WorldWideScience

Sample records for current modulated phase-locked

  1. Current mode pulse width modulation/pulse position modulation based on phase lock loop

    Science.gov (United States)

    Wisartpong, Pichet; Silaphan, Vorapong; Kurutach, Sunee; Wardkein, Paramote

    2017-05-01

    In this paper, the fully integrated CMOS current mode PLL with current input injects at the place of input or output of the loop filter without summing amplifier circuit. It functions as PPM and PWM circuit is present. In addition, its frequency response is an analysis which electronic tuning BPF and LPF are obtained. The proposed circuit has been designed with 0.18 μm CMOS technology. The simulation results of this circuit can be operated at 2.5 V supply voltage, at center frequency 100 MHz. The linear range of input current can be adjusted from 43 μA to 109 μA, and the corresponding duty cycle of pulse width output is from 93% to 16% and the normalized pulse position is from 0.93 to 0.16. The power dissipation of this circuit is 4.68 mW with the total chip area is 28 μm × 60 μm.

  2. Quasiparticle current and phase locking of intrinsic Josephson junctions

    Science.gov (United States)

    Seidel, P.; Grib, A. N.; Shukrinov, Yu. M.; Scherbel, J.; Hübner, U.; Schmidl, F.

    2001-09-01

    On the base of our experiments on thin film Josephson junctions in mesa geometry we discuss the quasiparticle branches of the intrinsic arrays within a tunnelling model using d-wave superconductor density of states. We find temperature dependent current contributions and a zero bias anomaly. The coherent behaviour is studied for intrinsic arrays with an additional side-wall shunt. The existence of thresholds of phase locking at small as well as at large inductances is demonstrated. We discuss the problems with experimental realisation of the shunts as well as with an alternative concept to enhance phase locking in such arrays towards application as oscillators in the frequency range up to some THz.

  3. Optimal space communication techniques. [a discussion of delta modulation, pulse code modulation, and phase locked systems

    Science.gov (United States)

    Schilling, D. L.

    1975-01-01

    Encoding of video signals using adaptive delta modulation (DM) was investigated, along with the error correction of DM encoded signals corrupted by thermal noise. Conversion from pulse code modulation to delta modulation was studied; an expression for the signal to noise ratio of the DM signal derived was achieved by employing linear, 2-sample, interpolation between sample points. A phase locked loop using a nonlinear processor in lieu of a loop filter is discussed.

  4. A phase-locked laser system based on modulation technique for atom interferometry

    CERN Document Server

    Li, Wei; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2016-01-01

    We demonstrate a Raman laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  5. A phase-locked laser system based on double direct modulation technique for atom interferometry

    Science.gov (United States)

    Li, Wei; Pan, Xiong; Song, Ningfang; Xu, Xiaobin; Lu, Xiangxiang

    2017-02-01

    We demonstrate a laser system based on phase modulation technology and phase feedback control. The two laser beams with frequency difference of 6.835 GHz are modulated using electro-optic and acousto-optic modulators, respectively. Parasitic frequency components produced by the electro-optic modulator are filtered using a Fabry-Perot Etalon. A straightforward phase feedback system restrains the phase noise induced by environmental perturbations. The phase noise of the laser system stays below -125 rad2/Hz at frequency offset higher than 500 kHz. Overall phase noise of the laser system is evaluated by calculating the contribution of the phase noise to the sensitivity limit of a gravimeter. The results reveal that the sensitivity limited by the phase noise of our laser system is lower than that of a state-of-the-art optical phase-lock loop scheme when a gravimeter operates at short pulse duration, which makes the laser system a promising option for our future application of atom interferometer.

  6. Phase-locked modulation delay between the poles of pulsar B1055-52

    CERN Document Server

    Weltevrede, Patrick; Johnston, Simon

    2012-01-01

    We present a detailed single pulse study of PSR B1055-52 based on observations at the Parkes radio telescope. The radio emission is found to have a complex modulation dominated by a periodicity of ~20 times its rotational period P (0.197s), whose phase and strength depends on pulse longitude. This periodicity exhibits a phase-locked delay of about 2.5P between the main pulse (MP) and interpulse (IP), presumed to be the opposite poles of the pulsar. This delay corresponds to a light travel distance of many times the light cylinder radius. More complex modulations are found within the MP on timescales down to about 9P, and both these and the principal modulation vary strongly across the (at least) 7 components which the MP and IP exhibit. The nature of the single pulse emission, which ranges from smooth and longitudinally extended to `spiky', is also component-dependent. Despite these disparities, the total pulse intensity distributions at the MP and IP are virtually identical in shape, suggesting a common emis...

  7. QPSK Modulator with Continuous Phase and Fast Response Based on Phase-Locked Loop

    Directory of Open Access Journals (Sweden)

    L. Kirasamuthranon

    2017-06-01

    Full Text Available Among M-phase shift keying (M-PSK schemes, quadrature phase-shift keying (QPSK is used most often because of its efficient bandwidth consumption. However, in comparison with minimum-shift keying, which has continuous phase transitions, QPSK requires a higher bandwidth to transmit a signal. This article focuses on the phase transitions in QPSK signals, and a QPSK modulator based on a phase-locked loop (PLL is proposed. The PLL circuit in the proposed system differs from that of conventional PLL circuits because a three-input XOR gate and a summing circuit are used. With these additional components, the proposed PLL provides a continuous phase change in the QPSK signal. Consequently, the required bandwidth for transmitting the QPSK signal when using the proposed circuit is less than that for a conventional QPSK signal with a discontinuous phase. The analytical results for the proposed system in the time domain agree well with the experimental and simulation results of the circuit. Both the theoretical and experimental results thus confirm that the proposed technique can be realized in real-world applications.

  8. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    OpenAIRE

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-01-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially wi...

  9. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  10. Wideband phase-locked loop circuit with real-time phase correction for frequency modulation atomic force microscopy

    Science.gov (United States)

    Fukuma, Takeshi; Yoshioka, Shunsuke; Asakawa, Hitoshi

    2011-07-01

    We have developed a wideband phase-locked loop (PLL) circuit with real-time phase correction for high-speed and accurate force measurements by frequency modulation atomic force microscopy (FM-AFM) in liquid. A high-speed operation of FM-AFM requires the use of a high frequency cantilever which, however, increases frequency-dependent phase delay caused by the signal delay within the cantilever excitation loop. Such phase delay leads to an error in the force measurements by FM-AFM especially with a low Q factor. Here, we present a method to compensate this phase delay in real time. Combined with a wideband PLL using a subtraction-based phase comparator, the method allows to perform an accurate and high-speed force measurement by FM-AFM. We demonstrate the improved performance by applying the developed PLL to three-dimensional force measurements at a mica/water interface.

  11. Modulation-mediated unlocking of a parametrically phase-locked spin torque oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Dürrenfeld, P.; Iacocca, E. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Materials Physics, KTH-Royal Institute of Technology, School of ICT, Electrum 229, 164 40 Kista (Sweden); Muduli, P. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Department of Physics, Indian Institute of Technology, Delhi, 110016 New Delhi (India)

    2014-12-22

    Modulation of an oscillator is crucial for its application in communication devices. While the output power and linewidth of single magnetic tunnel junction-based spin-torque oscillators (MTJ-STO) are not yet adequate for practical uses, the synchronization of such devices can overcome these limitations. Here, we investigate the modulation behavior of a parametrically synchronized MTJ-STO and show experimentally that modulation of the synchronized state preserves synchronization as long as the modulation frequency, f{sub mod}, is above a characteristic frequency, f{sub unlock}. The unlocking frequency increases with the modulation amplitude in agreement with analytical estimates and numerical simulations. These phenomena are described as a non-resonant unlocking mechanism, whose characteristics are directly related to inherent parameters of the oscillator.

  12. Optimization of a four-temporal phase lock for photoelastic-modulated polarimetry.

    Science.gov (United States)

    Tsai, Hsiu-Ming; Chao, Yu-Faye

    2009-08-01

    A set of four-temporal phases in photoelastic-modulated polarimetry is proposed to measure the Stokes parameters. In comparison with the conventional polarimetry, which uses a set of four-spatial angles by rotating a quarter-wave plate to obtain the polarimetric parameters, this temporal type polarimetry not only can reduce the time consumption but also can avoid the measurement error from the beam deviation. In addition, based on singular value decomposition, the figure of merit of this temporal phase technique can improve its signal-to-noise ratio by a factor of 2 in comparison with the rotating quarter-wave plate.

  13. Prescaled phase-locked loop using phase modulation and spectral filtering and its application to clock extraction from 160-Gbit/s optical-time-division multiplexed signal.

    Science.gov (United States)

    Igarashi, Koji; Katoh, Kazuhiro; Kikuchi, Kazuro

    2006-05-01

    We propose a prescaled phase-locked loop (PLL) using a simple optoelectronic phase comparator based on phase modulation and spectral filtering. Our phase comparator has a high dynamic range of over 9 dB and a high sensitivity comparable to that using an electrical mixer. A PLL composed of our phase comparator enables to extract a low-noise 10-GHz clock from a 160-Gbit/s optical-time-division multiplexed (OTDM) signal.

  14. Wideband phase locking to modulated whisker vibration point to a temporal code for texture in the rat's barrel cortex.

    Science.gov (United States)

    Ewert, Tobias A S; Möller, Johannes; Engel, Andreas K; Vahle-Hinz, Christiane

    2015-10-01

    Rats probe objects with their whiskers and make decisions about sizes, shapes, textures and distances within a few tens of milliseconds. This perceptual analysis requires the processing of tactile high-frequency object components reflecting surface roughness. We have shown that neurons in the barrel cortex of rats encode high-frequency sinusoidal vibrations of whiskers for sustained periods when presented with constant amplitudes and frequencies. In a natural situation, however, stimulus parameters change rapidly when whiskers are brushing across objects. In this study, we therefore analysed cortical responses to vibratory movements of single whiskers with rapidly changing amplitudes and frequencies. The results show that different neural codes are employed for a processing of stimulus parameters. The frequency of whisker vibration is encoded by the temporal pattern of spike discharges, i.e., the phase-locked responses of barrel cortex neurons. In addition, oscillatory gamma band activity was induced during high-frequency stimulation. The pivotal descriptor of the amplitude of whisker displacement, the velocity, is reflected in the rate of spike discharges. While phase-locked discharges occurred over the entire range of frequencies tested (10-600 Hz), the discharge rate increased with stimulus velocity only up to about 60 µm/ms, saturating at a mean rate of ~117 spikes/s. In addition, the results show that whisker movements of more than 500 Hz bandwidth may be encoded by phase-locked responses of small groups of cortical neurons. Thus, even single whiskers may transmit information about wide ranges of textural components owing to their set of different types of hair follicle mechanoreceptors.

  15. FPGA-based phase control of acousto-optic modulator Fourier synthesis system through gradient descent phase-locking algorithm.

    Science.gov (United States)

    Underwood, Kenneth J; Jones, Andrew M; Gopinath, Juliet T

    2015-06-20

    We present a new application of the stochastic parallel gradient descent (SPGD) algorithm to fast active phase control in a Fourier synthesis system. Pulses (4.9 ns) with an 80 MHz repetition rate are generated by feedback from a single phase-sensitive metric. Phase control is applied via fast current modulation of a tapered amplifier using an SPGD algorithm realized on a field-programmable gate array (FPGA). The waveforms are maintained by constant active feedback from the FPGA. We also discuss the extension of this technique to many more semiconductor laser emitters in a diode laser array.

  16. Phase locked loops design, simulation, and applications

    CERN Document Server

    Best, Roland E

    2007-01-01

    The Definitive Introduction to Phase-Locked Loops, Complete with Software for Designing Wireless Circuits! The Sixth Edition of Roland Best's classic Phase-Locked Loops has been updated to equip you with today's definitive introduction to PLL design, complete with powerful PLL design and simulation software written by the author. Filled with all the latest PLL advances, this celebrated sourcebook now includes new chapters on frequency synthesis…CAD for PLLs…mixed-signal PLLs…all-digital PLLs…and software PLLs_plus a new collection of sample communications applications. An essential tool for achieving cutting-edge PLL design, the Sixth Edition of Phase-Locked Loops features: A wealth of easy-to-use methods for designing phase-locked loops Over 200 detailed illustrations New to this edition: new chapters on frequency synthesis, including fractional-N PLL frequency synthesizers using sigma-delta modulators; CAD for PLLs, mixed-signal PLLs, all-digital PLLs, and software PLLs; new PLL communications ap...

  17. Phase locking of vortex cores in two coupled magnetic nanopillars

    Directory of Open Access Journals (Sweden)

    Qiyuan Zhu

    2014-11-01

    Full Text Available Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. This work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.

  18. Design, real-time modelling, simulation and digital implementation of phase-locked loop-based auto-synchronising current-sourced converter for an induction heating prototype

    Indian Academy of Sciences (India)

    MOLAY ROY; MAINAK SENGUPTA

    2017-06-01

    Induction heating (IH) converters operate just above resonant frequency, at near unity power factor (UPF), to supply power to the targeted work-piece. Some power electronic converter-fed IH systems use power control strategies based on dynamic tracking of the changing resonant frequency as the work-piece gets heated up (since inductance changes). Therefore, the correct in-process determination of the resonant frequency is essential. A method of dynamically detecting the resonant frequency is by calculating the phase-shift betweencurrent and voltage continuously during the process. In case of CSI- (and VSI-) fed IH, the phase-shift between voltage and current is zero at resonant frequency. Hence one way of identifying the resonant frequency is by varying the frequency until the phase-shift is zero. For controlling this phase-shift between current and voltage waveforms, most of the controllers use a phase-locked loop (PLL) IC. In this paper, a novel method for the dynamic tracking of resonant frequency is proposed and the practical implementation of the same, using a fieldprogrammable gate array (FPGA) based digital-PLL, is presented. The scheme is first simulated with generated off-line signal samples and then implemented on a real-time model of a CSI-fed IH application. Finally, thedigital-PLL logic is implemented on controller hardware and practically tested in a laboratory-made experimental set-up of 2 kW at a nominal frequency of 10 kHz. The switching frequency is auto-synchronising. This fact is practically verified both by varying (i) the geometric dimensions as also (ii) the initial temperature of the work-piece. It is practically observed in the oscillograms that the phase gets locked in few cycles (and hence ensures quick tracking of the dynamically changing resonant frequency for this set-up).

  19. Phase-locked laser coherent interference

    Institute of Scientific and Technical Information of China (English)

    Jingjing Wang; Xiaobo Wang; Bo He; Liantuan Mao; Suotang Jia

    2011-01-01

    A method of locking the relative phase to provide stable constructive or destructive interference between the phase-modulated sidebands from a pair of phase modulators is demonstrated. It is discussed theoretically for optimal fringe visibility related to the phase noise from faulty system. After phase locking using the phase modulating and lock-in technique, the drift of the relative phase is focalized around ±0.0016 rad and the fringe visibility is restricted to 2×l0-4.%@@ A method of locking the relative phase to provide stable constructive or destructive interference between the phase-modulated sidebands from a pair of phase modulators is demonstrated.It is discussed theoretically for optimal fringe visibility related to the phase noise from faulty system.After phase locking using the vhase modulating and lock-in technique.the drift of the relative phase is focalized around±0.0016 rad and the fringe visibility is restricted to 2×10-4.

  20. Advances phase-lock techniques

    CERN Document Server

    Crawford, James A

    2008-01-01

    From cellphones to micrprocessors, to GPS navigation, phase-lock techniques are utilized in most all modern electronic devices. This high-level book takes a systems-level perspective, rather than circuit-level, which differentiates it from other books in the field.

  1. All Digital Phase-Locked Loop

    OpenAIRE

    Marijan Jurgo

    2013-01-01

    The paper reviews working principles of phase-locked loop and drawbacks of classical PLL structure in nanometric technologies. It is proposed to replace the classical structure by all-digital phase-locked loop structure. Authors described the main blocks of all-digital phase-locked loop (time to digital converter and digitally controlled oscillator) and overviewed the quantization noise arising in these blocks as well as its minimization strategies. The calculated inverter delay in 65 nm CMOS...

  2. A Phase-Locking Analysis of Neuronal Firing Rhythms with Transcranial Magneto-Acoustical Stimulation Based on the Hodgkin-Huxley Neuron Model.

    Science.gov (United States)

    Yuan, Yi; Pang, Na; Chen, Yudong; Wang, Yi; Li, Xiaoli

    2017-01-01

    Transcranial magneto-acoustical stimulation (TMAS) uses ultrasonic waves and a static magnetic field to generate electric current in nerve tissues for the purpose of modulating neuronal activities. It has the advantage of high spatial resolution and penetration depth. Neuronal firing rhythms carry and transmit nerve information in neural systems. In this study, we investigated the phase-locking characteristics of neuronal firing rhythms with TMAS based on the Hodgkin-Huxley neuron model. The simulation results indicate that the modulation frequency of ultrasound can affect the phase-locking behaviors. The results of this study may help us to explain the potential firing mechanism of TMAS.

  3. Phase locking and spectral linewidth of a two-mode terahertz quantum cascade laser

    NARCIS (Netherlands)

    Baryshev, A.; Hovenier, J.N.; Adam, A.J.L.; Kašalynas, I.; Gao, J.R.; Klaassen, T.O.; Williams, B.S.; Kumar, S.; Hu,Q.; Reno, J.L.

    2006-01-01

    We have studied the phase locking and spectral linewidth of an ∼ 2.7 THz quantum cascade laser by mixing its two lateral lasing modes. The beat signal at about 8 GHz is compared with a microwave reference by applying conventional phase lock loop circuitry with feedback to the laser bias current. Pha

  4. The research on all digital phase-locked loop of intelligent module control type%智能模数控制型全数字锁相环的研究

    Institute of Scientific and Technical Information of China (English)

    陈高峰; 庞辉; 洪琪; 何敏

    2012-01-01

    由K模可逆计数器构成的传统数字锁相环可简单实现,但存在缩短捕获时间与减小同步误差之间的矛盾,而且获得的频带宽度较窄,因此设计了一种智能模数控制型全数字锁相环.其能够根据环路工作的不同阶段自动调整K值的大小,进而缩短捕获时间和减小同步误差.采用一个特殊的鉴频锁存器控制分频器的系数,能够调整环路的中心频率和扩宽频带宽度.%The realization of the traditional digital and phase-locked loop which consists of K reversible counter is simple, but there is a contradiction between shortening the time of capture and the synchronization error, and the bandwidth of the loop is narrower. Therefore, authors designed the digital phase-locked loop of intelligent module control, which could work according to the different stages of loop automatically and adjust the size of the K value. It could shorten the time of the capture and reduce the synchronization error. Since the coefficient of frequency divider was controlled by a special frequency discriminator latched, the center frequency loop was adjusted and the frequency bandwidth was broadened.

  5. Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.

    Science.gov (United States)

    Martin, Kevan A C; Schröder, Sylvia

    2016-02-24

    The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings.

  6. Global periodic attractor of a class of third-order phase-locked loop

    Institute of Scientific and Technical Information of China (English)

    林源渠

    1997-01-01

    The uniform boundedness and existence of a global periodic attractor for a third-order phase-locked loop with general phase detector characteristics and frequency modulation input is proved under some parametric conditions.

  7. Parallel Digital Phase-Locked Loops

    Science.gov (United States)

    Sadr, Ramin; Shah, Biren N.; Hinedi, Sami M.

    1995-01-01

    Wide-band microwave receivers of proposed type include digital phase-locked loops in which band-pass filtering and down-conversion of input signals implemented by banks of multirate digital filters operating in parallel. Called "parallel digital phase-locked loops" to distinguish them from other digital phase-locked loops. Systems conceived as cost-effective solution to problem of filtering signals at high sampling rates needed to accommodate wide input frequency bands. Each of M filters process 1/M of spectrum of signal.

  8. Simulation Study Using an Injection Phase-locked Magnetron as an Alternative Source for SRF Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Plawski, Tomasz E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    As a drop-in replacement for the CEBAF CW klystron system, a 1497 MHz, CW-type high-efficiency magnetron using injection phase lock and amplitude variation is attractive. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using analytical models and MATLAB/Simulink simulations. Since the 1497 MHz magnetron has not been built yet, previously measured characteristics of a 2.45GHz cooker magnetron are used as reference. The results of linear responses to the amplitude and phase control of a superconducting RF (SRF) cavity, and the expected overall benefit for the current CEBAF and future MEIC RF systems are presented in this paper.

  9. All Digital Phase-Locked Loop

    Directory of Open Access Journals (Sweden)

    Marijan Jurgo

    2013-05-01

    Full Text Available The paper reviews working principles of phase-locked loop and drawbacks of classical PLL structure in nanometric technologies. It is proposed to replace the classical structure by all-digital phase-locked loop structure. Authors described the main blocks of all-digital phase-locked loop (time to digital converter and digitally controlled oscillator and overviewed the quantization noise arising in these blocks as well as its minimization strategies. The calculated inverter delay in 65 nm CMOS technology was from 8.64 to 27.71 ps and time to digital converter quantization noise was from −104.33 to −82.17 dBc/Hz, with tres = 8.64–27.71 ps, TSVG = 143–333 ps, FREF = 20–60 MHz.Article in Lithuanian

  10. 60-GHz CMOS phase-locked loops

    CERN Document Server

    Cheema, Hammad M; van Roermund, Arthur HM

    2010-01-01

    The promising high data rate wireless applications at millimeter wave frequencies in general and 60 GHz in particular have gained much attention in recent years. However, challenges related to circuit, layout and measurements during mm-wave CMOS IC design have to be overcome before they can become viable for mass market. ""60-GHz CMOS Phase-Locked Loops"" focusing on phase-locked loops for 60 GHz wireless transceivers elaborates these challenges and proposes solutions for them. The system level design to circuit level implementation of the complete PLL, along with separate implementations of i

  11. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.

    Science.gov (United States)

    Kawasaki, Masashi; Leonard, John

    2017-02-01

    An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

  12. On-chip optical phase locking of single growth monolithically integrated Slotted Fabry Perot lasers.

    Science.gov (United States)

    Morrissey, P E; Cotter, W; Goulding, D; Kelleher, B; Osborne, S; Yang, H; O'Callaghan, J; Roycroft, B; Corbett, B; Peters, F H

    2013-07-15

    This work investigates the optical phase locking performance of Slotted Fabry Perot (SFP) lasers and develops an integrated variable phase locked system on chip for the first time to our knowledge using these lasers. Stable phase locking is demonstrated between two SFP lasers coupled on chip via a variable gain waveguide section. The two lasers are biased differently, one just above the threshold current of the device with the other at three times this value. The coupling between the lasers can be controlled using the variable gain section which can act as a variable optical attenuator or amplifier depending on bias. Using this, the width of the stable phase locking region on chip is shown to be variable.

  13. Phase locking of lasers with intracavity polarization elements.

    Science.gov (United States)

    Ronen, E; Fridman, M; Nixon, M; Friesem, A A; Davidson, N

    2008-10-15

    New configurations for phase locking several laser beams with intracavity polarization elements are presented. With this configuration we demonstrated efficient phase lock of up to 24 ND:YAG laser beams with only two polarization beam displacers.

  14. Can one passively phase lock 25 fiber lasers?

    CERN Document Server

    Fridman, Moti; Davidson, Nir; Friesem, Asher A

    2010-01-01

    Yes, it is possible to phase lock 25 fiber lasers but only for a short time. Our experiments on passively phase locking two-dimensional arrays of coupled fiber lasers reveal that the average phase locking level of 25 lasers is low ($20%-30%$) but can exceed 90% on rare instantaneous events. The average phase locking level was found to decrease for larger number of lasers in the array and increase with the connectivity of the array.

  15. Designing Of Pulse Phase-Locked Loops

    Directory of Open Access Journals (Sweden)

    A. A. Deryushev

    2006-01-01

    Full Text Available The paper considers pulse phase-locked loops (PPLL in which switching of structure and pa­rameters is used for improvement of dynamic and spectral characteristics Classification of existing switching algorithms is given in the paper. The paper proposes designing methodology that takes into account discrete and non-linear characteristics of the considered devices, and also requirements to synchronism, stability, speed, spectral characteristics, peculiarities of various switching algorithms. Practical approbation of the methodology has been carried out.

  16. Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling

    Directory of Open Access Journals (Sweden)

    Hessner Martin J

    2010-12-01

    Full Text Available Abstract Background In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation. Results In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation. Conclusions Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.

  17. Advanced frequency synthesis by phase lock

    CERN Document Server

    Egan, William F

    2011-01-01

    "An addendum to the popular Frequency Synthesis by Phase Lock, 2nd ed, this book describes sigma-delta, a frequency synthesis technique that has gained prominence in recent years. In addition, Simulink will be employed extensively to guide the reader. Fractional-n, the still-used forerunner to sigma-delta, is also discussed. Sequences of simulated results allow the reader to gain a deeper understanding while detailed appendices provide information from various stages of development. Simulation models discussed in the chapters that are available online."--Provided by publisher.

  18. Electronically tunable phase locked loop oscillator

    Science.gov (United States)

    Balasis, M.; Davis, M. R.; Jackson, C. R.

    1982-02-01

    This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.

  19. Phase locking of a seven-channel continuous wave fibre laser system by a stochastic parallel gradient algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, M V; Garanin, S G; Dolgopolov, Yu V; Kopalkin, A V; Kulikov, S M; Sinyavin, D N; Starikov, F A; Sukharev, S A; Tyutin, S V; Khokhlov, S V; Chaparin, D A [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2014-11-30

    A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)

  20. Laser Metrology Heterodyne Phase-Locked Loop

    Science.gov (United States)

    Loya, Frank; Halverson, Peter

    2009-01-01

    A method reduces sensitivity to noise in a signal from a laser heterodyne interferometer. The phase-locked loop (PLL) removes glitches that occur in a zero-crossing detector s output [that can happen if the signal-to-noise ratio (SNR) of the heterodyne signal is low] by the use of an internal oscillator that produces a square-wave signal at a frequency that is inherently close to the heterodyne frequency. It also contains phase-locking circuits that lock the phase of the oscillator to the output of the zero-crossing detector. Because the PLL output is an oscillator signal, it is glitch-free. This enables the ability to make accurate phase measurements in spite of low SNR, creates an immunity to phase error caused by shifts in the heterodyne frequency (i.e. if the target moves causing Doppler shift), and maintains a valid phase even when the signal drops out for brief periods of time, such as when the laser is blocked by a stray object.

  1. Ultra-low noise optical phase-locked loop

    Science.gov (United States)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  2. All-Digital Phase Locked Loop (ADPLL -A Review

    Directory of Open Access Journals (Sweden)

    Neelu Jain

    2013-01-01

    Full Text Available The All-Digital Phase-Locked Loop (ADPLL is digital electronic circuit that are used in modern electronic communication systems like frequency synthesizer, modulator/demodulator etc. This paper presents a review of various ADPLL techniques. The range of input frequency of ADPLL is 40 to 98 MHz; the output frequency may be up to 2.92 to 4 GHz range. The components of ADPLL such as phase detector, loop filter, Voltage Controlled Oscillator have been discussed in detail. Various problems in Digital PLL like noise, leakage, parasitic element etc. can be removed with the help of All-Digital PLL. Various parameters of ADPLL like power consumption, jitter, input and output frequency have also been compared. Now a days, processors using ADPLL having frequency in GHz range are being used in mobile communication to increase the speed of the system.

  3. Relaxation towards phase-locked dynamics in long Josephson junctions

    DEFF Research Database (Denmark)

    Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1995-01-01

    We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...

  4. Controls of seasonal ENSO phase locking in the Kiel Climate Model

    Science.gov (United States)

    Wengel, Christian; Latif, Mojib; Park, Wonsun; Harlass, Jan

    2016-04-01

    The El Niño/Southern Oscillation (ENSO) is characterized by a seasonal phase locking, with strongest SST anomalies in the eastern and central equatorial Pacific during boreal winter and weakest anomalies during boreal spring. Coupled general circulation models (CGCMs) tend to have strong difficulties in capturing the seasonal phase locking of ENSO. In this study, the Kiel Climate Model is used to identify the key processes that determine the seasonal phase locking in that model. An analysis based on the Bjerknes Stability Index reveals that the zonal advection feedback, the Ekman feedback and the thermocline feedback are strongest towards the end of the calendar year and can thus account for the variability maximum in December/January. Despite also being relatively strong in boreal spring, these feedbacks are damped by air-sea heat fluxes and mean ocean currents, which are strongest at that time of the year. Our findings compare well with those obtained from observations. It is further shown that insufficient simulation of the seasonal phase locking can be attributed to a wrong representation of the Bjerknes feedback. That includes weaker zonal advection, Ekman and thermocline feedback towards the end of the calendar year, which reduces variability in boreal winter, and a weaker air-sea heat flux damping during the beginning of the year. This smaller damping can not balance the relatively strong positive feedback processes during boreal spring and, consequently, contributes to a spurious increased variability in boreal spring/summer. Finally, increasing the model resolution of the atmospheric component of the KCM, horizontally and vertically, generally reduces model bias but does not necessarily improve simulation of seasonal ENSO phase locking. Tuning of model parameters is an alternative option by which a realistic phase locking can be achieved at coarse resolution.

  5. Phase locking of coupled lasers with many longitudinal modes

    CERN Document Server

    Fridman, Moti; Ronen, Eitan; Friesem, Asher A; Davidson, Nir

    2009-01-01

    Detailed experimental and theoretical investigations on two coupled fiber lasers, each with many longitudinal modes, reveal that the behavior of the longitudinal modes depends on both the coupling strength as well as the detuning between them. For low to moderate coupling strength only longitudinal modes which are common for both lasers phase-lock while those that are not common gradually disappear. For larger coupling strengths, the longitudinal modes that are not common reappear and phase-lock. When the coupling strength approaches unity the coupled lasers behave as a single long cavity with correspondingly denser longitudinal modes. Finally, we show that the gradual increase in phase-locking as a function of the coupling strength results from competition between phase-locked and non phase-locked longitudinal modes.

  6. Phase-locking-level statistics of coupled random fiber lasers.

    Science.gov (United States)

    Fridman, Moti; Pugatch, Rami; Nixon, Micha; Friesem, Asher A; Davidson, Nir

    2012-10-01

    We measure the statistics of phase locking levels of coupled fiber lasers with fluctuating cavity lengths. We found that the measured distribution of the phase locking level of such coupled lasers can be described by the generalized extreme value distribution. For large number of lasers the distribution of the phase locking level can be approximated by a Gumbel distribution. We present a simple model, based on the spectral response of coupled lasers, and the calculated results are in good agreement with the experimental results.

  7. A Novel Phase-Locking-Free Phase Sensitive Amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2016-01-01

    We propose a scheme for phase regeneration of optical binary phase-shift keying (BPSK) data signals based on phase sensitive amplification without active phase-locking. A delay interferometer (DI) is used to convert a BPSK signal impaired by noise to an amplitude modulated signal followed by cross-phase......-locked pumps. As a result, active phase-stabilization is avoided. A proof-of-principle experiment is carried out with a dual-pump degenerate phase sensitive amplifier (PSA), demonstrating regeneration for a 10 Gb/s non-return-to-zero differential BPSK (NRZ-DPSK) data signal degraded by a sinusoidal phase-noise...... tone. Receiver sensitivity improvements of 3.5 dB are achieved at a bit-error-rate (BER) of 10-9. Additionally, numerical simulations are performed comparing the idealized regenerator performance in the presence of sinusoidal phase modulation as well as Gaussian phase-noise....

  8. Neuron-like dynamics of a phase-locked loop

    Science.gov (United States)

    Matrosov, Valery V.; Mishchenko, Mikhail A.; Shalfeev, Vladimir D.

    2013-10-01

    Dynamics of two coupled phase-controlled generators based on phase-locked loop systems with a high frequency filter in the control loop was studied. It was found that beating modes are synchronized in the systems and shown that different synchronization states form an overlapping structure in parameters space of the coupled systems. Usage of the phase-locked loop as a neuron-like element is proposed.

  9. Phase Locked Photon Echoes for Extended Storage Time

    CERN Document Server

    Ham, B S

    2009-01-01

    We report a quantum optical storage time-extended near perfect photon echo protocol using a phase locking method via an auxiliary spin state, where the phase locking acts as a conditional stopper of the rephasing process resulting in extension of storage time determined by the spin dephasing process. The near perfect retrieval efficiency is owing to phase conjugate scheme, which gives the important benefit of aberration corrections when dealing with quantum images.

  10. Polarization-dependent phase locking in stimulated Brillouin scattering systems.

    Science.gov (United States)

    Hua, X; Falk, J

    1993-10-20

    Measurements of the mutual coherence of the output beams from a seeded, two-pump-beam, stimulated Brillouin scattering system are reported. Mutual coherence depends on the relative polarizations of the pump beams and the seed beam. A seed beam can phase-lock the Stokes outputs even if the pump beams are orthogonally polarized. Four-wave mixing is responsible for this phase locking.

  11. Experimental researches of laser phase lock with dual-servo feedbacks based on the piezoelectric transducer and fiber electrooptic phase modulator%基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究∗

    Institute of Scientific and Technical Information of China (English)

    侯佳佳; 尹王保; 肖连团; 贾锁堂; 赵刚; 谭巍; 邱晓东; 贾梦源; 马维光; 张雷; 董磊; 冯晓霞

    2016-01-01

    Fiber laser can be used for fiber optic communications, laser cutting, industrial manufacture, defense security and many other fields because of its advantages of narrow output linewidth, good reproducibility, etc. However, due to nonlinear and thermal effects, only a limited output power of a single fiber can be obtained with a sharp attenuation of the output beam quality, which obstructs the applications of fiber lasers. Therefore, the research of expanding the power of a fiber laser source while maintaining its beam quality by combining coherent beam has become a hot subject at present. In this field, the performance of phase control of coherent laser beams is a key factor to influence the efficiency of combination. The phase-controlling methods mainly include stochastic parallel gradient descent control algorithm, dithering, and heterodyne detection. In this paper, based on the active phase lock technology, the traditional heterodyne detection method is improved by the use of a fiber electro-optic phase modulator (EOM) rather than an acousto-optic frequency shifter (AOFS) to avoid the complex designs of the RF driver and circuit, which makes the overall experimental setup simple and stable. Moreover, in order to achieve a stable and wide correction range of phase locking, two servo paths are designed by use of piezoelectric transducer (PZT) and EOM1 to correct the optical phase differences. Firstly, a single-frequency narrow-width fiber laser with its central wavelength of 1531 nm is split by a beam splitter to generate a signal and a reference beam, respectively. The reference beam is phase modulated by another EOM2 with a 15 MHz signal. The phase error signal is obtained by demodulating the detected heterodyne signal at the modulation frequency. After that the error signal is divided into two parts, and sent to two PID servos to control PZT and EOM1, respectively. The PZT, used in the slow feedback loop, eliminates the laser phase error induced by the ambient

  12. Diffraction coupled phase-locked arrays of quantum cascade lasers with monolithically integrated Talbot cavities

    CERN Document Server

    Wang, Lei; Jia, Zhi-Wei; Zhao, Yue; Liu, Chuan-Wei; Liu, Ying-Hui; Zhai, Shen-Qiang; Zhuo, Ning; Liu, Feng-Qi; Xu, Xian-Gang

    2016-01-01

    Diffraction coupled arrays of quantum cascade laser are presented. The phase-locked behavior is achieved through monolithic integration of a Talbot cavity at one side of the laser array. The principle is based on fractional Talbot effect. By controlling length of Talbot cavity to be a quarter of Talbot distance (Zt/4), in-phase mode operation is selected. Measured far-field radiation patterns reflect stable in-phase mode operation under different injection currents, from threshold current to full power current. Diffraction-limited performance is shown from the lateral far-field, where three peaks can be obtained and main peak and side peak interval is 10.5{\\deg}. The phase-locked arrays with in-phase mode operation may be a feasible solution to get higher output power and maintain well beam quality meanwhile.

  13. Sideband locking of a single-section semiconductor distributed-feedback laser in an optical phase-lock loop.

    Science.gov (United States)

    Satyan, Naresh; Vasilyev, Arseny; Liang, Wei; Rakuljic, George; Yariv, Amnon

    2009-11-01

    The bandwidth and performance of optical phase-lock loops (OPLLs) using single-section semiconductor lasers (SCLs) are severely limited by the nonuniform frequency modulation response of the lasers. It is demonstrated that this restriction is eliminated by the sideband locking of a single-section distributed-feedback SCL to a master laser in a heterodyne OPLL, thus enabling a delay-limited loop bandwidth. The lineshape of the phase-locked SCL output is characterized using a delayed self-heterodyne measurement.

  14. Phase-locked array of quantum cascade lasers with an intracavity spatial filter

    Science.gov (United States)

    Jia, Zhiwei; Wang, Lei; Zhang, Jinchuan; Zhao, Yue; Liu, Chuanwei; Zhai, Shenqiang; Zhuo, Ning; Liu, JunQi; Wang, LiJun; Liu, ShuMan; Liu, Fengqi; Wang, Zhanguo

    2017-08-01

    We show a phase-locked array of quantum cascade lasers with an intracavity spatial filter based on the Talbot effect. All the laser arrays show in-phase operation from the threshold current to full power current with a near-diffraction-limited divergence angle. The maximum power is just about 5 times that of a single-ridge laser for an eleven-laser array device and 3 times for a seven-laser array device. The structure was analyzed by using the multi-slit Fraunhofer diffraction theory, showing very good agreement with the experimental results. Considering the great modal selection ability, simple fabricating process, and potential for achieving continuous wave operation, this phase-locked array may be a hopeful solution to obtain higher coherent power.

  15. Phase locking of wind turbines leads to intermittent power production

    Science.gov (United States)

    Anvari, M.; Wächter, M.; Peinke, J.

    2016-12-01

    Wind energy, inserted into the power grid by wind turbines, is strongly influenced by the turbulent fluctuations of wind speed in the atmospheric layer. Here we investigate the power production of a wind farm and show that due to the presence of large-scale and long-time correlation in wind velocity, turbines interact with each other. This interaction can result in phase locking in pairs of turbines. We show that there are time intervals during which some pairs of turbines are temporally phase locked. This intermediate phase locking leads to the statistical effect that the short-time fluctuations of the cumulative power output of the wind farm become non-Gaussian, i.e., intermittent power production occurs. Contrary to phase-locked states, there are some time intervals where all turbines are phase unlocking and consequently the probability density function of the temporal increment of cumulative power production of the wind farm has almost Gaussian distribution. The phase-locked states, which can be distinct from phase-unlocked states by their dynamical features, are evaluated by reconstructed stochastic differential equations.

  16. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... characterized for the current control in the rotating dq-frame and the stationary αβ-frame. Case studies based on the unified impedance model are presented, which are then verified in the time-domain simulations and experiments. The results closely correlate with the impedance-based analysis....

  17. Theory of spin torque nano-oscillator-based phase-locked loop

    Science.gov (United States)

    Mitrofanov, Alexander A.; Safin, Ansar R.; Udalov, Nikolay N.; Kapranov, Mikhail V.

    2017-09-01

    In this paper, we propose an approximate nonlinear theory of a phase-locked loop (PLL) of the spin torque nano-oscillator (STNO). We study the nonlinear dynamics of a filterless PLL generating microwave oscillations in a broad range of frequencies under the spin-polarized electrical current and external magnetic field. We consider the bifurcation analysis caused by a change in the frequency detuning of synchronized oscillations. We determine the bands of phase locking and quasi-synchronism, which basically distinguish STNOs from other types of microwave oscillators. Finally, we study the amplitude and phase noises of isochronous and nonisochronous STNO-based PLLs and compare them to the analogous characteristics of an autonomous oscillator.

  18. Phase noise reduction of a semiconductor laser in a composite optical phase-locked loop

    Science.gov (United States)

    Satyan, Naresh; Sendowski, Jacob; Vasilyev, Arseny; Rakuljic, George; Yariv, Amnon

    2010-12-01

    The bandwidth and residual phase noise of optical phase-locked loops (OPLLs) using semiconductor lasers are typically constrained by the nonuniform frequency modulation response of the laser, limiting their usefulness in a number of applications. It is shown in this work that additional feedback control using an optical phase modulator improves the coherence between the master and slave lasers in the OPLL by achieving bandwidths determined only by the propagation delay in the loop. A phase noise reduction by more than a factor of two is demonstrated in a proof-of-concept experiment using a commercial distributed feedback semiconductor laser.

  19. Circuit-Level Model of Phase-Locked Spin-Torque Oscillators

    Science.gov (United States)

    Ahn, Sora; Lim, Hyein; Kim, Miryeon; Shin, Hyungsoon; Lee, Seungjun

    2013-04-01

    Spin-torque oscillators (STOs) are new oscillating devices based on spintronics technology with many advantageous features, i.e., nanoscale size, high tunability, and compatibility with standard silicon processing. Recent research has shown that two electrically connected STOs may operate as a single device when specific conditions are met. To overcome the limitation of the small output power of STOs, the phase-locking behavior of multiple STOs is hereby extensively investigated. In this paper, we present a circuit-level model of two coupled STOs considering the interaction between them such that it can represent the phase-locking behavior of multiple STOs. In our model, the characteristics of each STO are defined first as functions of applied DC current and external magnetic field. Then, the phase-locking condition is examined to determine the properties of the two coupled STOs on the basis of a theoretical model. The analytic model of two coupled STOs is written in Verilog-A hardware description language. The behavior of the proposed model is verified by circuit-level simulation using HSPICE with CMOS circuits including a current-mirror circuit and differential amplifiers. Simulation results with various CMOS circuits have confirmed the effectiveness of our model.

  20. Phase-locked array of quantum cascade lasers with an intracavity spatial filter

    CERN Document Server

    Wang, Lei; Jia, Zhiwei; Zhao, Yue; Liu, Chuanwei; Liu, Yinghui; Zhai, Shenqiang; Ning, Zhuo; Liu, Fengqi

    2016-01-01

    Phase-locking an array of quantum cascade lasers is an effective way to achieve higher output power and beam shaping. In this article, based on Talbot effect, we show a new-type phase-locked array of mid-infrared quantum cascade lasers with an integrated spatial- filtering Talbot cavity. All the arrays show stable in-phase operation from the threshold current to full power current. The beam divergence of the array device is smaller than that of a single-ridge laser. We use the multi-slit Fraunhofer diffraction mode to interpret the far-field radiation profile and give a solution to get better beam quality. The maximum power is just about 5 times that of a single-ridge laser for eleven-laser array device and 3 times for seven-laser array device. Considering the great modal selection ability, simple fabricating process and the potential for achieving better beam quality and smaller cavity loss, this new-type phase-locked array may be a hopeful and elegant solution to get high power or beam shaping.

  1. Mutual phase-locking of microwave spin torque nano-oscillators.

    Science.gov (United States)

    Kaka, Shehzaad; Pufall, Matthew R; Rippard, William H; Silva, Thomas J; Russek, Stephen E; Katine, Jordan A

    2005-09-15

    The spin torque effect that occurs in nanometre-scale magnetic multilayer devices can be used to generate steady-state microwave signals in response to a d.c. electrical current. This establishes a new functionality for magneto-electronic structures that are more commonly used as magnetic field sensors and magnetic memory elements. The microwave power emitted from a single spin torque nano-oscillator (STNO) is at present typically less than 1 nW. To achieve a more useful power level (on the order of microwatts), a device could consist of an array of phase coherent STNOs, in a manner analogous to arrays of Josephson junctions and larger semiconductor oscillators. Here we show that two STNOs in close proximity mutually phase-lock-that is, they synchronize, which is a general tendency of interacting nonlinear oscillator systems. The phase-locked state is distinct, characterized by a sudden narrowing of signal linewidth and an increase in power due to the coherence of the individual oscillators. Arrays of phase-locked STNOs could be used as nanometre-scale reference oscillators. Furthermore, phase control of array elements (phased array) could lead to nanometre-scale directional transmitters and receivers for wireless communications.

  2. Laser induced phase locking of hydrogen plasma striations

    Energy Technology Data Exchange (ETDEWEB)

    Glab, W.; Nayfeh, M.H.

    1982-04-01

    Laser induced transient striations of a hydrogen discharge plasma are studied as a function of the ''detuning'' of the discharge parameters from the steady-state oscillatory response conditions. We observed laser induced phase locking of the steady-state striations.

  3. Development of Phase Lock Loop System for Synchronisation of a ...

    African Journals Online (AJOL)

    Akorede

    ABSTRACT: Phase locked loop (PLL) is an important part of the control unit of the grid connected power converter. The method of zero ... an output signal proportional to the phase difference between the input ... In their works, a proper PI regulator was designed ..... the course of this work for better performance analysis, it is.

  4. Microwave phase locking of Josephson-junction fluxon oscillators

    DEFF Research Database (Denmark)

    Salerno, M.; Samuelsen, Mogens Rugholm; Filatrella, G.;

    1990-01-01

    -dimensional functional map. Phase-locked states correspond to fixed points of the map. For junctions of in-line geometry, the existence and stability of such fixed points can be studied analytically. Study of overlap-geometry junctions requires the numerical inversion of a functional equation, but the results...

  5. Phase locked fluxon-antifluxon states in stacked Josephson junctions

    DEFF Research Database (Denmark)

    Carapella, Giovanni; Constabile, Giovanni; Petraglia, Antonio;

    1996-01-01

    Measurements were made on a two-stack long Josephson junction with very similar parameters and electrical access to the thin middle electrode. Mutually phase-locked fluxon-antifluxon states were observed. The observed propagation velocity is in agreement with the theoretical prediction. The I...

  6. Phase-locked flux-flow Josephson oscillator

    DEFF Research Database (Denmark)

    Ustinov, A. V.; Mygind, Jesper; Oboznov, V. A.

    1992-01-01

    . The dependence of the amplitude of the phase-locked step on external magnetic field and microwave power has been measured. The observed zero-crossing steps have potential application in Josephson voltage standards. A simple model for the flux-flow as determined by the microwave driven boundary gate at the edge...

  7. Optimal space communications techniques. [using digital and phase locked systems for signal processing

    Science.gov (United States)

    Schilling, D. L.

    1974-01-01

    Digital multiplication of two waveforms using delta modulation (DM) is discussed. It is shown that while conventional multiplication of two N bit words requires N2 complexity, multiplication using DM requires complexity which increases linearly with N. Bounds on the signal-to-quantization noise ratio (SNR) resulting from this multiplication are determined and compared with the SNR obtained using standard multiplication techniques. The phase locked loop (PLL) system, consisting of a phase detector, voltage controlled oscillator, and a linear loop filter, is discussed in terms of its design and system advantages. Areas requiring further research are identified.

  8. Randomly phase-locked microlaser arrays and fuzzy eigenmodes with stochastic phasing.

    Science.gov (United States)

    Riyopoulos, S

    2006-10-30

    Deviations in the cold cavity parameters, random or systematic, produce incoherently phased-locked laser arrays with unevenly distributed phase difference and intensity. The collective radiation fields constitute "fuzzy" eigenmodes; the phasing among cavities is constant in time but changes randomly from site-to-site. The existence and structure of such eigenmodes is demonstrated numerically and analyzed theoretically using the rate equations for coupled semiconductor laser cavities. Active coupling, whereby one cavity's radiation field modulates the complex gain of nearby cavities (cross-cavity hole burning), is essential for the frequency pulling allowing synchronization of the laser operating frequencies.

  9. Phase-locked loops. [in analog and digital circuits communication system

    Science.gov (United States)

    Gupta, S. C.

    1975-01-01

    An attempt to systematically outline the work done in the area of phase-locked loops which are now used in modern communication system design is presented. The analog phase-locked loops are well documented in several books but discrete, analog-digital, and digital phase-locked loop work is scattered. Apart from discussing the various analysis, design, and application aspects of phase-locked loops, a number of references are given in the bibliography.

  10. Predictive Pulse Pattern Current Modulation Scheme for Harmonic Reduction in Three-Phase Multidrive Systems

    DEFF Research Database (Denmark)

    Davari, Pooya; Yang, Yongheng; Zare, Firuz

    2016-01-01

    of them can lead to the cancellation of specific harmonics. This paper proposes a new cost-effective harmonic mitigation solution for multi-drive systems using a predictive pulse pattern current modulation control strategy. The proposed technique applies suitable interaction among parallel drive units......The majority of the industrial motor drive systems are equipped with the conventional line-commutated front-end rectifiers, and being one of the main sources of harmonics in the power line. While a parallel combination of these drive units elevates current quality issues, a proper arrangement...... at the rectification stage to synthesize sinusoidal input currents. The input voltage sensing is avoided in order to minimize the number of required sensors, and the grid synchronization also has been implemented based on a common Phase-Locked-Loop (PLL) using the DC-link capacitor voltage ripple. Experimental results...

  11. Phase locked backward wave oscillator pulsed beam spectrometer in the submillimeter wave range

    Science.gov (United States)

    Lewen, F.; Gendriesch, R.; Pak, I.; Paveliev, D. G.; Hepp, M.; Schieder, R.; Winnewisser, G.

