty synchronous motors.

  8. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  9. Broken-Rotor-Bar Diagnosis for Induction Motors

    International Nuclear Information System (INIS)

    Wang Jinjiang; Gao, Robert X; Yan Ruqiang

    2011-01-01

    Broken rotor bar is one of the commonly encountered induction motor faults that may cause serious motor damage to the motor if not detected timely. Past efforts on broken rotor bar diagnosis have been focused on current signature analysis using spectral analysis and wavelet transform. These methods require accurate slip estimation to localize fault-related frequency. This paper presents a new approach to broken rotor bar diagnosis without slip estimation, based on the ensemble empirical mode decomposition (EEMD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains broken rotor fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of intrinsic mode functions (IMFs) by the EEMD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the IMF selection. Numerical and experimental studies have confirmed that the proposed approach is effective in diagnosing broken rotor bar faults for improved induction motor condition monitoring and damage assessment.

  10. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    International Nuclear Information System (INIS)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis; Peck, Kyung K.; Hsu, Meier; Holodny, Andrei

    2010-01-01

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p ≤ 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  11. Functional MRI of tongue motor tasks in patients with tongue cancer: observations before and after partial glossectomy

    Energy Technology Data Exchange (ETDEWEB)

    Haupage, Samantha; Branski, Ryan C.; Kraus, Dennis [Memorial Sloan-Kettering Cancer Center, Head and Neck Surgery, New York, NY (United States); Peck, Kyung K. [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Medical Physics, New York, NY (United States); Memorial Sloan-Kettering Cancer Center, Department of Medical Physics and Radiology, New York, NY (United States); Hsu, Meier [Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York, NY (United States); Holodny, Andrei [Memorial Sloan-Kettering Cancer Center, Department of Radiology, New York, NY (United States)

    2010-12-15

    The current study seeks to provide preliminary data regarding this central, adaptive response during tongue motor tasks utilizing functional magnetic resonance imaging (fMRI) before and after glossectomy. Six patients, with confirmed histological diagnoses of oral tongue cancer, underwent fMRI before and 6 months after partial glossectomy. These data were compared to nine healthy controls. All subjects performed three tongue motor tasks during fMRI: tongue tapping (TT), dry swallow (Dry), and wet swallow (Wet). Following surgery, increased activation was subjectively observed in the superior parietal lobule, supplementary motor area, and anterior cingulate. Region of interest (ROI) analysis of the precentral gyrus confirmed increased cortical activity following surgery. In addition, comparisons between pre-surgical scans and controls suggested the dry swallow task was sensitive to elicit tongue-related activation in the precentral gyrus (p {<=} 0.05). The adaptive changes in the cortex following partial glossectomy reflect recruitment of the parietal, frontal, and cingulate cortex during tongue motor tasks. In addition, post-operative activation patterns more closely approximated control levels than the pre-operative scans. Furthermore, the dry swallow task appears most specific to elicit tongue-related cortical activity. (orig.)

  12. Correlation between movement of the feet and motor function of children with chronic encephalopathy

    Directory of Open Access Journals (Sweden)

    Táubuta Gomes Souza

    Full Text Available Abstract Introduction: Chronic non-progressive encephalopathy (CNPE is one of the most common causes of physical deformities in childhood. It is characterized by non-progressive neuropathological abnormalities of the developing brain, which results in neuromotor impairments and changes in posture and movement. Objective: To evaluate foot deformities in children with CNPE, by measuring the joint amplitude and correlating these measures with the scores of the Gross Motor Function Measure (GMFM-88, using all its five dimensions. Methods: Cross-sectional and descriptive study with a sample of 17 children. The data collection instruments used were manual goniometer and the Gross Motor Function Measure test (GMFM-88. Data were analyzed using the program SPSS version 18, and the Pearson correlation test as a measure of association. Results: Children with chronic encephalopathy and a reduced amplitude motion have lower capacity in motor function. Statistically significant correlation was found for the right dorsiflexion angle (p = 0.023, left dorsiflexion angle (p = 0.019, right inversion (p = 0.040, left inversion (p = 0.034 and left eversion (p = 0.018. There was no statistically significant correlation for the right eversion (p > 0.05. Conclusion: Musculoskeletal disorders associated with CNPE and foot deformities interfere negatively in motor function, compromising the functional performance of these children.

  13. Fine Motor Function Skills in Patients with Parkinson Disease with and without Mild Cognitive Impairment.

    Science.gov (United States)

    Dahdal, Philippe; Meyer, Antonia; Chaturvedi, Menorca; Nowak, Karolina; Roesch, Anne D; Fuhr, Peter; Gschwandtner, Ute

    2016-01-01

    The objective of this study was to investigate the relation between impaired fine motor skills in Parkinson disease (PD) patients and their cognitive status, and to determine whether fine motor skills are more impaired in PD patients with mild cognitive impairment (MCI) than in non-MCI patients. Twenty PD MCI and 31 PD non-MCI patients (mean age 66.7 years, range 50-84, 36 males/15 females), all right-handed, took part in a motor performance test battery. Steadiness, precision, dexterity, velocity of arm-hand movements, and velocity of wrist-finger movements were measured and compared across groups and analyzed for confounders (age, sex, education, severity of motor symptoms, and disease duration). Statistical analysis included t tests corrected for multiple testing, and a linear regression with stepwise elimination procedure was used to select significant predictors for fine motor function. PD MCI patients performed significantly worse in precision (p motor function skills were confounded by age. Fine motor skills in PD MCI patients are impaired compared to PD non-MCI patients. Investigating the relation between the fine motor performance and MCI in PD might be a relevant subject for future research. © 2016 S. Karger AG, Basel.

  14. Toward a more personalized motor function rehabilitation in Myotonic dystrophy type 1: The role of neuroplasticity.

    Directory of Open Access Journals (Sweden)

    Simona Portaro

    Full Text Available Myotonic dystrophy type 1 (DM1 is the most prevalent adult muscular dystrophy, often accompanied by impairments in attention, memory, visuospatial and executive functions. Given that DM1 is a multi-system disorder, it requires a multi-disciplinary approach, including effective rehabilitation programs, focusing on the central nervous system neuroplasticity, in order to develop patient-tailored rehabilitative procedures for motor function recovery. Herein, we performed a transcranial magnetic stimulation (TMS study aimed at investigating central motor conduction time, sensory-motor plasticity, and cortical excitability in 7 genetically defined DM1 patients. As compared to healthy individuals, DM1 patients showed a delayed central motor conduction time and an abnormal sensory-motor plasticity, with no alteration of cortical excitability. These findings may be useful to define patient-tailored motor rehabilitative programs.

  15. Gross Motor Function Measure Evolution Ratio: Use as a Control for Natural Progression in Cerebral Palsy.

    Science.gov (United States)

    Marois, Pierre; Marois, Mikael; Pouliot-Laforte, Annie; Vanasse, Michel; Lambert, Jean; Ballaz, Laurent

    2016-05-01

    To develop a new way to interpret Gross Motor Function Measure (GMFM-66) score improvement in studies conducted without control groups in children with cerebral palsy (CP). The curves, which describe the pattern of motor development according to the children's Gross Motor Function Classification System level, were used as historical control to define the GMFM-66 expected natural evolution in children with CP. These curves have been modeled and generalized to fit the curve to particular children characteristics. Research center. Not applicable. Not applicable. Not applicable. Assuming that the GMFM-66 score evolution followed the shape of the Rosenbaum curves, by taking into account the age and GMFM-66 score of children, the expected natural evolution of the GMFM-66 score was predicted for any group of children with CP who were Ratio, was defined as follows: Gross Motor Function Measure Evolution Ratio=measured GMFM-66 score change/expected natural evolution. For practical or ethical reasons, it is almost impossible to use control groups in studies evaluating effectiveness of many therapeutic modalities. The Gross Motor Function Measure Evolution Ratio gives the opportunity to take into account the expected natural evolution of the gross motor function of children with CP, which is essential to accurately interpret the therapy effect on the GMFM-66. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  17. Transcranial direct current stimulation (tDCS) Paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: a pilot study.

    Science.gov (United States)

    Potter-Baker, Kelsey A; Janini, Daniel P; Lin, Yin-Liang; Sankarasubramanian, Vishwanath; Cunningham, David A; Varnerin, Nicole M; Chabra, Patrick; Kilgore, Kevin L; Richmond, Mary Ann; Frost, Frederick S; Plow, Ela B

    2017-08-07

    Objective Our goal was to determine if pairing transcranial direct current stimulation (tDCS) with rehabilitation for two weeks could augment adaptive plasticity offered by these residual pathways to elicit longer-lasting improvements in motor function in incomplete spinal cord injury (iSCI). Design Longitudinal, randomized, controlled, double-blinded cohort study. Setting Cleveland Clinic Foundation, Cleveland, Ohio, USA. Participants Eight male subjects with chronic incomplete motor tetraplegia. Interventions Massed practice (MP) training with or without tDCS for 2 hrs, 5 times a week. Outcome Measures We assessed neurophysiologic and functional outcomes before, after and three months following intervention. Neurophysiologic measures were collected with transcranial magnetic stimulation (TMS). TMS measures included excitability, representational volume, area and distribution of a weaker and stronger muscle motor map. Functional assessments included a manual muscle test (MMT), upper extremity motor score (UEMS), action research arm test (ARAT) and nine hole peg test (NHPT). Results We observed that subjects receiving training paired with tDCS had more increased strength of weak proximal (15% vs 10%), wrist (22% vs 10%) and hand (39% vs. 16%) muscles immediately and three months after intervention compared to the sham group. Our observed changes in muscle strength were related to decreases in strong muscle map volume (r=0.851), reduced weak muscle excitability (r=0.808), a more focused weak muscle motor map (r=0.675) and movement of weak muscle motor map (r=0.935). Conclusion Overall, our results encourage the establishment of larger clinical trials to confirm the potential benefit of pairing tDCS with training to improve the effectiveness of rehabilitation interventions for individuals with SCI. Trial Registration NCT01539109.

  18. Fault Diagnosis of Three Phase Induction Motor Using Current Signal, MSAF-Ratio15 and Selected Classifiers

    Directory of Open Access Journals (Sweden)

    Glowacz A.

    2017-12-01

    Full Text Available A degradation of metallurgical equipment is normal process depended on time. Some factors such as: operation process, friction, high temperature can accelerate the degradation process of metallurgical equipment. In this paper the authors analyzed three phase induction motors. These motors are common used in the metallurgy industry, for example in conveyor belt. The diagnostics of such motors is essential. An early detection of faults prevents financial loss and downtimes. The authors proposed a technique of fault diagnosis based on recognition of currents. The authors analyzed 4 states of three phase induction motor: healthy three phase induction motor, three phase induction motor with 1 faulty rotor bar, three phase induction motor with 2 faulty rotor bars, three phase induction motor with faulty ring of squirrel-cage. An analysis was carried out for original method of feature extraction called MSAF-RATIO15 (Method of Selection of Amplitudes of Frequencies – Ratio 15% of maximum of amplitude. A classification of feature vectors was performed by Bayes classifier, Linear Discriminant Analysis (LDA and Nearest Neighbour classifier. The proposed technique of fault diagnosis can be used for protection of three phase induction motors and other rotating electrical machines. In the near future the authors will analyze other motors and faults. There is also idea to use thermal, acoustic, electrical, vibration signal together.

  19. Muscle Hyperalgesia Correlates With Motor Function in Complex Regional Pain Syndrome Type 1

    NARCIS (Netherlands)

    van Rooijen, Diana E.; Marinus, Johan; Schouten, Alfred Christiaan; Noldus, Lucas P.J.J.; van Hilten, Jacobus J.

    2013-01-01

    At present it is unclear if disturbed sensory processing plays a role in the development of the commonly observed motor impairments in patients with complex regional pain syndrome (CRPS). This study aims to investigate the relation between sensory and motor functioning in CRPS patients with and

  20. Genetic and environmental influences on motor function: a magnetoencephalographic study of twins

    Directory of Open Access Journals (Sweden)

    Toshihiko eAraki

    2014-06-01

    Full Text Available To investigate the effect of genetic and environmental influences on cerebral motor function, we determined similarities of movement-related cortical fields (MRCFs in middle-aged and elderly monozygotic (MZ twins. MRCFs were measured using a 160-channel MEG system when MZ twins were instructed to repeat lifting of the right index finger. We compared latency, amplitude, dipole location, and dipole intensity of movement-evoked field 1 (MEF1 between 16 MZ twins and 16 pairs of genetically unrelated pairs. Differences in latency and dipole location between MZ twins were significantly less than those between unrelated age-matched pairs. However, amplitude and dipole intensity were not significantly different. These results suggest that the latency and dipole location of MEF1 are determined early in life by genetic and early common environmental factors, whereas amplitude and dipole intensity are influenced by long-term environmental factors. Improved understanding of genetic and environmental factors that influence cerebral motor function may contribute to evaluation and improvement for individual motor function.

  1. Aging-associated changes in motor axon voltage-gated Na+ channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez Herrero, Susana

    2016-01-01

    the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice...... expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na+ channel isoform expression contributes to changes in motor axon function...

  2. Analysis of the Torque Ripples in Designing a Disk Type Brushless Direct Current Motor

    Directory of Open Access Journals (Sweden)

    A. V. Stepanov

    2015-01-01

    Full Text Available This paper investigates the torque ripples of disk-type low-power brushless direct current motor (BDCM with permanent magnets. In spite of numerous studies on designing of valve engines this issue is understudied as yet. The torque ripples cause noise and vibration and can significantly limit accuracy when used in instrumentation, computer technology.We consider a motor that includes a power unit consisting of a rotor and a stator. There are ferrite elements of sensor on the rotor, and the nonmagnetic disk, bonded to it, contains permanent magnets. The rotor is mounted on a rotating shaft. The stator consists of a steel casing and bonded to it non-magnetic, non-conductive disk with holes. In the disk holes from both sides are mounted armature coils. The armature winding consists of two sections each of which has 6 coils. Each adjacent coil in section has an opposite direction of winding. The coils are arranged circumferentially and are shifted relative to each other; the displacement angle between the coils of one section is equal to 2π/6 (rad. Sections are also shifted relative to each other; the angular shift is π/6 (rad. Sections are connected to the output terminals of the electronic switch. Sections of motor windings have the reverse full-wave power.The paper has investigated the steady operation at four-stroke switching and under constant load (torque. In this case, the electromagnetic torque and rotor speed are periodical functions of the rotor rotation angle. The dependencies of the averaged torque on the rotation speed have been obtained. The spectral distribution of the torque ripples at various rotor speeds of rotation has been calculated. The dependencies of the torque on the speed were studied both at constant speed and taking into account the uneven speed. Based on the research findings of disk type BDCM was computed a level of ripples amounted to 0.8 - 5%, which is quite acceptable for use in a drive. The results are useful for

  3. Effect of age on changes in motor units functional connectivity.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh

    2015-08-01

    With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.

  4. Esophageal hypomotility and spastic motor disorders: current diagnosis and treatment.

    Science.gov (United States)

    Valdovinos, Miguel A; Zavala-Solares, Monica R; Coss-Adame, Enrique

    2014-11-01

    Esophageal hypomotility (EH) is characterized by abnormal esophageal peristalsis, either from a reduction or absence of contractions, whereas spastic motor disorders (SMD) are characterized by an increase in the vigor and/or propagation velocity of esophageal body contractions. Their pathophysiology is not clearly known. The reduced excitation of the smooth muscle contraction mediated by cholinergic neurons and the impairment of inhibitory ganglion neuronal function mediated by nitric oxide are likely mechanisms of the peristaltic abnormalities seen in EH and SMD, respectively. Dysphagia and chest pain are the most frequent clinical manifestations for both of these dysfunctions, and gastroesophageal reflux disease (GERD) is commonly associated with these motor disorders. The introduction of high-resolution manometry (HRM) and esophageal pressure topography (EPT) has significantly enhanced the ability to diagnose EH and SMD. Novel EPT metrics in particular the development of the Chicago Classification of esophageal motor disorders has enabled improved characterization of these abnormalities. The first step in the management of EH and SMD is to treat GERD, especially when esophageal testing shows pathologic reflux. Smooth muscle relaxants (nitrates, calcium channel blockers, 5-phosphodiesterase inhibitors) and pain modulators may be useful in the management of dysphagia or pain in SMD. Endoscopic Botox injection and pneumatic dilation are the second-line therapies. Extended myotomy of the esophageal body or peroral endoscopic myotomy (POEM) may be considered in highly selected cases but lack evidence.

  5. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    Science.gov (United States)

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  6. Motor and sensory function of the esophagus: revelations through ultrasound imaging.

    Science.gov (United States)

    Mittal, Ravinder K

    2005-04-01

    Catheter based high frequency intraluminal ultrasound (HFIUS) imaging is a powerful tool to study esophageal sensory and motor function and dysfunction in vivo in humans. It has provided a number of important insights into the longitudinal muscle function of the esophagus. Based on the ultrasound images and intraluminal pressure recordings, it is clear that there is synchrony in the timing as well as the amplitude of contraction between the circular and the longitudinal muscle layers of the esophagus in normal subjects. On the other hand, in patients with spastic disorders of the esophagus, there is an asynchrony of contraction related to the timing and amplitude of contraction of the two muscle layers during peristalsis. Achalasia, diffuse esophageal spasm, and nutcracker esophagus (spastic motor disorders of the esophagus) are associated with hypertrophy of the circular as well as longitudinal muscle layers. A sustained contraction of the longitudinal muscle of the esophagus is temporally related to chest pain and heartburn and may very well be the cause of symptoms. Longitudinal muscle function of the esophagus can be studied in vivo in humans using dynamic ultrasound imaging. Longitudinal muscle dysfunction appears to be important in the motor and sensory disorders of the esophagus.

  7. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    OpenAIRE

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2012-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, pre...

  8. [Functional and motor gastrointestinal disorders].

    Science.gov (United States)

    Mearin, Fermín; Rey, Enrique; Balboa, Agustín

    2015-09-01

    This article discusses the most interesting studies on functional and motor gastrointestinal disorders presented at Digestive Diseases Week (DDW), 2015. Researchers are still seeking biomarkers for irritable bowel syndrome and have presented new data. One study confirmed that the use of low-dose antidepressants has an antinociceptive effect without altering the psychological features of patients with functional dyspepsia. A contribution that could have immediate application is the use of transcutaneous electroacupuncture, which has demonstrated effectiveness in controlling nausea in patients with gastroparesis. New data have come to light on the importance of diet in irritable bowel syndrome, although the effectiveness of a low-FODMAP diet seems to be losing momentum with time. Multiple data were presented on the long-term efficacy of rifaximin therapy in patients with irritable bowel syndrome and diarrhoea. In addition, among other contributions, and more as a curiosity, a study evaluated the effect of histamine in the diet of patients with irritable bowel syndrome. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  9. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young; Crooks, Daniel R.; Wilson-Ollivierre, Hayden; Ghosh, Manik C.; Sougrat, Rachid; Lee, Jaekwon; Cooperman, Sharon; Mitchell, James B.; Beaumont, Carole; Rouault, Tracey A.

    2011-01-01

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  10. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young

    2011-10-07

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  11. Parental questionnaire as a screening instrument for motor function at age five

    DEFF Research Database (Denmark)

    Nordbye-Nielsen, Kirsten; Kesmodel, Ulrik Schiøler

    2014-01-01

    , Pearson’s χ2-test, logistic regression analyses and sensitivity and specificity were used to assess the correlation between the questionnaire and the M-ABC test. Results: The best screening tool was six questions in combination: sensitivity 39.8%, specificity 87.1%. Asking if a health professional ever......Introduction: No standardised method is used to determine motor function in children in general practice in Denmark. Our aim was to evaluate the correlation between a parental questionnaire assessing motor function at the age of five years and the clinical test Movement Assessment Battery...... for Children (M-ABC), and to assess whether one or more questions could be used to screen for motor problems at the age of five years. Methods: This study was based on a parental questionnaire containing ten questions. The M-ABC was used as the gold standard. n = 755 children. The Mann-Whitney rank sum test...

