WorldWideScience

Sample records for current models predict

  1. Harmonic current prediction by impedance modeling of grid-tied inverters

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.

    2017-01-01

    and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...

  2. Seasonal prediction of the Leeuwin Current using the POAMA dynamical seasonal forecast model

    Energy Technology Data Exchange (ETDEWEB)

    Hendon, Harry H.; Wang, Guomin [Centre for Australian Weather and Climate Research, Bureau of Meteorology, PO Box 1289, Melbourne (Australia)

    2010-06-15

    The potential for predicting interannual variations of the Leeuwin Current along the west coast of Australia is addressed. The Leeuwin Current flows poleward against the prevailing winds and transports warm-fresh tropical water southward along the coast, which has a great impact on local climate and ecosystems. Variations of the current are tightly tied to El Nino/La Nina (weak during El Nino and strong during La Nina). Skilful seasonal prediction of the Leeuwin Current to 9-month lead time is achieved by empirical downscaling of dynamical coupled model forecasts of El Nino and the associated upper ocean heat content anomalies off the north west coast of Australia from the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast system. Prediction of the Leeuwin Current is possible because the heat content fluctuations off the north west coast are the primary driver of interannual annual variations of the current and these heat content variations are tightly tied to the occurrence of El Nino/La Nina. POAMA can skilfully predict both the occurrence of El Nino/La Nina and the subsequent transmission of the heat content anomalies from the Pacific onto the north west coast. (orig.)

  3. Ion current prediction model considering columnar recombination in alpha radioactivity measurement using ionized air transportation

    International Nuclear Information System (INIS)

    Naito, Susumu; Hirata, Yosuke; Izumi, Mikio; Sano, Akira; Miyamoto, Yasuaki; Aoyama, Yoshio; Yamaguchi, Hiromi

    2007-01-01

    We present a reinforced ion current prediction model in alpha radioactivity measurement using ionized air transportation. Although our previous model explained the qualitative trend of the measured ion current values, the absolute values of the theoretical curves were about two times as large as the measured values. In order to accurately predict the measured values, we reinforced our model by considering columnar recombination and turbulent diffusion, which affects columnar recombination. Our new model explained the considerable ion loss in the early stage of ion diffusion and narrowed the gap between the theoretical and measured values. The model also predicted suppression of ion loss due to columnar recombination by spraying a high-speed air flow near a contaminated surface. This suppression was experimentally investigated and confirmed. In conclusion, we quantitatively clarified the theoretical relation between alpha radioactivity and ion current in laminar flow and turbulent pipe flow. (author)

  4. Lower hybrid current drive: an overview of simulation models, benchmarking with experiment, and predictions for future devices

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Barbato, E.; Imbeaux, F.

    2003-01-01

    This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)

  5. Can current models of accommodation and vergence predict accommodative behavior in myopic children?

    Science.gov (United States)

    Sreenivasan, Vidhyapriya; Irving, Elizabeth L; Bobier, William R

    2014-08-01

    Investigations into the progression of myopia in children have long considered the role of accommodation as a cause and solution. Myopic children show high levels of accommodative adaptation, coupled with accommodative lag and high response AC/A (accommodative convergence per diopter of accommodation). This pattern differs from that predicted by current models of interaction between accommodation and vergence, where weakened reflex responses and a high AC/A would be associated with a low not high levels of accommodative adaptation. However, studies of young myopes were limited to only part of the accommodative vergence synkinesis and the reciprocal components of vergence adaptation and convergence accommodation were not studied in tandem. Accordingly, we test the hypothesis that the accommodative behavior of myopic children is not predicted by current models and whether that departure is explained by differences in the accommodative plant of the myopic child. Responses to incongruent stimuli (-2D, +2D adds, 10 prism diopter base-out prism) were investigated in 28 myopic and 25 non-myopic children aged 7-15 years. Subjects were divided into phoria groups - exo, ortho and eso based upon their near phoria. The school aged myopes showed high levels of accommodative adaptation but with reduced accommodation and high AC/A. This pattern is not explained by current adult models and could reflect a sluggish gain of the accommodative plant (ciliary muscle and lens), changes in near triad innervation or both. Further, vergence adaptation showed a predictable reciprocal relationship with the high accommodative adaptation, suggesting that departures from adult models were limited to accommodation not vergence behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  7. Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics

    Science.gov (United States)

    Mancho, Ana M.; Hernández-García, Emilio; López, Cristóbal; Turiel, Antonio; Wiggins, Stephen; Pérez-Muñuzuri, Vicente

    2018-02-01

    The third edition of the international workshop Nonlinear Processes in Oceanic and Atmospheric Flows was held at the Institute of Mathematical Sciences (ICMAT) in Madrid from 6 to 8 July 2016. The event gathered oceanographers, atmospheric scientists, physicists, and applied mathematicians sharing a common interest in the nonlinear dynamics of geophysical fluid flows. The philosophy of this meeting was to bring together researchers from a variety of backgrounds into an environment that favoured a vigorous discussion of concepts across different disciplines. The present Special Issue on Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics contains selected contributions, mainly from attendants of the workshop, providing an updated perspective on modelling aspects of geophysical flows as well as issues on prediction and assimilation of observational data and novel tools for describing transport and mixing processes in these contexts. More details on these aspects are discussed in this preface.

  8. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...

  9. Assessing allometric models to predict vegetative growth of mango (Mangifera indica; Anacardiaceae) at the current-year branch scale.

    Science.gov (United States)

    Normand, Frédéric; Lauri, Pierre-Éric

    2012-03-01

    Accurate and reliable predictive models are necessary to estimate nondestructively key variables for plant growth studies such as leaf area and leaf, stem, and total biomass. Predictive models are lacking at the current-year branch scale despite the importance of this scale in plant science. We calibrated allometric models to estimate leaf area and stem and branch (leaves + stem) mass of current-year branches, i.e., branches several months old studied at the end of the vegetative growth season, of four mango cultivars on the basis of their basal cross-sectional area. The effects of year, site, and cultivar were tested. Models were validated with independent data and prediction accuracy was evaluated with the appropriate statistics. Models revealed a positive allometry between dependent and independent variables, whose y-intercept but not the slope, was affected by the cultivar. The effects of year and site were negligible. For each branch characteristic, cultivar-specific models were more accurate than common models built with pooled data from the four cultivars. Prediction quality was satisfactory but with data dispersion around the models, particularly for large values. Leaf area and stem and branch mass of mango current-year branches could be satisfactorily estimated on the basis of branch basal cross-sectional area with cultivar-specific allometric models. The results suggested that, in addition to the heteroscedastic behavior of the variables studied, model accuracy was probably related to the functional plasticity of branches in relation to the light environment and/or to the number of growth units composing the branches.

  10. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    Science.gov (United States)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  11. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    including, but not limited to, the Mei-Yu/Baiu sudden onset and withdrawal, low-level jet orientation and variability, and orographic forced rainfall. Under anthropogenic climate change many competing factors complicate making robust projections of monsoon changes. Without aerosol effects, increased land-sea temperature contrast suggests strengthened monsoon circulation due to climate change. However, increased aerosol emissions will reflect more solar radiation back to space, which may temper or even reduce the strength of monsoon circulations compared to the present day. A more comprehensive assessment is needed of the impact of black carbon aerosols, which may modulate that of other anthropogenic greenhouse gases. Precipitation may behave independently from the circulation under warming conditions in which an increased atmospheric moisture loading, based purely on thermodynamic considerations, could result in increased monsoon rainfall under climate change. The challenge to improve model parameterizations and include more complex processes and feedbacks pushes computing resources to their limit, thus requiring continuous upgrades of computational infrastructure to ensure progress in understanding and predicting the current and future behavior of monsoons.

  12. Finite element model predicts current density distribution for clinical applications of tDCS and tACS

    Directory of Open Access Journals (Sweden)

    Toralf eNeuling

    2012-09-01

    Full Text Available Transcranial direct current stimulation (tDCS has been applied in numerous scientific studies over the past decade. However, the possibility to apply tDCS in therapy of neuropsychiatric disorders is still debated. While transcranial magnetic stimulation (TMS has been approved for treatment of major depression in the United States by the Food and Drug Administration (FDA, tDCS is not as widely accepted. One of the criticisms against tDCS is the lack of spatial specificity. Focality is limited by the electrode size (35 cm2 are commonly used and the bipolar arrangement. However, a current flow through the head directly from anode to cathode is an outdated view. Finite element (FE models have recently been used to predict the exact current flow during tDCS. These simulations have demonstrated that the current flow depends on tissue shape and conductivity. Toface the challenge to predict the location, magnitude and direction of the current flow induced by tDCS and transcranial alternating current stimulation (tACS, we used a refined realistic FE modeling approach. With respect to the literature on clinical tDCS and tACS, we analyzed two common setups for the location of the stimulation electrodes which target the frontal lobe and the occipital lobe, respectively. We compared lateral and medial electrode configuration with regard to theirusability. We were able to demonstrate that the lateral configurations yielded more focused stimulation areas as well as higher current intensities in the target areas. The high resolution of our simulation allows one to combine the modeled current flow with the knowledge of neuronal orientation to predict the consequences of tDCS and tACS. Our results not only offer a basis for a deeper understanding of the stimulation sites currently in use for clinical applications but also offer a better interpretation of observed effects.

  13. Applying machine learning to predict patient-specific current CD 4 ...

    African Journals Online (AJOL)

    This work shows the application of machine learning to predict current CD4 cell count of an HIV-positive patient using genome sequences, viral load and time. A regression model predicting actual CD4 cell counts and a classification model predicting if a patient's CD4 cell count is less than 200 was built using a support ...

  14. The Current State of Predicting Furrow Irrigation Erosion

    Science.gov (United States)

    There continues to be a need to predict furrow irrigation erosion to estimate on- and off-site impacts of irrigation management. The objective of this paper is to review the current state of furrow erosion prediction technology considering four models: SISL, WEPP, WinSRFR and APEX. SISL is an empiri...

  15. Multi-Objective Predictive Balancing Control of Battery Packs Based on Predictive Current

    Directory of Open Access Journals (Sweden)

    Wenbiao Li

    2016-04-01

    Full Text Available Various balancing topology and control methods have been proposed for the inconsistency problem of battery packs. However, these strategies only focus on a single objective, ignore the mutual interaction among various factors and are only based on the external performance of the battery pack inconsistency, such as voltage balancing and state of charge (SOC balancing. To solve these problems, multi-objective predictive balancing control (MOPBC based on predictive current is proposed in this paper, namely, in the driving process of an electric vehicle, using predictive control to predict the battery pack output current the next time. Based on this information, the impact of the battery pack temperature caused by the output current can be obtained. Then, the influence is added to the battery pack balancing control, which makes the present degradation, temperature, and SOC imbalance achieve balance automatically due to the change of the output current the next moment. According to MOPBC, the simulation model of the balancing circuit is built with four cells in Matlab/Simulink. The simulation results show that MOPBC is not only better than the other traditional balancing control strategies but also reduces the energy loss in the balancing process.

  16. Prediction of Tidal Elevations and Barotropic Currents in the Gulf of Bone

    Science.gov (United States)

    Purnamasari, Rika; Ribal, Agustinus; Kusuma, Jeffry

    2018-03-01

    Tidal elevation and barotropic current predictions in the gulf of Bone have been carried out in this work based on a two-dimensional, depth-integrated Advanced Circulation (ADCIRC-2DDI) model for 2017. Eight tidal constituents which were obtained from FES2012 have been imposed along the open boundary conditions. However, even using these very high-resolution tidal constituents, the discrepancy between the model and the data from tide gauge is still very high. In order to overcome such issues, Green’s function approach has been applied which reduced the root-mean-square error (RMSE) significantly. Two different starting times are used for predictions, namely from 2015 and 2016. After improving the open boundary conditions, RMSE between observation and model decreased significantly. In fact, RMSEs for 2015 and 2016 decreased 75.30% and 88.65%, respectively. Furthermore, the prediction for tidal elevations as well as tidal current, which is barotropic current, is carried out. This prediction was compared with the prediction conducted by Geospatial Information Agency (GIA) of Indonesia and we found that our prediction is much better than one carried out by GIA. Finally, since there is no tidal current observation available in this area, we assume that, when tidal elevations have been fixed, then the tidal current will approach the actual current velocity.

  17. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2010-01-01

    In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...

  18. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  19. Numerical modeling of transformer inrush currents

    Energy Technology Data Exchange (ETDEWEB)

    Cardelli, E. [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy); Faba, A., E-mail: faba@unipg.it [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy)

    2014-02-15

    This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.

  20. Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

    International Nuclear Information System (INIS)

    Zhang, Jian Hai; Song, Sung Jin; Kim, Woong Ji; Kim, Hak Joon; Chung, Jong Duk

    2011-01-01

    Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT

  1. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Balasubramanian, M.; Jayabalan, V.; Balasubramanian, V.

    2008-01-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level

  2. Developing mathematical models to predict tensile properties of pulsed current gas tungsten arc welded Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, M. [Department of Production Engineering, Sathyabama University, Old Mamallapuram Road, Chennai 600 119 (India)], E-mail: manianmb@rediffmail.com; Jayabalan, V. [Department of Manufacturing Engineering, Anna University, Guindy, Chennai 600 025 (India)], E-mail: jbalan@annauniv.edu; Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002 (India)], E-mail: visvabalu@yahoo.com

    2008-07-01

    Titanium (Ti-6Al-4V) alloy has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process of titanium alloy is frequently gas tungsten arc (GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one need to carefully balance various pulse current parameters to arrive at an optimum combination. Hence, in this investigation an attempt has been made to develop mathematical models to predict tensile properties of pulsed current GTA welded titanium alloy weldments. Four factors, five level, central composite, rotatable design matrix is used to optimise the required number of experiments. The mathematical models have been developed by response surface method (RSM). The adequacy of the models has been checked by ANOVA technique. By using the developed mathematical models, the tensile properties of the joints can be predicted with 99% confidence level.

  3. Mental models accurately predict emotion transitions.

    Science.gov (United States)

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  4. Mental models accurately predict emotion transitions

    Science.gov (United States)

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  5. Rheumatology in the community of Madrid: current availability of rheumatologists and future needs using a predictive model.

    Science.gov (United States)

    Lázaro y De Mercado, Pablo; Blasco Bravo, Antonio Javier; Lázaro y De Mercado, Ignacio; Castañeda, Santos; López Robledillo, Juan Carlos

    2013-01-01

    To: 1) describe the distribution of the public sector rheumatologists; 2) identify variables on which the workload in Rheumatology depends; and 3) build a predictive model on the need of rheumatologists for the next 10 years, in the Community of Madrid (CM). The information was obtained through structured questionnaires sent to all services/units of Rheumatology of public hospitals in the CM. The population figures, current and forecasted, were obtained from the National Statistics Institute. A predictive model was built based on information about the current and foreseeable supply, current and foreseeable demand, and the assumptions and criteria used to match supply with demand. The underlying uncertainty in the model was assessed by sensitivity analysis. In the CM in 2011 there were 150 staff rheumatologists and 49 residents in 27 centers, which is equivalent to one rheumatologist for every 33,280 inhabitants in the general population, and one for every 4,996 inhabitants over 65 years. To keep the level of assistance of 2011 in 2021 in the general population, it would be necessary to train more residents or hire more rheumatologists in scenarios of demand higher than 15%. However, to keep the level of assistance in the population over 65 years of age it would be necessary to train more residents or hire more specialists even without increased demand. The model developed may be very useful for planning, with the CM policy makers, the needs of human resources in Rheumatology in the coming years. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  6. Circulation-based Modeling of Gravity Currents

    Science.gov (United States)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related

  7. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy

    2015-08-01

    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  8. Modelling the current distribution and predicted spread of the flea species Ctenocephalides felis infesting outdoor dogs in Spain.

    Science.gov (United States)

    Gálvez, Rosa; Musella, Vicenzo; Descalzo, Miguel A; Montoya, Ana; Checa, Rocío; Marino, Valentina; Martín, Oihane; Cringoli, Giuseppe; Rinaldi, Laura; Miró, Guadalupe

    2017-09-19

    The cat flea, Ctenocephalides felis, is the most prevalent flea species detected on dogs and cats in Europe and other world regions. The status of flea infestation today is an evident public health concern because of their cosmopolitan distribution and the flea-borne diseases transmission. This study determines the spatial distribution of the cat flea C. felis infesting dogs in Spain. Using geospatial tools, models were constructed based on entomological data collected from dogs during the period 2013-2015. Bioclimatic zones, covering broad climate and vegetation ranges, were surveyed in relation to their size. The models builded were obtained by negative binomial regression of several environmental variables to show impacts on C. felis infestation prevalence: land cover, bioclimatic zone, mean summer and autumn temperature, mean summer rainfall, distance to urban settlement and normalized difference vegetation index. In the face of climate change, we also simulated the future distributions of C. felis for the global climate model (GCM) "GFDL-CM3" and for the representative concentration pathway RCP45, which predicts their spread in the country. Predictive models for current climate conditions indicated the widespread distribution of C. felis throughout Spain, mainly across the central northernmost zone of the mainland. Under predicted conditions of climate change, the risk of spread was slightly greater, especially in the north and central peninsula, than for the current situation. The data provided will be useful for local veterinarians to design effective strategies against flea infestation and the pathogens transmitted by these arthropods.

  9. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.