    1998-01-01

    We have developed a new submillimeter wave pulsed molecular beam spectrometer with phase stabilized backward wave oscillators (BWOs). In the frequency ranges of 260-380 and 440-630 GHz, the BWOs output power varies between 3 and 60 mW. Part of the radiation was coupled to a novel designed harmonic mixer for submillimeter wavelength operation, which consists of an advanced whiskerless Schottky diode driven by a harmonic of the reference synthesizer and the BWO radiation. The resulting intermediate frequency of 350 MHz passed a low noise high electron mobility transistor amplifier, feeding the phase lock loop (PLL) circuit. The loop parameters of the PLL have been carefully adjusted for low phase noise. The half power bandwidth of the BWO radiation at 330 GHz was determined to be as small as 80 MHz, impressively demonstrating the low phase noise operation of a phase locked BWO. A double modulation technique was employed by combining an 80 Hz pulsed jet modulation and a 10-20 kHz source modulation of the BWO and reaching a minimum detectable fractional absorption of 2×10-7. For the first time, a number of pure rotational (Ka=3←2, Ka=4←3) and rovibrational transitions in the van der Waals bending and stretching bands of the Ar-CO complex were recorded.

  12. Fast Offset Laser Phase-Locking System

    Science.gov (United States)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog

  13. Phase-locking in cascaded stimulated Brillouin scattering

    CERN Document Server

    Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J

    2015-01-01

    Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  14. Cyclotomy and Ramanujan sums in quantum phase locking

    CERN Document Server

    Planat, M

    2003-01-01

    Phase locking governs the phase noise in classical clocks through effects described in precise mathematical terms. We seek here a quantum counterpart of these effects by working in a finite Hilbert space. We use a coprimality condition to define phase-locked quantum states and the corresponding Pegg-Barnett type phase operator. Cyclotomic symmetries in matrix elements are revealed and related to Ramanujan sums in the theory of prime numbers. The phase-number commutator vanishes as in the classical case, but a new type of quantum phase noise emerges in expectation values of phase and phase variance. The employed mathematical procedures also emphasize the isomorphism between algebraic number theory and the theory of quantum entanglement

  15. Phase locking a clock oscillator to a coherent atomic ensemble

    CERN Document Server

    Kohlhaas, R; Cantin, E; Aspect, A; Landragin, A; Bouyer, P

    2015-01-01

    The sensitivity of an atomic interferometer increases when the phase evolution of its quantum superposition state is measured over a longer interrogation interval. In practice, a limit is set by the measurement process, which returns not the phase, but its projection in terms of population difference on two energetic levels. The phase interval over which the relation can be inverted is thus limited to the interval $[-\\pi/2,\\pi/2]$; going beyond it introduces an ambiguity in the read out, hence a sensitivity loss. Here, we extend the unambiguous interval to probe the phase evolution of an atomic ensemble using coherence preserving measurements and phase corrections, and demonstrate the phase lock of the clock oscillator to an atomic superposition state. We propose a protocol based on the phase lock to improve atomic clocks under local oscillator noise, and foresee the application to other atomic interferometers such as inertial sensors.

  16. Phase-locking in cascaded stimulated Brillouin scattering

    Science.gov (United States)

    Büttner, Thomas F. S.; Poulton, Christopher G.; Steel, M. J.; Hudson, Darren D.; Eggleton, Benjamin J.

    2016-02-01

    Cascaded stimulated Brillouin scattering is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  17. Designing Estimator/Predictor Digital Phase-Locked Loops

    Science.gov (United States)

    Statman, J. I.; Hurd, W. J.

    1988-01-01

    Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.

  18. Constant-Frequency Pulsed Phase-Locked-Loop Measuring Device

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1992-01-01

    Constant-frequency pulsed phase-locked-loop measuring device is sensitive to small changes in phase velocity and easily automated. Based on use of fixed-frequency oscillator in measuring small changes in ultrasonic phase velocity when sample exposed to such changes in environment as changes in pressure and temperature. Automatically balances electrical phase shifts against acoustical phase shifts to obtain accurate measurements of acoustical phase shifts.

  19. The Design of Phase-Locked-Loop Circuit for Precision Capacitance Micrometer

    Directory of Open Access Journals (Sweden)

    Li Shujie

    2016-01-01

    Full Text Available High precision non-contact micrometer is normally divided into three categories: inductance micrometer, capacitance micrometer and optical interferometer micrometer. The capacitance micrometer is widely used because it has high performance to price ratio. With the improvement of automation level, precision of capacitance micrometer is required higher and higher. Generally, capacitance micrometer consists of the capacitance sensor, capacitance/voltage conversion circuit, and modulation and demodulation circuits. However, due to the existing of resistors, capacitors and other components in the circuit, the phase shift of the carrier signal and the modulated signal might occur. In this case, the specific value of phase shift cannot be determined. Therefore, error caused by the phase shift cannot be eliminated. This will reduce the accuracy of micrometer. In this design, in order to eliminate the impact of the phase shift, the phase-locked-loop (PLL circuit is employed. Through the experiment, the function of tracking the input signal phase and frequency is achieved by the phase-locked-loop circuit. This signal processing method can also be applied to tuber electrical resistance tomography system and other precision measurement circuit.

  20. Current detection method based on no phase-locked loop for electrified railway power balance device%基于无锁相环的电气化铁道功率平衡装置电流检测方法的研究

    Institute of Scientific and Technical Information of China (English)

    田铭兴; 阎宏; 赵雨欣

    2013-01-01

      针对平衡变压器供电方式下,高速电气化铁道谐波、负序电流引起的电压畸变,指令电流检测过程复杂、延时较长,结果含有误差的缺点,提出了一种无需锁相环电路快速准确地提取指令电流的方法。该方法通过简单的数乘运算提取基波电压,运用同步检测法来准确地检测出指令电流信号的方法,使两供电臂功率平衡,电流对称且与供电臂基波电压同相位,消除无功、谐波及负序电流对三相电力系统的影响。相比传统的带锁相环,基于鉴相原理和瞬时无功功率理论的检测方法,该方法更加简便易行,运算速度更快,且不受电网畸变条件的影响。通过仿真分析,验证了该检测方法在电气化牵引供电系统电压畸变条件下运用的正确性和可行性。%Aiming at the shortcoming of voltage distortion caused by high-speed electrified railway harmonic and negative sequence current and the complexity and longer delay of command current detection process leading to results containing error under balance transformer power supply, this paper proposes a fast and accurate method to extract the instruction current without phase-locked loop circuit. The method extracts fundamental voltage by a simple number multiplication, and uses synchronous detection method to accurately detect the command current signal and to balance the power of two supply arms, make current symmetrical and phased with fundamental voltage of the supply arm, eliminating the effects of reactive power, harmonic and negative-sequence current on three-phase power system. Compared with traditional detection method with phase-locked loop based on principle of phase and instantaneous reactive power theory, this method is simpler and faster, and not subject to the effect of grid distortion. Simulation analysis verifies the correctness and feasibility of the detection method in the electrified traction power supply

  1. Mutual Phase Locking of Fluxons in Stacked Long Josephson Junctions: Simulations and Experiment

    DEFF Research Database (Denmark)

    Carapella, Giovanni; Costabile, Giovanni; Filatrella, Giovanni

    1997-01-01

    We report on the experimental observation of reciprocal phase-locking in stacked $Nb-AlO_x-Nb$ Josephson junctions having overlap geometry. When the junctions are independently biased in zero external magnetic field, they each exhibit several Zero Field Steps. Biasing both the junctions on the Zero...... either the polarity of the bias current or the role of the junctions. An analogous investigation of the effect of the magnetic field on the stability of the bound state has been performed. Numerical simulations have shown that the underlying dynamics corresponding to this situation is a bound state...

  2. Synchronization of spin-transfer nanooscillator using phase-locking loop

    Science.gov (United States)

    Mishagin, K. G.; Shalfeev, V. D.

    2010-11-01

    It is suggested to use the phase locking (PL) principle for solving problems of synchronization and coherent power addition for spin-transfer microwave nanooscillators employing the phenomenon of magnetization oscillations in the microwave range excited by a spin-polarized current. The dynamics of a model spin-transfer oscillator with an inertial PL loop is considered. The regions of parameters corresponding to various dynamic regimes (synchronous, quasi- synchronous, beats) have been determined using bifurcation analysis. It is shown that the band of existence of synchronous regimes for a spin-transfer nanooscillator with a PL loop increases as compared to the analogous system synchronized by an external field.

  3. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  4. Phase-Locked Fibre Array for Coherent Combination and Atmosphere Aberration Compensation

    Institute of Scientific and Technical Information of China (English)

    HOU Jing; XIAO Rui

    2006-01-01

    We report a fibre amplifier array that not only achieves coherent beam combination by compensation of phase noises of fibre amplifier, but also accomplishes correction of atmosphere aberration. It is of master-oscillatormultiple-amplifier (MOPA) configuration, which can be phase-locked by the multidither principle or heterodyne detection principle. First laboratory experiments of atmosphere aberration compensation of a three-element fibre amplifier array are reported. The atmosphere aberration is created by a phase screen in the experiment. The phase changes of the beam, which are introduced by the fibre amplifier and the phase screen, are both detected by the heterodyne detection method. Phase modulators are controlled to compensate for the phase in the three paths. No matter whether there is a phase screen producing atmosphere aberration or not, the dim dynamic interference fringes in the far field turn to a clear and stable pattern, and the peak intensity is maximized. It is indicated that the fibre amplifier array is phase-locked, and coherent combination of the three beams is achieved.It can be used not only to obtain high power fibre laser array but also in laser space communication.

  5. Optical phase-locked loop signal sources for phased-array communications antennas

    Science.gov (United States)

    Langley, Lloyd N.; Edge, Colin; Wale, Michael J.; Gliese, Ulrik B.; Seeds, Alwyn J.; Walton, Channing; Wright, James G.; Coryell, Louis A.

    1997-10-01

    A coherent, optical heterodyne approach to signal generation and beamforming is particularly advantageous in multi-beam mobile phased arrays. Use of optical technology allows an optimum distribution of weight and power to be achieved between the antenna face and central electronics, together with an efficient implementation of the beamforming function and a modular design approach in which the basic building blocks are frequency-independent. Systems of this type employ a pair of optical carriers with a difference frequency equal to the required microwave signal. Phased- locking is necessary in order to achieve sufficiently low phase noise in the radio communication link. Optical phase locked loops (OPLLs) have been shown to be potential candidates for this application, yet work still needs to be done to bring them from the laboratory to field demonstrations. This paper describes the construction of a laser-diode OPLL subsystem for evaluation in a proof-of- concept beamforming system. This involves optimization of the loop design, development of single-frequency laser diodes with the correct linewidth, modulation and tuning characteristics and integration into a micro-optic assembly with custom wideband electronics.

  6. A digital phase locked loop based signal and symbol recovery system for wireless channel

    CERN Document Server

    Purkayastha, Basab Bijoy

    2015-01-01

    The book reports two approaches of implementation of the essential components of a Digital Phase Locked Loop based system for dealing with wireless channels showing Nakagami-m fading. It is mostly observed in mobile communication. In the first approach, the structure of a Digital phase locked loop (DPLL) based on Zero Crossing (ZC) algorithm is proposed. In a modified form, the structure of a DPLL based systems for dealing with Nakagami-m fading based on Least Square Polynomial Fitting Filter is proposed, which operates at moderate sampling frequencies. A sixth order Least Square Polynomial Fitting (LSPF) block and Roots Approximator (RA) for better phase-frequency detection has been implemented as a replacement of Phase Frequency Detector (PFD) and Loop Filter (LF) of a traditional DPLL, which has helped to attain optimum performance of DPLL. The results of simulation of the proposed DPLL with Nakagami-m fading and QPSK modulation is discussed in detail which shows that the proposed method provides better pe...

  7. High-speed and high-sensitivity displacement measurement with phase-locked low-coherence interferometry.

    Science.gov (United States)

    Manojlović, Lazo M; Zivanov, Miloš B; Slankamenac, Miloš P; Bajić, Jovan S; Stupar, Dragan Z

    2012-07-01

    A novel high-speed and high-sensitivity displacement measurement sensing system, based on the phase-locked low-coherence interferometry, is presented. The sensing system is realized by comprising the Michelson fiber-optic interferometer. In order to obtain quadrature signals at the interferometer outputs, a 3×3 fused silica fiber-optic directional coupler is used. Therefore, the usage of the interferometer phase modulation as well as the usage of the lock-in amplification has been avoided. In this way, the speed of such a realized sensing system is significantly increased in comparison with the standard phase-locked interferometric systems that can be found elsewhere in the literature. The bandwidth of the realized sensing system is limited by the first resonance frequency of the used piezo actuator to 4.6 kHz. The estimated noise floor in the displacement measurement is approximately 180  pm/√Hz.

  8. High-power phase locking of a fiber amplifier array

    Science.gov (United States)

    Shay, T. M.; Baker, J. T.; Sanchez, A. D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-02-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  9. Differential clock comparisons with phase-locked local oscillators

    CERN Document Server

    Hume, David B

    2015-01-01

    We develop protocols that circumvent the laser noise limit in the stability of optical clock comparisons by synchronous probing of two clocks using phase-locked local oscillators. This allows for probe times longer than the laser coherence time, avoids the Dick effect, and supports Heisenberg-limited scaling of measurement precision. We present a model for such frequency comparisons and develop numerical simulations of the protocol with realistic noise sources. This provides a route to reduce frequency ratio measurement durations by more than an order of magnitude as clock inaccuracies reach 1x10^-18.

  10. A novel calibration method for phase-locked loops

    DEFF Research Database (Denmark)

    Cassia, Marco; Shah, Peter Jivan; Bruun, Erik

    2005-01-01

    A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL...... response to the desired value. The method is demonstrated mathematically on a typical PLL topology and it is extended to SigmaDelta fractional-N PLLs. A set of simulations performed with two different simulators is used to verify the applicability of the method....

  11. A novel calibration method for phase-locked loops

    DEFF Research Database (Denmark)

    Cassia, Marco; Shah, Peter Jivan; Bruun, Erik

    2005-01-01

    A novel method to calibrate the frequency response of a Phase-Locked Loop is presented. The method requires just an additional digital counter to measure the natural frequency of the PLL; moreover it is capable of estimating the static phase offset. The measured value can be used to tune the PLL ...... response to the desired value. The method is demonstrated mathematically on a typical PLL topology and it is extended to SigmaDelta fractional-N PLLs. A set of simulations performed with two different simulators is used to verify the applicability of the method....

  12. Optical Phase Locking of Modelocked Lasers for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, T.; Sinha, S.; Wisdom, J.; /Stanford U., Phys. Dept.; Colby, E.R.; /SLAC

    2006-02-17

    Particle accelerators require precise phase control of the electric field through the entire accelerator structure. Thus a future laser driven particle accelerator will require optical synchronism between the high-peak power laser sources that power the accelerator. The precise laser architecture for a laser driven particle accelerator is not determined yet, however it is clear that the ability to phase-lock independent modelocked oscillators will be of crucial importance. We report the present status on our work to demonstrate long term phaselocking between two modelocked lasers to within one degree of optical phase and describe the optical synchronization techniques that we employ.

  13. Modulation of Current Source Inverter

    Directory of Open Access Journals (Sweden)

    Golam Reza Arab Markadeh

    2011-04-01

    Full Text Available Direct torque control with Current Source Inverter (CSI instead of voltage source inverter is so appropriate because of determining the torque of induction motor with machine current and air gap flux. In addition, Space-Vector Modulation (SVM is a more proper method for CSI because of low order harmonics reduction, lower switching frequency and easier implementation. This paper introduces the SVM method for CSI and uses the proposed inverter for vector control of an induction motor. The simulation results illustrate fast dynamic response and desirable torque and speed output. Fast and accurate response to changes of speed and load torque reference completely proves the prominence of this method.

  14. Design and Simulink Simulation of Frequency Synthesizer Based on Phase-locked Loop%锁相环频率合成器设计与Simulink仿真

    Institute of Scientific and Technical Information of China (English)

    雷能芳

    2011-01-01

    介绍了锁相环频率合成器的的组成及工作原理,并基于Simulink平台对双环锁相4倍频频率合成器进行了模型设计,仿真结果表明了设计的正确性及可行性.%The principle and the composition of Frequency Synthesizer Based on Phase-locked Loop is introduced, and the Simulink module of Fourth Frequency-Multiply Frequency synthesilzer with Double Phase-Lock Loops is designed. The correctness and feasibility of this design is verified by simulation result.

  15. A linear coherent integrated receiver based on a broadband optical phase-locked loop

    Science.gov (United States)

    Ramaswamy, Anand

    Optical Phase-Locked Loops (OPLL) have diverse applications in future communication systems. They can be used in high sensitivity homodyne phase-shift keying receivers for phase noise reduction, provided sufficient loop bandwidth is maintained. Alternative phase-locked loop applications include coherent synchronization of laser arrays and frequency synthesis by offset locking. In this work, a broadband OPLL based coherent receiver is used for linear phase demodulation. Phase modulated (PM) analog optical links have the potential to outperform conventional direct detection links. However, their progress has been stymied by the lack of a linear phase demodulator. We describe how feedback can be used to suppress non-linearities arising from the phase demodulation process. The receiver concept is demonstrated at low frequencies and is found to improve the Spurious Free Dynamic Range (SFDR) of an experimental analog link by over 20dB. In order to extend the operation of the receiver to microwave frequencies, latencies arising from physical delays in the feedback path need to be dramatically reduced. To facilitate this, monolithic and hybrid versions of the receiver based on compact integration of InP photonic integrated circuits (PIC) with InP and SiGe electronic integrated circuits (EIC) have been developed at UCSB. In this work, we develop novel measurement techniques to characterize the linearity of the individual components of the PIC, namely, the semiconductor photodiodes and optical phase modulators. We then demonstrate the operation of the receiver in a high power analog link. The OPLL based receiver has a bandwidth of 1.5GHz. The link gain and shot-noise limited SFDR at 300MHz are -2dB and 125dB-Hz2/3, respectively. Further, optical sampling downconversion is demonstrated as a viable technique to increase the operating frequency of the receiver beyond the baseband range.

  16. Computing with phase locked loops: choosing gains and delays.

    Science.gov (United States)

    Piqueira, J C; Orsatti, F M; Monteiro, L A

    2003-01-01

    We simulate a four-node fully connected phase-locked loop (PLL) network with an architecture similar to the neural network proposed by Hoppensteadt and Izhikevich (1999, 2000), using second-order PLLs. The idea is to complement their work analyzing some engineering questions like:how the individual gain of the nodes affects the synchronous state of whole network; how the individual gain of the nodes affects the acquisition time of the whole network; how close the free-running frequencies of the nodes need to be in order to the network be able to acquire the synchronous state; how the delays between nodes affect the synchronous state frequency. The computational results show that the Hoppensteadt-Izhikevich network is robust to the variation of these parameters and their effects are described through graphics showing the dependence of the synchronous state frequency and acquisition time with gains, free-running frequencies, and delays.

  17. Towards a robust phase locked loop tune feedback system

    CERN Document Server

    Jones, R; Luo, Y

    2005-01-01

    Attempts to introduce a reliable tune feedback loop at RHIC (BNL) [1] have been thwarted by two main problems, namely transition crossing and betatron coupling. The problem of transition crossing is a dynamic range problem, resulting from the increase in the revolution content of the observed signal as the bunch length becomes short and from the fast orbit changes that occur during transition. The dynamic range issue is being addressed by the development of a baseband tune measurement system [2] as part of the US LHC Accelerator Research Program (US-LARP). This paper will focus on the second problem, showing how a phase locked loop (PLL) tune measurement system can be used to continuously measure global betatron coupling, and in so doing allow for robust tune measurement and feedback in the presence of coupling.

  18. A class of optimum digital phase locked loops

    Science.gov (United States)

    Kumar, R.; Hurd, W. J.

    1986-01-01

    This paper presents a class of optimum digital filters for digital phase locked loops, for the important case in which the maximum update rate of the loop filter and numerically controlled oscillator (NCO) is limited. This case is typical when the loop filter is implemented in a microprocessor. In these situations, pure delay is encountered in the loop transfer function and thus the stability and gain margin of the loop are of crucial interest. The optimum filters designed for such situations are evaluated in terms of their gain margin for stability, dynamic error, and steady-state error performance. For situations involving considerably high phase dynamics an adaptive and programmable implementation is also proposed to obtain an overall optimum strategy.

  19. Linewidth and phase locking of Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Mygind, Jesper; Koshelets, V. P.; Shitov, S. V.

    2000-01-01

    We report on measurements of the linewidth of the emitted radiation from Josephson Flux Row Oscillators (FFOs). Frequency and phase locking to an external 10 MHz reference oscillator an demonstrated experimentally in the frequency range 270-440 GHz. A linewidth as low as 1 Hz (as determined...... by the resolution bandwidth of the spectrum analyzer) has been measured. This linewidth is far below the fundamental level given by shot and thermal noise of the free-running tunnel junction. The damping mechanisms are discussed and related to the self-excitation Of quasiparticles. Narrow linewidth, wide......-band tunability and low noise are important for radio astronomy and air- and space-borne spectroscopy for atmospheric research and environmental monitoring. (C) 2000 Elsevier Science B.V. All rights reserved....

  20. Packaged semiconductor laser optical phase locked loop for photonic generation, processing and transmission of microwave signals

    DEFF Research Database (Denmark)

    Langley, L.N.; Elkin, M.D.; Edege, C.

    1999-01-01

    In this paper, we present the first fully packaged semiconductor laser optical phase-locked loop (OPLL) microwave photonic transmitter. The transmitter is based on semiconductor lasers that are directly phase locked without the use of any other phase noise-reduction mechanisms. In this transmitter...

  1. All-Digital RF Phase-Locked Loops Exploiting Phase Prediction

    NARCIS (Netherlands)

    Zhuang, J.; Staszewski, R.B.

    2014-01-01

    This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference

  2. Advanced, phase-locked, 100 kW, 1.3 GHz magnetron

    Science.gov (United States)

    Read, Michael; Ives, R. Lawrence; Bui, Thuc; Pasquinelli, Ralph; Chase, Brian; Walker, Chris; Conant, Jeff

    2017-03-01

    Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.

  3. All-Digital RF Phase-Locked Loops Exploiting Phase Prediction

    NARCIS (Netherlands)

    Zhuang, J.; Staszewski, R.B.

    2014-01-01

    This paper presents an all-digital phase-locked loop (ADPLL) architecture in a new light that allows it to significantly save power through complexity reduction of its phase locking and detection mechanisms. The natural predictive nature of the ADPLL to estimate next edge occurrence of the reference

  4. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    Science.gov (United States)

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code.

  5. A low reference spur quadrature phase-locked loop for UWB systems

    Institute of Scientific and Technical Information of China (English)

    Fu Haipeng; Cai Deyun; Ren Junyan; Li Wei; Li Ning

    2011-01-01

    This paper presents a low phase noise and low reference spur quadrature phase-locked loop (QPLL) circuit that is implemented as a part of a frequency synthesizer for China UWB standard systems.A glitch-suppressed charge pump (CP) is employed for reference spur reduction.By forcing the phase frequency detector and CP to operate in a linear region of its transfer function,the linearity of the QPLL is further improved.With the proposed series-quadrature voltage-controlled oscillator,the phase accuracy of the QPLL is guaranteed.The circuit is fabricated in the TSMC 0.13 μtm CMOS process and operated at 1.2-V supply voltage.The QPLL measures a phase noise of-95 dBc/Hz at 100-kHz offset and a reference spur of-71 dBc.The fully-integrated QPLL dissipates a current of 13 mA.

  6. A Low Noise, Low Power Phase-Locked Loop, Using Optimization Methods

    Directory of Open Access Journals (Sweden)

    Noushin Ghaderi

    2016-01-01

    Full Text Available A divider-less, low power, and low jitter phase-locked loop (PLL is presented in this paper. An extra simple open loop phase frequency detector (PFD is proposed which reduces the power consumption and increases the overall speed. A novel bulk driven Wilson charge pump circuit, whose performance is enhanced by some optimization algorithms, is also introduced to get high output swing and high current matching. The designed PLL is utilized in a 0.18 μm CMOS process with a 1.8 V power supply. It has a wide locking range frequency of 500 MHz to 5 GHz. In addition, through the use of a dead-zone-less PFD and a divider-less PLL, the overall jitter is decreased significantly.

  7. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Institute of Scientific and Technical Information of China (English)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of-99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  8. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  9. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.;

    2003-01-01

    to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...... have been performed using an integrated SIS harmonic mixer. The influence of FFO parameters on radiation linewidth, particularly the effect of the differential resistances associated both with the bias current and the applied magnetic field has been studied in order to further optimize the FFO design....... A new approach with a self-shielded FFO has been developed and experimentally tested....

  10. Phase lock acquisition for sampled data PLLs using the sweep technique

    Science.gov (United States)

    Aguirre, S.; Brown, D. H.; Hurd, W. J.

    1986-01-01

    Simulation results of the swept-acquisition performance of residual carrier phase-locked loops (PLLs) are reported. The loops investigated are sampled data counterparts of the continuous time type II and III loops currently in use in Deep Space Network receivers. It was found that sweep rates of 0.2 B(sub L)(2) to 0.4 B(sub L)(2) Hz/s can be used, depending on the loop parameters and loop signal-to-noise ratio (SNR), where B(sub L) is the one-sided loop noise bandwidth. Type III loops are shown to be not as reliable as type II loops for acquisition using this technique, especially at low SNRs.

  11. Phase-locked states and abrupt shifts in Pacific climate indices

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu

    2013-10-15

    Douglass has shown that ENSO index aNino3.4 contains segments phase locked to subharmonics of the annual solar cycle and also that a set of indices including aNino3.4 shows abrupt shifts between these phase-locked states. Here, four additional Pacific indices are studied. These five indices show that the Pacific climate system alternates between two regimes: (1) Solar cycle (SOL), (2) Teleconnections (TEL). During SOL each index shows two components that are phase locked to the solar cycle. The first is at the annual cycle, while the second is at a subharmonic of the annual cycle. During TEL abrupt climate shifts occur.

  12. Equivalent-circuit modeling of a MEMS phase detector for phase-locked loop applications

    Science.gov (United States)

    Han, Juzheng; Liao, Xiaoping

    2016-05-01

    This paper presents an equivalent-circuit model of a MEMS phase detector and deals with its application in phase-locked loops (PLLs). Due to the dc voltage output of the MEMS phase detector, the low-pass filter which is essential in a conventional PLL can be omitted. Thus, the layout area can be miniaturized and the consumed power can be saved. The signal transmission inside the phase detector is realized in circuit model by waveguide modules while the electric-thermal-electric conversion is illustrated in circuit term based on analogies between thermal and electrical variables. Losses are taken into consideration in the modeling. Measurement verifications for the phase detector model are conducted at different input powers 11, 14 and 17 dBm at 10 GHz. The maximum discrepancies between the simulated and measured results are 0.14, 0.42 and 1.13 mV, respectively. A new structure of PLL is constructed by connecting the presented model directly to a VCO module in the simulation platform. It allows to model the transient behaviors of the PLL at both locked and out of lock conditions. The VCO output frequency is revealed to be synchronized with the reference frequency within the hold range. All the modeling and simulation are performed in Advanced Design System (ADS) software.

  13. Phase-locking transition in Raman combs generated with whispering gallery mode resonators.

    Science.gov (United States)

    Lin, Guoping; Chembo, Yanne K

    2016-08-15

    We investigate the mechanisms leading to phase locking in Raman optical frequency combs generated with ultrahigh Q crystalline whispering gallery mode disk resonators. We show that several regimes can be triggered depending on the pumping conditions, such as single-frequency Raman lasing, multimode operation involving more than one family of cavity eigenmodes, and Kerr-assisted Raman frequency comb generation. The phase locking and coherence of the combs are experimentally monitored through the measurement of beat signal spectra. These phase-locked combs, which feature high coherence and wide spectral spans, are obtained with pump powers in the range of a few tens of mW. In particular, Raman frequency combs with multiple free-spectral range spacings are reported, and the measured beat signal in the microwave domain features a 3 dB linewidth smaller than 50 Hz, thereby indicating phase locking.

  14. Offset phase locking of noisy diode lasers aided by frequency division

    Science.gov (United States)

    Ivanov, E. N.; Esnault, F.-X.; Donley, E. A.

    2011-08-01

    For heterodyne phase locking, frequency division of the beat note between two oscillators can improve the reliability of the phase lock and the quality of the phase synchronization. Frequency division can also reduce the size, weight, power, and cost of the instrument by excluding the microwave synthesizer from the control loop when the heterodyne offset frequency is large (5 to 10 GHz). We have experimentally tested the use of a frequency divider in an optical phase-lock loop and compared the achieved level of residual phase fluctuations between two diode lasers with that achieved without the use of a frequency divider. The two methods achieve comparable phase stability provided that sufficient loop gain is maintained after frequency division to preserve the required bandwidth. We have also numerically analyzed the noise properties and internal dynamics of phase-locked loops subjected to a high level of phase fluctuations, and our modeling confirms the expected benefits of having an in-loop frequency divider.

  15. Design and noise analysis of a fully-differential charge pump for phase-locked loops

    Institute of Scientific and Technical Information of China (English)

    Gong Zhichao; Lu Lei; Liao Youchun; Tang Zhangwen

    2009-01-01

    A fully-differential charge pump (FDCP) with perfect current matching and low output current noise is realized for phase-locked loops (PLLs). An easily stable common-mode feedback (CMFB) circuit which can handle high input voltage swing is proposed. Current mismatch and current noise contribution from the CMFB circuit is minimized. In order to optimize PLL phase noise, the output current noise of the FDCP is analyzed in detail and calculated with the sampling principle. The calculation result agrees well with the simulation. Based on the noise analysis, many methods to lower output current noise of the FDCP are discussed. The fully-differential charge pump is integrated into a 1-2 GHz frequency synthesizer and fabricated in an SMIC CMOS 0.18 μm process. The measured output reference spur is -64 dBc to -69 dBc. The in-band and out-band phase noise is -95 dBc/Hz at 3 kHz frequency offset and -123 dBc/Hz at 1 MHz frequency offset respectively.

  16. Phase-Locked Loop using a comb filter with fractional delay

    OpenAIRE

    Griñó Cubero, Robert; Mughal, Umair Najeeb

    2011-01-01

    A Phase Locked Loop is a feedback system combining a Voltage Controlled Oscillator and a Phase Comparator These are connected so that the oscillator maintains a constant phase angle relative to a reference signal. Phase locked loops can be used, for example to generate stable output frequency signals from a fixed frequency signal. A Comb Filter is a kind of Notch Filter (Non Recursive Filter) that is normally used to remove the harmonic terms from a particular signal. In this Design, a ...

  17. PHASE-LOCKED 2-D JOSEPHSON JUNCTION ARRAYS AS SUBMILLIMETER OSCILLATORS

    Institute of Scientific and Technical Information of China (English)

    Gao Bin; Guan Boran

    2002-01-01

    This letter presents the results of numerical simulations for phase-locked 2-D Josephson junction array oscillator. The simulation result shows that the junctions of 2-D array can mutually phase-locked in a considerable area if the parameters can be carefully selected. The oscillators are formed with up to 33 identical Nb/AlOx/Nb junctions, and the junctions are connected with Nb microstrip resonators. Optimum structure parameters for oscillator circuit design can be obtained with these simulation results.

  18. Phase-locked loop design with fast-digital-calibration charge pump

    Science.gov (United States)

    Wang, San-Fu; Hwang, Tsuen-Shiau; Wang, Jhen-Ji

    2016-02-01

    A fast-digital-calibration technique is proposed for reducing current mismatch in the charge pump (CP) of a phase-locked loop (PLL). The current mismatch in the CP generates fluctuations, which is transferred to the input of voltage-controlled oscillator (VCO). Therefore, the current mismatch increases the reference spur in the PLL. Improving current match of CP will reduce the reference spur and decrease the static phase offset of PLLs. Moreover, the settling time, ripple and power consumption of the PLL are also improved by the proposed technique. This study evaluated a 2.27-2.88 GHz frequency synthesiser fabricated in TSMC 0.18 μm CMOS 1.8 V process. The tuning range of proposed VCO is about 26%. By using the fast-digital-calibration technique, current mismatch is reduced to lower than 0.97%, and the operation range of the proposed CP is between 0.2 and 1.6 V. The proposed PLL has a total power consumption of 22.57 mW and a settling time of 10 μs or less.

  19. A fast statistical significance test for baseline correction and comparative analysis in phase locking

    Directory of Open Access Journals (Sweden)

    Kunjan Dinesh Rana

    2013-02-01

    Full Text Available Human perception, cognition, and action are supported by a complex network of interconnected brain regions. There is an increasing interest in measuring and characterizing these networks as a function of time and frequency, and inter-areal phase locking is often used to reveal these networks. This measure assesses the consistency of phase angles between the electrophysiological activity in two areas at a specific time and frequency. Noninvasively, the signals from which phase locking is computed can be measured with magnetoencephalography (MEG and electroencephalography (EEG. However, due to the lack of spatial specificity of reconstructed source signals in MEG and EEG, inter-areal phase locking may be confounded by false positives resulting from crosstalk. Traditional phase locking estimates assume that no phase locking exists when the distribution of phase angles is uniform. However, this conjecture is not true when crosstalk is present. We propose a novel method to improve the reliability of the phase-locking measure by sampling phase angles from a baseline, such as from a prestimulus period or from resting-state data, and by contrasting this distribution against one observed during the time period of interest.

  20. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.

    Science.gov (United States)

    Huang, S-W; Liu, H; Yang, J; Yu, M; Kwong, D-L; Wong, C W

    2016-05-16

    High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 10(6) while the group velocity dispersion remains to be anomalous at -50 fs(2)/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.

  1. Target tracking and pointing for arrays of phase-locked lasers

    Science.gov (United States)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  2. Generalized Weyl modules for twisted current algebras

    Science.gov (United States)

    Makedonskyi, I. A.; Feigin, E. B.

    2017-08-01

    We introduce the notion of generalized Weyl modules for twisted current algebras. We study their representation-theoretic and combinatorial properties and also their connection with nonsymmetric Macdonald polynomials. As an application, we compute the dimension of the classical Weyl modules in the remaining unknown case.

  3. Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model

    Science.gov (United States)

    Choi, Young-Pil; Ha, Seung-Yeal; Jung, Sungeun; Kim, Yongduck

    2012-04-01

    We discuss the asymptotic formation and nonlinear orbital stability of phase-locked states arising from the ensemble of non-identical Kuramoto oscillators. We provide an explicit lower bound for a coupling strength on the formation of phase-locked states, which only depends on the diameters of natural frequencies and initial phase configurations. We show that, when the phases of non-identical oscillators are distributed over the half circle and the coupling strength is sufficiently large, the dynamics of Kuramoto oscillators exhibits two stages (transition and relaxation stages). In a transition stage, initial configurations shrink to configurations whose diameters are strictly less than {π}/{2} in a finite-time, and then the configurations tend to phase-locked states asymptotically. This improves previous results on the formation of phase-locked states by Chopra-Spong (2009) [26] and Ha-Ha-Kim (2010) [27] where their attention were focused only on the latter relaxation stage. We also show that the Kuramoto model is ℓ1-contractive in the sense that the ℓ1-distance along two smooth Kuramoto flows is less than or equal to that of initial configurations. In particular, when two initial configurations have the same averaged phases, the ℓ1-distance between them decays to zero exponentially fast. For the configurations with different phase averages, we use the method of average adjustment and translation-invariant of the Kuramoto model to show that one solution converges to the translation of the other solution exponentially fast. This establishes the orbital stability of the phase-locked states. Our stability analysis does not employ any standard linearization technique around the given phase-locked states, but instead, we use a robust ℓ1-metric functional as a Lyapunov functional. In the formation process of phase-locked states, we estimate the number of collisions between oscillators, and lower-upper bounds of the transversal phase differences.

  4. Phase-locked Josephson flux flow local oscillator for sub-mm integrated receivers

    CERN Document Server

    Mygind, J; Dmitriev, P N; Ermakov, A B; Koshelets, V P; Shitov, S V; Sobolev, A S; Torgashin, M Y; Khodos, V V; Vaks, V L; Wesselius, P R

    2002-01-01

    The Josephson flux flow oscillator (FFO) has proven to be one of the best on-chip local oscillators for heterodyne detection in integrated sub-mm receivers based on SIS mixers. Nb-AlO sub x -Nb FFOs have been successfully tested from about 120 to 700 GHz (gap frequency of Nb) providing enough power to pump an SIS mixer (about 1 mu W at 450 GHz). Both the frequency and the power of the FFO can be dc-tuned. Extensive measurements of the dependence of the free-running FFO linewidth on the differential resistances associated with both the bias current and the control-line current (applied magnetic field) have been performed. The FFO line is Lorentzian both in the resonant regime, on Fiske steps (FSs), and on the flux flow step (FFS). This indicates that internal wide-band noise is dominant. A phenomenological noise model can account for the FFO linewidth dependence on experimental parameters. The narrow free-running FFO linewidth achieved, in combination with the construction of a wide-band phase-locked loop (PLL...

  5. Phase-locked signals elucidate circuit architecture of an oscillatory pathway.

    Science.gov (United States)

    Jovic, Andreja; Howell, Bryan; Cote, Michelle; Wade, Susan M; Mehta, Khamir; Miyawaki, Atsushi; Neubig, Richard R; Linderman, Jennifer J; Takayama, Shuichi

    2010-12-23

    This paper introduces the concept of phase-locking analysis of oscillatory cellular signaling systems to elucidate biochemical circuit architecture. Phase-locking is a physical phenomenon that refers to a response mode in which system output is synchronized to a periodic stimulus; in some instances, the number of responses can be fewer than the number of inputs, indicative of skipped beats. While the observation of phase-locking alone is largely independent of detailed mechanism, we find that the properties of phase-locking are useful for discriminating circuit architectures because they reflect not only the activation but also the recovery characteristics of biochemical circuits. Here, this principle is demonstrated for analysis of a G-protein coupled receptor system, the M3 muscarinic receptor-calcium signaling pathway, using microfluidic-mediated periodic chemical stimulation of the M3 receptor with carbachol and real-time imaging of resulting calcium transients. Using this approach we uncovered the potential importance of basal IP3 production, a finding that has important implications on calcium response fidelity to periodic stimulation. Based upon our analysis, we also negated the notion that the Gq-PLC interaction is switch-like, which has a strong influence upon how extracellular signals are filtered and interpreted downstream. Phase-locking analysis is a new and useful tool for model revision and mechanism elucidation; the method complements conventional genetic and chemical tools for analysis of cellular signaling circuitry and should be broadly applicable to other oscillatory pathways.

  6. Voltage-Sharing Control of Single-Phase Cascaded PWM Rectifier Without Phase-Lock Loop Under Unbalanced DC Voltage Condition%直流电压不平衡下的单相级联PWM整流器无锁相环均压控制

    Institute of Scientific and Technical Information of China (English)

    杨韬; 帅智康; 兰征; 周柯; 涂春鸣; 盘宏斌

    2015-01-01

    ABSTRACT:As for single-phase cascaded pulse width modulation (PWM) filter since the control performance is sensitive to the phase-lock loop, so there is a higher demand on the voltage sharing control under the unbalanced DC voltage. For this reason, a phase-lock loopless control strategy applied in single-phase cascaded PWM filter is proposed. Utilizing the relations among instantaneous power, voltage and current in two-phase static coordinate system the instruction current signal is calculated to implement the real-time tracking of grid current to grid voltage. Besides, phase-lock loopless voltage sharing instruction signals of different levels in the cascaded PWM filter are superposed to the modulation signals respectively to correct power imbalance quantities in corresponding levels of the cascaded PWM filter to implement the voltage sharing control of different levels, meanwhile, the quasi-proportional resonant controller is used to implement the astatic control of current inner loop. The validity of the proposed phase-lock loopless control strategy is verified by simulation results.%在单相级联脉冲宽度调制(pulse width modulation, PWM)整流器中,直流电压不平衡情况下的均压控制要求较高,控制性能受锁相环影响较大。为此,提出了一种应用于单相级联PWM整流器中的无锁相环控制策略。利用在两相静止坐标系下瞬时功率与电压、电流的关系计算出指令电流信号,以实现电网电流对电压的跟踪控制;此外,叠加无锁相环均压指令,实现各级均压控制;同时采用准比例谐振控制器实现电流内环无静差控制。仿真结果验证了该无锁相环控制策略的有效性。

  7. Human retrosplenial cortex displays transient theta phase locking with medial temporal cortex prior to activation during autobiographical memory retrieval.

    Science.gov (United States)

    Foster, Brett L; Kaveh, Anthony; Dastjerdi, Mohammad; Miller, Kai J; Parvizi, Josef

    2013-06-19

    The involvement of retrosplenial cortex (RSC) in human autobiographical memory retrieval has been confirmed by functional brain imaging studies, and is supported by anatomical evidence of strong connectivity between the RSC and memory structures within the medial temporal lobe (MTL). However, electrophysiological investigations of the RSC and its interaction with the MTL have mostly remained limited to the rodent brain. Recently, we reported a selective increase of high-frequency broadband (HFB; 70-180 Hz) power within the human RSC during autobiographical retrieval, and a predominance of 3-5 Hz theta band oscillations within the RSC during the resting state. In the current study, we aimed to explore the temporal dynamics of theta band interaction between human RSC and MTL during autobiographical retrieval. Toward this aim, we obtained simultaneous recordings from the RSC and MTL in human subjects undergoing invasive electrophysiological monitoring, and quantified the strength of RSC-MTL theta band phase locking. We observed significant phase locking in the 3-4 Hz theta range between the RSC and the MTL during autobiographical retrieval. This theta band phase coupling was transient and peaked at a consistent latency before the peak of RSC HFB power across subjects. Control analyses confirmed that theta phase coupling between the RSC and MTL was not seen for other conditions studied, other sites of recording, or other frequency ranges of interest (1-20 Hz). Our findings provide the first evidence of theta band interaction between the human RSC and MTL during conditions of autobiographical retrieval.

  8. A monolithic K-band phase-locked loop for microwave radar application

    Science.gov (United States)

    Zhou, Guangyao; Ma, Shunli; Li, Ning; Ye, Fan; Ren, Junyan

    2017-02-01

    A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of -0.84 dBm and phase noise of -91.92 dBc/Hz @ 1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  9. Suppression of Chaos and Phase Locking in Two Coupled Nonidentical Neurons under Periodic Input

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan-Hong; LU Qi-Shao; WANG Qing-Yun

    2006-01-01

    Dynamical behaviour of two coupled neurons with at least one of them being chaotic is presented. Bifurcation diagrams and Lyapunov exponents are calculated to diagnose the dynamical behaviour of the coupled neurons with the increasing coupling strength. It is found that when the coupling strength increases, a chaotic neuron can be controlled by the coupling between neurons. At the same time, phase locking is studied by the maxima of the differences of instantaneous phases and average frequencies between two coupled neurons, and the inherent connection of phase locking and the suppression of chaos is formulated. It is observed that the onset of phase locking is closely related to the suppression of chaos. Finally, a way for suppression of chaos in two coupled nonidentical neurons under periodic input is suggested.

  10. Phase locked-in loop design with pre-specified transient performance

    Science.gov (United States)

    Ng, Boon Ping; Zhang, Ying; Soh, Yeng Chai

    2005-08-01

    In this paper, we present a design and a design scheme for the phase locked-in loops satisfying given specifications. The proposed design suggests imposing an additional control signal on the normal input to the variable controlled oscillator (VCO) of the phase locked-in loop (PLL). Based on this design, a scheme of using the second method of Lyapunov is developed to choose the additional control signal and the loop filter parameters of the PLL. The proposed design and design scheme have improved the conventional PLL design results by obtaining a phase locked-in loop with pre-specified performance. The design scheme is based on nonlinear model of the PLL and it is applicable to the design of high order PLLs. Simulations results are reported to demonstrate the effectiveness of the proposed scheme.

  11. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus.

    Science.gov (United States)

    Hindriks, Rikkert; Meijer, Hil G E; van Gils, Stephan A; van Putten, Michel J A M

    2013-01-01

    The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.

  12. Phase Locked Photon Echoes for Near-Perfect Retrieval Efficiency and Extended Storage Time

    CERN Document Server

    Ham, B S

    2009-01-01

    Quantum storage of light in a collective ensemble of atoms plays an important role in quantum information processing. Consisting of a quantum repeater together with quantum entanglement swapping, quantum memory has been intensively studied recently. Conventional photon echoes have been limited by extremely low retrieval efficiency and short storage time confined by the optical phase decay process. Here, we report a storage time-extended near perfect photon echo protocol using a phase locking method via an auxiliary spin state, where the phase locking acts as a conditional stopper of the rephasing process resulting in extension of storage time determined by the spin dephasing process. We experimentally prove the proposed phase locked photon echo protocol in a Pr3+ doped Y2SiO5 in a quasi phase conjugate scheme, where the phase conjugate gives the important benefit of aberration corrections when dealing with quantum images.

  13. Phase Locking of a 2.7 THz Quantum Cascade Laser to a Microwave Reference

    Science.gov (United States)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x 12) from a microwave synthesizer at approx. 15 GHz. Both laser and reference radiations are coupled into a bolometer mixer, resulting in a beat signal, which is fed into a phase-lock loop. The spectral analysis of the beat signal confirms that the QCL is phase locked. This result opens the possibility to extend heterodyne interferometers into the far-infrared range.

  14. Dexamphetamine reduces auditory P3 delta power and phase-locking while increasing gamma power.

    Science.gov (United States)

    Albrecht, Matthew A; Price, Greg; Lee, Joseph; Iyyalol, Rajan; Martin-Iverson, Mathew T

    2012-10-01

    Auditory P3 amplitude reduction is one of the most robust and replicated findings in schizophrenia. Recent evidence suggests that these reductions are due to reductions in both power and phase-locking at delta and theta frequencies. We have previously shown that the auditory, but not visual, P3 is reduced in healthy participants given the catecholamine releasing agent dexamphetamine. Our aim was to determine whether the auditory P3 amplitude reduction induced by dexamphetamine has similar power and phase locking characteristics to that seen in schizophrenia. Forty-four healthy participants were given 0.45 mg/kg dexamphetamine and placebo, in a double-blinded, placebo-controlled, cross-over design. The task was a three-stimulus auditory odd-ball task, target stimuli were the major stimuli of interest. Individual target trials underwent wavelet analysis to give power and phase-locking of delta (3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-50 Hz) frequencies for a 50 ms time window centred around the peak of the target P3. Delta power around the P3 peak was significantly reduced when participants were given dexamphetamine. Delta phase-locking was also reduced but only when analysis was targeted at the location of the peak P3 amplitude. In contrast, theta power and phase-locking were not affected by dexamphetamine. These findings suggest that increased catecholamine activity may be responsible for the power and phase-locking reductions of the auditory P3 delta component in patients with schizophrenia. Interestingly, dexamphetamine significantly increased gamma power around the P3 peak. We attempt to link this finding with the gamma alterations that have been found in patients with schizophrenia.

  15. Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Kalashnikov, K. V.

    An ultra-wideband cryogenic phase-locking loop (CPLL) system is a new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic Phase Detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of superconductor-insulator-superconductor (SIS) tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-locking of more than 60% of the power emitted by the FFO even for FFO linewidth of about 10 MHz. This percentage of phase-locked power three times exceeds that achieved with conventional room-temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.Another new approach to the FFO phase-locking has been proposed and experimentally verified. The FFO has been synchronized by a cryogenic harmonic phase detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as the harmonic mixer (HM) and phase detector. We have studied the HM based on the SIS junction theoretically; in particular we calculated 3D dependences of the HM output signal power versus the bias voltage and the LO power. Results of the calculations have been compared with experimental measurements. Good qualitative and quantitative correspondence has been achieved. The FFO phase-locking by the CHPD has been demonstrated. Such a PLL system is expected to be extra wideband. This concept is very promising for building of the multi-pixel SIR array.

  16. The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking

    Science.gov (United States)

    Dommenget, Dietmar; Yu, Yanshan

    2016-12-01

    ENSO variability has a seasonal phase-locking, with SST anomalies on average decreasing during the beginning of the year and SST anomalies increasing during the second half of the year. As a result of this, the ENSO SST variability is smallest in April and the so call `spring barrier' exists in the predictability of ENSO. In this study we analysis how the seasonal phase-locking of surface short wave radiation associated with cloud cover feedbacks contribute to this phenomenon. We base our analysis on observations and simplified climate model simulations. At the beginning of the year, the warmer mean SST in the eastern equatorial Pacific leads to deeper clouds whose anomalous variability are positively correlated with the underlying SST anomalies. These observations highlight a strong negative surface short wave radiation feedback at the beginning of the year in the eastern Pacific (NINO3 region). This supports the observed seasonal phase-locking of ENSO SST variability. This relation also exists in model simulations of the linear recharge oscillator and in the slab ocean model coupled to a fully complex atmospheric GCM. The Slab ocean simulation has seasonal phase-locking similar to observed mostly caused by similar seasonal changing cloud feedbacks as observed. In the linear recharge oscillator simulations seasonal phase-locking is also similar to observed, but is not just related to seasonal changing cloud feedbacks, but is also related to changes in the sensitivity of the zonal wind stress and to a lesser extent to seasonally change sensitivities to the thermocline depth. In summary this study has shown that the seasonal phase-locking, as observed and simulated, is linked to seasonally changing cloud feedbacks.