  12. Awareness and use of Gross Motor Function Classification System ...

    African Journals Online (AJOL)

    Introduction The degree of disability in children with Cerebral Palsy (CP) can be evaluated with the Gross Motor Function Classification System (GMFCS), a valid tool which was designed for such purposes. However, there appears to be paucity of data on the awareness and use of the GMFCS particularly in the ...

  13. Relationship between Motor Skill Competency and Executive Function in Children with Down's Syndrome

    Science.gov (United States)

    Schott, N.; Holfelder, B.

    2015-01-01

    Background: Previous studies suggest that children with Down's syndrome (DS), a genetically based neurodevelopmental disorder, demonstrate motor problems and cognitive deficits. The first aim of this study was to examine motor skills and executive functions (EFs) in school-age children with DS. The second aim was to investigate the relationship…

  14. Wideband impedance measurements of DC motors under dynamic load conditions

    NARCIS (Netherlands)

    Diouf, F.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2013-01-01

    One of the principal conducted EMI(electromagnetic interferences) sources of low voltage DC (direct current) motors is the commutation occurring during rotation. In this paper the small-signal impedance of low voltage DC motors under different functioning modes, including the dynamic one is studied

  15. Effect of physical therapy frequency on gross motor function in children with cerebral palsy

    OpenAIRE

    Park, Eun-Young

    2016-01-01

    [Purpose] This study attempted to investigate the effect of physical therapy frequency based on neurodevelopmental therapy on gross motor function in children with cerebral palsy. [Subjects and Methods] The study sample included 161 children with cerebral palsy who attended a convalescent or rehabilitation center for disabled individuals or a special school for children with physical disabilities in South Korea. Gross Motor Function Measure data were collected according to physical therapy fr...

  16. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Transfer function modeling of parallel connected two three-phase induction motor implementation using LabView platform

    DEFF Research Database (Denmark)

    Gunabalan, R.; Sanjeevikumar, P.; Blaabjerg, Frede

    2015-01-01

    This paper presents the transfer function modeling and stability analysis of two induction motors of same ratings and parameters connected in parallel. The induction motors are controlled by a single inverter and the entire drive system is modeled using transfer function in LabView. Further...

  18. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  19. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  20. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  1. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  2. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Groppa, Sergiu; Seeger, Markus

    2009-01-01

    Transcranial oscillatory current stimulation has recently emerged as a noninvasive technique that can interact with ongoing endogenous rhythms of the human brain. Yet, there is still little knowledge on how time-varied exogenous currents acutely modulate cortical excitability. In ten healthy...... individuals we used on-line single-pulse transcranial magnetic stimulation (TMS) to search for systematic shifts in corticospinal excitability during anodal sleeplike 0.8-Hz slow oscillatory transcranial direct current stimulation (so-tDCS). In separate sessions, we repeatedly applied 30-s trials (two blocks...... at 20 min) of either anodal so-tDCS or constant tDCS (c-tDCS) to the primary motor hand area during quiet wakefulness. Simultaneously and time-locked to different phase angles of the slow oscillation, motor-evoked potentials (MEPs) as an index of corticospinal excitability were obtained...

  3. Functional MRI (fMRI) on lesions in and around the motor and the eloquent cortices

    International Nuclear Information System (INIS)

    Hara, Yoshie; Nakamura, Mitsugu; Tamura, Shogo; Tamaki, Norihiko; Kitamura, Junji

    1999-01-01

    From the view point of neurosurgeons, to aim the preoperative localized diagnosis on the motor and the eloquent cortices and postoperative preservation of neurological functions, fMRI was carried for patients with lesions in and around the motor and the eloquent cortices. Even in cases of mechanical oppression or brain edema, the motor and the eloquent cortices are localized on cerebral gyri. In perioperative period, identification and preserving the motor and the eloquent cortices are important for keeping brain function. Twenty six preoperative cases and 3 normal healthy subjects were observed. Exercise enhanced fMRI was performed on 3 normal healthy subjects, fMRI with motor stimulation in 24 cases and fMRI with speech stimulation in 4 cases. The signal intensity increased in all cases responsing to both stimulations. But the signal intensity in 8 cases decreased in some regions by motor stimulation and 1 case by speech stimulation. The decrease of signal intensity in this study seems to be a clinically important finding and it will be required to examine the significance in future. (K.H.)

  4. Permanent Magnet Eddy Current Loss Analysis of a Novel Motor Integrated Permanent Magnet Gear

    DEFF Research Database (Denmark)

    Zhang, Yuqiu; Lu, Kaiyuan; Ye, Yunyue

    2012-01-01

    In this paper, a new motor integrated permanent magnet gear (MIPMG) is discussed. The focus is on eddy current loss analysis associated to permanent magnets (PMs). A convenient model of MIPMG is provided based on 2-D field-motion coupled time-stepping finite element method for transient eddy...... current analysis. The model takes the eddy current effect of PMs into account in determination of the magnetic field in the air-gap and in the magnet regions. The eddy current losses generated in the magnets are properly interpreted. Design improvements for reducing the eddy current losses are suggested...

  5. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas

    Directory of Open Access Journals (Sweden)

    Riichiro eHira

    2013-04-01

    Full Text Available Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA and the caudal forelimb area (CFA. The RFA is thought to be an equivalent of the premotor cortex in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b, of the CFA. Further, the CFA receives strong projections from layer 5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections.

  6. Longitudinal development of gross motor function among Dutch children and young adults with cerebral palsy: an investigation of motor growth curves.

    Science.gov (United States)

    Smits, Dirk-Wouter; Gorter, Jan Willem; Hanna, Steven E; Dallmeijer, Annet J; van Eck, Mirjam; Roebroeck, Marij E; Vos, Rimke C; Ketelaar, Marjolijn

    2013-04-01

    The aim of this study was to describe patterns for gross motor development by level of severity in a Dutch population of individuals with cerebral palsy (CP). This longitudinal study included 423 individuals (260 males, 163 females) with CP. The mean age at baseline was 9 years 6 months (SD 6y 2mo, range 1-22y). The level of severity of CP among participants, according to the Gross Motor Function Classification System (GMFCS), was 50% level I, 13% level II, 14% level III, 13% level IV, and 10% level V. Participants had been assessed up to four times with the Gross Motor Function Measure (GMFM-66) at 1- or 2-year intervals between 2002 and 2009. Data were analysed using non-linear mixed effects modelling. For each GMFCS level, patterns were created by contrasting a stable limit model (SLM) with a peak and decline model (PDM), followed by estimating limits and rates of gross motor development. The SLM showed a better fit for all GMFCS levels than the PDM. Within the SLM, significant differences between GMFCS levels were found for both the limits (higher values for lower GMFCS levels) and the rates (higher values for GMFCS levels I-II vs level IV and for GMFCS levels I-IV vs level V) of gross motor development. The results validate the existence of five distinct patterns for gross motor development by level of severity of CP. ©The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  7. Milling tool wear diagnosis by feed motor current signal using an artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Khajavi, Mehrdad Nouri; Nasernia, Ebrahim; Rostaghi, Mostafa [Dept. of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2016-11-15

    In this paper, a Multi-layer perceptron (MLP) neural network was used to predict tool wear in face milling. For this purpose, a series of experiments was conducted using a milling machine on a CK45 work piece. Tool wear was measured by an optical microscope. To improve the accuracy and reliability of the monitoring system, tool wear state was classified into five groups, namely, no wear, slight wear, normal wear, severe wear and broken tool. Experiments were conducted with the aforementioned tool wear states, and different machining conditions and data were extracted. An increase in current amplitude was observed as the tool wear increased. Furthermore, effects of parameters such as tool wear, feed, and cut depth on motor current consumption were analyzed. Considering the complexity of the wear state classification, a multi-layer neural network was used. The root mean square of motor current, feed, cut depth, and tool rpm were chosen as the input and amount of flank wear as the output of MLP. Results showed good performance of the designed tool wear monitoring system.

  8. PERFORMANCE OPTIMIZATION OF LINEAR INDUCTION MOTOR BY EDDY CURRENT AND FLUX DENSITY DISTRIBUTION ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. S. MANNA

    2011-12-01

    Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.

  9. Analytical Method of Malculation of the Current and Torque a Reluctance Stepper Motor via Fourier Series

    Directory of Open Access Journals (Sweden)

    Pavel Zaskalicky

    2008-01-01

    Full Text Available Reluctance stepper motors are becoming to be very attractive transducer to conversion of electric signal to the mechanical position. Due to its simple construction is reluctance machine considered a very reliable machine which not requiring any maintenance. Present paper proposes a mathematical method of an analytical calculus of a phase current and electromagnetic torque of the motor via Fourier series. Saturation effect and winding reluctance are neglected.

  10. In Vivo Neuromechanics : Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function

    NARCIS (Netherlands)

    Sartori, Massimo; Yavuz, Utku; Farina, Dario

    2017-01-01

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system.

  11. Submerged electricity generation plane with marine current-driven motors

    Science.gov (United States)

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  12. Threshold values of ankle dorsiflexion and gross motor function in 60 children with cerebral palsy

    DEFF Research Database (Denmark)

    Rasmussen, Helle M; Svensson, Joachim; Thorning, Maria

    2018-01-01

    Background and purpose - Threshold values defining 3 categories of passive range of motion are used in the Cerebral Palsy follow-Up Program to guide clinical decisions. The aim of this study was to investigate the threshold values by testing the hypothesis that passive range of motion in ankle...... dorsiflexion is associated with gross motor function and that function differs between the groups of participants in each category. Patients and methods - We analyzed data from 60 ambulatory children (aged 5-9 years) with spastic cerebral palsy. Outcomes were passive range of motion in ankle dorsiflexion...... with flexed and extended knee and gross motor function (Gait Deviation Index, Gait Variable Score of the ankle, peak dorsiflexion during gait, 1-minute walk, Gross Motor Function Measure, the Pediatric Quality of Life Inventory Cerebral Palsy Module, and Pediatric Outcomes Data Collection Instrument). Results...

  13. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Kimura Akio

    2010-06-01

    Full Text Available Abstract Background The mu event-related desynchronization (ERD is supposed to reflect motor preparation and appear during motor imagery. The aim of this study is to examine the modulation of ERD with transcranial direct current stimulation (tDCS. Methods Six healthy subjects were asked to imagine their right hand grasping something after receiving a visual cue. Electroencephalograms (EEGs were recorded near the left M1. ERD of the mu rhythm (mu ERD by right hand motor imagery was measured. tDCS (10 min, 1 mA was used to modulate the cortical excitability of M1. Anodal, cathodal, and sham tDCS were tested in each subject with a randomized sequence on different days. Each condition was separated from the preceding one by more than 1 week in the same subject. Before and after tDCS, mu ERD was assessed. The motor thresholds (MT of the left M1 were also measured with transcranial magnetic stimulation. Results Mu ERD significantly increased after anodal stimulation, whereas it significantly decreased after cathodal stimulation. There was a significant correlation between mu ERD and MT. Conclusions Opposing effects on mu ERD based on the orientation of the stimulation suggest that mu ERD is affected by cortical excitability.

  14. Comparison of experimental and theoretical reaction rail currents, rail voltages, and airgap fields for the linear induction motor research vehicle

    Science.gov (United States)

    Elliott, D. G.

    1977-01-01

    Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.

  15. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    Science.gov (United States)

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  16. Calculation of Industrial Power Systems Containing Induction Motors

    Directory of Open Access Journals (Sweden)

    Gheorghe Hazi

    2014-09-01

    Full Text Available The current paper proposes two methods and algorithms for determining the operating regimes of industrial electrical networks which include induction motors. The two methods presented are based on specific principles for calculating electrical networks: Newton-Raphson and Backward-Forward for iteratively determining currents and voltages. The particularity of this paper is how the driven load influences the determination of the motors operating regimes. For the industrial machines driven by motors we take into account the characteristic of the resistant torque depending on speed. In this way, at the electrical busbars to which motors are connected, the active and the reactive power absorbed are calculated as a function of voltage as opposed to a regular consumer busbar. The algorithms for the two methods are presented. Finally, a numerical study for a test network is realized and the convergence is analyzed.

  17. Recycling of electrical motors by automatic disassembly

    Science.gov (United States)

    Karlsson, Björn; Järrhed, Jan-Ove

    2000-04-01

    This paper presents a robotized workstation for end-of-life treatment of electrical motors with an electrical effect of about 1 kW. These motors can, for example, be found in washing machines and in industry. There are two main steps in the work. The first step is an inspection whereby the functionality of the motor is checked and classification either for re-use or for disassembly is done. In the second step the motors classified for disassembly are disassembled in a robotized automatic station. In the initial step measurements are performed during a start-up sequence of about 1 s. By measuring the rotation speed and the current and voltage of the three phases of the motor classification for either reuse or disassembly can be done. During the disassembly work, vision data are fused in order to classify the motors according to their type. The vision system also feeds the control system of the robot with various object co-ordinates, to facilitate correct operation of the robot. Finally, tests with a vision system and eddy-current equipment are performed to decide whether all copper has been removed from the stator.

  18. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  19. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  20. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.

    Directory of Open Access Journals (Sweden)

    Suh Young Jeong

    Full Text Available Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2, which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  1. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  2. Motor and somatosensory conversion disorder: a functional unawareness syndrome?

    Science.gov (United States)

    Perez, David L; Barsky, Arthur J; Daffner, Kirk; Silbersweig, David A

    2012-01-01

    Although conversion disorder is closely connected to the origins of neurology and psychiatry, it remains poorly understood. In this article, the authors discuss neural and clinical parallels between lesional unawareness disorders and unilateral motor and somatosensory conversion disorder, emphasizing functional neuroimaging/disease correlates. Authors suggest that a functional-unawareness neurobiological framework, mediated by right hemisphere-lateralized, large-scale brain network dysfunction, may play a significant role in the neurobiology of conversion disorder. The perigenual anterior cingulate and the posterior parietal cortices are detailed as important in disease pathophysiology. Further investigations will refine the functional-unawareness concept, clarify the role of affective circuits, and delineate the process through which functional neurologic symptoms emerge.

  3. On the relationship between motor performance and executive functioning in children with intellectual disabilities.

    NARCIS (Netherlands)

    Hartman, E.; Houwen, S.; Scherder, E.J.A.; Visscher, C.

    2010-01-01

    Background: It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to

  4. On the relationship between motor performance and executive functioning in children with intellectual disabilities

    NARCIS (Netherlands)

    Hartman, E.; Houwen, S.; Scherder, E.; Visscher, C.

    Background It has been suggested that children with intellectual disabilities (ID) have motor problems and higher-order cognitive deficits. The aim of this study was to examine the motor skills and executive functions in school-age children with borderline and mild ID. The second aim was to

  5. Machinability evaluation of titanium alloys (Part 2)--Analyses of cutting force and spindle motor current.

    Science.gov (United States)

    Kikuchi, Masafumi; Okuno, Osamu

    2004-12-01

    To establish a method of determining the machinability of dental materials for CAD/CAM systems, the machinability of titanium, two titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb), and free-cutting brass was evaluated through cutting force and spindle motor current. The metals were slotted using a milling machine and square end mills at four cutting conditions. Both the static and dynamic components of the cutting force represented well the machinability of the metals tested: the machinability of Ti-6Al-4V and Ti-6Al-7Nb was worse than that of titanium, while that of free-cutting brass was better. On the other hand, the results indicated that the spindle motor current was not sensitive enough to detect the material difference among the titanium and its alloys.

  6. A DESCRIPTIVE STUDY ON THE ASSESSMENT OF FUNCTIONAL MOTOR DISABILITY IN CHILDREN WITH CEREBRAL PALSY

    Directory of Open Access Journals (Sweden)

    Wadugodapitiya .S .I

    2015-08-01

    Full Text Available Background: Cerebral palsy (CP is one of the most common conditions in childhood causing severe physical disability. Spastic paresis is the most common form of CP. According to the topographic classification, CP is divided into spastic hemiplegia, diplegia and quadriplegia. Distribution of functional motor disability is varied in each type of CP. Aims: To describe functional motor disability in children with cerebral palsy using standard scales. Method: This cross-sectional descriptive study included 93 children with cerebral palsy (CP. Functional motor disability of each type of spastic CP was assessed using standard scales. Results: The dominant sub-type of cerebral palsy in the present study was spastic diplegia. Most affected muscle with spasticity was gastrocnemius-soleus group of muscles. Active range of motion of foot eversion and dorsiflexion were the most affected movements in all the types of CP. In the overall sample, only 35% were able to walk independently. Majority of subjects with quadriplegia were in levels III and IV of Gross Motor Functional Classification Scale representing severe disability. There was a significant relationship observed between the muscle tone and range of motion of their corresponding joints as well as between the muscle tone of gastrocnemius-soleus group of muscles and the ankle components of Observational Gait Analysis. Conclusions: Results of the present study confirms the clinical impression of disability levels in each type of CP and showed that the assessment of functional motor disability in children with different types of spastic CP is useful in planning and evaluation of treatment options.

  7. Structurofunctional resting-state networks correlate with motor function in chronic stroke

    Directory of Open Access Journals (Sweden)

    Benjamin T. Kalinosky

    2017-01-01

    Conclusion: The results demonstrate that changes after a stroke in both intrinsic and network-based structurofunctional correlations at rest are correlated with motor function, underscoring the importance of residual structural connectivity in cortical networks.

  8. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Masahiro [Gifu Univ. (Japan). School of Medicine

    1998-09-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with {sup 99m}Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%{Delta}CBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %{Delta}CBF were up 24.1{+-}4.3% in the contra-lateral sensorimotor area, and 22.3{+-}3.6% in the supplementary motor area, respectively. The average %{Delta}CBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  9. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Kawaguchi, Masahiro

    1998-01-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with 99m Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%ΔCBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %ΔCBF were up 24.1±4.3% in the contra-lateral sensorimotor area, and 22.3±3.6% in the supplementary motor area, respectively. The average %ΔCBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  10. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  11. The central role of trunk control in the gross motor function of children with cerebral palsy

    DEFF Research Database (Denmark)

    Curtis, Derek John; Butler, Penny; Saavedra, Sandy

    2015-01-01

    . The participants were tested using the Gross Motor Function Measure (GMFM), the Pediatric Evaluation of Disability Inventory (PEDI), and the Segmental Assessment of Trunk Control (SATCo). Results Linear regression analysis showed a positive relationship between the segmental level of trunk control and age......, with both gross motor function and mobility. Segmental trunk control measured using the SATCo could explain between 38% and 40% of variation in GMFM and between 32% and 37% of variation in PEDI. Interpretation This study suggests a strong association between segmental trunk postural control and gross motor...

  12. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  13. Robust quasi NID current and flux control of an induction motor for position control

    NARCIS (Netherlands)

    van Duijnhoven, M.; Blachuta, M.J.

    1999-01-01

    In the paper, a new control design method called Dynamic Contraction method is applied to the flux and quadrature current robust control of an induction motor operated using the field orientation principle. The resulting input-output decoupled and linearized drive is then used for time-optimal

  14. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Science.gov (United States)

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A comparative study of using spindle motor power and eddy current for the detection of tool conditions in milling processes

    OpenAIRE

    Abbass, JK; Al-Habaibeh, A

    2015-01-01

    This paper investigates the use of the power of the driving motor of a CNC spindle in comparison to two perpendicular eddy current sensors for the detection of tool wear in milling processes. Monitoring the power through the current profile is a low cost system which has been utilised in this study as an attempt to detect the fluctuation in the motor load as a result of the conditions of the cutting tool. Eddy current sensors are dedicated sensors that are installed on the spindle to measure ...