    Science.gov (United States)

    Datta, Abhishek; Baker, Julie M; Bikson, Marom; Fridriksson, Julius

    2011-07-01

    Although numerous published reports have demonstrated the beneficial effects of transcranial direct-current stimulation (tDCS) on task performance, fundamental questions remain regarding the optimal electrode configuration on the scalp. Moreover, it is expected that lesioned brain tissue will influence current flow and should therefore be considered (and perhaps leveraged) in the design of individualized tDCS therapies for stroke. The current report demonstrates how different electrode configurations influence the flow of electrical current through brain tissue in a patient who responded positively to a tDCS treatment targeting aphasia. The patient, a 60-year-old man, sustained a left hemisphere ischemic stroke (lesion size = 87.42 mL) 64 months before his participation. In this study, we present results from the first high-resolution (1 mm(3)) model of tDCS in a brain with considerable stroke-related damage; the model was individualized for the patient who received anodal tDCS to his left frontal cortex with the reference cathode electrode placed on his right shoulder. We modeled the resulting brain current flow and also considered three additional reference electrode positions: right mastoid, right orbitofrontal cortex, and a "mirror" configuration with the anode over the undamaged right cortex. Our results demonstrate the profound effect of lesioned tissue on resulting current flow and the ability to modulate current pattern through the brain, including perilesional regions, through electrode montage design. The complexity of brain current flow modulation by detailed normal and pathologic anatomy suggest: (1) That computational models are critical for the rational interpretation and design of individualized tDCS stroke-therapy; and (2) These models must accurately reproduce head anatomy as shown here. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Mechanistic variables can enhance predictive models of endotherm distributions: The American pika under current, past, and future climates

    Science.gov (United States)

    Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T.; Yahn, Jeremiah; Porter, Warren P.

    2017-01-01

    How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  11. Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates.

    Science.gov (United States)

    Mathewson, Paul D; Moyer-Horner, Lucas; Beever, Erik A; Briscoe, Natalie J; Kearney, Michael; Yahn, Jeremiah M; Porter, Warren P

    2017-03-01

    How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect

  12. Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems

    DEFF Research Database (Denmark)

    Preindl, Matthias; Schaltz, Erik

    2011-01-01

    The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...

  13. Biodiversity in environmental assessment-current practice and tools for prediction

    International Nuclear Information System (INIS)

    Gontier, Mikael; Balfors, Berit; Moertberg, Ulla

    2006-01-01

    Habitat loss and fragmentation are major threats to biodiversity. Environmental impact assessment and strategic environmental assessment are essential instruments used in physical planning to address such problems. Yet there are no well-developed methods for quantifying and predicting impacts of fragmentation on biodiversity. In this study, a literature review was conducted on GIS-based ecological models that have potential as prediction tools for biodiversity assessment. Further, a review of environmental impact statements for road and railway projects from four European countries was performed, to study how impact prediction concerning biodiversity issues was addressed. The results of the study showed the existing gap between research in GIS-based ecological modelling and current practice in biodiversity assessment within environmental assessment

  14. Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modelling.

    Directory of Open Access Journals (Sweden)

    Hannah Slater

    Full Text Available Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF, in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.

  15. Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance.

    Science.gov (United States)

    Teubner, Wera; Mehling, Anette; Schuster, Paul Xaver; Guth, Katharina; Worth, Andrew; Burton, Julien; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-12-01

    National legislations for the assessment of the skin sensitization potential of chemicals are increasingly based on the globally harmonized system (GHS). In this study, experimental data on 55 non-sensitizing and 45 sensitizing chemicals were evaluated according to GHS criteria and used to test the performance of computer (in silico) models for the prediction of skin sensitization. Statistic models (Vega, Case Ultra, TOPKAT), mechanistic models (Toxtree, OECD (Q)SAR toolbox, DEREK) or a hybrid model (TIMES-SS) were evaluated. Between three and nine of the substances evaluated were found in the individual training sets of various models. Mechanism based models performed better than statistical models and gave better predictivities depending on the stringency of the domain definition. Best performance was achieved by TIMES-SS, with a perfect prediction, whereby only 16% of the substances were within its reliability domain. Some models offer modules for potency; however predictions did not correlate well with the GHS sensitization subcategory derived from the experimental data. In conclusion, although mechanistic models can be used to a certain degree under well-defined conditions, at the present, the in silico models are not sufficiently accurate for broad application to predict skin sensitization potentials. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The prediction of the hydrodynamic performance of tidal current turbines

    International Nuclear Information System (INIS)

    Xiao, B Y; Zhou, L J; Xiao, Y X; Wang, Z W

    2013-01-01

    Nowadays tidal current energy is considered to be one of the most promising alternative green energy resources and tidal current turbines are used for power generation. Prediction of the open water performance around tidal turbines is important for the reason that it can give some advice on installation and array of tidal current turbines. This paper presents numerical computations of tidal current turbines by using a numerical model which is constructed to simulate an isolated turbine. This paper aims at studying the installation of marine current turbine of which the hydro-environmental impacts influence by means of numerical simulation. Such impacts include free-stream velocity magnitude, seabed and inflow direction of velocity. The results of the open water performance prediction show that the power output and efficiency of marine current turbine varies from different marine environments. The velocity distribution should be clearly and the suitable unit installation depth and direction be clearly chosen, which can ensure the most effective strategy for energy capture before installing the marine current turbine. The findings of this paper are expected to be beneficial in developing tidal current turbines and array in the future

  17. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

    Science.gov (United States)

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-01

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.

  18. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  19. Disturbance estimator based predictive current control of grid-connected inverters

    OpenAIRE

    Al-Khafaji, Ahmed Samawi Ghthwan

    2013-01-01

    ABSTRACT: The work presented in my thesis considers one of the modern discrete-time control approaches based on digital signal processing methods, that have been developed to improve the performance control of grid-connected three-phase inverters. Disturbance estimator based predictive current control of grid-connected inverters is proposed. For inverter modeling with respect to the design of current controllers, we choose the d-q synchronous reference frame to make it easier to understand an...

  20. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  1. Combined kinetic and transport modeling of radiofrequency current drive

    International Nuclear Information System (INIS)

    Dumont, R.; Giruzzi, G.; Barbato, E.

    2000-07-01

    A numerical model for predictive simulations of radiofrequency current drive in magnetically confined plasmas is developed. It includes the minimum requirements for a self consistent description of such regimes, i.e., a 3-D ,kinetic equation for the electron distribution function, 1-D heat and current transport equations, and resonant coupling between velocity space and configuration space dynamics, through suitable wave propagation equations. The model finds its full application in predictive studies of complex current profile control scenarios in tokamaks, aiming at the establishment of internal transport barriers by the simultaneous use of various radiofrequency current drive methods. The basic properties of this non-linear numerical system are investigated and illustrated by simulations applied to reversed magnetic shear regimes obtained by Lower Hybrid and Electron Cyclotron current drive for parameters typical of the Tore Supra tokamak. (authors)

  2. Predictive validation of an influenza spread model.

    Directory of Open Access Journals (Sweden)

    Ayaz Hyder

    Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve

  3. Predictive Validation of an Influenza Spread Model

    Science.gov (United States)

    Hyder, Ayaz; Buckeridge, David L.; Leung, Brian

    2013-01-01

    Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive

  4. An integrated model for estimating energy cost of a tidal current turbine farm

    International Nuclear Information System (INIS)

    Li, Ye; Lence, Barbara J.; Calisal, Sander M.

    2011-01-01

    A tidal current turbine is a device for harnessing energy from tidal currents and functions in a manner similar to a wind turbine. A tidal current turbine farm consists of a group of tidal current turbines distributed in a site where high-speed current is available. The accurate prediction of energy cost of a tidal current turbine farm is important to the justification of planning and constructing such a farm. However, the existing approaches used to predict energy cost of tidal current turbine farms oversimplify the hydrodynamic interactions between turbines in energy prediction and oversimplify the operation and maintenance strategies involved in cost estimation as well as related fees. In this paper, we develop a model, which integrates a marine hydrodynamic model with high accuracy for predicting energy output and a comprehensive cost-effective operation and maintenance model for estimating the cost that may be incurred in producing the energy, to predict energy cost from a tidal current turbine farm. This model is expected to be able to simulate more complicated cases and generate more accurate results than existing models. As there is no real tidal current turbine farm, we validate this model with offshore wind studies. Finally, case studies about Vancouver are conducted with a scenario-based analysis. We minimize the energy cost by minimizing the total cost and maximizing the total power output under constraints related to the local conditions (e.g., geological and labor information) and the turbine specifications. The results suggest that tidal current energy is about ready to penetrate the electricity market in some major cities in North America if learning curve for the operational and maintenance is minimum. (author)

  5. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    Science.gov (United States)

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario

  6. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    Science.gov (United States)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  7. Unified model of current-hadronic interactions. II

    International Nuclear Information System (INIS)

    Moffat, J.W.; Wright, A.C.D.

    1975-01-01

    An analytic model of current-hadronic interactions is used to make predictions which are compared with recent data for vector-meson electroproduction and for the spin density matrix of photoproduced rho 0 mesons. The rho 0 and ω electroproduction cross sections are predicted to behave differently as the mass of the virtual photon varies; the diffraction peak broadens with increasing -q 2 at fixed ν and narrows with increasing energy. The predicted rho 0 density matrix elements do not possess the approximate s-channel helicity conservation seen experimentally. The model is continued to the inclusive electron-positron annihilation region, where parameter-free predictions are given for the inclusive prosess e + + e - → p + hadrons. The annihilation structure functions are found to have nontrivial scale-invariance limits. By using total cross-section data for e + e - annihilation into hardrons, we predict the mean multiplicity for the production of nucleons

  8. Predictive Toxicology: Current Status and Future Outlook (EBI ...

    Science.gov (United States)

    Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA. Slide presentation at the EBI-EMBL Industry Programme Workshop on Predictive Toxicology and the currently status of Computational Toxicology activities at the US EPA.

  9. Where the wild things are: Predicting hotspots of seabird aggregations in the California Current System

    Science.gov (United States)

    Nur, N.; Jahncke, J.; Herzog, M.P.; Howar, J.; Hyrenbach, K.D.; Zamon, J.E.; Ainley, D.G.; Wiens, J.A.; Morgan, K.; Balance, L.T.; Stralberg, D.

    2011-01-01

    Marine Protected Areas (MPAs) provide an important tool for conservation of marine ecosystems. To be most effective, these areas should be strategically located in a manner that supports ecosystem function. To inform marine spatial planning and support strategic establishment of MPAs within the California Current System, we identified areas predicted to support multispecies aggregations of seabirds ("hotspot????). We developed habitat-association models for 16 species using information from at-sea observations collected over an 11-year period (1997-2008), bathymetric data, and remotely sensed oceanographic data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and seaward 600 km from the coast. This approach enabled us to predict distribution and abundance of seabirds even in areas of few or no surveys. We developed single-species predictive models using a machine-learning algorithm: bagged decision trees. Single-species predictions were then combined to identify potential hotspots of seabird aggregation, using three criteria: (1) overall abundance among species, (2) importance of specific areas ("core area????) to individual species, and (3) predicted persistence of hotspots across years. Model predictions were applied to the entire California Current for four seasons (represented by February, May, July, and October) in each of 11 years. Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important. Predicted hotspots often aligned with currently protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British Columbia, that are not currently included in protected areas. Prioritization and identification of multispecies hotspots

  10. A Grid Connected Transformerless Inverter and its Model Predictive Control Strategy with Leakage Current Elimination Capability

    Directory of Open Access Journals (Sweden)

    J. Fallah Ardashir

    2017-06-01

    Full Text Available This paper proposes a new single phase transformerless Photovoltaic (PV inverter for grid connected systems. It consists of six power switches, two diodes, one capacitor and filter at the output stage. The neutral of the grid is directly connected to the negative terminal of the source. This results in constant common mode voltage and zero leakage current. Model Predictive Controller (MPC technique is used to modulate the converter to reduce the output current ripple and filter requirements. The main advantages of this inverter are compact size, low cost, flexible grounding configuration. Due to brevity, the operating principle and analysis of the proposed circuit are presented in brief. Simulation and experimental results of 200W prototype are shown at the end to validate the proposed topology and concept. The results obtained clearly verifies the performance of the proposed inverter and its practical application for grid connected PV systems.

  11. Charged-current inclusive neutrino cross sections in the SuperScaling model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, M. V., E-mail: martin.inrne@gmail.com [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain); Megias, G. D.; Caballero, J. A. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, 41080 Sevilla (Spain); González-Jiménez, R. [Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Gent (Belgium); Moreno, O.; Donnelly, T. W. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Barbaro, M. B. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, 10125 Torino (Italy); Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Moya de Guerra, E.; Udías, J. M. [Grupo de Física Nuclear, Departamento de Física Atómica, Molecular y Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid E-28040 (Spain)

    2016-03-25

    SuperScaling model (SuSA) predictions to neutrino-induced charged-current π{sup +} production in the Δ-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current π{sup +} results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.

  12. Modelling earth current precursors in earthquake prediction

    Directory of Open Access Journals (Sweden)

    R. Di Maio

    1997-06-01

    Full Text Available This paper deals with the theory of earth current precursors of earthquake. A dilatancy-diffusion-polarization model is proposed to explain the anomalies of the electric potential, which are observed on the ground surface prior to some earthquakes. The electric polarization is believed to be the electrokinetic effect due to the invasion of fluids into new pores, which are opened inside a stressed-dilated rock body. The time and space variation of the distribution of the electric potential in a layered earth as well as in a faulted half-space is studied in detail. It results that the surface response depends on the underground conductivity distribution and on the relative disposition of the measuring dipole with respect to the buried bipole source. A field procedure based on the use of an areal layout of the recording sites is proposed, in order to obtain the most complete information on the time and space evolution of the precursory phenomena in any given seismic region.

  13. Helicopter Rotor Noise Prediction: Background, Current Status, and Future Direction

    Science.gov (United States)

    Brentner, Kenneth S.

    1997-01-01

    Helicopter noise prediction is increasingly important. The purpose of this viewgraph presentation is to: 1) Put into perspective the recent progress; 2) Outline current prediction capabilities; 3) Forecast direction of future prediction research; 4) Identify rotorcraft noise prediction needs. The presentation includes an historical perspective, a description of governing equations, and the current status of source noise prediction.

  14. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  15. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  16. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  17. Genomic prediction of complex human traits: relatedness, trait architecture and predictive meta-models

    Science.gov (United States)

    Spiliopoulou, Athina; Nagy, Reka; Bermingham, Mairead L.; Huffman, Jennifer E.; Hayward, Caroline; Vitart, Veronique; Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Pong-Wong, Ricardo; Agakov, Felix; Navarro, Pau; Haley, Chris S.

    2015-01-01

    We explore the prediction of individuals' phenotypes for complex traits using genomic data. We compare several widely used prediction models, including Ridge Regression, LASSO and Elastic Nets estimated from cohort data, and polygenic risk scores constructed using published summary statistics from genome-wide association meta-analyses (GWAMA). We evaluate the interplay between relatedness, trait architecture and optimal marker density, by predicting height, body mass index (BMI) and high-density lipoprotein level (HDL) in two data cohorts, originating from Croatia and Scotland. We empirically demonstrate that dense models are better when all genetic effects are small (height and BMI) and target individuals are related to the training samples, while sparse models predict better in unrelated individuals and when some effects have moderate size (HDL). For HDL sparse models achieved good across-cohort prediction, performing similarly to the GWAMA risk score and to models trained within the same cohort, which indicates that, for predicting traits with moderately sized effects, large sample sizes and familial structure become less important, though still potentially useful. Finally, we propose a novel ensemble of whole-genome predictors with GWAMA risk scores and demonstrate that the resulting meta-model achieves higher prediction accuracy than either model on its own. We conclude that although current genomic predictors are not accurate enough for diagnostic purposes, performance can be improved without requiring access to large-scale individual-level data. Our methodologically simple meta-model is a means of performing predictive meta-analysis for optimizing genomic predictions and can be easily extended to incorporate multiple population-level summary statistics or other domain knowledge. PMID:25918167

  18. One-Dimensional Modelling of Marine Current Turbine Runaway Behaviour

    Directory of Open Access Journals (Sweden)

    Staffan Lundin

    2016-04-01

    Full Text Available If a turbine loses its electrical load, it will rotate freely and increase speed, eventually achieving that rotational speed which produces zero net torque. This is known as a runaway situation. Unlike many other types of turbine, a marine current turbine will typically overshoot the final runaway speed before slowing down and settling at the runaway speed. Since the hydrodynamic forces acting on the turbine are dependent on rotational speed and acceleration, turbine behaviour during runaway becomes important for load analyses during turbine design. In this article, we consider analytical and numerical models of marine current turbine runaway behaviour in one dimension. The analytical model is found not to capture the overshoot phenomenon, while still providing useful estimates of acceleration at the onset of runaway. The numerical model incorporates turbine wake build-up and predicts a rotational speed overshoot. The predictions of the models are compared against measurements of runaway of a marine current turbine. The models are also used to recreate previously-published results for a tidal turbine and applied to a wind turbine. It is found that both models provide reasonable estimates of maximum accelerations. The numerical model is found to capture the speed overshoot well.

  19. Electron cyclotron current drive predictions for ITER: Comparison of different models

    International Nuclear Information System (INIS)

    Marushchenko, N.B.; Maassberg, H.; Beidler, C.D.; Turkin, Yu.