  17. The performance of coherent receiver controlled by the phase lock loop in dual rate free-space laser communication

    Science.gov (United States)

    Ma, Xiaoping; Sun, Jianfeng; Hou, Peipei; Lu, Wei; Xu, Qian; Liu, Liren

    2015-09-01

    The technique of differential phase shift keying(DPSK) modulation is applied into demodulating phase information in the coherent optical receiver. The dual rate free-space receiving structure on the base of Mach-Zehnder delay interferometer with the lens is used suitably for differential delay which is equal to the one bit corresponding to a certain data rate. Delay distance at the interference receiver is varied with transmission rata from satellite to ground. Differential information is obtained by the subtraction of the two successive wave-front phases when made to interfere. The phase demodulation is extremely sensitive to phase fluctuation. Because of the incident light through atmospheric turbulence, the wave-front of optical signal became jittered in the temporal and spatial domain rapidly. In the paper, the dual rate free-space laser communication receiver for phase lock to stable signal light phase is proposed, increasing the homodyne efficiency and decreasing the bit error rate.

  18. Design and Realization of a Novel Software Phase-lock Loop for the SVC Control System%用于 SVC 控制系统的新型软件锁相环的设计与实现

    Institute of Scientific and Technical Information of China (English)

    刘育鑫; 王小红; 方存洋; 施胜丹

    2015-01-01

    With respect to synchronization of SVC (Static Var Compensation)control system,this paper designs a novel software phase-locked loop by making full use of the hardware resource of the control device.Software phase-lock module is realized through coding in the digital signal processing unit (DSP),and the field programmable gate array (FPGA)and the phase-lock counter are used in place of complicated integration element to generate phase-locking angle θto help realize phase locking.Simulation and tests verify that the presented software phase-lock loop still can perform its function quickly and reliably even in case of voltage imbalance,voltage drop or frequency discontinuity,thus reducing triggering error.It produces a good application effect.%针对 SVC(Static Var Compensation,简称 SVC)控制系统的同步问题,通过充分利用控制装置硬件资源,设计了一种新型软件锁相环,在 DSP(Digital Signal Processing,简称 DSP)单元编码实现软件锁相模块,以现场 FPGA(Field Programmable Gate Array,简称 FPGA),锁相计数器替代复杂的积分环节,产生锁相角θ,配合实现锁相。通过仿真和试验验证,软件锁相环在电压不平衡、电压跌落、频率突变等条件下,仍可快速、可靠的实现锁相,减小触发误差,具有良好的应用效果。

  19. Phase locking and quantum statistics in a parametrically driven nonlinear resonator

    Science.gov (United States)

    Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.

    2016-04-01

    We discuss phase-locking phenomenon at low-level of quanta and quantum statistics for parametrically driven nonlinear Kerr resonator (PDNR). Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the distribution of photon-number states, the second-order correlation function of photons, the Wigner functions of cavity mode showing two-fold symmetry in phase space, and we analyze formation of phase-locked states in the regular as well as the quantum chaotic regime of the PDNR.

  20. Enhanced phase-locked loop structures for power and energy applications

    CERN Document Server

    Karimi-Ghartema, Masoud

    2014-01-01

    Many excellent books covering phase-locked loops (PLLs) have been published; however, there is practically no book that covers the specifics of PLLs as employed in power systems. The usefulness for such a book fills an immediate need. Existing books cover the type of PLLs used in electronics, communications and instrumentation. Over the past decade or so, many new PLL structures have been developed to address the new requirements in modern power systems. The enhanced phase-locked loop (EPLL) is arguably the most widely accepted structure developed to address power system requirements. It is no

  1. Direct loop gain and bandwidth measurement of phase-locked loop

    Science.gov (United States)

    Ye, P.; Ren, R.; Kou, Y.; Sun, F.; Hu, J.; Chen, S.; Hou, D.

    2017-08-01

    A simple and robust technique for directly measuring the loop gain and bandwidth of a phase-locked loop (PLL) is proposed. This technique can be used for the real-time measurement of the real loop gain in a closed PLL without breaking its locking state. The agreement of the measured loop gain and theoretical calculations proves the validity of the proposed measurement technique. This technique with a simple configuration can be easily expanded to other phase-locking systems whose loop gain and bandwidth should be measured precisely.

  2. Diffractive-optics-based beam combination of a phase-locked fiber laser array.

    Science.gov (United States)

    Cheung, Eric C; Ho, James G; Goodno, Gregory D; Rice, Robert R; Rothenberg, Josh; Thielen, Peter; Weber, Mark; Wickham, Michael

    2008-02-15

    A diffractive optical element (DOE) is used as a beam combiner for an actively phase-locked array of fiber lasers. Use of a DOE eliminates the far-field sidelobes and the accompanying loss of beam quality typically observed in tiled coherent laser arrays. Using this technique, we demonstrated coherent combination of five fiber lasers with 91% efficiency and M2=1.04. Combination efficiency and phase locking is robust even with large amplitude and phase fluctuations on the input laser array elements. Calculations and power handling measurements suggest that this approach can scale to both high channel counts and high powers.

  3. Phase-locking of two self-seeded tapered amplofier lasers

    CERN Document Server

    Tackmann, G; Schubert, Ch; Berg, P; Wendrich, T; Ertmer, W; Rasel, E M

    2010-01-01

    We report on the phase-locking of two diode lasers based on self-seeded tapered amplifiers. In these lasers, a reduction of linewidth is achieved using narrow-band high-transmission interference filters for frequency selection. The lasers combine a compact design with a Lorentzian linewidth below 200 kHz at an output power of 300 mW. We characterize the phase noise of the phase-locked laser system and study its potential for coherent beam-splitting in atom interferometers.

  4. A Phase-Locked Loop Continuous Wave Sonic Anemometer-Thermometer

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Weller, F. W.; Busings, J. A.

    1979-01-01

    A continuous wake sonic anemometer-thermometer has been developed for simultaneous measurements of vertical velocity and temperature. The phase angle fluctuations are detected by means of a monolithic integrated phase-locked loop, the latter feature providing for inexpensive and accurate electron......A continuous wake sonic anemometer-thermometer has been developed for simultaneous measurements of vertical velocity and temperature. The phase angle fluctuations are detected by means of a monolithic integrated phase-locked loop, the latter feature providing for inexpensive and accurate...

  5. A novel phase-locking-free phase sensitive amplifier based Regenerator

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Røge, Kasper Meldgaard; Guan, Pengyu

    2015-01-01

    We propose and demonstrate a novel PSK regenerator based on phase sensitive amplification without active phase-locking. The scheme is applied to regenerate a phase noise degraded 10-Gbit/s DPSK signal, improving receiver sensitivity by 3.5 dB.......We propose and demonstrate a novel PSK regenerator based on phase sensitive amplification without active phase-locking. The scheme is applied to regenerate a phase noise degraded 10-Gbit/s DPSK signal, improving receiver sensitivity by 3.5 dB....

  6. Principle and Implementation of an MC4044-Based Phase Locked Loop for Constant Speed Control

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An inexpensive MC4044-based phase locked loop for constant speed control of a DC motor is discussed. It operates on a principle similar to that of a frequency synthesizer. The paper introduces the system configuration with a detailed description of its operating principle, some practical design considerations are discussed with an experimental study to test the control performance of the newly designed system. The experimental result shows that the phase locked control system can regulate the speed of a DC torque motor with a precision up to 0.0022%(1σ).

  7. Design and Simulation of Phase-Locked Loop Controller Based Unified Power Quality Conditioner Using Nonlinear Loads

    Directory of Open Access Journals (Sweden)

    N. Suparna

    2012-10-01

    Full Text Available This project presents a power quality improvement of unified power quality conditioner (UPQC to compensate current and voltage quality problems of sensitive loads. The UPQC consists of the series and shunt converter having a common dc link. The series converter mitigates voltage sag from the supply side and shunt converter eliminates current harmonics from the nonlimear load side. The developed controllers for series and shunt converters are based on a reference signal generation method (phase-locked loop. The dc link control strategy is based on the fuzzy-logic controllers. The conventional method using dq transformation to show the superiority of the proposed sag detection method. A fast sag detection method is also is presented. The efficiency of the proposed system is tested through simulation studies using the MATLAB/SIMULINK environment.

  8. An analytical solution of the Fokker-Planck equation in the phase-locked loop transient analysis

    Science.gov (United States)

    Zhang, Weijian

    1987-01-01

    A probabilistic approach is used to obtain an analytical solution to the Fokker-Planck equation used in the transient analysis of the phase-locked loop phase error process of the first-order phase-locked loop. The solution procedure, which is based on the Girsanov transformation, is described.

  9. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...

  10. A Novel Phase Sensitive Amplifier Based QPSK Regenerator Without Active Phase-Locking

    DEFF Research Database (Denmark)

    Kjøller, Niels-Kristian; Da Ros, Francesco; Røge, Kasper Meldgaard;

    2015-01-01

    We propose a novel QPSK regenerator scheme based on phase sensitive amplification of a pre-conditioned signal avoiding active phase-locking. Signal pre-conditioning is demonstrated experimentally with error-free (BER < 10-9) performance for a 10-Gbaud QPSK signal....

  11. A cryogenic phase locking loop system for a superconducting integrated receiver

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Yagoubov, P. A.; Pylypenko, O. M.

    2009-08-01

    The authors present a new cryogenic device, an ultrawideband cryogenic phase locking loop system (CPLL). The CPLL was developed for phase locking of a flux-flow oscillator (FFO) in a superconducting integrated receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is the cryogenic phase detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of a superconductor-insulator-superconductor tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of cables 50 cm and the total loop delay 4.5 ns. So small a delay results in a CPLL synchronization bandwidth as wide as 40 MHz and allows phase locking of more than 60% of the power emitted by the FFO, even for FFO linewidths of about 11 MHz. This percentage of phase locked power is three times that achieved with conventional room temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.

  12. The Dynamics of Small-Sized Ensembles of the Phase-Locked Loops with Unidirectional Couplings

    Science.gov (United States)

    Aleshin, K. N.; V. Matrosov, V.; Shalfeev, V. D.

    2016-06-01

    We study collective dynamics of a small-sized chain of the unidirectionally coupled phase-locked loop. The conditions for the synchronous-regime existence are found, the asynchronous selfoscillation regimes and the transitions among them are studied, and the property of inheriting the structure of the parameter space of the chain when a new element is added to it is established.

  13. Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector

    NARCIS (Netherlands)

    Gao, X.; Klumperink, Eric A.M.; Socci, Gerard; Bohsali, Mounhir; Nauta, Bram

    2010-01-01

    This paper presents phase-locked loop (PLL) reference-spur reduction design techniques exploiting a sub-sampling phase detector (SSPD) (which is also referred to as a sampling phase detector). The VCO is sampled by the reference clock without using a frequency divider and an amplitude controlled

  14. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    Science.gov (United States)

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-01-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10–100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC. PMID:24849053

  15. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, J.; Knudsen, C.; O'Meara, N.M.

    1996-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those of...

  16. Spur Reduction Techniques for Phase-Locked Loops Exploiting A Sub-Sampling Phase Detector

    NARCIS (Netherlands)

    Gao, Xiang; Klumperink, Eric A.M.; Socci, Gerard; Bohsali, Mounhir; Nauta, Bram

    2010-01-01

    This paper presents phase-locked loop (PLL) reference-spur reduction design techniques exploiting a sub-sampling phase detector (SSPD) (which is also referred to as a sampling phase detector). The VCO is sampled by the reference clock without using a frequency divider and an amplitude controlled cha

  17. Experimental demonstration of heterodyne phase-locked loop for optical homodyne PSK receivers in PONs

    OpenAIRE

    Fàbrega Sánchez, Josep Maria; Vilabrú, Lluís; Prat Gomà, Josep Joan

    2008-01-01

    Experimental demonstration of heterodyne optical Phase-Locked Loop (oPLL), using simplest optics, is carried out. For the first time, the effect of loop delay has been experimentally characterized and compared directly to the most significant oPLL configurations. It demonstrates a linewidth tolerance of 6.5 MHz if FEC codes are used. Peer Reviewed

  18. Spectral and picosecond temporal properties of flared guide Y-coupled phase-locked laser arrays

    Science.gov (United States)

    Defreez, R. K.; Bossert, D. J.; Yu, N.; Hartnett, K.; Elliott, R. A.

    1988-01-01

    Spatiospectral and spatiotemporal characteristics of flared waveguide Y-coupled laser arrays are studied for the cases of both CW and pulsed operation. Regular sustained self-pulsations were observed for both operation modes. It is suggested that the pulsations are due to the destabilization of phase locking which is caused by amplitude phase coupling.

  19. Phase locking of multi-helicity neoclassical tearing modes in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, Richard [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-04-15

    The attractive “hybrid” tokamak scenario combines comparatively high q{sub 95} operation with improved confinement compared with the conventional H{sub 98,y2} scaling law. Somewhat unusually, hybrid discharges often exhibit multiple neoclassical tearing modes (NTMs) possessing different mode numbers. The various NTMs are eventually observed to phase lock to one another, giving rise to a significant flattening, or even an inversion, of the core toroidal plasma rotation profile. This behavior is highly undesirable because the loss of core plasma rotation is known to have a deleterious effect on plasma stability. This paper presents a simple, single-fluid, cylindrical model of the phase locking of two NTMs with different poloidal and toroidal mode numbers in a tokamak plasma. Such locking takes place via a combination of nonlinear three-wave coupling and conventional toroidal coupling. In accordance with experimental observations, the model predicts that there is a bifurcation to a phase-locked state when the frequency mismatch between the modes is reduced to one half of its original value. In further accordance, the phase-locked state is characterized by the permanent alignment of one of the X-points of NTM island chains on the outboard mid-plane of the plasma, and a modified toroidal angular velocity profile, interior to the outermost coupled rational surface, which is such that the core rotation is flattened, or even inverted.

  20. Phase locking and flux-flow resonances in Josephson oscillators driven by homogeneous microwave fields

    DEFF Research Database (Denmark)

    Salerno, Mario; Samuelsen, Mogens Rugholm

    1999-01-01

    We investigate both analytically and numerically phase locking and flux-flow resonances of long Josephson junctions in the presence of homogeneous microwave fields. We use a power balance analysis and a perturbation expansion around the uniform rotating solution to derive analytical expressions...

  1. Mutual phase locking of a coupled laser diode-Gunn diode pair

    OpenAIRE

    Izadpanah, S.H; Rav-Noy, Z.; Mukai, S.; Margalit, S.; Yariv, Amnon

    1984-01-01

    Mutual phase locking has been achieved through series connection of a semiconductor laser and a Gunn diode oscillator. Experimental results obtained demonstrate a mutual interaction between the two oscillators which results in a short term Gunn diode oscillator stability and improved spectral purity of its output. We also observe a narrowing of laser pulses and an improvement in regularity.

  2. Single-phase Phase-locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong;

    2017-01-01

    High performance phase locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same main ...

  3. Phase-locking and Pulse Generation in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    Science.gov (United States)

    Büttner, Thomas F. S.; Kabakova, Irina V.; Hudson, Darren D.; Pant, Ravi; Poulton, Christopher G.; Judge, Alexander C.; Eggleton, Benjamin J.

    2014-05-01

    There is an increasing demand for pulsed all-fibre lasers with gigahertz repetition rates for applications in telecommunications and metrology. The repetition rate of conventional passively mode-locked fibre lasers is fundamentally linked to the laser cavity length and is therefore typically ~10-100 MHz, which is orders of magnitude lower than required. Cascading stimulated Brillouin scattering (SBS) in nonlinear resonators, however, enables the formation of Brillouin frequency combs (BFCs) with GHz line spacing, which is determined by the acoustic properties of the medium and is independent of the resonator length. Phase-locking of such combs therefore holds a promise to achieve gigahertz repetition rate lasers. The interplay of SBS and Kerr-nonlinear four-wave mixing (FWM) in nonlinear resonators has been previously investigated, yet the phase relationship of the waves has not been considered. Here, we present for the first time experimental and numerical results that demonstrate phase-locking of BFCs generated in a nonlinear waveguide cavity. Using real-time measurements we demonstrate stable 40 ps pulse trains with 8 GHz repetition rate based on a chalcogenide fibre cavity, without the aid of any additional phase-locking element. Detailed numerical modelling, which is in agreement with the experimental results, highlight the essential role of FWM in phase-locking of the BFC.

  4. Externally Phase-Locked Flux Flow Oscillator for Submm Integrated Receivers; Achievements and Limitations

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Dmitriev, P. N.

    2003-01-01

    to 712 GHz, limited only by the gap frequency of Nb. This enabled us to phase lock the FFO in the frequency range 500-712 GHz where continuous frequency tuning is possible; resulting in an absolute FFO phase noise as low as -80 dBc at 707 GHz. Comprehensive measurements of the FFO radiation linewidth...

  5. Effect of thermal noise on the phase locking of a Josephson fluxon oscillator

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Salerno, Mario; Samuelsen, Mogens Rugholm

    1992-01-01

    The influence of thermal noise on fluxon motion in a long Josephson junction is investigated when the motion is phase locked to an external microwave signal. It is demonstrated that the thermal noise can be treated theoretically within the context of a two-dimensional map that models the dynamics...

  6. Phase-locking of a 2.7-THz quantum cascade laser

    NARCIS (Netherlands)

    Gao, J. R.; Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, L.; Klein, B.; Hesler, J. L.; Rastogi, PK; Hack, E

    2010-01-01

    We successfully realized phase-locking of a 2.7-THz metal-metal waveguide quantum cascade laser (QCL) to a reference, which is generated from an external microwave signal by applying two stages of frequency multiplication. The reference is the 15th harmonic of a signal at 182 GHz, which is produced

  7. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.; Paveliev, D. G.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.; Klein, B.; Hesler, J. L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal-metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x1

  8. Phase locking of a 2.7 THz quantum cascade laser to a microwave reference

    NARCIS (Netherlands)

    Khosropanah, P.; Baryshev, A.; Zhang, W.; Jellema, W.; Hovenier, J.N.; Gao, J.R.; Klapwijk, T.M.; Paveliev, D.G.; Williams, B.S.; Kumar, S.; Hu, Q.; Reno, J.L.; Klein, B.; Hesler, J.L.

    2009-01-01

    We demonstrate the phase locking of a 2.7 THz metal–metal waveguide quantum cascade laser (QCL) to an external microwave signal. The reference is the 15th harmonic, generated by a semiconductor superlattice nonlinear device, of a signal at 182 GHz, which itself is generated by a multiplier chain (x1

  9. Tunable optical frequency division using a phase-locked optical parametric oscillator.

    Science.gov (United States)

    Lee, D; Wong, N C

    1992-01-01

    We report the experimental demonstration of a novel optical parametric oscillator approach to tunable optical frequency division. The beat frequency of the signal and idler subharmonic outputs of a tunable cw KTP optical parametric oscillator was phase locked to a microwave reference frequency source, which thus permitted precise determination of the output frequencies at approximately half the input pump frequency.

  10. Optical Generation of mm-Wave Signal Through Optoelectronic Phase-Locked Loop

    Institute of Scientific and Technical Information of China (English)

    Madhumita; Bhattacharya; Anuj; Kumar; Saw; Taraprasad; Chattopadhyay

    2003-01-01

    In this paper, we propose a scheme for the generation of low phase noise tunable mm-wave signal by bearing two lightwaves in a photodiode. These two lightwaves are made phase coherent by an optoelectronic phase locked loop. Calculated mm-wave power at a frequency of 60 GHz is found to be -4 dBm.

  11. Phase-locking regions in a forced model of slow insulin and glucose oscillations

    DEFF Research Database (Denmark)

    Sturis, Jeppe; Knudsen, Carsten; O'Meara, Niall M.;

    1995-01-01

    We present a detailed numerical investigation of the phase-locking regions in a forced model of slow oscillations in human insulin secretion and blood glucose concentration. The bifurcation structures of period 2pi and 4pi tongues are mapped out and found to be qualitatively identical to those...

  12. A low power MICS band phase-locked loop for high resolution retinal prosthesis.

    Science.gov (United States)

    Yang, Jiawei; Skafidas, Efstratios

    2013-08-01

    Ultra low power dissipation is essential in retinal prosthesis and many other biomedical implants. Extensive research has been undertaken in designing low power biomedical transceivers, however to date, most effort has been focused on low frequency inductive links. For higher frequency, more robust and more complex applications, such as Medical Implant Communication Service (MICS) band multichannel transceivers, power consumption remains high. This paper explores the design of micro-power data links at 400 MHz for a high resolution retinal prosthesis. By taking advantage of advanced small geometry CMOS technology and precise transistor-level modeling, we successfully utilized subthreshold FET operation, which has been historically limited to low frequency circuits due to the inadequate transistor operating speed in and near weak inversion; we have implemented a low power MICS transceiver. Particularly, a low power, MICS band multichannel phase-locked loop (PLL) that employs a subthreshold voltage controlled oscillator (VCO) and digital synchronous dividers has been implemented on a 65-nm CMOS. A design methodology is presented in detail with the demonstration of EKV model parameters extraction. This PLL provides 600- mVpp quadrature oscillations and exhibits a phase noise of -102 dBc/Hz at 200-kHz offset, while only consuming 430- μW from a 1-V supply. The VCO has a gain (KVCO) of 12 MHz/V and is designed to operate in the near-weak inversion region and consumes 220- μA DC current. The designed PLL has a core area of 0.54 mm(2). It satisfies all specifications of MICS band operation with the advantage of significant reduction in power which is crucial for high resolution retinal prosthesis.

  13. Phase locked neural activity in the human brainstem predicts preference for musical consonance.

    Science.gov (United States)

    Bones, Oliver; Hopkins, Kathryn; Krishnan, Ananthanarayan; Plack, Christopher J

    2014-05-01

    for the role of neural temporal coding in the perception of consonance, and suggest that the representation of harmonicity in phase locked neural firing drives the perception of consonance.

  14. Analysis of phase-locked loop influence on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    A controlled power inverter can cause instability at the point of common coupling (PCC) with its output filter and the grid. This paper analyzes the influence of the Phase-Locked Loop (PLL) on the output admittance of single-phase current-controlled inverters with different grid stiffness. It shows...... that the PLL introduces a paralleled admittance into the output admittance of the inverter, which may lead to unintentional low-order harmonic oscillation in a weak grid. Moreover, the Second Order Generalized Integrator PLL (SOGI-PLL) is also modeled. It is found that the quadrature signal generator of SOGI...... plays a stabilizing role in grid-inverter interactions, which thus provides a promising candidate for avoiding the PLL-induced instability in single-phase inverters. Simulation results are presented for verifying the theoretical analysis. The possible instability due to different PLL bandwidth is also...

  15. An Adaptive Least-Error Squares Filter-Based Phase-Locked Loop for Synchronization and Signal Decomposition Purposes

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ebrahimzadeh, Esmaeil; Guerrero, Josep M.

    2017-01-01

    Without any doubt, phase-locked loops (PLLs) are the most popular and widely used technique for the synchronization purposes in the power and energy areas. They are also popular for the selective extraction of fundamental and harmonic/disturbance components of the grid voltage and current. Like...... most of the control algorithms, designing PLLs involves a tradeoff between the accuracy and dynamic response, and improving this tradeoff is what recent research efforts have focused on. These efforts are often based on designing advanced filters and using them as a preprocessing tool before the PLL...... input. A filtering technique that has received a little attention for this purpose is the least-error squares (LES)-based filter. In this paper, an adaptive LES filter-based PLL, briefly called the LES-PLL, for the synchronization and signal decomposition purposes is presented. The proposed LES filter...

  16. A low spur, low jitter 10-GHz phase-locked loop in 0.13-μm CMOS technology

    Science.gov (United States)

    Niansong, Mei; Yu, Sun; Bo, Lu; Yaohua, Pan; Yumei, Huang; Zhiliang, Hong

    2011-03-01

    This paper presents a 10-GHz low spur and low jitter phase-locked loop (PLL). An improved low phase noise VCO and a dynamic phase frequency detector with a short delay reset time are employed to reduce the noise of the PLL. We also discuss the methodology to optimize the high frequency prescaler's noise and the charge pump's current mismatch. The chip was fabricated in a SMIC 0.13-μm RF CMOS process with a 1.2-V power supply. The measured integrated RMS jitter is 757 fs (1 kHz to 10 MHz); the phase noise is -89 and -118.1 dBc/Hz at 10 kHz and 1 MHz frequency offset, respectively; and the reference frequency spur is below -77 dBc. The chip size is 0.32 mm2 and the power consumption is 30.6 mW.

  17. A low spur, low jitter 10-GHz phase-locked loop in 0.13-μm CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Mei Niansong; Sun Yu; Lu Bo; Pan Yaohua; Huang Yumei; Hong Zhiliang

    2011-01-01

    This paper presents a 10-GHz low spur and low jitter phase-locked loop (PLL).An improved low phase noise VCO and a dynamic phase frequency detector with a short delay reset time are employed to reduce the noise of the PLL.We also discuss the methodology to optimize the high frequency prescaler's noise and the charge pump's current mismatch.The chip was fabricated in a SMIC 0.13-μm RF CMOS process with a 1.2-V power supply.The measured integrated RMS jitter is 757 fs (1 kHz to 10 MHz); the phase noise is -89 and-118.1 dBc/Hz at 10 kHz and 1 MHz frequency offset,respectively; and the reference frequency spur is below -77 dBc.The chip size is 0.32 mm2 and the power consumption is 30.6 mW.

  18. A 3.96 GHz phase-locked loop for mode-1 MB-OFDM UWB hopping carrier generation

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongzheng; Li Weinan; Xia Lingli; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-07-15

    A fully integrated phase-locked loop (PLL) is presented for a single quadrature output frequency of 3.96 GHz. The proposed PLL can be applied to mode-1 MB-OFDM UWB hopping carrier generation. An adaptive frequency calibration loop is incorporated into the PLL. The capacitance area in the loop filter is largely reduced through a capacitor multiplier. Implemented in a CMOS process, this PLL draws 13.0 mA current from a single 1.2 V supply while occupying 0.55 mm{sup 2} die area. Measurement results show that the PLL achieves a phase noise of-70 dBc/Hz at 10 kHz offset and -113 dBc/Hz at 1 MHz offset. The integrated RMS jitter from 1 kHz to 10 MHz is 2.2 ps. The reference spur level is less than -68 dBc.

  19. Electronic Circuit Experiments and SPICE Simulation of Double Covering Bifurcation of 2-Torus Quasi-Periodic Flow in Phase-Locked Loop Circuit

    Science.gov (United States)

    Kamiyama, Kyohei; Endo, Tetsuro; Imai, Isao; Komuro, Motomasa

    2016-06-01

    Double covering (DC) bifurcation of a 2-torus quasi-periodic flow in a phase-locked loop circuit was experimentally investigated using an electronic circuit and via SPICE simulation; in the circuit, the input radio-frequency signal was frequency modulated by the sum of two asynchronous sinusoidal baseband signals. We observed both DC and period-doubling bifurcations of a discrete map on two Poincaré sections, which were realized by changing the sample timing from one baseband sinusoidal signal to the other. The results confirm the DC bifurcation of the original flow.

  20. Optoelectronic down-conversion by four-wave mixing in a highly nonlinear fiber for millimeter-wave and THz phase-locking

    CERN Document Server

    Rolland, Antoine; Brunel, Marc; Alouini, Mehdi

    2014-01-01

    Optoelectronic down-conversion of a THz optical beatnote to a RF intermediate frequency is performed with a standard Mach-Zehnder modulator followed by a zero dispersion-slope fiber. The two interleaved optical spectra obtained by four-wave mixing are shown to contain more than 75 harmonics enabling to conveniently recover the phase noise of a beatnote at 770 GHz at around 500 MHz. This four-wave mixing down-conversion technique is implemented in a two-frequency solid-state laser in order to directly phase-lock its 168 GHz beatnote to a 10 MHz local oscillator.

  1. Module Technology: Current Practice and Issues (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J.

    2010-10-05

    PV modules must provide mechanical support for the cells, protect the world from the voltages inside, protect the cells, diodes and interconnects from the weather outside, couple as much light as possible into the PV cells and minimize the temperature increase of the cells. The package must continue to serve these functions for at least 25 years as that is the typical module warranty period today. Furthermore the package must do all this for as low a cost as possible since the key to large scale PV growth is a reduction in cost while retaining excellent module reliability and durability. This paper will review current module construction practices for both crystalline silicon and thin film PV with emphasis on explaining why the present designs and materials have been selected. Possible long term issues with today's designs and materials will be discussed. Several proposed solutions to these issues will be presented, highlighting the research efforts that will be necessary in order to verify that they can cost effectively solve the identified issues.

  2. Nanometer frequency synthesis beyond the phase-locked loop

    CERN Document Server

    Xiu, Liming

    2012-01-01

    This text presents a latest technology in frequency synthesis. The technology includes three key components: Time-Average-Frequency, Flying-Adder architecture, and Digital-to-Frequency converter. The coverage presents the case, through real application examples, that this Flying-Adder technology creates a new frontier for modern IC design. In so doing, it also discusses the weaknesses of current frequency synthesis techniques in dealing with certain problems in modern IC design. The result is a complete picture of this technology for professional design engineers, researchers, and advanced students.

  3. Analysis of first and second order binary quantized digital phase-locked loops for ideal and white Gaussian noise inputs

    Science.gov (United States)

    Blasche, P. R.

    1980-01-01

    Specific configurations of first and second order all digital phase locked loops are analyzed for both ideal and additive white gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation is presented along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop are consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application.

  4. Optical phase locking of two infrared CW lasers separated by 100 THz

    CERN Document Server

    Chiodo, Nicola; Hrabina, Jan; Lours, Michel; Chea, Erick; Acef, Ouali

    2014-01-01

    We report on phase-locking of two continuous wave infrared laser sources separated by 100 THz emitting around 1029 nm and 1544 nm respectively. Our approach uses three independent harmonic generation processes of the IR laser frequencies in periodically poled MgO: LiNbO3 crystals to generate second and third harmonic of that two IR sources. The beat note between the two independent green radiations generated around 515 nm is used to phase-lock one IR laser to the other, with tunable radio frequency offset. In this way, the whole setup operates as a mini frequency comb (MFC) emitting four intense optical radiations (1544 nm, 1029 nm, 772 nm and 515 nm), with output powers at least 3 orders of magnitude higher than the available power from each mode emitted by femtosecond lasers.

  5. Oscillation quenching in third order phase locked loop coupled by mean field diffusive coupling

    Science.gov (United States)

    Chakraborty, S.; Dandapathak, M.; Sarkar, B. C.

    2016-11-01

    We explored analytically the oscillation quenching phenomena (amplitude death and parameter dependent inhomogeneous steady state) in a coupled third order phase locked loop (PLL) both in periodic and chaotic mode. The phase locked loops were coupled through mean field diffusive coupling. The lower and upper limits of the quenched state were identified in the parameter space of the coupled PLL using the Routh-Hurwitz technique. We further observed that the ability of convergence to the quenched state of coupled PLLs depends on the design parameters. For identical systems, both the systems converge to the homogeneous steady state, whereas for non-identical parameter values they converge to an inhomogeneous steady state. It was also observed that for identical systems, the quenched state is wider than the non-identical case. When the system parameters are so chosen that each isolated loop is chaotic in nature, we observe narrowing down of the quenched state. All these phenomena were also demonstrated through numerical simulations.

  6. A power-law distribution of phase-locking intervals does not imply critical interaction

    CERN Document Server

    Botcharova, Maria; Berthouze, Luc

    2012-01-01

    Neural synchronisation plays a critical role in information processing, storage and transmission. Characterising the pattern of synchronisation is therefore of great interest. It has recently been suggested that the brain displays broadband criticality based on two measures of synchronisation - phase locking intervals and global lability of synchronisation - showing power law statistics at the critical threshold in a classical model of synchronisation. In this paper, we provide evidence that, within the limits of the model selection approach used to ascertain the presence of power law statistics, the pooling of pairwise phase-locking intervals from a non-critically interacting system can produce a distribution that is similarly assessed as being power law. In contrast, the global lability of synchronisation measure is shown to better discriminate critical from non critical interaction.

  7. A Unified Impedance Model of Voltage-Source Converters with Phase-Locked Loop Effect

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Harnefors, Lennart; Blaabjerg, Frede

    2016-01-01

    This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions and comp......This paper proposes a unified impedance model for analyzing the effect of Phase-Locked Loop (PLL) on the stability of grid-connected voltage-source converters. In the approach, the dq-frame impedance model is transformed into the stationary αβ-frame by means of complex transfer functions...... and complex space vectors, which not only predicts the stability impact of the PLL, but reveals also its frequency coupling effect in the phase domain. Thus, the impedance models previously developed in the different domains can be unified. Moreover, the impedance shaping effects of PLL are structurally...

  8. Coherent Optical Generation of a 6 GHz Microwave Signal with Directly Phase Locked Semiconductor DFB Lasers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene;

    1992-01-01

    Experimental results of a wideband heterodyne second order optical phase locked loop with 1.5 ¿m semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...... of a microwave reference source close to carrier with a noise level of ¿125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 seconds...

  9. Analytical and numerical investigations of the phase-locked loop with time delay.

    Science.gov (United States)

    Schanz, Michael; Pelster, Axel

    2003-05-01

    We derive the normal form for the delay-induced Hopf bifurcation in the first-order phase-locked loop with time delay by the multiple scaling method. The resulting periodic orbit is confirmed by numerical simulations. Further detailed numerical investigations demonstrate exemplarily that this system reveals a rich dynamical behavior. With phase portraits, Fourier analysis, and Lyapunov spectra it is possible to analyze the scaling properties of the control parameter in the period-doubling scenario, both qualitatively and quantitatively. Within the numerical accuracy there is evidence that the scaling constant of the time-delayed phase-locked loop coincides with the Feigenbaum constant delta approximately 4.669 in one-dimensional discrete systems.

  10. Phase-locking in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

    CERN Document Server

    Buettner, Thomas F S; Hudson, Darren D; Pant, Ravi; Poulton, Christopher G; Judge, Alexander C; Eggleton, Benjamin J

    2014-01-01

    Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.

  11. Effect of sampling frequency on the measurement of phase-locked action potentials.

    Directory of Open Access Journals (Sweden)

    Go eAshida

    2010-09-01

    Full Text Available Phase-locked spikes in various types of neurons encode temporal information. To quantify the degree of phase-locking, the metric called vector strength (VS has been most widely used. Since VS is derived from spike timing information, error in measurement of spike occurrence should result in errors in VS calculation. In electrophysiological experiments, the timing of an action potential is detected with finite temporal precision, which is determined by the sampling frequency. In order to evaluate the effects of the sampling frequency on the measurement of VS, we derive theoretical upper and lower bounds of VS from spikes collected with finite sampling rates. We next estimate errors in VS assuming random sampling effects, and show that our theoretical calculation agrees with data from electrophysiological recordings in vivo. Our results provide a practical guide for choosing the appropriate sampling frequency in measuring VS.

  12. Digital Phase Locked Loop Induction Motor Speed Controller: Design and Experiments

    Directory of Open Access Journals (Sweden)

    Mouna BEN HAMED

    2012-08-01

    Full Text Available Phase locked loop (PLL is a technique which has contributed significantly toward the technology advancement in communication and motor servo control systems. Inventions in PLL schemes combining with novel integrated circuit have made PLL devices important system components. The development of better modular PLL integrated circuit is continuing. As a result, it is expected that it will contribute to improvement in performance and reliability for communication and servo control systems. In this paper, the study of the speed control of induction motor (IM drives using digital phase locked loop (DPLL is discussed. A novel scalar law which compensates the slip frequency loop calculation is proposed. The overall investigated system is tested using a 1Kw IM. Different speed trajectories are considered covering the realistic operating range. The PLL IM drives controller is implemented all around the most popular integrated circuits 4046 PLL. Experimental results are presented to show the performance of the investigated control system.

  13. Injection Bucket Jitter Compensation Using Phase Lock System at Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Seiya, K. [Fermilab; Drennan, C. [Fermilab; Pellico, W. [Fermilab; Chaurize, S. [Fermilab

    2017-05-12

    The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection has been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.

  14. Phase-locking phenomena and excitation of damped and driven nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Shagalov, A G [Institute of Metal Physics, Ekaterinburg 620041 (Russian Federation); Rasmussen, J Juul; Naulin, V [Risoe-DTU, Building 128, PO Box 49, DK-4000 Roskilde (Denmark)], E-mail: shagalov@imp.uran.ru, E-mail: jens.juul.rasmussen@risoe.dk, E-mail: volker.naulin@risoe.dk

    2009-01-30

    Resonant phase-locking phenomena ('autoresonance') in the van der Pol-Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible.

  15. Phase-locking phenomena and excitation of damped and driven nonlinear oscillators

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Juul Rasmussen, Jens; Naulin, Volker

    2009-01-01

    Resonant phase-locking phenomena ('autoresonance') in the van der Pol Duffing oscillator forced by a small amplitude periodic driving with slowly varying frequency have been studied. We show that autoresonance occurs for oscillators with sufficiently small damping, when the system may have bi......-stable states. We find the range of parameters of the oscillator, the thresholds and the appropriate control paths where autoresonant excitation of high amplitude oscillations is possible....

  16. Phase Locking Phenomena and Electroencephalogram-Like Activities in Dynamic Neuronal Systems

    Institute of Scientific and Technical Information of China (English)

    XU Xin-Jian; WANG Sheng-Jun; TANG Wei; WANG Ying-Hai

    2005-01-01

    @@ We study signal detection and transduction of dynamic neuronal systems under the influence of external noise,white and coloured. Based on simulations, we show explicitly phase locking phenomena between the output and the input of a single neuron and Electroencephalogram-like activities on neural networks with small-world connectivity. The numerical results prove that the dynamic neuronal system can be adjusted to an optimal sensitive state for signal processing in the presence of additive noise.

  17. Phase-Locked Loop For Measurement Of Small And Large Delays

    Science.gov (United States)

    Froggatt, Mark

    1995-01-01

    Electronic signal-generating and processing subsystem of ultrasonic inspection or measurement system consists mainly of variable-and-fixed-frequency, pulsed phase-locked loop (VFFPPLL) measuring phase shifts from 0 degrees to more than 360 degrees with accurancy of 0.112 degrees. VFFPPLL measures phase shifts between transmitted ultrasonic toneburst and its echo, thereby measuring ultrasonic-propagation delay. Used to determine strain in bolt or to track irregular surface of specimen being inspected ultrasonically.

  18. Analytical and Numerical Investigation of the Phase-Locked Loop with Time Delay

    OpenAIRE

    Schanz, Michael; Pelster, Axel

    2005-01-01

    We derive the normal form for the delay-induced Hopf bifurcation in the first-order phase-locked loop with time delay by the multiple scaling method. The resulting periodic orbit is confirmed by numerical simulations. Further detailed numerical investigations demonstrate exemplarily that this system reveals a rich dynamical behavior. With phase portraits, Fourier analysis and Lyapunov spectra it is possible to analyze the scaling properties of the control parameter in the period-doubling scen...

  19. Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector.

    Science.gov (United States)

    Steed, Robert J; Pozzi, Francesca; Fice, Martyn J; Renaud, Cyril C; Rogers, David C; Lealman, Ian F; Moodie, David G; Cannard, Paul J; Lynch, Colm; Johnston, Lilianne; Robertson, Michael J; Cronin, Richard; Pavlovic, Leon; Naglic, Luka; Vidmar, Matjaz; Seeds, Alwyn J

    2011-10-10

    We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of ~1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below -90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad2.

  20. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    Science.gov (United States)

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  1. On families of differential equations on two-torus with all phase-lock areas

    Science.gov (United States)

    Glutsyuk, Alexey; Rybnikov, Leonid

    2017-01-01

    We consider two-parametric families of non-autonomous ordinary differential equations on the two-torus with coordinates (x, t) of the type \\overset{\\centerdot}{{x}} =v(x)+A+Bf(t) . We study its rotation number as a function of the parameters (A, B). The phase-lock areas are those level sets of the rotation number function ρ =ρ (A,B) that have non-empty interiors. Buchstaber, Karpov and Tertychnyi studied the case when v(x)=\\sin x in their joint paper. They observed the quantization effect: for every smooth periodic function f(t) the family of equations may have phase-lock areas only for integer rotation numbers. Another proof of this quantization statement was later obtained in a joint paper by Ilyashenko, Filimonov and Ryzhov. This implies a similar quantization effect for every v(x)=a\\sin (mx)+b\\cos (mx)+c and rotation numbers that are multiples of \\frac{1}{m} . We show that for every other analytic vector field v(x) (i.e. having at least two Fourier harmonics with non-zero non-opposite degrees and nonzero coefficients) there exists an analytic periodic function f(t) such that the corresponding family of equations has phase-lock areas for all the rational values of the rotation number.

  2. Spontaneous default mode network phase-locking moderates performance perceptions under stereotype threat.

    Science.gov (United States)

    Forbes, Chad E; Leitner, Jordan B; Duran-Jordan, Kelly; Magerman, Adam B; Schmader, Toni; Allen, John J B

    2015-07-01

    This study assessed whether individual differences in self-oriented neural processing were associated with performance perceptions of minority students under stereotype threat. Resting electroencephalographic activity recorded in white and minority participants was used to predict later estimates of task errors and self-doubt on a presumed measure of intelligence. We assessed spontaneous phase-locking between dipole sources in left lateral parietal cortex (LPC), precuneus/posterior cingulate cortex (P/PCC), and medial prefrontal cortex (MPFC); three regions of the default mode network (DMN) that are integral for self-oriented processing. Results revealed that minorities with greater LPC-P/PCC phase-locking in the theta band reported more accurate error estimations. All individuals experienced less self-doubt to the extent they exhibited greater LPC-MPFC phase-locking in the alpha band but this effect was driven by minorities. Minorities also reported more self-doubt to the extent they overestimated errors. Findings reveal novel neural moderators of stereotype threat effects on subjective experience. Spontaneous synchronization between DMN regions may play a role in anticipatory coping mechanisms that buffer individuals from stereotype threat.

  3. Fundamental Noise-Limited Optical Phase Locking at Femtowatt Light Levels

    Science.gov (United States)

    Dick, John; Tu, Meirong; Birnbaum, Kevin; Strekalov, Dmitry; Yu, Nan

    2008-01-01

    We describe an optical phase lock loop (PLL) designed to recover an optical carrier at powers below one picowatt in a Deep Space optical transponder. Previous low power optical phase lock has been reported with powers down to about 1 pW. We report the demonstration and characterization of the optical phase locking at femtowatt levels. We achieved a phase slip rate below one cycle-slip/second at powers down to 60 femtowatts. This phase slip rate corresponds to a frequency stability of 1 10(exp -14) at 1 s, a value better than any frequency standard available today for measuring times equal to a typical two-way delay between Earth and Mars. The PLL shows very robust stability at these power levels. We developed simulation software to optimize parameters of the second order PLL loop in the presence of laser flicker frequency noise and white phase (photon) noise, and verified the software with a white phase noise model by Viterbi. We also demonstrated precise Doppler tracking at femtowatt levels.

  4. Design of a Time-to-Digital Converter for an All-Digital Phase Locked Loop for the 2-GHz Band

    OpenAIRE

    Wali, Naveen; Radhakrishnan, Balamurali

    2013-01-01

    An all-digital phase locked loop for WiGig systems was implemented. The developedall-digital phase locked loop has a targeted frequency range of 2.1-GHz to2.5-GHz. The all-digital phase locked loop replaces the traditional charge pumpbased analog phase locked loop. The digital nature of the all-digital phase lockedloop system makes it superior to the analog counterpart.There are four main partswhich constitutes the all-digital phase locked loop. The time-to-digital converteris one of the impo...

  5. Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model

    Science.gov (United States)

    Rashid, Harun A.; Hirst, Anthony C.

    2016-02-01

    The mechanisms of coupled model bias in seasonal ENSO phase locking are investigated using versions 1.0 and 1.3 of the CSIRO-BOM ACCESS coupled model (hereafter, ACCESS1.0 and ACCESS1.3, respectively). The two ACCESS coupled models are mostly similar in construction except for some differences, the most notable of which are in the cloud and land surface schemes used in the models. ACCESS1.0 simulates a realistic seasonal phase locking, with the ENSO variability peaking in December as in observations. On the other hand, the simulated ENSO variability in ACCESS1.3 peaks in March, a bias shown to be shared by many other CMIP5 models. To explore the mechanisms of this model bias, we contrast the atmosphere-ocean feedbacks associated with ENSO in both ACCESS model simulations and also compare the key feedbacks with those in other CMIP5 models. We find evidence that the ENSO phase locking bias in ACCESS1.3 is primarily caused by incorrect simulations of the shortwave feedback and the thermocline feedback in this model. The bias in the shortwave feedback is brought about by unrealistic SST-cloud interactions leading to a positive cloud feedback bias that is largest around March, in contrast to the strongest negative cloud feedback found in ACCESS1.0 simulations and observations at that time. The positive cloud feedback bias in ACCESS1.3 is the result of a dominant role played by the low-level clouds in its modeled SST-cloud interactions in the tropical eastern Pacific. Two factors appear to contribute to the dominance of low-level clouds in ACCESS1.3: the occurrence of a stronger mean descending motion bias and, to a lesser extent, a larger mean SST cold bias during March-April in ACCESS1.3 than in ACCESS1.0. A similar association is found between the positive cloud feedback bias and the biases in spring-time mean descending motion and SST for a group of CMIP5 models that show a seasonal phase locking bias similar to ACCESS1.3. Significant differences are also found

  6. Auditory-evoked cortical activity: contribution of brain noise, phase locking, and spectral power.

    Science.gov (United States)

    Harris, Kelly C; Vaden, Kenneth I; Dubno, Judy R

    2014-09-01

    The N1-P2 is an obligatory cortical response that can reflect the representation of spectral and temporal characteristics of an auditory stimulus. Traditionally,mean amplitudes and latencies of the prominent peaks in the averaged response are compared across experimental conditions. Analyses of the peaks in the averaged response only reflect a subset of the data contained within the electroencephalogram(EEG) signal. We used single-trial analyses techniques to identify the contribution of brain noise,neural synchrony, and spectral power to the generation of P2 amplitude and how these variables may change across age group. This information is important for appropriate interpretation of event-related potentials (ERPs) results and in understanding of age-related neural pathologies. EEG was measured from 25 younger and 25 older normal hearing adults. Age-related and individual differences in P2 response amplitudes, and variability in brain noise, phase locking value (PLV), and spectral power (4-8 Hz) were assessed from electrode FCz. Model testing and linear regression were used to determine the extent to which brain noise, PLV, and spectral power uniquely predicted P2 amplitudes and varied by age group. Younger adults had significantly larger P2 amplitudes, PLV, and power compared to older adults. Brain noise did not differ between age groups. The results of regression testing revealed that brain noise and PLV, but not spectral power were unique predictors of P2 amplitudes. Model fit was significantly better in younger than in older adults. ERP analyses are intended to provide a better understanding of the underlying neural mechanisms that contribute to individual and group differences in behavior. The current results support that age-related declines in neural synchrony contribute to smaller P2 amplitudes in older normal hearing adults. Based on our results, we discuss potential models in which differences in neural synchrony and brain noise can account for

  7. tACS phase locking of frontal midline theta oscillations disrupts working memory performance

    Directory of Open Access Journals (Sweden)

    Bankim Subhash Chander

    2016-05-01

    Full Text Available Frontal midline theta (FMT oscillations (4-8Hz are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS can block WM demand-related FMT power increase and disrupt normal WM performance. Methods: 20 healthy volunteers were assigned to one of two groups (group A, group B and performed a 2-back task across a baseline block (block 1 and an intervention block (block 2 while 275-sensor magnetoencephalography (MEG was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMT power increase (FMTpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMT power increase. This finding may have

  8. Phase-locked oscillator at 3 mm waveband using high Tc superconductor mixer mounted on pulse tube crycooler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A frequency mixing and phase locking system is designed, in which electromagnetic shielding, microwave coupling, and intermediate frequency (IF) measurement arrangements are included. In lieu of liquid nitrogen, a pulse tube cryocooler is used to cool the whole system. With Josephson grain boundary junction as the mixing element, the 96th harmonic frequency mixing at 3 mm waveband is obtained, and phase-locked voltage- controlled oscillator (VCO) is realized.

  9. SEMICONDUCTOR INTEGRATED CIRCUITS Short locking time and low jitter phase-locked loop based on slope charge pump control

    Science.gov (United States)

    Zhongjie, Guo; Youbao, Liu; Longsheng, Wu; Xihu, Wang; Wei, Tang

    2010-10-01

    A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range.