  16. Atypical within- and between-hemisphere motor network functional connections in children with developmental coordination disorder and attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Kevin R. McLeod

    2016-01-01

    Full Text Available Developmental coordination disorder (DCD and attention-deficit hyperactivity disorder (ADHD are highly comorbid neurodevelopmental disorders; however, the neural mechanisms of this comorbidity are poorly understood. Previous research has demonstrated that children with DCD and ADHD have altered brain region communication, particularly within the motor network. The structure and function of the motor network in a typically developing brain exhibits hemispheric dominance. It is plausible that functional deficits observed in children with DCD and ADHD are associated with neurodevelopmental alterations in within- and between-hemisphere motor network functional connection strength that disrupt this hemispheric dominance. We used resting-state functional magnetic resonance imaging to examine functional connections of the left and right primary and sensory motor (SM1 cortices in children with DCD, ADHD and DCD + ADHD, relative to typically developing children. Our findings revealed that children with DCD, ADHD and DCD + ADHD exhibit atypical within- and between-hemisphere functional connection strength between SM1 and regions of the basal ganglia, as well as the cerebellum. Our findings further support the assertion that development of atypical motor network connections represents common and distinct neural mechanisms underlying DCD and ADHD. In children with DCD and DCD + ADHD (but not ADHD, a significant correlation was observed between clinical assessment of motor function and the strength of functional connections between right SM1 and anterior cingulate cortex, supplementary motor area, and regions involved in visuospatial processing. This latter finding suggests that behavioral phenotypes associated with atypical motor network development differ between individuals with DCD and those with ADHD.

  17. The Functional Organization and Cortical Connections of Motor Cortex in Squirrels

    Science.gov (United States)

    Cooke, Dylan F.; Padberg, Jeffrey; Zahner, Tony

    2012-01-01

    Despite extraordinary diversity in the rodent order, studies of motor cortex have been limited to only 2 species, rats and mice. Here, we examine the topographic organization of motor cortex in the Eastern gray squirrel (Sciurus carolinensis) and cortical connections of motor cortex in the California ground squirrel (Spermophilus beecheyi). We distinguish a primary motor area, M1, based on intracortical microstimulation (ICMS), myeloarchitecture, and patterns of connectivity. A sensorimotor area between M1 and the primary somatosensory area, S1, was also distinguished based on connections, functional organization, and myeloarchitecture. We term this field 3a based on similarities with area 3a in nonrodent mammals. Movements are evoked with ICMS in both M1 and 3a in a roughly somatotopic pattern. Connections of 3a and M1 are distinct and suggest the presence of a third far rostral field, termed “F,” possibly involved in motor processing based on its connections. We hypothesize that 3a is homologous to the dysgranular zone (DZ) in S1 of rats and mice. Our results demonstrate that squirrels have both similar and unique features of M1 organization compared with those described in rats and mice, and that changes in 3a/DZ borders appear to have occurred in both lineages. PMID:22021916

  18. Effects of 2-Year Cognitive⁻Motor Dual-Task Training on Cognitive Function and Motor Ability in Healthy Elderly People: A Pilot Study.

    Science.gov (United States)

    Morita, Emiko; Yokoyama, Hisayo; Imai, Daiki; Takeda, Ryosuke; Ota, Akemi; Kawai, Eriko; Suzuki, Yuta; Okazaki, Kazunobu

    2018-05-11

    We aimed to examine the effect of 2-year cognitive⁻motor dual-task (DT) training on cognitive functions and motor ability of healthy elderly people without marked cognitive impairment. From the 25 participants of our 12-week DT trial conducted in 2014, we recruited 8 subjects who voluntarily participated in a new DT training program once a week for 2 years (exercise (EX) group). Their cognitive functions were evaluated by the Modified Mini-Mental State (3MS) examination and the Trail Making Test, and results were compared with those of the 11 subjects who discontinued the training and did not perform any types of exercise for 2 years (non-exercise (NO) group). Subjects in the NO group showed deterioration in the 3MS examination results, especially in the cognitive domain of attention. Meanwhile, participation in DT training maintained the scores in almost all domains of cognitive function, as well as the total 3MS scores. However, both groups had impaired quadriceps muscle strength and motor ability after the 2-year observation period. These results suggest that participating in exercise program comprising DT training for 2 years may be beneficial for maintaining the broad domains of cognitive function in healthy elderly people, although further verification is needed.

  19. Effects of 2-Year Cognitive–Motor Dual-Task Training on Cognitive Function and Motor Ability in Healthy Elderly People: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Emiko Morita

    2018-05-01

    Full Text Available We aimed to examine the effect of 2-year cognitive–motor dual-task (DT training on cognitive functions and motor ability of healthy elderly people without marked cognitive impairment. From the 25 participants of our 12-week DT trial conducted in 2014, we recruited 8 subjects who voluntarily participated in a new DT training program once a week for 2 years (exercise (EX group. Their cognitive functions were evaluated by the Modified Mini-Mental State (3MS examination and the Trail Making Test, and results were compared with those of the 11 subjects who discontinued the training and did not perform any types of exercise for 2 years (non-exercise (NO group. Subjects in the NO group showed deterioration in the 3MS examination results, especially in the cognitive domain of attention. Meanwhile, participation in DT training maintained the scores in almost all domains of cognitive function, as well as the total 3MS scores. However, both groups had impaired quadriceps muscle strength and motor ability after the 2-year observation period. These results suggest that participating in exercise program comprising DT training for 2 years may be beneficial for maintaining the broad domains of cognitive function in healthy elderly people, although further verification is needed.

  20. Rotor position sensor switches currents in brushless dc motors

    Science.gov (United States)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  1. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Science.gov (United States)

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  2. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.

    Science.gov (United States)

    Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia

    2016-01-01

    In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A novel wireless recording and stimulating multichannel epicortical grid for supplementing or enhancing the sensory-motor functions in monkey (Macaca fascicularis

    Directory of Open Access Journals (Sweden)

    Antonio Giuliano Zippo

    2015-05-01

    Full Text Available Artificial brain-machine interfaces (BMIs represent a prospective step forward supporting or replacing faulty brain functions. So far, several obstacles, such as the energy supply, the portability and the biocompatibility, have been limiting their effective translation in advanced experimental or clinical applications. In this work, a novel 16 channel chronically implantable epicortical grid has been proposed. It provides wireless transmission of cortical recordings and stimulations, with induction current recharge. The grid has been chronically implanted in a non-human primate (Macaca fascicularis and placed over the somato-motor cortex such that 13 electrodes recorded or stimulated the primary motor cortex and 3 the primary somatosensory cortex, in the deeply anaesthetized animal. Cortical sensory and motor recordings and stimulations have been performed within 3 months from the implant. In detail, by delivering motor cortex epicortical single spot stimulations (1 to 8V, 1 to 10 Hz, 500ms, biphasic waves, we analyzed the motor topographic precision, evidenced by tunable finger or arm movements of the anesthetized animal. The responses to light mechanical peripheral sensory stimuli (blocks of 100 stimuli, each single stimulus being < 1ms and interblock intervals of 1.5 to 4 s have been analyzed. We found 150 to 250ms delayed cortical responses from fast finger touches, often spread to nearby motor stations. We also evaluated the grid electrical stimulus interference with somatotopic natural tactile sensory processing showing no suppressing interference with sensory stimulus detection. In conclusion, we propose a chronically implantable epicortical grid which can accommodate most of current technological restrictions, representing an acceptable candidate for BMI experimental and clinical uses.

  4. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Utsunomiya, A.

    2007-01-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor

  5. HTS flywheel energy storage system with rotor shaft stabilized by feed-back control of armature currents of motor-generator

    Science.gov (United States)

    Tsukamoto, O.; Utsunomiya, A.

    2007-10-01

    We propose an HTS bulk bearing flywheel energy system (FWES) with rotor shaft stabilization system using feed-back control of the armature currents of the motor-generator. In the proposed system the rotor shift has a pivot bearing at one end of the shaft and an HTS bulk bearing (SMB) at the other end. The fluctuation of the rotor shaft with SMB is damped by feed-back control of the armature currents of the motor-generator sensing the position of the rotor shaft. The method has merits that the fluctuations are damped without active control magnet bearings and extra devices which may deteriorate the energy storage efficiency and need additional costs. The principle of the method was demonstrated by an experiment using a model permanent magnet motor.

  6. Safety aspects of postanesthesia care unit discharge without motor function assessment after spinal anesthesia

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg

    2017-01-01

    Background: Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to signifcantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations...... or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignifcant tendency toward increased adverse events during the frst 24h in the ward was discovered, further safety data are needed in patients without...

  7. Magnetic Field Equivalent Current Analysis-Based Radial Force Control for Bearingless Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2015-05-01

    Full Text Available Bearingless permanent magnet synchronous motors (BPMSMs, with all advantages of permanent magnet motors (PMSMs and magnetic bearings, have become an important research direction in the bearingless motor field. To realize a stable suspension for the BPMSM, accurate decoupling control between the electromagnetic torque and radial suspension force is indispensable. In this paper, a concise and reliable analysis method based on a magnetic field equivalent current is presented. By this analysis method, the operation principle is analyzed theoretically, and the necessary conditions to produce a stable radial suspension force are confirmed. In addition, mathematical models of the torque and radial suspension force are established which is verified by the finite element analysis (FEA software ANSYS. Finally, an experimental prototype of a 2-4 poles surface-mounted BPMSM is tested with the customized control strategy. The simulation and experimental results have shown that the motor has good rotation and suspension performance, and validated the accuracy of the proposed analysis method and the feasibility of the control strategy.

  8. Does Parent Report Gross Motor Function Level of Cerebral Palsy Children Impact on the Quality of Life in these Children?

    Science.gov (United States)

    Pashmdarfard, Marzieh; Amini, Malek; Badv, Reza Shervin; Ghaffarzade Namazi, Narges; Rassafiani, Mehdi

    2017-01-01

    The aim of this study was to assess the effect of parent report gross motor function level of cerebral palsy (CP) children on the parent report quality of life of CP children. Sampling of this cross-sectional study was done in occupational therapy clinics and CP children's schools in 2016 in Zanjan, Iran. Samples size was 60 CP children aged 6-12 yr and for sampling method, a non-probability convenience was used. For assessing the quality of life of CP children the cerebral palsy quality of life (CP QOL) questionnaire and for assessing the level of gross motor function of CP children the Gross Motor Function Classification System Family Report Questionnaire (GMFCSFRQ) were used. The average age of children (22 males and 30 females) was 8.92 yr old (minimum 6 yr and maximum 12 yr). The relationship between the level of gross motor function and participation and physical health was direct and significant (r=0.65). The relationship between functioning, access to services and family health with the level of gross motor function was direct but was not significant ( P >0.05) and the relationship between pain and impact of disability and emotional well-being with the level of gross motor function was significant ( P quality of life of children with cerebral palsy. It means that the level of gross motor function cannot be used as a predictor of quality of life for children with cerebral palsy alone.

  9. Does early communication mediate the relationship between motor ability and social function in children with cerebral palsy?

    Science.gov (United States)

    Lipscombe, Belinda; Boyd, Roslyn N; Coleman, Andrea; Fahey, Michael; Rawicki, Barry; Whittingham, Koa

    2016-01-01

    Children diagnosed with neurodevelopmental conditions such as cerebral palsy (CP) are at risk of experiencing restrictions in social activities negatively impacting their subsequent social functioning. Research has identified motor and communication ability as being unique determinants of social function capabilities in children with CP, to date, no research has investigated whether communication is a mediator of the relationship between motor ability and social functioning. To investigate whether early communication ability at 24 months corrected age (ca.) mediates the relationship between early motor ability at 24 months ca. and later social development at 60 months ca. in a cohort of children diagnosed with cerebral palsy (CP). A cohort of 71 children (43 male) diagnosed with CP (GMFCS I=24, 33.8%, II=9, 12.7%, III=12, 16.9%, IV=10, 14.1%, V=16, 22.5%) were assessed at 24 and 60 months ca. Assessments included the Gross Motor Function Measure (GMFM), the Communication and Symbolic Behaviour Scales-Developmental Profile (CSBS-DP) Infant-Toddler Checklist and the Paediatric Evaluation of Disability Inventory (PEDI). A mediation model was examined using bootstrapping. Early communication skills mediated the relationship between early motor abilities and later social functioning, b=0.24 (95% CI=0.08-0.43 and the mediation model was significant, F (2, 68)=32.77, pcommunication ability partially mediates the relationship between early motor ability and later social function in children with CP. This demonstrates the important role of early communication in ongoing social development. Early identification of communication delay and enriched language exposure is crucial in this population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional Analysis Identified Habit Reversal Components for the Treatment of Motor Tics

    Science.gov (United States)

    Dufrene, Brad A.; Harpole, Lauren Lestremau; Sterling, Heather E.; Perry, Erin J.; Burton, Britney; Zoder-Martell, Kimberly

    2013-01-01

    This study included brief functional analyses and treatment for motor tics exhibited by two children with Tourette Syndrome. Brief functional analyses were conducted in an outpatient treatment center and results were used to develop individualized habit reversal procedures. Treatment data were collected in clinic for one child and in clinic and…

  11. Factors predicting the instant effect of motor function after subthalamic nucleus deep brain stimulation in Parkinson's disease.

    Science.gov (United States)

    Su, Xin-Ling; Luo, Xiao-Guang; Lv, Hong; Wang, Jun; Ren, Yan; He, Zhi-Yi

    2017-01-01

    Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for Parkinson's disease (PD), the predictive effect of levodopa responsiveness on surgical outcomes was confirmed by some studies, however there were different conclusions about that through long- and short-term follow-ups. We aimed to investigate the factors which influence the predictive value of levodopa responsiveness, and discover more predictive factors of surgical outcomes. Twenty-three PD patients underwent bilateral STN-DBS and completed our follow-up. Clinical evaluations were performed 1 week before and 3 months after surgery. STN-DBS significantly improved motor function of PD patients after 3 months; preoperative levodopa responsiveness and disease subtype predicted the effect of DBS on motor function; gender, disease duration and duration of motor fluctuations modified the predictive effect of levodopa responsiveness on motor improvement; the duration of motor fluctuations and severity of preoperative motor symptoms modified the predictive effect of disease subtype on motor improvement. The intensity of levodopa responsiveness served as a predictor of motor improvement more accurately in female patients, patients with shorter disease duration or shorter motor fluctuations; PD patients with dominant axial symptoms benefit less from STN-DBS compared to those with limb-predominant symptoms, especially in their later disease stage.

  12. The functional implications of motor, cognitive, psychiatric, and social problem-solving states in Huntington's disease.

    Science.gov (United States)

    Van Liew, Charles; Gluhm, Shea; Goldstein, Jody; Cronan, Terry A; Corey-Bloom, Jody

    2013-01-01

    Huntington's disease (HD) is a genetic, neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction. In HD, the inability to solve problems successfully affects not only disease coping, but also interpersonal relationships, judgment, and independent living. The aim of the present study was to examine social problem-solving (SPS) in well-characterized HD and at-risk (AR) individuals and to examine its unique and conjoint effects with motor, cognitive, and psychiatric states on functional ratings. Sixty-three participants, 31 HD and 32 gene-positive AR, were included in the study. Participants completed the Social Problem-Solving Inventory-Revised: Long (SPSI-R:L), a 52-item, reliable, standardized measure of SPS. Items are aggregated under five scales (Positive, Negative, and Rational Problem-Solving; Impulsivity/Carelessness and Avoidance Styles). Participants also completed the Unified Huntington's Disease Rating Scale functional, behavioral, and cognitive assessments, as well as additional neuropsychological examinations and the Symptom Checklist-90-Revised (SCL-90R). A structural equation model was used to examine the effects of motor, cognitive, psychiatric, and SPS states on functionality. The multifactor structural model fit well descriptively. Cognitive and motor states uniquely and significantly predicted function in HD; however, neither psychiatric nor SPS states did. SPS was, however, significantly related to motor, cognitive, and psychiatric states, suggesting that it may bridge the correlative gap between psychiatric and cognitive states in HD. SPS may be worth assessing in conjunction with the standard gamut of clinical assessments in HD. Suggestions for future research and implications for patients, families, caregivers, and clinicians are discussed.

  13. Abnormal functional connectivity and cortical integrity influence dominant hand motor disability in multiple sclerosis: a multimodal analysis.

    Science.gov (United States)

    Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa

    2016-12-01

    Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  15. Enantiopure Functional Molecular Motors Obtained by a Switchable Chiral-Resolution Process

    NARCIS (Netherlands)

    van Leeuwen, Thomas; Gan, Jefri; Kistemaker, Jos C. M.; Pizzolato, Stefano F.; Chang, Mu-Chieh; Feringa, Ben L.

    2016-01-01

    Molecular switches, rotors, and motors play an important role in the development of nano-machines and devices, as well as responsive and adaptive functional materials. For unidirectional rotors based on chiral overcrowded alkenes, their stereochemical homogeneity is of crucial importance. Herein, a

  16. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  17. Spinal Metaplasticity in Respiratory Motor Control

    Directory of Open Access Journals (Sweden)

    Gordon S Mitchell

    2015-02-01

    Full Text Available A hallmark feature of the neural system controlling breathing is its ability to exhibit plasticity. Less appreciated is the ability to exhibit metaplasticity, a change in the capacity to express plasticity (ie. plastic plasticity. Recent advances in our understanding of cellular mechanisms giving rise to respiratory motor plasticity lay the groundwork for (ongoing investigations of metaplasticity. This detailed understanding of respiratory metaplasticity will be essential as we harness metaplasticity to restore breathing capacity in clinical disorders that compromise breathing, such as cervical spinal injury, motor neuron disease and other neuromuscular diseases. In this brief review, we discuss key examples of metaplasticity in respiratory motor control, and our current understanding of mechanisms giving rise to spinal plasticity and metaplasticity in phrenic motor output; particularly after pre-conditioning with intermittent hypoxia. Progress in this area has led to the realization that similar mechanisms are operative in other spinal motor networks, including those governing limb movement. Further, these mechanisms can be harnessed to restore respiratory and non-respiratory motor function after spinal injury.

  18. Effects of somatosensory electrical stimulation on motor function and cortical oscillations.

    Science.gov (United States)

    Tu-Chan, Adelyn P; Natraj, Nikhilesh; Godlove, Jason; Abrams, Gary; Ganguly, Karunesh

    2017-11-13

    Few patients recover full hand dexterity after an acquired brain injury such as stroke. Repetitive somatosensory electrical stimulation (SES) is a promising method to promote recovery of hand function. However, studies using SES have largely focused on gross motor function; it remains unclear if it can modulate distal hand functions such as finger individuation. The specific goal of this study was to monitor the effects of SES on individuation as well as on cortical oscillations measured using EEG, with the additional goal of identifying neurophysiological biomarkers. Eight participants with a history of acquired brain injury and distal upper limb motor impairments received a single two-hour session of SES using transcutaneous electrical nerve stimulation. Pre- and post-intervention assessments consisted of the Action Research Arm Test (ARAT), finger fractionation, pinch force, and the modified Ashworth scale (MAS), along with resting-state EEG monitoring. SES was associated with significant improvements in ARAT, MAS and finger fractionation. Moreover, SES was associated with a decrease in low frequency (0.9-4 Hz delta) ipsilesional parietomotor EEG power. Interestingly, changes in ipsilesional motor theta (4.8-7.9 Hz) and alpha (8.8-11.7 Hz) power were significantly correlated with finger fractionation improvements when using a multivariate model. We show the positive effects of SES on finger individuation and identify cortical oscillations that may be important electrophysiological biomarkers of individual responsiveness to SES. These biomarkers can be potential targets when customizing SES parameters to individuals with hand dexterity deficits. NCT03176550; retrospectively registered.