    2007-01-01

    Full text: Due to its high localization and operational flexibility, Electron Cyclotron Current Drive (ECCD) is envisaged for stabilizing the Neoclassical Tearing Mode (NTM) in tokamaks and correcting the rotational transform profile in stellarators. While the spatial location of the electron cyclotron resonant interaction is usually calculated by the ray-tracing technique, numerical tools for calculating the ECCD efficiency are not so common. Two different methods are often applied: i) direct calculation by Fokker-Planck modelling, and ii) by the adjoint approach technique. In the present report we analyze and compare different models used in the adjoint approach technique from the point of view of ITER applications. The numerical tools for calculating the ECCD efficiency developed to date do not completely cover the range of collisional regimes for the electrons involved in the current drive. Only two opposite limits are well developed, collisional and collisionless. Nevertheless, for the densities and temperatures expected for ECCD application in ITER, the collisionless limit model (with trapped particles taken into account) is quite suitable. We analyze the requisite ECCD scenarios with help of the new ray tracing code TRAVIS with the adjoint approach implemented. The (adjoint) Green's function applied for the current drive calculations is formulated with momentum conservation taken into account; this is especially important and even crucial for scenarios, in which mainly bulk electrons are responsible for absorption of the RF power. For comparison, the most common 'high speed limit' model in which the collision operator neglects the integral part and which is approximated by terms valid only for the tail electrons, produces an ECCD efficiency which is an underestimate for some cases by a factor of about 2. In order to select the appropriate model, a rough criterion of 'high speed limit' model applicability is formulated. The results are verified also by

  20. Predictive Modeling of a Paradigm Mechanical Cooling Tower Model: II. Optimal Best-Estimate Results with Reduced Predicted Uncertainties

    Directory of Open Access Journals (Sweden)

    Ruixian Fang

    2016-09-01

    Full Text Available This work uses the adjoint sensitivity model of the counter-flow cooling tower derived in the accompanying PART I to obtain the expressions and relative numerical rankings of the sensitivities, to all model parameters, of the following model responses: (i outlet air temperature; (ii outlet water temperature; (iii outlet water mass flow rate; and (iv air outlet relative humidity. These sensitivities are subsequently used within the “predictive modeling for coupled multi-physics systems” (PM_CMPS methodology to obtain explicit formulas for the predicted optimal nominal values for the model responses and parameters, along with reduced predicted standard deviations for the predicted model parameters and responses. These explicit formulas embody the assimilation of experimental data and the “calibration” of the model’s parameters. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.

  1. Transport critical current density in flux creep model

    International Nuclear Information System (INIS)

    Wang, J.; Taylor, K.N.R.; Russell, G.J.; Yue, Y.

    1992-01-01

    The magnetic flux creep model has been used to derive the temperature dependence of the critical current density in high temperature superconductors. The generally positive curvature of the J c -T diagram is predicted in terms of two interdependent dimensionless fitting parameters. In this paper, the results are compared with both SIS and SNS junction models of these granular materials, neither of which provides a satisfactory prediction of the experimental data. A hybrid model combining the flux creep and SNS mechanisms is shown to be able to account for the linear regions of the J c -T behavior which are observed in some materials

  2. Hidden Semi-Markov Models for Predictive Maintenance

    Directory of Open Access Journals (Sweden)

    Francesco Cartella

    2015-01-01

    Full Text Available Realistic predictive maintenance approaches are essential for condition monitoring and predictive maintenance of industrial machines. In this work, we propose Hidden Semi-Markov Models (HSMMs with (i no constraints on the state duration density function and (ii being applied to continuous or discrete observation. To deal with such a type of HSMM, we also propose modifications to the learning, inference, and prediction algorithms. Finally, automatic model selection has been made possible using the Akaike Information Criterion. This paper describes the theoretical formalization of the model as well as several experiments performed on simulated and real data with the aim of methodology validation. In all performed experiments, the model is able to correctly estimate the current state and to effectively predict the time to a predefined event with a low overall average absolute error. As a consequence, its applicability to real world settings can be beneficial, especially where in real time the Remaining Useful Lifetime (RUL of the machine is calculated.

  3. Model predictive control for Z-source power converter

    DEFF Research Database (Denmark)

    Mo, W.; Loh, P.C.; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of impedance-source (commonly known as Z-source) power converter. Output voltage control and current control for Z-source inverter are analyzed and simulated. With MPC's ability of multi- system variables regulation, load current and voltage...

  4. Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2008-12-01

    Full Text Available We develop two related models of magnetosphere-ionosphere coupling in the jovian system by combining previous models defined at ionospheric heights with magnetospheric magnetic models that allow system parameters to be extended appropriately into the magnetosphere. The key feature of the combined models is thus that they allow direct connection to be made between observations in the magnetosphere, particularly of the azimuthal field produced by the magnetosphere-ionosphere coupling currents and the plasma angular velocity, and the auroral response in the ionosphere. The two models are intended to reflect typical steady-state sub-corotation conditions in the jovian magnetosphere, and transient super-corotation produced by sudden major solar wind-induced compressions, respectively. The key simplification of the models is that of axi-symmetry of the field, flow, and currents about the magnetic axis, limiting their validity to radial distances within ~30 RJ of the planet, though the magnetic axis is appropriately tilted relative to the planetary spin axis and rotates with the planet. The first exploration of the jovian polar magnetosphere is planned to be undertaken in 2016–2017 during the NASA New Frontiers Juno mission, with observations of the polar field, plasma, and UV emissions as a major goal. Evaluation of the models along Juno planning orbits thus produces predictive results that may aid in science mission planning. It is shown in particular that the low-altitude near-periapsis polar passes will generally occur underneath the corresponding auroral acceleration regions, thus allowing brief examination of the auroral primaries over intervals of ~1–3 min for the main oval and ~10 s for narrower polar arc structures, while the "lagging" field deflections produced by the auroral current systems on these passes will be ~0.1°, associated with azimuthal fields above the ionosphere of a few hundred nT.

  5. An efficient numerical target strength prediction model: Validation against analysis solutions

    NARCIS (Netherlands)

    Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de

    2014-01-01

    A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and

  6. Statistical model based gender prediction for targeted NGS clinical panels

    Directory of Open Access Journals (Sweden)

    Palani Kannan Kandavel

    2017-12-01

    The reference test dataset are being used to test the model. The sensitivity on predicting the gender has been increased from the current “genotype composition in ChrX” based approach. In addition, the prediction score given by the model can be used to evaluate the quality of clinical dataset. The higher prediction score towards its respective gender indicates the higher quality of sequenced data.

  7. The North American Multi-Model Ensemble (NMME): Phase-1 Seasonal to Interannual Prediction, Phase-2 Toward Developing Intra-Seasonal Prediction

    Science.gov (United States)

    Kirtman, Ben P.; Min, Dughong; Infanti, Johnna M.; Kinter, James L., III; Paolino, Daniel A.; Zhang, Qin; vandenDool, Huug; Saha, Suranjana; Mendez, Malaquias Pena; Becker, Emily; hide

    2013-01-01

    The recent US National Academies report "Assessment of Intraseasonal to Interannual Climate Prediction and Predictability" was unequivocal in recommending the need for the development of a North American Multi-Model Ensemble (NMME) operational predictive capability. Indeed, this effort is required to meet the specific tailored regional prediction and decision support needs of a large community of climate information users. The multi-model ensemble approach has proven extremely effective at quantifying prediction uncertainty due to uncertainty in model formulation, and has proven to produce better prediction quality (on average) then any single model ensemble. This multi-model approach is the basis for several international collaborative prediction research efforts, an operational European system and there are numerous examples of how this multi-model ensemble approach yields superior forecasts compared to any single model. Based on two NOAA Climate Test Bed (CTB) NMME workshops (February 18, and April 8, 2011) a collaborative and coordinated implementation strategy for a NMME prediction system has been developed and is currently delivering real-time seasonal-to-interannual predictions on the NOAA Climate Prediction Center (CPC) operational schedule. The hindcast and real-time prediction data is readily available (e.g., http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and in graphical format from CPC (http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/index.html). Moreover, the NMME forecast are already currently being used as guidance for operational forecasters. This paper describes the new NMME effort, presents an overview of the multi-model forecast quality, and the complementary skill associated with individual models.

  8. Using Pareto points for model identification in predictive toxicology

    Science.gov (United States)

    2013-01-01

    Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649

  9. Bootstrap prediction and Bayesian prediction under misspecified models

    OpenAIRE

    Fushiki, Tadayoshi

    2005-01-01

    We consider a statistical prediction problem under misspecified models. In a sense, Bayesian prediction is an optimal prediction method when an assumed model is true. Bootstrap prediction is obtained by applying Breiman's `bagging' method to a plug-in prediction. Bootstrap prediction can be considered to be an approximation to the Bayesian prediction under the assumption that the model is true. However, in applications, there are frequently deviations from the assumed model. In this paper, bo...

  10. Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model

    Science.gov (United States)

    Gupta, Deepak; Ahlawat, Anil K.; Sagar, Kalpna

    2017-06-01

    Evaluation of software quality is an important aspect for controlling and managing the software. By such evaluation, improvements in software process can be made. The software quality is significantly dependent on software usability. Many researchers have proposed numbers of usability models. Each model considers a set of usability factors but do not cover all the usability aspects. Practical implementation of these models is still missing, as there is a lack of precise definition of usability. Also, it is very difficult to integrate these models into current software engineering practices. In order to overcome these challenges, this paper aims to define the term `usability' using the proposed hierarchical usability model with its detailed taxonomy. The taxonomy considers generic evaluation criteria for identifying the quality components, which brings together factors, attributes and characteristics defined in various HCI and software models. For the first time, the usability model is also implemented to predict more accurate usability values. The proposed system is named as fuzzy hierarchical usability model that can be easily integrated into the current software engineering practices. In order to validate the work, a dataset of six software development life cycle models is created and employed. These models are ranked according to their predicted usability values. This research also focuses on the detailed comparison of proposed model with the existing usability models.

  11. Predictive Modelling Risk Calculators and the Non Dialysis Pathway.

    Science.gov (United States)

    Robins, Jennifer; Katz, Ivor

    2013-04-16

    This guideline will review the current prediction models and survival/mortality scores available for decision making in patients with advanced kidney disease who are being considered for a non-dialysis treatment pathway. Risk prediction is gaining increasing attention with emerging literature suggesting improved patient outcomes through individualised risk prediction (1). Predictive models help inform the nephrologist and the renal palliative care specialists in their discussions with patients and families about suitability or otherwise of dialysis. Clinical decision making in the care of end stage kidney disease (ESKD) patients on a non-dialysis treatment pathway is currently governed by several observational trials (3). Despite the paucity of evidence based medicine in this field, it is becoming evident that the survival advantages associated with renal replacement therapy in these often elderly patients with multiple co-morbidities and limited functional status may be negated by loss of quality of life (7) (6), further functional decline (5, 8), increased complications and hospitalisations. This article is protected by copyright. All rights reserved.

  12. Predictive Modelling and Time: An Experiment in Temporal Archaeological Predictive Models

    OpenAIRE

    David Ebert

    2006-01-01

    One of the most common criticisms of archaeological predictive modelling is that it fails to account for temporal or functional differences in sites. However, a practical solution to temporal or functional predictive modelling has proven to be elusive. This article discusses temporal predictive modelling, focusing on the difficulties of employing temporal variables, then introduces and tests a simple methodology for the implementation of temporal modelling. The temporal models thus created ar...

  13. Modeling of Tsunami Currents in Harbors

    Science.gov (United States)

    Lynett, P. J.

    2010-12-01

    Extreme events, such as large wind waves and tsunamis, are well recognized as a damaging hazard to port and harbor facilities. Wind wave events, particularly those with long period spectral components or infragravity wave generation, can excite resonance inside harbors leading to both large vertical motions and strong currents. Tsunamis can cause great damage as well. The geometric amplification of these very long waves can create large vertical motions in the interior of a harbor. Additionally, if the tsunami is composed of a train of long waves, which it often is, resonance can be easily excited. These long wave motions create strong currents near the node locations of resonant motions, and when interacting with harbor structures such as breakwaters, can create intense turbulent rotational structures, typical in the form of large eddies or gyres. These gyres have tremendous transport potential, and have been observed to break mooring lines, and even cause ships to be trapped inside the rotation, moving helplessly with the flow until collision, grounding, or dissipation of the eddy (e.g. Okal et al., 2006). This presentation will introduce the traditional theory used to predict wave impacts on harbors, discussing both how these models are practically useful and in what types of situations require a more accurate tool. State-of-the-art numerical models will be introduced, with a focus on recent developments in Boussinesq-type modeling. The Boussinesq equations model can account the dispersive, turbulent and rotational flow properties frequently observed in nature. Also they have the ability to coupling currents and waves and can predict nonlinear wave propagation over uneven bottom from deep (or intermediate) water area to shallow water area. However, during the derivation of a 2D-horizontal equation set, some 3D flow features, such those driven by as the dispersive stresses and the effects of the unresolved small scale 3D turbulence, are excluded. Consequently

  14. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    Wei Sun; Yongjian Yang

    2017-01-01

    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  15. PSO-MISMO modeling strategy for multistep-ahead time series prediction.

    Science.gov (United States)

    Bao, Yukun; Xiong, Tao; Hu, Zhongyi

    2014-05-01

    Multistep-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multistep-ahead time series prediction, exhibiting advantages compared with the two currently dominating strategies, the iterated and the direct strategies. Built on the established MISMO strategy, this paper proposes a particle swarm optimization (PSO)-based MISMO modeling strategy, which is capable of determining the number of sub-models in a self-adaptive mode, with varying prediction horizons. Rather than deriving crisp divides with equal-size s prediction horizons from the established MISMO, the proposed PSO-MISMO strategy, implemented with neural networks, employs a heuristic to create flexible divides with varying sizes of prediction horizons and to generate corresponding sub-models, providing considerable flexibility in model construction, which has been validated with simulated and real datasets.

  16. Prediction models and control algorithms for predictive applications of setback temperature in cooling systems

    International Nuclear Information System (INIS)

    Moon, Jin Woo; Yoon, Younju; Jeon, Young-Hoon; Kim, Sooyoung

    2017-01-01

    Highlights: • Initial ANN model was developed for predicting the time to the setback temperature. • Initial model was optimized for producing accurate output. • Optimized model proved its prediction accuracy. • ANN-based algorithms were developed and tested their performance. • ANN-based algorithms presented superior thermal comfort or energy efficiency. - Abstract: In this study, a temperature control algorithm was developed to apply a setback temperature predictively for the cooling system of a residential building during occupied periods by residents. An artificial neural network (ANN) model was developed to determine the required time for increasing the current indoor temperature to the setback temperature. This study involved three phases: development of the initial ANN-based prediction model, optimization and testing of the initial model, and development and testing of three control algorithms. The development and performance testing of the model and algorithm were conducted using TRNSYS and MATLAB. Through the development and optimization process, the final ANN model employed indoor temperature and the temperature difference between the current and target setback temperature as two input neurons. The optimal number of hidden layers, number of neurons, learning rate, and moment were determined to be 4, 9, 0.6, and 0.9, respectively. The tangent–sigmoid and pure-linear transfer function was used in the hidden and output neurons, respectively. The ANN model used 100 training data sets with sliding-window method for data management. Levenberg-Marquart training method was employed for model training. The optimized model had a prediction accuracy of 0.9097 root mean square errors when compared with the simulated results. Employing the ANN model, ANN-based algorithms maintained indoor temperatures better within target ranges. Compared to the conventional algorithm, the ANN-based algorithms reduced the duration of time, in which the indoor temperature

  17. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers

    NARCIS (Netherlands)

    A. Goverde (Anne); M.C.W. Spaander (Manon); D. Nieboer (Daan); A.M.W. van den Ouweland (Ans); W.N.M. Dinjens (Winand); H.J. Dubbink (Erik Jan); C. Tops (Cmj); S.W. Ten Broeke (Sanne W.); M.J. Bruno (Marco); R.M.W. Hofstra (Robert); E.W. Steyerberg (Ewout); A. Wagner (Anja)

    2017-01-01

    textabstractUntil recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for

  18. Extended Range Prediction of Indian Summer Monsoon: Current status

    Science.gov (United States)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further

  19. General Potential-Current Model and Validation for Electrocoagulation

    International Nuclear Information System (INIS)

    Dubrawski, Kristian L.; Du, Codey; Mohseni, Madjid

    2014-01-01

    A model relating potential and current in continuous parallel plate iron electrocoagulation (EC) was developed for application in drinking water treatment. The general model can be applied to any EC parallel plate system relying only on geometric and tabulated input variables without the need of system-specific experimentally derived constants. For the theoretical model, the anode and cathode were vertically divided into n equipotential segments in a single pass, upflow, and adiabatic EC reactor. Potential and energy balances were simultaneously solved at each vertical segment, which included the contribution of ionic concentrations, solution temperature and conductivity, cathodic hydrogen flux, and gas/liquid ratio. We experimentally validated the numerical model with a vertical upflow EC reactor using a 24 cm height 99.99% pure iron anode divided into twelve 2 cm segments. Individual experimental currents from each segment were summed to determine total current, and compared with the theoretically derived value. Several key variables were studied to determine their impact on model accuracy: solute type, solute concentration, current density, flow rate, inter-electrode gap, and electrode surface condition. Model results were in good agreement with experimental values at cell potentials of 2-20 V (corresponding to a current density range of approximately 50-800 A/m 2 ), with mean relative deviation of 9% for low flow rate, narrow electrode gap, polished electrodes, and 150 mg/L NaCl. Highest deviation occurred with a large electrode gap, unpolished electrodes, and Na 2 SO 4 electrolyte, due to parasitic H 2 O oxidation and less than unity current efficiency. This is the first general model which can be applied to any parallel plate EC system for accurate electrochemical voltage or current prediction

  20. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    Science.gov (United States)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  1. Predicting scour beneath subsea pipelines from existing small free span depths under steady currents

    Directory of Open Access Journals (Sweden)

    Jun Y. Lee

    2017-06-01

    Full Text Available An equation was developed to predict current-induced scour beneath subsea pipelines in areas with small span depths, S. Current equations for scour prediction are only applicable to partially buried pipelines. The existence of small span depths (i.e. S/D < 0.3 are of concern because the capacity for scour is higher at smaller span depths. Furthermore, it is impractical to perform rectification works, such as installing grout bags, under a pipeline with a small S/D. Full-scale two-dimensional computational fluid dynamics (CFD simulations were performed using the Reynolds-averaged Navier–Stokes approach and the Shear stress transport k–ω turbulence model. To predict the occurrence of scour, the computed maximum bed shear stress beneath the pipe was converted to the dimensionless Shields parameter, and compared with the critical Shields parameter based on the mean sediment grain size. The numerical setup was verified, and a good agreement was found between model-scale CFD data and experimental data. Field data were obtained to determine the mean grain size, far field current velocity and to measure the span depths along the surveyed pipe length. A trend line equation was fitted to the full-scale CFD data, whereby the maximum Shields parameter beneath the pipe can be calculated based on the undisturbed Shields parameter and S/D.