  10. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  11. Direct current modulation of a photomixing signal

    Science.gov (United States)

    Constantin, Florin L.

    2016-04-01

    Direct modulation of the bias voltage of a LTG-GaAs photomixer is exploited to modulate the signal generated at the frequency of the optical beat between two diode lasers at 820 nm. The photomixing signal is calculated from an expansion in power series of the amplitude of the modulation voltage and displays amplitude modulation sidebands equidistantly spaced to the frequency of the optical beat by integer multiples of the modulation frequency. Modulation at harmonics of the modulation frequency is allowed by the electrical nonlinear response of the photomixer, driven at low voltage by the saturation of the electron drift velocity. Coupling of an alternative voltage to the photomixer operated at zero-bias leads to bifrequency operation. Modulation of the photomixing signal and bifrequency operation of the photomixer are observed experimentally with an optical beat in the microwave regime.

  12. Coherent beam combination of adaptive fiber laser array with tilt-tip and phase-locking control

    Institute of Scientific and Technical Information of China (English)

    Wang Xiong; Wang Xiao-Lin; Zhou Pu; Su Rong-Tao; Geng Chao; Li Xin-Yang; Xu Xiao-Jun

    2013-01-01

    We present an experimental study on tilt-tip (TT) and phase-locking (PL) control in a coherent beam combination (CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator (AFOC),and the PL control is realized by the phase modulator (PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent (SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector (PD) are employed,and a computer and a control circuit based on field programmable gate array (FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.

  13. Characteristics and performance of offset phase locked single frequency heterodyned laser systems

    Science.gov (United States)

    Tulchinsky, David A.; Hastings, Alexander S.; Williams, Keith J.

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  14. Vibrational predissociation of methylnitrite using phase-locked ultrashort laser pulses

    Science.gov (United States)

    Dateo, Christopher E.; Metiu, Horia

    1993-01-01

    We solve numerically the time-dependent Schroedinger equation to study the behavior of a molecule interacting with two phase-locked ultrashort laser pulses. The 2D model used in the calculations mimics the properties of the CH3ONO molecule. The two pulses are identical except for their relative phase and are tuned to excite an upper electronic state of the molecule. After excitation the molecule predissociates, and we calculate the dependence of the NO yield and of the NO vibrational population on the delay time between the pulses.

  15. Conventional Synchronous Reference Frame Phase-Locked Loop Is An Adaptive Complex Filter

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.

    2015-01-01

    Despite the wide acceptance and use of the conventional synchronous reference frame phase-locked loop (SRFPLL) no transfer function describing its actual input-output relationship has been developed so far. Arguably, the absence of such transfer function has hampered the application of SRF......-PLL as a filter or controller inside the closed-loop control systems. In this letter, the transfer function describing the actual inputoutput relationship of the conventional SRF-PLL is presented. Using this transfer function, it is shown that the conventional SRF-PLL is a first-order adaptive complex bandpass...

  16. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Long; TAO Tian-Jiong; CHENG Bing; WU Bin; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang

    2011-01-01

    @@ A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry.The setup involves alldigital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking.The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs.The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  17. A Digital Phase Lock Loop for an External Cavity Diode Laser

    Science.gov (United States)

    Wang, Xiao-Long; Tao, Tian-Jiong; Cheng, Bing; Wu, Bin; Xu, Yun-Fei; Wang, Zhao-Ying; Lin, Qiang

    2011-08-01

    A digital optical phase lock loop (OPLL) is implemented to synchronize the frequency and phase between two external cavity diode lasers (ECDL), generating Raman pulses for atom interferometry. The setup involves all-digital phase detection and a programmable digital proportional-integral-derivative (PID) loop in locking. The lock generates a narrow beat-note linewidth below 1 Hz and low phase-noise of 0.03rad2 between the master and slave ECDLs. The lock proves to be stable and robust, and all the locking parameters can be set and optimized on a computer interface with convenience, making the lock adaptable to various setups of laser systems.

  18. A Systematic Approach to Design High-Order Phase-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Fernandez, Francisco Daniel Freijedo; Guerrero, Josep M.

    2015-01-01

    A basic approach to improve the performance of phase-locked loop (PLL) under adverse grid condition is to incorporate a first-order low-pass filter (LPF) into its control loop. The first-order LPF, however, has a limited ability to suppress grid disturbances. A natural thought to further improve...... is presented in this letter. The suggested approach has a general theme, which means it can be applied to design the PLL control parameters regardless of the order of in-loop LPF. The effectiveness of suggested design method is confirmed through different design cases....

  19. Long-term optical phase locking between femtosecond Ti:sapphire and Cr:forsterite lasers

    Science.gov (United States)

    Kobayashi, Yohei; Yoshitomi, Dai; Kakehata, Masayuki; Takada, Hideyuki; Torizuka, Kenji

    2005-09-01

    Long-term optical phase-coherent two-color femtosecond pulses were generated by use of passively timing-synchronized Ti:sapphire and Cr:forsterite lasers. The relative carrier-envelope phase relation was fixed by an active feedback loop. The accumulated phase noise from 10 mHz to 1 MHz of the locked beat note was 0.43 rad, showing tight phase locking. The optical frequency fluctuation between two femtosecond combs was submillihertz, with a 1 s averaged counter measurement over 3400 s, leading to a long-term femtosecond frequency-comb connection.

  20. Development of high resolution Michelson interferometer for stable phase-locked ultrashort pulse pair generation.

    Science.gov (United States)

    Okada, Takumi; Komori, Kazuhiro; Goshima, Keishiro; Yamauchi, Shohgo; Morohashi, Isao; Sugaya, Takeyoshi; Ogura, Mutsuo; Tsurumachi, Noriaki

    2008-10-01

    We developed a high resolution Michelson interferometer with a two-frequency He-Ne laser positioning system in order to stabilize the relative phase of a pulse pair. The control resolution corresponded to a 12 as time resolution or a phase of 1.5 degrees at 900 nm. This high resolution Michelson interferometer can generate a phase-locked pulse pair either with a specific relative phase such as 0 or pi radians or with an arbitrary phase. Coherent control of an InAs self-assembled quantum dot was demonstrated using the high resolution Michelson interferometer with a microspectroscopy system.

  1. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    Science.gov (United States)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  2. Facet Reflection Coefficient of Phase-locked Diode Laser Array in an External Cavity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C0). Considering the fact that|C0/S| should be larger than unity if the external cavity is effective,and|C1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.

  3. On the Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation

    CERN Document Server

    Centini, Marco; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-01-01

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second and third harmonic generation in strongly absorbing materials, GaAs in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300nm generates 650nm and 435nm second and third harmonic pulses that propagate across a 450 micron-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress them with its dispersive properties.

  4. The Design of a High Speed Low Power Phase Locked Loop

    CERN Document Server

    Liu, Tiankuan; Hou, Suen; Liang, Zhihua; Liu, Chonghan; Su, Da-Shung; Teng, Ping-Kun; Xiang, Annie C; Ye, Jingbo

    2009-01-01

    The upgrade of the ATLAS Liquid Argon Calorimeter readout system calls for the development of radiation tolerant, high speed and low power serializer ASIC. We have designed a phase locked loop using a commercial 0.25-μm Silicon-on- Sapphire (SoS) CMOS technology. Post-layout simulation indicates that tuning range is 3.79 – 5.01 GHz and power consumption is 104 mW. The PLL has been submitted for fabrication. The design and simulation results are presented.

  5. A 4.9-GHz Low Power, Low Jitter, LC Phase Locked Loop

    CERN Document Server

    Liu, T

    2010-01-01

    This paper present a low power, low jitter LC phase locked loop (PLL) which has been designed and fabricated in a commercial 0.25-µm Silicon-on-Sapphire CMOS technology. Random jitter and deterministic jitter of the PLL is 1.3 ps and 7.5 ps, respectively. The measured tuning range, from 4.6 to 5.0 GHz, is narrower than the expected value of from 3.8 to 5.0 GHz. The narrow tuning range issue has been investigated and traced to the first stage of the divider chain. The power consumption at the central frequency is 111 mW.

  6. Benchmarking of Phase Locked Loop based Synchronization Techniques for Grid-Connected Inverter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Hadjidemetriou, Lenos; Blaabjerg, Frede

    2015-01-01

    , becoming inevitable challenges to the synchronization of the grid-connected renewable energy systems. In order to ensure the quality of the power generation from the renewables, robust and reliable synchronization methods are in demand. Among the prior-art solutions, Phase Locked Loop (PLL) based...... synchronization methods have gained much popularity in grid-connected applications. However, an appropriate selection and thus a proper design of the selected PLL synchronization remain of interest in practice, especially for single-phase systems. Therefore, in this paper, a benchmarking of the main PLL...

  7. Analysis and design of a low-power low-noise CMOS phase-locked loop

    OpenAIRE

    Zhang, Cheng

    2012-01-01

    This thesis covers the analysis, design and simulation of a low-power low-noise CMOS Phase-Locked Loop (PLL). Starting with the PLL basics, this thesis discussed the PLL loop dynamics and behavioral modeling. In this thesis, the detailed design and implementation of individual building blocks of the low-power low-noise PLL have been presented. In order to improve the PLL performance, several novel architectural solutions has been proposed. To reduce the effect of blind-zone and extend the det...

  8. System-level simulation of a noisy phase-locked loop

    OpenAIRE

    Herzel, Frank; Piz, Maxim

    2005-01-01

    This paper presents a compact model of a noisy phase-locked loop (PLL) for inclusion in a time-domain system simulation. The phase noise of the reference is modeled as a Wiener process, and the phase noise contribution of the voltage-controlled oscillator (VCO) is described as an Ornstein-Uhlenbeck process. The model is applied to phase error modeling for a 60 GHz OFDM system including correction of the common phase error. A close agreement is observed between the time-domain simulation and a...

  9. Phase-locked laser diode interferometer: high-speed feedback control system.

    Science.gov (United States)

    Suzuki, T; Sasaki, O; Higuchi, K; Maruyama, T

    1991-09-01

    We have previously proposed a phase-locked laser diode interferometer. In that previous interferometer, however, there was substantial room for improvement in the reduction of measurement time. This reduction is achieved by using a different process for generation of the feedback signal in which the output of a chargecoupled device image sensor is used effectively. We analyze the feedback control system of the interferometer as a discrete-time system and discuss the characteristics of the interferometer. It is shown that the measurement time is much shorter than that of the interferometer proposed previously.

  10. Realization of Optical Phase Locked Loop at 9.2 GHz between Two Independent Diode Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Lu-Ming; TANG Wen-Zhuo; HU Zhen-Yan; GUO Hong

    2008-01-01

    The optical-phase-locked-loop (OPLL) at 9.2 GHz between two independent narrow linewidth diode lasers is realized. Ultrabroad servo bandwidth at 4 MHz is first achieved and it is guaranteed that the full spectral characteristics of the master laser can be transferred to the slave laser. The experimental results prove that the coherence between two lasers is about 99%. This offers a new method to study the interaction between lasers and atoms based on the ground hyperfine structure of caesium atoms.

  11. Synchronization in networks of mutually delay-coupled phase-locked loops

    Science.gov (United States)

    Pollakis, Alexandros; Wetzel, Lucas; Jörg, David J.; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2014-11-01

    Electronic components that perform tasks in a concerted way rely on a common time reference. For instance, parallel computing demands synchronous clocking of multiple cores or processors to reliably carry out joint computations. Here, we show that mutually coupled phase-locked loops (PLLs) enable synchronous clocking in large-scale systems with transmission delays. We present a phase description of coupled PLLs that includes filter kernels and delayed signal transmission. We find that transmission delays in the coupling enable the existence of stable synchronized states, while instantaneously coupled PLLs do not tend to synchronize. We show how filtering and transmission delays govern the collective frequency and the time scale of synchronization.

  12. Extended Lock Range Zero-Crossing Digital Phase-Locked Loop with Time Delay

    OpenAIRE

    Nasir Qassim

    2005-01-01

    The input frequency limit of the conventional zero-crossing digital phase-locked loop (ZCDPLL) is due to the operating time of the digital circuitry inside the feedback loop. A solution that has been previously suggested is the introduction of a time delay in the feedback path of the loop to allow the digital circuits to complete their sample processing before the next sample is received. However, this added delay will limit the stable operation range and hence lock range of the loop. The ob...

  13. 2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line.

    Science.gov (United States)

    Réhault, Julien; Maiuri, Margherita; Manzoni, Cristian; Brida, Daniele; Helbing, Jan; Cerullo, Giulio

    2014-04-21

    We introduce a new scheme for two-dimensional IR spectroscopy in the partially collinear pump-probe geometry. Translating birefringent wedges allow generating phase-locked pump pulses with exceptional phase stability, in a simple and compact setup. A He-Ne tracking scheme permits to scan continuously the acquisition time. For a proof-of-principle demonstration we use lithium niobate, which allows operation up to 5 μm. Exploiting the inherent perpendicular polarizations of the two pump pulses, we also demonstrate signal enhancement and scattering suppression.

  14. Phase-locked solutions and their stability in the presence of propagation delays

    Indian Academy of Sciences (India)

    Gautham C Sethia; Abhijit Sen; Fatihcan M Atay

    2011-11-01

    We investigate phase-locked solutions of a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. Equilibrium relations for both synchronous and travelling wave solutions in the parameter space characterizing the nonlocality and time delay are delineated. For the synchronous states a comprehensive stability diagram is presented that provides a heuristic synchronization condition as well as an analytic relation for the marginal stability curve. The relation yields simple stability expressions in the limiting cases of local and global coupling of phase oscillators.

  15. Field Localization and Enhancement of Phase Locked Second and Third Harmonic Generation in Absorbing Semiconductor Cavities

    CERN Document Server

    Roppo, V; Raineri, F; D'Aguanno, G; Trull, J; Halioua, Y; Raj, R; Sagnes, I; Vilaseca, R; Scalora, M

    2009-01-01

    We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650nm and 433nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics become localized inside the cavity leading to relatively large conversion efficiencies. Field localization plays a pivotal role and ushers in a new class of semiconductor-based devices in the visible and UV ranges.

  16. Some effects of quantization on a noiseless phase-locked loop. [sampling phase errors

    Science.gov (United States)

    Greenhall, C. A.

    1979-01-01

    If the VCO of a phase-locked receiver is to be replaced by a digitally programmed synthesizer, the phase error signal must be sampled and quantized. Effects of quantizing after the loop filter (frequency quantization) or before (phase error quantization) are investigated. Constant Doppler or Doppler rate noiseless inputs are assumed. The main result gives the phase jitter due to frequency quantization for a Doppler-rate input. By itself, however, frequency quantization is impractical because it makes the loop dynamic range too small.

  17. Phase locking of 270-440 GHz Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Mygind, Jesper; Koshelets, V.P.; Shitov, S.V.

    1999-01-01

    External phase locking of a Josephson flux flow oscillator (FFO) to a 10 MHz reference oscillator is demonstrated experimentally in the frequency range 270-440 GHz. A linewidth as low as 1 Hz (as determined by the resolution bandwidth of the spectrum analyser) has been measured. This linewidth...... is far below the fundamental level given by shot and thermal noise of the free-running tunnel junction. The combination of narrow linewidth, wide band tunability and low noise is important for spectral radio astronomy applications....

  18. Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2007-01-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical...

  19. Toward robust phase-locking in Melibe swim central pattern generator models

    Science.gov (United States)

    Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey

    2013-12-01

    Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.

  20. Phase-Locked Loop Noise Reduction via Phase Detector Implementation for Single-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Timothy [Virginia Polytechnic Institute and State University (Virginia Tech); Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech); Burgos, Rolando [ABB; Wang, Fei [ORNL

    2011-01-01

    A crucial component of grid-connected converters is the phase-locked loop (PLL) control subsystem that tracks the grid voltage's frequency and phase angle. Therefore, accurate fast-responding PLLs for control and protection purposes are required to provide these measurements. This paper proposes a novel feedback mechanism for single-phase PLL phase detectors using the estimated phase angle. Ripple noise appearing in the estimated frequency, most commonly the second harmonic under phase-lock conditions, is reduced or eliminated without the use of low-pass filters, which can cause delays to occur and limits the overall performance of the PLL response to dynamic changes in the system. The proposed method has the capability to eliminate the noise ripple entirely and, under extreme line distortion conditions, can reduce the ripple by at least half. Other modifications implemented through frequency feedback are shown to decrease the settling time of the PLL up to 50%. Mathematical analyses with the simulated and experimental results are provided to confirm the validity of the proposed methods.

  1. Evaluation of Phase Locking and Cross Correlation Methods for Estimating the Time Lag between Brain Sites: A Simulation Approach.

    Science.gov (United States)

    Soltanzadeh, Mohammad Javad; Daliri, Mohammad Reza

    2014-01-01

    Direction and latency of electrical connectivity between different sites of brain explains brain neural functionality. We compared efficiency of cross correlation and phase locking methods in time lag estimation which are based on local field potential (LFP) and LFP-spike signals, respectively. Signals recorded from MT area of a macaque's brain was used in a simulation approach. The first signal was real brain activity and the second was identical to the first one, but with two kinds of delayed and not delayed forms. Time lag between two signals was estimated by cross correlation and phase locking methods. Both methods estimated the time lags with no errors. Phase locking was not as time efficient as correlation. In addition, phase locking suffered from temporal self bias. Correlation was a more efficient method. Phase locking was not considered as a proper method to estimate the time lags between brain sites due to time inefficiency and self bias, the problems which are reported for the first time about this method.

  2. Hidden attractors in dynamical models of phase-locked loop circuits: Limitations of simulation in MATLAB and SPICE

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.

    2017-10-01

    During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.

  3. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status-epilepticus

    Directory of Open Access Journals (Sweden)

    Rikkert eHindriks

    2013-12-01

    Full Text Available The EEG of patients in non-convulsive status epilepticus (NCSE often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.

  4. High-speed clock recovery and demodulation using short pulse sources and phase-locked loop techniques

    DEFF Research Database (Denmark)

    Zibar, Darko

    2007-01-01

    We present a modelling technique and noise analysis of a clock recovery scheme based on an optoelectronic phase-locked loop. We treat the prob- lem using techniques from stochastic processes and stochastic differential equations. A set of stochastic differential (Langevin) equations describing......-locked loop with noise at a bit-rate of 160 Gb/s. It has been shown that it is important to reduce the time delay in the loop since it results in the increased timing jitter of the recovered clock signal. We also investigate the requirement for the free-running timing jitter of the local electrical......, optoelectronic phase-locked loop based clock recovery operating at 320 Gb/s is demonstrated. Optical regenerator with clock recovery, based on an optoelectronic phase- locked loop, is also described using techniques from stochastic calculus. An analytical expression for the power spectral density of the retimed...

  5. An adaptive Phase-Locked Loop algorithm for faster fault ride through performance of interconnected renewable energy sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    of the phase-locked loop algorithm. The adaptive parameters are adjusted in real time according to the proposed fault classification unit, which permits a fast estimation of the type of the grid fault. The outstanding performance of the proposed adaptive PLL is verified through simulation and experimental......Interconnected renewable energy sources require fast and accurate fault ride through operation in order to support the power grid when faults occur. This paper proposes an adaptive Phase-Locked Loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response of the grid...

  6. Timing Performance of Phase-Locked Loops in Optical Pulse Position Modulation Communication Systems

    Science.gov (United States)

    1984-01-01

    Hill Book Company, 1968. 8. Klein, B. J. and Degnan, J. J., " Optical antenna gain. 1: Transmitting antennas," Applied Opt., vol. 13, pp. 2134-2141...September 1974. 9. Klein, B. J. and Degnan, J. J., " Optical antenna gain. 3: The effect of secondary support struts on transmitter gain," Applied Opt

  7. Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli

    CERN Document Server

    Jensen, Mogens H

    2011-01-01

    Inflammatory responses in eucaryotic cells are often associated with oscillations in the nuclear-cytoplasmic translocation of the transcription factor NF-kB. In most laboratory realizations, the oscillations are triggered by a cytokine stimulus, like the tumor necrosis factor alpha, applied as a step change to a steady level. Here we use a mathematical model to show that an oscillatory external stimulus can synchronize the NF-kB oscillations into states where the ratios of the internal to external frequency are close to rational numbers. We predict a specific response diagram of the TNF-driven NF-kB system which exhibits bands of synchronization known as "Arnold tongues". Our model also suggests that when the amplitude of the external stimulus exceeds a certain threshold there is the possibility of coexistence of multiple different synchronized states and eventually chaotic dynamics of the nuclear NF-kB concentration. This could be used as a way of externally controlling immune response, DNA repair and apopto...

  8. Moving Average Filter-Based Phase-Locked Loops: Performance Analysis and Design Guidelines

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ramezani, Malek; Guerrero, Josep M.

    2014-01-01

    The phase locked-loops (PLLs) are probably the most widely used synchronization technique in grid-connected applications. The main challenge associated with the PLLs is how to precisely and fast estimate the phase and frequency when the grid voltage is unbalanced and/or distorted. To overcome...... this challenge, incorporating moving average filter(s) (MAF) into the PLL structure has been proposed in some recent literature. A MAF is a linear-phase finite impulse response filter which can act as an ideal low-pass filter, if certain conditions hold. The main aim of this paper is to present the control...... design guidelines for a typical MAF-based PLL. The paper starts with the general description of MAFs. The main challenge associated with using the MAFs is then explained, and its possible solutions are discussed. The paper then proceeds with a brief overview of the different MAF-based PLLs. In each case...

  9. Single-Phase Phase-Locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong

    2017-01-01

    High-performance phase-locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same...... parameters. The PLL itself is realized by using the DE-based QSG. It avoids errors due to the overlap and accumulation that are present in PLLs based on integral elements, such as a PLL based on a second-order generalized integrator. Additionally, frequency feedback is not needed which allows the proposed...... PLL to achieve high performance when the grid frequency changes rapidly. This paper presents the model of the PLL and a theoretical performance analysis with respect to both the frequency-domain and time-domain behavior. The error arising from the discretization process is also compensated, ensuring...

  10. Hybrid Adaptive/Nonadaptive Delayed Signal Cancellation-Based Phase-Locked Loop

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    To improve the disturbance rejection capability of phase-locked loops (PLLs), which are undoubtedly the most common synchronization tool in power and energy applications, using different filtering techniques have been suggested in the literature. Among these filtering strategies, the delayed signal...... cancellation (DSC) operator is highly popular probably because it can be easily tailored for different grid scenarios. The DSC operator(s) can be used either as an in-loop filter in the PLL structure or as a preprocessing filter before the PLL input. The latter case is often preferred mainly because it results...... in a faster dynamic response in the extraction of grid voltage parameters. In this paper, a combination of an adaptive DSC operator with multiple nonadaptive DSC operators is suggested as the PLL preprocessing stage. To compensate for the phase and amplitude errors caused by the nonadaptive operators...

  11. Hopf bifurcation and chaos in a third-order phase-locked loop

    Science.gov (United States)

    Piqueira, José Roberto C.

    2017-01-01

    Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.

  12. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-06-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  13. Virtual unit delay for digital frequency adaptive T/4 delay phase-locked loop system

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2016-01-01

    -controller/processor with a fixed sampling rate considering the cost and complexity, where the number of unit delays that have been adopted should be an integer. For instance, in conventional digital control systems, a single-phase T/4 Delay Phase-Locked Loop (PLL) system takes 50 unit delays (i.e., in a 50-Hz system...... Delay PLL system should be done in its implementation. This process will result in performance degradation in the digital control system, as the exactly required number of delays is not realized. Hence, in this paper, a Virtual Unit Delay (VUD) has been proposed to address such challenges to the digital...... T/4 Delay PLL system. The proposed VUD adopts linear interpolation polynomial to approximate the fractional delay induced by the varying grid frequency in such a way that the control performance is enhanced. The proposed VUD has been demonstrated on a digitally controlled T/4 Delay PLL system...

  14. Theoretical Modeling and Simulation of Phase-Locked Loop (PLL) for Clock Data Recovery (CDR)

    CERN Document Server

    Ashari, Zainab

    2012-01-01

    Modern communication and computer systems require rapid (Gbps), efficient and large bandwidth data transfers. Agressive scaling of digital integrated systems allow buses and communication controller circuits to be integrated with the microprocessor on the same chip. The Peripheral Component Interconnect Express (PCIe) protocol handles all communcation between the central processing unit (CPU) and hardware devices. PCIe buses require efficient clock data recovery circuits (CDR) to recover clock signals embedded in data during transmission. This paper describes the theoretical modeling and simulation of a phase-locked loop (PLL) used in a CDR circuit. A simple PLL architecture for a 5 GHz CDR circuit is proposed and elaborated in this work. Simulations were carried out using a Hardware Description Language, Verilog- AMS. The effect of jitter on the proposed design is also simulated and evaluated in this work. It was found that the proposed design is robust against both input and VCO jitter.

  15. Extended Lock Range Zero-Crossing Digital Phase-Locked Loop with Time Delay

    Directory of Open Access Journals (Sweden)

    Nasir Qassim

    2005-01-01

    Full Text Available The input frequency limit of the conventional zero-crossing digital phase-locked loop (ZCDPLL is due to the operating time of the digital circuitry inside the feedback loop. A solution that has been previously suggested is the introduction of a time delay in the feedback path of the loop to allow the digital circuits to complete their sample processing before the next sample is received. However, this added delay will limit the stable operation range and hence lock range of the loop. The objective of this work is to extend the lock range of ZCDPLL with time delay by using a chaos control. The tendency of the loop to diverge is measured and fed back as a form of linear stabilization. The lock range extension has been confirmed through the use of a bifurcation diagram, and Lyapunov exponent.

  16. A Fractional-Order Phase-Locked Loop with Time-Delay and Its Hopf Bifurcation

    Science.gov (United States)

    Yu, Ya-Juan; Wang, Zai-Hua

    2013-11-01

    A fractional-order phase-locked loop (PLL) with a time-delay is firstly proposed on the basis of the fact that a capacitor has memory. The existence of Hopf bifurcation of the fractional-order PLL with a time-delay is investigated by studying the root location of the characteristic equation, and the bifurcated periodic solution and its stability are studied simply by using “pseudo-oscillator analysis". The results are checked by numerical simulation. It is found that the fractional-order PLL with a time-delay reduces the locking time, and it minimizes the amplitude of the bifurcated periodic solution when the order is properly chosen.

  17. Linearized broadband optical detector: study and implementation of optical phase-locked loop

    Science.gov (United States)

    Murakowski, Janusz; Schneider, Garrett J.; Schuetz, Christopher A.; Shi, Shouyuan; Prather, Dennis W.

    2013-12-01

    Optical phase-locked loop (OPLL) is used to improve the linearity of an optical link for transmission of analog signals. The finite loop delay and the presence of a low-pass filter, required for stable loop operation, lead to a nontrivial frequency response. Here, the linearity improvement in OPLL is investigated, and simple relation among the loop delay, the open-loop gain, and the loop-filter bandwidth that must be satisfied for stable operation of the OPLL is found. This relation is used to determine the fundamental limit on spur-free dynamic range (SFDR) improvement that OPLL can offer over a conventional Mach-Zehnder (MZ)-type detector.

  18. All-passive phase locking of a compact Er:fiber laser system.

    Science.gov (United States)

    Krauss, Günther; Fehrenbacher, David; Brida, Daniele; Riek, Claudius; Sell, Alexander; Huber, Rupert; Leitenstorfer, Alfred

    2011-02-15

    A passively phase-locked laser source based on compact femtosecond Er:fiber technology is introduced. The carrier-envelope offset frequency is set to zero via difference frequency generation between a soliton at a wavelength of 2 μm and a dispersive wave at 860 nm generated in the same highly nonlinear fiber. This process results in a broadband output centered at 1.55 μm. Subsequently, the 40 MHz pulse train seeds a second Er:fiber amplifier, which boosts the pulse energy up to 8 nJ at a duration of 125 fs. Excellent phase stability is demonstrated via f-to-2f spectral interferometry.

  19. Phase-locked coherent modes in a patterned metal-organic microcavity

    Science.gov (United States)

    Brückner, R.; Zakhidov, A. A.; Scholz, R.; Sudzius, M.; Hintschich, S. I.; Fröb, H.; Lyssenko, V. G.; Leo, K.

    2012-05-01

    Organic microcavities offer tantalizing prospects for studying the interactions of light and matter. For electrical excitation of these processes, electrodes must be integrated. However, the large absorption properties of metals are generally considered fatal for optical coherence. With this in mind, we embedded a thin silver grating into an organic microcavity to generate periodic arrays of localized cavity modes and metal-based Tamm plasmon polaritons. These excited states are capable of phase coupling across the grating. At room temperature and under non-resonant pumping, we selectively stimulated coherent emission from in- and out-of-phase locked arrays. We show that an absorptive metal inside an optical cavity is compatible with coherent emission. Most importantly, the inherently low residual absorption of the organic layer enables coherence to spread over macroscopic distances, even at room temperature. Our strategy of embedding metal patterns into an organic microcavity yields a viable route towards electrically driven organic solid-state lasers.

  20. Optimal space communications techniques. [all digital phase locked loop for FM demodulation

    Science.gov (United States)

    Schilling, D. L.

    1973-01-01

    The design, development, and analysis are reported of a digital phase-locked loop (DPLL) for FM demodulation and threshold extension. One of the features of the developed DPLL is its synchronous, real time operation. The sampling frequency is constant and all the required arithmetic and logic operations are performed within one sampling period, generating an output sequence which is converted to analog form and filtered. An equation relating the sampling frequency to the carrier frequency must be satisfied to guarantee proper DPLL operation. The synchronous operation enables a time-shared operation of one DPLL to demodulate several FM signals simultaneously. In order to obtain information about the DPLL performance at low input signal-to-noise ratios, a model of an input noise spike was introduced, and the DPLL equation was solved using a digital computer. The spike model was successful in finding a second order DPLL which yielded a five db threshold extension beyond that of a first order DPLL.

  1. Phase-locked arrays of vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Lear, K.L.; Gourley, P.L.; Hadley, G.R.; Vawter, G.A.; Brennan, T.M.; Hammons, B.E.; Zolper, J.C. [Sandia National Labs., Albuquerque, NM (United States); Lott, J.A. [Air Force Institute of Technology, Wright Patterson Air Force Base, OH (United States); Chalmers, S.A. [Optical Solutions, Albany, CA (United States)

    1994-04-01

    Vertical-Cavity Surface-Emitting Lasers (VCSELS) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability, and potential for low cost manufacture. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than about 5 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is formation of coupled or phase-locked two-dimensional arrays of VCSELs that are individually single-transverse mode. Such arrays have unique optical properties, not all of which are desirable. This paper covers some of the basic principles of these devices and reviews recent work on device designs, fabrication and operation. A technique for improving the far-field properties of the arrays is demonstrated and performance limitations are discussed.

  2. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  3. Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....

  4. Application of multirate digital filter banks to wideband all-digital phase-locked loops design

    Science.gov (United States)

    Sadr, Ramin; Shah, Biren; Hinedi, Sami

    1993-01-01

    A new class of architecture for all-digital phase-locked loops (DPLL's) is presented in this article. These architectures, referred to as parallel DPLL (PDPLL), employ multirate digital filter banks (DFB's) to track signals with a lower processing rate than the Nyquist rate, without reducing the input (Nyquist) bandwidth. The PDPLL basically trades complexity for hardware-processing speed by introducing parallel processing in the receiver. It is demonstrated here that the DPLL performance is identical to that of a PDPLL for both steady-state and transient behavior. A test signal with a time-varying Doppler characteristic is used to compare the performance of both the DPLL and the PDPLL.

  5. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  6. Extended Lock Range Zero-Crossing Digital Phase-Locked Loop with Time Delay

    Directory of Open Access Journals (Sweden)

    Nasir Qassim

    2005-01-01

    Full Text Available The input frequency limit of the conventional zero-crossing digital phase-locked loop (ZCDPLL is due to the operating time of the digital circuitry inside the feedback loop. A solution that has been previously suggested is the introduction of a time delay in the feedback path of the loop to allow the digital circuits to complete their sample processing before the next sample is received. However, this added delay will limit the stable operation range and hence lock range of the loop. The objective of this work is to extend the lock range of ZCDPLL with time delay by using a chaos control. The tendency of the loop to diverge is measured and fed back as a form of linear stabilization. The lock range extension has been confirmed through the use of a bifurcation diagram, and Lyapunov exponent.

  7. Development of Phase Lock Loop System for Synchronisation of a Hybrid System with the Grid

    Directory of Open Access Journals (Sweden)

    A. S. Abubakar

    2016-12-01

    Full Text Available Phase locked loop (PLL is an important part of the control unit of the grid connected power converter. The method of zero crossing detection (ZCD does not produce accurate phase information when grid is non-ideal. In this work, a synchronous reference frame (SRF PLL method to obtain accurate phase information when the grid voltages are unbalanced is proposed. The performances of the PLL have been verified for ideal and abnormal grid conditions such as unbalance, voltage sag, faults condition etc. Based on the results obtained, the developed PLL gives better fault ride when unbalances in the three phase input signals are overall handled well by the PLL system as it locks the two signal back within the first cycle. It also overcomes a phase jump after 5 milli-seconds from the time the fault was introduced and performs better tracking of the grid voltage and that of the renewable energy source.

  8. A single channel input virtual dual-phase lock-in amplifier

    Science.gov (United States)

    Gao, Zhongjian; Zheng, Hua; Li, Lianhuang; Chen, Fang; Guo, Fuyuan

    2011-11-01

    In this article, it presents a suit of single channel input virtual Dual-Phase Lock-in Amplifier (DPLIA) that is constructed by a personal computer sound card and the LabVIEW software. The virtual DPLIA is low cost and convenient to implement. The implemented DPLIA could enhance the noise tolerance capability and lower the LOD of the optical signal detection system. A primary benefit of this instrument is it only needs one input channel; two internal reference signals of the digital PLL are generated in the LabVIEW software. It is easy to control and operate, the data processing results can be saved directly to disks. This instrument will be applied in other weak signal detection systems.

  9. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail.

  10. Frequency stability optimization of an OEO using phase-locked-loop and self-injection-locking

    Science.gov (United States)

    Fu, Rongrong; Jin, Xiaofeng; Zhu, Yanhong; Jin, Xiangdong; Yu, Xianbin; Zheng, Shilie; Chi, Hao; Zhang, Xianmin

    2017-03-01

    Frequency stability optimization of an X-band optoelectronic oscillator (OEO) using the technique of phase-locked loop (PLL) and dual loop self-injection-locking (DSIL) is proposed and demonstrated. The relationship between the loop transfer characteristics of a PLL and the phase noise of the oscillation signal is analyzed. The close-in phase noise and frequency overlapping Allan deviation (ADEV) of the OEO are optimized by properly choosing the bandwidth of the loop filter of the PLL. The phase noise of the OEO is suppressed by 41.5 dB at 100 Hz offset and 21.3 dB at 10 kHz offset with PLL and DSIL. The frequency overlapping ADEV achieved 7.03×10-12 at average time of 100 s, which is several orders of magnitude better than that of the DSIL OEO and the free-running OEO, proves the high oscillation stability of proposed scheme.

  11. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    Energy Technology Data Exchange (ETDEWEB)

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1991-10-01

    A new instrument based on a constant frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonicwavevelocity in liquids and changes in ultrasonicwavevelocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques including the constant phase shifts of reflectors placed in the path of the ultrasonicwave.Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measurevelocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10{sup 7}.

  12. Constant frequency pulsed phase-locked-loop instrument for measurement of ultrasonic velocity

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1991-10-01

    A new instrument based on a constant-frequency pulsed phase-locked-loop (CFPPLL) concept has been developed to accurately measure the ultrasonic wave velocity in liquids and changes in ultrasonic wave velocity in solids and liquids. An analysis of the system shows that it is immune to many of the frequency-dependent effects that plague other techniques. Measurements of the sound velocity in ultrapure water are used to confirm the analysis. The results are in excellent agreement with values from the literature, and establish that the CFPPLL provides a reliable, accurate way to measure velocities, as well as for monitoring small changes in velocity without the sensitivity to frequency-dependent phase shifts common to other measurement systems. The estimated sensitivity to phase changes is better than a few parts in 10 to the 7th.

  13. Development of scalable frequency and power Phase-Locked Loop in 130nm CMOS technology

    CERN Document Server

    Firlej, M; Idzik, M; Moron, J; Swientek, K

    2014-01-01

    The design and measurements results of a prototype very low power Phase-Locked Loop (PLL) ASIC for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in 130 nm CMOS technology. It was designed and simulated for frequency range 10 MHz–3.5 GHz. Four division factors i.e. 6, 8, 10 and 16 were implemented in the PLL feedback loop. The main PLL block-voltage controlled oscillator (VCO) should work in 16 frequency ranges/modes, switched either manually or automatically. Preliminary measurements done in frequency range 20 MHz–1.6 GHz showed that the ASIC is functional and generates proper clock signal. The automatic VCO mode switching, one of the main design goals, was positively verified. Power consumption of around 0.6mW was measured at 1 GHz for a division factor equal to 10.

  14. Theoretical Modeling and Simulation of Phase-Locked Loop (PLL for Clock Data Recovery (CDR

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2012-01-01

    Full Text Available Modern communication and computer systems require rapid (Gbps, efficient  and large bandwidth data transfers. Agressive scaling of digital integrated systems  allow buses and communication controller circuits to be integrated with the microprocessor on the same chip. The  Peripheral Component Interconnect Express (PCIe protocol handles all communcation between the central processing unit (CPU and hardware devices. PCIe buses require efficient clock data recovery circuits (CDR to recover clock signals embedded in data during transmission. This paper describes the theoretical modeling and simulation of a phase-locked loop (PLL used in a CDR circuit. A simple PLL architecture for a 5 GHz CDR circuit is proposed  and elaborated in this work. Simulations were carried out using a Hardware Description Language, Verilog-AMS. The effect of jitter on the proposed design is also simulated and evaluated in this work. It was found that the proposed design is robust against both input and VCO jitter.ABSTRAK: Sistem komunikasi dan komputer moden memerlukan pemindahan data yang cekap (Gbps, dan bandwidth yang besar. Pengecilan agresif menggunakan teknik sistem digital bersepadu membenarkan bas dan litar pengawal komunikasi disatukan dengan  mikroprocessor dalam cip yang sama. Protokol persisian komponen sambung tara ekspres (PCIe mengendalikan semua komunikasi antara unit pemprosesan pusat (CPU dan peranti perkakasan. Bas PCIe memerlukan litar jam pemulihan data (CDR yang cekap untuk mendapatkan kembali isyarat jam yang tertanam dalam data semasa transmisi. Karya ini menerangkan teori pemodelan dan simulasi gelung fasa terkunci (PLL untuk CDR. Rekabentuk 5 GHz PLL yang mudah telah dicadangkan dalm kertas kerja ini. Simulasi telah dijalankan menggunakan perisian verilog-AMS. Simulasi mengunnakan kesan ketar dalam reka bentuk yang dicadangkan telah dinilai. Reka bentuk yang dicadangkan terbukti teguh mengatasi ganguan ketar di input dan VCO.KEY WORDS

  15. Modeling Current Transfer from PV Modules Based on Meteorological Data

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, Peter; Smith, Ryan; Kurtz, Sarah; Jordan, Dirk; Wohlgemuth, John

    2016-11-21

    Current transferred from the active cell circuit to ground in modules undergoing potential-induced degradation (PID) stress is analyzed with respect to meteorological data. Duration and coulombs transferred as a function of whether the module is wet (from dew or rain) or the extent of uncondensed surface humidity are quantified based on meteorological indicators. With this, functions predicting the mode and rate of coulomb transfer are developed for use in estimating the relative PID stress associated with temperature, moisture, and system voltage in any climate. Current transfer in a framed crystalline silicon module is relatively high when there is no condensed water on the module, whereas current transfer in a thin-film module held by edge clips is not, and displays a greater fraction of coulombs transferred when wet compared to the framed module in the natural environment.

  16. Research on 1 kW Single-Phase Photovoltaic Grid-Connected Phase-Locked Technology Based on DSP%基于DSP的1 kW单相光伏并网锁相技术的研究

    Institute of Scientific and Technical Information of China (English)

    许军; 郑绍陆; 唐传鋆; 耿力

    2014-01-01

    As to the problem,PV( Photo-Voltage) grid-connected distributed power supply system's phase locking, this paper proposes a photovoltaic grid-connected system's digital phase-locked algorithm and program flow design based on DSP. According to the relationship between the period and phase of the cycle of adjustment,the control cycle and phase locking are realized. By this method,conveniently the grid voltage and PV power generation output current signal and the objectives of signal capture and phase-locked are realized. Finally,implement of the prototype and the experimental results proved that the method is accurate. The design ensures PLL method accuracy,reliability and practicability of the PV grid-connected system.%针对光伏分布式电源并网系统锁相技术的问题,采用了一种基于DSP的光伏并网系统的数字锁相算法和程序流程设计,根据周期和相位的关系,通过调整周期来实现周期和相位的控制和锁定,方便地实现了对电网电压和光伏发电输出电流信号捕获和锁相的目的。最后制作样机并通过实验证明,该锁相方法设计准确,锁相精度高,保证了光伏并网系统的可靠性和实用性。

  17. Amplitude and phase noises of a spin-transfer nano-oscillator synchronized by a phase-lock loop

    Science.gov (United States)

    Mitrofanov, A. A.; Safin, A. R.; Udalov, N. N.

    2015-08-01

    We have studied the amplitude and phase noises of a spin-transfer nano-oscillator (STNO) with a phase synchronization system (phase-lock loop, PLL). Spectral characteristics of the amplitude and phase noises of the isochronous and nonisochronous STNO are obtained and compared to the analogous characteristics of an autonomous (nonsynchronized) oscillator. The PLL bandwidth is determined.

  18. Influence of voltage rise time on phase locking by priming effect in weakly resonant relativistic backward wave oscillators

    Science.gov (United States)

    Yang, Dewen; Deng, Yuqun; Teng, Yan; Shi, Yanchao; Wu, Ping; Chen, Changhua

    2017-05-01

    Phase locking is the key point of coherent power combination, which is very important for the development of high power microwave sources. In this paper, theoretical analysis and particle-in-cell simulations investigate the influence of the diode voltage rise time on phase locking by the priming effect in a weakly resonant relativistic backward wave oscillator (RBWO). When the diode voltage rise time becomes long and the final output frequency remains unchanged, the initial operation frequency may fluctuate around a value which is not equal to the final output frequency. Moreover, this state may last for several nanoseconds and then jumps to the final output frequency, which is very important for phase locking. Besides, it is suggested that, due to the weak resonance of the RF cavity without the electron beam, the microwave signal with frequency which is much lower than the final output frequency is usually excited at the beginning of the starting process. Finally, it is found that, when the injected frequency approaches the frequency of the initial microwave signal, the phase locking by the priming effect in the RBWO with long voltage rise time is noticeably improved, and the starting process becomes more rapid as well. The simulation results agree well with theoretical analysis.

  19. Phase locked 270-440 GHz local oscillator based on flux flow in long Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Shitov, S.V.; Filippenko, L.V.;

    2000-01-01

    The combination of narrow linewidth and wide band tunability makes the Josephson flux flow oscillator (FFO) a perfect on-chip local oscillator for integrated sub-mm wave receivers for, e.g., spectral radio astronomy. The feasibility of phase locking the FFO to an external reference oscillator is ...

  20. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    NARCIS (Netherlands)

    Ragni, D.; Van Oudheusden, B.W.; Scarano, F.

    2011-01-01

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes pe

  1. Current limiting remote power control module

    Science.gov (United States)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  2. A low-power 802.11 AD compatible 60-GHz phase-locked loop in 65-NM CMOS

    KAUST Repository

    Cheema, Hammad M.

    2015-01-23

    A 60-GHz fundamental frequency phase locked loop (PLL) as part of a highly integrated system-on-chip transmitter with onchip memory and antenna is presented. As a result of localized optimization approach for each component, the PLL core components only consume 30.2 mW from a 1.2 V supply. A systematic design procedure to achieve high phase margin and wide locking range is presented. The reduction of parasitic and fixed capacitance contributions in the voltage controlled oscillator enables the coverage of the complete 802.11 ad frequency band from 57.2 to 65.8 GHz. A new 4-stage distribution network supplying the local oscillator (LO) signal to the mixer, the feedback loop and the external equipment is introduced. The prescaler based on the static frequency division approach is enhanced using shunt-peaking and asymmetric capacitive loading. The current mode logic based divider chain is optimized for low power and minimum silicon foot-print. A dead-zone free phase frequency detector, low leakage charge pump, and an integrated second-order passive filter completes the feedback loop. The PLL implemented in 65 nm CMOS process occupies only 0.6 mm2 of chip space and has a measured locking range from 56.8 to 66.5 GHz. The reference spurs are lower than -40 dBc and the in-band and out-of-band phase noise is -88.12 dBc/Hz and -117 dBc/Hz, respectively.

  3. Low Power Phase Locked Loop Frequency Synthesizer for 2.4 GHz Band Zigbee

    Directory of Open Access Journals (Sweden)

    Nesreen M.H. Ismail

    2009-01-01

    Full Text Available Problem statement: Wireless communication systems are required for many applications. There are different standards for these systems. IEEE 802.15.4 defines the communication system standard for zigbee. This study discussed designing one of the blocks of zigbee transceiver which is the Phase Locked Loop (PLL. A major target for any communication systems is saving battery power, especially for zigbee as it is meant to be a low cost communication system. Phase Locked Loop is responsible on carrier frequency selection in a communication system. It is the most power consumer block in the transceiver as well. The objective of this study was designing a low power fully integrated integer-N PLL frequency synthesizer targeting the 2.4 GHz band IEEE 802.15.4 Std zigbee. Approach: Minimizing total power consumption of PLL was achieved by introducing a novel design of Phase Frequency Detector (PFD and modifying the rest of the PLL blocks. The proposed PFD uses only 12 transistors and it preserved the main characteristics of the conventional PFD with a simple architecture. The Charge Pump (CP was single-ended source switch to save power and minimize mismatches. The Voltage Controlled Oscillator (VCO spans from 4.737-4.977 GHz band using LC resonator. The VCO worked at double the frequency band to avoid local oscillator leakage and feed through. The integer N divider used a 15/16 dual modulus. Results: The proposed PLL was designed using Silterra 0.18 um CMOS process. It consumed 3.2 mW with 1.8 voltage supply. Phase noise is-113.4 dBc Hz-1 at 1 MHz. The proposed PFD works up to 2.5 GHz with free dead zone. The Charge Pump (CP works with 20 uA. lock-in time is 25 us and total die area is 1×2 mm. All results were taken from extracted layout simulations. Conclusion: The results of this study indicated that a PLL can work with less power consumption and save the transceiver battery. The proposed PFD was suitable for high speed applications.

  4. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator.

    Science.gov (United States)

    Servin, M; Malacara, D; Rodriguez-Vera, R

    1994-05-01

    A recently developed technique for continuous-phase determination of interferograms with a digital phase-locked loop (PLL) is applied to the null testing of aspheres. Although this PLL demodulating scheme is also a synchronous or direct interferometric technique, the separate unwrapping process is not explicitly required. The unwrapping and the phase-detection processes are achieved simultaneously within the PLL. The proposed method uses a computer-generated holographic compensator. The holographic compensator does not need to be printed out by any means; it is calculated and used from the computer. This computer-stored compensator is used as the reference signal to phase demodulate a sample interferogram obtained from the asphere being tested. Consequently the demodulated phase contains information about the wave-front departures from the ideal computer-stored aspheric interferogram. Wave-front differences of ~ 1 λ are handled easily by the proposed PLL scheme. The maximum recorded frequency in the template's interferogram as well as in the sampled interferogram are assumed to be below the Nyquist frequency.

  5. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    Science.gov (United States)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  6. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    Science.gov (United States)

    Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.

    2017-05-01

    Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  7. An Efficient Phase-Locked Loop for Distorted Three-Phase Systems

    Directory of Open Access Journals (Sweden)

    Yijia Cao

    2017-02-01

    Full Text Available This paper proposed an efficient phase-locked loop (PLL that features zero steady-state error of phase and frequency under voltage sag, phase jump, harmonics, DC offsets and step-and ramp-changed frequency. The PLL includes the sliding Goertzel discrete Fourier transform (SGDFT filter-based fundamental positive sequence component separator (FPSCS, the synchronousreference-frame PLL (SRF-PLL and the secondary control path (SCP. In order to obtain an accurate fundamental positive sequence component, SGDFT filter is introduced as it features better filtering ability at the frequencies that are integer times of fundamental frequency. Meanwhile, the second order Lagrange-interpolation method is employed to approximate the actual sampling number including both integer and fractional parts as grid frequency may deviate from the rated value. Moreover, an improved SCP with single-step comparison filtering algorithm is employed as it updates reference angular frequency according to the FPSC, which promises a zero steady-state error of phase and improves the frequency tracking speed. In this paper, the mathematical model of the proposed PLL is constructed, its stability is analyzed. Also, design procedure of the control parameters is presented. The effectiveness of the proposed PLL is confirmed by experimental results and comparison with advanced pre-filtering PLLs.