  19. Note: Cryogenic heat switch with stepper motor actuator

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, B. S., E-mail: bsmelche@syr.edu; Timbie, P. T., E-mail: pttimbie@wisc.edu [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-12-15

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an “on state” thermal conductance of 5.04 mW/K and no conductance in the “off state.” The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  20. [Intraoperative magnetic resonance imaging-guided functional neuronavigation plus intraoperative neurophysiological monitoring for microsurgical resection of lesions involving hand motor area].

    Science.gov (United States)

    Miao, Xing-lu; Chen, Zhi-juan; Yang, Wei-dong; Wang, Zeng-guang; Yu, Qing; Yue, Shu-yuan; Zhang, Jian-ning

    2013-01-15

    To explore the methods and applications of intraoperative magnetic resonance imaging (iMRI)-guided functional neuronavigation plus intraoperative neurophysiological monitoring (IONM) for microsurgical resection of lesions involving hand motor area. A total of 16 patients with brain lesions adjacent to hand motor area were recruited from January 2011 to April 2012. All of them underwent neuronavigator-assisted microsurgery. Also IONM was conducted to further map hand motor area and epileptogenic focus. High-field iMRI was employed to update the anatomical and functional imaging date and verify the extent of lesion resection. Brain shifting during the functional neuronavigation was corrected by iMRI in 5 patients. Finally, total lesion resection was achieved in 13 cases and subtotal resection in 3 cases. At Months 3-12 post-operation, hand motor function improved (n = 10) or remained unchanged (n = 6). None of them had persistent neurological deficit. The postoperative seizure improvement achieved Enge II level or above in 9 cases of brain lesions complicated with secondary epilepsy. Intraoperative MRI, functional neuronavigation and neurophysiological monitoring technique are complementary in microsurgery of brain lesions involving hand motor area. Combined use of these techniques can obtain precise location of lesions and hand motor functional structures and allow a maximum resection of lesion and minimization of postoperative neurological deficits.

  1. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    International Nuclear Information System (INIS)

    Morioka, T.; Fujii, K.; Fukui, M.; Mizushima, A.; Matsumoto, S.; Hasuo, K.; Yamamoto, T.; Tobimatsu, S.

    1995-01-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  2. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  3. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    Science.gov (United States)

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  4. The role of textured material in supporting perceptual-motor functions.

    Directory of Open Access Journals (Sweden)

    Dominic Orth

    Full Text Available Simple deformation of the skin surface with textured materials can improve human perceptual-motor performance. The implications of these findings are inexpensive, adaptable and easily integrated clothing, equipment and tools for improving perceptual-motor functionality. However, some clarification is needed because mixed results have been reported in the literature, highlighting positive, absent and/or negative effects of added texture on measures of perceptual-motor performance. Therefore the aim of this study was to evaluate the efficacy of textured materials for enhancing perceptual-motor functionality. The systematic review uncovered two variables suitable for sub-group analysis within and between studies: participant age (groupings were 18-51 years and 64.7-79.4 years and experimental task (upright balance and walking. Evaluation of studies that observed texture effects during upright balance tasks, uncovered two additional candidate sub-groups for future work: vision (eyes open and eyes closed and stability (stable and unstable. Meta-analysis (random effects revealed that young participants improve performance by a small to moderate amount in upright balance tasks with added texture (SMD = 0.28, 95%CI = 0.46-0.09, Z = 2.99, P = 0.001; Tau(2 = 0.02; Chi(2 = 9.87, df = 6, P = 0.13; I(2 = 39.22. Significant heterogeneity was found in, the overall effect of texture: Tau(2 = 0.13; Chi(2 = 130.71, df = 26, P<0.0001; I(2 = 85.98%, pooled samples in upright balance tasks: Tau(2 = 0.09; Chi(2 = 101.57, df = 13, P<0.001; I(2 = 72.67%, and in elderly in upright balance tasks: Tau(2 = 0.16; Chi(2 = 39.42, df = 5, P<0.001; I(2 = 83.05%. No effect was shown for walking tasks: Tau(2 = 0.00; Chi(2 = 3.45, df = 4, P = 0.27, I(2 = 22.99%. Data provides unequivocal support for utilizing textured materials in young healthy populations for improving

  5. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Rasouli O

    2017-02-01

    Full Text Available Omid Rasouli,1,2 Egil A Fors,3 Petter Chr Borchgrevink,4,5 Fredrik Öhberg,6 Ann-Katrin Stensdotter1 1Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; 2Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; 3Department of Public Health and Nursing, General Practice Research Unit, Norwegian University of Science and Technology, Trondheim, Norway; 4Department of Circulation and Medical Imaging, Pain and Palliation Research Group, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; 5National Competence Centre for Complex Symptom Disorders, St. Olav’s University Hospital, Trondheim, Norway; 6Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden Purpose: This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT and movement skill, in patients with fibromyalgia (FM and chronic fatigue syndrome (CFS compared to healthy controls (HC.Methods: A total of 60 individuals (20 CFS, 20 FM, and 20 HC, age 19–49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test where the number of pins inserted within 30 s was counted.Results: No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation (p=0.001, and p=0.004 respectively. In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no

  6. Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors

    Directory of Open Access Journals (Sweden)

    Yanran Li

    2017-03-01

    Full Text Available Quantitative evaluation of motor function is of great demand for monitoring clinical outcome of applied interventions and further guiding the establishment of therapeutic protocol. This study proposes a novel framework for evaluating upper limb motor function based on data fusion from inertial measurement units (IMUs and surface electromyography (EMG sensors. With wearable sensors worn on the tested upper limbs, subjects were asked to perform eleven straightforward, specifically designed canonical upper-limb functional tasks. A series of machine learning algorithms were applied to the recorded motion data to produce evaluation indicators, which is able to reflect the level of upper-limb motor function abnormality. Sixteen healthy subjects and eighteen stroke subjects with substantial hemiparesis were recruited in the experiment. The combined IMU and EMG data yielded superior performance over the IMU data alone and the EMG data alone, in terms of decreased normal data variation rate (NDVR and improved determination coefficient (DC from a regression analysis between the derived indicator and routine clinical assessment score. Three common unsupervised learning algorithms achieved comparable performance with NDVR around 10% and strong DC around 0.85. By contrast, the use of a supervised algorithm was able to dramatically decrease the NDVR to 6.55%. With the proposed framework, all the produced indicators demonstrated high agreement with the routine clinical assessment scale, indicating their capability of assessing upper-limb motor functions. This study offers a feasible solution to motor function assessment in an objective and quantitative manner, especially suitable for home and community use.

  7. Structural and functional brain signatures of C9orf72 in motor neuron disease.

    Science.gov (United States)

    Agosta, Federica; Ferraro, Pilar M; Riva, Nilo; Spinelli, Edoardo Gioele; Domi, Teuta; Carrera, Paola; Copetti, Massimiliano; Falzone, Yuri; Ferrari, Maurizio; Lunetta, Christian; Comi, Giancarlo; Falini, Andrea; Quattrini, Angelo; Filippi, Massimo

    2017-09-01

    This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Parameter Estimation of Inverter and Motor Model at Standstill using Measured Currents Only

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Knudsen, Morten; Tønnes, M.

    1996-01-01

    Methods for estimation of the parameters in the electrical equivalent diagram for the induction motor, based on special designed experiments, are given. In all experriments two of the three phases are given the same potential, i.e., no net torque is generatedand the motor is at standstill. Input...... and 3) the referred rotor rotor resistance and magnetizing inductance. The method developed in the two last experiments is independent of the inverter nonlinearity. New methods for system identification concerning saturation of the magnetic flux are given and a reference value for the flux level...... to the system is the reference values for the stator voltages given as duty cycles for the Pulse With Modulated power device. The system output is the measured stator currents. Three experiments are describedgiving respectively 1) the stator resistance and inverter parameters, 2) the stator transient inductance...

  9. Correlation between cognitive function, gross motor skills and health – Related quality of life in children with Down syndrome

    Directory of Open Access Journals (Sweden)

    Saly Said Abd El-Hady

    2018-04-01

    Full Text Available Background: Children with Down syndrome (DS have delayed motor and cognitive development and have problems in health related quality of life (HRQOL. Purpose: To evaluate the correlation between cognitive function; attention/concentration, gross motor skills; standing and walking, running, jumping domains and HRQOL in children with DS. Subjects and methods: Seventy children with DS of both sexes (37 boys and 33 girls were selected from El Tarbia El Fekria School for children with Special Needs and Education and National Institute of neuro motor system. They were selected to be ranged in age from 8 to 12 years and to be free from visual, hearing or perceptual problems. They were divided into two age groups; group A (8–10 years, and group B (10–12 years. The Rehacom was used to evaluate the cognitive function (attention/concentration, the Gross Motor Function Measure-88 (GMFM-88 was used to evaluate the gross motor skills and the Pediatric quality of life inventory parent-proxy report (PedsQL TM was used to evaluate the HRQOL. Results: There was a weak to moderate correlation between the cognitive function, GMFM and HRQOL in both age groups. The level of difficulty of attention/concentration was moderate, positively and significantly correlated with GMFM; standing and walking, running, jumping domains in both age groups. There was a moderate, positive and significant correlation was found between the physical score of HRQOL and walking, running, jumping domain in age group B and between the psychosocial score of HRQOL and standing domain in age group A. Conclusion: The cognitive function and HRQOL should be considered in the evaluation of children with DS in addition to gross motor skills as there was a correlation between the cognitive function, HRQOL and GMFM. Keywords: Cognitive function, Gross motor skills, Health – related quality of life, Down syndrome children

  10. Development of Interior Permanent Magnet Motors with Concentrated Windings for Reducing Magnet Eddy Current Loss

    Science.gov (United States)

    Yamazaki, Katsumi; Kanou, Yuji; Fukushima, Yu; Ohki, Shunji; Nezu, Akira; Ikemi, Takeshi; Mizokami, Ryoichi

    In this paper, we present the development of interior magnet motors with concentrated windings, which reduce the eddy current loss of the magnets. First, the mechanism of the magnet eddy current loss generation is investigated by a simple linear magnetic circuit. Due to the consideration, an automatic optimization method using an adaptive finite element method is carried out to determine the stator and rotor shapes, which decrease the eddy current loss of the magnet. The determined stator and rotor are manufactured in order to proof the effectiveness by the measurement.

  11. Corticospinal tract integrity and motor function following neonatal stroke: a case study

    Directory of Open Access Journals (Sweden)

    Gordon Anne L

    2012-07-01

    Full Text Available Abstract Background New MRI techniques enable visualisation of corticospinal tracts and cortical motor activity. The objective of this case study was to describe the magnetic resonance evidence of corticospinal pathway reorganisation following neonatal stroke. Case presentation An 11 year old boy with a neonatal right middle cerebral artery territory ischaemic stroke was studied. Functional MRI was undertaken with a whole hand squeezing task, comparing areas of cortical activation between hands. White matter tracts, seeded from the area of peak activation in the cortex, were visualised using a diffusion weighted imaging probabilistic tractography method. Standardised evaluations of unilateral and bilateral motor function were undertaken. Clinically, the child presented with a left hemiparesis. Functional MRI demonstrated that movement of the hemiparetic hand resulted in activation in the ipsi-lesional (right hemisphere only. Diffusion tractography revealed pathways in the right (lesioned hemisphere tracked perilesionally to the cortical area identified by functional MRI. Conclusion Our case demonstrates that neonatal stroke is associated with maintenance of organization of corticospinal pathways sufficient to maintain some degree of hand function in the affected hemisphere. Functional MRI and diffusion weighted imaging tractography may inform our understanding of recovery, organisation and reorganisation and have the potential to monitor responses to intervention following neonatal stroke.

  12. Schizotypal Personality Traits and Atypical Lateralization in Motor and Language Functions

    Science.gov (United States)

    Asai, Tomohisa; Sugimori, Eriko; Tanno, Yoshihiko

    2009-01-01

    Atypical cerebral lateralization in motor and language functions in regard to schizotypal personality traits in healthy populations, as well as among schizophrenic patients, has attracted attention because these traits may represent a risk factor for schizophrenia. Although the relationship between handedness and schizotypal personality has been…

  13. Assessment of the pyramidal tract by diffusion tensor analysis in brain hemorrhage patients for motor function prognosis

    International Nuclear Information System (INIS)

    Kawamo, Michiaki; Abe, Takumi; Izumiyama, Hitoshi

    2008-01-01

    In patients with brain hemorrhage, the entire visualized pyramidal tract was established as an area of interest (ROI). Its Fractional Anisotropy (FA) value was determined by diffusion tensor analysis (DTA), and its relationship to motor function at the onset and three months later was investigated. In 30 patients with brain hemorrhage accompanying paralysis, MRI was performed during the subacute phase (6-14 days after onset). In addition, using a workstation, DTA was performed in order to visualize the pyramidal tract. The FA of the ROI was measured on the affected and unaffected sides, and as previously reported, the ratio of FA in the affected and unaffected sides was calculated. Subsequently, we examined the relationship between the FA ratio and motor function prognosis. Motor function prognosis was assessed based on the sum of the Brunnstrom stage at the onset and three months later. A strong correlation coefficient existed between the FA ratio of the entire pyramidal tract and the sum of the Brunnstrom stage three months after onset (0.74, p<0.001), and prognosis of motor function tended to improve in patients with FA ratios of 0.95 or higher. Patients with mild paralysis were identified in order to ascertain the degree of improvement in paralysis, and a significant correlation between the FA ratio of the entire pyramidal tract and the degree of improvement in the Brunnstrom stage was observed (correlation coefficient 0.77, p<0.001). When compared to putamen hemorrhage, the FA ratio affected the prognosis of paralysis more in thalamic hemorrhage. The results suggest that in patients with an FA ratio of 1.0, the recovery rate of paralysis three months after onset is markedly high. In brain hemorrhage patients, a reduction in the FA ratio of the entire pyramidal tract was correlated with the functional prognosis of motor paralysis, and in thalamic hemorrhage, it may be possible to predict motor function based on FA ratios. Hence, the DTA of the pyramidal tract

  14. Meta-analyses of cognitive and motor function in youth aged 16 years and younger who subsequently develop schizophrenia.

    Science.gov (United States)

    Dickson, H; Laurens, K R; Cullen, A E; Hodgins, S

    2012-04-01

    Previous reviews have reported cognitive and motor deficits in childhood and adolescence among individuals who later develop schizophrenia. However, these reviews focused exclusively on studies of individuals with affected relatives or on population/birth cohorts, incorporated studies with estimated measures of pre-morbid intelligence, or included investigations that examined symptomatic at-risk participants or participants 18 years or older. Thus, it remains unclear whether cognitive and motor deficits constitute robust antecedents of schizophrenia. Meta-analyses were conducted on published studies that examined cognitive or motor function in youth aged 16 years or younger who later developed schizophrenia or a schizophrenia spectrum disorder (SSD) and those who did not. Twenty-three studies fulfilled the following inclusion criteria: (1) written in English; (2) prospective investigations of birth or genetic high-risk cohorts, or follow-back investigations of population samples; (3) objective measures of cognitive or motor performance at age 16 or younger; (4) results provided for individuals who did and who did not develop schizophrenia/SSD later in life; and (5) sufficient data to calculate effect sizes. Four domains of function were examined: IQ; Motor Function; General Academic Achievement; and Mathematics Achievement. Meta-analyses showed that, by age 16, individuals who subsequently developed schizophrenia/SSD displayed significant deficits in IQ (d=0.51) and motor function (d=0.56), but not in general academic achievement (d=0.25) or mathematics achievement (d=0.21). Subsidiary analysis indicated that the IQ deficit was present by age 13. These results demonstrate that deficits in IQ and motor performance precede the prodrome and the onset of illness.

  15. Motor assessment in Parkinson`s disease.

    Science.gov (United States)

    Opara, Józef; Małecki, Andrzej; Małecka, Elżbieta; Socha, Teresa

    2017-09-21

    Parkinson's disease (PD) is one of most disabling disorders of the central nervous system. The motor symptoms of Parkinson's disease: shaking, rigidity, slowness of movement, postural instability and difficulty with walking and gait, are difficult to measure. When disease symptoms become more pronounced, the patient experiences difficulties with hand function and walking, and is prone to falls. Baseline motor impairment and cognitive impairment are probable predictors of more rapid motor decline and disability. An additional difficulty is the variability of the symptoms caused by adverse effects of drugs, especially levodopa. Motor assessment of Parkinson`s Disease can be divided into clinimetrics, assessment of balance and posture, arm and hand function, and gait/walking. These are many clinimetric scales used in Parkinson`s Disease, the most popular being the Hoehn and Yahr stages of progression of the disease and Unified Parkinson's Disease Rating Scale. Balance and posture can be assessed by clinimetric scales like the Berg BS, Tinetti, Brunel BA, and Timed Up and Go Test, or measured by posturometric platforms. Among skill tests, the best known are: the Purdue Pegboard Test, Nine-Hole Peg Test, Jebsen and Taylor test, Pig- Tail Test, Frenchay Arm Test, Action Research Arm Test, Wolf FMT and Finger-Tapping Test. Among motricity scales, the most popular are: the Fugl-Meyer Motor Assessment Scale and Södring Motor Evaluation. Gait and walking can also be assessed quantitatively and qualitatively. Recently, the most popular is three-dimensional analysis of movement. This review article presents the current possibilities of motor assessment in Parkinson`s disease.

  16. Motor performance and functional ability in preschool- and early school-aged children with Juvenile Idiopathic Arthritis: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Takken Tim

    2008-01-01

    Full Text Available Abstract Objective To describe the level of motor performance and functional skills in young children with JIA. Methods In a cross-sectional study in 56 preschool-aged (PSA and early school- aged children (ESA with JIA according to ILAR classification, motor performance was measured with the Bayley Scales of Infant Development II (BSID2 and the Movement Assessment Battery for Children (M-ABC. Functional skills were measured with the Pediatric Evaluation of Disability Inventory (PEDI. Disease outcome was measured with a joint count on swelling/range of joint motion, functional ability and joint pain. Results Twenty two PSA children (mean age 2.1 years with a mean Developmental Index of the BSID2 of 77.9 indicating a delayed motor performance; 45% of PSA children showed a severe delayed motor performance. Mean PEDI scores were normal, 38% of PSA scored below -2 SD in one or more domains of the PEDI. Thirty four ESA children (mean age 5.2 years with a mean M-ABC 42.7, indicating a normal motor performance, 12% of ESA children had an abnormal score. Mean PEDI scores showed impaired mobility skills, 70% of ESA children scored below -2 SD in one or more domains of the PEDI. Disease outcome in both age groups demonstrated low to moderate scores. Significant correlations were found between age at disease onset, disease duration and BSID2 or M-ABC and between disease outcome and PEDI in both age cohorts. Conclusion More PSA children have more impaired motor performance than impaired functional skills, while ESA children have more impairment in functional skills. Disease onset and disease duration are correlated with motor performance in both groups. Impaired motor performance and delayed functional skills is primarily found in children with a polyarticular disease course. Clinical follow up and rehabilitation programs should also focus on motor performance and functional skills development in young children with JIA.

  17. System of business-processes management at motor-transport enterprise

    OpenAIRE

    Коgut, Y.

    2010-01-01

    The place of the system of business-processes management at motor-transport enterprise in the general system of management of the enterprise has been substantiated. The subsystems of strategic management, business-processes management of strategic orientation and current activity, processes of enterprise functioning management have been marked out. The system of motor-transport enterprise business-processes management has been formed, which, unlike the existing ones, is based on the system-cy...

  18. Torque ripple reduction of brushless DC motor with harmonic current injection based on integral terminal sliding mode control

    DEFF Research Database (Denmark)

    Boroujeni, Mojtaba Shirvani; Markadeh, Gholamreza Arab; Soltani, Jafar

    2018-01-01

    Brushless Harmonic current injection to the stator windings is one of the most effective methods for torque ripple reduction of brushless DC motors. Because of multi harmonic contents of the stator currents, the conventional methods based on rotational reference frame cannot be used to calculate...