  2. The Current and Future Use of Ridge Regression for Prediction in Quantitative Genetics

    Directory of Open Access Journals (Sweden)

    Ronald de Vlaming

    2015-01-01

    Full Text Available In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction in quantitative genetics. Such research mostly focuses on selection of markers and shrinkage of their effects. In this review paper, the use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular, we consider (i the theoretical foundations of ridge regression, (ii its link to commonly used methods in animal breeding, (iii the computational feasibility, and (iv the scope for constructing prediction models with nonlinear effects (e.g., dominance and epistasis. Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample sizes in most cohorts (i.e., N<10,000 the predictive accuracy of ridge regression is slightly higher than the classical genome-wide association study approach of repeated simple regression (i.e., one regression per SNP. However, both capture only a small proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

  3. A new lifetime estimation model for a quicker LED reliability prediction

    Science.gov (United States)

    Hamon, B. H.; Mendizabal, L.; Feuillet, G.; Gasse, A.; Bataillou, B.

    2014-09-01

    LED reliability and lifetime prediction is a key point for Solid State Lighting adoption. For this purpose, one hundred and fifty LEDs have been aged for a reliability analysis. LEDs have been grouped following nine current-temperature stress conditions. Stress driving current was fixed between 350mA and 1A and ambient temperature between 85C and 120°C. Using integrating sphere and I(V) measurements, a cross study of the evolution of electrical and optical characteristics has been done. Results show two main failure mechanisms regarding lumen maintenance. The first one is the typically observed lumen depreciation and the second one is a much more quicker depreciation related to an increase of the leakage and non radiative currents. Models of the typical lumen depreciation and leakage resistance depreciation have been made using electrical and optical measurements during the aging tests. The combination of those models allows a new method toward a quicker LED lifetime prediction. These two models have been used for lifetime predictions for LEDs.

  4. Modeling and prediction of Turkey's electricity consumption using Support Vector Regression

    International Nuclear Information System (INIS)

    Kavaklioglu, Kadir

    2011-01-01

    Support Vector Regression (SVR) methodology is used to model and predict Turkey's electricity consumption. Among various SVR formalisms, ε-SVR method was used since the training pattern set was relatively small. Electricity consumption is modeled as a function of socio-economic indicators such as population, Gross National Product, imports and exports. In order to facilitate future predictions of electricity consumption, a separate SVR model was created for each of the input variables using their current and past values; and these models were combined to yield consumption prediction values. A grid search for the model parameters was performed to find the best ε-SVR model for each variable based on Root Mean Square Error. Electricity consumption of Turkey is predicted until 2026 using data from 1975 to 2006. The results show that electricity consumption can be modeled using Support Vector Regression and the models can be used to predict future electricity consumption. (author)

  5. QCD predictions for weak neutral current structure functions

    International Nuclear Information System (INIS)

    Wu Jimin

    1987-01-01

    Employing the analytic expression (to the next leading order) for non-singlet component of structure function which the author got from QCD theory and putting recent experiment result of neutral current structure function at Q 2 = 11 (GeV/C) 2 as input, the QCD prediction for neutral current structure function of their scaling violation behaviours was given

  6. Modelling of current loads on aquaculture net cages

    Science.gov (United States)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  7. Higher-spin currents in the Gross-Neveu model at 1/n"2

    International Nuclear Information System (INIS)

    Manashov, A.N.

    2016-10-01

    We calculate the anomalous dimensions of higher-spin currents, both singlet and non-singlet, in the Gross - Neveu model at the 1/n"2 order. It was conjectured that in the critical regime this model is dual to a higher-spin gauge theory on AdS_4. The AdS/CFT correspondence predicts that the masses of higher-spin fields correspond to the scaling dimensions of the singlet currents in the Gross - Neveu model.

  8. Validation of a multi-objective, predictive urban traffic model

    NARCIS (Netherlands)

    Wilmink, I.R.; Haak, P. van den; Woldeab, Z.; Vreeswijk, J.

    2013-01-01

    This paper describes the results of the verification and validation of the ecoStrategic Model, which was developed, implemented and tested in the eCoMove project. The model uses real-time and historical traffic information to determine the current, predicted and desired state of traffic in a

  9. Generalized Veneziano model for pion scattering off isovector currents and the scaling limit

    CERN Document Server

    Rothe, H J; Rolhe, K D

    1972-01-01

    Starting from a local one-particle approximation scheme for the commutator of two conserved currents, the authors construct a generalized Veneziano model for pion scattering off neutral and charged isovector currents, satisfying the constraints of current conservation and current algebra. The model factorizes correctly on the leading Regge trajectories and incorporates the proper Regge behaviour for strong amplitudes. Fixed poles are found to be present in the s and t channels of the one- and two-current amplitudes. Furthermore, the model makes definite predictions about the structure of Schwinger terms and of the 'seagull' terms in the retarded commutator. (13 refs).

  10. MULTIVARIATE MODEL FOR CORPORATE BANKRUPTCY PREDICTION IN ROMANIA

    OpenAIRE

    Daniel BRÎNDESCU – OLARIU

    2016-01-01

    The current paper proposes a methodology for bankruptcy prediction applicable for Romanian companies. Low bankruptcy frequencies registered in the past have limited the importance of bankruptcy prediction in Romania. The changes in the economic environment brought by the economic crisis, as well as by the entrance in the European Union, make the availability of performing bankruptcy assessment tools more important than ever before. The proposed methodology is centred on a multivariate model, ...

  11. Integrated modeling of plasma ramp-up in DIII-D ITER-like and high bootstrap current scenario discharges

    Science.gov (United States)

    Wu, M. Q.; Pan, C. K.; Chan, V. S.; Li, G. Q.; Garofalo, A. M.; Jian, X.; Liu, L.; Ren, Q. L.; Chen, J. L.; Gao, X.; Gong, X. Z.; Ding, S. Y.; Qian, J. P.; Cfetr Physics Team

    2018-04-01

    Time-dependent integrated modeling of DIII-D ITER-like and high bootstrap current plasma ramp-up discharges has been performed with the equilibrium code EFIT, and the transport codes TGYRO and ONETWO. Electron and ion temperature profiles are simulated by TGYRO with the TGLF (SAT0 or VX model) turbulent and NEO neoclassical transport models. The VX model is a new empirical extension of the TGLF turbulent model [Jian et al., Nucl. Fusion 58, 016011 (2018)], which captures the physics of multi-scale interaction between low-k and high-k turbulence from nonlinear gyro-kinetic simulation. This model is demonstrated to accurately model low Ip discharges from the EAST tokamak. Time evolution of the plasma current density profile is simulated by ONETWO with the experimental current ramp-up rate. The general trend of the predicted evolution of the current density profile is consistent with that obtained from the equilibrium reconstruction with Motional Stark effect constraints. The predicted evolution of βN , li , and βP also agrees well with the experiments. For the ITER-like cases, the predicted electron and ion temperature profiles using TGLF_Sat0 agree closely with the experimental measured profiles, and are demonstrably better than other proposed transport models. For the high bootstrap current case, the predicted electron and ion temperature profiles perform better in the VX model. It is found that the SAT0 model works well at high IP (>0.76 MA) while the VX model covers a wider range of plasma current ( IP > 0.6 MA). The results reported in this paper suggest that the developed integrated modeling could be a candidate for ITER and CFETR ramp-up engineering design modeling.

  12. Model-free prediction and regression a transformation-based approach to inference

    CERN Document Server

    Politis, Dimitris N

    2015-01-01

    The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, co...

  13. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit

    2015-04-16

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  14. Improving Saliency Models by Predicting Human Fixation Patches

    KAUST Repository

    Dubey, Rachit; Dave, Akshat; Ghanem, Bernard

    2015-01-01

    There is growing interest in studying the Human Visual System (HVS) to supplement and improve the performance of computer vision tasks. A major challenge for current visual saliency models is predicting saliency in cluttered scenes (i.e. high false positive rate). In this paper, we propose a fixation patch detector that predicts image patches that contain human fixations with high probability. Our proposed model detects sparse fixation patches with an accuracy of 84 % and eliminates non-fixation patches with an accuracy of 84 % demonstrating that low-level image features can indeed be used to short-list and identify human fixation patches. We then show how these detected fixation patches can be used as saliency priors for popular saliency models, thus, reducing false positives while maintaining true positives. Extensive experimental results show that our proposed approach allows state-of-the-art saliency methods to achieve better prediction performance on benchmark datasets.

  15. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  16. Enhanced pid vs model predictive control applied to bldc motor

    Science.gov (United States)

    Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.

    2018-01-01

    BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.

  17. Modelling bankruptcy prediction models in Slovak companies

    Directory of Open Access Journals (Sweden)

    Kovacova Maria

    2017-01-01

    Full Text Available An intensive research from academics and practitioners has been provided regarding models for bankruptcy prediction and credit risk management. In spite of numerous researches focusing on forecasting bankruptcy using traditional statistics techniques (e.g. discriminant analysis and logistic regression and early artificial intelligence models (e.g. artificial neural networks, there is a trend for transition to machine learning models (support vector machines, bagging, boosting, and random forest to predict bankruptcy one year prior to the event. Comparing the performance of this with unconventional approach with results obtained by discriminant analysis, logistic regression, and neural networks application, it has been found that bagging, boosting, and random forest models outperform the others techniques, and that all prediction accuracy in the testing sample improves when the additional variables are included. On the other side the prediction accuracy of old and well known bankruptcy prediction models is quiet high. Therefore, we aim to analyse these in some way old models on the dataset of Slovak companies to validate their prediction ability in specific conditions. Furthermore, these models will be modelled according to new trends by calculating the influence of elimination of selected variables on the overall prediction ability of these models.

  18. Early experiences building a software quality prediction model

    Science.gov (United States)

    Agresti, W. W.; Evanco, W. M.; Smith, M. C.

    1990-01-01

    Early experiences building a software quality prediction model are discussed. The overall research objective is to establish a capability to project a software system's quality from an analysis of its design. The technical approach is to build multivariate models for estimating reliability and maintainability. Data from 21 Ada subsystems were analyzed to test hypotheses about various design structures leading to failure-prone or unmaintainable systems. Current design variables highlight the interconnectivity and visibility of compilation units. Other model variables provide for the effects of reusability and software changes. Reported results are preliminary because additional project data is being obtained and new hypotheses are being developed and tested. Current multivariate regression models are encouraging, explaining 60 to 80 percent of the variation in error density of the subsystems.

  19. Utilizing Data Mining for Predictive Modeling of Colorectal Cancer using Electronic Medical Records

    NARCIS (Netherlands)

    Hoogendoorn, M.; Moons, L.G.; Numans, M.E.; Sips, R.J.

    2014-01-01

    Colorectal cancer (CRC) is a relatively common cause of death around the globe. Predictive models for the development of CRC could be highly valuable and could facilitate an early diagnosis and increased survival rates. Currently available predictive models are improving, but do not fully utilize

  20. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  1. Ecological models and pesticide risk assessment: current modeling practice.

    Science.gov (United States)

    Schmolke, Amelie; Thorbek, Pernille; Chapman, Peter; Grimm, Volker

    2010-04-01

    Ecological risk assessments of pesticides usually focus on risk at the level of individuals, and are carried out by comparing exposure and toxicological endpoints. However, in most cases the protection goal is populations rather than individuals. On the population level, effects of pesticides depend not only on exposure and toxicity, but also on factors such as life history characteristics, population structure, timing of application, presence of refuges in time and space, and landscape structure. Ecological models can integrate such factors and have the potential to become important tools for the prediction of population-level effects of exposure to pesticides, thus allowing extrapolations, for example, from laboratory to field. Indeed, a broad range of ecological models have been applied to chemical risk assessment in the scientific literature, but so far such models have only rarely been used to support regulatory risk assessments of pesticides. To better understand the reasons for this situation, the current modeling practice in this field was assessed in the present study. The scientific literature was searched for relevant models and assessed according to nine characteristics: model type, model complexity, toxicity measure, exposure pattern, other factors, taxonomic group, risk assessment endpoint, parameterization, and model evaluation. The present study found that, although most models were of a high scientific standard, many of them would need modification before they are suitable for regulatory risk assessments. The main shortcomings of currently available models in the context of regulatory pesticide risk assessments were identified. When ecological models are applied to regulatory risk assessments, we recommend reviewing these models according to the nine characteristics evaluated here. (c) 2010 SETAC.

  2. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  3. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  4. Predicting the importance of current papers.

    Energy Technology Data Exchange (ETDEWEB)

    Klavans, Richard (SciTech Strategies, Inc., Berwyn, PA); Boyack, Kevin W.

    2005-01-01

    This article examines how well one can predict the importance of a current paper (a paper that is recently published in the literature). We look at three factors--journal importance, reference importance and author reputation. Citation-based measures of importance are used for all variables. We find that journal importance is the best predictor (explaining 22.3% out of a potential 29.1% of the variance in the data), and that this correlation value varies significantly by discipline. Journal importance is a better predictor of citation in Computer Science than in any other discipline. While the finding supports the present policy of using journal impact statistics as a surrogate for the importance of current papers, it calls into question the present policy of equally weighting current documents in text-based analyses. We suggest that future researchers take into account the expected importance of a document when attempting to describe the cognitive structure of a field.

  5. The Best Prediction Model for Trauma Outcomes of the Current Korean Population: a Comparative Study of Three Injury Severity Scoring Systems

    Directory of Open Access Journals (Sweden)

    Kyoungwon Jung

    2016-08-01

    Full Text Available Background: Injury severity scoring systems that quantify and predict trauma outcomes have not been established in Korea. This study was designed to determine the best system for use in the Korean trauma population. Methods: We collected and analyzed the data from trauma patients admitted to our institution from January 2010 to December 2014. Injury Severity Score (ISS, Revised Trauma Score (RTS, and Trauma and Injury Severity Score (TRISS were calculated based on the data from the enrolled patients. Area under the receiver operating characteristic (ROC curve (AUC for the prediction ability of each scoring system was obtained, and a pairwise comparison of ROC curves was performed. Additionally, the cut-off values were estimated to predict mortality, and the corresponding accuracy, positive predictive value, and negative predictive value were obtained. Results: A total of 7,120 trauma patients (6,668 blunt and 452 penetrating injuries were enrolled in this study. The AUCs of ISS, RTS, and TRISS were 0.866, 0.894, and 0.942, respectively, and the prediction ability of the TRISS was significantly better than the others (p < 0.001, respectively. The cut-off value of the TRISS was 0.9082, with a sensitivity of 81.9% and specificity of 92.0%; mortality was predicted with an accuracy of 91.2%; its positive predictive value was the highest at 46.8%. Conclusions: The results of our study were based on the data from one institution and suggest that the TRISS is the best prediction model of trauma outcomes in the current Korean population. Further study is needed with more data from multiple centers in Korea.

  6. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  7. Predicting Power Outages Using Multi-Model Ensemble Forecasts

    Science.gov (United States)

    Cerrai, D.; Anagnostou, E. N.; Yang, J.; Astitha, M.

    2017-12-01

    Power outages affect every year millions of people in the United States, affecting the economy and conditioning the everyday life. An Outage Prediction Model (OPM) has been developed at the University of Connecticut for helping utilities to quickly restore outages and to limit their adverse consequences on the population. The OPM, operational since 2015, combines several non-parametric machine learning (ML) models that use historical weather storm simulations and high-resolution weather forecasts, satellite remote sensing data, and infrastructure and land cover data to predict the number and spatial distribution of power outages. A new methodology, developed for improving the outage model performances by combining weather- and soil-related variables using three different weather models (WRF 3.7, WRF 3.8 and RAMS/ICLAMS), will be presented in this study. First, we will present a performance evaluation of each model variable, by comparing historical weather analyses with station data or reanalysis over the entire storm data set. Hence, each variable of the new outage model version is extracted from the best performing weather model for that variable, and sensitivity tests are performed for investigating the most efficient variable combination for outage prediction purposes. Despite that the final variables combination is extracted from different weather models, this ensemble based on multi-weather forcing and multi-statistical model power outage prediction outperforms the currently operational OPM version that is based on a single weather forcing variable (WRF 3.7), because each model component is the closest to the actual atmospheric state.