  8. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    Directory of Open Access Journals (Sweden)

    Martin Kreissig

    2017-05-01

    Full Text Available Spin-torque nano-oscillators (STO are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL based on custom integrated circuits (ICs and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  9. A Phase-Locked Loop with 30% Jitter Reduction Using Separate Regulators

    Directory of Open Access Journals (Sweden)

    Tzung-Je Lee

    2008-01-01

    Full Text Available A phase-locked loop (PLL using separate regulators to reject the supply noise is proposed in this paper. Two regulators, REG1 and REG2, are used to prevent the supply noise from the charge pump (CP and the voltage-controlled oscillator (VCO, respectively. By using separate regulators, the area and the power consumption of the regulator can be reduced. Moreover, the jitter of the proposed PLL is proven on silicon to be less sensitive to the supply noise. The proposed PLL is fabricated using a typical 0.35 μm 2P4M CMOS process. The peak-to-peak jitter (P2P jitter of the proposed PLL is measured to be 81.8 ps at 80 MHz when a 250 mVrms supply noise is added. By contrast, the P2P jitter is measured to be 118.2 ps without the two regulators when the same supply noise is coupled.

  10. Phase Noise Analysis of Clock Recovery Based on an Optoelectronic Phase-Locked Loop

    Science.gov (United States)

    Zibar, Darko; Mørk, Jesper; Katsuo Oxenløwe, Leif; Clausen, Anders T.

    2007-03-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser employed in the loop. The effects of loop time delay and the laser transfer function are included in the stochastic differential equations describing the system, and a detailed timing jitter analysis of this type of optoelectronic CR for high-speed optical-time-division-multiplexing systems is performed. It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the VCO are more relaxed for the extracted optical clock (lasers's output) signal.

  11. Controlling the phase locking of stochastic magnetic bits for ultra-low power computation

    Science.gov (United States)

    Mizrahi, Alice; Locatelli, Nicolas; Lebrun, Romain; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Querlioz, Damien; Grollier, Julie

    2016-07-01

    When fabricating magnetic memories, one of the main challenges is to maintain the bit stability while downscaling. Indeed, for magnetic volumes of a few thousand nm3, the energy barrier between magnetic configurations becomes comparable to the thermal energy at room temperature. Then, switches of the magnetization spontaneously occur. These volatile, superparamagnetic nanomagnets are generally considered useless. But what if we could use them as low power computational building blocks? Remarkably, they can oscillate without the need of any external dc drive, and despite their stochastic nature, they can beat in unison with an external periodic signal. Here we show that the phase locking of superparamagnetic tunnel junctions can be induced and suppressed by electrical noise injection. We develop a comprehensive model giving the conditions for synchronization, and predict that it can be achieved with a total energy cost lower than 10‑13 J. Our results open the path to ultra-low power computation based on the controlled synchronization of oscillators.

  12. Ultrasound array transmitter architecture with high timing resolution using embedded phase-locked loops.

    Science.gov (United States)

    Smith, Peter R; Cowell, David M J; Raiton, Benjamin; Ky, Chau Vo; Freear, Steven

    2012-01-01

    Coarse time quantization of delay profiles within ultrasound array systems can produce undesirable side lobes in the radiated beam profile. The severity of these side lobes is dependent upon the magnitude of phase quantization error--the deviation from ideal delay profiles to the achievable quantized case. This paper describes a method to improve interchannel delay accuracy without increasing system clock frequency by utilizing embedded phase-locked loop (PLL) components within commercial field-programmable gate arrays (FPGAs). Precise delays are achieved by shifting the relative phases of embedded PLL output clocks in 208-ps steps. The described architecture can achieve the necessary interelement timing resolution required for driving ultrasound arrays up to 50 MHz. The applicability of the proposed method at higher frequencies is demonstrated by extrapolating experimental results obtained using a 5-MHz array transducer. Results indicate an increase in transmit dynamic range (TDR) when using accurate delay profiles generated by the embedded-PLL method described, as opposed to using delay profiles quantized to the system clock.

  13. A Low-Power Digitally Controlled Oscillator for All Digital Phase-Locked Loops

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2010-01-01

    Full Text Available A low-power and low-jitter 12-bit CMOS digitally controlled oscillator (DCO design is presented. The Low-Power CMOS DCO is designed based on the ring oscillator implemented with Schmitt trigger inverters. The proposed DCO circuit uses control codes of thermometer type to reduce jitters. Performance of the DCO is verified through a novel All Digital Phase-Locked Loop (ADPLL designed with a unique lock-in process by employing a time-to-digital converter, where both the frequency of the reference clock and the delay between DCO_output and DCO_clock is measured. A carefully designed reset process reduces the phase acquisition process to two cycles. The ADPLL was implemented using the 32 nm Predictive Technology Model (PTM at 0.9 V supply voltage, and the simulation results show that the proposed ADPLL achieves 10 and 2 reference cycles of frequency and phase acquisitions, respectively, at 700 MHz with less than 67 ps peak-to-peak jitter. The DCO consumes 2.2 mW at 650 MHz with 0.9 V power supply.

  14. Network of phase-locking oscillators and a possible model for neural synchronization

    Science.gov (United States)

    Piqueira, José Roberto C.

    2011-09-01

    In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state.

  15. Phase-locking of commercial DFB lasers for distributed optical fiber sensing applications

    Science.gov (United States)

    Rouse, Chris D.; Brown, Anthony W.; Wylie, Michael T. V.; Colpitts, Bruce G.

    2011-05-01

    The design of a phase/frequency detector-based optical phase-locked loop (PFD-OPLL) capable of locking two commercial semiconductor distributed feedback (DFB) lasers for the purpose of making Brillouin Optical Time-Domain Analysis (BOTDA) measurements is presented. Due to the aperiodic nature of the PFD transfer characteristic, the PFDOPLL offers strong acquisition performance without requiring additional acquisition hardware. Design constraints due to laser linewidths are relaxed by choosing a damping factor of 3.5 instead of 0.707. Loop stability is ensured by reducing the loop propagation delay by as much as possible in hardware, and choosing the loop natural frequency such that the loop bandwidth is below the FM phase reversal frequency of the laser. Results show stable lock performance at 11 GHz with a phase noise of -70dBc/Hz at a 100 Hz offset, a capture range of 2.5 GHz and a tuning range of 3.3 GHz. These specifications exceed the performance requirements of a BOTDA system.

  16. Progress toward a general grating patterning technology using phase-locked scanning beams

    Science.gov (United States)

    Schattenburg, Mark L.; Chen, Carl G.; Heilmann, Ralf K.; Konkola, Paul T.; Pati, G. S.

    2002-01-01

    The fabrication of large high-quality diffraction gratings remains one of the most challenging tasks in optical fabrication. Traditional direct-write methods, such as diamond ruling or electron-beam lithography, can be extremely slow and result in gratings with undesired phase errors. Holographic methods, while generally resulting in gratings with smoother phase, frequently require large aspheres and lengthy optical setup in order to achieve desired period chirps. In this paper we describe a novel interference lithography method called scanning-beam interference lithography (SBIL) that utilizes small phase-locked scanning beams to write general periodic patterns onto large substrates. Small mutually coherent beams are phase controlled by high-bandwidth electro-optic components and caused to overlap and interfere, generating a small grating image. The image is raster-scanned over the substrate by use of a high-precision interferometer-controlled air bearing stage, resulting in large grating patterns. We will describe a prototype system in our laboratory designed to write gratings with extremely low phase distortion. The system is being generalized to pattern gratings with arbitrary period progressions (chirps). This technology, with extensions, will allow the rapid, low cost patterning of high-fidelity periodic patterns of arbitrary geometry on large substrates that could be of great interest to astronomers.

  17. A low-phase-noise 18 GHz Kerr frequency microcomb phase-locked over 65 THz

    CERN Document Server

    Huang, S -W; Zhou, H; Yu, M; Kwong, D -L; Wong, C W

    2015-01-01

    Laser frequency combs are coherent light sources that simultaneously provide pristine frequency spacings for precision metrology and the fundamental basis for ultrafast and attosecond sciences. Recently, nonlinear parametric conversion in high-Q microresonators has been suggested as an alternative platform for optical frequency combs, though almost all in 100 GHz frequencies or more. Here we report a low-phase-noise on-chip Kerr frequency comb with mode spacing compatible with high-speed silicon optoelectronics. The waveguide cross-section of the silicon nitride spiral resonator is designed to possess small and flattened group velocity dispersion, so that the Kerr frequency comb contains a record-high number of 3,600 phase-locked comb lines. We study the single-sideband phase noise as well as the long-term frequency stability and report the lowest phase noise floor achieved to date with -130 dBc/Hz at 1 MHz offset for the 18 GHz Kerr comb oscillator, along with feedback stabilization to achieve frequency Alla...

  18. Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation.

    Directory of Open Access Journals (Sweden)

    Tom A de Graaf

    Full Text Available Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz, known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1 has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz, and 2 leads to alpha-band oscillations in visual performance measures, that 3 correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles.

  19. Phase-locked arrays of vertical-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Hadley, G.R.; Lear, K.L.; Gourley, P.L.; Vawter, G.A.; Zolper, J.C.; Brennan, T.M.; Hammons, B.E.

    1994-05-01

    Vertical Cavity Surface-Emitting Lasers (VCSELs) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability and potential for low cost. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than 10-15 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is to form coupled or phase-locked, two-dimensional arrays of VCSELs that are individually single-transverse mode. The authors have fabricated and characterized both photopumped and electrically injected two-dimensional VCSEL arrays with apertures over 100 microns wide. Their work has led to an increased understanding of these devices and they have developed new types of devices, including hybrid semiconductor/dielectric mirror VCSEL arrays, VCSEL arrays with etched trench, self-aligned, gold grid contacts and arrays with integrated phase-shifters to correct the far-field pattern.

  20. Performance improvement of all digital phase-locked loop with adaptive multilevel-quantized phase comparator

    Science.gov (United States)

    Nakajima, Osamu; Hikawa, Hiroomi; Mori, Shinsaku

    1989-03-01

    A new type of phase comparator for DPLL (Digital Phase-Locked Loop), named Adaptive Multilevel-Quantized Phase Comparator (abbreviated as AMPC), is proposed. The characteristics of this proposed comparator AMPC are changed adaptively to reduce the frequency deviation and the phase jitter of the input signals, whereas the conventional phase comparator has constant characteristics whatever signals come. When the offset between input and output signal frequency exists, the amount of frequency control is increased by shifting up or down its chracteristics in order to decrease this deviation. When the loop is in the steady-state, the amount of phase control is decreased by varying the scale of them to suppress the input jitter. Performance characteristics of AMPC and the loop which uses AMPC are analyzed theoretically and verified by computer simulation. As a result, the loop which uses AMPC has much wider locking-range and much better jitter suppression effect than those of the conventional loops, and steady-state phase error is also reduced by using AMPC.

  1. Design of Low Power Phase Locked Loop (PLL Using 45NM VLSI Technology

    Directory of Open Access Journals (Sweden)

    Ms. Ujwala A. Belorkar

    2010-06-01

    Full Text Available Power has become one of the most important paradigms of design convergence for multigigahertz communication systems such as optical data links, wireless products, microprocessor &ASIC/SOC designs. POWER consumption has become a bottleneck in microprocessor design. The coreof a microprocessor, which includes the largest power density on the microprocessor. In an effort toreduce the power consumption of the circuit, the supply voltage can be reduced leading to reduction ofdynamic and static power consumption. Lowering the supply voltage, however, also reduces theperformance of the circuit, which is usually unacceptable. One way to overcome this limitation, availablein some application domains, is to replicate the circuit block whose supply voltage is being reduced inorder to maintain the same throughput .This paper introduces a design aspects for low power phaselocked loop using VLSI technology. This phase locked loop is designed using latest 45nm processtechnology parameters, which in turn offers high speed performance at low power. The main noveltyrelated to the 45nm technology such as the high-k gate oxide ,metal-gate and very low-k interconnectdielectric described. VLSI Technology includes process design, trends, chip fabrication, real circuitparameters, circuit design, electrical characteristics, configuration building blocks, switching circuitry,translation onto silicon, CAD, practical experience in layout design

  2. Ratchet Effects, Negative Mobility, and Phase Locking for Skyrmions on Periodic Substrates

    Science.gov (United States)

    Reichhardt, Charles; Ray, Dipanjan; Olson Reichhardt, Cynthia

    We examine the dynamics of skyrmions interacting with 1D and 2D periodic substrates in the presence of dc and ac drives. We find that the Magnus term strongly affects the skyrmion dynamics and that new kinds of phenomena can occur which are absent for overdamped ac and dc driven particles interacting with similar substrates. We show that it is possible to realize a Magnus induced ratchet for skyrmions interacting with an asymmetric potential, where the application of an ac drive can produce quantized dc motion of the skyrmions even when the ac force is perpendicular to the substrate asymmetry direction. For symmetric substrates it is also possible to achieve a negative mobility effect where the net skyrmion motion runs counter to an applied dc drive. Here, as a function of increasing dc drive, the velocity-force curves show a series of locking phases that have different features from the classic Shapiro steps found in overdamped systems. In the phase locking and ratcheting states, the skyrmions undergo intricate 2D orbits induced by the Magnus term.

  3. A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop

    Institute of Scientific and Technical Information of China (English)

    Wang Yu-Tian; Wang Dong-Sheng; Ge Wen-Qian; Cui Li-Chao

    2006-01-01

    A sapphire fibre thermal probe with Cra+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform(FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.

  4. The application of phase-locked loop in the microcomputer protection%锁相环在微机保护中的应用

    Institute of Scientific and Technical Information of China (English)

    朱海涛; 黄新波; 赵阳; 遵明伟; 石杰

    2014-01-01

    To the traditional sampling method of microcomputer protection , because of sampling frequency is hard to automatic tracking the measured frequency and as the changing of the measured frequency and change, will inevitably lead to the error of FFT computation .Synchronous sampling phase-locked loop technology which is adopted by this paper is to lock the frequency of alternating voltage, current signal of the microcomputer protection device, in order to improve the measurement accuracy and real-time properties. Combining with the experiments of phase-locked loop to control AD7656 modulus conversion chip , proving the feasibility of the integral period sampling synchronization in microcomputer protection device, and solving the problem of poor real-time properties, software compling complex and so on.%针对微机保护中采用传统的采样方法,采样频率难以自动跟踪被测量的频率变化而发生变化,必然会导致FFT运算产生误差。本文采用锁相环同步采样技术实现对微机保护装置中交流电压、电流信号的频率和相位进行锁定,以提高测量精度和实时性。结合锁相环控制AD7656模数转换芯片的实验,证明整周期同步采样在微机保护装置中的可行性,解决了软件同步采样的实时性差、软件编写复杂等问题。

  5. Low-voltage switched-current delta-sigma modulator

    Science.gov (United States)

    Tan, Nianxiong; Eriksson, Sven

    1995-05-01

    This paper presents the design of a fully differential switched-current delta-sigma modulator using a single 3.3-V power-supply voltage. At system level, we tailor the modulator structure considering the similarity and difference of switched-capacitor and switched-current realizations. At circuit level, we propose a new switched-current memory cell and integrator with improved common mode feedback, without which low power-supply-voltage operation would not be possible. The whole modulator was implemented in a 0.8- micron double-metal digital CMOS process. It occupies an active area of 0.53 x 0.48 mm(sup 2) and consumes a current of 0.6 mA from a single 3.3-V power supply. The measured dynamic range is over 10 b.

  6. A Voltage Controlled Oscillator for a Phase-Locked Loop Frequency Synthesizer in a Silicon-on-Sapphire Process

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, Sean [Univ. of Missouri, Rolla, MO (United States)

    2009-05-21

    Engineers from a government-owned engineering and manufacturing facility were contracted by government-owned research laboratory to design and build an S-band telemetry transmitter using Radio Frequency Integrated Circuit (RFIC) technology packaged in a Low-Temperature Co-fired Ceramic (LTCC) Multi-Chip Module. The integrated circuit technology chosen for the Phase-Locked Loop Frequency Synthesizer portion of the telemetry transmitter was a 0.25 um CMOS process that utilizes a sapphire substrate and is fabricated by Peregrine Semiconductor corporation. This thesis work details the design of the Voltage Controlled Oscillator (VCO) portion of the PLL frequency synthesizer and constitutes an fully integrated VCO core circuit and a high-isolation buffer amplifier. The high-isolation buffer amplifier was designed to provide 16 dB of gain for 2200-3495 MHz as well as 60 dB of isolation for the oscillator core to provide immunity to frequency pulling due to RF load mismatch. Actual measurements of the amplifier gain and isolation showed the gain was approximately 5 dB lower than the simulated gain when all bond-wire and test substrate parasitics were taken into account. The isolation measurements were shown to be 28 dB at the high end of the frequency band but the measurement was more than likely compromised due to the aforementioned bond-wire and test substrate parasitics. The S-band oscillator discussed in this work was designed to operate over a frequency range of 2200 to 2300 MHz with a minimum output power of 0 dBm with a phase-noise of -92 dBc/Hz at a 100 kHz offset from the carrier. The tuning range was measured to be from 2215 MHz to 2330 MHz with a minimum output power of -7 dBm over the measured frequency range. A phase-noise of -90 dBc was measured at a 100 kHz offset from the carrier.

  7. 基于数字锁相环的储能逆变器并网功率控制方法%Control of grid-connected power for energy storage inverters based on digital phase-locked loop

    Institute of Scientific and Technical Information of China (English)

    孙钦斐; 杨仁刚; 周献飞; 王文成; 何恩超; 侯元文

    2013-01-01

    Micro-grid has been becoming a focus all over the world because of its advantages. Usually, energy storage unit plays an important role and battery storage inverter is an integral part as a result. While a micro-grid running in grid-connected mode, it’s necessary to control the power at the point where the inverter joined to the grid. So far, there are two main kinds of strategies for the grid-connected power control:(1) closed-loop control for active and reactive power respectively;(2) closed-loop control for the active and reactive component of the grid-connected current. These methods require calculation of the active and reactive power or active and reactive component before closed-loop control. And the calculation usually is very complex, which lead to slow response. In grid-connected mode, the voltage of the storage inverter will be clamped by the grid. It means the power will be determined by the grid-connected current. As a result, the power can be controlled by indirect control of the grid-connected current. With the background mentioned above, a new strategy of power control for single phase battery storage inverter, based on advanced phase-locked loop, was proposed in this paper. The phase angle and RMS value of the current was used to control the active and reactive power instead of common methods, which use direct power feedback control strategy in this method. Comparatively, this strategy could accelerate the response without complex calculation. The detailed theoretical analysis for the strategy was presented in the paper. Firstly, an introduction for an advanced phase-locked loop method was given this paper. This method could lock the voltage on the grid, which will be the premise for the power control. Then, the detailed step getting the reference phase angle and RMS value of the current was introduced. With this strategy presented, it can control the active and reactive power at the interface of the inverter accurately. As a result, the

  8. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Bruun, Marlene

    1992-01-01

    of a microwave reference source close to carrier with a noise level of -125 dBc/Hz. The total phase variance of the locked carrier is 0.04 rad2 and carriers can be generated in a continuous range from 3 to 18 GHz. The loop reliability is excellent with an average time to cycle slip of 1011 s and an acquisition......Experimental results of a wideband heterodyne second-order optical phase-locked loop with 1.5-μm semiconductor lasers are presented. The loop has a bandwidth of 180 MHz, a gain of 181 dBHz, and a propagation delay of only 400 ps. A beat signal of 8 MHz linewidth is phase locked to become a replica...

  9. Phase-locking and chaos in a silent Hodgkin-Huxley neuron exposed to sinusoidal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Che Yanqiu [School of Electrical Engineering and Automation, Tianjin University, 300072 (China); Wang Jiang [School of Electrical Engineering and Automation, Tianjin University, 300072 (China)], E-mail: jiangwang@tju.edu.cn; Si Wenjie; Fei Xiangyang [School of Electrical Engineering and Automation, Tianjin University, 300072 (China)

    2009-01-15

    Neuronal firing patterns are related to the information processing in neural system. This paper investigates the response characteristics of a silent Hodgkin-Huxley neuron to the stimulation of externally-applied sinusoidal electric field. The neuron exhibits both p:q phase-locked (i.e. a periodic oscillation defined as p action potentials generated by q cycle stimulations) and chaotic behaviors, depending on the values of stimulus frequencies and amplitudes. In one-parameter space, a rich bifurcation structure including period-adding without chaos and phase-locking alternated with chaos suggests frequency discrimination of the neuronal firing patterns. Furthermore, by mapping out Arnold tongues, we partition the amplitude-frequency parameter space in terms of the qualitative behaviors of the neuron. Thus the neuron's information (firing patterns) encodes the stimulus information (amplitude and frequency), and vice versa.

  10. Intensity modulated short circuit current spectroscopy for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kavasoglu, Nese; Sertap Kavasoglu, A.; Birgi, Ozcan; Oktik, Sener [Mugla University, Faculty of Arts and Sciences, Physics Department, TR-48000 Mugla (Turkey); Mugla University Clean Energy Research and Development Centre, TR-48000 Mugla (Turkey)

    2011-02-15

    Understanding charge separation and transport is momentously important for the rectification of solar cell performance. To probe photo-generated carrier dynamics, we implemented intensity modulated short circuit current spectroscopy (IMSCCS) on porous Si and Cu(In{sub x},Ga{sub 1-x})Se{sub 2} solar cells. In this experiment, the solar cells were lightened with sinusoidally modulated monochromatic light. The photocurrent response of the solar cell as a function of modulation frequency is measured as the optoelectronic transfer function of the system. The optoelectronic transfer function introduces the connection between the modulated light intensity and measured AC current of the solar cell. In this study, interaction of free carriers with the density of states of the porous Si and Cu(In{sub x}, Ga{sub 1-x})Se{sub 2} solar cells was studied on the basis of charge transport time by IMSCCS data. (author)

  11. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao

    2015-01-01

    phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system...... and distorted system voltage the proposed PLL can accurately detect the fundamental positive-sequence component of grid voltage thus accurate control of DC micro-grid voltage can be realized....

  12. Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider

    CERN Document Server

    Suhaimi, Nurul Sheeda; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng Lei; Katsuragawa, Masayuki

    2015-01-01

    We report the generation of five phase-locked harmonics, f_1: 2403 nm, f_2: 1201 nm, f_3: 801 nm, f_4: 600 nm, and f_5: 480 nm with an exact frequency ratio of 1 : 2 : 3 : 4 : 5 by implementing a divide-by-three optical-frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.

  13. Novelty-Induced Phase-Locked Firing to Slow Gamma Oscillations in the Hippocampus: Requirement of Synaptic Plasticity.

    Science.gov (United States)

    Kitanishi, Takuma; Ujita, Sakiko; Fallahnezhad, Mehdi; Kitanishi, Naomi; Ikegaya, Yuji; Tashiro, Ayumu

    2015-06-03

    Temporally precise neuronal firing phase-locked to gamma oscillations is thought to mediate the dynamic interaction of neuronal populations, which is essential for information processing underlying higher-order functions such as learning and memory. However, the cellular mechanisms determining phase locking remain unclear. By devising a virus-mediated approach to perform multi-tetrode recording from genetically manipulated neurons, we demonstrated that synaptic plasticity dependent on the GluR1 subunit of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptor mediates two dynamic changes in neuronal firing in the hippocampal CA1 area during novel experiences: the establishment of phase-locked firing to slow gamma oscillations and the rapid formation of the spatial firing pattern of place cells. The results suggest a series of events potentially underlying the acquisition of new spatial information: slow gamma oscillations, originating from the CA3 area, induce the two GluR1-dependent changes of CA1 neuronal firing, which in turn determine information flow in the hippocampal-entorhinal system.

  14. Area Efficient 3.3GHZ Phase Locked Loop with Four Multiple Output Using 45NM VLSI Technology

    Directory of Open Access Journals (Sweden)

    Ms. Ujwala A. Belorkar

    2011-03-01

    Full Text Available This paper present area efficient layout designs for 3.3GigaHertz (GHz Phase Locked loop (PLL withfour multiple output. Effort has been taken to design Low Power Phase locked loop with multiple output,using VLSI technology. VLSI Technology includes process design, trends, chip fabrication, real circuitparameters, circuit design, electrical characteristics, configuration building blocks, switching circuitry,translation onto silicon, CAD and practical experience in layout design. The proposed PLL is designedusing 45 nm CMOS/VLSI technology with microwind 3.1. This software allows designing and simulatingan integrated circuit at physical description level. The main novelties related to the 45 nm technology arethe high-k gate oxide, metal gate and very low-k interconnect dielectric. The effective gate lengthrequired for 45 nm technology is 25nm. Low Power (0.211miliwatt phase locked loop with four multipleoutputs as PLL8x, PLL4x, PLL2x, & PLL1x of 3.3 GHz, 1.65 GHz, 0.825 GHz, and 0.412 GHzrespectively is obtained using 45 nm VLSI technology.

  15. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity

    Science.gov (United States)

    Yost, William T.; Cantrell, John H.; Kushnick, Peter W.

    1992-03-01

    A new instrument based on a constant frequency pulse phase-locked loop concept has been developed to accurately measure the ultrasonic phase velocity in condensed matter. Measurements of the sound velocity in ultrapure water are reported in which both damped and undamped transducers are used with the instrument together with reflectors of various thicknesses placed in the sound propagation path. An analysis of measurements made with the new instrument and similar measurements, taken under identical experimental conditions, using a popular variable frequency pulsed-phase-locked loop instrument is reported. Uncertainties in both measurement systems are analyzed and discussed. A method for measuring inherent phase shifts, not addressed by previous investigations, within the variable frequency pulsed phase-locked loop system and a derivation of the equations that govern the overall use of variable frequency systems using phase-sensitive comparisons are presented. The effects of a finite pulse length on the measurements of phase velocity in dispersive media are addressed in detail.

  16. Fundamental aspects of pulse phase-locked loop technology-based methods for measurement of ultrasonic velocity

    Energy Technology Data Exchange (ETDEWEB)

    Yost, William T; Cantrell, John H; Kushnick, Peter W

    1992-03-01

    A new instrument based on a constant frequency pulse phase-locked loop concept has been developed to accurately measure the ultrasonic phase velocity in condensed matter. Measurements of the sound velocity in ultrapure water are reported in which both damped and undamped transducers are used with the instrument together with reflectors of various thicknesses placed in the sound propagation path. An analysis of measurements made with the new instrument and similar measurements, taken under identical experimental conditions, using a popular variable frequency pulsed-phase-locked loop instrument is reported. Uncertainties in both measurement systems are analyzed and discussed. A method for measuring inherent phase shifts, not addressed by previous investigators, within the variable frequency pulsed phase-locked loop system and a derivation of the equations that govern the overall use of variable frequency systems using phase-sensitive comparisons are presented. The effects of a finite pulse length on the measurements of phase velocity in dispersive media are addressed in detail.

  17. The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is ex-amined by using a mixed-mode model. The results show that the positive feedback process of the ef-fects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Nia event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal varia-tion of the upwelling mean on the ENSO cycle in previous studies.

  18. The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking

    Institute of Scientific and Technical Information of China (English)

    YAN BangLiang

    2007-01-01

    The mechanism of the effects of the upwelling mean on the ENSO event mature phase locking is examined by using a mixed-mode model. The results show that the positive feedback process of the effects of the seasonal variation of the upwelling mean on the Kelvin wave is the mechanism of the locking of the event mature phase to the end of the calendar year. The memory of the Rossby waves for the sign-shifting of the sea surface temperature anomaly from positive to negative 6 months before the cold peak time is the other mechanism of the locking of the La Ni(n)a event mature phase to the end of the calendar year. The results here are different from previous ones which suggest that the balance between cold and warm trends of sea surface temperature anomaly is the mechanism involved. The cold trend is caused by the upwelling Kelvin wave from upwelling Rossby wave reflected at the western boundary, excited by the westerly anomaly stress over the central Pacific and amplified by the seasonal variation of the coupled strength in its way propagating westward. The warm trend is caused by the Kelvin wave forced by the western wind stress over the middle and eastern equatorial Pacific. The cause of the differences is due to the opposite phase of the seasonal variation of the upwelling mean to that in the observation and an improper parameterization scheme for the effects of the seasonal variation of the upwelling mean on the ENSO cycle in previous studies.

  19. Single Nanoparticle Voltammetry: Contact Modulation of the Mediated Current.

    Science.gov (United States)

    Li, Xiuting; Batchelor-McAuley, Christopher; Whitby, Samuel A I; Tschulik, Kristina; Shao, Lidong; Compton, Richard G

    2016-03-18

    The cyclic voltammetric responses of individual palladium-coated carbon nanotubes are reported. Upon impact-from the solution phase-with the electrified interface, the nanoparticles act as individual nanoelectrodes catalyzing the hydrogen-oxidation reaction. At high overpotentials the current is shown to reach a quasi-steady-state diffusion limit, allowing determination of the tube length. The electrochemical response of the individual nanotubes also reveals the system to be modulated by the electrical contact between the electrode and carbon nanotube. This modulation presents itself as fluctuations in the recorded Faradaic current.

  20. Seasonal Phase-Locking of Peak Events in the Eastern Indian Ocean

    Institute of Scientific and Technical Information of China (English)

    Qin ZHANG; Song YANG

    2007-01-01

    The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during El Ni(n)o development years and warm anomalies in winter or spring following the El Ni(n)o events. There also tend to be warm anomalies in the boreal summer or fall during La Ni(n)a development years and cold anomalies in winter or spring following the La Ni(n)a events. The seasonal phase-locking of SST change in the EIO associated with El Ni(n)o/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter.The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those

  1. Measurement of Current Profile in a Tokamak Through AC Modulation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The plasma current is modulated with an alternating current (ac) component in a frequency range of 90 Hz~900 Hz in the plateau discharge phase in the CT-6B tokamak. A plasma electric conductivity profile in a form of (1 - r2/a2)α with a parameter α, which is fitted with the experimental data, can be determined. The effects of magnetic shear in a tokamak field configuration on the current penetration are taken into account in the numerical simulation. The measurement method and obtained results are discussed.

  2. Using bifurcations in the determination of lock-in ranges for third-order phase-locked loops

    Science.gov (United States)

    Piqueira, José Roberto Castilho

    2009-05-01

    Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons; 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst I 2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan's root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL. The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf.

  3. Uniform sampling analysis of a hybrid phase-locked loop with a sample-and-hold phase detector

    Science.gov (United States)

    Barab, S.; Mcbride, A. L.

    1975-01-01

    Phase-locked-loop (PLL) bit synchronizers often employ integrate-and-dump type phase detectors that provide phase error information only at discrete points in time. Usually these phase detectors are followed by sample-and-hold circuits to produce a stairstep error voltage as the input to a standard analog circuit loop filter. When the loop is configured in this manner, it is referred to as a hybrid PLL. Sampled-data analysis methods (Z transforms) are used to determine the stability and transient response of this loop.

  4. Analysis of the effects of time delay in clock recovery circuits based on Phase-locked loops

    DEFF Research Database (Denmark)

    Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders

    2004-01-01

    , are investigated by numerical simulations. Furthermore, simple expressions governing the stability properties of the loop, in the presence of time delay, are derived. For this purpose, three standard loop filters are considered: a Pl filter, a low pass (LP) filter and an active lag (AL) filter. The derived......Influence of time delay in a balanced optical phase-locked loops (OPLL) with a proportional integrator (Pl) filter is investigated using a delayed differential equation (DDE) is investigated. The limitations, which a time delay imposes on the Pl filter bandwidth, at increasing values of loop gain...

  5. A New Built-in Self Test Scheme for Phase-Locked Loops Using Internal Digital Signals

    Science.gov (United States)

    Kim, Youbean; Kim, Kicheol; Kim, Incheol; Kang, Sungho

    Testing PLLs (phase-locked loops) is becoming an important issue that affects both time-to-market and production cost of electronic systems. Though a PLL is the most common mixed-signal building block, it is very difficult to test due to internal analog blocks and signals. In this paper, we propose a new PLL BIST (built-in self test) using the distorted frequency detector that uses only internal digital signals. The proposed BIST does not need to load any analog nodes of the PLL. Therefore, it provides an efficient defect-oriented structural test scheme, reduced area overhead, and improved test quality compared with previous approaches.

  6. Phase-lock loop of Grid-connected Voltage Source Converter under non-ideal grid condition

    DEFF Research Database (Denmark)

    Wang, Haojie; Sun, Hai; Han, Minxiao;

    2015-01-01

    phase information cannot be accurately tracked. Based on analysis of the cause of double-frequency ripple when unbalance exists in main grid, a phase-locked loop (PLL) detection technique is proposed. Under the conditions of unsymmetrical system voltage, varying system frequency, single-phase system......It is a normal practice that the DC micro-grid is connected to AC main grid through Grid-connected Voltage Source Converter (G-VSC) for voltage support. Accurate control of DC micro-grid voltage is difficult for G-VSC under unbalanced grid condition as the fundamental positive-sequence component...

  7. Phase locking of two beams emitting from a side pumped Nd:YAG slab with self-imaging resonator

    Institute of Scientific and Technical Information of China (English)

    Qianjin Tang; Yongai Yu; Qiquan Hu

    2007-01-01

    Intracavity phase locking of two beams emitting from a block of Nd:YAG medium side-pumped by laser diode array (LDA) was investigated experimentally. The interference fringes of the two beams occured at the output mirror. The coherent output power of 1.13 W was obtained with combination efficiency of 64.9% and coherence degree of about 60%. Only a metallic wire as a filter located at a suitable position close to the output mirror can efficiently lock the entire structure with less than 8% power loss.

  8. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    Science.gov (United States)

    Kazantsev, Victor; Pimashkin, Alexey

    2007-09-01

    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales.

  9. Stokes parameters of phase-locked partially coherent flat-topped array laser beams propagating through turbulent atmosphere

    Science.gov (United States)

    Golmohammady, Sh; Ghafary, B.

    2016-06-01

    In this study, generalized Stokes parameters of a phase-locked partially coherent flat-topped array beam based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization have been reported. Analytical formulas for 2  ×  2 cross-spectral density matrix elements, and consequently Stokes parameters of a phase-locked partially coherent flat-topped array beam propagating through the turbulent atmosphere have been formulated. Effects of many physical attributes such as wavelength, turbulence strength, flatness order and other source parameters on the Stokes parameters, and therefore spectral degree of polarization upon propagation have been studied thoroughly. The behaviour of the spectral degree of coherence of a delineated beam for different source conditions has been investigated. It can be shown that four generalized Stokes parameters increase by raising the flatness order at the same propagation distance. Increasing the number of beams leads to a decrease in the Stokes parameters to zero slowly. The results are of utmost importance for optical communications.

  10. A delay differential model of ENSO variability, Part 2: Phase locking, multiple solutions, and dynamics of extrema

    CERN Document Server

    Zaliapin, Ilya

    2010-01-01

    We consider a highly idealized model for El Nino/Southern Oscillation (ENSO) variability, as introduced in an earlier paper. The model is governed by a delay differential equation for sea surface temperature in the Tropical Pacific, and it combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform a theoretical and numerical study of the model in the three-dimensional space of its physically relevant parameters: propagation period of oceanic waves across the Tropical Pacific, atmosphere-ocean coupling, and strength of seasonal forcing. Phase locking of model solutions to the periodic forcing is prevalent: the local maxima and minima of the solutions tend to occur at the same position within the seasonal cycle. Such phase locking is a key feature of the observed El Nino (warm) and La Nina (cold) events. The phasing of the extrema within the seasonal cycle depends sensitively on model parameters when forcing is weak. We also study co-existence of mu...

  11. Temporal decoding by phase-locked loops: unique features of circuit-level implementations and their significance for vibrissal information processing.

    Science.gov (United States)

    Zacksenhouse, Miriam; Ahissar, Ehud

    2006-07-01

    Rhythmic active touch, such as whisking, evokes a periodic reference spike train along which the timing of a novel stimulus, induced, for example, when the whiskers hit an external object, can be interpreted. Previous work supports the hypothesis that the whisking-induced spike train entrains a neural implementation of a phase-locked loop (NPLL) in the vibrissal system. Here we extend this work and explore how the entrained NPLL decodes the delay of the novel, contact-induced stimulus and facilitates object localization. We consider two implementations of NPLLs, which are based on a single neuron or a neural circuit, respectively, and evaluate the resulting temporal decoding capabilities. Depending on the structure of the NPLL, it can lock in either a phase- or co-phase-sensitive mode, which is sensitive to the timing of the input with respect to the beginning of either the current or the next cycle, respectively. The co-phase-sensitive mode is shown to be unique to circuit-based NPLLs. Concentrating on temporal decoding in the vibrissal system of rats, we conclude that both the nature of the information processing task and the response characteristics suggest that the computation is sensitive to the co-phase. Consequently, we suggest that the underlying thalamocortical loop should implement a circuit-based NPLL.

  12. Temperature feedback control for long-term carrier-envelope phase locking

    Science.gov (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  13. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  14. Errorless and errorful learning modulated by transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Schmicker Marlen

    2011-07-01

    Full Text Available Abstract Background Errorless learning is advantageous over trial and error learning (errorful learning as errors are avoided during learning resulting in increased memory performance. Errorful learning challenges the executive control system of memory processes as the erroneous items compete with the correct items during retrieval. The left dorsolateral prefrontal cortex (DLPFC is a core region involved in this executive control system. Transcranial direct current stimulation (tDCS can modify the excitability of underlying brain functioning. Results In a single blinded tDCS study one group of young healthy participants received anodal and another group cathodal tDCS of the left DLPFC each compared to sham stimulation. Participants had to learn words in an errorless and an errorful manner using a word stem completion paradigm. The results showed that errorless compared to errorful learning had a profound effect on the memory performance in terms of quality. Anodal stimulation of the left DLPFC did not modulate the memory performance following errorless or errorful learning. By contrast, cathodal stimulation hampered memory performance after errorful learning compared to sham, whereas there was no modulation after errorless learning. Conclusions Concluding, the study further supports the advantages of errorless learning over errorful learning. Moreover, cathodal stimulation of the left DLPFC hampered memory performance following the conflict-inducing errorful learning as compared to no modulation after errorless learning emphasizing the importance of the left DLPFC in executive control of memory.

  15. 高频焊管锁相电路设计%Phase Lock Circuit Design for High-frequency Welded(HFW) Pipe

    Institute of Scientific and Technical Information of China (English)

    付立功; 轩宗志; 葛永国; 轩宗震

    2014-01-01

    对锁相电路、高频焊管电路以及锁相环的基本原理做了详细的论述,并对高频焊管生产线上的锁相电路的设计及其在高频焊管机组中的使用、调整以及维护进行了详细分析。实践证明,锁相环具有频率自动跟踪和相位自动控制的功能,对于频率1MHz以下,用CD4046锁相环作为高频焊管锁相电路非常实用,电路简单,抗干扰,运行可靠,足以保证高频焊管电源可靠工作。%In this article, it expatiated the phase lock circuit, HFW pipe circuit and the basic principle of phase-locked loop, and detailedly analyzed design, application, adjustment and maintenance of phase lock in HFW pipe production line. Practice proved that the phase-locked loop possesses functions of frequency automatic tracking and phase automatic control. For frequencies below 1 MHz, using phase-locked loop CD4046 as phase locked circuit for HFW pipe is very practical, the circuit is simple, anti-interference, reliable operation, and it is enough to guarantee the high frequency welded pipe reliable work.

  16. Improvement of GNSS Carrier Phase Accuracy Using MEMS Accelerometer-Aided Phase-Locked Loops for Earthquake Monitoring

    Directory of Open Access Journals (Sweden)

    Tisheng Zhang

    2017-06-01

    Full Text Available When strong earthquake occurs, global navigation satellite systems (GNSS measurement errors increase significantly. Combined strategies of GNSS/accelerometer data can estimate better precision in displacement, but are of no help to carrier phase measurement. In this paper, strong-motion accelerometer-aided phase-locked loops (PLLs are proposed to improve carrier phase accuracy during strong earthquakes. To design PLLs for earthquake monitoring, the amplitude-frequency characteristics of the strong earthquake signals are studied. Then, the measurement errors of PLLs before and after micro electro mechanical systems (MEMS accelerometer aiding are analyzed based on error models. Furthermore, tests based on a hardware simulator and a shake table are carried out. Results show that, with MEMS accelerometer aiding, the carrier phase accuracy of the PLL decreases little under strong earthquakes, which is consistent with the models analysis.

  17. A Critical Examination of Frequency-Fixed Second-Order Generalized Integrator-Based Phase-Locked Loops

    DEFF Research Database (Denmark)

    Golestan, Saeed; Mousazadeh Mousavi, Seyyed-Yousef; Guerrero, Josep M.

    2017-01-01

    The implementation of a large number of single-phase phase-locked loops (PLLs) involves creating a fictitious quadrature signal. A popular approach for this purpose is using a second-order generalized integrator-based quadrature signal generator (SOGIQSG) because it results in an acceptable speed....../accuracy tradeoff. The SOGI-QSG based PLL (or briefly the SOGI-PLL), in its standard form, involves a frequency feedback loop for adjusting the SOGI resonance frequency under frequency drifts. Some recent research works have reported that the speed/accuracy tradeoff of the SOGI-PLL can be considerably enhanced......-based PLLs (FFSOGI-PLLs) to highlight their real advantages and disadvantages....

  18. An Adaptive Quadrature Signal Generation Based Single-Phase Phase-Locked Loop for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Abusorrah, Abdullah

    2017-01-01

    The quadrature signal generation based phase-locked loops (QSG-PLLs) are highly popular for synchronization purposes in single-phase systems. The main difference among these PLLs often lies in the technique they use for creating the fictitious quadrature component. One of the easiest QSG approaches...... is delaying the original single-phase signal by a quarter of a cycle. The PLL with such QSG technique is often called the transfer delay based PLL (TD-PLL). The TD-PLL benefits from a simple structure, rather fast dynamic response, and a good detection accuracy when the grid frequency is at its nominal value......, but it suffers from a phase offset error and double frequency oscillatory error in the estimated phase and frequency in the presence of frequency drifts. In this paper, a simple yet effective approach to remove the aforementioned errors of the TD-PLL is proposed. The resultant PLL structure is called...

  19. Low-noise low-power design for phase-locked loops multi-phase high-performance oscillators

    CERN Document Server

    Zhao, Feng

    2015-01-01

    This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation.  The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage.  Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters. 

  20. An Adaptive Tuning Mechanism for Phase-Locked Loop Algorithms for Faster Time Performance of Interconnected Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2015-01-01

    Interconnected renewable energy sources (RES) require fast and accurate fault ride through (FRT) operation, in order to support the power grid, when faults occur. This paper proposes an adaptive phase-locked loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response...... of the grid-side converter (GSC) control of a RES, particularly under FRT operation. The adaptive dαβPLL is based on modifying the tuning parameters of the dαβPLL, according to the type and voltage characteristics of the grid fault, with the purpose of accelerating the performance of the PLL algorithm....... The proposed adaptive tuning mechanism adjusts the PLL parameters in real time, according to the proposed fault classification unit, in order to accelerate the synchronization performance. The beneficial effect of the proposed adaptive tuning mechanism on the performance of dαβPLL is verified through...

  1. Introduction of a new opto-electrical phase-locked loop in CMOS technology: the PMD-PLL

    Science.gov (United States)

    Ringbeck, Thorsten; Schwarte, Rudolf; Buxbaum, Bernd

    1999-12-01

    The huge and increasing need of information in the industrial world demands an enormous potential of bandwidth in telecommunication systems. Optical communication provides all participants with the whole spectrum of digital services like videophone, cable TV, video conferencing and online services. Especially fast and low cost opto-electrical receivers are badly needed in order to expand fiber networks to every home (FTTH--fiber to the home or FTTD--fiber to the desk, respectively). This paper proposes a new receiver structure which is designed to receiver optical data which are encoded by code division multiple access techniques (CDMA). For data recovery in such CDMA networks phase locked loops (PLL) are needed, which synchronize the local oscillator with the incoming clock. In optical code division multiple access networks these PLLs could be realized either with an electrical PLL after opto-electrical converting or directly in the optical path with a pure optical PLL.

  2. ESTIMATION OF DIRECTIONAL SPECTRUM AND REFLECTED COEFFICIENT OF INCIDENT AND REFLECTED WAVE IN PHASE-LOCKED WAVE FIELD

    Institute of Scientific and Technical Information of China (English)

    SHAO Li-min; YU Zhi-liang; YUAN Qun-zhe; YU Yu-xiu

    2005-01-01

    This paper analyses and compares the property of the Modified Bayesian Directional spectrum analysis Method (MBDM) and the Modified Maximum Likelihood Method (MMLM) that can be used to estimate directional spectrum and reflected coefficient of phase-locked wave field overlapped by multi-directional irregular incident and reflected waves.The numerical test verifies the results under different wave conditions, different measurement systems, and different reflection features.The computation speed and stability of the two methods is also compared.The analysis addresses that the MBDM is better than the MMLM for directional spectrum estimating, while the MMLM is better than the MBDM for reflected coefficient estimation and calculating speed and stability.

  3. THE DESIGN OF AN ALL-DIGITAL PHASE-LOCKED LOOP WITH LOW JITTER BASED ON ISF ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Deng Xiaoying; Yang Jun; Shi Longxing; Chen Xin

    2008-01-01

    A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed.The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis,an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.8V supply voltage,occupies 0.046mm2 of on-chip area. According to the measured results,the ADPLL can operate from 108MHz to 304MHz,and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.

  4. A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna

    Institute of Scientific and Technical Information of China (English)

    DONG YuHui; LIU HeShan; LUO ZiRen; LI YuQiong; JIN Gang

    2016-01-01

    A comprehensive simulation was performed to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for LISA.The result showed that the phase of the slave laser tracked well with the received transmitting light under different noise level,and the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed.This result was then confirmed by a benchtop experimental test.The required LISA noise floor was recovered from the simulation which proved the validity of the simulation program.In order to convert the noise function into real time data with random characteristics,an algorism based on Fourier transform was also invented.

  5. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  6. Frequency Tracking Performance Using a Hyperbolic Digital-Phase Locked Loop for Ka-Band Communication in Rain Fading Channels

    Science.gov (United States)

    Sithamparanathan, Kandeepan; Piesiewicz, Radoslaw

    In this paper we study and present some results on the performances of frequency tracking for Ka-band satellite communications in rain fading channels. The carrier frequency is tracked using a 2nd order hyperbolic phase detector based digital-phase locked loop (D-PLL). The hyperbolic D-PLL has the capability of extending the tracking range compared to the other D-PLL and hence can be designed such that to achieve low phase jitter performance for improved carrier tracking. We present the design and analysis of the D-PLL and show some simulation results on the frequency tracking performance for Ka-band rain fading channel. The results are compared with the non-fading noise only case and comparative analyses are made.

  7. Study on chaos control of second-order non-autonomous phase-locked loop based on state observer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yibo [College of physics and Electronic Information, Anhui Normal University, Wuhu 241000 (China)], E-mail: zhyb26@yahoo.com.cn; Wei Duqu; Luo Xiaoshu [College of Physics and Electronic engineering, Guangxi Normal University, Guilin 541004 (China)

    2009-02-28

    With system parameters falling into a certain area, the second-order non-autonomous phase locked loop (PLL) is experiencing chaotic behavior which is undesirable in system, where it is necessary to estimate the phase of a received signal. In order to control chaos in PLL and drive it to the locked state, dynamical equation for phase error model of PLL is firstly derived. Then, the state values of phase and transient frequency errors were estimated by a state observer. Moreover, by exploiting these state estimations, a non-linear feedback controller is designed. Since the presented controller does not need to change the controlled system structure and not to use any information of system except the system state variables, the designed controller is simple and desirable. Simulation results show that the presented control law is very effective.

  8. The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Experiments of Modulated Toroidal Current were done on the HT-6M tokamakand HT-7 superconducting tokamak. The toroidal current was modulated by programming theOhmic heating field. Modulation of the plasma current has been used successfully to suppressMHD activity in discharges near the density limit where large MHD m = 2 tearing modes weresuppressed by sufficiently large plasma current oscillations. The improved Ohmic confinementphase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current,induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio ofA.C. amplitude of plasma current to the main plasma current △Ip/Ip is about 12% ~ 30%. Thedifferent formats of the frequency-modulated toroidal current were compared.