  19. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  20. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    Science.gov (United States)

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  1. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks.

    Science.gov (United States)

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-12-05

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, as well as those with movement disorders, such as cerebral palsy. An additional consideration when studying movement disorders, however, is the quality of actual movements performed and the potential for additional, unintended movements. Therefore, concurrent monitoring of both blood flow changes in the brain and actual movements of the body during testing is required for appropriate interpretation of fNIRS results. Here, we show a protocol for the combination of fNIRS with muscle and kinematic monitoring during motor tasks. We explore gait, a unilateral multi-joint movement (cycling), and two unilateral single-joint movements (isolated ankle dorsiflexion, and isolated hand squeezing). The techniques presented can be useful in studying both typical and atypical motor control, and can be modified to investigate a broad range of tasks and scientific questions.

  2. Assessing upper extremity motor function in practice of virtual activities of daily living.

    Science.gov (United States)

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  3. Motor current and leakage flux signature analysis technique for condition monitoring

    International Nuclear Information System (INIS)

    Pillai, M.V.; Moorthy, R.I.K.; Mahajan, S.C.

    1994-01-01

    Till recently analysis of vibration signals was the only means available to predict the state of health of plant equipment. Motor current and leakage magnetic flux signature analysis is acquiring importance as a technique for detection of incipient damages in the electrical machines and as a supplementary technique for diagnostics of driven equipment such as centrifugal and reciprocating pumps. The state of health of the driven equipment is assessed by analysing time signal, frequency spectrum and trend analysis. For example, the pump vane frequency, piston stroke frequency, gear frequency and bearing frequencies are indicated in the current and flux spectra. By maintaining a periodic record of the amplitudes of various frequency lines in the frequency spectra, it is possible to understand the trend of deterioration of parts and components of the pump. All problems arising out of inappropriate mechanical alignment of vertical pumps are easily identified by a combined analysis of current, flux and vibration signals. It is found that current signature analysis technique is a sufficient method in itself for the analysis of state of health of reciprocating pumps and compressors. (author). 10 refs., 4 figs

  4. A Prototype Symbolic Model of Canonical Functional Neuroanatomy of the Motor System

    Science.gov (United States)

    Rubin, Daniel L.; Halle, Michael; Musen, Mark; Kikinis, Ron

    2008-01-01

    Recent advances in bioinformatics have opened entire new avenues for organizing, integrating and retrieving neuroscientific data, in a digital, machine-processable format, which can be at the same time understood by humans, using ontological, symbolic data representations. Declarative information stored in ontological format can be perused and maintained by domain experts, interpreted by machines, and serve as basis for a multitude of decision-support, computerized simulation, data mining, and teaching applications. We have developed a prototype symbolic model of canonical neuroanatomy of the motor system. Our symbolic model is intended to support symbolic lookup, logical inference and mathematical modeling by integrating descriptive, qualitative and quantitative functional neuroanatomical knowledge. Furthermore, we show how our approach can be extended to modeling impaired brain connectivity in disease states, such as common movement disorders. In developing our ontology, we adopted a disciplined modeling approach, relying on a set of declared principles, a high-level schema, Aristotelian definitions, and a frame-based authoring system. These features, along with the use of the Unified Medical Language System (UMLS) vocabulary, enable the alignment of our functional ontology with an existing comprehensive ontology of human anatomy, and thus allow for combining the structural and functional views of neuroanatomy for clinical decision support and neuroanatomy teaching applications. Although the scope of our current prototype ontology is limited to a particular functional system in the brain, it may be possible to adapt this approach for modeling other brain functional systems as well. PMID:18164666

  5. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    Science.gov (United States)

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Research progress of motor function assessments and their clinical applications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-07-01

    Full Text Available Duchenne muscular dystrophy (DMD, clinically featured as progressive skeletal muscle atrophy with gradual loss of muscle strength and activity abilities, is the most common genetic muscular disease in children throughout the world. The core and continuous characteristic of DMD is motor dysfunction. Motor function assessments of DMD are now focusing on muscle strength, walking ability, range of motion and ability of activities, still without unified standards. Confirming the comprehensive, scientific, reasonable and accurate evaluation tools for DMD assessment is the premise of research in motor developmental rules of DMD, which will help to better understand the motor progress of DMD and to supply evidences for choosing treatment methods, confirming timing of intervention, assessing effect of treatments and designing rehabilitation plans. DOI: 10.3969/j.issn.1672-6731.2015.06.002

  7. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    Science.gov (United States)

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of

  8. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada) and Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2010-05-15

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450{+-}10 G. The carriage motor tolerated up to 2000{+-}10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600{+-}10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the

  9. Brushed permanent magnet DC MLC motor operation in an external magnetic field

    International Nuclear Information System (INIS)

    Yun, J.; St Aubin, J.; Rathee, S.; Fallone, B. G.

    2010-01-01

    Purpose: Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. Methods: The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). Results: In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450±10 G. The carriage motor tolerated up to 2000±10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600±10 G. Conclusions: The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance

  10. Effects of High-Definition Anodal Transcranial Direct Current Stimulation Applied Simultaneously to Both Primary Motor Cortices on Bimanual Sensorimotor Performance

    OpenAIRE

    Nils H. Pixa; Fabian Steinberg; Michael Doppelmayr; Michael Doppelmayr

    2017-01-01

    Many daily activities, such as tying one’s shoe laces, opening a jar of jam or performing a free throw in basketball, require the skillful coordinated use of both hands. Even though the non-invasive method of transcranial direct current stimulation (tDCS) has been repeatedly shown to improve unimanual motor performance, little is known about its effects on bimanual motor performance. More knowledge about how tDCS may improve bimanual behavior would be relevant to motor recovery, e.g., in pers...

  11. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Science.gov (United States)

    Abada, Yah-Se K; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  12. From motor cortex to visual cortex: the application of noninvasive brain stimulation to amblyopia.

    Science.gov (United States)

    Thompson, Benjamin; Mansouri, Behzad; Koski, Lisa; Hess, Robert F

    2012-04-01

    Noninvasive brain stimulation is a technique for inducing changes in the excitability of discrete neural populations in the human brain. A current model of the underlying pathological processes contributing to the loss of motor function after stroke has motivated a number of research groups to investigate the potential therapeutic application of brain stimulation to stroke rehabilitation. The loss of motor function is modeled as resulting from a combination of reduced excitability in the lesioned motor cortex and an increased inhibitory drive from the nonlesioned hemisphere over the lesioned hemisphere. This combination of impaired neural function and pathological suppression resonates with current views on the cause of the visual impairment in amblyopia. Here, we discuss how the rationale for using noninvasive brain stimulation in stroke rehabilitation can be applied to amblyopia, review a proof-of-principle study demonstrating that brain stimulation can temporarily improve amblyopic eye function, and propose future research avenues. Copyright © 2010 Wiley Periodicals, Inc.

  13. Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy subjects and patients

    International Nuclear Information System (INIS)

    Papke, K.; Hellmann, T.; Renger, B.; Schuierer, G.; Reimer, P.; Morgenroth, C.; Knecht, S.

    1999-01-01

    In this article we describe clinical applications of functional MRI (fMRI) at 1.0 T. All experiments were performed on a commercially available 1.0-T system (Magnetom Impact Expert, Siemens AG, Erlangen, Germany) using a blood oxygen level-dependent (BOLD)-sensitive multi-slice EPI technique (TE 66 ms, 4 mm slice thickness, 210 mm field of view, 64 x 64 acquisition matrix). Different paradigms for localization of the motor cortex and for language lateralization were tested in healthy subjects and patients. Methodological considerations concerning the development of the paradigms are also described. In all healthy subjects, motor activation elicited BOLD signal changes in the sensorimotor cortex, permitting identification of primary motor and sensory cortical areas. Furthermore, focal activation of different cortical areas by a language task was possible in 6 of 10 subjects. Nineteen motor studies were performed in 18 patients with supratentorial lesions, in most cases prior to neurosurgical procedures. In 14 studies, fMRI results demonstrated the localization of the motor hand areas relative to the lesion. The results proved valuable for preoperative planning and contributed to therapeutical decisions. We conclude that functional MRI for clinically relevant applications, such as localization of motor and language function, is feasible even at a field strength of 1.0 T without dedicated equipment. (orig.)

  14. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder.

    Science.gov (United States)

    Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio

    2018-01-01

    The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and

  15. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  16. Identifying patterns of motor performance, executive functioning, and verbal ability in preschool children: A latent profile analysis.

    Science.gov (United States)

    Houwen, Suzanne; Kamphorst, Erica; van der Veer, Gerda; Cantell, Marja

    2018-04-30

    A relationship between motor performance and cognitive functioning is increasingly being recognized. Yet, little is known about the precise nature of the relationship between both domains, especially in early childhood. To identify distinct constellations of motor performance, executive functioning (EF), and verbal ability in preschool aged children; and to explore how individual and contextual variables are related to profile membership. The sample consisted of 119 3- to 4-year old children (62 boys; 52%). The home based assessments consisted of a standardized motor test (Movement Assessment Battery for Children - 2), five performance-based EF tasks measuring inhibition and working memory, and the Receptive Vocabulary subtest from the Wechsler Preschool and Primary Scale of Intelligence Third Edition. Parents filled out the Behavior Rating Inventory of Executive Function - Preschool version. Latent profile analysis (LPA) was used to delineate profiles of motor performance, EF, and verbal ability. Chi-square statistics and multinomial logistic regression analysis were used to examine whether profile membership was predicted by age, gender, risk of motor coordination difficulties, ADHD symptomatology, language problems, and socioeconomic status (SES). LPA yielded three profiles with qualitatively distinct response patterns of motor performance, EF, and verbal ability. Quantitatively, the profiles showed most pronounced differences with regard to parent ratings and performance-based tests of EF, as well as verbal ability. Risk of motor coordination difficulties and ADHD symptomatology were associated with profile membership, whereas age, gender, language problems, and SES were not. Our results indicate that there are distinct subpopulations of children who show differential relations with regard to motor performance, EF, and verbal ability. The fact that we found both quantitative as well as qualitative differences between the three patterns of profiles underscores

  17. Pulse-Width-Modulating Driver for Brushless dc Motor

    Science.gov (United States)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  18. Spatial cognitive rehabilitation and motor recovery after stroke

    Science.gov (United States)

    Barrett, A.M.; Muzaffar, Tufail

    2014-01-01

    Purpose of review Stroke rehabilitation needs to take major steps forward to reduce functional disability for survivors. In this article, we suggest that spatial retraining might greatly increase the efficiency and efficacy of motor rehabilitation, directly addressing the burden and cost of paralysis after stroke. Recent findings Combining motor and cognitive treatment may be practical, as well as addressing needs after moderate–to-severe stroke. Spatial neglect could suppress motor recovery and reduce motor learning, even when patients receive appropriate rehabilitation to build strength, dexterity, and endurance. Spatial neglect rehabilitation acts to promote motor as well as visual-perceptual recovery. These findings, and previous underemphasized studies, make a strong case for combining spatial neglect treatment with traditional exercise training. Spatial neglect therapies might also help people who cannot participate in intensive movement therapies because of limited strength and endurance after stroke. Summary Spatial retraining, currently used selectively after right brain stroke, may be broadly useful after stroke to promote rapid motor recovery. PMID:25364954

  19. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.

    Science.gov (United States)

    Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S

    2017-07-01

    The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document

  20. Alteration of protein folding and degradation in motor neuron diseases : Implications and protective functions of small heat shock proteins

    NARCIS (Netherlands)

    Carra, Serena; Crippa, Valeria; Rusmini, Paola; Boncoraglio, Alessandra; Minoia, Melania; Giorgetti, Elisa; Kampinga, Harm H.; Poletti, Angelo

    Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy.

  1. Characterization of motor units in behaving adult mice shows a wide primary range.

    Science.gov (United States)

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  2. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children

    Science.gov (United States)

    Kinney-Lang, E.; Auyeung, B.; Escudero, J.

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. • BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. • A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. • Indirect studies discovered

  4. Expanding the (kaleido)scope: exploring current literature trends for translating electroencephalography (EEG) based brain-computer interfaces for motor rehabilitation in children.

    Science.gov (United States)

    Kinney-Lang, E; Auyeung, B; Escudero, J

    2016-12-01

    Rehabilitation applications using brain-computer interfaces (BCI) have recently shown encouraging results for motor recovery. Effective BCI neurorehabilitation has been shown to exploit neuroplastic properties of the brain through mental imagery tasks. However, these applications and results are currently restricted to adults. A systematic search reveals there is essentially no literature describing motor rehabilitative BCI applications that use electroencephalograms (EEG) in children, despite advances in such applications with adults. Further inspection highlights limited literature pursuing research in the field, especially outside of neurofeedback paradigms. Then the question naturally arises, do current literature trends indicate that EEG based BCI motor rehabilitation applications could be translated to children? To provide further evidence beyond the available literature for this particular topic, we present an exploratory survey examining some of the indirect literature related to motor rehabilitation BCI in children. Our goal is to establish if evidence in the related literature supports research on this topic and if the related studies can help explain the dearth of current research in this area. The investigation found positive literature trends in the indirect studies which support translating these BCI applications to children and provide insight into potential pitfalls perhaps responsible for the limited literature. Careful consideration of these pitfalls in conjunction with support from the literature emphasize that fully realized motor rehabilitation BCI applications for children are feasible and would be beneficial. •  BCI intervention has improved motor recovery in adult patients and offer supplementary rehabilitation options to patients. •  A systematic literature search revealed that essentially no research has been conducted bringing motor rehabilitation BCI applications to children, despite advances in BCI. •  Indirect studies

  5. Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity

    Science.gov (United States)

    Diwadkar, Vaibhav A.; Asemi, Avisa; Burgess, Ashley; Chowdury, Asadur; Bressler, Steven L.

    2017-01-01

    The dorsal Anterior Cingulate Cortex (dACC) and the Supplementary Motor Area (SMA) are known to interact during motor coordination behavior. We previously discovered that the directional influences underlying this interaction in a visuo-motor coordination task are asymmetric, with the dACC→SMA influence being significantly greater than that in the reverse direction. To assess the specificity of this effect, here we undertook an analysis of the interaction between dACC and SMA in two distinct contexts. In addition to the motor coordination task, we also assessed these effects during a (n-back) working memory task. We applied directed functional connectivity analysis to these two task paradigms, and also to the rest condition of each paradigm, in which rest blocks were interspersed with task blocks. We report here that the previously known asymmetric interaction between dACC and SMA, with dACC→SMA dominating, was significantly larger in the motor coordination task than the memory task. Moreover the asymmetry between dACC and SMA was reversed during the rest condition of the motor coordination task, but not of the working memory task. In sum, the dACC→SMA influence was significantly greater in the motor task than the memory task condition, and the SMA→dACC influence was significantly greater in the motor rest than the memory rest condition. We interpret these results as suggesting that the potentiation of motor sub-networks during the motor rest condition supports the motor control of SMA by dACC during the active motor task condition. PMID:28278267

  6. A 9-Week Aerobic and Strength Training Program Improves Cognitive and Motor Function in Patients with Dementia : A Randomized, Controlled Trial

    NARCIS (Netherlands)

    Bossers, Willem J. R.; van der Woude, Lucas H. V.; Boersma, Froukje; Hortobagyi, Tibor; Scherder, Erik J. A.; van Heuvelen, Marieke J. G.

    Objective: To compare training and follow-up effects of combined aerobic and strength training versus aerobic-only training on cognitive and motor function in institutionalized patients with dementia and to explore whether improved motor function mediates improved cognitive function. Methods: Using

  7. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery

    Directory of Open Access Journals (Sweden)

    Samar M Hatem

    2016-09-01

    Full Text Available Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  8. White matter alterations and their associations with motor function in young adults born preterm with very low birth weight

    Directory of Open Access Journals (Sweden)

    Ingrid Marie Husby Hollund

    2018-01-01

    Full Text Available Very low birth weight (VLBW: ≤1500 g individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT and diffusion tensor imaging (DTI. Probabilistic tractography of motor pathways of the corticospinal tract (CST and corpus callosum (CC was performed. Fractional anisotropy (FA was calculated in non-crossing (capsula interna in CST, body of CC and crossing (centrum semiovale fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within

  9. White matter alterations and their associations with motor function in young adults born preterm with very low birth weight.

    Science.gov (United States)

    Hollund, Ingrid Marie Husby; Olsen, Alexander; Skranes, Jon; Brubakk, Ann-Mari; Håberg, Asta K; Eikenes, Live; Evensen, Kari Anne I

    2018-01-01

    Very low birth weight (VLBW: ≤ 1500 g) individuals have an increased risk of white matter alterations and neurodevelopmental problems, including fine and gross motor problems. In this hospital-based follow-up study, the main aim was to examine white matter microstructure and its relationship to fine and gross motor function in 31 VLBW young adults without cerebral palsy compared with 31 term-born controls, at mean age 22.6 ± 0.7 years. The participants were examined with tests of fine and gross motor function (Trail Making Test-5: TMT-5, Grooved Pegboard, Triangle from Movement Assessment Battery for Children-2: MABC-2 and High-level Mobility Assessment Tool: HiMAT) and diffusion tensor imaging (DTI). Probabilistic tractography of motor pathways of the corticospinal tract (CST) and corpus callosum (CC) was performed. Fractional anisotropy (FA) was calculated in non-crossing (capsula interna in CST, body of CC) and crossing (centrum semiovale) fibre regions along the tracts and examined for group differences. Associations between motor test scores and FA in the CST and CC were investigated with linear regression. Tract-based spatial statistics (TBSS) was used to examine group differences in DTI metrics in all major white matter tracts. The VLBW group had lower scores on all motor tests compared with controls, however, only statistically significant for TMT-5. Based on tractography, FA in the VLBW group was lower in non-crossing fibre regions and higher in crossing fibre regions of the CST compared with controls. Within the VLBW group, poorer fine motor function was associated with higher FA in crossing fibre regions of the CST, and poorer bimanual coordination was additionally associated with lower FA in crossing fibre regions of the CC. Poorer gross motor function was associated with lower FA in crossing fibre regions of the CST and CC. There were no associations between motor function and FA in non-crossing fibre regions of the CST and CC within the VLBW

  10. Beneficial effect of pramipexole for motor function and depression in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Osamu Kano

    2009-02-01

    Full Text Available Osamu Kano1,2, Ken Ikeda2, Tetsuhito Kiyozuka2, Konosuke Iwamoto2, Hirono Ito2, Yuji Kawase2, Ryuta Sato2, Toshiki Fujioka2, Yo Araki2, Shigeji Baba2, Yasuo Iwasaki21Department of Neurology, Methodist Neurological Institute, Houston, TX, USA; 2Department of Neurology, Toho University Omori Medical Center, Tokyo, JapanAbstract: We examined whether pramipexole (PPX can influence depressive scale in normal and mild depressive parkinsonian patients. In an open study of PPX as an add-on to L-dopa therapy or single administration, 36 nondemented outpatients with Parkinson’s disease (PD were entered first. All were in the stage II or III of Hoehn and Yahr scale (H&Y. PPX were started at 0.125 mg/day and daily doses were increased to 1.5 mg/day. At 3 months after PPX treatment, patients were re-evaluated. Hamilton Depression Rating Scale (HAM-D, Unified Parkinson’s Disease Rating Scale III, H&Y stage, and freezing of gait questionnaire were compared in patients before and after PPX treatment. These scores were significantly improved after PPX administration. There were no correlations between HAM-D and those motor functions. We suggest that PPX treatment has antidepressant effects in depressive PD patients and also ameliorates HAM-D score in nondepressive PD patients in addition to motor function.Keywords: Parkinson disease, pramipexole, motor function, depression, antidepressant effect

  11. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  12. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  13. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  14. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Science.gov (United States)

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  15. The effect of the anodal transcranial direct current stimulation over the cerebellum on the motor cortex excitability.