  8. Analytical Model of Subthreshold Drain Current Characteristics of Ballistic Silicon Nanowire Transistors

    Directory of Open Access Journals (Sweden)

    Wanjie Xu

    2015-01-01

    Full Text Available A physically based subthreshold current model for silicon nanowire transistors working in the ballistic regime is developed. Based on the electric potential distribution obtained from a 2D Poisson equation and by performing some perturbation approximations for subband energy levels, an analytical model for the subthreshold drain current is obtained. The model is further used for predicting the subthreshold slopes and threshold voltages of the transistors. Our results agree well with TCAD simulation with different geometries and under different biasing conditions.

  9. Offset-Free Direct Power Control of DFIG Under Continuous-Time Model Predictive Control

    DEFF Research Database (Denmark)

    Errouissi, Rachid; Al-Durra, Ahmed; Muyeen, S.M.

    2017-01-01

    This paper presents a robust continuous-time model predictive direct power control for doubly fed induction generator (DFIG). The proposed approach uses Taylor series expansion to predict the stator current in the synchronous reference frame over a finite time horizon. The predicted stator current...... is directly used to compute the required rotor voltage in order to minimize the difference between the actual stator currents and their references over the predictive time. However, as the proposed strategy is sensitive to parameter variations and external disturbances, a disturbance observer is embedded...... into the control loop to remove the steady-state error of the stator current. It turns out that the steady-state and the transient performances can be identified by simple design parameters. In this paper, the reference of the stator current is directly calculated from the desired stator active and reactive powers...

  10. A two-parameter model to predict fracture in the transition

    International Nuclear Information System (INIS)

    DeAquino, C.T.; Landes, J.D.; McCabe, D.E.

    1995-01-01

    A model is proposed that uses a numerical characterization of the crack tip stress field modified by the J - Q constraint theory and a weak link assumption to predict fracture behavior in the transition for reactor vessel steels. This model predicts the toughness scatter band for a component model from a toughness scatter band measured on a test specimen geometry. The model has been applied previously to two-dimensional through cracks. Many applications to actual components structures involve three-dimensional surface flaws. These cases require a more difficult level of analysis and need additional information. In this paper, both the current model for two-dimensional cracks and an approach needed to extend the model for the prediction of transition fracture behavior in three-dimensional surface flaws are discussed. Examples are presented to show how the model can be applied and in some cases to compare with other test results. (author). 13 refs., 7 figs

  11. NON-EQUILIBRIUM IONIZATION MODELING OF THE CURRENT SHEET IN A SIMULATED SOLAR ERUPTION

    International Nuclear Information System (INIS)

    Shen Chengcai; Reeves, Katharine K.; Raymond, John C.; Murphy, Nicholas A.; Ko, Yuan-Kuen; Lin Jun; Mikić, Zoran; Linker, Jon A.

    2013-01-01

    The current sheet that extends from the top of flare loops and connects to an associated flux rope is a common structure in models of coronal mass ejections (CMEs). To understand the observational properties of CME current sheets, we generated predictions from a flare/CME model to be compared with observations. We use a simulation of a large-scale CME current sheet previously reported by Reeves et al. This simulation includes ohmic and coronal heating, thermal conduction, and radiative cooling in the energy equation. Using the results of this simulation, we perform time-dependent ionization calculations of the flow in a CME current sheet and construct two-dimensional spatial distributions of ionic charge states for multiple chemical elements. We use the filter responses from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory and the predicted intensities of emission lines to compute the count rates for each of the AIA bands. The results show differences in the emission line intensities between equilibrium and non-equilibrium ionization. The current sheet plasma is underionized at low heights and overionized at large heights. At low heights in the current sheet, the intensities of the AIA 94 Å and 131 Å channels are lower for non-equilibrium ionization than for equilibrium ionization. At large heights, these intensities are higher for non-equilibrium ionization than for equilibrium ionization inside the current sheet. The assumption of ionization equilibrium would lead to a significant underestimate of the temperature low in the current sheet and overestimate at larger heights. We also calculate the intensities of ultraviolet lines and predict emission features to be compared with events from the Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, including a low-intensity region around the current sheet corresponding to this model

  12. Prediction of burnout of a conduction-cooled BSCCO current lead

    International Nuclear Information System (INIS)

    Seol, S.Y.; Cha, Y.S.; Niemann, R.C.; Hull, J.R.

    1996-01-01

    A one-dimensional heat conduction model is employed to predict burnout of a Bi 2 Sr 2 CaCu 2 O 8 current lead. The upper end of the lead is assumed to be at 77 K and the lower end is at 4 K. The results show that burnout always occurs at the warmer end of the lead. The lead reaches its burnout temperature in two distinct stage. Initially, the temperature rises slowly when part of the lead is in flux-flow state. As the local temperature reaches the critical temperature, it begins to increase sharply. Burnout time depends strongly on flux-flow resistivity

  13. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Science.gov (United States)

    King, Michael; Marston, Louise; Švab, Igor; Maaroos, Heidi-Ingrid; Geerlings, Mirjam I; Xavier, Miguel; Benjamin, Vicente; Torres-Gonzalez, Francisco; Bellon-Saameno, Juan Angel; Rotar, Danica; Aluoja, Anu; Saldivia, Sandra; Correa, Bernardo; Nazareth, Irwin

    2011-01-01

    Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women. 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  14. Development and validation of a risk model for prediction of hazardous alcohol consumption in general practice attendees: the predictAL study.

    Directory of Open Access Journals (Sweden)

    Michael King

    Full Text Available Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL for the development of hazardous drinking in safe drinkers.A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score ≥8 in men and ≥5 in women.69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873. The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51. External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846 and Hedge's g of 0.68 (95% CI 0.57, 0.78.The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.

  15. Prediction of SFL Interruption Performance from the Results of Arc Simulation during High-Current Phase

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Won-Ho; Kim, Woun-Jea

    2015-09-01

    The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of the thermal-flow inside the interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on a combination of thermal expansion and the arc rotation principle, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the pressure-rise and the ramp of the pressure inside the chamber before current zero as well as the post-arc current after current zero should be a good criterion to predict the short-line fault interruption performance of interrupters.

  16. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    International Nuclear Information System (INIS)

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-01-01

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  17. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models.

    Science.gov (United States)

    Phinney, David Martin; Frelka, John C; Heldman, Dennis Ray

    2017-01-01

    Prediction of temperature-dependent thermophysical properties (thermal conductivity, density, specific heat, and thermal diffusivity) is an important component of process design for food manufacturing. Current models for prediction of thermophysical properties of foods are based on the composition, specifically, fat, carbohydrate, protein, fiber, water, and ash contents, all of which change with temperature. The objectives of this investigation were to reevaluate and improve the prediction expressions for thermophysical properties. Previously published data were analyzed over the temperature range from 10 to 150 °C. These data were analyzed to create a series of relationships between the thermophysical properties and temperature for each food component, as well as to identify the dependence of the thermophysical properties on more specific structural properties of the fats, carbohydrates, and proteins. Results from this investigation revealed that the relationships between the thermophysical properties of the major constituents of foods and temperature can be statistically described by linear expressions, in contrast to the current polynomial models. Links between variability in thermophysical properties and structural properties were observed. Relationships for several thermophysical properties based on more specific constituents have been identified. Distinctions between simple sugars (fructose, glucose, and lactose) and complex carbohydrates (starch, pectin, and cellulose) have been proposed. The relationships between the thermophysical properties and proteins revealed a potential correlation with the molecular weight of the protein. The significance of relating variability in constituent thermophysical properties with structural properties--such as molecular mass--could significantly improve composition-based prediction models and, consequently, the effectiveness of process design. © 2016 Institute of Food Technologists®.

  18. Predictive modeling of complications.

    Science.gov (United States)

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  19. Higher-spin currents in the Gross-Neveu model at 1/n{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Manashov, A.N. [Institut für Theoretische Physik, Universität Hamburg,Hamburg, D-22761 (Germany); Institut für Theoretische Physik, Universität Regensburg,Regensburg, D-93040 (Germany); Skvortsov, E.D. [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians University Munich, Theresienstr. 37, Munich, D-80333 (Germany); Lebedev Institute of Physics,Leninsky ave. 53, Moscow, 119991 (Russian Federation)

    2017-01-30

    We calculate the anomalous dimensions of higher-spin currents, both singlet and non-singlet, in the Gross-Neveu model at the 1/n{sup 2} order. It was conjectured that in the critical regime this model is dual to a higher-spin gauge theory on AdS{sub 4}. The AdS/CFT correspondence predicts that the masses of higher-spin fields correspond to the scaling dimensions of the singlet currents in the Gross-Neveu model.

  20. Experimental testing and modelling of a resistive type superconducting fault current limiter using MgB2 wire

    International Nuclear Information System (INIS)

    Smith, A C; Pei, X; Oliver, A; Husband, M; Rindfleisch, M

    2012-01-01

    A prototype resistive superconducting fault current limiter (SFCL) was developed using single-strand round magnesium diboride (MgB 2 ) wire. The MgB 2 wire was wound with an interleaved arrangement to minimize coil inductance and provide adequate inter-turn voltage withstand capability. The temperature profile from 30 to 40 K and frequency profile from 10 to 100 Hz at 25 K were tested and reported. The quench properties of the prototype coil were tested using a high current test circuit. The fault current was limited by the prototype coil within the first quarter-cycle. The prototype coil demonstrated reliable and repeatable current limiting properties and was able to withstand a potential peak current of 372 A for one second without any degradation of performance. A three-strand SFCL coil was investigated and demonstrated scaled-up current capacity. An analytical model to predict the behaviour of the prototype single-strand SFCL coil was developed using an adiabatic boundary condition on the outer surface of the wire. The predicted fault current using the analytical model showed very good correlation with the experimental test results. The analytical model and a finite element thermal model were used to predict the temperature rise of the wire during a fault. (paper)

  1. High performance predictive current control of a three phase VSI: An ...

    Indian Academy of Sciences (India)

    ... current control of a three phase VSI: An experimental assessment ... Voltage source inverter; two level inverter; predictive current control; weighting factor ... Conventionally, for reference current tracking control in a two level VSI, the objective ...

  2. Comparison of Predictive Modeling Methods of Aircraft Landing Speed

    Science.gov (United States)

    Diallo, Ousmane H.

    2012-01-01

    Expected increases in air traffic demand have stimulated the development of air traffic control tools intended to assist the air traffic controller in accurately and precisely spacing aircraft landing at congested airports. Such tools will require an accurate landing-speed prediction to increase throughput while decreasing necessary controller interventions for avoiding separation violations. There are many practical challenges to developing an accurate landing-speed model that has acceptable prediction errors. This paper discusses the development of a near-term implementation, using readily available information, to estimate/model final approach speed from the top of the descent phase of flight to the landing runway. As a first approach, all variables found to contribute directly to the landing-speed prediction model are used to build a multi-regression technique of the response surface equation (RSE). Data obtained from operations of a major airlines for a passenger transport aircraft type to the Dallas/Fort Worth International Airport are used to predict the landing speed. The approach was promising because it decreased the standard deviation of the landing-speed error prediction by at least 18% from the standard deviation of the baseline error, depending on the gust condition at the airport. However, when the number of variables is reduced to the most likely obtainable at other major airports, the RSE model shows little improvement over the existing methods. Consequently, a neural network that relies on a nonlinear regression technique is utilized as an alternative modeling approach. For the reduced number of variables cases, the standard deviation of the neural network models errors represent over 5% reduction compared to the RSE model errors, and at least 10% reduction over the baseline predicted landing-speed error standard deviation. Overall, the constructed models predict the landing-speed more accurately and precisely than the current state-of-the-art.

  3. New horizons in predictive toxicology: current status and application

    National Research Council Canada - National Science Library

    Wilson, A. G. E

    2012-01-01

    "In this comprehensive discussion of predictive toxicology and its applications, leading experts express their views on the technologies currently available and the potential for future developments...

  4. Enhancing pavement performance prediction models for the Illinois Tollway System

    Directory of Open Access Journals (Sweden)

    Laxmikanth Premkumar

    2016-01-01

    Full Text Available Accurate pavement performance prediction represents an important role in prioritizing future maintenance and rehabilitation needs, and predicting future pavement condition in a pavement management system. The Illinois State Toll Highway Authority (Tollway with over 2000 lane miles of pavement utilizes the condition rating survey (CRS methodology to rate pavement performance. Pavement performance models developed in the past for the Illinois Department of Transportation (IDOT are used by the Tollway to predict the future condition of its network. The model projects future CRS ratings based on pavement type, thickness, traffic, pavement age and current CRS rating. However, with time and inclusion of newer pavement types there was a need to calibrate the existing pavement performance models, as well as, develop models for newer pavement types.This study presents the results of calibrating the existing models, and developing new models for the various pavement types in the Illinois Tollway network. The predicted future condition of the pavements is used in estimating its remaining service life to failure, which is of immediate use in recommending future maintenance and rehabilitation requirements for the network. Keywords: Pavement performance models, Remaining life, Pavement management

  5. Acute Myocardial Infarction Readmission Risk Prediction Models: A Systematic Review of Model Performance.

    Science.gov (United States)

    Smith, Lauren N; Makam, Anil N; Darden, Douglas; Mayo, Helen; Das, Sandeep R; Halm, Ethan A; Nguyen, Oanh Kieu

    2018-01-01

    Hospitals are subject to federal financial penalties for excessive 30-day hospital readmissions for acute myocardial infarction (AMI). Prospectively identifying patients hospitalized with AMI at high risk for readmission could help prevent 30-day readmissions by enabling targeted interventions. However, the performance of AMI-specific readmission risk prediction models is unknown. We systematically searched the published literature through March 2017 for studies of risk prediction models for 30-day hospital readmission among adults with AMI. We identified 11 studies of 18 unique risk prediction models across diverse settings primarily in the United States, of which 16 models were specific to AMI. The median overall observed all-cause 30-day readmission rate across studies was 16.3% (range, 10.6%-21.0%). Six models were based on administrative data; 4 on electronic health record data; 3 on clinical hospital data; and 5 on cardiac registry data. Models included 7 to 37 predictors, of which demographics, comorbidities, and utilization metrics were the most frequently included domains. Most models, including the Centers for Medicare and Medicaid Services AMI administrative model, had modest discrimination (median C statistic, 0.65; range, 0.53-0.79). Of the 16 reported AMI-specific models, only 8 models were assessed in a validation cohort, limiting generalizability. Observed risk-stratified readmission rates ranged from 3.0% among the lowest-risk individuals to 43.0% among the highest-risk individuals, suggesting good risk stratification across all models. Current AMI-specific readmission risk prediction models have modest predictive ability and uncertain generalizability given methodological limitations. No existing models provide actionable information in real time to enable early identification and risk-stratification of patients with AMI before hospital discharge, a functionality needed to optimize the potential effectiveness of readmission reduction interventions

  6. Predicting the behavioural impact of transcranial direct current stimulation: issues and limitations

    Directory of Open Access Journals (Sweden)

    Archy Otto De Berker

    2013-10-01

    Full Text Available The transcranial application of weak currents to the human brain has enjoyed a decade of success, providing a simple and powerful tool for non-invasively altering human brain function. However, our understanding of current delivery and its impact upon neural circuitry leaves much to be desired. We argue that the credibility of conclusions drawn with tDCS is contingent upon realistic explanations of how tDCS works, and that our present understanding of tDCS limits the technique’s use to localize function in the human brain. We outline two central issues where progress is required: the localization of currents, and predicting their functional consequence. We encourage experimenters to eschew simplistic explanations of mechanisms of transcranial current stimulation. We suggest the use of individualized current modelling, together with computational neurostimulation to inform mechanistic frameworks in which to interpret the physiological impact of tDCS. We hope that through mechanistically richer descriptions of current flow and action, insight into the biological processes by which transcranial currents influence behaviour can be gained, leading to more effective stimulation protocols and empowering conclusions drawn with tDCS.

  7. Performance prediction model for distributed applications on multicore clusters

    CSIR Research Space (South Africa)

    Khanyile, NP

    2012-07-01

    Full Text Available discusses some of the short comings of this law in the current age. We propose a theoretical model for predicting the behavior of a distributed algorithm given the network restrictions of the cluster used. The paper focuses on the impact of latency...

  8. Database and prediction model for CANDU pressure tube diameter

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J.Y.; Park, J.H. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2014-07-01

    The pressure tube (PT) diameter is basic data in evaluating the CCP (critical channel power) of a CANDU reactor. Since the CCP affects the operational margin directly, an accurate prediction of the PT diameter is important to assess the operational margin. However, the PT diameter increases by creep owing to the effects of irradiation by neutron flux, stress, and reactor operating temperatures during the plant service period. Thus, it has been necessary to collect the measured data of the PT diameter and establish a database (DB) and develop a prediction model of PT diameter. Accordingly, in this study, a DB for the measured PT diameter data was established and a neural network (NN) based diameter prediction model was developed. The established DB included not only the measured diameter data but also operating conditions such as the temperature, pressure, flux, and effective full power date. The currently developed NN based diameter prediction model considers only extrinsic variables such as the operating conditions, and will be enhanced to consider the effect of intrinsic variables such as the micro-structure of the PT material. (author)

  9. Subtask 2.4 - Integration and Synthesis in Climate Change Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav Solc

    2009-06-01

    The Energy & Environmental Research Center (EERC) completed a brief evaluation of the existing status of predictive modeling to assess options for integration of our previous paleohydrologic reconstructions and their synthesis with current global climate scenarios. Results of our research indicate that short-term data series available from modern instrumental records are not sufficient to reconstruct past hydrologic events or predict future ones. On the contrary, reconstruction of paleoclimate phenomena provided credible information on past climate cycles and confirmed their integration in the context of regional climate history is possible. Similarly to ice cores and other paleo proxies, acquired data represent an objective, credible tool for model calibration and validation of currently observed trends. It remains a subject of future research whether further refinement of our results and synthesis with regional and global climate observations could contribute to improvement and credibility of climate predictions on a regional and global scale.