  9. Research on SOGI for phase lock technique of the single-phase grid-connected system%基于二阶广义积分器的单相并网系统锁相技术的研究

    Institute of Scientific and Technical Information of China (English)

    侯立健; 朱长青; 陈雅; 严雪飞

    2016-01-01

    For the grid voltage is usually affected by disturbance and harmonic, so in the synchronous application of grid-connected converter, there is a phase difference between grid-connected current and grid voltage, which will have impact and pollution to the power grid.The practical experience shows that some phase locked loop(PLL) based quadrature signal generator( QSG) has better performance.This paper adopts the second-order general integrator( SO-GI) that is improved, and frequency of SOGI automatically tracks the input frequency through a simple control loop instead of trigonometric function.Finally, this scheme constructs new-style structure of the frequency locked loop with PLL module.This scheme is easy to design and implement, simulation results show its excellent performance, and the frequency and angle can be detected rapidly and do not contain a steady oscillation, the feasibility and the superiority of the scheme are verified.%由于电网电压通常受到扰动和谐波的影响,因此在并网变换器的同步应用中,并网电流和电网存在相位差,会对电网产生冲击和污染。实践经验表明基于某种正交信号发生器( QSG)的锁相环( PLL)具有更好的性能。文章采用基于二阶广义积分器( SOGI)的正交信号发生器,并加以改进,在无需使用三角函数的情况下,设计一个简单的控制环将SOGI谐振器中心频率自适应调节为输入频率,并去除PLL模块,构造了新型的锁频环( FLL)结构。仿真结果表明,该方法不仅易于设计和实现,同时其性能优异,频率和相角的检测速度较快,且不含有稳态振荡,验证了方案的可行性和优越性。

  10. Respiration phase-locks to fast stimulus presentations: implications for the interpretation of posterior midline “deactivations”

    Science.gov (United States)

    Huijbers, W.; Pennartz, C.M.A.; Beldzik, E.; Domagalik, A.; Vinck, M.; Hofman, W.F.; Cabeza, R.; Daselaar, S.M.

    2015-01-01

    The posterior midline region (PMR) –considered a core of the default mode network- is deactivated during successful performance in different cognitive tasks. The extent of PMR-deactivations is correlated with task-demands and associated with successful performance in various cognitive domains. In the domain of episodic memory, functional MRI (fMRI) studies found that PMR-deactivations reliably predict learning (successful encoding). Yet, it is unclear what explains this relation. One intriguing possibility is that PMR-deactivations are partially-mediated by respiratory artifacts. There is evidence that the fMRI signal in PMR is particularly prone to respiratory artifacts, because of its large surrounding blood vessels. Since respiratory fluctuations has been shown to track changes in attention, it is critical for the general interpretation of fMRI results to clarify the relation between respiratory fluctuations, cognitive performance, and fMRI signal. Here, we investigated this issue by measuring respiration during word encoding, together with a breath-holding condition during fMRI-scanning. Stimulus-locked respiratory analyses showed that respiratory fluctuations predicted successful encoding via a respiratory phase-locking mechanism. At the same time, the fMRI analyses showed that PMR-deactivations associated with learning were reduced during breath-holding and correlated with individual differences in the respiratory phase-locking effect during normal breathing. A left frontal region –used as a control region– did not show these effects. These findings indicate that respiration is a critical factor in explaining the link between PMR-deactivation and successful cognitive performance. Further research is necessary to demonstrate whether our findings are restricted to episodic memory encoding, or also extend to other cognitive domains. PMID:24737724

  11. Different current intensities of anodal transcranial direct current stimulation do not differentially modulate motor cortex plasticity.

    Science.gov (United States)

    Kidgell, Dawson J; Daly, Robin M; Young, Kayleigh; Lum, Jarrod; Tooley, Gregory; Jaberzadeh, Shapour; Zoghi, Maryam; Pearce, Alan J

    2013-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1). Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS) to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI). Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22-45 years) were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  12. Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity

    Directory of Open Access Journals (Sweden)

    Dawson J. Kidgell

    2013-01-01

    Full Text Available Transcranial direct current stimulation (tDCS is a noninvasive technique that modulates the excitability of neurons within the motor cortex (M1. Although the aftereffects of anodal tDCS on modulating cortical excitability have been described, there is limited data describing the outcomes of different tDCS intensities on intracortical circuits. To further elucidate the mechanisms underlying the aftereffects of M1 excitability following anodal tDCS, we used transcranial magnetic stimulation (TMS to examine the effect of different intensities on cortical excitability and short-interval intracortical inhibition (SICI. Using a randomized, counterbalanced, crossover design, with a one-week wash-out period, 14 participants (6 females and 8 males, 22–45 years were exposed to 10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA. TMS was used to measure M1 excitability and SICI of the contralateral wrist extensor muscle at baseline, immediately after and 15 and 30 minutes following cessation of anodal tDCS. Cortical excitability increased, whilst SICI was reduced at all time points following anodal tDCS. Interestingly, there were no differences between the three intensities of anodal tDCS on modulating cortical excitability or SICI. These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.

  13. Physical Origin and Theoretical Limit of the Phase Stability of a Spin-Torque Oscillator Stabilized by a Phase-Locked Loop

    Science.gov (United States)

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji

    2017-06-01

    We present a theory for analyzing the phase stability of a spin-torque oscillator (STO) stabilized by a phase-locked-loop (PLL) circuit using the STO's free-running performance and circuit parameters. We show that the linewidth measured on a spectrum analyzer, which is the most commonly used performance indicator for the phase stability of a free-running STO, is not useful for estimating the phase stability of a phase-locked STO. A more important value is the STO's frequency-error spectral density (FESD) around the PLL bandwidth. We calculate the residual phase-error spectral density (PESD) of the phase-locked STO output signal using the actual FESD of the free-running STO and circuit parameters under three different conditions, and obtain excellent agreement with experimental results. This theoretical model allows one to predict the phase error of a STO stabilized by a PLL circuit, thus giving useful guidance for designing a PLL circuit and developing a STO. The theory indicates that a reduction of the STO's FESD around the PLL bandwidth, which is governed by the thermal stability of the STO, is of prime importance for further improvement of the STO's signal quality under phase-locked oscillation.

  14. Theoretical and experimental investigation of a balanced phase-locked loop based clock recovery at a bit rate of 160 Gb/s

    DEFF Research Database (Denmark)

    Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders;

    2003-01-01

    This paper describes a mathematical model of a balanced opto-electronic phase-locked loop (OPLL), which is required to be very fast for some network applications. OPLL is investigated in terms of clock pulse width, loop filter gain and residuals of the balancing DC level. Based on the guidelines...

  15. Study on Soft Phase Locked Method to Solving the Synchronization Problem of Active Power Filter in Stand-alone Power Grid

    DEFF Research Database (Denmark)

    Zhuo, Fang; Wu, Longhui; Chen, Zhe

    2009-01-01

    on zero-cross detection can't work effectively in small rating stand-alone power grid. Then a soft phase locked loop with additional filter is proposed. It can lock the phase angle on to the positive sequence of fundamental voltage accurately and rapidly. It ensures the performance of APF applied...

  16. Modulation of canine cardiac sodium current by Apelin.

    Science.gov (United States)

    Chamberland, Caroline; Barajas-Martinez, Hector; Haufe, Volker; Fecteau, Marie-Hélène; Delabre, Jean-Francois; Burashnikov, Alexander; Antzelevitch, Charles; Lesur, Olivier; Chraibi, Ahmed; Sarret, Philippe; Dumaine, Robert

    2010-04-01

    Apelin, a ligand of the G protein-coupled putative angiotensin II-like receptor (APJ-R), exerts strong vasodilating, cardiac inotropic and chronotropic actions. Its expression is highly up-regulated during heart failure. Apelin also increases cardiac conduction speed and excitability. While our knowledge of apelin cardiovascular actions is growing, our understanding of the physiological mechanisms behind the cardiac effects remains limited. We tested the effects of apelin on the cardiac sodium current (I(Na)) using patch clamp technique on cardiac myocytes acutely dissociated from dog ventricle. We found that apelin-13 and apelin-17 increased peak I(Na) by 39% and 61% and shifted its mid-activation potential by -6.8+/-0.6 mV and -17+/-1 mV respectively thus increasing channel opening at negative voltage. Apelin also slowed I(Na) recovery from inactivation. The effects of apelin on I(Na) amplitude were linked to activation of protein kinase C. Apelin also increased I(Na) "window" current by up to 600% suggesting that changes in intracellular sodium may contribute to the apelin inotropic effects. Our results reveal for the first time the effects of apelin on I(Na). These effects are likely to modulate cardiac conduction and excitability and may have beneficial antiarrhythmic action in sodium chanelopathies such as Brugada Syndrome where I(Na) amplitude is reduced. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Relationships among parvalbumin-immunoreactive neuron density, phase-locked gamma oscillations, and autistic/schizophrenic symptoms in PDGFR-β knock-out and control mice.

    Directory of Open Access Journals (Sweden)

    Tomoya Nakamura

    Full Text Available Cognitive deficits and negative symptoms are important therapeutic targets for schizophrenia and autism disorders. Although reduction of phase-locked gamma oscillation has been suggested to be a result of reduced parvalbumin-immunoreactive (putatively, GABAergic neurons, no direct correlations between these have been established in these disorders. In the present study, we investigated such relationships during pharmacological treatment with a newly synthesized drug, T-817MA, which displays neuroprotective and neurotrophic effects. In this study, we used platelet-derived growth factor receptor-β gene knockout (PDGFR-β KO mice as an animal model of schizophrenia and autism. These mutant mice display a reduction in social behaviors; deficits in prepulse inhibition (PPI; reduced levels of parvalbumin-immunoreactive neurons in the medical prefrontal cortex, hippocampus, amygdala, and superior colliculus; and a deficit in of auditory phase-locked gamma oscillations. We found that oral administration of T-817MA ameliorated all these symptoms in the PDGFR-β KO mice. Furthermore, phase-locked gamma oscillations were significantly correlated with the density of parvalbumin-immunoreactive neurons, which was, in turn, correlated with PPI and behavioral parameters. These findings suggest that recovery of parvalbumin-immunoreactive neurons by pharmacological intervention relieved the reduction of phase-locked gamma oscillations and, consequently, ameliorated PPI and social behavioral deficits. Thus, our findings suggest that phase-locked gamma oscillations could be a useful physiological biomarker for abnormality of parvalbumin-immunoreactive neurons that may induce cognitive deficits and negative symptoms of schizophrenia and autism, as well as of effective pharmacological interventions in both humans and experimental animals.

  18. Sub-Cycle Optical Response Caused by Dressed State with Phase-Locked Wavefunctions

    CERN Document Server

    Uchida, K; Mochizuki, T; Kim, C; Yoshita, M; Akiyama, H; Pfeiffer, L N; West, K W; Tanaka, K; Hirori, H

    2016-01-01

    The coherent interaction of light with matter imprints the phase information of the light field on the wavefunction of the photon-dressed electronic state. Driving electric field, together with a stable phase that is associated with the optical probe pulses, enables the role of the dressed state in the optical response to be investigated. We observed optical absorption strengths modulated on a sub-cycle timescale in a GaAs quantum well in the presence of a multi-cycle terahertz driving pulse using a near-infrared probe pulse. The measurements were in good agreement with the analytical formula that accounts for the optical susceptibilities caused by the dressed state of excitons, which indicates that the output probe intensity was coherently reshaped by the excitonic sideband emissions.

  19. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.

    Directory of Open Access Journals (Sweden)

    Josef Ladenbauer

    Full Text Available The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency

  20. Achieving strong doubling power by optical phase-locked Ti:sapphire laser and MOPA system

    Institute of Scientific and Technical Information of China (English)

    Yu Peng; Baike Lin; Qiang Wang; Yang Zhao; Ye Li; Jianping Cao; Zhanjun Fang; Erjun Zang

    2012-01-01

    We show two external cavity-enhanced second-harmonic generations of 922 nm with periodically poled potassium titanyl phosphate crystal,whose doubling cavities are locked separately with Hansch-Couillaud and intra-modulation methods.The outputs of second-harmonic generation reach 310 mW,54.8% of the conversion efficiency from the Ti;sapphire laser with the crystal length of 10 mm,and 208 mW,59% of the conversion efficiency from the MOPA system with the crystal length of 30 mm.It consists of heterodyning the Ti;sapphire laser and the MOPA system,and compares the phase of the beat frequency signal with the phase of a reference RF local oscillator.The resulting phase error is used as a feedback signal and fed back to the reference cavity of the Ti;sapphire laser to lock the two lasers in phase.A stable blue power of 520 mW is obtained,which supplies enough power for the cooling and trapping step of the strontium (Sr) optical lattice clock.Four stable isotopes of Sr,84Sr,86Sr,87Sr,and 88Sr,are detected by probing the laser during a strong 460.7-nm cycling transition (5s21S0-5s5p1P1).%We show two external cavity-enhanced second-harmonic generations of 922 nm with periodically poled potassium titanyl phosphate crystal, whose doubling cavities are locked separately with Hansch-Couillaud and intra-modulation methods. The outputs of second-harmonic generation reach 310 mW, 54.8% of the conversion efficiency from the Ti:sapphire laser with the crystal length of 10 mm, and 208 mW, 59% of the conversion efficiency from the MOPA system with the crystal length of 30 mm. It consists of heterodyning the Ti:sapphire laser and the MOPA system, and compares the phase of the beat frequency signal with the phase of a reference RF local oscillator. The resulting phase error is used as a feedback signal and fed back to the reference cavity of the Ti:sapphire laser to lock the two lasers in phase. A stable blue power of 520 mW is obtained, which supplies enough power for the cooling

  1. 电网谐波背景下单相并网逆变器的锁相方法%Phase-locked Loop for Single Phase Grid-connected Inverters in a Harmonic Distorted Grid

    Institute of Scientific and Technical Information of China (English)

    王鹿军; 张冲; 吕征宇

    2013-01-01

    Based on the fact that the grid voltage of distribution network with distributed generators connected usually contains low order harmonics caused by adjacent nonlinear loads,a phase-locked loop (PLL) structure is proposed for single phase gridconnected inverters.The proposed method has a coupling feedback structure composed of a main module and multi notch filters,in which the main module aims to estimate fundamental component and multi notch filters aim to get harmonic components.The main module is an amplitude-frequency-phase-locked loop (AFPLL) using gradient descent method.The harmonic modules are simple second order notch filters (NFs).The complex structure can eliminate steady state errors in dealing with harmonic distorted grid voltage.Finally,the proposed PLL is verified by harmonic distorted grid voltage synchronization experiment,phase mutation experiment,amplitude mutation experiment and frequency mutation experiment.The experimental results show that the proposed PLL not only can eliminate steady state error in harmonic distorted grid voltage,but also has a quick response when grid voltage suddenly changes.%针对分布式电源接入的配电网因临近非线性负载而含有大量低次谐波的问题,提出了一种适用于单相并网逆变器的锁相方法.该方法的核心是一个由主模块和多个谐波模块组成的交错耦合反馈结构,其中主模块是依据梯度下降法来估测基波幅值频率的锁相环(AFPLL),谐波模块是简单的二阶陷波滤波器(NF).该复合结构可有效消除传统锁相方法在处理畸变电压信号时存在的稳态误差.分别通过畸变电压锁相实验、相位突变实验、幅值突变实验和频率突变实验,评估了该锁相方法的稳态和动态性能.实验结果表明,所提出的锁相方法不但在电压信号严重畸变时具有较高的锁相精度,而且在电压信号发生突变时也具有较快的响应速度.

  2. A closed-loop phase-locked interferometer for wide bandwidth position sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Andrew J., E-mail: Andrew.Fleming@Newcastle.edu.au; Routley, Ben S., E-mail: Ben.Routley@Newcastle.edu.au [School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2015-11-15

    This article describes a position sensitive interferometer with closed-loop control of the reference mirror. A calibrated nanopositioner is used to lock the interferometer phase to the most sensitive point in the interferogram. In this configuration, large low-frequency movements of the sensor mirror can be detected from the control signal applied to the nanopositioner and high-frequency short-range signals can be measured directly from the photodiode. It is demonstrated that these two signals are complementary and can be summed to find the total displacement. The resulting interferometer has a number of desirable characteristics: it is optically simple, does not require polarization or modulation to detect the direction of motion, does not require fringe-counting or interpolation electronics, and has a bandwidth equal to that of the photodiode. Experimental results demonstrate the frequency response analysis of a high-speed positioning stage. The proposed instrument is ideal for measuring the frequency response of nanopositioners, electro-optical components, MEMs devices, ultrasonic devices, and sensors such as surface acoustic wave detectors.

  3. A wideband high common mode rejection ratio amplifier and phase-locked loop demodulator for multifrequency impedance measurement.

    Science.gov (United States)

    Goovaerts, H G; Faes, T J; Raaijmakers, E; Heethaar, R M

    1998-11-01

    Design considerations and implementation of a multifrequency measuring channel for application in the field of bio-impedance measurement are discussed in this paper. The input amplifier has a differential configuration which is electrically isolated from the remaining circuits. Transformer coupling provides improved common mode rejection when compared to non-isolated input stages. The frequency characteristic of the section between input and demodulator is flat within +/- 0.1 dB between 4 kHz and 1024 kHz. The synchronous demodulator is based on a wideband switched video amplifier. In contrast to commonly used lock--in techniques, the carrier for demodulation is recovered from the input signal by means of a phase-locked loop. This method ensures zero phase shift with respect to the input signal and improves the accuracy of measurement. The system has been developed primarily for thoracic impedance cardiography (TIC) but has also successfully been applied in the field of total body bio-impedance analysis (BIA). At present an electrical impedance tomograph is under development based on the instrumentation described. Results regarding the measurement range and accuracy are given and some recordings of patient data are shown.

  4. Broadband suppression of phase-noise with cascaded phase-locked-loops for the generation of frequency ramps

    Directory of Open Access Journals (Sweden)

    T. Musch

    2003-01-01

    Full Text Available The generation of analogue frequency ramps with non-fractional phase-locked-loops (PLL is a cost effective way of linearising varactor controlled oscillators (VCO. In case that the VCO shows a high phase-noise level, a single non-fractional PLL is not able to suppress the phase-noise of the VCO sufficiently. The reason for this is the limited loopbandwidth of the PLL. In the field of precise measurements a high phase-noise level is mostly not tolerable. Examples of VCO-types with an extremely high phase noise level are integrated millimetre wave oscillators based on GaAs-HEMT technology. Both, a low quality factor of the resonator and a high flicker-noise corner frequency of the transistors are the main reason for the poor phase-noise behaviour. On the other hand this oscillator type allows a cost effective implementation of a millimetre-wave VCO. Therefore, a cascaded two-loop structure is presented that is able to linearise a VCO and additionally to reduce its phase-noise significantly.

  5. 3D pressure imaging of an aircraft propeller blade-tip flow by phase-locked stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2012-02-15

    The flow field at the tip region of a scaled DHC Beaver aircraft propeller, running at transonic speed, has been investigated by means of a multi-plane stereoscopic particle image velocimetry setup. Velocity fields, phase-locked with the blade rotational motion, are acquired across several planes perpendicular to the blade axis and merged to form a 3D measurement volume. Transonic conditions have been reached at the tip region, with a revolution frequency of 19,800 rpm and a relative free-stream Mach number of 0.73 at the tip. The pressure field and the surface pressure distribution are inferred from the 3D velocity data through integration of the momentum Navier-Stokes equation in differential form, allowing for the simultaneous flow visualization and the aerodynamic loads computation, with respect to a reference frame moving with the blade. The momentum and pressure data are further integrated by means of a contour-approach to yield the aerodynamic sectional force components as well as the blade torsional moment. A steady Reynolds averaged Navier-Stokes numerical simulation of the entire propeller model has been used for comparison to the measurement data. (orig.)

  6. Word timing recovery in direct detection optical PPM communication systems with avalanche photodiodes using a phase lock loop

    Science.gov (United States)

    Sun, Xiaoli; Davidson, Frederic M.

    1990-01-01

    A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.

  7. On Zwicker tones and musical pitch in the likely absence of phase locking corresponding to the pitch a)

    Science.gov (United States)

    Gockel, Hedwig E.; Carlyon, Robert P.

    2017-01-01

    It was assessed whether Zwicker tones (ZTs) (an auditory afterimage produced by a band-stop noise) have a musical pitch. First (stage I), musically trained subjects adjusted the frequency, level, and decay time of an exponentially decaying diotic sinusoid to sound similar to the ZT they perceived following the presentation of diotic broadband noise, for various band-stop positions. Next (stage II), subjects adjusted a sinusoid in frequency and level so that its pitch was a specified musical interval below that of either a preceding ZT or a preceding sinusoid, and so that it was equally loud. For each subject the reference sinusoid corresponded to their adjusted sinusoid from stage I. Subjects selected appropriate frequency ratios for ZTs, although the standard deviations of the adjustments were larger for the ZTs than for the equally salient sinusoids by a factor of 1.0–2.2. Experiments with monaural stimuli led to similar results, although the pitch of the ZTs could differ for monaural and diotic presentation of the ZT-exciting noise. The results suggest that a weak musical pitch may exist in the absence of phase locking in the auditory nerve to the frequency corresponding to the pitch (or harmonics thereof) at the time of the percept. PMID:27794303

  8. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    Science.gov (United States)

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  9. EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement.

    Science.gov (United States)

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-04-01

    Phase-locking value (PLV) is a well-known feature in sensorimotor rhythm (SMR) based BCI. Zero-phase PLV has not been explored because it is generally regarded as the result of volume conduction. Because spatial filters are often used to enhance the amplitude (square root of band power (BP)) feature and attenuate volume conduction, they are frequently applied as pre-processing methods when computing PLV. However, the effects of spatial filtering on PLV are ambiguous. Therefore, this article aims to explore whether zero-phase PLV is meaningful and how this is influenced by spatial filtering. Based on archival EEG data of left and right hand movement tasks for 32 subjects, we compared BP and PLV feature using data with and without pre-processing by a large Laplacian. Results showed that using ear-referenced data, zero-phase PLV provided unique information independent of BP for task prediction which was not explained by volume conduction and was significantly decreased when a large Laplacian was applied. In other words, the large Laplacian eliminated the useful information in zero-phase PLV for task prediction suggesting that it contains effects of both amplitude and phase. Therefore, zero-phase PLV may have functional significance beyond volume conduction. The interpretation of spatial filtering may be complicated by effects of phase. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Deriving theoretical phase locking values of a coupled cortico-thalamic neural mass model using center manifold reduction.

    Science.gov (United States)

    Ogawa, Yutaro; Yamaguchi, Ikuhiro; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2017-02-24

    Cognitive functions such as sensory processing and memory processes lead to phase synchronization in the electroencephalogram or local field potential between different brain regions. There are a lot of computational researches deriving phase locking values (PLVs), which are an index of phase synchronization intensity, from neural models. However, these researches derive PLVs numerically. To the best of our knowledge, there have been no reports on the derivation of a theoretical PLV. In this study, we propose an analytical method for deriving theoretical PLVs from a cortico-thalamic neural mass model described by a delay differential equation. First, the model for generating neural signals is transformed into a normal form of the Hopf bifurcation using center manifold reduction. Second, the normal form is transformed into a phase model that is suitable for analyzing synchronization phenomena. Third, the Fokker-Planck equation of the phase model is derived and the phase difference distribution is obtained. Finally, the PLVs are calculated from the stationary distribution of the phase difference. The validity of the proposed method is confirmed via numerical simulations. Furthermore, we apply the proposed method to a working memory process, and discuss the neurophysiological basis behind the phase synchronization phenomenon. The results demonstrate the importance of decreasing the intensity of independent noise during the working memory process. The proposed method will be of great use in various experimental studies and simulations relevant to phase synchronization, because it enables the effect of neurophysiological changes on PLVs to be analyzed from a mathematical perspective.

  11. SEMICONDUCTOR INTEGRATED CIRCUITS: A low jitter, low spur multiphase phase-locked loop for an IR-UWB receiver

    Science.gov (United States)

    Ke, Shao; Hu, Chen; Yaohua, Pan; Zhiliang, Hong

    2010-08-01

    A low jitter, low spur multiphase phase-locked loop (PLL) for an impulse radio ultra-wideband (IR-UWB) receiver is presented. The PLL is based on a ring oscillator in order to simultaneously meet the jitter requirement, low power consumption and multiphase clock output. In this design, a noise and matching improved voltage-controlled oscillator (VCO) is devised to enhance the timing accuracy and phase noise performance of multiphase clocks. By good matching achieved in the charge pump and careful choice of the loop filter bandwidth, the reference spur is suppressed. A phase noise of -118.42 dBc/Hz at a frequency offset of 1 MHz, RMS jitter of 1.53 ps and reference spur of -66.81 dBc are achieved at a carrier frequency of 264 MHz in measurement. The chip was manufactured in 0.13 μm CMOS technology and consumes 4.23 mW from a 1.2 V supply while occupying 0.14 mm2 area.

  12. Adiponectin modulates excitability of rat paraventricular nucleus neurons by differential modulation of potassium currents.

    Science.gov (United States)

    Hoyda, Ted D; Ferguson, Alastair V

    2010-07-01

    The adipocyte-derived hormone adiponectin acts at two seven-transmembrane domain receptors, adiponectin receptor 1 and adiponectin receptor 2, present in the paraventricular nucleus of the hypothalamus to regulate neuronal excitability and endocrine function. Adiponectin depolarizes rat parvocellular preautonomic neurons that secrete either thyrotropin releasing hormone or oxytocin and parvocellular neuroendocrine corticotropin releasing hormone neurons, leading to an increase in plasma adrenocorticotropin hormone concentrations while also hyperpolarizing a subgroup of neurons. In the present study, we investigate the ionic mechanisms responsible for these changes in excitability in parvocellular paraventricular nucleus neurons. Patch clamp recordings of currents elicited from slow voltage ramps and voltage steps indicate that adiponectin inhibits noninactivating delayed rectifier potassium current (I(K)) in a majority of neurons. This inhibition produced a broadening of the action potential in cells that depolarized in the presence of adiponectin. The depolarizing effects of adiponectin were abolished in cells pretreated with tetraethyl ammonium (0/15 cells depolarize). Slow voltage ramps performed during adiponectin-induced hyperpolarization indicate the activation of voltage-independent potassium current. These hyperpolarizing responses were abolished in the presence of glibenclamide [an ATP-sensitive potassium (K(ATP)) channel blocker] (0/12 cells hyperpolarize). The results presented in this study suggest that adiponectin controls neuronal excitability through the modulation of different potassium conductances, effects which contribute to changes in excitability and action potential profiles responsible for peptidergic release into the circulation.

  13. Trade-off between Settling Time and Jitter in Phase Locked Loop

    CERN Document Server

    Paliwal, Pallavi; Gupta, Shalabh

    2012-01-01

    Most PLL architectures have inherent trade-off between settling time and jitter. This trade-off is ignored by commonly used Figure of Merit (FoM) for PLL, which considers only jitter and power for benchmarking PLL performance. This work proposes new Figure of Merit for PLL, which considers settling time also as performance parameter, along with jitter and power. In this work, trade-off between settling time and jitter is analyzed in linear/non-linear/hybrid PLLs, theoretically and with behavioral simulations. Then, based on settling time vs. jitter relation obtained, currently used Figure of Merit for PLL is modified to consider all important specifications i.e. lock time, power and jitter.

  14. Modeling of the influences of multiple modulated electron cyclotron current drive on NTMs in rotating plasma

    Science.gov (United States)

    Long, Chen; Jinyuan, Liu; Ping, Duan; Guangrui, Liu; Xingyu, Bian

    2017-02-01

    In this work, physical models of neoclassical tearing modes (NTMs) including bootstrap current and multiple modulated electron cyclotron current drive model are applied. Based on the specific physical problems during the suppression of NTMs by driven current, this work compares the efficiency of continuous and modulated driven currents, and simulates the physical processes of multiple modulated driven currents on suppressing rotating magnetic island. It is found that when island rotates along the poloidal direction, the suppression ability of continuous driven current can be massively reduced due to current deposition outside the island separatrix and reverse deposition direction at the X point, which can be avoided by current drive modulation. Multiple current drive has a better suppressing effect than single current drive. This work gives realistic numerical simulations by optimizing the model and parameters based on the experiments, which could provide references for successful suppression of NTMs in future advanced tokamak such as international thermonuclear experimental reactor.

  15. Design of a Fast-Lock Phase-Locked Loop with Wide Band Width Based on 40 nm CMOS%基于40 nm CMOS工艺可快速锁定的宽带锁相环电路设计

    Institute of Scientific and Technical Information of China (English)

    谭茗; 唐立军; 黄水龙; 谢海情

    2014-01-01

    Through improving the phase frequency discriminator circuit structure ,and adding a control module to control charge pump current ,a charge pump phase-locked loop circuit which has the characteristics of fast-lock and wide band has been designed .When the phase error value of the phase frequency discriminator is greater than the delay timeτ of the control module ,the control switch is opened to increase the charge pump current ,the loop bandwidth is increased ,at the same time the resistance of the loop filter is reduced ,realized fast lock ,loop stability do not change .When the loop is close to lock ,the bandwidth is adjusted to the presupposed optimization value to get a system of optimal characteristics .Based on SMIC 40 nm CMOS process ,a phase-locked loop is designed , contain circuit and layout design .The results of simulation show :The output frequency covered GSM ,TD-SCDMA , WCDMA ,TD-LTE four communication standards working frequency band ,in other words ,the output frequency ranges for 698~960 M Hz ,1 700~2 200 M Hz ,2 300~2 700 M Hz with a setting time of less than 12μs at a 2 .5 V supply .%通过改进鉴频鉴相器(PFD)的电路结构,增加一个控制模块自适应调整电荷泵的充放电电流大小,设计了一种可快速锁定的宽频带电荷泵锁相环电路.当鉴频鉴相器输出的相位误差值大于控制模块中的延迟时间τ时,打开控制开关增加电荷泵的电流,从而增加环路带宽,减少环路滤波器的电阻值,实现快速锁定,环路稳定性不变.当环路接近锁定时,调整带宽到预设的优化值,保证了系统性能的最优化.基于SMIC 40 nm CMOS工艺,完成电路设计与仿真.结果表明:在电源电压为2.5 V时,该锁相环可实现输出频率范围为698~960 M Hz ,1700~2200 MHz ,2300~2700 MHz ,覆盖GSM ,TD-SCDMA ,WCDMA ,TD-LTE四个通讯标准的工作频段,锁定时间小于12μs.

  16. Phase Locking between Atmospheric Convectively Coupled Equatorial Kelvin Waves and the Diurnal Cycle of Precipitation over the Maritime Continent

    Science.gov (United States)

    Flatau, M. K.; Baranowski, D. B.; Flatau, P. J.; Matthews, A. J.

    2016-12-01

    Although the importance of the Maritime Continent to the global atmospheric circulation has been long recognized, many researchers have argued that scale separation prevents local processes, such as the local diurnal cycle of precipitation, from directly influencing global scale phenomena such as the variability of atmospheric circulation associated with the equatorial waves. In our study we show that in fact multiscale interactions, which link processes in local and global scales, may play a crucial role for propagation of the CCKWs, which along with the Madden-Julian Oscillation (MJO) are the main eastward propagating component of intraseasonal variability. In our study, we show that not only do CCKWs bring excess amounts of precipitation to the Maritime Continent, but events which are phase locked with the local diurnal cycle of convection have a precipitation signal up to three times larger than average. That means that CCKWs are a primary candidate for extreme precipitation events over the densely populated areas of Indonesia and Malaysia. The complex terrain created by mixture of oceans and lands within the Maritime Continent is unique: the distance between the two main land masses at the equator (islands of Sumatra and Borneo) is approximately the same as the distance travelled by a CCKW in one day. Therefore a CCKW event that is synchronized with a local diurnal cycle over Sumatra is likely to be synchronized over Borneo as well. We find that CCKWs, which are in phase with the local diurnal cycle of precipitation over Sumatra, Borneo and surrounding seas, have a 40% larger chance to successfully cross the Maritime Continent than other CCKWs. That unique feature is a likely a clear example of a multiscale interaction within the region.

  17. Hunting for the beat in the body: On period and phase locking in music-induced movement

    Directory of Open Access Journals (Sweden)

    Birgitta eBurger

    2014-11-01

    Full Text Available Music has the capacity to induce movement in humans. Such responses during music listening are usually spontaneous and range from tapping to full-body dancing. However, it is still unclear how humans embody musical structures to facilitate entrainment. This paper describes two experiments, one dealing with period locking to different metrical levels in full-body movement and its relationships to beat- and rhythm-related musical characteristics, and the other dealing with phase locking in the more constrained condition of sideways swaying motions. Expected in Experiment 1 was that music with clear and strong beat structures would facilitate more period-locked movement. Experiment 2 was assumed to yield a common phase relationship between participants’ swaying movements and the musical beat. In both experiments optical motion capture was used to record participants’ movements. In Experiment 1 a window-based period-locking probability index related to four metrical levels was established, based on acceleration data in three dimensions. Subsequent correlations between this index and musical characteristics of the stimuli revealed pulse clarity to be related to periodic movement at the tactus level, and low frequency flux to mediolateral and anteroposterior movement at both tactus and bar levels. At faster tempi higher metrical levels became more apparent in participants’ movement. Experiment 2 showed that about half of the participants showed a stable phase relationship between movement and beat, with superior-inferior movement most often being synchronized to the tactus level, whereas mediolateral movement was rather synchronized to the bar level. However, the relationship between movement phase and beat locations was not consistent between participants, as the beat locations occurred at different phase angles of their movements. The results imply that entrainment to music is a complex phenomenon, involving the whole body and occurring at

  18. Design of the power supply system for the plasma current modulation on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M.; Shao, J.; Ma, S.X., E-mail: mashaoxiang@hust.edu.cn; Liang, X.; Yu, K.X.; Pan, Y.

    2016-10-15

    Highlights: • A modification scheme of heating field power supply system for plasma current modulation. • High-power fast control power supply with multilevel cascade circuit. • Restraining circulating current with coupled inductors in cyclic symmetric structure. - Abstract: In order to further study the influence of current modulation parameters on suppressing tearing instability, the plasma current should be modulated in a wider range. So a modification scheme is designed to improve the performance of ohmic heating power supply system on J-TEXT tokamak. A multilevel cascade circuit with carrier phase-shifted PWM technique has been proposed. Coupled inductors are connected in the form of cyclic symmetry to restrain the circulating current caused by multiple paralleled branches. The simulation proves this proposed current modulation power supply system matches output requirement and achieves good current sharing effect. Finally, a prototype is designed, and the experiment results can verify the correctness of the simulation model well.

  19. 神经网络与锁相环相结合的谐波检测方法%Method of Harmonic Detection Based on Neural Network Combined with Phase-Locked Loop

    Institute of Scientific and Technical Information of China (English)

    马立新; 肖川; 林家隽; 郑益文

    2011-01-01

    In order to improve the harmonic detection precision and real-time of active power filter(APF), a harmonic detection method combined artificial neural network (ANN)with the phase-locked loop (PLL)was propsed in the paper. Neural network computing the fundamental amplitude,and PLL output unit amplitude of the current. Multiplying them obtain grid base wave current,and pure harmonic current can be calculated with grid current minus the grid base wave current. Compared with ip-iq traditional harmonic detection phase, the proposed method does not contain low-pass filter,which is a great improve in accuracy and real-time. The advantages of less delay,high precision and easy to use software to realize make the proposed method more suitable for active power filter harmonic detection. MATLAB simulation verifies its effectiveness and superiority.%为提高有源电力滤波器APF(active power filter)对谐波检测的实时性和准确性,本文提出了一种人工神经网络ANN(artificial neural network)与锁相环PLL(phase-locked loop)相结合的谐波检测方法.神经网络计算基波幅值,锁相环输出单位幅值的基波电流,两者相乘为电网基波电流,电网电流减去电网基波电流便可得到纯谐波电流.该方法没有传统ip-iq谐波检测方法中的低通滤波成分,从而在实时性及精确性上有很大提高,延迟小、精度高、易于用软件实现的优点使得该方法更适用于有源电力滤波器的谐波检测,MATLAB的仿真验证了该算法的有效性及优越性

  20. Modulation of presbycusis: current status and future directions.

    Science.gov (United States)

    Willott, J F; Hnath Chisolm, T; Lister, J J

    2001-01-01

    Literature and ideas are reviewed concerning the modulation of presbycusis - the influence of variables that can alter the severity and/or time course of presbycusis or counteract its negative aspects. Eleven topics are identified: variables related to biological aging; genetics; noise-induced hearing loss; moderately augmented acoustic environment; neural plasticity and the central auditory system; neural plasticity and hearing aids; socioeconomic and cultural barriers to hearing aid use; lifestyle (diet, exercise, etc.); medical variables; pharmaceutical interventions for presbycusis, and cognitive variables. It is concluded that the field of otogerontology will best be served by a comprehensive, integrative interaction among basic researchers and clinical scientists who will continue to learn how the auditory problems associated with presbycusis can be intentionally modulated in beneficial ways.

  1. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    Science.gov (United States)

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  2. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation

    Science.gov (United States)

    Sánchez-Parcerisa, D.; Pourbaix, J. C.; Ainsley, C. G.; Dolney, D.; Carabe, A.

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ˜9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  3. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Pourbaix, J C; Ainsley, C G; Dolney, D; Carabe, A

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ∼9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  4. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    DEFF Research Database (Denmark)

    Patel, Bijal; Bright, Damian P; Mortensen, Martin;

    2016-01-01

    UNLABELLED: Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number o...

  5. Capsaicinoids Modulating Cardiometabolic Syndrome Risk Factors: Current Perspectives

    Directory of Open Access Journals (Sweden)

    Vijaya Juturu

    2016-01-01

    Full Text Available Capsaicinoids are bioactive nutrients present within red hot peppers reported to cut ad libitum food intake, to increase energy expenditure (thermogenesis and lipolysis, and to result in weight loss over time. In addition it has shown more benefits such as improvement in reducing oxidative stress and inflammation, improving vascular health, improving endothelial function, lowering blood pressure, reducing endothelial cytokines, cholesterol lowering effects, reducing blood glucose, improving insulin sensitivity, and reducing inflammatory risk factors. All these beneficial effects together help to modulate cardiometabolic syndrome risk factors. The early identification of cardiometabolic risk factors can help try to prevent obesity, hypertension, diabetes, and cardiovascular disease.

  6. Design and Realization of Digital Phase Locked Loop for Control System of SVC%用于SVC数控系统的数字锁相环的设计与实现

    Institute of Scientific and Technical Information of China (English)

    张志文; 郭斌; 罗隆福; 曾志兵; 王伟

    2011-01-01

    为减少在静止无功补偿(SVC)装置中晶闸管的触发误差,设计了一种基于FPGA(现场可编程门阵列)的全数字锁相环(ADPLL),并进行硬件电路测试.同时分析了全数字锁相环的各模块工作原理并进行了参数设计和电路仿真.最后在实验平台上进行了测试.结果显示,该环路可稳定跟踪电网信号,可为SVC数字控制系统提供快速、稳定、高精度的同步信号.%In order to reduce the thyristor triggering error in the static var compensator (SVC), all digital phase-locked loop(ADPLL) is designed based on field programmable gate array(FPGA). Principle of each module is analyzed ,and the parameter design and the circuit simulation are completed. Finally, it is tested on experimental platform. The result shows that the ADPLL can stably track power network signal. It provides fast, stable and accurate synchronized signal for the SVC numerical control system.

  7. X-ray tube current modulation and patient doses in chest CT.

    Science.gov (United States)

    He, Wenjun; Huda, Walter; Magill, Dennise; Tavrides, Emily; Yao, Hai

    2011-01-01

    The aim of the study was to investigate how patient effective doses vary as a function of X-ray tube projection angle, as well as the patient long axis, and quantify how X-ray tube current modulation affects patient doses in chest CT examinations. Chest examinations were simulated for a gantry CT scanner geometry with projections acquired for a beam width of 4 cm. PCXMC 2.0.1 was used to calculate patient effective doses at 15° intervals around the patient's isocentre, and at nine locations along the patient long axis. Idealised tube current modulation schemes were modelled as a function of the X-ray tube angle and the patient long axis. Tube current modulations were characterised by the modulation amplitude R, which was allowed to vary between 1.5 and 5. Effective dose maxima occur for anteroposterior projections at the location of the (radiosensitive) breasts. The maximum to minimum ratio of effective doses as a function of the patient long axis was 4.9, and as a function of the X-ray tube angle was 2.1. Doubling the value of R reduces effective doses from longitudinal modulation alone by ∼4% and from angular modulation alone by ∼2%. In chest CT, tube current modulation schemes currently have longitudinal R values of ∼2.2, and angular R values that range between 1.5 and 3.4. Current X-ray tube current modulation schemes are expected to reduce patient effective doses in chest CT examinations by ∼10%, with longitudinal modulation accounting for two-thirds and angular modulation for the remaining one-third.

  8. Experimental Phenomena of Improved Ohmic Confinement Induced by Modulated Toroidal Current on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    毛剑珊; 罗家融; P.Phillips; 赵君煜; 揭银先; 吴振伟; 胡立群; 李建刚

    2002-01-01

    The phenomena of improved ohmic confinement have been observed during the modulation of the toroidal curranton the Hefei superconducting Tokamak-7 (HT-7). In the experiment, the programming ohmic heating field wasmodulated. A toroidal frequency-modulated current induced by modulated loop voltage was added on the plasmaequilibrium current. The ratio of ac amplitude of the plasma current to the main plasma current is about 12-30%.These improved plasma confinement phenomena include the facts that the average electron density and the centralelectron temperature both increase, the Dα radiation from the edge is reduced, the magnetohydrodynamics isobviously suppressed by oscillating plasma current, eand the global energy confinement time increases by 27-45%o.It is found that the faster the modulation is, the more effective the improved ohmic confinement phase.

  9. Internal switches modulating electron tunneling currents in respiratory complex III.

    Science.gov (United States)

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex.

  10. Effect of Modulated Alternating and Direct Current Iontophoresis on Transdermal Delivery of Lidocaine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Gaurav Bhatia

    2014-01-01

    Full Text Available The objective of this study was to investigate the iontophoretic delivery of lidocaine hydrochloride through porcine skin and to compare the effects of modulated alternating and direct current iontophoresis. Continuous and modulated iontophoresis was applied for one hour and two hours (0-1 h and 4-5th h using a 1% w/v solution of lidocaine hydrochloride. Tape stripping was done to quantify the amount of drug permeated into stratum corneum and skin extraction studies were performed to determine the amount of drug in stripped skin. Receptor was sampled and analyzed over predefined time periods. The amount of lidocaine delivered across porcine skin after modulated direct current iontophoresis for 2 h was 1069.87±120.03 μg/sq·cm compared to 744.81±125.41 μg/sq·cm after modulated alternating current iontophoresis for 2 h. Modulated direct current iontophoresis also enhanced lidocaine delivery by twelvefold compared to passive delivery as 91.27±18.71 μg/sq·cm of lidocaine was delivered after passive delivery. Modulated iontophoresis enhanced the delivery of lidocaine hydrochloride across porcine skin compared to the passive delivery. Modulated alternating current iontophoresis for duration of 2 h at frequency of 1 kHz was found to be comparable to the continuous direct current iontophoresis for 1 h.

  11. Effect of modulated alternating and direct current iontophoresis on transdermal delivery of lidocaine hydrochloride.

    Science.gov (United States)

    Bhatia, Gaurav; Banga, Ajay K

    2014-01-01

    The objective of this study was to investigate the iontophoretic delivery of lidocaine hydrochloride through porcine skin and to compare the effects of modulated alternating and direct current iontophoresis. Continuous and modulated iontophoresis was applied for one hour and two hours (0-1 h and 4-5th h) using a 1% w/v solution of lidocaine hydrochloride. Tape stripping was done to quantify the amount of drug permeated into stratum corneum and skin extraction studies were performed to determine the amount of drug in stripped skin. Receptor was sampled and analyzed over predefined time periods. The amount of lidocaine delivered across porcine skin after modulated direct current iontophoresis for 2 h was 1069.87 ± 120.03 μ g/sq · cm compared to 744.81 ± 125.41 μ g/sq · cm after modulated alternating current iontophoresis for 2 h. Modulated direct current iontophoresis also enhanced lidocaine delivery by twelvefold compared to passive delivery as 91.27 ± 18.71 μ g/sq · cm of lidocaine was delivered after passive delivery. Modulated iontophoresis enhanced the delivery of lidocaine hydrochloride across porcine skin compared to the passive delivery. Modulated alternating current iontophoresis for duration of 2 h at frequency of 1 kHz was found to be comparable to the continuous direct current iontophoresis for 1 h.

  12. A simple high accuracy phase locked loop method%一种内同步高精度锁相环技术研究

    Institute of Scientific and Technical Information of China (English)

    耿攀; 吴卫民; 陈建明; 叶银忠; 刘以建

    2011-01-01

    本文提出一种适用于数字控制的内同步高精度锁相环方法.本方法实现简单,在系统正常工作情况下可以高精度跟踪电网同步信号.在失去电网同步信号后依然可以使系统按照原来的频率和相位继续稳定运行,更适用于需要在并网、离网自由切换工作的系统.本文首先详细分析了此处带内同步程序锁相环的工作原理,然后推导了采用这种锁相方法的具体精度,最后通过1kW样机实验验证了提出方法的正确性.%This paper proposes a simple high accuracy inner-synchronization phase locked loop method used for digital control. This method is very easy to be realized. When the system works under normal condition, it could track the grid synchronized signal in high accuracy. When the system losses the grid synchronized signal, it could keep stable operation under the former frequency and phase position, and it is more suitable for the systems which need to switch between grid-tied and stand-alone mode. In this paper, the working principle of the phase locked loop with inner-synchronized program is analyzed at first. The accuracy using this phase locked loop method is derived. Finally, experimental results on a l kW prototype prove the validity of the proposed method.

  13. 统一潮流控制器同步锁相技术研究%Research on phase locked synchronization in unified power flow controller

    Institute of Scientific and Technical Information of China (English)

    史媛; 江道灼; 周月宾

    2012-01-01

    快速准确地锁定电网电压相位角并提取对称分量是统一潮流控制器(Unified Power Flow Controller,UPFC)控制策略的基础.提出一种基于双向同步旋转坐标系和交叉解耦消除二倍频分量的同步锁相技术,利用Matlab和UPFC小模型平台,对电网存在电压谐波、三相不对称短路及频率突变等严重干扰情况下的同步锁相性能进行了建模仿真和实验验证,并对比了这种新型锁相技术与基于Park变换的锁相技术的性能差异.仿真和实验结果表明,所提出的新型锁相技术,即使在恶劣电压环境下也能快速、准确地锁定相位,作为UPFC的同步锁相环具有更强的适应性.%The rapid and accurate phase and symmetrical components detection is essential for the control of Unified Power Flow Controller (UPFC). The novel phase locked loop (PLL) in this paper is based on double synchronous reference frames and uses decoupling to cancle out double frequency component. It uses small model platform of Matlab and UPFC to simulate the phase locked synchronization performance under the conditions of severe disturbances of voltage harmonic, three-phase asymmetric short circuit and frequency discontinuity, and compares it with the conventional phase locked loop based on Park transformation. The results of simulation and experimentation both verify the fact that the novel PLL can detect the phase fast and exactly, and has more flexibilty as the phase locked loop of UPFC.This work is supported by National High Technology Research and Development Program of China (863 Program).

  14. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-phase Grid-Interfaced Converters in Distributed Utility Networks

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Wu, Weiyang; Chen, Zhe

    2011-01-01

    Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL......) and synchronization techniques have been presented in the past decades. Most of them make a tradeoff between the accuracy and dynamic response under severe distorted and unbalanced conditions. In this paper, a multiple-complex coefficient-filter-based PLL is presented, and its unique feature lies in the accurate...

  15. A widely tunable 10-$\\mu$m quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy

    CERN Document Server

    Sow, Papa Lat Tabara; Tokunaga, Sean K; Lopez, Olivier; Goncharov, Andrey; Argence, Bérengère; Chardonnet, Christian; Amy-Klein, Anne; Daussy, Christophe; Darquié, Benoît

    2014-01-01

    We report the coherent phase-locking of a quantum cascade laser (QCL) at 10-$\\mu$m to the secondary frequency standard of this spectral region, a CO2 laser stabilized on a saturated absorption line of OsO4. The stability and accuracy of the standard are transferred to the QCL resulting in a line width of the order of 10 Hz, and leading to our knowledge to the narrowest QCL to date. The locked QCL is then used to perform absorption spectroscopy spanning 6 GHz of NH3 and methyltrioxorhenium, two species of interest for applications in precision measurements.

  16. A 3rd Order Low Power Switched Current Sigma-Delta Modulator

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Herald Holger; Bogason, Gudmundur

    1996-01-01

    This paper presents a 3rd order switched current Sigma-Delta modulator. The Sigma-Delta modulator operates at a sampling rate of 600kHz and the signal band is 5.5kHz, i.e. an oversampling factor of 54.5 is used. Multiple input signals are used to reduce the internal signal swings which results...