    Science.gov (United States)

    Ates, Mehlika Panpalli; Alaydin, Halil Can; Cengiz, Bulent

    2018-04-25

    This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. On the functional relationship between language and motor processing in typewriting: an EEG study

    OpenAIRE

    Scaltritti, Michele; Pinet, Svetlana; Longcamp, Marieke; Alario, F-Xavier

    2017-01-01

    International audience; The functional relationship between language and motor processing was investigated to elucidate whether it is better described in terms of a discrete or a continuous account of information flow. To this end, we recorded event-related potentials during a typewriting task that combined a semantic priming paradigm with a manipulation of response side (response initiated with right vs. left hand), and focused on the lateralised potentials indexing motor-response activation...

  17. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    Science.gov (United States)

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  19. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.

    Science.gov (United States)

    O'Malley, Marcia K; Ro, Tony; Levin, Harvey S

    2006-12-01

    To describe 2 new ways of assessing and inducing neuroplasticity in the human brain--transcranial magnetic stimulation (TMS) and robotics--and to investigate and promote the recovery of motor function after brain damage. We identified recent articles and books directly bearing on TMS and robotics. Articles using these tools for purposes other than rehabilitation were excluded. From these studies, we emphasize the methodologic and technical details of these tools as applicable for assessing and inducing plasticity. Because both tools have only recently been used for rehabilitation, the majority of the articles selected for this review have been published only within the last 10 years. We used the PubMed and Compendex databases to find relevant peer-reviewed studies for this review. The studies were required to be relevant to rehabilitation and to use TMS or robotics methodologies. Guidelines were applied via independent extraction by multiple observers. Despite the limited amount of research using these procedures for assessing and inducing neuroplasticity, there is growing evidence that both TMS and robotics can be very effective, inexpensive, and convenient ways for assessing and inducing rehabilitation. Although TMS has primarily been used as an assessment tool for motor function, an increasing number of studies are using TMS as a tool to directly induce plasticity and improve motor function. Similarly, robotic devices have been used for rehabilitation because of their suitability for delivery of highly repeatable training. New directions in robotics-assisted rehabilitation are taking advantage of novel measurements that can be acquired via the devices, enabling unique methods of assessment of motor recovery. As refinements in technology and advances in our knowledge continue, TMS and robotics should play an increasing role in assessing and promoting the recovery of function. Ongoing and future studies combining TMS and robotics within the same populations may

  20. DIFFERENCES IN FUNCTIONAL AND MOTOR ABILITIES OFYOUNG FOOTBALL PLAYERS, BASKETBALL AND VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Franja Fratrić

    2009-11-01

    Full Text Available The main goal of this research is to determine whether and what differences exist between the three groups of subjects (high-quality football, volleyball and basketball cadets and youth age, in the motoric and functional abilities, as well as to identify dif- ferences between subgroups within each sport. The sample consists of 61 volleyball, 31 basketball player and football player 31 (total n = 123 male, cadet and youth age are members of local clubs. Subjects were born between 01.01.1991 and 12.12.1994. The sample of variables are the values of 17 tests for the evaluation of functional and mobile status. The Motor-functional status on the basis of the results of secondary value of foot- ball, basketball and volleyball make a clear conclusion that the football players showed the best results in almost all the tests and that they had the smallest disbalance in the power of certain groups of muscles.The football players hve the highest homogeneity.

  1. Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment.

    Science.gov (United States)

    Gregersen, Hans; Liao, Donghua; Drewes, Anne Mohr; Drewes, Asbjørn Mohr; Zhao, Jingbo

    2016-02-01

    Symptoms related to functional and sensory abnormalities are frequently encountered in patients with diabetes mellitus. Most symptoms are associated with impaired gastric and intestinal function. In this review, we discuss basic concepts of sensory-motor dysfunction and how they relate to clinical findings and gastrointestinal abnormalities that are commonly seen in diabetes. In addition, we review techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of sensory-motor function. Such technological advances, while not readily available in the clinical setting, may facilitate stratification and individualization of therapy in diabetic patients in the future. Unraveling the structural, mechanical, and sensory remodeling in diabetes disease is based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The final goal is to increase the understanding of the damage to GI structures and to sensory processing of symptoms, in order to assist clinicians with developing an optimal mechanics based treatment.

  2. Functional near infrared spectroscopy of the sensory and motor brain regions with simultaneous kinematic and EMG monitoring during motor tasks

    OpenAIRE

    Sukal-Moulton, Theresa; de Campos, Ana Carolina; Stanley, Christopher J; Damiano, Diane L

    2014-01-01

    There are several advantages that functional near-infrared spectroscopy (fNIRS) presents in the study of the neural control of human movement. It is relatively flexible with respect to participant positioning and allows for some head movements during tasks. Additionally, it is inexpensive, light weight, and portable, with very few contraindications to its use. This presents a unique opportunity to study functional brain activity during motor tasks in individuals who are typically developing, ...

  3. Associating Physical Activity Levels with Motor Performance and Physical Function in Childhood Survivors of Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Hung, Stanley H; Rankin, Anne; Virji-Babul, Naznin; Pritchard, Sheila; Fryer, Christopher; Campbell, Kristin L

    2017-01-01

    Purpose: This cross-sectional, observational study investigated whether physical activity (PA) levels are associated with motor performance and physical function in children after treatment for acute lymphoblastic leukemia (ALL). Method: Participants aged 8-13 years who had completed treatment for ALL (3-36 months post-treatment) were tested at their oncology long-term follow-up appointment at the British Columbia Children's Hospital. PA level was measured using the Physical Activity Questionnaire for Older Children (PAQ-C). Motor performance was measured using the Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, Short Form (BOT-2 SF), and physical function was measured using the 6-minute walk test (6MWT). Results: Thirteen children completed testing. PAQ-C scores were not associated with BOT-2 SF or 6MWT performance. Eleven children (85%) performed below the norm for the 6MWT. Children with elevated body mass index had poorer 6MWT but similar PAQ-C scores. Conclusion: PA was not found to be associated with motor performance and physical function. Participants who were overweight or obese had poorer 6MWT performance, which may indicate the need for closer monitoring of post-treatment weight status and physical function in the oncology follow-up setting.

  4. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    Science.gov (United States)

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  5. The application of bonded magnet MQP-0 on an electrical direct current motor

    International Nuclear Information System (INIS)

    Ridwan; Mujamilah; Gunawan

    2002-01-01

    Isotropic bonded magnet materials using NdFeB produced by rapid quench method, has advantages that can be easily adapted to the costumer demand. The synthesized bonded magnets are mixed of cpoxy resin or polyester as matrix binder with powder magnet of MQP-O The proportions of polymer and magnetic powder are 4060; 50:50; and 6040 volume % of magnet composites. The characterization of magnetic properties was determined by Vibrating Sample Magnetometer (VSM) at P3IB-BATAN and the density was measured by piknometer. The highest energy product maximum, (BH) m ax of magnet composite synthesized by P3IB-BATAN in this activity is 435 MGOeThe quality of magnet components has been tested empirically by changing the magnetic components of an electric direct current motor found in the local market by magnetic components synthesized by P 3IB-BA TAN. The max imum rotation resulted by using P3IB-BATAN is 40 0 00 rpm The magnetic components synthesized in these research activities are functionally work and comparatively the same with the magnetic components found in the local market as an import commodities

  6. Motor Cortex and Motor Cortical Interhemispheric Communication in Walking After Stroke: The Roles of Transcranial Magnetic Stimulation and Animal Models in Our Current and Future Understanding.

    Science.gov (United States)

    Charalambous, Charalambos C; Bowden, Mark G; Adkins, DeAnna L

    2016-01-01

    Despite the plethora of human neurophysiological research, the bilateral involvement of the leg motor cortical areas and their interhemispheric interaction during both normal and impaired human walking is poorly understood. Using transcranial magnetic stimulation (TMS), we have expanded our understanding of the role upper-extremity motor cortical areas play in normal movements and how stroke alters this role, and probed the efficacy of interventions to improve post-stroke arm function. However, similar investigations of the legs have lagged behind, in part, due to the anatomical difficulty in using TMS to stimulate the leg motor cortical areas. Additionally, leg movements are predominately bilaterally controlled and require interlimb coordination that may involve both hemispheres. The sensitive, but invasive, tools used in animal models of locomotion hold great potential for increasing our understanding of the bihemispheric motor cortical control of walking. In this review, we discuss 3 themes associated with the bihemispheric motor cortical control of walking after stroke: (a) what is known about the role of the bihemispheric motor cortical control in healthy and poststroke leg movements, (b) how the neural remodeling of the contralesional hemisphere can affect walking recovery after a stroke, and (c) what is the effect of behavioral rehabilitation training of walking on the neural remodeling of the motor cortical areas bilaterally. For each theme, we discuss how rodent models can enhance the present knowledge on human walking by testing hypotheses that cannot be investigated in humans, and how these findings can then be back-translated into the neurorehabilitation of poststroke walking. © The Author(s) 2015.

  7. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study.

    Science.gov (United States)

    Scheidtmann, K; Fries, W; Müller, F; Koenig, E

    2001-09-08

    Functional disability is generally caused by hemiplegia after stroke. Physiotherapy used to be the only way of improving motor function in such patients. However, administration of amphetamines in addition to exercise improves motor recovery in animals, probably by increasing the concentration of norepinephrine in the central nervous system. Our aim was to ascertain whether levodopa could enhance the efficacy of physiotherapy after hemiplegia. We did a prospective, randomised, placebo-controlled, double-blind study in which we enrolled 53 primary stroke patients. For the first 3 weeks patients received single doses of levodopa 100 mg or placebo daily in combination with physiotherapy. For the second 3 weeks patients had only physiotherapy. We quantitatively assessed motor function every week with Rivermead motor assessment (RMA). Six patients were excluded from analyses because of non-neurological complications. Motor recovery was significantly improved after 3 weeks of drug intervention in those on levodopa (RMA improved by 6.4 points) compared with placebo (4.1), and the result was independent of initial degree of impairment (pstroke rehabilitation.

  8. Non-motor signs in Parkinson’s disease: a review

    Directory of Open Access Journals (Sweden)

    Renato P. Munhoz

    2015-05-01

    Full Text Available During the past decade the view of Parkinson’s disease (PD as a motor disorder has changed significantly and currently it is recognized as a multisystem process with diverse non-motor signs (NMS. In addition to been extremely common, these NMS play a major role in undermining functionality and quality of life. On the other hand, NMS are under recognized by physicians and neglected by patients. Here, we review the most common NMS in PD, including cognitive, psychiatric, sleep, metabolic, and sensory disturbances, discuss the current knowledge from biological, epidemiological, clinical, and prognostic standpoints, highlighting the need for early recognition and management.

  9. Relationship between gross motor and intellectual function in children with cerebral palsy: a cross-sectional study.

    Science.gov (United States)

    Dalvand, Hamid; Dehghan, Leila; Hadian, Mohammad Reza; Feizy, Awat; Hosseini, Seyed Ali

    2012-03-01

    To explore the relationship between gross motor and intellectual function in children with cerebral palsy (CP). A cross-sectional study. Occupational therapy clinic. Children with CP (N=662; 281 girls, 381 boys; age range, 3-14y). Not applicable. Intelligence testing was carried out by means of the Wechsler Preschool and Primary Scale of Intelligence and the Wechsler Intelligence Scale for Children-Revised. Gross motor function level was determined by the Gross Motor Function Classification System Expanded and Revised (GMFCS E&R). Of the children, 10.4% were at level I of the GMFCS E&R, 38% at levels II and III, and 51.5% at levels IV and V. The lowest level of intelligence or profound intellectual disability was found in children with spastic quadriplegia (n=28, 62.2%). Children at the lowest levels (I-IV, GMFCS E&R) obtained higher ratings in terms of intelligence in comparison with children at level V. Based on the present results, the diagnosis was statistically related to the intellectual level as dependent variable (Pintelligence, respectively. Sex and age were not statistically related to the dependent variable. The study results demonstrated a significant association between GMFCS E&R and intellectual function. Therefore, we suggest that particular attention should be paid to the intellectual level in terms of evaluations of gross motor function. These results, in respect, might be interested for occupational and physical therapists who are involved in rehabilitation programs for these children. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  11. Novel disposable transnasal endoscopy for assessment of esophageal motor function.

    Science.gov (United States)

    Lim, Chul-Hyun; Choi, Myung-Gyu; Baeg, Myong-Ki; Moon, Sung Jin; Kim, Jin Su; Cho, Yu Kyung; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Kyu Yong

    2014-01-01

    A novel disposable transnasal endoscopy (DTE) with a portable system has been developed to provide unsedated esophagoscopy by modifying capsule endoscopy. The aim of this study was to assess the feasibility of DTE to evaluate esophageal motor function. Patients with or suspected esophageal motility disorders and healthy volunteers were enrolled. Participants underwent esophageal high-resolution manometry and DTE in random order on different days. Motility was observed with DTE at 1, 8, and 16 cm above the gastroesophageal junction. Twenty healthy volunteers and 20 symptomatic subjects participated (8 achalasia, 5 scleroderma, 3 diffuse esophageal spasm, 1 hypertensive peristalsis, 1 peristaltic dysfunction, and 22 normal esophageal function). The normal findings on DTE were as follows. As the subject swallowed water, swallow-induced relaxation with elevation of the lower esophageal sphincter caused the endoscope to cross the Z-line into the gastric lumen. After the passage of water and air, complete closure of the lower esophageal sphincter occurred, with the return of the endoscope to its previous position. During the resting stage of the esophageal body, an air bubble could be seen in the center of the radially wrinkled and occluded lumen. The endoscopic diagnosis was in agreement with the clinical diagnosis in all but 2. Most of the participants reported acceptable discomfort during DTE and 62.5% of the subjects preferred DTE to manometry. DTE can accurately characterize normal esophageal motor function, allowing the diagnosis of esophageal motility disorders. DTE has potential widespread applications, especially in outpatient clinics.

  12. The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients

    Directory of Open Access Journals (Sweden)

    Kasahara Takashi

    2012-06-01

    Full Text Available Abstract Background The event-related desynchronization (ERD in EEG is known to appear during motor imagery, and is thought to reflect cortical processing for motor preparation. The aim of this study is to examine the modulation of ERD with motor impairment in ALS patients. ERD during hand motor imagery was obtained from 8 ALS patients with a variety of motor impairments. ERD was also obtained from age-matched 11 healthy control subjects with the same motor task. The magnitude and frequency of ERD were compared between groups for characterization of ALS specific changes. Results The ERD of ALS patients were significantly smaller than those of control subjects. Bulbar function and ERD were negatively correlated in ALS patients. Motor function of the upper extremities did was uncorrelated with ERD. Conclusions ALS patients with worsened bulbar scales may show smaller ERD. Motor function of the upper extremities did was uncorrelated with ERD.

  13. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  14. Nuclear organization in the spinal cord depends on motor neuron lamination orchestrated by catenin and afadin function

    OpenAIRE

    Dewitz, C.; Pimpinella, S.; Hackel, P.; Akalin, A.; Jessell, T.M.; Zampieri, N.

    2018-01-01

    Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, a...

  15. Electronically commutated DC motor. Elektronisch kommutierter Gleichstrommotor

    Energy Technology Data Exchange (ETDEWEB)

    Gruenleitner, H; Schalk, K; Koegler, G

    1981-08-13

    The purpose of the invention is to create a controlled and electronically commutated DC motor, so that the braking current regulator does not act with the frequency motor current regulator, where an additional switch is not required to decouple the braking current transistor while running, and where the reference value of braking current need not be greater than the reference value of motor current. According to the invention, this problem is solved by a connection, by which, while running, the braking current regulator is interlocked out by means of the output signal of the motor current regulator. A cheap diode and the associated wiring are all that is required for the interlock.

  16. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  17. Motor function and perception in children with neuropsychiatric and conduct problems: results from a population based twin study.

    Science.gov (United States)

    Gustafsson, Peik; Kerekes, Nóra; Anckarsäter, Henrik; Lichtenstein, Paul; Gillberg, Christopher; Råstam, Maria

    2014-01-01

    Children with early symptomatic psychiatric disorders such as Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) have been found to have high rates of motor and/or perception difficulties. However, there have been few large-scale studies reporting on the association between Conduct Disorder (CD) and motor/perception functions. The aim of the present study was to investigate how motor function and perception relate to measures of ADHD, ASD, and CD. Parents of 16,994 Swedish twins (ages nine and twelve years) were interviewed using the Autism-Tics, ADHD and other Comorbidities inventory (A-TAC), which has been validated as a screening instrument for early onset child psychiatric disorders and symptoms. Associations between categorical variables of scoring above previously validated cut-off values for diagnosing ADHD, ASD, and CD on the one hand and motor and/or perception problems on the other hand were analysed using cross-tabulations, and the Fisher exact test. Associations between the continuous scores for ADHD, ASD, CD, and the subdomains Concentration/Attention, Impulsiveness/Activity, Flexibility, Social Interaction and Language, and the categorical factors age and gender, on the one hand, and the dependent dichotomic variables Motor control and Perception problems, on the other hand, were analysed using binary logistic regression in general estimated equation models. Male gender was associated with increased risk of Motor control and/or Perception problems. Children scoring above the cut-off for ADHD, ASD, and/or CD, but not those who were 'CD positive' but 'ADHD/ASD negative', had more Motor control and/or Perception problems, compared with children who were screen-negative for all three diagnoses. In the multivariable model, CD and Impulsiveness/Activity had no positive associations with Motor control and/or Perception problems. CD symptoms or problems with Impulsiveness/Activity were associated with Motor control or

  18. Functional MR imaging using sensory and motor task in brain tumors and other focal cerebral lesions

    International Nuclear Information System (INIS)

    Ok, Chul Su; Lim, Myung Kwan; Yu, Ki Bong; Kim, Hyung Jin; Suh, Chang Hae

    2002-01-01

    To determine the usefulness of the functional MRI (fMRI) using motor and sensory stimuli in patients with brain tumors of focal cerebral lesions. This study involved five patients with brain tumors (n=2) or cerebral lesions (cysticercosis (n=1), arteriovenous malformation (n=1), focal infarction (n=1) and seven normal controls. For MR examinations a 1.5T scanner was used, and during motor or sensory stimulation, the EPI BOLD technique was employed. For image postprocessing an SPM program was utilized. In volunteers, contralateral sensori-motor cortices were activated by both motor and sensory stimuli, while supplementary motor cortices were activated by motor stimuli and other sensory cortices by sensory stimuli. Preoperative evaluation of the relationship between lesions and important sensory and motor areas was possible, and subsequent surgery was thus successful, involving no severe complications. Activation of ipsilateral or other areas occurred in patients with destruction of a major sensory and/or motor area, suggesting compensatory reorganization. fMRI could be a useful supportive method for determining the best approach to surgery treatment in patients with brain tumors or focal cerebral lesions

  19. Improved Eddy-current Field Loss Model and Scaling Index for Magnets of Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2015-01-01

    Full Text Available The paper gives detailed systematic researches on the mechanism and key factors of eddy-current losses in rotor magnets of high power-density permanent magnet synchronous motors(PMSMs. Firstly, this paper establishes quantitative mathematic model of eddy-current losses for surface-mounted PMSM based on eddy current field model and Maxwell equations. Then, a scaling index is put forward to weigh the key factors relevant to the eddy-current losses in magnets. At the same time, the principles of eddy-current losses in prototype PMSM are analyzed by the finite element analysis (FEA software. The contents researched in the paper have practical reference values for design and reliability analysis of PMSMs.

  20. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    Science.gov (United States)

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  1. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  2. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    Science.gov (United States)

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  3. Comparison of the sensitivity to change of the Functional Independence Measure with the Assessment of Motor and Process Skills within different rehabilitation populations.