  10. Predictive Modeling of the CDRA 4BMS

    Science.gov (United States)

    Coker, Robert F.; Knox, James C.

    2016-01-01

    As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.

  11. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique

    2010-12-15

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  12. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    International Nuclear Information System (INIS)

    Kozlowski, K.K.; Terras, V.

    2010-12-01

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  13. Model Predictive Control Algorithms for Pen and Pump Insulin Administration

    DEFF Research Database (Denmark)

    Boiroux, Dimitri

    at mealtime, and the case where the insulin sensitivity increases during the night. This thesis consists of a summary report, glucose and insulin proles of the clinical studies and research papers submitted, peer-reviewed and/or published in the period September 2009 - September 2012....... of current closed-loop controllers. In this thesis, we present different control strategies based on Model Predictive Control (MPC) for an artificial pancreas. We use Nonlinear Model Predictive Control (NMPC) in order to determine the optimal insulin and blood glucose profiles. The optimal control problem...

  14. A Review of Current Machine Learning Methods Used for Cancer Recurrence Modeling and Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Hemphill, Geralyn M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    Cancer has been characterized as a heterogeneous disease consisting of many different subtypes. The early diagnosis and prognosis of a cancer type has become a necessity in cancer research. A major challenge in cancer management is the classification of patients into appropriate risk groups for better treatment and follow-up. Such risk assessment is critically important in order to optimize the patient’s health and the use of medical resources, as well as to avoid cancer recurrence. This paper focuses on the application of machine learning methods for predicting the likelihood of a recurrence of cancer. It is not meant to be an extensive review of the literature on the subject of machine learning techniques for cancer recurrence modeling. Other recent papers have performed such a review, and I will rely heavily on the results and outcomes from these papers. The electronic databases that were used for this review include PubMed, Google, and Google Scholar. Query terms used include “cancer recurrence modeling”, “cancer recurrence and machine learning”, “cancer recurrence modeling and machine learning”, and “machine learning for cancer recurrence and prediction”. The most recent and most applicable papers to the topic of this review have been included in the references. It also includes a list of modeling and classification methods to predict cancer recurrence.

  15. A molecular prognostic model predicts esophageal squamous cell carcinoma prognosis.

    Directory of Open Access Journals (Sweden)

    Hui-Hui Cao

    Full Text Available Esophageal squamous cell carcinoma (ESCC has the highest mortality rates in China. The 5-year survival rate of ESCC remains dismal despite improvements in treatments such as surgical resection and adjuvant chemoradiation, and current clinical staging approaches are limited in their ability to effectively stratify patients for treatment options. The aim of the present study, therefore, was to develop an immunohistochemistry-based prognostic model to improve clinical risk assessment for patients with ESCC.We developed a molecular prognostic model based on the combined expression of axis of epidermal growth factor receptor (EGFR, phosphorylated Specificity protein 1 (p-Sp1, and Fascin proteins. The presence of this prognostic model and associated clinical outcomes were analyzed for 130 formalin-fixed, paraffin-embedded esophageal curative resection specimens (generation dataset and validated using an independent cohort of 185 specimens (validation dataset.The expression of these three genes at the protein level was used to build a molecular prognostic model that was highly predictive of ESCC survival in both generation and validation datasets (P = 0.001. Regression analysis showed that this molecular prognostic model was strongly and independently predictive of overall survival (hazard ratio = 2.358 [95% CI, 1.391-3.996], P = 0.001 in generation dataset; hazard ratio = 1.990 [95% CI, 1.256-3.154], P = 0.003 in validation dataset. Furthermore, the predictive ability of these 3 biomarkers in combination was more robust than that of each individual biomarker.This technically simple immunohistochemistry-based molecular model accurately predicts ESCC patient survival and thus could serve as a complement to current clinical risk stratification approaches.

  16. Global vegetation change predicted by the modified Budyko model

    Energy Technology Data Exchange (ETDEWEB)

    Monserud, R.A.; Tchebakova, N.M.; Leemans, R. (US Department of Agriculture, Moscow, ID (United States). Intermountain Research Station, Forest Service)

    1993-09-01

    A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO[sub 2] doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favouring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO[sub 2] doubling, it is not clear if projected global warming will result in drastic or benign vegetation change. 72 refs., 3 figs., 3 tabs.

  17. Cross-Validation of Aerobic Capacity Prediction Models in Adolescents.

    Science.gov (United States)

    Burns, Ryan Donald; Hannon, James C; Brusseau, Timothy A; Eisenman, Patricia A; Saint-Maurice, Pedro F; Welk, Greg J; Mahar, Matthew T

    2015-08-01

    Cardiorespiratory endurance is a component of health-related fitness. FITNESSGRAM recommends the Progressive Aerobic Cardiovascular Endurance Run (PACER) or One mile Run/Walk (1MRW) to assess cardiorespiratory endurance by estimating VO2 Peak. No research has cross-validated prediction models from both PACER and 1MRW, including the New PACER Model and PACER-Mile Equivalent (PACER-MEQ) using current standards. The purpose of this study was to cross-validate prediction models from PACER and 1MRW against measured VO2 Peak in adolescents. Cardiorespiratory endurance data were collected on 90 adolescents aged 13-16 years (Mean = 14.7 ± 1.3 years; 32 girls, 52 boys) who completed the PACER and 1MRW in addition to a laboratory maximal treadmill test to measure VO2 Peak. Multiple correlations among various models with measured VO2 Peak were considered moderately strong (R = .74-0.78), and prediction error (RMSE) ranged from 5.95 ml·kg⁻¹,min⁻¹ to 8.27 ml·kg⁻¹.min⁻¹. Criterion-referenced agreement into FITNESSGRAM's Healthy Fitness Zones was considered fair-to-good among models (Kappa = 0.31-0.62; Agreement = 75.5-89.9%; F = 0.08-0.65). In conclusion, prediction models demonstrated moderately strong linear relationships with measured VO2 Peak, fair prediction error, and fair-to-good criterion referenced agreement with measured VO2 Peak into FITNESSGRAM's Healthy Fitness Zones.

  18. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    Science.gov (United States)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United

  19. Capabilities of current wildfire models when simulating topographical flow

    Science.gov (United States)

    Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.

    2009-12-01

    Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.

  20. Development of a Mobile Application for Building Energy Prediction Using Performance Prediction Model

    Directory of Open Access Journals (Sweden)

    Yu-Ri Kim

    2016-03-01

    Full Text Available Recently, the Korean government has enforced disclosure of building energy performance, so that such information can help owners and prospective buyers to make suitable investment plans. Such a building energy performance policy of the government makes it mandatory for the building owners to obtain engineering audits and thereby evaluate the energy performance levels of their buildings. However, to calculate energy performance levels (i.e., asset rating methodology, a qualified expert needs to have access to at least the full project documentation and/or conduct an on-site inspection of the buildings. Energy performance certification costs a lot of time and money. Moreover, the database of certified buildings is still actually quite small. A need, therefore, is increasing for a simplified and user-friendly energy performance prediction tool for non-specialists. Also, a database which allows building owners and users to compare best practices is required. In this regard, the current study developed a simplified performance prediction model through experimental design, energy simulations and ANOVA (analysis of variance. Furthermore, using the new prediction model, a related mobile application was also developed.

  1. Candidate Prediction Models and Methods

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Madsen, Henrik

    2005-01-01

    This document lists candidate prediction models for Work Package 3 (WP3) of the PSO-project called ``Intelligent wind power prediction systems'' (FU4101). The main focus is on the models transforming numerical weather predictions into predictions of power production. The document also outlines...... the possibilities w.r.t. different numerical weather predictions actually available to the project....

  2. A new model for predicting moisture uptake by packaged solid pharmaceuticals.

    Science.gov (United States)

    Chen, Y; Li, Y

    2003-04-14

    A novel mathematical model has been developed for predicting moisture uptake by packaged solid pharmaceutical products during storage. High density polyethylene (HDPE) bottles containing the tablet products of two new chemical entities and desiccants are investigated. Permeability of the bottles is determined at different temperatures using steady-state data. Moisture sorption isotherms of the two model drug products and desiccants at the same temperatures are determined and expressed in polynomial equations. The isotherms are used for modeling the time-humidity profile in the container, which enables the prediction of the moisture content of individual component during storage. Predicted moisture contents agree well with real time stability data. The current model could serve as a guide during packaging selection for moisture protection, so as to reduce the cost and cycle time of screening study.

  3. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  4. Wind power prediction models

    Science.gov (United States)

    Levy, R.; Mcginness, H.

    1976-01-01

    Investigations were performed to predict the power available from the wind at the Goldstone, California, antenna site complex. The background for power prediction was derived from a statistical evaluation of available wind speed data records at this location and at nearby locations similarly situated within the Mojave desert. In addition to a model for power prediction over relatively long periods of time, an interim simulation model that produces sample wind speeds is described. The interim model furnishes uncorrelated sample speeds at hourly intervals that reproduce the statistical wind distribution at Goldstone. A stochastic simulation model to provide speed samples representative of both the statistical speed distributions and correlations is also discussed.

  5. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models.

    Science.gov (United States)

    Mahony, Shaun; McInerney, James O; Smith, Terry J; Golden, Aaron

    2004-03-05

    Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  6. MULTIVARIATE MODEL FOR CORPORATE BANKRUPTCY PREDICTION IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Daniel BRÎNDESCU – OLARIU

    2016-06-01

    Full Text Available The current paper proposes a methodology for bankruptcy prediction applicable for Romanian companies. Low bankruptcy frequencies registered in the past have limited the importance of bankruptcy prediction in Romania. The changes in the economic environment brought by the economic crisis, as well as by the entrance in the European Union, make the availability of performing bankruptcy assessment tools more important than ever before. The proposed methodology is centred on a multivariate model, developed through discriminant analysis. Financial ratios are employed as explanatory variables within the model. The study has included 53,252 yearly financial statements from the period 2007 – 2010, with the state of the companies being monitored until the end of 2012. It thus employs the largest sample ever used in Romanian research in the field of bankruptcy prediction, not targeting high levels of accuracy over isolated samples, but reliability and ease of use over the entire population.

  7. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  8. Inverse and Predictive Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Syracuse, Ellen Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-27

    The LANL Seismo-Acoustic team has a strong capability in developing data-driven models that accurately predict a variety of observations. These models range from the simple – one-dimensional models that are constrained by a single dataset and can be used for quick and efficient predictions – to the complex – multidimensional models that are constrained by several types of data and result in more accurate predictions. Team members typically build models of geophysical characteristics of Earth and source distributions at scales of 1 to 1000s of km, the techniques used are applicable for other types of physical characteristics at an even greater range of scales. The following cases provide a snapshot of some of the modeling work done by the Seismo- Acoustic team at LANL.

  9. Real Time Hybrid Model Predictive Control for the Current Profile of the Tokamak à Configuration Variable (TCV

    Directory of Open Access Journals (Sweden)

    Izaskun Garrido

    2016-08-01

    Full Text Available Plasma stability is one of the obstacles in the path to the successful operation of fusion devices. Numerical control-oriented codes as it is the case of the widely accepted RZIp may be used within Tokamak simulations. The novelty of this article relies in the hierarchical development of a dynamic control loop. It is based on a current profile Model Predictive Control (MPC algorithm within a multiloop structure, where a MPC is developed at each step so as to improve the Proportional Integral Derivative (PID global scheme. The inner control loop is composed of a PID-based controller that acts over the Multiple Input Multiple Output (MIMO system resulting from the RZIp plasma model of the Tokamak à Configuration Variable (TCV. The coefficients of this PID controller are initially tuned using an eigenmode reduction over the passive structure model. The control action corresponding to the state of interest is then optimized in the outer MPC loop. For the sake of comparison, both the traditionally used PID global controller as well as the multiloop enhanced MPC are applied to the same TCV shot. The results show that the proposed control algorithm presents a superior performance over the conventional PID algorithm in terms of convergence. Furthermore, this enhanced MPC algorithm contributes to extend the discharge length and to overcome the limited power availability restrictions that hinder the performance of advanced tokamaks.

  10. To predict the niche, model colonization and extinction

    Science.gov (United States)

    Yackulic, Charles B.; Nichols, James D.; Reid, Janice; Der, Ricky

    2015-01-01

    Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species' niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both because of ongoing invasions and because the distribution of suitable environmental conditions is always changing. This mismatch between the equilibrium assumptions inherent in many analyses and the disequilibrium conditions in the real world leads to inaccurate predictions of species' geographic distributions and suggests the need for theory and analytical tools that avoid equilibrium assumptions. Here, we develop a general theory of environmental associations during periods of transient dynamics. We show that time-invariant relationships between environmental conditions and rates of local colonization and extinction can produce substantial temporal variation in occupancy–environment relationships. We then estimate occupancy–environment relationships during three avian invasions. Changes in occupancy–environment relationships over time differ among species but are predicted by dynamic occupancy models. Since estimates of the occupancy–environment relationships themselves are frequently poor predictors of future occupancy patterns, research should increasingly focus on characterizing how rates of local colonization and extinction vary with environmental conditions.

  11. Archaeological predictive model set.

    Science.gov (United States)

    2015-03-01

    This report is the documentation for Task 7 of the Statewide Archaeological Predictive Model Set. The goal of this project is to : develop a set of statewide predictive models to assist the planning of transportation projects. PennDOT is developing t...

  12. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  13. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.

    Science.gov (United States)

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vives-Rego, Josep

    2009-08-31

    Predictive microbiology is the area of food microbiology that attempts to forecast the quantitative evolution of microbial populations over time. This is achieved to a great extent through models that include the mechanisms governing population dynamics. Traditionally, the models used in predictive microbiology are whole-system continuous models that describe population dynamics by means of equations applied to extensive or averaged variables of the whole system. Many existing models can be classified by specific criteria. We can distinguish between survival and growth models by seeing whether they tackle mortality or cell duplication. We can distinguish between empirical (phenomenological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors and constraints on the microbial community. Recently, the use of spatially explicit Individual-based Models (IbMs) has spread through predictive microbiology, due to the current technological capacity of performing measurements on single individual cells and thanks to the consolidation of computational modelling. Spatially explicit IbMs are bottom-up approaches to microbial communities that build bridges between the description of micro-organisms at the cell level and macroscopic observations at the population level. They provide greater insight into the mesoscale phenomena that link unicellular and population levels. Every model is built in response to a particular question and with different aims. Even so, in this research we conducted a SWOT (Strength, Weaknesses, Opportunities and Threats) analysis of the different approaches (population continuous modelling and Individual-based Modelling), which we hope will be helpful for current and future

  14. Model Predictive Control of Z-source Neutral Point Clamped Inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    This paper presents Model Predictive Control (MPC) of Z-source Neutral Point Clamped (NPC) inverter. For illustration, current control of Z-source NPC grid-connected inverter is analyzed and simulated. With MPC’s advantage of easily including system constraints, load current, impedance network...... response are obtained at the same time with a formulated Z-source NPC inverter network model. Operation steady state and transient state simulation results of MPC are going to be presented, which shows good reference tracking ability of this method. It provides new control method for Z-source NPC inverter...

  15. A Note on the Use of Mixture Models for Individual Prediction.

    Science.gov (United States)

    Cole, Veronica T; Bauer, Daniel J

    Mixture models capture heterogeneity in data by decomposing the population into latent subgroups, each of which is governed by its own subgroup-specific set of parameters. Despite the flexibility and widespread use of these models, most applications have focused solely on making inferences for whole or sub-populations, rather than individual cases. The current article presents a general framework for computing marginal and conditional predicted values for individuals using mixture model results. These predicted values can be used to characterize covariate effects, examine the fit of the model for specific individuals, or forecast future observations from previous ones. Two empirical examples are provided to demonstrate the usefulness of individual predicted values in applications of mixture models. The first example examines the relative timing of initiation of substance use using a multiple event process survival mixture model whereas the second example evaluates changes in depressive symptoms over adolescence using a growth mixture model.

  16. Model predictive control of a high speed switched reluctance generator system

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram; Steinbuch, Maarten

    2013-01-01

    This paper presents a novel voltage control strategy for the high-speed operation of a Switched Reluctance Generator. It uses a linear Model Predictive Control law based on the average system model. The controller computes the DC-link current needed to achieve the tracking of a desired voltage

  17. Computer modelling of eddy current probes

    International Nuclear Information System (INIS)

    Sullivan, S.P.

    1992-01-01

    Computer programs have been developed for modelling impedance and transmit-receive eddy current probes in two-dimensional axis-symmetric configurations. These programs, which are based on analytic equations, simulate bobbin probes in infinitely long tubes and surface probes on plates. They calculate probe signal due to uniform variations in conductor thickness, resistivity and permeability. These signals depend on probe design and frequency. A finite element numerical program has been procured to calculate magnetic permeability in non-linear ferromagnetic materials. Permeability values from these calculations can be incorporated into the above analytic programs to predict signals from eddy current probes with permanent magnets in ferromagnetic tubes. These programs were used to test various probe designs for new testing applications. Measurements of magnetic permeability in magnetically biased ferromagnetic materials have been performed by superimposing experimental signals, from special laboratory ET probes, on impedance plane diagrams calculated using these programs. (author). 3 refs., 2 figs

  18. An investigation of r.f. travelling wave current drive using the model

    International Nuclear Information System (INIS)

    Bertram, W.K.