  17. 电压频率偏移条件下新型锁相环在三相电压型PWM整流器中的应用%The application of the novel phase-locked loop in three-phase voltage source PWM rectifier under frequency offset of voltage

    Institute of Scientific and Technical Information of China (English)

    侯世英; 张诣

    2011-01-01

    Aiming at the problems that classic phase-locked loop (PLL) has low response speed and detection accuracy under frequency offset of network voltage conditions, a novel analog signal PLL based on coordinate transformation is proposed, and based on the PLL, the model of three-phase voltage source pulse width modulation (PWM) rectifier is built. The rectifier adopts the modulation method of space vector pulse width modulation(SVPWM). According to the circuit topology of the PWM rectifier, the framework of control strategy is given. Also the circuit topology and working principle of PLL are analyzed. Finally, a simulation is done through the Matlab. Simulation results show that the PLL can track the network frequency so well that it can realize phase locking. And the novel PLL can also achieve phase locking under the condition of frequency drift of three-phase network voltage.%为了解决在电网电压出现频率偏移时,传统锁相环响应速度慢、锁相精度差的问题,提出一种基于坐标变换理论的新型模拟信号锁相环,并建立了基于模拟信号锁相环的三相电压型PWM整流器模型.该整流器采用空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM).在对所提PwM整流器的基本拓扑进行分析的基础上,给出了控制策略框图,并分析了新型锁相环的电路结构和工作原理.通过Matlab对所建模型进行了仿真.仿真结果表明:模拟信号锁相环能够快速跟踪系统频率的变化,实现锁相功能.同时,在三相电网电压频率出现小范围漂移情况下,新型锁相环也能够准确锁相.

  18. Intensity modulated radiation therapy for breast cancer: current perspectives

    Science.gov (United States)

    Buwenge, Milly; Cammelli, Silvia; Ammendolia, Ilario; Tolento, Giorgio; Zamagni, Alice; Arcelli, Alessandra; Macchia, Gabriella; Deodato, Francesco; Cilla, Savino; Morganti, Alessio G

    2017-01-01

    Background Owing to highly conformed dose distribution, intensity modulated radiation therapy (IMRT) has the potential to improve treatment results of radiotherapy (RT). Postoperative RT is a standard adjuvant treatment in conservative treatment of breast cancer (BC). The aim of this review is to analyze available evidence from randomized controlled trials (RCTs) on IMRT in BC, particularly in terms of reduction of side effects. Methods A literature search of the bibliographic database PubMed, from January 1990 through November 2016, was performed. Only RCTs published in English were included. Results Ten articles reporting data from 5 RCTs fulfilled the selection criteria and were included in our review. Three out of 5 studies enrolled only selected patients in terms of increased risk of toxicity. Three studies compared IMRT with standard tangential RT. One study compared the results of IMRT in the supine versus the prone position, and one study compared standard treatment with accelerated partial breast IMRT. Three studies reported reduced acute and/or late toxicity using IMRT compared with standard RT. No study reported improved quality of life. Conclusion IMRT seems able to reduce toxicity in selected patients treated with postoperative RT for BC. Further analyses are needed to better define patients who are candidates for this treatment modality. PMID:28293119

  19. Comprehensive Investigation on Current Imbalance among Parallel Chips inside MW-Scale IGBT Power Modules

    DEFF Research Database (Denmark)

    Wu, Rui; Smirnova, Liudmila; Wang, Huai

    2015-01-01

    With the demands for increasing the power rating and improving reliability level of the high power IGBT modules, there are further needs of understanding how to achieve stable paralleling and identical current sharing between the chips. This paper investigates the stray parameters imbalance among...... parallel chips inside the 1.7 kV/1 kA high power IGBT modules at different frequencies by Ansys Q3D parastics extractor. The resulted current imbalance is further confirmed by experimental measurement....

  20. Hysteresis Current Control technique based on Space Vector Modulation for Active Power Filter

    Directory of Open Access Journals (Sweden)

    Wang Yun-liang

    2011-09-01

    Full Text Available In this paper, the hysteresis current control (HCC technique based on space vector modulation (SVM for shunt active power filter (APF is proposed. The switching control algorithms of the HCC based SVM manage to generate compensated current according to the reference current. Harmonics extraction is based on the instantaneous active and reactive power theorem in time domain by calculating the power compensation. A closed loop control system is carried out and the error current is the difference between the reference current which is obtained from the power compensation and the actual current needs to be injected back into the power grid. By implementing this control strategy, the APF manages to generate better compensated harmonics currents to the power grid. Keywords: active power filter, hysteresis current control, space vector modulation ,matlab/simulink

  1. Simple and Universal Current Modulator Circuit for Indoor Mobile Free-Space-Optical Communications Testing

    Directory of Open Access Journals (Sweden)

    Stanislav Hejduk

    2014-01-01

    Full Text Available The use of LED for illumination and communication together is more and more interesting with the increasing deployment of LEDs to our homes and industrial buildings. Modulation of this kind of light sources is difficult because of high voltage and current demands. Since the LED configurations and values of current and voltage are different, our universal modulator has to be able to operate even under these circumstances. This paper proposes simple and universal current modulator for LED lighting modulation for frequencies around 1MHz. Main objective is to allow initial testing of different types of High Power LEDs and different photodetector configurations and circuits in diffusive based Free-Space-Optical networks. In the experimental part we also compare results for some different types of LED light sources.

  2. The PBW Filtration, Demazure Modules and Toroidal Current Algebras

    Directory of Open Access Journals (Sweden)

    Evgeny Feigin

    2008-10-01

    Full Text Available Let L be the basic (level one vacuum representation of the affine Kac-Moody Lie algebra ^g. The m-th space F_m of the PBW filtration on L is a linear span of vectors of the form x_1dots x_lv_0, where l ≤ m, x_i in ^g and v_0 is a highest weight vector of L. In this paper we give two descriptions of the associated graded space L^{gr} with respect to the PBW filtration. The ''top-down'' description deals with a structure of L^{gr} as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field e_θ(z2, which corresponds to the longest root θ. The ''bottom-up'' description deals with the structure of L^{gr} as a representation of the current algebra g otimes C[t]. We prove that each quotient F_m/F_{m-1} can be filtered by graded deformations of the tensor products of m copies of g.

  3. Current Sharing inside a High Power IGBT Module at the Negative Temperature Coefficient Operating Region

    CERN Document Server

    Asimakopoulos, Panagiotis; Bongiorno, M; Thiringer, T

    2016-01-01

    This work investigates the current sharing effect of a high power Soft Punch Through IGBT module in the Negative Temperature Coefficient region. The unbalanced current sharing between two of the substrates is demonstrated for different current and temperature levels and its impact on the thermal stressing of the device is evaluated. The results indicate that the current asymmetry does not lead to a significant thermal stressing unbalance between the substrates.

  4. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability.

    Science.gov (United States)

    Bocci, Tommaso; Marceglia, Sara; Vergari, Maurizio; Cognetto, Valeria; Cogiamanian, Filippo; Sartucci, Ferdinando; Priori, Alberto

    2015-07-01

    This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.

  5. Parietal transcranial direct current stimulation modulates primary motor cortex excitability.

    Science.gov (United States)

    Rivera-Urbina, Guadalupe Nathzidy; Batsikadze, Giorgi; Molero-Chamizo, Andrés; Paulus, Walter; Kuo, Min-Fang; Nitsche, Michael A

    2015-03-01

    The posterior parietal cortex is part of the cortical network involved in motor learning and is structurally and functionally connected with the primary motor cortex (M1). Neuroplastic alterations of neuronal connectivity might be an important basis for learning processes. These have however not been explored for parieto-motor connections in humans by transcranial direct current stimulation (tDCS). Exploring tDCS effects on parieto-motor cortical connectivity might be functionally relevant, because tDCS has been shown to improve motor learning. We aimed to explore plastic alterations of parieto-motor cortical connections by tDCS in healthy humans. We measured neuroplastic changes of corticospinal excitability via motor evoked potentials (MEP) elicited by single-pulse transcranial magnetic stimulation (TMS) before and after tDCS over the left posterior parietal cortex (P3), and 3 cm posterior or lateral to P3, to explore the spatial specificity of the effects. Furthermore, short-interval intracortical inhibition/intracortical facilitation (SICI/ICF) over M1, and parieto-motor cortical connectivity were obtained before and after P3 tDCS. The results show polarity-dependent M1 excitability alterations primarily after P3 tDCS. Single-pulse TMS-elicited MEPs, M1 SICI/ICF at 5 and 7 ms and 10 and 15 ms interstimulus intervals (ISIs), and parieto-motor connectivity at 10 and 15 ms ISIs were all enhanced by anodal stimulation. Single pulse-TMS-elicited MEPs, and parieto-motor connectivity at 10 and 15 ms ISIs were reduced by cathodal tDCS. The respective corticospinal excitability alterations lasted for at least 120 min after stimulation. These results show an effect of remote stimulation of parietal areas on M1 excitability. The spatial specificity of the effects and the impact on parietal cortex-motor cortex connections suggest a relevant connectivity-driven effect.

  6. Phase-locked loop synchronous switching control in the water supply system%锁相环同步切换控制在恒压供水系统中的应用

    Institute of Scientific and Technical Information of China (English)

    谢静; 耿凡娜

    2012-01-01

    针对变频恒压供水系统中水泵电机由变频电源供电向工频电源供电切换时,由于水泵电机断电后的电动势与工频电源相位差的不确定性.可能产生的过电流问题进行了锁相环同步切换控制的研究。%In variable-frequency constant-pressure system of water supply, the problem of excessive current may be generated when the system controls the pumps to get power from variable frequency equipment changing to the electricity network, and due to the phenomenon caused by the uncertain phase relationships between back electromotive force of the pmnp and the power supply. This paper discusses the synchronous switch control based on digital PLL (Phase Lock Loop) to solve the problem.

  7. Compact 0.3-to-1.125 GHz self-biased phase-locked loop for system-on-chip clock generation in 0.18 µm CMOS

    Science.gov (United States)

    Zhang, Zhao; Liu, Liyuan; Feng, Peng; Liu, Jian; Wu, Nanjian

    2016-04-01

    In this paper, we propose a compact ring-oscillator-based self-biased phase-locked loop (SBPLL) for system-on-chip (SoC) clock generation. It adopts the proposed triple-well NMOS source degeneration voltage-to-current (V-I) converter instead of the operational amplifier (OPAMP) based V-I converter and a proposed simple start-up circuit with a negligible area to save power and area. The SBPLL is implemented in the 0.18 µm CMOS process, and it occupies 0.048 mm2 active core. The measurement results show the SBPLL can generate output frequency in a wide range from 300 MHz to 1.125 GHz with a constant loop bandwidth that is around 5 MHz and a relatively low jitter performance that is less than 4.9 mUI over the entire covered frequency range. From -20 to 70 °C the rms jitter variation and loop bandwidth variation at 1.125 GHz are 0.2 ps and 350 kHz, respectively. The rms jitter performance variation of all covered frequency points is less than 10% in the supply range from 1.5 to 1.7 V. Such SBPLL shows robustness over environmental variation. The maximum power consumption is 5.6 mW with 1.6 V supply at an output frequency of 1.125 GHz.

  8. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This paper proposes a novel Direct Bonded Copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect......, which consequently improves the current sharing among the paralleled SiC MOSFET dies in power module. Mathematic analysis and circuit model of the DBC layout are presented to elaborate on the superior features of the proposed DBC layout. Simulation and experimental results further verify the theoretical...

  9. A Novel DBC Layout for Current Imbalance Mitigation in SiC MOSFET Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon

    2016-01-01

    This letter proposes a novel direct bonded copper (DBC) layout for mitigating the current imbalance among the paralleled SiC MOSFET dies in multichip power modules. Compared to the traditional layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect......, which consequently improves the current sharing among the paralleled SiC MOSFET dies in power module. Mathematic analysis and circuit model of the DBC layout are presented to elaborate the superior features of the proposed DBC layout. Simulation and experimental results further verify the theoretical...

  10. Differential modulation of corticospinal excitability by different current densities of anodal transcranial direct current stimulation.

    Directory of Open Access Journals (Sweden)

    Andisheh Bastani

    Full Text Available BACKGROUND: Novel non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS have been developed in recent years. TDCS-induced corticospinal excitability changes depend on two important factors current intensity and stimulation duration. Despite clinical success with existing tDCS parameters, optimal protocols are still not entirely set. OBJECTIVE/HYPOTHESIS: The current study aimed to investigate the effects of four different anodal tDCS (a-tDCS current densities on corticospinal excitability. METHODS: Four current intensities of 0.3, 0.7, 1.4 and 2 mA resulting in current densities (CDs of 0.013, 0.029, 0.058 and 0.083 mA/cm(2 were applied on twelve right-handed (mean age 34.5±10.32 yrs healthy individuals in different sessions at least 48 hours apart. a-tDCS was applied continuously for 10 minute, with constant active and reference electrode sizes of 24 and 35 cm(2 respectively. The corticospinal excitability of the extensor carpi radialis muscle (ECR was measured before and immediately after the intervention and at 10, 20 and 30 minutes thereafter. RESULTS: Post hoc comparisons showed significant differences in corticospinal excitability changes for CDs of 0.013 mA/cm(2 and 0.029 mA/cm(2 (P = 0.003. There were no significant differences between excitability changes for the 0.013 mA/cm(2 and 0.058 mA/cm(2 (P = 0.080 or 0.013 mA/cm(2 and 0.083 mA/cm(2 (P = 0.484 conditions. CONCLUSION: This study found that a-tDCS with a current density of 0.013 mA/cm(2 induces significantly larger corticospinal excitability changes than CDs of 0.029 mA/cm(2. The implication is that might help to avoid applying unwanted amount of current to the cortical areas.

  11. Networking sampling busbar protection based on voltage phase lock%基于电压锁相网络化采样的母线保护研究

    Institute of Scientific and Technical Information of China (English)

    韩冰; 汤汉松; 刘斌; 周东顶; 郑发林

    2015-01-01

    设计一种既具备结构简单、资源共享、扩展性好等优点,又不依赖于外部全局同步系统的采样值组网传输的母线保护,在数字化变电站的建设中具有十分重要的意义。介绍了数字化变电站母线保护的采样值传输系统,描述了基于绝对延时的点对点母线保护技术,提出了一种基于电压锁相的网络化母线保护方案。利用母线电压天然的同步性能特征,通过数字锁相环及采样重插值技术,消除网络化采样对同步信号的依赖性。测试表明,基于电压锁相的网络化母线保护采样同步性好,动作快速可靠,是数字化变电站母线保护的一种新思路。%A sampling value network transmission bus protection independent of outside global synchronization system is designed. The protection has the advantages of simple structure, resource sharing and good expansibility, so it has very important significance in the construction of digital substation. This paper introduces the sampling transmission system of bus protection in digital substation, describes a point-to-point bus protection technology based on absolute delay, and proposes a network bus protection using voltage phase lock. The synchronization performance of bus voltage, digital phase locked loop and resampling interpolation are used to eliminate the synchronization dependence in network sampling system. Experiments show that the bus protection based on voltage phase lock is well synchronous, fast and reliable. This method is a new solution for the bus protection of digital substation.

  12. Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Ma, J Y; Scheuer, T; Catterall, W A

    1996-05-01

    Phosphorylation of brain Na+ channels by protein kinase C (PKC) decreases peak Na+ current and slows macroscopic inactivation, but receptor-activated modulation of Na+ currents via the PKC pathway has not been demonstrated. We have examined modulation of Na+ channels by activation of muscarinic receptors in acutely-isolated hippocampal neurons using whole-cell voltage-clamp recording. Application of the muscarinic agonist carbachol reduced peak Na+ current and slowed macroscopic inactivation at all potentials, without changing the voltage-dependent properties of the channel. These effects were mediated by PKC, since they were eliminated when the specific PKC inhibitor (PKCI19-36) was included in the pipette solution and mimicked by the extracellular application of the PKC activator, OAG. Thus, activation of endogenous muscarinic receptors on hippocampal neurons strongly modulates Na+ channel activity by activation of PKC. Cholinergic input from basal forebrain neurons may have this effect in the hippocampus in vivo.

  13. A Single-Phase Multilevel Current-Source Converter using H-Bridge and DC Current Modules

    Directory of Open Access Journals (Sweden)

    Suroso Suroso

    2014-03-01

    Full Text Available This paper presents a different topology of H-bridge based multilevel current-source inverter (CSI. In this new topology, an H-bridge CSI is connected with a single or more current modules to generate a multilevel output current waveform with lower di/dt, and less distortion. Using the proposed multilevel CSI, the number of the power switching devices, and isolated gate drive circuits can be reduced. Moreover, chopper based DC current sources are presented to reduce the inductor size effectively to be in micro-Henry order, and ensure the balance of the intermediate current levels. The proposed topology is inherently able to reduce the inductor conduction losses if compared with the conventional multilevel CSIs and the H-bridge CSI. Seven-level PWM inverter configurations with non-isolated DC current sources and with a single DC power source are verified through computer simulations. Furthermore, laboratory prototypes of seven-level CSI is setup and tested. The results show that the inverter circuit works properly to generate the multilevel output current waveform with low harmonics currents, small inductors and with less conduction losses which proves feasibility of the proposed multilevel CSI. Normal 0 false false false EN-US X-NONE X-NONE

  14. A wide range ultra-low power Phase-Locked Loop with automatic frequency setting in 130 nm CMOS technology for data serialisation

    Science.gov (United States)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moroń, J.; Świentek, K.

    2015-12-01

    The design and measurements results of a wide frequency range ultra-low power Phase-Locked Loop (PLL) for applications in readout systems of particle physics detectors are presented. The PLL was fabricated in a 130 nm CMOS technology. To allow the implementation of different data serialisation schemes multiple division factors (6, 8, 10, 16) were implemented in the PLL feedback loop. The main PLL block—VCO works in 16 frequency ranges/modes, switched either manually or automatically. A dedicated automatic frequency mode switching circuit was developed to allow simple frequency tuning. Although the PLL was designed and simulated for a frequency range of 30 MHz-3 GHz, due to the SLVS interface limits, the measurements were done only up to 1.3 GHz. The full PLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption (0.7 mW at 1 GHz).

  15. Phase-locked stereoscopic PIV measurements of the turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine cylinder

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Walther, Jens Honore

    2013-01-01

    turbulence models. In the present work, the flow in a dynamic scale model of a uniflow-scavenged cylinder is investigated experimentally. The model has a transparent cylinder and a movable piston driven by a linear motor. The flow is investigated using phase-locked stereoscopic particle image velocimetry......It is desirable to use computational fluid dynamics for the optimization of in-cylinder processes in large two-stroke low-speed uniflowscavenged marine diesel engines. However, the complex nature of the turbulent swirling in-cylinder flow necessitates experimental data for validation of the used...... (PIV) and time resolved laser Doppler anemometry (LDA). Radial profiles of the phase-averaged mean velocities are computed from the velocity fields recorded with PIV and the validity of the obtained profiles is demonstrated by comparison with reference LDA measurements. Radial profiles are measured...

  16. Brain correlates of self-rated originality of ideas: evidence from event-related power and phase-locking changes in the EEG.

    Science.gov (United States)

    Grabner, Roland H; Fink, Andreas; Neubauer, Aljoscha C

    2007-02-01

    In the present study, we contrast oscillatory brain activity during the production of subjectively more versus less original ideas. A sample of 26 participants worked on two verbal creativity problems and subsequently rated the produced ideas with respect to their originality. On the basis of these self-ratings, ideas were divided into a more and a less original list within each participant. Cortical activity was assessed by means of event-related changes in EEG power (synchronization and desynchronization) and phase locking in two alpha bands. Analyses revealed that more, as compared with less, original ideas elicited a stronger event-related synchronization of alpha activity (power increases from the pre-stimulus reference to the activation interval) and higher phase coupling in the right hemisphere. These findings corroborate the importance of right-hemispheric cortical networks in creative idea generation.

  17. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-phase Grid-Interfaced Converters in Distributed Utility Networks

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Wu, Weiyang; Chen, Zhe

    2011-01-01

    Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL...... and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely, which has the potential use for selective compensation in active filter applications. Another advantage of the proposed method is its flexibility...... for simplifying its structure in some specified conditions. Results of continuous-domain simulations in MATLAB and discrete-domain experiments based on a 32-b fixed-point TMS320F2812 DSP are in good agreement, which confirm the effectiveness of the proposed method....

  18. 用于时钟恢复电路的低抖动可变延迟线锁相环电路%A Phase Locked Loop for Clock Recove ry Circuit Using Low-Jitter Variable Delay Line

    Institute of Scientific and Technical Information of China (English)

    李曙光; 朱正; 郭宇华; 任俊彦

    2001-01-01

    A charge pump phase-locked loop(PLL) based on voltage-cont rolleddelay line (VCDL) is presented, which is used to locate the sampling clock edge in the clock recovery circuit. This design is independ ent on environment and process. The improved delay unit in VCDL efficiently lowers the output jitter and a low-pass filter (LPF) is desi gned to avoid the charge-sharing error. Using 0.35 μm TSMC process, the circuit can operates at a low voltage of 3.3 V.In the worst- case condition, simulated jitter of single delay module is 20 ps and static phase error is only 45 ps between input and output.%文中给出了一个基于压控可变延迟线的电荷泵锁相环电路的设计,用于时钟恢复电路中采样时钟沿的定位,它的工作不受环境和工艺的影响,保证了采集数据的准确性。应用于延迟线中的改进的延迟单元有效地减小了相位抖动,环路滤波电路的设计避免了电荷重新分配引入的影响。电路采用0.35μmTSMC的MOS工艺,在3.3V的低电压下工作,模拟得到在最坏情况下,单个延迟模块的相位抖动为20ps,输出静态相位误差仅45ps。

  19. Liquid nitrogen cooled integrated power electronics module with high current carrying capability and lower on resistance

    Science.gov (United States)

    Ye, Hua; Lee, Changwoo; Simon, Randy W.; Haldar, Pradeep; Hennessy, Michael J.; Mueller, Eduard K.

    2006-11-01

    This letter presents the development of high-performance integrated cryogenic power modules, where both driver components and power metal-oxide semiconductor field-effect transistors are integrated in a single package, to be used in a 50kW prototype cryogenic inverter operating at liquid nitrogen temperature. The authors have demonstrated a compact high-voltage, cryogenic integrated power module that exhibited more than 14 times improvement in on-resistance and continuous current carrying capability exceeding 40A. The modules are designed to operate at liquid nitrogen temperature with extreme thermal cycling. The power electronic modules are necessary components that provide control and switching for second generation, yttrium barium copper oxide-based high temperature superconductor devices including cables, motors, and generators.

  20. Modulation of auroral electrojet currents using dual HF beams with ELF phase offset

    Science.gov (United States)

    Golkowski, M.; Cohen, M.; Moore, R. C.

    2012-12-01

    The modulation of naturally occuring ionospheric currents with high power radio waves in the high frequency (HF, 3-10 MHz) band is a well known technique for generation of extremely low frequency (ELF, 3-3000 Hz) and very low frequency (VLF, 3-30 kHz) waves. We use the heating facility of the High Frequency Active Auroral Research Program (HAARP) to investigate the effect of using dual HF beams with an ELF/VLF phase offset between the modulation waveforms. Experiments with offset HF beams confirm the model of independent ELF/VLF sources. Experiments with co-located HF beams exhibit interaction between the first and second harmonics of the modulated tones when square and sine wave modulation waveforms are employed. Using ELF/VLF phase offsets for co-loacted beams is also shown to be a potential diagnostic for the D-region ionospheric profile.

  1. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes.

    Science.gov (United States)

    Herrmann, Christoph S; Rach, Stefan; Neuling, Toralf; Strüber, Daniel

    2013-01-01

    Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  2. Josephson junction analog and quasiparticle-pair current

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Pedersen, Niels Falsig

    1973-01-01

    A close analogy exists between a Josephson junction and a phase-locked loop. A new type of electrical analog based on this principle is presented. It is shown that the inclusion in this analog of a low-pass filter gives rise to a current of the same form as the Josephson quasiparticle-pair current...

  3. Single-phase Photovoltaic Grid-connected Inverter Based on Improved Phase-locked-loop%基于改进锁相环的单相光伏并网逆变器研制

    Institute of Scientific and Technical Information of China (English)

    杨恢宏; 沈定坤; 蒋怀贞; 翟登辉

    2011-01-01

    This paper presents an improved Software Phase-locked-loop(SPLL) algorithm for a single phase photovoltaic grid-connected inverter which arrays synchronizing a sinusoidal current output with a voltage grid. Through a phase delay , two orthogonal voltage in stationary coordinate system are generated, virtual d, q coordinate transformation is employed, the phase and frequency of grid voltage is obtained and the computing speed of PLL is improved.For achieving zero steady state error of current inner loop, quasi-proportion resonant (PR) controller is applied, voltage outer loop employs proportion integeral(PI) controller. Finally, simulation analysis based on Matlab and construction of single-phase grid-connected inverter confirm the theory feasibility of the method.%介绍了一种应用于单相光伏并网逆变器的改进型软件锁相环算法,可使逆变器输出电流与电网电压同步.将电网电压通过相位延迟,得到静止坐标系下2个正交电压,采用虚拟d,q坐标变换,经过一系列处理后,得到电网电压的相位及频率,提高了锁相速度,消除了谐波干扰,快速锁定任意频率和幅值电网电压的相位和频率.利用准比例谐振(PR)控制器对电流内环进行跟踪,实现了无静差调节,外环采用PI调节器.最后,通过Matlab仿真及样机实验分别验证了基于改进软件锁相环的单相并网逆变器的可行性.

  4. Design of inverter and grid connected phase locked loop based on DSP control for photovoltaic power generation%基于DSP控制的光伏发电逆变并网锁相环设计

    Institute of Scientific and Technical Information of China (English)

    秦天像; 杨天虎; 任小勇

    2016-01-01

    该文设计了一种基于DSP软件控制的太阳能光伏发电逆变并网锁相环系统。用指针归零法实现了锁相环跟踪控制,并将设计的锁相环运用到光伏并网逆变器中。在MATLAB中建立了仿真模型,仿真结果表明,所设计的锁相环达到了光伏逆变系统的同步要求,具有较高的推广应用价值。%This paper designed solar photovoltaic inverter power grid phase locked loop system based on the DSP software control. The phase locked loop tracking control is realized by using the pointer to ze-ro method, and the design of the phase locked loop is applied to the PV grid connected inverter. The sim-ulation model was built in MATLAB. The simulation results show that the phase locked loop of this paper can meet the requirements of the synchronization performance of PV inverter system, it is of high popular-ization value.

  5. 锁相倍频电路在电压信号DSP数据采集中的应用%Application of Phase Locked Frequency Multiplier Circuit in the Voltage Signal DSP Data Acquisition

    Institute of Scientific and Technical Information of China (English)

    张旭; 黄细霞; 孔祥品; 代小磊

    2012-01-01

    介绍了锁相环集成电路CD4046的工作原理,提出了一种硬件同步的锁相倍频采样测量方法,用锁相环产生的频率来同步DSP2812的A/D采样的频率和时刻,锁相环每发出一个脉冲都启动采样电路进行一次数据采集。实验结果表明系统可行性和有效性。%The working principle of phase locked loop integrated circuit CD4046 was introduced, putting forward a kind of hardware synchronization phase-locked frequency multiplication sampling measurement method, which could use the frequency generating by the phase locked loop to synchronize the DSP2812A/D sampling frequency and time. The phase locked loops would start sampling circuit in a data collection while each emitting a pulse. The experimental results show that the system is feasible and effective.

  6. Frequency-Adaptive Modified Comb-Filter-Based Phase-Locked Loop for a Doubly-Fed Adjustable-Speed Pumped-Storage Hydropower Plant under Distorted Grid Conditions

    Directory of Open Access Journals (Sweden)

    Wei Luo

    2017-05-01

    Full Text Available The control system of a doubly-fed adjustable-speed pumped-storage hydropower plant needs phase-locked loops (PLLs to obtain the phase angle of grid voltage. The main drawback of a comb-filter-based phase-locked loop (CF-PLL is the slow dynamic response. This paper presents a modified comb-filter-based phase-locked loop (MCF-PLL by improving the pole-zero pattern of the comb filter, and gives the parameters’ setting method of the controller, based on the discrete model of MCF-PLL. In order to improve the disturbance resistibility of MCF-PLL when the power grid’s frequency changes, this paper proposes a frequency-adaptive modified, comb-filter-based, phase-locked loop (FAMCF-PLL and its digital implementation scheme. Experimental results show that FAMCF-PLL has good steady-state and dynamic performance under distorted grid conditions. Furthermore, FAMCF-PLL can determine the phase angle of the grid voltage, which is locked when it is applied to a doubly-fed adjustable-speed pumped-storage hydropower experimental platform.

  7. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    Science.gov (United States)

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-02-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna.

  8. Amplification of current density modulation in a FEL with an infinite electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Litvinenko, V.N.; Webb, S.D.

    2011-03-28

    We show that the paraxial field equation for a free electron laser (FEL) in an infinitely wide electron beam with {kappa}-2 energy distribution can be reduced to a fourth ordinary differential equation (ODE). Its solution for arbitrary initial phase space density modulation has been derived in the wave-vector domain. For initial current modulation with Gaussian profile, close form solutions are obtained in space-time domain. In developing an analytical model for a FEL-based coherent electron cooling system, an infinite electron beam has been assumed for the modulation and correction processes. While the assumption has its limitation, it allows for an analytical close form solution to be obtained, which is essential for investigating the underlying scaling law, benchmarking the simulation codes and understanding the fundamental physics. 1D theory was previously applied to model a CeC FEL amplifier. However, the theory ignores diffraction effects and does not provide the transverse profile of the amplified electron density modulation. On the other hand, 3D theories developed for a finite electron beam usually have solutions expanded over infinite number of modes determined by the specific transverse boundary conditions. Unless the mode with the largest growth rate substantially dominates other modes, both evaluation and extracting scaling laws can be complicated. Furthermore, it is also preferable to have an analytical FEL model with assumptions consistent with the other two sections of a CeC system. Recently, we developed the FEL theory in an infinitely wide electron beam with {kappa}-1 (Lorentzian) energy distribution. Close form solutions have been obtained for the amplified current modulation initiated by an external electric field with various spatial-profiles. In this work, we extend the theory into {kappa}-2 energy distribution and study the evolution of current density induced by an initial density modulation.

  9. Current and future priorities for mass and material in silicon PV module recycling

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.L.; Geerligs, L.J.; Goris, M.J.A.A.; Bennett, I.J. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Clyncke, J. [PV CYCLE, Rue Montoyer 23, 1000 Brussels (Belgium)

    2013-10-15

    A full description of the state-of-the-art PV recycling methods and their rationale is presented, which discusses the quality of the recycled materials and the fate of the substances which end up in the landfill. The aim is to flag the PV module components currently not recycled, which may have a priority in terms of their embedded energy, chemical nature or scarcity, for the next evolution of recycling. The sustainability of different recycling options, emerging in the literature on electronic waste recycling, and the possible improvement of the environmental footprint of silicon PV modules, will be discussed.

  10. A wide bandwidth free-electron laser with mode locking using current modulation.

    Energy Technology Data Exchange (ETDEWEB)

    Kur, E.; Dunning, D. J.; McNeil, B. W. J.; Wurtele, J.; Zholents, A. A. (Accelerator Systems Division (APS)); (Univ. of California at Berkeley); (Univ. of Strathclyde); (STFC Daresbury Lab.); (LBNL)

    2011-01-20

    A new scheme for mode locking a free-electron laser amplifier is proposed based on electron beam current modulation. It is found that certain properties of the original concept, based on the energy modulation of electrons, are improved including the spectral brightness of the source and the purity of the series of short pulses. Numerical comparisons are made between the new and old schemes and between a mode-locked free-electron laser and self-amplified spontaneous emission free-electron laser. Illustrative examples using a hypothetical mode-locked free-electron laser amplifier are provided. The ability to generate intense coherent radiation with a large bandwidth is demonstrated.

  11. Effect of Modulated Alternating and Direct Current Iontophoresis on Transdermal Delivery of Lidocaine Hydrochloride

    OpenAIRE

    Gaurav Bhatia; Banga, Ajay K.

    2014-01-01

    The objective of this study was to investigate the iontophoretic delivery of lidocaine hydrochloride through porcine skin and to compare the effects of modulated alternating and direct current iontophoresis. Continuous and modulated iontophoresis was applied for one hour and two hours (0-1 h and 4-5th h) using a 1% w/v solution of lidocaine hydrochloride. Tape stripping was done to quantify the amount of drug permeated into stratum corneum and skin extraction studies were performed to determi...

  12. DC link current simulation of voltage source inverter with random space vector pulse width modulation

    Directory of Open Access Journals (Sweden)

    Chen Guoqiang

    2016-01-01

    Full Text Available Aiming at analysis complexity, a simulation model is built and presented to analyze and demonstrate the characteristics of the direct current (DC link current of the three-phase two-level inverter with the random space vector pulse width modulation (SVPWM strategy. The developing procedure and key subsystems of the simulation model are given in detail. Several experiments are done using the simulation model. The results verify the efficiency and convenience of the simulation model and show that the random SVPWM scheme, especially the random switching frequency scheme, can efficiently suppress the harmonic peaks of the DC link current.

  13. How transcranial direct current stimulation can modulate implicit motor sequence learning and consolidation: A brief review

    Directory of Open Access Journals (Sweden)

    Branislav eSavic

    2016-02-01

    Full Text Available The purpose of this review is to investigate how transcranial direct current stimulation (tDCS can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT, the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.

  14. Design of a 2.125 - 3.125 GHz CMOS Phase-Locked Loop%2.125~3.125GHz高速CMOS锁相环电路设计

    Institute of Scientific and Technical Information of China (English)

    邢立冬; 蒋林

    2011-01-01

    A 2. 125 - 3. 125 GHz mixed-signal charge pump phase-locked loop (CPPLL) was designed and implemented. Mathematical model of PLL was established based on theoretical analysis and technical specification. Parameters of the PLL were discussed in detail. A charge pump circuit with good current matching characteristics and a VCO circuit with its center frequency adjustable were proposed. Based on SMIC's 0.18 μm CMOS model, the circuit was simulated using Spectre simulator. Results from simulation showed that the PLL had a power consumption of 40 mW, an output clock peak-to-peak jitter of 21 ps and a single side-band (SSB) phase noise of -105 dBc/Hz at 5 MHz offset%针对数模混合结构的电荷泵锁相环电路,建立了系统的数学模型,确定了电荷泵锁相环的系统参数,提出一种能够有效消除时钟馈通、电荷注入等非理想特性影响,并具有良好电流匹配特性的电荷泵电路,以及一种中心频率可调的压控振荡器电路.电路采用SMIC 0.18 μm CMOS工艺模型,使用Spectre进行仿真.结果显示,整个锁相环系统的功耗约为40 mW,输出时钟信号峰-峰值抖动为21 ps@2.5 GHz,单边带相位噪声在5 MHz频偏处为-105 dBc/Hz.

  15. On Neuron Membrane Potential Distributions for Voltage and Time Dependent Current Modulation

    Science.gov (United States)

    Salig, J. B.; Carpio-Bernido, M. V.; Bernido, C. C.; Bornales, J. B.

    Tracking variations of neuronal membrane potential in response to multiple synaptic inputs remains an important open field of investigation since information about neural network behavior and higher brain functions can be inferred from such studies. Much experimental work has been done, with recent advances in multi-electrode recordings and imaging technology giving exciting results. However, experiments have also raised questions of compatibility with available theoretical models. Here we show how methods of modern infinite dimensional analysis allow closed form expressions for important quantities rich in information such as the conditional probability density (cpd). In particular, we use a Feynman integral approach where fluctuations in the dynamical variable are parametrized with Hida white noise variables. The stochastic process described then gives variations in time of the relative membrane potential defined as the difference between the neuron membrane and firing threshold potentials. We obtain the cpd for several forms of current modulation coefficients reflecting the flow of synaptic currents, and which are analogous to drift coefficients in the configuration space Fokker-Planck equation. In particular, we consider cases of voltage and time dependence for current modulation for periodic and non-periodic oscillatory current modulation described by sinusoidal and Bessel functions.

  16. Predictive Direct Power Control of Three-phase DC/AC Converter Without Phase Locked Loop%无锁相环三相DC/AC变流器直接功率预测控制

    Institute of Scientific and Technical Information of China (English)

    陈强; 郝思鹏; 章心因; 吕干云

    2016-01-01

    以三相DC/AC变流器为研究对象,给出了一种无锁相环直接功率预测控制方法,能实现对并网功率的无差拍控制,并且为降低锁相环对控制性能的影响,实现无锁相环控制。根据采样控制导致的两拍延时,采样控制频率为载波频率两倍,精确计算得到下一拍的变流器状态量,然后针对给定功率参考值根据公式直接计算得到三相变流电路的输出。推导得到控制系统设定的频率与电网频率的偏差对所提出控制方法的性能没有影响,论证了无锁相环的可行性。最后构建了三相并网变流器Simulink仿真模型和实验样机,利用Simulink中的Embedded Coder模块实现控制系统仿真模型到DSP硬件控制系统C语言程序的转换,通过仿真和实验验证了控制方法的有效性。%A predictive direct power control method without the phase locked loop (PLL) is presented,the research obj ect of which is the three-phase DC/AC converter.This method can achieve the deadbeat control of grid-connected power.In order to reduce the influence on the control performance by PLL,the method without PLL is realized.According to the two-beat delay resulting from the sampling control,the sampling frequency which is twice the carrier frequency is adopted to calculate the grid voltage,the grid-connected power and current after one cycle accurately.The output of the converter is calculated by the formula given in the paper.The deviation between the frequency set by the control system and the grid frequency has no influence on the performance of the control method proposed in this paper.The feasibility of the absence of phase locked loop (PLL) is demonstrated.The three-phase grid-connected converter simulation model and experimental prototype are built.The conversion from a control system simulation model into the C language program of DSP is realized by the Embedded Coder block of Simulink.The control method is validated and

  17. Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters

    Directory of Open Access Journals (Sweden)

    LASCU, D.

    2013-11-01

    Full Text Available The paper investigates predictive digital average current control (PDACC in dc/dc converters using trailing-edge modulation (TEM. The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.. The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.

  18. Analysis and Design on Variable Sampling Period Phase-Locked Loops%变采样周期锁相环的分析与设计

    Institute of Scientific and Technical Information of China (English)

    张晓蕊; 许津铭; 钱强; 谢少军

    2014-01-01

    In existing literatures relevant to variable sampling period phase-locked loop (VSP_PLL) the principle analysis is unsatisfactory and the design approach of its controller is not yet given. Through the comparison of VSP_PLL with traditional synchronous reference frame based PLL, the control mechanism of VSP_PLL is clarified, and the internal relation between them is revealed. A Z-domain mathematical model of VSP_PLL is established and the loop properties of VSP_PLL adopting different regulators are analyzed, thus an optimization method for the regulator, including its type and parameters, is obtained. Experimental results validate that using the designed VSP_PLL the phase-lock can be rapidly and accurately implemented under the harmonics in grid voltage, three-phase imbalance and instantaneous change of voltage amplitude as well as under instantaneous change of grid frequency.%现有文献对变采样周期锁相环(variable sampling period PLL,VSP_PLL)的原理分析尚不深入,且未给出其调节器设计方法。通过与传统的基于同步旋转坐标系锁相环(synchronous reference frame PLL,SRF_PLL)对比,明晰了VSP_PLL的控制机制,揭示了其内在联系。建立了VSP_PLL的离散域数学模型,分析了采用不同调节器的VSP_PLL环路特性,得出了调节器(包括其型式及参数)的优化设计方法。实验结果验证了所设计的VSP_PLL在电网电压出现谐波、不平衡、幅值及频率瞬变的情况下均可准确快速地锁相。

  19. Application of Phase Lock Loop in Superconducting RF Technology%锁相环在超导射频技术中的应用

    Institute of Scientific and Technical Information of China (English)

    常玮; 何源; 李春龙; 高郑; 朱正龙; 薛纵横; 宋玉; 张锐

    2014-01-01

    利用压控振荡器锁相环路(VCO-PLL)锁定超导射频谐振腔体的本征频率,使腔体稳定谐振。在原理验证阶段,利用NI-Labview对实验原理做了仿真。得到的仿真结果显示,环路增益选取的不同会直接影响整个系统的锁定状态。在实验测试阶段,根据原理和仿真结果搭建了相应的实验平台,从而得到环路锁定的测试结果。最后在低温超导态测试阶段,用经过验证的实验平台对IMP-HWR010超导腔体进行了频率锁定测试,并得到了腔体频率随氦压变化的实际测量结果,df/dp约为0.73 Hz/Pa。%The main issue of this paper is to introduce the application of phase lock loop (PLL) in supercon-ducting RF technology. The voltage-controlled oscillator phase lock loop (VCO-PLL) can be used for locking the eigen frequency of the superconducting cavity. It can keep superconducting cavity resonant stably. In this paper, the principle of the cavity locking by the VCO-PLL is verified by a simulation, which is done by using NI-Labview software. The simulation result shows that the different gain of the PLL system can impact the locking situation of the whole system. In the test stage, the locking test plant is set up and passed validation. Finally, at the low temperature test stage, the frequency of the IMP-HWR010 superconducting cavity is locked by the test plant. The frequency change with helium pressure of the cavity is about 0.73 Hz/Pa.

  20. Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain.

    Science.gov (United States)

    Ehlers, Cindy L; Wills, Derek N; Desikan, Anita; Phillips, Evelyn; Havstad, James

    2014-01-01

    Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of changes in brain remodeling that occur during adolescence. This study sought to investigate developmental changes in EROs using a similar auditory event-related potential (ERP) paradigm in both rats and humans. Energy and phase variability of EROs collected from 38 young adult men (aged 18-25 years), 33 periadolescent boys (aged 10-14 years), 15 male periadolescent rats [at postnatal day (PD) 36] and 19 male adult rats (at PD103) were investigated. Three channels of ERP data (frontal cortex, central cortex and parietal cortex) were collected from the humans using an 'oddball plus noise' paradigm that was presented under passive (no behavioral response required) conditions in the periadolescents and under active conditions (where each subject was instructed to depress a counter each time he detected an infrequent target tone) in adults and adolescents. ERPs were recorded in rats using only the passive paradigm. In order to compare the tasks used in rats to those used in humans, we first studied whether three ERO measures [energy, phase locking index (PLI) within an electrode site and phase difference locking index (PDLI) between different electrode sites] differentiated the 'active' from 'passive' ERP tasks. Secondly, we explored our main question of whether the three ERO measures differentiated adults from periadolescents in a similar manner in both humans and rats. No significant changes were found in measures of ERO energy between the active and passive tasks in the periadolescent human participants. There was a smaller but significant increase in PLI but not PDLI as a function of active task requirements. Developmental differences were found in energy, PLI and PDLI values between the periadolescents and adults in

  1. Organ dose conversion coefficients for tube current modulated CT protocols for an adult population

    Science.gov (United States)

    Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan

    2016-03-01

    In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.

  2. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes

    OpenAIRE

    Herrmann, Christoph S; Rach, Stefan; Neuling, Toralf; Strüber, Daniel

    2013-01-01

    Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) now allows to modulate brain oscillations directly. Pa...

  3. Copepod flow modes and modulation: a modelling study of the water currents produced by an unsteadily swimming copepod

    OpenAIRE

    2007-01-01

    Video observation has shown that feeding-current-producing calanoid copepods modulate their feeding currents by displaying a sequence of different swimming behaviours during a time period of up to tens of seconds. In order to understand the feeding-current modulation process, we numerically modelled the steady feeding currents for different modes of observed copepod motion behaviours (i.e. free sinking, partial sinking, hovering, vertical swimming upward and horizontal swimming backward or fo...

  4. Impact of tube current modulation on lesion conspicuity index in hi-resolution chest computed tomography

    Science.gov (United States)

    Szczepura, Katy; Tomkinson, David; Manning, David

    2017-03-01

    Tube current modulation is a method employed in the use of CT in an attempt to optimize radiation dose to the patient. The acceptable noise (noise index) can be varied, based on the level of optimization required; higher accepted noise reduces the patient dose. Recent research [1] suggests that measuring the conspicuity index (C.I.) of focal lesions within an image is more reflective of a clinical reader's ability to perceive focal lesions than traditional physical measures such as contrast to noise (CNR) and signal to noise ratio (SNR). Software has been developed and validated to calculate the C.I. in DICOM images. The aim of this work is assess the impact of tube current modulation on conspicuity index and CTDIvol, to indicate the benefits and limitations of tube current modulation on lesion detectability. Method An anthropomorphic chest phantom was used "Lungman" with inserted lesions of varying size and HU (see table below) a range of Hounsfield units and sizes were used to represent the variation in lesion Hounsfield units found. This meant some lesions had negative Hounsfield unit values.

  5. Current-induced modulation of backward spin-waves in metallic microstructures

    Science.gov (United States)

    Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji

    2017-03-01

    We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.

  6. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  7. Current-mode implementation of processing modules in ART-based neural networks

    Science.gov (United States)

    Lopez-Alcantud, Jose-Alejandro; Hauer, Hans; Diaz-Madrid, Jose-Angel; Ruiz-Merino, Ramon

    2003-04-01

    This paper describes implementation of neural network processing layers using basic current-mode operating modules. The research work has been focused on the implementation of neural networks based on the Adaptive Resonance Theory, developed by S. Grossberg and G.A. Carpenter. The ART-based neural network whose operating modules have been choosen for development is the one called MART, proposed by F. Delgado, because of its complex architecture, auto--adaptive self-learning process, able to discard unmeaningful cathegories. Our presentation starts introducing the behaviour of MART with an analysis of its structure. The development described by this research work is focused on the monochannel block included in the main signal processing part of the MART neural network. The description of the computing algorithm of the layers inside a monochannel block are also provided in order to show what operational current-mode modules are needed (multiplier, divider, square-rooter, adder, substractor, absolute value, maximum and minimum evaluator...). Descriptions at schematic and layout levels of all the processing layers are given. All of them have been designed using AMS 0.35 micron technology with a supply voltage of 3.3 volts. The modules are designed to deal with input currents in the range of 20 to 50 microamps, showing a lineal behaviour and an output error of less than 10%, which is good enough for neural signal processing systems. The maximum frecuency of operation is around 200 kHz. Simulation results are included to show that the operation performed by the hardware designed matches the behaviour described by the MART neural network. For testing purposes we show the design of a monochannel block hardware implementation restricted to five inputs and three cathegories.

  8. 基于DFT算法的单相数字锁相环%Single-phase Digital Phase-locked Loop Based on DFT

    Institute of Scientific and Technical Information of China (English)

    赵文才; 范声芳; 熊健; 张凯

    2011-01-01

    离散傅里叶变换(DFT)算法可以方便提取信号的幅值和相位,通过仿真和理论推导,深入分析基于傅里叶变换(FFT)的锁相环,并研究了其数字实现方法,即基于DFT算法的锁相环.此锁相方式在同步信号中有谐波或多个过零点时仍能正常工作,有较高的精度.仿真和实验结果证明该技术是可靠可行的.%DFT algorithm can easily extract amplitude and phase of the signal. This paper analyzes the phase-locked loop based on FFT through simulation and theoretical analysis ,and discusses the digital implementation of it. This method can work reliably even when the synchronization signal has harmonics or multi-zero-crossing, and it also has high precision.Simulation and experimental results validate its feasibility.

  9. A Time Synchronization Mechanism and Algorithm Based on Phase Lock Loop%基于锁相环的时间同步机制与算法

    Institute of Scientific and Technical Information of China (English)

    任丰原; 董思颖; 何滔; 林闯

    2007-01-01

    在讨论计算机时钟分析模型的基础上,分析和总结已有的时间同步机制的特点,提出了一种低能耗单向广播校正同步机制,同时进行时钟偏移补偿和漂移补偿,并基于传统的锁相环(phase locked loop,简称PLL)原理设计了同步算法.为了避免实现过程中额外的硬件开销,开发了一种简洁的数字锁相环.最后,在Mica2实验平台上对所设计的同步机制与算法进行了验证,并与已有的典型算法进行了性能比较.

  10. Angiographic imaging using an 18.9 MHz swept-wavelength laser that is phase-locked to the data acquisition clock and resonant scanners (Conference Presentation)

    Science.gov (United States)

    Tozburun, Serhat; Blatter, Cedric; Siddiqui, Meena; Nam, Ahhyun S.; Vakoc, Benjamin J.

    2016-03-01

    In this study, we present an angiographic system comprised from a novel 18.9 MHz swept wavelength source integrated with a MEMs-based 23.7 kHz fast-axis scanner. The system provides rapid acquisition of frames and volumes on which a range of Doppler and intensity-based angiographic analyses can be performed. Interestingly, the source and data acquisition computer can be directly phase-locked to provide an intrinsically phase stable imaging system supporting Doppler measurements without the need for individual A-line triggers or post-processing phase calibration algorithms. The system is integrated with a 1.8 Gigasample (GS) per second acquisition card supporting continuous acquisition to computer RAM for 10 seconds. Using this system, we demonstrate phase-stable acquisitions across volumes acquired at 60 Hz frequency. We also highlight the ability to perform c-mode angiography providing volume perfusion measurements with 30 Hz temporal resolution. Ultimately, the speed and phase-stability of this laser and MEMs scanner platform can be leveraged to accelerate OCT-based angiography and both phase-sensitive and phase-insensitive extraction of blood flow velocity.