    Science.gov (United States)

    Choo, Silvana X; Stratford, Paul; Richardson, Julie; Bosch, Jackie; Pettit, Susan M; Ansley, Barbara J; Harris, Jocelyn E

    2017-09-10

    To determine whether there was a difference in the sensitivity to change of the subscales of the Functional Independence Measure and the Assessment of Motor and Process Skills within three different post-acute inpatient rehabilitation populations. We conducted retrospective chart review of patients consecutively admitted to inpatient rehabilitation units, with both admission and discharge Functional Independence Measure and Assessment of Motor and Process Skills scores. A total of 276 participants were included and categorized into diagnostic groups (orthopedic, oncology, and geriatric). Within group, sensitivity to change was evaluated for the subscales of each measure by calculating the difference in standardized response means (SRM) and 95% confidence intervals (CI). The Functional Independence Measure motor subscale was more sensitive to change than the Assessment of Motor and Process Skills in the orthopedic and geriatric groups (SRM difference  = 1.53 [95% CI 0.93, 2.3] and 0.65 [95% CI 0.3, 1.02], respectively) but not in the oncology group (SRM difference  = 0.42 [95% CI -0.2, 1.04]). For the cognitive subscales, the Assessment of Motor and Process Skills was more sensitive to change than the Functional Independence Measure in all three groups (SRM difference  = 0.38 [95% CI 004, 0.74], 0.65 [95% CI 0.45, 0.90], and 1.15 [95% CI 0.77, 1.69] for orthopedic, geriatric, and oncology, respectively). The Functional Independence Measure is a mandated measure for all rehabilitation units in Canada. As the cognitive subscale of the Assessment of Motor and Process Skills is more sensitive to change than the Functional Independence Measure, we recommend also administering the Assessment of Motor and Process Skills to better detect changes in the cognitive aspect of function. Implications for rehabilitation When deciding between the Functional Independence Measure or the Assessment of Motor and Process Skills, it is important to consider whether patients

  4. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  5. Similar effects of two modified constraint-induced therapy protocols on motor impairment, motor function and quality of life in patients with chronic stroke

    Directory of Open Access Journals (Sweden)

    Wilma Costa Souza

    2015-03-01

    Full Text Available Modified constraint-induced movement therapy (CIMT protocols show motor function and real-world arm use improvement. Meanwhile it usually requires constant supervision by physiotherapists and is therefore more expensive than customary care. This study compared the preliminary efficacy of two modified CIMT protocols. A two-group randomized controlled trial with pre and post treatment measures and six months follow-up was conducted. Nineteen patients with chronic stroke received 10 treatment sessions distributed three to four times a week over 22 days. CIMT3h_direct group received 3 hours of CIMT supervised by a therapist (n=10 while CIMT1.5h_direct group had 1.5 hours of supervised CIMT+1.5 hours home exercises supervised by a caregiver (n=9. Outcome measures were the Fugl-Meyer Assessment, the Motor Activity Log, and the Stroke Specific Quality of Life Scale. The modified CIMT protocols were feasible and well tolerated. Improvements in motor function, real-world arm use and quality of life did not differ significantly between treated groups receiving either 3 or 1.5 hours mCIMT supervised by a therapist.

  6. Age-Dependent Relationship between Socio-Adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne

    2018-01-01

    Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…

  7. The link between motor and cognitive development in children born preterm and/or with low birth weight : A review of current evidence

    NARCIS (Netherlands)

    Oudgenoeg-Paz, Ora; Mulder, Hanna; Jongmans, Marian J.; van der Ham, Ineke J.M.; Van der Stigchel, Stefan

    2017-01-01

    The current review focuses on evidence for a link between early motor development and later cognitive skills in children born preterm or with Low Birth Weight (LBW). Studies with term born children consistently show such a link. Motor and cognitive impairments or delays are often seen in children

  8. Axial diffusivity changes in the motor pathway above stroke foci and functional recovery after subcortical infarction.

    Science.gov (United States)

    Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng

    2018-01-01

    Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).

  9. Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging

    Science.gov (United States)

    Bravo-Imaz, Inaki; Davari Ardakani, Hossein; Liu, Zongchang; García-Arribas, Alfredo; Arnaiz, Aitor; Lee, Jay

    2017-09-01

    This paper focuses on analyzing motor current signature for fault diagnosis of gearboxes operating under transient speed regimes. Two different strategies are evaluated, extensively tested and compared to analyze the motor current signature in order to implement a condition monitoring system for gearboxes in industrial machinery. A specially designed test bench is used, thoroughly monitored to fully characterize the experiments, in which gears in different health status are tested. The measured signals are analyzed using discrete wavelet decomposition, in different decomposition levels using a range of mother wavelets. Moreover, a dual-level time synchronous averaging analysis is performed on the same signal to compare the performance of the two methods. From both analyses, the relevant features of the signals are extracted and cataloged using a self-organizing map, which allows for an easy detection and classification of the diverse health states of the gears. The results demonstrate the effectiveness of both methods for diagnosing gearbox faults. A slightly better performance was observed for dual-level time synchronous averaging method. Based on the obtained results, the proposed methods can used as effective and reliable condition monitoring procedures for gearbox condition monitoring using only motor current signature.

  10. Motor functioning, exploration, visuospatial cognition and language development in preschool children with autism

    NARCIS (Netherlands)

    Hellendoorn, Annika|info:eu-repo/dai/nl/357400143; Wijnroks, Lex|info:eu-repo/dai/nl/124623999; van Daalen, Emma; Dietz, Claudine; Buitelaar, Jan K.; Leseman, Paul|info:eu-repo/dai/nl/070760810

    2015-01-01

    In order to understand typical and atypical developmental trajectories it is important to assess how strengths or weaknesses in one domain may be affecting performance in other domains. This study examined longitudinal relations between early fine motor functioning, visuospatial cognition,

  11. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    2010-07-01

    Full Text Available Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit.In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  12. Transcranial magnetic stimulation--may be useful as a preoperative screen of motor tract function.

    Science.gov (United States)

    Galloway, Gloria M; Dias, Brennan R; Brown, Judy L; Henry, Christina M; Brooks, David A; Buggie, Ed W

    2013-08-01

    Transcranial motor stimulation with noninvasive cortical surface stimulation, using a high-intensity magnetic field referred to as transcranial magnetic stimulation generally, is considered a nonpainful technique. In contrast, transcranial electric stimulation of the motor tracts typically cannot be done in unanesthesized patients. Intraoperative monitoring of motor tract function with transcranial electric stimulation is considered a standard practice in many institutions for patients during surgical procedures in which there is potential risk of motor tract impairment so that the risk of paraplegia or paraparesis can be reduced. Because transcranial electric stimulation cannot be typically done in the outpatient setting, transcranial magnetic stimulation may be able to provide a well-tolerated method for evaluation of the corticospinal motor tracts before surgery. One hundred fifty-five patients aged 5 to 20 years were evaluated preoperatively with single-stimulation nonrepetitive transcranial magnetic stimulation for preoperative assessment. The presence of responses to transcranial magnetic stimulation reliably predicted the presence of responses to transcranial electric stimulation intraoperatively. No complications occurred during the testing, and findings were correlated to the clinical history and used in the setup of the surgical monitoring.

  13. Evaluation of gross motor function before and after virtual reality application

    Directory of Open Access Journals (Sweden)

    Luiza da Silva Pereira Tannus

    Full Text Available Abstract Introduction: Recently virtual reality has been aggregated to the therapeutic possibilities for patients who need functionality gains, such as individuals with cerebral palsy (CP. Aim: to evaluate the effects of virtual reality on the gross motor function of individuals with CP. Methods: longitudinal study, realized in a special education school, with five individuals with CP (7.4 years of age ± 1.14 of both sexes, evaluated using the B, D and E dimensions of the GMFM 88, before and after the application of three Wii Fit Plus(r console games: Hula Hoop, Slide Penguin and Soccer Heading. These games were applied for four minutes per game, at the beginner level, twice a week, for twelve consecutives weeks. The normality of the sample was evaluated through the Shapiro-Wilk's test. The results obtained before and after the Wii Fit(r application were compared using descriptive statistics. Results: all the individuals obtained improvements in the dimensions evaluated after the virtual reality application, with a 5.14% general improvement, varying between 1.9% and 9.6%. The standing (D and walking, running and jumping (E dimensions were the dimensions which obtained higher improvement percentages. Conclusion: considering the study limitations, the results obtained suggest that virtual reality can promote benefits in the gross motor function of individuals with cerebral palsy.

  14. Motor matters: tackling heterogeneity of Parkinson's disease in functional MRI studies.

    Directory of Open Access Journals (Sweden)

    Štefan Holiga

    Full Text Available To tackle the heterogeneity of Parkinson's disease symptoms, most functional imaging studies tend to select a uniform group of subjects. We hypothesize that more profound considerations are needed to account for intra/inter-subject clinical variability and possibly for differing pathophysiological processes. Twelve patients were investigated using functional magnetic resonance imaging during visually-guided finger tapping. To account for disease heterogeneity, the motor score and individual symptom scores from the Unified Parkinson's Disease Rating Scale (UPDRS-III were utilized in the group-level model using two approaches either as the explanatory variable or as the effect of interest. Employment of the UPDRS-III score and symptom scores was systematically tested on the resulting group response to the levodopa challenge, which further accentuated the diversity of the diseased state of participants. Statistics revealed a bilateral group response to levodopa in the basal ganglia. Interestingly, systematic incorporation of individual motor aspects of the disease in the modelling amended the resulting activity patterns conspicuously, evidencing a manifold amount of explained variability by the particular score. In conclusion, the severity of clinical symptoms expressed in the UPDRS-III scores should be considered in the analysis to attain unbiased statistics, draw reliable conclusions and allow for comparisons between research groups studying Parkinson's disease using functional magnetic resonance imaging.

  15. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    Science.gov (United States)

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  16. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  17. The clinical effect of hippotherapy on gross motor function of children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    K Litlle

    2013-12-01

    Full Text Available Background: Cerebral palsy (CP is the most common cause of physical disability affecting gross motor function (GMF in early childhood. Hippotherapy is a treatment approach aimed at improving GMF in children with CP. Several systematic reviews have been published showing an improvement in Dimension E of the Gross Motor Function Measure (GMFM after hippotherapy. However, these reviews failed to evaluate the clinical effect of hippotherapy in improving GMF in children with CP. Objective: To critically appraise the evidence of hippotherapy to ascertain whether it is a clinically meaningful approach for children with CP. Methodology: Five computerised bibliographic databases were searched. Predetermined inclusion and exclusion criteria were set. The PEDro scale was used to assess the quality of the studies. A revised JBI Data extraction tool was used to extract data from the selected articles. Revman© Review Manager Software was used to create forest plots for comparisons of results. Results: All studies used the GMFM as an outcome measure for gross motor function. The added benefit of hippotherapy is a minimum 1% and a maximum 7% increase on the GMFM scores. However, all 95% confidence intervals (CI around all the mean differences were insignificant. Conclusion: The clinical effect of hippotherapy on the GMF of children with CP is small. Larger studies are required to provide evidence of the effect of hippotherapy within this population.

  18. Classification of cerebral palsy: association between gender, age, motor type, topography and Gross Motor Function Classificação da paralisia cerebral: associação entre gênero, idade, tipo motor, topografia e Função Motora Grossa

    Directory of Open Access Journals (Sweden)

    Luzia Iara Pfeifer

    2009-12-01

    Full Text Available The goal of this study was to assess the relation between gender, age, motor type, topography and gross motor function, based on the Gross Motor Function System of children with cerebral palsy. Trunk control, postural changes and gait of one hundred children between 5 months and 12 years old, were evaluated. There were no significant differences between gender and age groups (p=0.887 or between gender and motor type (p=0.731. In relation to body topography most children (88% were spastic quadriplegic. Most hemiplegics children were rated in motor level I, children with diplegia were rated in motor level III, and quadriplegic children were rated in motor level V. Functional classification is necessary to understand the differences in cerebral palsy and to have the best therapeutic planning since it is a complex disease which depends on several factors.Este estudo teve como objetivo avaliar a relação entre gênero, idade, tipo motor, topografia e Função Motora Grossa, baseado no Sistema de Função Motora Grossa em crianças com paralisia cerebral. Participaram desta pesquisa 100 crianças com idade entre 5 meses a 12 anos que foram observadas em relação ao controle de tronco, trocas posturais e marcha. Não houve diferenças significativas entre gêneros e grupos etários (p=0,887 e entre gênero e tipo motor (p=0,731. Em relação à topografia corporal, houve predomínio de crianças com quadriplegia, sendo que a maioria (88% era do tipo espástico. Quanto ao nível motor, as crianças hemiplégicas pertenciam em sua maioria ao nível I, as diplégicas ao nível III e as quadriplégicas ao nível V. Sendo a paralisia cerebral uma condição complexa que depende de diversos fatores, beneficia-se de classificações funcionais para compreensão da diversidade e melhor planejamento terapêutico.

  19. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Leonardo Furlan

    2016-01-01

    Full Text Available Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.

  20. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.

    Science.gov (United States)

    Ho, Kerrie-Anne; Taylor, Janet L; Chew, Taariq; Gálvez, Verònica; Alonzo, Angelo; Bai, Siwei; Dokos, Socrates; Loo, Colleen K

    2016-01-01

    Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Resting-state Functional Connectivity is an Age-dependent Predictor of Motor Learning Abilities.

    Science.gov (United States)

    Mary, Alison; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe

    2017-10-01

    This magnetoencephalography study investigates how ageing modulates the relationship between pre-learning resting-state functional connectivity (rsFC) and subsequent learning. Neuromagnetic resting-state activity was recorded 5 min before motor sequence learning in 14 young (19-30 years) and 14 old (66-70 years) participants. We used a seed-based beta-band power envelope correlation approach to estimate rsFC maps, with the seed located in the right primary sensorimotor cortex. In each age group, the relation between individual rsFC and learning performance was investigated using Pearson's correlation analyses. Our results show that rsFC is predictive of subsequent motor sequence learning but involves different cross-network interactions in the two age groups. In young adults, decreased coupling between the sensorimotor network and the cortico-striato-cerebellar network is associated with better motor learning, whereas a similar relation is found in old adults between the sensorimotor, the dorsal-attentional and the DMNs. Additionally, age-related correlational differences were found in the dorsolateral prefrontal cortex, known to subtend attentional and controlled processes. These findings suggest that motor skill learning depends-in an age-dependent manner-on subtle interactions between resting-state networks subtending motor activity on the one hand, and controlled and attentional processes on the other hand. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Impact of Helminth Infection during Pregnancy on Cognitive and Motor Functions of One-Year-Old Children

    Science.gov (United States)

    Mireku, Michael O.; Boivin, Michael J.; Davidson, Leslie L.; Ouédraogo, Smaïla; Koura, Ghislain K.; Alao, Maroufou J.; Massougbodji, Achille; Cot, Michel; Bodeau-Livinec, Florence

    2015-01-01

    Objective To determine the effect of helminth infection during pregnancy on the cognitive and motor functions of one-year-old children. Methods Six hundred and thirty five singletons born to pregnant women enrolled before 29 weeks of gestation in a trial comparing two intermittent preventive treatments for malaria were assessed for cognitive and motor functions using the Mullen Scales of Early Learning, in the TOVI study, at twelve months of age in the district of Allada in Benin. Stool samples of pregnant women were collected at recruitment, second antenatal care (ANC) visit (at least one month after recruitment) and just before delivery, and were tested for helminths using the Kato-Katz technique. All pregnant women were administered a total of 600 mg of mebendazole (100 mg two times daily for 3 days) to be taken after the first ANC visit. The intake was not directly observed. Results Prevalence of helminth infection was 11.5%, 7.5% and 3.0% at first ANC visit, second ANC visit and at delivery, respectively. Children of mothers who were infected with hookworms at the first ANC visit had 4.9 (95% CI: 1.3–8.6) lower mean gross motor scores compared to those whose mothers were not infected with hookworms at the first ANC visit, in the adjusted model. Helminth infection at least once during pregnancy was associated with infant cognitive and gross motor functions after adjusting for maternal education, gravidity, child sex, family possessions, and quality of the home stimulation. Conclusion Helminth infection during pregnancy is associated with poor cognitive and gross motor outcomes in infants. Measures to prevent helminth infection during pregnancy should be reinforced. PMID:25756357

  3. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    Directory of Open Access Journals (Sweden)

    Svend Sparre Geertsen

    Full Text Available To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests.This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls. Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C. Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension.Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001, whereas exercise capacity was only associated with better sustained attention (P<0.046 and spatial working memory (P<0.038. Fine and gross motor skills (all P<0.001, exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension.The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the

  4. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  5. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  6. Motor outcome measures in Huntington disease clinical trials.

    Science.gov (United States)

    Reilmann, Ralf; Schubert, Robin

    2017-01-01

    Deficits in motor function are a hallmark of Huntington disease (HD). The Unified Huntington's Disease Rating Scale Total Motor Score (UHDRS-TMS) is a categoric clinical rating scale assessing multiple domains of motor disability in HD. The UHDRS-TMS or subsets of its items have served as primary or secondary endpoints in numerous clinical trials. In spite of a well-established video-based annual online certification system, intra- and interrater variability, subjective error, and rater-induced placebo effects remain a concern. In addition, the UHDRS-TMS was designed to primarily assess motor symptoms in manifest HD. Recently, advancement of technology resulted in the introduction of the objective Q-Motor (i.e., Quantitative-Motor) assessments in biomarker studies and clinical trials in HD. Q-Motor measures detected motor signs in blinded cross-sectional and longitudinal analyses of manifest, prodromal, and premanifest HD cohorts up to two decades before clinical diagnosis. In a multicenter clinical trial in HD, Q-Motor measures were more sensitive than the UHDRS-TMS and exhibited no placebo effects. Thus, Q-Motor measures are currently explored in several multicenter trials targeting both symptomatic and disease-modifying mechanisms. They may supplement the UHDRS-TMS, increase the sensitivity and reliability in proof-of-concept studies, and open the door for phenotype assessments in clinical trials in prodromal and premanifest HD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detecting bilateral motor associated areas with resting state functional magnetic resonance: the effect of different seed points selection on the results

    International Nuclear Information System (INIS)

    Yi Huiming; Yang Mingming; Meng Liangliang; Zhang Jing

    2011-01-01

    Objective: To investigate the effect of different seed points selection on localizing bilateral hand motor associated areas in resting state functional magnetic resonance. Methods: Thirty -one subjects were recruited (male 15, female 16), all of them underwent both block-designed fMRI scan during performing bilateral hand motor task and resting-state fMRI scan. DPARSA V2.0 and SPM8 were used to process the data. The peak voxels in the activity map of the task scan were selected as seeds to compute functional connectivity map of the resting-state scan. Spatial correlation analysis was performed to compare the activity map of the task scan and the connectivity map of the resting- state scan. Results: Fifteen isolated clusters were picked to generate the peak voxels, which were selected as seeds to compute functional connectivity maps. Among all the functional connectivity maps, those generated by motor area (SMA) presented the most consistent spatial distribution with task associated activity map, and the functional connectivity maps generated by primary motor cortex (M1) and dorsal premotor cortex (PMd) consisted of bilateral Ml and SMA. the functional connectivity maps generated by putamen (Pu), thalamus (Th), cerebellum anterior lobe (CbAL) and cerebellum posterior lobe (CbPL) consisted of the areas around the seeds and the mirror areas in the contralateral cortex. Conclusion: Using SMA as seed to compute resting-state functional connectivity map may produce the best spatial coherence with the activity map generated by bilateral hand motor task, and selecting M1 and PMd as seeds may present the best primary motor cortex in the connectivity map. (authors)

  8. Effects of a Single Dose of Erythropoietin on Motor Function and Cognition after Focal Brain Ischemia in Adult Rats

    Directory of Open Access Journals (Sweden)

    Michaela Hralová

    2014-01-01

    Full Text Available We tested the influence of erythropoietin (EPO, a basic cytokine in erythropoiesis regulation, on the process of motor function and cognition after focal brain ischemia induced by a local application of endothelin. Endothelin-1 (ET-1 induced short lasting strong vasoconstriction, with described impact on the structure and on the function of neuronal cells. Neurological description of motor function and Morris water maze test (the swimming test is one of most widely used methods for studying cognitive functions in rodents were used to study the process of learning and memory in three-month-old male albino Wistar rats (n=52. Both tests were performed one week before, and three weeks after ischemia induction (endothelin application on the cortex in the area of a. cerebri media dx.. Experimental group received i.p. injection of EPO (5,000 IU/kg body weight, 10 min before endothelin application. Control group of animals received one i.p. injection of saline at the dose of 1 ml/kg body weight at the same time. Only sham surgery was performed in the third group of animals. Rats with EPO pretreatment before the experimental lesion exhibited significantly better motor and cognitive function then those with saline injection. No significant changes in the motor and cognitive function were found in the third group of rats (sham operated controls.