    1988-01-01

    Previous experimental investigations in the use of travelling r.f. waves to drive steady toroidal currents in a toroidal plasma have shown that I t , the amount of current driven, is strongly dependent on the ratio of the static toroidal magnetic field B z , to the strength of the r.f. magnetic field B ω . This dependence is characterised by an initial increase and subsequent decrease of I t when B t /B ω increases. It is shown that this observed behaviour is entirely consistent with the behaviour predicted by the current drive model. Results from numerical computations using the model show good quantitative agreement with the published experimental results

  19. Reversible thermal fusing model of carbon black current-limiting thermistors

    International Nuclear Information System (INIS)

    Martin, James E.; Heaney, Michael B.

    2000-01-01

    Composites of carbon black particles in polyethylene exhibit an unusually rapid increase in resistivity as the applied electric field is increased, making this material commercially useful as current-limiting thermistors, also known as automatically resettable fuses. In this application the composite is in series with the circuit it is protecting: at low applied voltages the circuit is the load, but at high applied voltages the composite becomes the load, limiting the current to the circuit. We present a simple model of this behavior in terms of a network of nonlinear resistors. Each resistor has a resistance that depends explicitly and reversibly on its instantaneous power dissipation. This model predicts that in the soft fusing, or current-limiting, regime, where the current through the composite decreases with increasing voltage, a platelike dissipation instability develops normal to the applied field, in agreement with experimental observations, which is solely due to fluctuations in the microstructure

  20. Web tools for predictive toxicology model building.

    Science.gov (United States)

    Jeliazkova, Nina

    2012-07-01

    The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.

  1. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    Science.gov (United States)

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  2. Confidence scores for prediction models

    DEFF Research Database (Denmark)

    Gerds, Thomas Alexander; van de Wiel, MA

    2011-01-01

    In medical statistics, many alternative strategies are available for building a prediction model based on training data. Prediction models are routinely compared by means of their prediction performance in independent validation data. If only one data set is available for training and validation,...

  3. eTOXlab, an open source modeling framework for implementing predictive models in production environments.

    Science.gov (United States)

    Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel

    2015-01-01

    Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by e

  4. Predicting turns in proteins with a unified model.

    Directory of Open Access Journals (Sweden)

    Qi Song

    Full Text Available MOTIVATION: Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. RESULTS: In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i using newly exploited features of structural evolution information (secondary structure and shape string of protein based on structure homologies, (ii considering all types of turns in a unified model, and (iii practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  5. 3D mathematical modelling of scour around a circular pile in current

    DEFF Research Database (Denmark)

    Roulund, Andreas; Sumer, B. Mutlu; Fredsøe, Jørgen

    1999-01-01

    This paper deals with scour around a circular pile exposed to a steady current. A 3D numerical model incorporated with the k-w,SST closure coupled with the sediment-continuity equation and a bedload sediment transport formula has been used to predict the scour. 3D calculations have also been...... carried out for a plane rigid bottom for reference purpose. The predicted flow features are apparently in fairly good agreement with the experimental data. Early calculations indicate that the model is able to predict the scour properties satisfactorily in the initial stages of the scour process, up...... to scour depth of 0.6-0.7 times the pile diameter. Calculations that describe the entire scour process (including the equilibrium stage) are underway....

  6. The Prediction of Drought-Related Tree Mortality in Vegetation Models

    Science.gov (United States)

    Schwinning, S.; Jensen, J.; Lomas, M. R.; Schwartz, B.; Woodward, F. I.

    2013-12-01

    Drought-related tree die-off events at regional scales have been reported from all wooded continents and it has been suggested that their frequency may be increasing. The prediction of these drought-related die-off events from regional to global scales has been recognized as a critical need for the conservation of forest resources and improving the prediction of climate-vegetation interactions. However, there is no conceptual consensus on how to best approach the quantitative prediction of tree mortality. Current models use a variety of mechanisms to represent demographic events. Mortality is modeled to represent a number of different processes, including death by fire, wind throw, extreme temperatures, and self-thinning, and each vegetation model differs in the emphasis they place on specific mechanisms. Dynamic global vegetation models generally operate on the assumption of incremental vegetation shift due to changes in the carbon economy of plant functional types and proportional effects on recruitment, growth, competition and mortality, but this may not capture sudden and sweeping tree death caused by extreme weather conditions. We tested several different approaches to predicting tree mortality within the framework of the Sheffield Dynamic Global Vegetation Model. We applied the model to the state of Texas, USA, which in 2011 experienced extreme drought conditions, causing the death of an estimated 300 million trees statewide. We then compared predicted to actual mortality to determine which algorithms most accurately predicted geographical variation in tree mortality. We discuss implications regarding the ongoing debate on the causes of tree death.

  7. Multivariate Models for Prediction of Human Skin Sensitization ...

    Science.gov (United States)

    One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays - the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT) and KeratinoSens TM assay - six physicochemical properties and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches , logistic regression and support vector machine, to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three logistic regression and three support vector machine) with the highest accuracy (92%) used: (1) DPRA, h-CLAT and read-across; (2) DPRA, h-CLAT, read-across and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens and log P. The models performed better at predicting human skin sensitization hazard than the murine

  8. Composite control for raymond mill based on model predictive control and disturbance observer

    Directory of Open Access Journals (Sweden)

    Dan Niu

    2016-03-01

    Full Text Available In the raymond mill grinding process, precise control of operating load is vital for the high product quality. However, strong external disturbances, such as variations of ore size and ore hardness, usually cause great performance degradation. It is not easy to control the current of raymond mill constant. Several control strategies have been proposed. However, most of them (such as proportional–integral–derivative and model predictive control reject disturbances just through feedback regulation, which may lead to poor control performance in the presence of strong disturbances. For improving disturbance rejection, a control method based on model predictive control and disturbance observer is put forward in this article. The scheme employs disturbance observer as feedforward compensation and model predictive control controller as feedback regulation. The test results illustrate that compared with model predictive control method, the proposed disturbance observer–model predictive control method can obtain significant superiority in disturbance rejection, such as shorter settling time and smaller peak overshoot under strong disturbances.

  9. Breast cancer risks and risk prediction models.

    Science.gov (United States)

    Engel, Christoph; Fischer, Christine

    2015-02-01

    BRCA1/2 mutation carriers have a considerably increased risk to develop breast and ovarian cancer. The personalized clinical management of carriers and other at-risk individuals depends on precise knowledge of the cancer risks. In this report, we give an overview of the present literature on empirical cancer risks, and we describe risk prediction models that are currently used for individual risk assessment in clinical practice. Cancer risks show large variability between studies. Breast cancer risks are at 40-87% for BRCA1 mutation carriers and 18-88% for BRCA2 mutation carriers. For ovarian cancer, the risk estimates are in the range of 22-65% for BRCA1 and 10-35% for BRCA2. The contralateral breast cancer risk is high (10-year risk after first cancer 27% for BRCA1 and 19% for BRCA2). Risk prediction models have been proposed to provide more individualized risk prediction, using additional knowledge on family history, mode of inheritance of major genes, and other genetic and non-genetic risk factors. User-friendly software tools have been developed that serve as basis for decision-making in family counseling units. In conclusion, further assessment of cancer risks and model validation is needed, ideally based on prospective cohort studies. To obtain such data, clinical management of carriers and other at-risk individuals should always be accompanied by standardized scientific documentation.

  10. Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    Science.gov (United States)

    Farassat, Fereidoun; Casper, Jay H.

    2006-01-01

    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods.

  11. Accurate and dynamic predictive model for better prediction in medicine and healthcare.

    Science.gov (United States)

    Alanazi, H O; Abdullah, A H; Qureshi, K N; Ismail, A S

    2018-05-01

    Information and communication technologies (ICTs) have changed the trend into new integrated operations and methods in all fields of life. The health sector has also adopted new technologies to improve the systems and provide better services to customers. Predictive models in health care are also influenced from new technologies to predict the different disease outcomes. However, still, existing predictive models have suffered from some limitations in terms of predictive outcomes performance. In order to improve predictive model performance, this paper proposed a predictive model by classifying the disease predictions into different categories. To achieve this model performance, this paper uses traumatic brain injury (TBI) datasets. TBI is one of the serious diseases worldwide and needs more attention due to its seriousness and serious impacts on human life. The proposed predictive model improves the predictive performance of TBI. The TBI data set is developed and approved by neurologists to set its features. The experiment results show that the proposed model has achieved significant results including accuracy, sensitivity, and specificity.

  12. The impact of global nuclear mass model uncertainties on r-process abundance predictions

    Directory of Open Access Journals (Sweden)

    Mumpower M.

    2015-01-01

    Full Text Available Rapid neutron capture or ‘r-process’ nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of r-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on r-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms errors of current mass models are large so that current r-process predictions are insufficient in predicting features found in solar residuals and in r-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100 keV will allow for more robust r-process predictions.

  13. Predictive Models for Carcinogenicity and Mutagenicity ...

    Science.gov (United States)

    Mutagenicity and carcinogenicity are endpoints of major environmental and regulatory concern. These endpoints are also important targets for development of alternative methods for screening and prediction due to the large number of chemicals of potential concern and the tremendous cost (in time, money, animals) of rodent carcinogenicity bioassays. Both mutagenicity and carcinogenicity involve complex, cellular processes that are only partially understood. Advances in technologies and generation of new data will permit a much deeper understanding. In silico methods for predicting mutagenicity and rodent carcinogenicity based on chemical structural features, along with current mutagenicity and carcinogenicity data sets, have performed well for local prediction (i.e., within specific chemical classes), but are less successful for global prediction (i.e., for a broad range of chemicals). The predictivity of in silico methods can be improved by improving the quality of the data base and endpoints used for modelling. In particular, in vitro assays for clastogenicity need to be improved to reduce false positives (relative to rodent carcinogenicity) and to detect compounds that do not interact directly with DNA or have epigenetic activities. New assays emerging to complement or replace some of the standard assays include VitotoxTM, GreenScreenGC, and RadarScreen. The needs of industry and regulators to assess thousands of compounds necessitate the development of high-t

  14. A predictive coding account of bistable perception - a model-based fMRI study.

    Science.gov (United States)

    Weilnhammer, Veith; Stuke, Heiner; Hesselmann, Guido; Sterzer, Philipp; Schmack, Katharina

    2017-05-01

    In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model's predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants' perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together, our current work

  15. A predictive coding account of bistable perception - a model-based fMRI study.

    Directory of Open Access Journals (Sweden)

    Veith Weilnhammer

    2017-05-01

    Full Text Available In bistable vision, subjective perception wavers between two interpretations of a constant ambiguous stimulus. This dissociation between conscious perception and sensory stimulation has motivated various empirical studies on the neural correlates of bistable perception, but the neurocomputational mechanism behind endogenous perceptual transitions has remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding and devised a model that casts endogenous perceptual transitions as a consequence of prediction errors emerging from residual evidence for the suppressed percept. Data simulations revealed close similarities between the model's predictions and key temporal characteristics of perceptual bistability, indicating that the model was able to reproduce bistable perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment on bistable perception, we found a correlation across participants between the model parameter encoding perceptual stabilization and the behaviourally measured frequency of perceptual transitions, corroborating that the model successfully accounted for participants' perception. Formal model comparison with established models of bistable perception based on mutual inhibition and adaptation, noise or a combination of adaptation and noise was used for the validation of the predictive coding model against the established models. Most importantly, model-based analyses of the fMRI data revealed that prediction error time-courses derived from the predictive coding model correlated with neural signal time-courses in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a superiority of the predictive coding model over conventional analysis approaches in explaining neural activity in these frontal areas, suggesting that frontal cortex encodes prediction errors that mediate endogenous perceptual transitions in bistable perception. Taken together

  16. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, J. P. [Fermilab; Sun, Y. [Argonne; Harris, J. R. [AFRL, NM; Lewellen, J. W. [Los Alamos Natl. Lab.

    2016-09-28

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  17. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells

    International Nuclear Information System (INIS)

    Doraswami, U.; Droushiotis, N.; Kelsall, G.H.

    2010-01-01

    A three-dimensional model, considering mass, momentum, energy and charge conservation, was developed and the equations solved to describe the physico-chemical phenomena occurring within a single, micro-tubular hollow fibre solid oxide fuel cell (HF-SOFC). The model was used to investigate the spatial distributions of potential, current and reactants in a 10 mm long HF-SOFC. The predicted effects of location of current collectors, electrode conductivities, cathode thickness and porosity were analysed to minimise the ranges of current density distributions and maximise performance by judicious design. To decrease the computational load, azimuthal symmetry was assumed to model 50 and 100 mm long reactors in 2-D. With connectors at the same end of the HF-SOFC operating at a cell voltage of 0.5 V and a mean 5 kA m -2 , axial potential drops of ca. 0.14 V in the cathode were predicted, comparable to the cathode activation overpotential. Those potential drops caused average current densities to decrease from ca. 6.5 to ca.1 kA m -2 as HF-SOFC length increased from 10 to 100 mm, at which much of the length was inactive. Peak power densities were predicted to vary from 3.8 to -2 , depending on the location of the current collectors; performance increased with increasing cathode thickness and decreasing porosity.

  18. Decline curve based models for predicting natural gas well performance

    Directory of Open Access Journals (Sweden)

    Arash Kamari

    2017-06-01

    Full Text Available The productivity of a gas well declines over its production life as cannot cover economic policies. To overcome such problems, the production performance of gas wells should be predicted by applying reliable methods to analyse the decline trend. Therefore, reliable models are developed in this study on the basis of powerful artificial intelligence techniques viz. the artificial neural network (ANN modelling strategy, least square support vector machine (LSSVM approach, adaptive neuro-fuzzy inference system (ANFIS, and decision tree (DT method for the prediction of cumulative gas production as well as initial decline rate multiplied by time as a function of the Arps' decline curve exponent and ratio of initial gas flow rate over total gas flow rate. It was concluded that the results obtained based on the models developed in current study are in satisfactory agreement with the actual gas well production data. Furthermore, the results of comparative study performed demonstrates that the LSSVM strategy is superior to the other models investigated for the prediction of both cumulative gas production, and initial decline rate multiplied by time.

  19. An analytical model for the prediction of rip spacing in intermediate ...

    Indian Academy of Sciences (India)

    61

    study, an analytical model was presented to predict the spacing of channel rip currents (Srip) ... beach and normal wave incidence in two cases with the fixed breaking line and variable one .... On the other hand, in the above relations radiation.

  20. Predicting Environmental Suitability for a Rare and Threatened Species (Lao Newt, Laotriton laoensis) Using Validated Species Distribution Models

    Science.gov (United States)

    Chunco, Amanda J.; Phimmachak, Somphouthone; Sivongxay, Niane; Stuart, Bryan L.

    2013-01-01

    The Lao newt (Laotriton laoensis) is a recently described species currently known only from northern Laos. Little is known about the species, but it is threatened as a result of overharvesting. We integrated field survey results with climate and altitude data to predict the geographic distribution of this species using the niche modeling program Maxent, and we validated these predictions by using interviews with local residents to confirm model predictions of presence and absence. The results of the validated Maxent models were then used to characterize the environmental conditions of areas predicted suitable for L. laoensis. Finally, we overlaid the resulting model with a map of current national protected areas in Laos to determine whether or not any land predicted to be suitable for this species is coincident with a national protected area. We found that both area under the curve (AUC) values and interview data provided strong support for the predictive power of these models, and we suggest that interview data could be used more widely in species distribution niche modeling. Our results further indicated that this species is mostly likely geographically restricted to high altitude regions (i.e., over 1,000 m elevation) in northern Laos and that only a minute fraction of suitable habitat is currently protected. This work thus emphasizes that increased protection efforts, including listing this species as endangered and the establishment of protected areas in the region predicted to be suitable for L. laoensis, are urgently needed. PMID:23555808

  1. A human capital predictive model for agent performance in contact centres

    Directory of Open Access Journals (Sweden)

    Chris Jacobs

    2011-10-01

    Research purpose: The primary focus of this article was to develop a theoretically derived human capital predictive model for agent performance in contact centres and Business Process Outsourcing (BPO based on a review of current empirical research literature. Motivation for the study: The study was motivated by the need for a human capital predictive model that can predict agent and overall business performance. Research design: A nonempirical (theoretical research paradigm was adopted for this study and more specifically a theory or model-building approach was followed. A systematic review of published empirical research articles (for the period 2000–2009 in scholarly search portals was performed. Main findings: Eight building blocks of the human capital predictive model for agent performance in contact centres were identified. Forty-two of the human capital contact centre related articles are detailed in this study. Key empirical findings suggest that person– environment fit, job demands-resources, human resources management practices, engagement, agent well-being, agent competence; turnover intention; and agent performance are related to contact centre performance. Practical/managerial implications: The human capital predictive model serves as an operational management model that has performance implications for agents and ultimately influences the contact centre’s overall business performance. Contribution/value-add: This research can contribute to the fields of human resource management (HRM, human capital and performance management within the contact centre and BPO environment.

  2. Historical Trust Levels Predict Current Welfare State Design

    DEFF Research Database (Denmark)

    Bergh, Andreas; Bjørnskov, Christian

    Using cross-sectional data for 76 countries, we apply instrumental variable techniques based on pronoun drop, temperature and monarchies to demonstrate that historical trust levels predict several indicators of current welfare state design, including universalism and high levels of regulatory...... freedom. We argue that high levels of trust and trustworthiness are necessary, but not sufficient, conditions for societies to develop successful universal welfare states that would otherwise be highly vulnerable to free riding and fraudulent behavior. Our results do not exclude positive feedback from...... welfare state universalism to individual trust, although we claim that the important causal link runs from historically trust levels to current welfare state design....