  11. Use of phase-locking value in sensorimotor rhythm-based brain-computer interface: zero-phase coupling and effects of spatial filters.

    Science.gov (United States)

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-03-25

    Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.

  12. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  13. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  14. Complicated quasiperiodic oscillations and chaos from driven piecewise-constant circuit: Chenciner bubbles do not necessarily occur via simple phase-locking

    Science.gov (United States)

    Truong, Tri Quoc; Tsubone, Tadashi; Sekikawa, Munehisa; Inaba, Naohiko

    2017-02-01

    We analyze the complex quasiperiodic oscillations and chaos generated by two coupled piecewise-constant hysteresis oscillators driven by a rectangular wave force. Oscillations generate Arnol'd resonance webs wherein lower dimensional resonance tongues extend such as that of a web in numerous directions. We provide the fundamental tools for bifurcation analysis of nonautonomous piecewise-constant oscillators. To optimize the outstanding simplicity of piecewise-constant circuits, we formulate a generalized procedure for calculating the Lyapunov exponents in nonautonomous piecewise-constant dynamics. The Lyapunov exponents in these dynamics can be calculated with a precision approximately similar to that of maps. We observe two-parameter Lyapunov diagrams near the fundamental resonance region called Chenciner bubbles, wherein the oscillation frequencies of the two oscillators and the force are synchronized with a ratio of 1:1:1. Inevitably, the hysteresis considerably distorts the Chenciner bubbles. This result suggests that the Chenciner bubbles do not necessarily occur due to simple phase-locking of two-dimensional tori that can be explained by homeomorphism on the circle. Furthermore, we observe the Farey sequence in the experimental measurements.

  15. Design and analysis of a K-band low-phase-noise phase-locked loop with subharmonically injection-locked technique.

    Science.gov (United States)

    Yeh, Yen-Liang; Chang, Hong-Yeh

    2014-12-01

    In this paper, we present design and analysis of a K-band (18 to 26.5 GHz) low-phase-noise phase-locked loop (PLL) with the subharmonically injection-locked (SIL) technique. The phase noise of the PLL with subharmonic injection is investigated, and a modified phase noise model of the PLL with SIL technique is proposed. The theoretical calculations agree with the experimental results. Moreover, the phase noise of the PLL can be improved with the subharmonic injection. To achieve K-band operation with low dc power consumption, a divide-by-3 injection-locked frequency divider (ILFD) is used as a frequency prescaler. The measured phase noise of the PLL without injection is -110 dBc/Hz at 1 MHz offset at the operation frequency of 23.08 GHz. With the subharmonic injection, the measured phase noises at 1 MHz offset are -127, -127, and -119 dBc/Hz for the subharmonic injection number NINJ = 2, 3, and 4, respectively. Moreover, the performance of the proposed PLL with and without SIL technique can be compared with the reported advanced CMOS PLLs.

  16. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  17. Optimization and Design of a Low Power Switched Current A/D Sigma-Delta-Modulator for Voice Band Applications

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Bogason, Gudmundur

    1998-01-01

    This paper presents a third order switched current sigma delta-modulator. The modulator is optimized at the system level for minimum power consumption by careful design of the noise transfer function. A thorough noise analysis of the cascode type current copiers used to implement the modulator......, together with a new methodology for evaluating the nonlinear settling behavior is presented. This leads to a new optimization methodology that minimize the power consumption in switched current circuits for given design parameters. The optimization methodology takes process variations into account...... to internal clamping in the integrators and proper scaling the modulator shows excellent stability properties. In order to compare the performance of the modulator presented in this paper to other sigma delta-modulators two figure-of-merits (FOMs) are proposed. From these figure-of-merits it is found...

  18. The Influence of phase-locked loop on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede;

    2015-01-01

    for avoiding the PLL induced instability in single-phase inverters. At last the relationship between PLL bandwidth and the Short Circuit Ratio (SCR) of the grid has been derived to guide the design of the PLL. Experimental results are presented in order to verify this analysis, and the resonant frequencies can...... admittance of single-phase current-controlled inverters with different grid stiffness is analyzed in this paper. It shows that the PLL introduces a negative paralleled admittance into the output admittance of the inverter, which may lead to unintentional low-order harmonic oscillation in a weak grid...

  19. An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid

    OpenAIRE

    González Espín, Francisco José; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel

    2012-01-01

    Si el © es de IEEE cuando se deposite una versión de autor hay que poner el siguiente texto en "descripción": “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”...

  20. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes

    Directory of Open Access Journals (Sweden)

    Christoph S Herrmann

    2013-06-01

    Full Text Available Brain oscillations of different frequencies have been associated with a variety of cognitive functions. Convincing evidence supporting those associations has been provided by studies using intracranial stimulation, pharmacological interventions and lesion studies. The emergence of novel non-invasive brain stimulation techniques like repetitive transcranial magnetic stimulation (rTMS and transcranial alternating current stimulation (tACS now allows to modulate brain oscillations directly. Particularly, tACS offers the unique opportunity to causally link brain oscillations of a specific frequency range to cognitive processes, because it uses sinusoidal currents that are bound to one frequency only. Using tACS allows to modulate brain oscillations and in turn to influence cognitive processes, thereby demonstrating the causal link between the two. Here, we review findings about the physiological mechanism of tACS and studies that have used tACS to modulate basic motor and sensory processes as well as higher cognitive processes like memory, ambiguous perception, and decision making.

  1. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  2. Current Status of the Pixel Phase I Upgrade in CMS: Barrel Module Production

    CERN Document Server

    Bartek, Rachel

    2015-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system, providing high precision space point measurements of charged particle trajectories. Before 2018 the instantaneous luminosity of the LHC is expected to reach about 2~x~$10^{34}~\\rm{cm}^{-2}\\rm{s}^{-1}$, which will significantly increase the number of interactions per bunch crossing. To maintain a high tracking efficiency, CMS has planned to replace the current pixel system during phase I by a new lightweight detector, equipped with an additional 4th layer in the barrel, and one additional forward/backward disk. The present status of barrel modules production will be presented, including preliminary results from tests on the first production pixel modules of the new pixel tracker.

  3. Modulation of membrane potential by an acetylcholine-activated potassium current in trout atrial myocytes

    DEFF Research Database (Denmark)

    Molina, C.E.; Gesser, Hans; Llach, A.

    2007-01-01

    mV from 4.3 pA/pF to 27 pA/pF with an EC50 of 45 nM in atrial myocytes. Moreover, 3 nM ACh increased the slope conductance of Im fourfold, shifted its reversal potential from -78 ± 3 to -84 ± 3 mV, and stabilized the resting membrane potential at -92 ± 4 mV. ACh also shortened the action potential...... hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at -120...... of an inwardly rectifying K+ current can modulate the membrane potential in the trout atrial myocytes and stabilize the resting membrane potential. teleost heart; IK,ACh; cholinergic modulation; action potential...

  4. (Biphenyl-4-yl)methylammonium chlorides: potent anticonvulsants that modulate Na+ currents.

    Science.gov (United States)

    Lee, Hyosung; Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T; Wilson, Sarah M; Khanna, Rajesh; Kohn, Harold

    2013-07-25

    We have reported that compounds containing a biaryl linked unit (Ar-X-Ar') modulated Na(+) currents by promoting slow inactivation and fast inactivation processes and by inducing frequency (use)-dependent inhibition of Na(+) currents. These electrophysiological properties have been associated with the mode of action of several antiepileptic drugs. In this study, we demonstrate that the readily accessible (biphenyl-4-yl)methylammonium chlorides (compound class B) exhibited a broad range of anticonvulsant activities in animal models, and in the maximal electroshock seizure test the activity of (3'-trifluoromethoxybiphenyl-4-yl)methylammonium chloride (8) exceeded that of phenobarbital and phenytoin upon oral administration to rats. Electrophysiological studies of 8 using mouse catecholamine A-differentiated cells and rat embryonic cortical neurons confirmed that 8 promoted slow and fast inactivation in both cell types but did not affect the frequency (use)-dependent block of Na(+) currents.

  5. Loureirin B: An Effective Component in Dragon's Blood Modulating Sodium Currents in TG Neurons.

    Science.gov (United States)

    Liu, Xiangming; Yin, Shijin; Chen, Su; Ma, Quanshun

    2005-01-01

    To test, analyze and express the relationship between the pharmacological effect of Traditional Chinese Medicine (TCM) dragon's blood and that of its component loureirin B, specify an operational definition for effective component from raw drug of TCM. Using the whole-cell patch-clamp technique, the effects of dragon's blood and its component loureirin B on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium currents in trigeminal ganglion (TG) neurons were observed. The results show that both dragon's blood and loureirin B suppressed two types of peak sodium currents in a dose-dependent way. 0.1% dragon's blood and 0.2mmol/L loureirin B affected the activation and inactivation of sodium channels. The results further prove the analgetic mechanism of dragon's blood interfering with the nociceptive transmission. According to the above definition, loureirin B is the effective component in dragon's blood modulating sodium currents in TG neurons.

  6. A Smart Current Modulation Scheme for Harmonic Reduction in Three- Phase Motor Drive Applications

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    harmonic mitigation methods have been developed over the years, the total cost and complexity has become the main obstacle in employing prior-art methods for motor drive systems. This paper presents a novel current modulation method based on the electronic inductor concept for three-phase ac-dc systems......Electric motor-driven systems consume considerable amount of the global electricity. Majority of three-phase motor drives are equipped with conventional diode rectifier and passive harmonic mitigation, being witnessed as the main source in generating input current harmonics. While many active...... to reduce input current harmonics. The obtained results at simulation and experimental levels confirm the effectiveness of the proposed approach....

  7. Transcranial direct current stimulation modulates neuronal activity and learning in pilot training

    Directory of Open Access Journals (Sweden)

    Jaehoon eChoe

    2016-02-01

    Full Text Available Skill acquisition requires distributed learning both within (online and across (offline days to consolidate experiences into newly learned abilities. In particular, piloting an aircraft requires skills developed from extensive training and practice. Here, we tested the hypothesis that transcranial direct current stimulation (tDCS can modulate neuronal function to improve skill learning and performance during flight simulator training of aircraft landing procedures. Thirty-two right-handed participants consented to participate in four consecutive daily sessions of flight simulation training and received sham or anodal high-definition-tDCS to the right dorsolateral prefrontal cortex (DLPFC or left motor cortex (M1 in a randomized, double-blind experiment. Continuous electroencephalography (EEG and functional near infrared spectroscopy (fNIRS were collected during flight simulation, n-back working memory, and resting-state assessments. tDCS of the right DLPFC increased midline-frontal theta-band activity in flight and n-back working memory training, confirming tDCS-related modulation of brain processes involved in executive function. This modulation corresponded to a significantly different online and offline learning rates for working memory accuracy and decreased inter-subject behavioral variability in flight and n-back tasks in the DLPFC stimulation group. Additionally, tDCS of left M1 increased parietal alpha power during flight tasks and tDCS to the right DLPFC increased midline frontal theta-band power during n-back and flight tasks. These results demonstrate a modulation of group variance in skill acquisition through an increasing in learned skill consistency in cognitive and real-world tasks with tDCS. Further, tDCS performance improvements corresponded to changes in electrophysiological and blood-oxygenation activity of the DLPFC and motor cortices, providing a stronger link between modulated neuronal function and behavior.

  8. 一种基于双滑动平均滤波器的单相软件锁相环%A Single-phase Software Phase-locked Loop Based on Double Moving Average Filter

    Institute of Scientific and Technical Information of China (English)

    吕广强; 纪海平; 李嘉; 苗荻; 伏祥运

    2015-01-01

    为了提高基于同步参考坐标系的单相软件锁相环在电网谐波畸变情况下的性能,提出了一种基于双滑动平均滤波器的单相软件锁相环。该锁相环采用双滑动平均滤波器来滤去同步坐标系中dq 轴上由单相电压奇次谐波转化而来的4k+4(k=0,1,2,…)次谐波,以得到用来锁相的基波相位。考虑到单相电压频率变化会造成锁相环的锁相误差,先采用角频率重构模块得到变化后的频率,再利用加权平均值法来减小频率变化对所述锁相环滤波部分的误差。实验结果表明,该锁相环可以在单相电压含有谐波和频率变化的情况下准确得到基波的幅值和相位,并具有良好的动态响应特性。%In order to improve the performance of single-phase software phase-locked loop (PLL) based on synchronous reference frame in power system harmonic distortion,this paper proposes a single-phase software PLL with double moving average filter.The proposed single-phase software PLL adopts double moving average filters to filter the 4k+4(k=0,1,2,…) harmonics in the dq axes components of the synchronous reference frame,which is transformed from the odd harmonic component of single-phase voltage.In order to reduce the impact of single-phase voltage frequency-variation on the proposed single-phase software PLL,it applies the weighted average method to mitigate the error of the fundamental wave extraction element due to frequency-variation with the stable frequency from the angular frequency reconstructor module. The experimental results show that the proposed single-phase software PLL is able to obtain accurate amplitude and phase angle of the fundamental under the condition of the presence of harmonics and frequency-variation in the single-phase voltage,plus good dynamic response.

  9. Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons.

    Science.gov (United States)

    Galarraga, E; Vilchis, C; Tkatch, T; Salgado, H; Tecuapetla, F; Perez-Rosello, T; Perez-Garci, E; Hernandez-Echeagaray, E; Surmeier, D J; Bargas, J

    2007-05-11

    Somatostatin is synthesized and released by aspiny GABAergic interneurons of the neostriatum, some of them identified as low threshold spike generating neurons (LTS-interneurons). These neurons make synaptic contacts with spiny neostriatal projection neurons. However, very few somatostatin actions on projection neurons have been described. The present work reports that somatostatin modulates the Ca(2+) activated K(+) currents (K(Ca) currents) expressed by projection cells. These actions contribute in designing the firing pattern of the spiny projection neuron; which is the output of the neostriatum. Small conductance (SK) and large conductance (BK) K(Ca) currents represent between 30% and 50% of the sustained outward current in spiny cells. Somatostatin reduces SK-type K(+) currents and at the same time enhances BK-type K(+) currents. This dual effect enhances the fast component of the after hyperpolarizing potential while reducing the slow component. Somatostatin then modifies the firing pattern of spiny neurons which changed from a tonic regular pattern to an interrupted "stuttering"-like pattern. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tissue expression analysis of dorsal striatal somatostatinergic receptors (SSTR) mRNA revealed that all five SSTR mRNAs are present. However, single cell RT-PCR profiling suggests that the most probable receptor in charge of this modulation is the SSTR2 receptor. Interestingly, aspiny interneurons may exhibit a "stuttering"-like firing pattern. Therefore, somatostatin actions appear to be the entrainment of projection neurons to the rhythms generated by some interneurons. Somatostatin is then capable of modifying the processing and output of the neostriatum.

  10. Fasting and 17β-estradiol differentially modulate the M-current in NPY neurons

    Science.gov (United States)

    Roepke, Troy A.; Qiu, Jian; Smith, Arik W.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2011-01-01

    Multiple K+ conductances are targets for many peripheral and central signals involved in the control of energy homeostasis. Potential K+ channel targets are the KCNQ subunits that form the channels underlying the M-current, a sub-threshold, non-inactivating K+ current that is a common target for G-protein coupled receptors. Whole-cell recordings were made from GFP (Renilla)-tagged NPY neurons from the arcuate nucleus of the hypothalamus using protocols to isolate and characterize the M-current in these orexigenic neurons. We recorded robust K+ currents in the voltage range of the M-current, which were inhibited by the selective KCNQ channel blocker XE991 (40 µM), in both intact males and ovariectomized, 17β-estradiol (E2)-treated females. Since NPY neurons are orexigenic and are active during fasting, the M-current was measured in fed and fasted male mice. Fasting attenuated the XE991-sensitive current by 3-fold which correlated with decreased expression of the KCNQ2 and KCNQ3 subunits as measured with quantitative real-time PCR. Furthermore, E2 treatment augmented the XE991-sensitive M-current by 3-fold in ovariectomized (vs. oil-treated) female mice. E2-treatment increased the expression of the KCNQ5 subunit in females but not KCNQ2 or KCNQ3 subunits. Fasting in females abrogated the effects of E2 on M-current activity, at least in part, by decreasing KCNQ2 and KCNQ3 expression. In summary, these data suggest that the M-current plays a pivotal role in the modulation of NPY neuronal excitability and may be an important cellular target for neurotransmitter and hormonal signals in the control of energy homeostasis in both males and females. PMID:21849543

  11. Implementations of artificial neural networks using current-mode pulse width modulation technique.

    Science.gov (United States)

    El-Masry, E I; Yang, H K; Yakout, M A

    1997-01-01

    The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector.

  12. Drain Current Modulation of a Single Drain MOSFET by Lorentz Force for Magnetic Sensing Application

    Directory of Open Access Journals (Sweden)

    Prasenjit Chatterjee

    2016-08-01

    Full Text Available This paper reports a detailed analysis of the drain current modulation of a single-drain normal-gate n channel metal-oxide semiconductor field effect transistor (n-MOSFET under an on-chip magnetic field. A single-drain n-MOSFET has been fabricated and placed in the center of a square-shaped metal loop which generates the on-chip magnetic field. The proposed device designed is much smaller in size with respect to the metal loop, which ensures that the generated magnetic field is approximately uniform. The change of drain current and change of bulk current per micron device width has been measured. The result shows that the difference drain current is about 145 µA for the maximum applied magnetic field. Such changes occur from the applied Lorentz force to push out the carriers from the channel. Based on the drain current difference, the change in effective mobility has been detected up to 4.227%. Furthermore, a detailed investigation reveals that the device behavior is quite different in subthreshold and saturation region. A change of 50.24 µA bulk current has also been measured. Finally, the device has been verified for use as a magnetic sensor with sensitivity 4.084% (29.6 T−1, which is very effective as compared to other previously reported works for a single device.

  13. CMOS锁相环中快速鉴相鉴频器的设计%Design of Fast Phase/Frequency Detector for the CMOS Phase-Locked Loops

    Institute of Scientific and Technical Information of China (English)

    任正权; 李龙镇

    2011-01-01

    摘要:为了实现高速锁相环电路,通过分析经典CMOS锁相环的鉴相鉴频器,针对其延迟时间过长的问题,设计了可用于CMOS锁相环中的快速鉴相鉴频器.整个电路采用了0.13μmCMOS工艺,通过HSpice仿真软件测试表明,该快速鉴相鉴频器与经典鉴相鉴频器相比,延迟时间可以缩短一半.%To implement high speed phase-locked loops circuit, on the basis of analyzing the conventional phase/frequency detector of CMOS phase-locked loops, a fast phase/frequency detector is designed for the CMOS phase-locked loops to reduce the delay time. The circuit is designed by using the 0. 13 μm CMOS process and HSpice simulating results show that the designed fast phase/frequency detector can reduce half de- lay time.

  14. Implement of High-Precision Single-Phase Software Phase-Locked Loop Based on DSP%基于DSP的高精度单相软件锁相环的实现

    Institute of Scientific and Technical Information of China (English)

    张启亮; 刘倩影

    2016-01-01

    介绍了一种二阶巴特沃斯差分方程的计算方法和基于瞬时无功理论的三相锁相环,并提出了一种改进的单相低通锁相环算法。利用Matlab软件和TMS2812 DSP数字信号处理器对工频、幅值跳变、频率变化下的电压信号进行了仿真和编程验证,结果表明该算法能快速实现对畸变电压高精度地锁相,具有构造简单、精度高、锁相快等优点。%Introduction was made to a kind of second order Butterworth difference equation computing method and three-phase phase-locked loop based on the instantaneous reactive power theory. This paper proposed a kind of improved single-phase low-pass phase-locked loop algo-rithm. The software Matlab and digital signal processor TMS2812 were used to carry out simulation and program verification for voltage signals of power frequent, amplitude jumping and frequency change. The result shows that the proposed algorithm can rapidly achieve the purpose of locking phase for distortion voltages with simple structure, high precision and fast phase locking etc advantages.

  15. 一种基于虚拟平均无功鉴相的单相锁相环设计%Single Phase Locked Loop Design Based on Virtual Average Reactive Phase

    Institute of Scientific and Technical Information of China (English)

    李金格; 李明; 夏宏强

    2015-01-01

    With the development of power electronic technology,there is wide range of applications for PWM rectifier technology. As the core control technology of PWM rectifier, Phase locked loop technology affect the performance of grid-connected control directly. This text introduce in detail an single phase locked loop design based on virtual average reactive phase discrimination, this paper states in detailed the basic principle of phase locked loop、Mathematical Modeling、Parameters setting and algorithm Design,complete the theoretical analysis and practical use of this solution.%随着电力电子技术的不断发展,PWM整流器技术在现今社会有着极为广泛的应用背景. 而锁相环技术作为PWM整流器控制技术的核心之一,其性能直接影响到PWM整流器的并网控制性能. 本文详细介绍了一种基于虚拟平均无功鉴相的单相锁相环设计,通过对锁相环的基本原理、数学建模、参数整定以及算法设计的详细阐述,完成此方案的理论分析和实际应用.

  16. Phase-locking index and power of 40-Hz auditory steady-state response are not related to major personality trait dimensions.

    Science.gov (United States)

    Korostenskaja, Milena; Ruksenas, Osvaldas; Pipinis, Evaldas; Griskova-Bulanova, Inga

    2016-03-01

    Although a number of studies have demonstrated state-related dependence of auditory steady-state responses (ASSRs), the investigations assessing trait-related ASSR changes are limited. Five consistently identified major trait dimensions, also referred to as "big five" (Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness), are considered to account for virtually all personality variances in both healthy people and those with psychiatric disorders. The purpose of the present study was, for the first time, to establish the link between 40-Hz ASSR and "big five" major personality trait dimensions in young healthy adults. Ninety-four young healthy volunteers participated (38 males and 56 females; mean age ± SD 22.180 ± 2.75). The 40-Hz click trains were presented for each subject 30 times with an inter-train interval of 1-1.5 s. The EEG responses were recorded from F3, Fz, F4, C3, Cz, C4, P3, Pz and P4 locations according to 10/20 electrode placement system. Phase-locking index (PLI) and event-related power perturbation (ERSP) were calculated, each providing the following characteristics: peak time, entrainment frequency, peak value and mean value. For assessing "big five" personality traits, NEO Personality Inventory Revised (NEO-PI-R) was used. No significant correlation between 40-Hz ASSR PLI or ERSP and "big five" personality traits was observed. Our results indicate that there is no dependence between 40-Hz ASSR entrainment and personality traits, demonstrating low individual 40-Hz variability in this domain. Our results support further development of 40-Hz ASSR as a neurophysiological marker allowing distinguishing between healthy population and patients with psychiatric disorders.

  17. Low-current traveling wave tube for use in the microwave power module

    Science.gov (United States)

    Palmer, Raymond W.; Ramins, Peter; Force, Dale A.; Dayton, James A.; Ebihara, Ben T.; Gruber, Robert P.

    1993-01-01

    The results of a traveling-wave-tube/multistage depressed-collector (TWT-MDC) design study in support of the Advanced Research Projects Agency/Department of Defense (ARPA/DOD) Microwave Power Module (MPM) Program are described. The study stressed the possible application of dynamic and other tapers to the RF output circuit of the MPM traveling wave tube as a means of increasing the RF and overall efficiencies and reducing the required beam current (perveance). The results indicate that a highly efficient, modified dynamic velocity taper (DVT) circuit can be designed for the broadband MPM application. The combination of reduced cathode current (lower perveance) and increased RF efficiency leads to (1) a substantially higher overall efficiency and reduction in the prime power to the MPM, and (2) substantially reduced levels of MDC and MPM heat dissipation, which simplify the cooling problems. However, the selected TWT circuit parameters need to be validated by cold test measurements on actual circuits.

  18. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches.

    Science.gov (United States)

    Aschenbroich, Sophie A; Lafontaine, Eric R; Hogan, Robert J

    2016-09-01

    Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.

  19. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    Science.gov (United States)

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  20. Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation

    Directory of Open Access Journals (Sweden)

    Morley O. Stone

    2011-06-01

    Full Text Available Zinc oxide field effect transistors (ZnO-FET, covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels.

  1. Changes of IK,ATP current density and allosteric modulation during chronic atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    WU Gang; HUANG Cong-xin; TANG Yan-hong; JIANG Hong; WAN Jun; CHEN Hui; XIE Qiang; HUANG Zheng-rong

    2005-01-01

    Background Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. Chronic atrial fibrillation (CAF) is associated with ionic remodeling. However, little is known about the activity of ATP-sensitive potassium current (IK,ATP) during CAF. So we studied the changes of IK,ATP density and allosteric modulation of ATP-sensitivity by intracellular pH during CAF.Methods Myocardium samples were obtained from the right auricular appendage of patients with rheumatic heart disease complicated with valvular disease in sinus rhythm (SR) or CAF. There were 14 patients in SR group and 9 patients in CAF group. Single atrial cells were isolated using an enzyme dispersion technique. IK,ATP was recorded using the whole-cell and inside-out configuration of voltage-clamp techniques. In whole-cell model, myocytes of SR and CAF groups were perfused with simulated ischemic solution to elicit IK,ATP. In inside-out configuration, the internal patch membranes were exposed to different ATP concentrations in pH 7.4 and 6.8.Results Under simulated ischemia, IK,ATP current density of CAF group was significantly higher than in SR group [(83.5±10.8) vs. (58.7±8.4) pA/pF, P<0.01]. IK,ATP of the two groups showed ATP concentration-dependent inhibition. The ATP concentration for 50% current inhibition (IC50) for the SR group was significantly different in pH 7.4 and pH 6.8 (24 vs. 74 μmol/L, P<0.01). The IC50 did not change significantly in CAF group when the pH decreased from 7.4 to 6.8.Conclusions During CAF, IK,ATP current density was increased and its allosteric modulation of ATP-sensitivity by intracellular pH was diminished.

  2. Volumetric intensity modulated arc therapy in lung cancer: Current literature review

    Directory of Open Access Journals (Sweden)

    Suresh B Rana

    2013-01-01

    Full Text Available The volumetric intensity modulated arc therapy (VMAT is a novel radiation technique that delivers a highly conformal radiation dose to the target by allowing the simultaneous variation of gantry rotation speed, dose rate and multiple-leaf collimators leaf positions. The aim of this study was to review the current literature on two VMAT systems, RapidArc and SmartArc with main focus on planning studies of lung cancer. A systematic review of available data was conducted using MEDLINE/PubMed with the keywords ′′lung′′ and "VMAT". The published data show that VMAT techniques have clear superiority over three-dimensional conformal radiation therapy with regard to improving dose conformity and sparing of organs at risks (OARs. The data indicates that for lung tumor VMAT and intensity modulated radiation therapy (IMRT provide equivalent dose homogeneity, dose conformity and target volume coverage; however, contradictory results were obtained in terms of OARs sparing. The major advantages of VMAT over IMRT are the reduction in the number of monitor units and faster treatment delivery times without compromising the quality of the treatment plans. Moreover, faster delivery time is more patient-friendly and it minimizes intra-fractional patient motion allowing treatment volumes stay within their respective treatment margins. Current literature data shows that VMAT can be a good option to treat lung cancer; however, data on clinical trials are still lacking. The clinical trials are essential to confirm the safety and efficacy of VMAT techniques.

  3. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives

    Directory of Open Access Journals (Sweden)

    Schmidt BZ

    2016-09-01

    Full Text Available Béla Z Schmidt,1 Jérémy B Haaf,2 Teresinha Leal,2 Sabrina Noel,2 1Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, 2Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium Abstract: Mutations of the CFTR gene cause cystic fibrosis (CF, the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF. Keywords: high-throughput screening, drug repositioning, personalized medicine, precision medicine, potentiators, correctors

  4. Design of generalized integrator phase locked loop for unbalanced grid%适用于电网不平衡时的广义积分器锁相环设计

    Institute of Scientific and Technical Information of China (English)

    胡应占; 郭素娜

    2014-01-01

    In order to detect the amplitude, phase and frequency of the grid voltage quickly and accurately, this paper analyzes the method of symmetrical components and principle of single synchronous reference frame phase locked loop. A design method of the generalized integrator phase locked loop is presented, of which the positive and negative components are distinguished in αβcoordinate system, and the phase and frequency of positive sequence voltage are locked. And it takes use of Matlab/Simulink to carry on the research of single synchronous reference frame phase-locked loop and generalized integrator phase locked loop. Simulation results show that the generalized integrator phase locked loop can get amplitude, phase and frequency of the grid voltage accurately when the grid is unbalanced, and the frequency has good adaptiveness and has a certain inhibiting effect on low-order harmonic.%为准确快速检测出电网电压的幅值、相位和频率,在分析对称分量法及单同步坐标系锁相环基本原理的基础上,提出了广义积分器锁相环的设计方法。这种方法在αβ坐标系下对电网电压进行正、负分序,进而锁定正序电压的相位和频率。并且使用Matlab/Simulink环境分别对单同步坐标系锁相环和基于广义积分器锁相环进行仿真研究,仿真结果表明广义积分器锁相环在电网不平衡时能够准确提取电网信号的幅值、相位和频率,频率自适应性良好且对低次谐波有一定的抑制作用。

  5. Performance Comparison of Two Phase Locked Loops Based on the Positive and Negative Component Extraction%两种基于正负序分量提取的锁相环性能比较

    Institute of Scientific and Technical Information of China (English)

    田鑫; 赵波; 荆平; 宋颖巍; 宋卓然

    2015-01-01

    实时相位检测是灵活交流输电(flexible AC transmission system,FACTS)装置发挥优良控制功能的基础,是实现功率器件通断控制、有功和无功功率计算以及各种参考坐标之间变换的基准。锁相环(phase locked loops,PLL)是目前使用最普遍的相位同步方法,它用于获得准确实时的相位信息,提供计算基准,其性能对于整个控制系统至关重要。在对锁相环基本原理进行分析的基础上,采用 Park 变换提取电压正负序分量,之后给出两种不同的软锁相方法及实现框图。通过仿真实验的方法对两种锁相环的稳态和动态性能进行分析对比,实验结果证明,两种锁相方法均可实现在系统稳态和动态情况下的相位检测,但适用场合有所区别,需根据实际应用场景进行选择。%ABSTRACT:The real-time phase detection is the basis of flexible AC transmission system (FACTS) devices to exhibit excellent control functions, and the reference of the on-off control of power devices, active power and reactive power calculation and transformation between different coordinates. Phase locked loop (PLL) is the most common phase synchronization method. It is used to obtain accurate phase information in real time, provide calculation reference value, its performance is very important for the whole control system. On the basis of the analysis of the basic principle of phase locked loop, Park transformation method is used to extract positive and negative sequence component of the system voltage, then two kinds of soft phase lock method and block diagram are given. Through the simulation experiment method, the steady state and dynamic performance of the two phase locked loops are analyzed. The results show that the two kinds of PLL both can realize phase detection in static and dynamic conditions, but the appropriate type depends on the requirement of the application scenarios.

  6. Accessory subunit KChIP2 modulates the cardiac L-type calcium current

    DEFF Research Database (Denmark)

    Thomsen, Morten B; Wang, Chaojian; Ozgen, Nazira

    2009-01-01

    Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient...... outward K+ channel (I(to)), is a Ca(2+)-binding protein whose regulatory functions do not appear restricted to K(V)4.2. Consequently, we hypothesized that KChIP2 is a direct regulator of the cardiac L-type Ca2+ current (I(Ca,L)). We found that I(Ca,L) density from KChIP2(-/-) myocytes is reduced by 28......% compared to I(Ca,L) recorded from wild-type myocytes (Pchannel current, as shown in a transfected cell line devoid of confounding cardiac ion currents. I(Ca,L) regulation by KChIP2 was independent of Ca2+ binding...

  7. Study on controlling of VSC- HVDC based on advanced phase locked loop technique%基于改进锁相环的柔性直流输电系统控制研究

    Institute of Scientific and Technical Information of China (English)

    郑连清; 池俊锋; 陈杰

    2011-01-01

    Under AC power system frequency excursion and harmonics produced by switching devices, detecting synchronous phase and instantaneous symmetrical components quickly and accurately is an important part of the control and protection system of voltage source converter based high-voltage direct current transmission ( VSC - HVDC). Combined with the conception of SPLL and the VSC - HVD system, which can make the independence decoupling of the active power and the reactive power, devising a new system for three-phase phase-locked loop, with double-phase discriminators. According to eliminate the double frequency, reducing the system's main error, and at same time, making PI regulator has better frequency response characteristics and better frequency locking ability. It is verified by PSCAD that dynamic response of the system can be improved and locking frequency range of phase can be extended.%针对系统频率波动、开关器件动作产生大量的谐波等问题,快速、准确地提供同步相位,是基于电压源型换流器的高压直流输电系统实现控制和保护的关键问题.通过引进软件锁相环概念(SPLL),并结合VSC-HVDC系统能瞬间实现有功、无功解耦的特点,设计了双鉴相器的三相锁相系统.通过消除二倍频,抑制了引起误差的主要因素,同时使PI调节器具有更好的频率锁定和响应特性.通过PSCAD对改进前后系统的在消除谐波、提高系统整体性能,以及电网频率一定范围内突变时系统的响应特性等方面进行比较,实现了对原理的验证.

  8. Harmonic analysis of DC capacitor current in sinusoidal and space-vector modulated neutral-point-clamped inverters

    Indian Academy of Sciences (India)

    Gopalakrishnan K S; G Narayanan

    2015-08-01

    The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated with sine-triangle pulse-width modulation (SPWM) or conventional space vector pulse-width modulation (CSVPWM) schemes. The analytical results are validated experimentally on a 3-kVA three-level inverter prototype. The capacitor current in an NPC inverter has a periodicity of 120º at the fundamental or modulation frequency. Hence, this current contains third-harmonic and triplen-frequency components, apart from switching frequency components. The harmonic components vary with modulation index and power factor for both PWM schemes. The third harmonic current decreases with increase in modulation index and also decreases with increase in power factor in case of both PWM methods. In general, the third harmonic content is higher with SPWM than with CSVPWM at a given operating condition. Also, power loss and voltage ripple in the DC capacitor are estimated for both the schemes using the current harmonic spectrum and equivalent series resistance (ESR) of the capacitor.

  9. CaMKII modulates sodium current in neurons from epileptic Scn2a mutant mice.

    Science.gov (United States)

    Thompson, Christopher H; Hawkins, Nicole A; Kearney, Jennifer A; George, Alfred L

    2017-02-14

    Monogenic epilepsies with wide-ranging clinical severity have been associated with mutations in voltage-gated sodium channel genes. In the Scn2a(Q54) mouse model of epilepsy, a focal epilepsy phenotype is caused by transgenic expression of an engineered NaV1.2 mutation displaying enhanced persistent sodium current. Seizure frequency and other phenotypic features in Scn2a(Q54) mice depend on genetic background. We investigated the neurophysiological and molecular correlates of strain-dependent epilepsy severity in this model. Scn2a(Q54) mice on the C57BL/6J background (B6.Q54) exhibit a mild disorder, whereas animals intercrossed with SJL/J mice (F1.Q54) have a severe phenotype. Whole-cell recording revealed that hippocampal pyramidal neurons from B6.Q54 and F1.Q54 animals exhibit spontaneous action potentials, but F1.Q54 neurons exhibited higher firing frequency and greater evoked activity compared with B6.Q54 neurons. These findings correlated with larger persistent sodium current and depolarized inactivation in neurons from F1.Q54 animals. Because calcium/calmodulin protein kinase II (CaMKII) is known to modify persistent current and channel inactivation in the heart, we investigated CaMKII as a plausible modulator of neuronal sodium channels. CaMKII activity in hippocampal protein lysates exhibited a strain-dependence in Scn2a(Q54) mice with higher activity in F1.Q54 animals. Heterologously expressed NaV1.2 channels exposed to activated CaMKII had enhanced persistent current and depolarized channel inactivation resembling the properties of F1.Q54 neuronal sodium channels. By contrast, inhibition of CaMKII attenuated persistent current, evoked a hyperpolarized channel inactivation, and suppressed neuronal excitability. We conclude that CaMKII-mediated modulation of neuronal sodium current impacts neuronal excitability in Scn2a(Q54) mice and may represent a therapeutic target for the treatment of epilepsy.

  10. Dose reduction in spiral CT angiography of thoracic outlet syndrome by anatomically adapted tube current modulation

    Energy Technology Data Exchange (ETDEWEB)

    Mastora, I.; Remy-Jardin, M.; Remy, J. [Dept. of Radiology, University Center Hospital Calmette, Lille (France); Medical Research Group, Lille (France); Suess, C.; Scherf, C. [Siemens Medical Systems, Forcheim (Germany); Guillot, J.P. [Dept. of Radiology, University Center Hospital Calmette, Lille (France)

    2001-04-01

    The aim of this study was to evaluate dose reduction in spiral CT angiography of the thoracic outlet by on-line tube-current control. Prospectively, 114 patients undergoing spiral CT angiography of the subclavian artery for thoracic outlet arterial syndromes were evaluated with and without tube-current modulation at the same session (scanning parameters for the two successive angiograms, one in the neutral position and one after the postural maneuver): 140 kV; 206 mA; scan time 0.75 s; collimation 3 mm; pitch = (1). The dose reduction system was applied in the neutral position in the first 92 consecutive patients and after postural maneuver in the remaining 22 consecutive patients. Dose reduction and image quality were analyzed in the overall study group (group 1; n = 114). The influence of the arm position was assessed in 44 of the 114 patients (group 2), matched by the transverse diameter of the upper thorax. The mean dose reduction was 33 % in group 1 (range 22-40 %) and 34 % in group 2 (range 26-40 %). In group 2 the only difference in image quality was a significantly higher frequency of graininess on low-dose scans compared with reference scans whatever the patient's arm position, graded as minimal in 38 of the 44 patients (86 %). When the low-dose technique was applied after postural maneuver in group 2: (a) the mean dose reduction was significantly higher (35 vs 32 % in the neutral position; p = 0.006); (b) graininess was less frequent (82 vs 91 % in the neutral position); and (c) the percentage of graininess graded as minimal was significantly higher (83 vs 70 % in the neutral position; p = 0.2027). On-line tube-current modulation enables dose reduction on high-quality, diagnostic spiral CT angiograms of the thoracic outlet and should be applied during data acquisition in the neutral position and after postural maneuver for optimal use. (orig.)

  11. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules

    DEFF Research Database (Denmark)

    Li, Helong; Beczkowski, Szymon; Munk-Nielsen, Stig

    2015-01-01

    This paper reveals that there are circuit mismatches and a current coupling effect in the direct bonded copper (DBC) layout of a silicon carbide (SiC) MOSFET multichip power module. According to the modelling and the mathematic analysis of the DBC layout, the mismatch of the common source stray...... inductance in the DBC layout can lead to transient current imbalance among the paralleled SiC MOSFET dies in the multichip power module while the current coupling effect aggravates the current imbalance. Two models of the power module DBC layout, with and without the current coupling effect, are compared...... to demonstrate the influence of this effect. LTspice simulation and experimental results validate the analysis and the new findings....

  12. The impact on CT dose of the variability in tube current modulation technology: a theoretical investigation

    Science.gov (United States)

    Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-08-01

    Body CT scans are routinely performed using tube-current-modulation (TCM) technology. There is notable variability across CT manufacturers in terms of how TCM technology is implemented. Some manufacturers aim to provide uniform image noise across body regions and patient sizes, whereas others aim to provide lower noise for smaller patients. The purpose of this study was to conduct a theoretical investigation to understand how manufacturer-dependent TCM scheme affects organ dose, and to develop a generic approach for assessing organ dose across TCM schemes. The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A ray-tracing method was developed to calculate the attenuation of the phantom for a given projection angle based on phantom anatomy, CT system geometry, x-ray energy spectrum, and bowtie filter filtration. The tube current (mA) for a given projection angle was then calculated as a log-linear function of the attenuation along that projection. The slope of this function, termed modulation control strength, α, was varied from 0 to 1 to emulate the variability in TCM technology. Using a validated Monte Carlo program, organ dose was simulated for five α values (α = 0, 0.25, 0.5, 0.75, and 1) in the absence and presence of a realistic system mA limit. Organ dose was further normalized by volume-weighted CT dose index (CTDIvol) to obtain conversion factors (h factors) that are relatively independent of system specifics and scan parameters. For both chest and abdomen-pelvis scans and for 24 radiosensitive organs, organ dose conversion factors varied with α, following second-order polynomial equations. This result suggested the need for α-specific organ dose conversion factors (i.e., conversion factors specific to the modulation scheme used). On the other hand, across the full range of α values, organ dose in a TCM scan could be derived from the conversion factors established for a fixed-mA scan (hFIXED). This was possible by

  13. Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2016-05-01

    Full Text Available This paper gives the complete analysis of the output current ripple in three-phase voltage source inverters considering the different discontinuous pulse-width modulation (DPWM strategies. In particular, peak-to-peak current ripple amplitude is analytically evaluated over the fundamental period and compared among the most used DPWMs, including positive and negative clamped (DPWM+ and DPWM−, and the four possible combinations between them, usually named as DPWM0, DPWM1, DPWM2, and DPWM3. The maximum and the average values of peak-to-peak current ripple are estimated, and a simple method to correlate the ripple envelope with the ripple rms is proposed and verified. Furthermore, all the results obtained by DPWMs are compared to the centered pulse-width modulation (CPWM, equivalent to the space vector modulation to identify the optimal pulse-width modulation (PWM strategy as a function of the modulation index, taking into account the different average switching frequency. In this way, the PWM technique providing for the minimum output current ripple is identified over the whole modulation range. The analytical developments and the main results are experimentally verified by current ripple measurements with a three-phase PWM inverter prototype supplying an induction motor load.

  14. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).

    Science.gov (United States)

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-09-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.

  15. No Modulation of Visual Cortex Excitability by Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Brückner, Sabrina; Kammer, Thomas

    2016-01-01

    Measuring phosphene thresholds (PTs) is often used to investigate changes in the excitability of the human visual cortex through different brain stimulation methods like repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS). In several studies, PT increase or decrease has been shown after rTMS or tDCS application. Recently, using PT measurements we showed that the state of the neurons in the visual cortex after rTMS might have an influence on the modulatory effects of stimulation. In the present study we aimed to investigate whether visual cortex activity following stimulation influences the modulatory effects of tDCS as well. In a between-group design, anodal or cathodal tDCS was applied to the visual cortex twice per subject, with either high or low visual demand following stimulation. We observed no modulation of PT neither directly following both anodal and cathodal tDCS nor following the visual demand periods. We rather found high inter-individual variability in the response to tDCS, and intra-individual reliability in the direction of modulation was observed for cathodal tDCS only. Thus, our results do not confirm the modulatory effects of tDCS on visual cortex excitability published previously. Moreover, they support the confirmation that tDCS effects have little reliability on varied TMS outcome measurements.

  16. Adaptive Modulation for DFIG and STATCOM With High-Voltage Direct Current Transmission.

    Science.gov (United States)

    Tang, Yufei; He, Haibo; Ni, Zhen; Wen, Jinyu; Huang, Tingwen

    2016-08-01

    This paper develops an adaptive modulation approach for power system control based on the approximate/adaptive dynamic programming method, namely, the goal representation heuristic dynamic programming (GrHDP). In particular, we focus on the fault recovery problem of a doubly fed induction generator (DFIG)-based wind farm and a static synchronous compensator (STATCOM) with high-voltage direct current (HVDC) transmission. In this design, the online GrHDP-based controller provides three adaptive supplementary control signals to the DFIG controller, STATCOM controller, and HVDC rectifier controller, respectively. The mechanism is to observe the system states and their derivatives and then provides supplementary control to the plant according to the utility function. With the GrHDP design, the controller can adaptively develop an internal goal representation signal according to the observed power system states, therefore, to achieve more effective learning and modulating. Our control approach is validated on a wind power integrated benchmark system with two areas connected by HVDC transmission lines. Compared with the classical direct HDP and proportional integral control, our GrHDP approach demonstrates the improved transient stability under system faults. Moreover, experiments under different system operating conditions with signal transmission delays are also carried out to further verify the effectiveness and robustness of the proposed approach.

  17. The Modulation of Error Processing in the Medial Frontal Cortex by Transcranial Direct Current Stimulation

    Directory of Open Access Journals (Sweden)

    Lisa Bellaïche

    2013-01-01

    Full Text Available Background. In order to prevent future errors, we constantly control our behavior for discrepancies between the expected (i.e., intended and the real action outcome and continuously adjust our behavior accordingly. Neurophysiological correlates of this action-monitoring process can be studied with event-related potentials (error-related negativity (ERN and error positivity (Pe originating from the medial prefrontal cortex (mPFC. Patients with neuropsychiatric diseases often show performance monitoring dysfunctions potentially caused by pathological changes of cortical excitability; therefore, a modulation of the underlying neuronal activity might be a valuable therapeutic tool. One technique which allows us to explore cortical modulation of neural networks is transcranial direct current stimulation (tDCS. Therefore, we tested the effect of medial-prefrontal tDCS on error-monitoring potentials in 48 healthy subjects randomly assigned to anodal, cathodal, or sham stimulation. Results. We found that cathodal stimulation attenuated Pe amplitudes compared to both anodal and sham stimulation, but no effect for the ERN. Conclusions. Our results indicate that cathodal tDCS over the mPFC results in an attenuated cortical excitability leading to decreased Pe amplitudes. We therefore conclude that tDCS has a neuromodulatory effect on error-monitoring systems suggesting a future approach to modify the sensitivity of corresponding neural networks in patients with action-monitoring deficits.

  18. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation

    Directory of Open Access Journals (Sweden)

    Kimura Akio

    2010-06-01

    Full Text Available Abstract Background The mu event-related desynchronization (ERD is supposed to reflect motor preparation and appear during motor imagery. The aim of this study is to examine the modulation of ERD with transcranial direct current stimulation (tDCS. Methods Six healthy subjects were asked to imagine their right hand grasping something after receiving a visual cue. Electroencephalograms (EEGs were recorded near the left M1. ERD of the mu rhythm (mu ERD by right hand motor imagery was measured. tDCS (10 min, 1 mA was used to modulate the cortical excitability of M1. Anodal, cathodal, and sham tDCS were tested in each subject with a randomized sequence on different days. Each condition was separated from the preceding one by more than 1 week in the same subject. Before and after tDCS, mu ERD was assessed. The motor thresholds (MT of the left M1 were also measured with transcranial magnetic stimulation. Results Mu ERD significantly increased after anodal stimulation, whereas it significantly decreased after cathodal stimulation. There was a significant correlation between mu ERD and MT. Conclusions Opposing effects on mu ERD based on the orientation of the stimulation suggest that mu ERD is affected by cortical excitability.

  19. Startle eye-blink modulation by facial self-resemblance and current mood.

    Science.gov (United States)

    Finke, Johannes B; Larra, Mauro F; Schilling, Thomas M; Lass-Hennemann, Johanna; Blumenthal, Terry D; Schächinger, Hartmut

    2015-06-01

    Although salient stimuli are known to modulate startle eye-blink responses, and one's own face is considered of particular salience, effects of facial self-resemblance on startle responsiveness have not been systematically investigated. For the present study, pictures from the FACES database (rated as neutral) were digitally morphed to resemble the participants' (N=37) faces to varying degrees (25-50-75%). Perceptually matched geometrical shapes served as a control condition. At SOAs of either 300ms or 3000ms after picture onset, startle responses were elicited by white noise (50ms, 105dB), and recorded at the orbicularis oculi via EMG. Prior to the experiment, self-reported mood was assessed by means of the PANAS. Relative to non-face stimuli, the presentation of faces reduced startle magnitude at short, but not long, lead intervals. Furthermore, for probes presented at a SOA of 300ms, a linear decrease in startle magnitude with higher levels of self-resemblance was observed, presumably reflecting higher salience of the self-face. The startle modulating effect of self-resembling faces during longer lead intervals was moderated by the participants' current mood: negative affect predicted stronger patterns of attenuation, which might be interpreted as an increase in self-focus resulting from more negative mood.

  20. Adjustment of the electric current in pulsar magnetospheres and origin of subpulse modulation

    CERN Document Server

    Lyubarsky, Yuri

    2012-01-01

    The subpulse modulation of pulsar radio emission goes to prove that the plasma flow in the open field line tube breaks into isolated narrow streams. I propose a model which attributes formation of streams to the process of the electric current adjustment in the magnetosphere. A mismatch between the magnetospheric current distribution and the current injected by the polar cap accelerator gives rise to reverse plasma flows in the magnetosphere. The reverse flow shields the electric field in the polar gap and thus shuts up the plasma production process. I assume that a circulating system of streams is formed such that the upward streams are produced in narrow gaps separated by downward streams. The electric drift is small in this model because the potential drop in narrow gaps is small. The gaps have to drift because by the time a downward stream reaches the star surface and shields the electric field, the corresponding gap has to shift. The transverse size of the streams is determined by the condition that the ...