  9. Making a Simple Self-Starting Electric Motor

    Science.gov (United States)

    Hong, Seok-In; Choi, Jung-In; Hong, Seok-Cheol

    2009-01-01

    A simple electric motor has a problem in that the current applied to the motor per se can rarely trigger its rotation. Usually such motors begin to rotate after the rotor is slightly turned by hand (i.e., manual starting). In a "self-starting" motor, the rotor starts to rotate spontaneously as soon as the current is applied. This paper describes…

  10. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms.

    Science.gov (United States)

    Gautam, Mukesh; Jara, Javier H; Sekerkova, Gabriella; Yasvoina, Marina V; Martina, Marco; Özdinler, P Hande

    2016-03-15

    Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability. © The Author 2016. Published by Oxford University Press.

  11. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  12. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Dagan, Moria; Herman, Talia; Harrison, Rachel; Zhou, Junhong; Giladi, Nir; Ruffini, Giulio; Manor, Brad; Hausdorff, Jeffrey M

    2018-04-01

    Recent findings suggest that transcranial direct current stimulation of the primary motor cortex may ameliorate freezing of gait. However, the effects of multitarget simultaneous stimulation of motor and cognitive networks are mostly unknown. The objective of this study was to evaluate the effects of multitarget transcranial direct current stimulation of the primary motor cortex and left dorsolateral prefrontal cortex on freezing of gait and related outcomes. Twenty patients with Parkinson's disease and freezing of gait received 20 minutes of transcranial direct current stimulation on 3 separate visits. Transcranial direct current stimulation targeted the primary motor cortex and left dorsolateral prefrontal cortex simultaneously, primary motor cortex only, or sham stimulation (order randomized and double-blinded assessments). Participants completed a freezing of gait-provoking test, the Timed Up and Go, and the Stroop test before and after each transcranial direct current stimulation session. Performance on the freezing of gait-provoking test (P = 0.010), Timed Up and Go (P = 0.006), and the Stroop test (P = 0.016) improved after simultaneous stimulation of the primary motor cortex and left dorsolateral prefrontal cortex, but not after primary motor cortex only or sham stimulation. Transcranial direct current stimulation designed to simultaneously target motor and cognitive regions apparently induces immediate aftereffects in the brain that translate into reduced freezing of gait and improvements in executive function and mobility. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  13. Motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment: a diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available Previous diffusion tensor imaging (DTI studies regarding pediatric patients with motor dysfunction have confirmed the correlation between DTI parameters of the injured corticospinal tract and the severity of motor dysfunction. There is also evidence that DTI parameters can help predict the prognosis of motor function of patients with cerebral palsy. But few studies are reported on the DTI parameters that can reflect the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment. In the present study, 36 pediatric patients with hemiplegic cerebral palsy were included. Before and after rehabilitation treatment, DTI was used to measure the fiber number (FN, fractional anisotropy (FA and apparent diffusion coefficient (ADC of bilateral corticospinal tracts. Functional Level of Hemiplegia scale (FxL was used to assess the therapeutic effect of rehabilitative therapy on clinical hemiplegia. Correlation analysis was performed to assess the statistical interrelationship between the change amount of DTI parameters and FxL. DTI findings obtained at the initial and follow-up evaluations demonstrated that more affected corticospinal tract yielded significantly decreased FN and FA values and significantly increased ADC value compared to the less affected corticospinal tract. Correlation analysis results showed that the change amount of FxL was positively correlated to FN and FA values, and the correlation to FN was stronger than the correlation to FA. The results suggest that FN and FA values can be used to evaluate the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment and FN is of more significance for evaluation.

  14. Gross motor function, functional skills and caregiver assistance in children with spastic cerebral palsy (CP) with and without cerebral visual impairment (CVI)

    NARCIS (Netherlands)

    Salavati, M.; Rameckers, E.A.A.; Steenbergen, B.; Schans, C.P. van der

    2014-01-01

    Aim: To determine whether the level of gross motor function and functional skills in children with cerebral palsy (CP) and cerebral visual impairment (CVI) as well as caregiver assistance are lower in comparison with the corresponding group of children experiencing CP without CVI. Method: Data

  15. Gross motor function, functional skills and caregiver assistance in children with spastic cerebral palsy (CP) with and without cerebral visual impairment (CVI)

    NARCIS (Netherlands)

    Salavati, Masoud; Rameckers, E.A.A.; Steenbergen, B.; van der Schans, Cees

    2014-01-01

    Abstract Aim: To determine whether the level of gross motor function and functional skills in children with cerebral palsy (CP) and cerebral visual impairment (CVI) as well as caregiver assistance are lower in comparison with the corresponding group of children experiencing CP without CVI. Method:

  16. Neuroplasticity in the context of motor rehabilitation after stroke

    Science.gov (United States)

    Dimyan, Michael A.; Cohen, Leonardo G.

    2016-01-01

    Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain–computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation. PMID:21243015

  17. Neuroplasticity in the context of motor rehabilitation after stroke.

    Science.gov (United States)

    Dimyan, Michael A; Cohen, Leonardo G

    2011-02-01

    Approximately one-third of patients with stroke exhibit persistent disability after the initial cerebrovascular episode, with motor impairments accounting for most poststroke disability. Exercise and training have long been used to restore motor function after stroke. Better training strategies and therapies to enhance the effects of these rehabilitative protocols are currently being developed for poststroke disability. The advancement of our understanding of the neuroplastic changes associated with poststroke motor impairment and the innate mechanisms of repair is crucial to this endeavor. Pharmaceutical, biological and electrophysiological treatments that augment neuroplasticity are being explored to further extend the boundaries of poststroke rehabilitation. Potential motor rehabilitation therapies, such as stem cell therapy, exogenous tissue engineering and brain-computer interface technologies, could be integral in helping patients with stroke regain motor control. As the methods for providing motor rehabilitation change, the primary goals of poststroke rehabilitation will be driven by the activity and quality of life needs of individual patients. This Review aims to provide a focused overview of neuroplasticity associated with poststroke motor impairment, and the latest experimental interventions being developed to manipulate neuroplasticity to enhance motor rehabilitation.

  18. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement.

    Science.gov (United States)

    Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin

    2017-01-01

    The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  19. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  20. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    Science.gov (United States)

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  1. Mental representation and mental practice: experimental investigation on the functional links between motor memory and motor imagery.

    Directory of Open Access Journals (Sweden)

    Cornelia Frank

    Full Text Available Recent research on mental representation of complex action has revealed distinct differences in the structure of representational frameworks between experts and novices. More recently, research on the development of mental representation structure has elicited functional changes in novices' representations as a result of practice. However, research investigating if and how mental practice adds to this adaptation process is lacking. In the present study, we examined the influence of mental practice (i.e., motor imagery rehearsal on both putting performance and the development of one's representation of the golf putt during early skill acquisition. Novice golfers (N = 52 practiced the task of golf putting under one of four different practice conditions: mental, physical, mental-physical combined, and no practice. Participants were tested prior to and after a practice phase, as well as after a three day retention interval. Mental representation structures of the putt were measured, using the structural dimensional analysis of mental representation. This method provides psychometric data on the distances and groupings of basic action concepts in long-term memory. Additionally, putting accuracy and putting consistency were measured using two-dimensional error scores of each putt. Findings revealed significant performance improvements over the course of practice together with functional adaptations in mental representation structure. Interestingly, after three days of practice, the mental representations of participants who incorporated mental practice into their practice regime displayed representation structures that were more similar to a functional structure than did participants who did not incorporate mental practice. The findings of the present study suggest that mental practice promotes the cognitive adaptation process during motor learning, leading to more elaborate representations than physical practice only.

  2. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  3. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    ) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC......Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  4. Neural activation and functional connectivity during motor imagery of bimanual everyday actions.

    Directory of Open Access Journals (Sweden)

    André J Szameitat

    Full Text Available Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI of everyday actions using functional magnetic resonance imaging (fMRI. For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while undergoing fMRI. A univariate fMRI analysis showed no reliable cortical activations specific to bimanual MI, indicating that intermanual coordination demands in MI are not associated with increased neural processing. A functional connectivity analysis based on psychophysiological interactions (PPI, however, revealed marked increases in connectivity between parietal and premotor areas within and between hemispheres. We conclude that in MI of everyday actions intermanual coordination demands are primarily met by changes in connectivity between areas and only moderately, if at all, by changes in the amount of neural activity. These results are the first characterization of the neuroanatomical correlates of bimanual coordination demands in MI. Our findings support the assumed equivalence of overt and imagined actions and highlight the differences between uni- and bimanual actions. The findings extent our understanding of the motor system and may aid the development of clinical neurorehabilitation approaches based on mental practice.

  5. Analysis and Design of a Maglev Permanent Magnet Synchronous Linear Motor to Reduce Additional Torque in dq Current Control

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2018-03-01

    Full Text Available The maglev linear motor has three degrees of motion freedom, which are respectively realized by the thrust force in the x-axis, the levitation force in the z-axis and the torque around the y-axis. Both the thrust force and levitation force can be seen as the sum of the forces on the three windings. The resultant thrust force and resultant levitation force are independently controlled by d-axis current and q-axis current respectively. Thus, the commonly used dq transformation control strategy is suitable for realizing the control of the resultant force, either thrust force and levitation force. However, the forces on the three windings also generate additional torque because they do not pass the mover mass center. To realize the maglev system high-precision control, a maglev linear motor with a new structure is proposed in this paper to decrease this torque. First, the electromagnetic model of the motor can be deduced through the Lorenz force formula. Second, the analytic method and finite element method are used to explore the reason of this additional torque and what factors affect its change trend. Furthermore, a maglev linear motor with a new structure is proposed, with two sets of 90 degrees shifted winding designed on the mover. Under such a structure, the mover position dependent periodic part of the additional torque can be offset. Finally, the theoretical analysis is validated by the simulation result that the additionally generated rotating torque can be offset with little fluctuation in the proposed new-structure maglev linear motor. Moreover, the control system is built in MATLAB/Simulink, which shows that it has small thrust ripple and high-precision performance.

  6. Effects of intensive physical therapy on the motor function of a child with spastic hemiparesis

    Directory of Open Access Journals (Sweden)

    María Eugenia Serrano-Gómez

    2016-09-01

    Full Text Available Introduction: Physical therapy is a health profession whose object of study is the movement of the human body, therefore, it is responsible for cases involving motor development problems, as in the case presented here. Objective: To describe the short-term effect caused by intensive physical therapy treatment, performed with Therasuit, on motor function of a child with spastic right hemiparesis. Materials and methods: Descriptive qualitative research conducted based on the case study methodology with an observation period of two years. Results: The results include, besides the detection and diagnosis of the case, the analysis of information based on the application of the methodology and the observation of results in clinical trials to assess movement, design and implementation of a treatment plan using the Therasuit method. Conclusions: This case study makes possible to observe how the presence of a physical therapy program at a clinical practice institution allowed Therasuit method treatment to a four-year-old child diagnosed with right spastic hemiparesis sequelae, which improved gait and motor function.

  7. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2018-06-01

    Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.

  8. Nuclear Organization in the Spinal Cord Depends on Motor Neuron Lamination Orchestrated by Catenin and Afadin Function

    Directory of Open Access Journals (Sweden)

    Carola Dewitz

    2018-02-01

    Full Text Available Motor neurons in the spinal cord are found grouped in nuclear structures termed pools, whose position is precisely orchestrated during development. Despite the emerging role of pool organization in the assembly of spinal circuits, little is known about the morphogenetic programs underlying the patterning of motor neuron subtypes. We applied three-dimensional analysis of motor neuron position to reveal the roles and contributions of cell adhesive function by inactivating N-cadherin, catenin, and afadin signaling. Our findings reveal that nuclear organization of motor neurons is dependent on inside-out positioning, orchestrated by N-cadherin, catenin, and afadin activities, controlling cell body layering on the medio-lateral axis. In addition to this lamination-like program, motor neurons undergo a secondary, independent phase of organization. This process results in segregation of motor neurons along the dorso-ventral axis of the spinal cord, does not require N-cadherin or afadin activity, and can proceed even when medio-lateral positioning is perturbed.

  9. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  10. Effects due to induced azimuthal eddy currents in a self-exciting Faraday disk homopolar dynamo with a nonlinear series motor. I.. Two special cases

    Science.gov (United States)

    Hide, Raymond; Moroz, Irene M.

    1999-10-01

    The elucidation of the behaviour of physically realistic self-exciting Faraday-disk dynamos bears inter alia on attempts by theoretical geophysicists to interpret observations of geomagnetic polarity reversals. Hide [The nonlinear differential equations governing a hierarchy of self-exciting coupled Faraday-disk homopolar dynamos, Phys. Earth Planet. Interiors 103 (1997) 281-291; Nonlinear quenching of current fluctuations in a self-exciting homopolar dynamo, Nonlinear Processes in Geophysics 4 (1998) 201-205] has introduced a novel 4-mode set of nonlinear ordinary differential equations to describe such a dynamo in which a nonlinear electric motor is connected in series with the coil. The applied couple, α, driving the disk is steady and the Lorentz couple driving the motor is a quadratic function, x(1-ɛ)+ɛσx 2, of the dynamo-generated current x, with 0≤ɛ≤1. When there are no additional biasing effects due to background magnetic fields etc., the behaviour of the dynamo is determined by eight independent non-negative control parameters. These include ρ, proportional to the resistance of the disk to azimuthal eddy currents, and β, an inverse measure of the moment of inertia of the armature of the motor. When β=0 (the case when the motor is absent and ɛ and σ are redundant) and ρ -1≠0 , the 4-mode dynamo equations reduce to the 3-mode Lorenz equations, which can behave chaotically [E. Knobloch, Chaos in the segmented disc dynamo, Phys. Lett. A 82 (1981) 439-440]. When β≠0 but ρ -1=0 , the 4-mode set of equations reduces to a 3-mode dynamo [R. Hide (1997), see above], which can also behave chaotically when ɛ=0 [R. Hide, A.C. Skeldon, D.J. Acheson, A study of two novel self-exciting single-disk homopolar dynamos: theory, Proc. R. Soc. Lond. A 452 (1996) 1369-1395] but not when ɛ=1 [R. Hide (1998), see above]. In the latter case, however, all persistent fluctuations are completely quenched [R. Hide (1998), see above]. In this paper we investigate

  11. Motor Function and Dopamine Release Measurements in Transgenic Huntington’s Disease Model Rats

    Science.gov (United States)

    Ortiz, Andrea N.; Osterhaus, Gregory L.; Lauderdale, Kelli; Mahoney, Luke; Fowler, Stephen C.; von Hörsten, Stephan; Riess, Olaf; Johnson, Michael A.

    2013-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurodegenerative disorder characterized by deficits in motor and cognitive function. Here, we have quantitatively characterized motor deficiencies and dopamine release dynamics in transgenic HD model rats. Behavioral analyses were conducted using a newly-developed force-sensing runway and a previously-developed force-plate actometer. Gait disturbances were readily observed in transgenic HD rats at 12 to 15 months of age. Additionally, dopamine system challenge by ip injection of amphetamine also revealed that these rats were resistant to the expression of focused stereotypy compared to wild-type controls. Moreover, dopamine release, evoked by the application of single and multiple electrical stimulus pulses applied at different frequencies, and measured using fast-scan cyclic voltammetry at carbon-fiber microelectrodes, was diminished in transgenic HD rats compared to age-matched wild-type control rats. Collectively, these results underscore the potential contribution of dopamine release alterations to the expression of motor impairments in transgenic HD rats. PMID:22418060

  12. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    Science.gov (United States)

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pperformance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  13. Concurrent Validity of Two Standardized Measures of Gross Motor Function in Young Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Holloway, Jamie M; Long, Toby; Biasini, Fred

    2018-04-02

    This study provides information on how two standardized measures based on different theoretical frameworks can be used in collecting information on motor development and performance in 4- and 5-year-olds with autism spectrum disorder (ASD). The purpose of the study was to determine the concurrent validity of the Miller Function and Participation Scales (M-FUN) with the Peabody Developmental Motor Scales, Second Edition (PDMS-2) in young children with ASD. The gross motor sections of the PDMS-2 and the M-FUN were administered to 22 children with ASD between the ages of 48 and 71 months. Concurrent validity between overall motor scores and agreement in identification of motor delay were assessed. A very strong correlation (Pearson's r =.851) was found between the M-FUN scale scores and the PDMS-2 gross motor quotients (GMQs). Strong agreement in identification of children with average motor skills and delayed motor skills at 1.5 standard deviations below the mean was also found. This study supports the concurrent validity of the M-FUN with the PDMS-2 for young children with ASD. While both tests provide information regarding motor delay, the M-FUN may provide additional information regarding the neurological profile of the child.

  14. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    Science.gov (United States)

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information

  15. Functional reorganization of motor and limbic circuits after exercise training in a rat model of bilateral parkinsonism.

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    Full Text Available Exercise training is widely used for neurorehabilitation of Parkinson's disease (PD. However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions. One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [(14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula. These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum, as well as in related paralimbic regions (septum, raphe, insula. Exercise, but not lesioning, resulted

  16. Functional Reorganization of Motor and Limbic Circuits after Exercise Training in a Rat Model of Bilateral Parkinsonism

    Science.gov (United States)

    Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases

  17. Neuromodulation of lower limb motor control in restorative neurology.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  19. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  20. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    George F. Wittenberg

    2017-02-01

    Full Text Available Background and Purpose: The brain changes that underlie therapy-induced improvement in motor function after stroke remain obscure. This study sought to demonstrate the feasibility and utility of measuring motor system physiology in a clinical trial of intensive upper extremity rehabilitation in chronic stroke-related hemiparesis. Methods: This was a substudy of two multi-center clinical trials of intensive robotic and intensive conventional therapy arm therapy in chronic, significantly hemiparetic, stroke patients. Transcranial magnetic stimulation was used to measure motor cortical output to the biceps and extensor digitorum communus muscles. Magnetic resonance imaging (MRI was used to determine the cortical anatomy, as well as to measure fractional anisotropy, and blood oxygenation (BOLD during an eyes-closed rest state. Region-of-interest time-series correlation analysis was performed on the BOLD signal to determine interregional connectivity. Functional status was measured with the upper extremity Fugl-Meyer and Wolf Motor Function Test. Results: Motor evoked potential (MEP presence was associated with better functional outcomes, but the effect was not significant when considering baseline impairment. Affected side internal capsule fractional anisotropy was associated with better function at baseline. Affected side primary motor cortex (M1 activity became more correlated with other frontal motor regions after treatment. Resting state connectivity between affected hemisphere M1 and dorsal premotor area (PMAd predicted recovery. Conclusions: Presence of motor evoked potentials in the affected motor cortex and its functional connectivity with PMAd may be useful in predicting recovery. Functional connectivity in the motor network shows a trends towards increasing after intensive robotic or non-robotic arm therapy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00372411 \\& NCT00333983.