  3. Multi-model analysis in hydrological prediction

    Science.gov (United States)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  4. How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?

    Science.gov (United States)

    Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.

    2017-12-01

    Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here

  5. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  6. Development of a Nomogram Model Predicting Current Bone Scan Positivity in Patients Treated with Androgen-Deprivation Therapy for Prostate Cancer

    Science.gov (United States)

    Gotto, Geoffrey T.; Yu, Changhong; Bernstein, Melanie; Eastham, James A.; Kattan, Michael W.

    2014-01-01

    Purpose: To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT) for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations. Materials and methods: A retrospective chart review of bone scan records (conventional 99mTc-scintigraphy) of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index. Results: In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA) level was 2.4 ng/ml; median PSA doubling time (PSADT) was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer center who underwent conventional 99mTc bone scans, which themselves have inherent limitations. Conclusion: This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy. PMID:25386410

  7. Development of a nomogram model predicting current bone scan positivity in patients treated with androgen-deprivation therapy for prostate cancer

    Directory of Open Access Journals (Sweden)

    Michael eKattan

    2014-10-01

    Full Text Available Purpose: To develop a nomogram predictive of current bone scan positivity in patients receiving androgen-deprivation therapy (ADT for advanced prostate cancer; to augment clinical judgment and highlight patients in need of additional imaging investigations.Materials and Methods: A retrospective chart review of bone scan records (conventional 99mTc-scintigraphy of 1,293 patients who received ADT at the Memorial Sloan-Kettering Cancer Center from 2000 to 2011. Multivariable logistic regression analysis was used to identify variables suitable for inclusion in the nomogram. The probability of current bone scan positivity was determined using these variables and the predictive accuracy of the nomogram was quantified by concordance index.Results: In total, 2,681 bone scan records were analyzed and 636 patients had a positive result. Overall, the median pre-scan prostate-specific antigen (PSA level was 2.4 ng/ml; median PSA doubling time (PSADT was 5.8 months. At the time of a positive scan, median PSA level was 8.2 ng/ml; 53% of patients had PSA <10 ng/ml; median PSADT was 4.0 months. Five variables were included in the nomogram: number of previous negative bone scans after initiating ADT, PSA level, Gleason grade sum, and history of radical prostatectomy and radiotherapy. A concordance index value of 0.721 was calculated for the nomogram. This was a retrospective study based on limited data in patients treated in a large cancer centre who underwent conventional 99mTc bone scans, which themselves have inherent limitations. Conclusions: This is the first nomogram to predict current bone scan positivity in ADT-treated prostate cancer patients, providing high predictive accuracy.

  8. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    Science.gov (United States)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  9. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  10. Predictive integrated modelling for ITER scenarios

    International Nuclear Information System (INIS)

    Artaud, J.F.; Imbeaux, F.; Aniel, T.; Basiuk, V.; Eriksson, L.G.; Giruzzi, G.; Hoang, G.T.; Huysmans, G.; Joffrin, E.; Peysson, Y.; Schneider, M.; Thomas, P.

    2005-01-01

    The uncertainty on the prediction of ITER scenarios is evaluated. 2 transport models which have been extensively validated against the multi-machine database are used for the computation of the transport coefficients. The first model is GLF23, the second called Kiauto is a model in which the profile of dilution coefficient is a gyro Bohm-like analytical function, renormalized in order to get profiles consistent with a given global energy confinement scaling. The package of codes CRONOS is used, it gives access to the dynamics of the discharge and allows the study of interplay between heat transport, current diffusion and sources. The main motivation of this work is to study the influence of parameters such plasma current, heat, density, impurities and toroidal moment transport. We can draw the following conclusions: 1) the target Q = 10 can be obtained in ITER hybrid scenario at I p = 13 MA, using either the DS03 two terms scaling or the GLF23 model based on the same pedestal; 2) I p = 11.3 MA, Q = 10 can be reached only assuming a very peaked pressure profile and a low pedestal; 3) at fixed Greenwald fraction, Q increases with density peaking; 4) achieving a stationary q-profile with q > 1 requires a large non-inductive current fraction (80%) that could be provided by 20 to 40 MW of LHCD; and 5) owing to the high temperature the q-profile penetration is delayed and q = 1 is reached about 600 s in ITER hybrid scenario at I p = 13 MA, in the absence of active q-profile control. (A.C.)

  11. Underwater Sound Propagation Modeling Methods for Predicting Marine Animal Exposure.

    Science.gov (United States)

    Hamm, Craig A; McCammon, Diana F; Taillefer, Martin L

    2016-01-01

    The offshore exploration and production (E&P) industry requires comprehensive and accurate ocean acoustic models for determining the exposure of marine life to the high levels of sound used in seismic surveys and other E&P activities. This paper reviews the types of acoustic models most useful for predicting the propagation of undersea noise sources and describes current exposure models. The severe problems caused by model sensitivity to the uncertainty in the environment are highlighted to support the conclusion that it is vital that risk assessments include transmission loss estimates with statistical measures of confidence.

  12. A high-latitude, low-latitude boundary layer model of the convection current system

    International Nuclear Information System (INIS)

    Siscoe, G.L.; Lotko, W.; Sonnerup, B.U.O.

    1991-01-01

    Observations suggest that both the high- and low-latitude boundary layers contribute to magnetospheric convection, and that their contributions are linked. In the interpretation pursued here, the high-latitude boundary layer (HBL) generates the voltage while the low-latitude boundary layer (LBL) generates the current for the part of the convection electric circuit that closes through the ionosphere. This paper gives a model that joins the high- and low-latitude boundary layers consistently with the ionospheric Ohm's law. It describes an electric circuit linking both boundary layers, the region 1 Birkeland currents, and the ionospheric Pedersen closure currents. The model works by using the convection electric field that the ionosphere receives from the HBL to determine two boundary conditions to the equations that govern viscous LBL-ionosphere coupling. The result provides the needed self-consistent coupling between the two boundary layers and fully specifies the solution for the viscous LBL-ionosphere coupling equations. The solution shows that in providing the current required by the ionospheric Ohm's law, the LBL needs only a tenth of the voltage that spans the HBL. The solution also gives the latitude profiles of the ionospheric electric field, parallel currents, and parallel potential. It predicts that the plasma in the inner part of the LBL moves sunward instead of antisunward and that, as the transpolar potential decreases below about 40 kV, reverse polarity (region 0) currents appear at the poleward border of the region 1 currents. A possible problem with the model is its prediction of a thin boundary layer (∼1000 km), whereas thicknesses inferred from satellite data tend to be greater

  13. Design and implementation of predictive filtering system for current reference generation of active power filter

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Tomislav; Milun, Stanko; Petrovic, Goran [FESB University of Split, Faculty of Electrical Engineering, Machine Engineering and Naval Architecture, R. Boskovica bb, 21000, Split (Croatia)

    2007-02-15

    The shunt active power filters are used to attenuate the harmonic currents in power systems by injecting equal but opposite compensating currents. Successful control of the active filters requires an accurate current reference. In this paper the current reference determination based on predictive filtering structure is presented. Current reference was obtained by taking the difference of load current and its fundamental harmonic. For fundamental harmonic determination with no time delay a combination of digital predictive filter and low pass filter is used. The proposed method was implemented on a laboratory prototype of a three-phase active power filter. The algorithm for current reference determination was adapted and implemented on DSP controller. Simulation and experimental results show that the active power filter with implemented predictive filtering structure gives satisfactory performance in power system harmonic attenuation. (author)

  14. Predictive Modeling in Race Walking

    Directory of Open Access Journals (Sweden)

    Krzysztof Wiktorowicz

    2015-01-01

    Full Text Available This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out cross-validation method is used. The main contribution of the paper is to propose the nonlinear modifications for linear models in order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.

  15. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  16. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Arvidson, Kirk B.; Chanderbhan, Ronald F.; Contrera, Joseph F.

    2007-01-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest is MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200 chemicals

  17. Adding propensity scores to pure prediction models fails to improve predictive performance

    Directory of Open Access Journals (Sweden)

    Amy S. Nowacki

    2013-08-01

    Full Text Available Background. Propensity score usage seems to be growing in popularity leading researchers to question the possible role of propensity scores in prediction modeling, despite the lack of a theoretical rationale. It is suspected that such requests are due to the lack of differentiation regarding the goals of predictive modeling versus causal inference modeling. Therefore, the purpose of this study is to formally examine the effect of propensity scores on predictive performance. Our hypothesis is that a multivariable regression model that adjusts for all covariates will perform as well as or better than those models utilizing propensity scores with respect to model discrimination and calibration.Methods. The most commonly encountered statistical scenarios for medical prediction (logistic and proportional hazards regression were used to investigate this research question. Random cross-validation was performed 500 times to correct for optimism. The multivariable regression models adjusting for all covariates were compared with models that included adjustment for or weighting with the propensity scores. The methods were compared based on three predictive performance measures: (1 concordance indices; (2 Brier scores; and (3 calibration curves.Results. Multivariable models adjusting for all covariates had the highest average concordance index, the lowest average Brier score, and the best calibration. Propensity score adjustment and inverse probability weighting models without adjustment for all covariates performed worse than full models and failed to improve predictive performance with full covariate adjustment.Conclusion. Propensity score techniques did not improve prediction performance measures beyond multivariable adjustment. Propensity scores are not recommended if the analytical goal is pure prediction modeling.

  18. Limitations and Constraints of Eddy-Current Loss Models for Interior Permanent-Magnet Motors with Fractional-Slot Concentrated Windings

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-03-01

    Full Text Available This paper analyzes and compares models for predicting average magnet losses in interior permanent-magnet motors with fractional-slot concentrated windings due to harmonics in the armature reaction (assuming sinusoidal phase currents. Particularly, loss models adopting different formulations and solutions to the Helmholtz equation to solve for the eddy currents are compared to a simpler model relying on an assumed eddy-current distribution. Boundaries in terms of magnet dimensions and angular frequency are identified (numerically and using an identified approximate analytical expression to aid the machine designer whether the more simple loss model is applicable or not. The assumption of a uniform flux-density variation (used in the loss models is also investigated for the case of V-shaped and straight interior permanent magnets. Finally, predicted volumetric loss densities are exemplified for combinations of slot and pole numbers common in automotive applications.

  19. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  20. Model-free and model-based reward prediction errors in EEG.

    Science.gov (United States)

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Improving Gastric Cancer Outcome Prediction Using Single Time-Point Artificial Neural Network Models

    Science.gov (United States)

    Nilsaz-Dezfouli, Hamid; Abu-Bakar, Mohd Rizam; Arasan, Jayanthi; Adam, Mohd Bakri; Pourhoseingholi, Mohamad Amin

    2017-01-01

    In cancer studies, the prediction of cancer outcome based on a set of prognostic variables has been a long-standing topic of interest. Current statistical methods for survival analysis offer the possibility of modelling cancer survivability but require unrealistic assumptions about the survival time distribution or proportionality of hazard. Therefore, attention must be paid in developing nonlinear models with less restrictive assumptions. Artificial neural network (ANN) models are primarily useful in prediction when nonlinear approaches are required to sift through the plethora of available information. The applications of ANN models for prognostic and diagnostic classification in medicine have attracted a lot of interest. The applications of ANN models in modelling the survival of patients with gastric cancer have been discussed in some studies without completely considering the censored data. This study proposes an ANN model for predicting gastric cancer survivability, considering the censored data. Five separate single time-point ANN models were developed to predict the outcome of patients after 1, 2, 3, 4, and 5 years. The performance of ANN model in predicting the probabilities of death is consistently high for all time points according to the accuracy and the area under the receiver operating characteristic curve. PMID:28469384

  2. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed; Alsolami, Fawaz; Chikalov, Igor; Algharbi, Salem; Aboudi, Faisal; Khudiri, Musab

    2016-01-01

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  3. Stuck pipe prediction

    KAUST Repository

    Alzahrani, Majed

    2016-03-10

    Disclosed are various embodiments for a prediction application to predict a stuck pipe. A linear regression model is generated from hook load readings at corresponding bit depths. A current hook load reading at a current bit depth is compared with a normal hook load reading from the linear regression model. A current hook load greater than a normal hook load for a given bit depth indicates the likelihood of a stuck pipe.

  4. High Resolution Forecasts in the Florida Straits: Predicting the Modulations of the Florida Current and Connectivity Around South Florida and Cuba

    Science.gov (United States)

    Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.

    2016-02-01

    Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.

  5. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  6. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei

    2018-01-01

    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  7. Design and implementation of predictive current control of three-phase PWM rectifier using space-vector modulation (SVM)

    International Nuclear Information System (INIS)

    Bouafia, Abdelouahab; Gaubert, Jean-Paul; Krim, Fateh

    2010-01-01

    This paper is concerned with the design and implementation of current control of three-phase PWM rectifier based on predictive control strategy. The proposed predictive current control technique operates with constant switching frequency, using space-vector modulation (SVM). The main goal of the designed current control scheme is to maintain the dc-bus voltage at the required level and to achieve the unity power factor (UPF) operation of the converter. For this purpose, two predictive current control algorithms, in the sense of deadbeat control, are developed for direct controlling input current vector of the converter in the stationary α-β and rotating d-q reference frame, respectively. For both predictive current control algorithms, at the beginning of each switching period, the required rectifier average voltage vector allowing the cancellation of both tracking errors of current vector components at the end of the switching period, is computed and applied during a predefined switching period by means of SVM. The main advantages of the proposed predictive current control are that no need to use hysteresis comparators or PI controllers in current control loops, and constant switching frequency. Finally, the developed predictive current control algorithms were tested both in simulations and experimentally, and illustrative results are presented here. Results have proven excellent performance in steady and transient states, and verify the validity of the proposed predictive current control which is compared to other control strategies.

  8. Extracting falsifiable predictions from sloppy models.

    Science.gov (United States)

    Gutenkunst, Ryan N; Casey, Fergal P; Waterfall, Joshua J; Myers, Christopher R; Sethna, James P

    2007-12-01

    Successful predictions are among the most compelling validations of any model. Extracting falsifiable predictions from nonlinear multiparameter models is complicated by the fact that such models are commonly sloppy, possessing sensitivities to different parameter combinations that range over many decades. Here we discuss how sloppiness affects the sorts of data that best constrain model predictions, makes linear uncertainty approximations dangerous, and introduces computational difficulties in Monte-Carlo uncertainty analysis. We also present a useful test problem and suggest refinements to the standards by which models are communicated.

  9. Advanced Computational Modeling Approaches for Shock Response Prediction

    Science.gov (United States)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  10. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    Science.gov (United States)

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  11. PREDICTING ATTENUATION OF VIRUSES DURING PERCOLATION IN SOILS: 2. USER'S GUIDE TO THE VIRULO 1.0 COMPUTER MODEL

    Science.gov (United States)

    In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...

  12. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  13. Limitations Of The Current State Space Modelling Approach In Multistage Machining Processes Due To Operation Variations

    Science.gov (United States)

    Abellán-Nebot, J. V.; Liu, J.; Romero, F.

    2009-11-01

    The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.

  14. Coupled hygrothermal, electrochemical, and mechanical modelling for deterioration prediction in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Lepech, M.

    2017-01-01

    In this paper a coupled hygrothermal, electrochemical, and mechanical modelling approach for the deterioration prediction in cementitious materials is briefly outlined. Deterioration prediction is thereby based on coupled modelling of (i) chemical processes including among others transport of hea......, i.e. information, such as such as corrosion current density, damage state of concrete cover, etc., are constantly exchanged between the models....... and matter as well as phase assemblage on the nano and micro scale, (ii) corrosion of steel including electrochemical processes at the reinforcement surface, and (iii) material performance including corrosion- and load-induced damages on the meso and macro scale. The individual FEM models are fully coupled...

  15. EFFICIENT PREDICTIVE MODELLING FOR ARCHAEOLOGICAL RESEARCH

    OpenAIRE

    Balla, A.; Pavlogeorgatos, G.; Tsiafakis, D.; Pavlidis, G.

    2014-01-01

    The study presents a general methodology for designing, developing and implementing predictive modelling for identifying areas of archaeological interest. The methodology is based on documented archaeological data and geographical factors, geospatial analysis and predictive modelling, and has been applied to the identification of possible Macedonian tombs’ locations in Northern Greece. The model was tested extensively and the results were validated using a commonly used predictive gain, which...

  16. Applying machine learning to predict patient-specific current CD4 ...

    African Journals Online (AJOL)

    Apple apple

    This work shows the application of machine learning to predict current CD4 cell count of an HIV- .... Pre-processing ... remaining data elements of the PR and RT datasets. ... technique based on the structure of the human brain's neuron.

  17. Spatial Economics Model Predicting Transport Volume

    Directory of Open Access Journals (Sweden)

    Lu Bo

    2016-10-01

    Full Text Available It is extremely important to predict the logistics requirements in a scientific and rational way. However, in recent years, the improvement effect on the prediction method is not very significant and the traditional statistical prediction method has the defects of low precision and poor interpretation of the prediction model, which cannot only guarantee the generalization ability of the prediction model theoretically, but also cannot explain the models effectively. Therefore, in combination with the theories of the spatial economics, industrial economics, and neo-classical economics, taking city of Zhuanghe as the research object, the study identifies the leading industry that can produce a large number of cargoes, and further predicts the static logistics generation of the Zhuanghe and hinterlands. By integrating various factors that can affect the regional logistics requirements, this study established a logistics requirements potential model from the aspect of spatial economic principles, and expanded the way of logistics requirements prediction from the single statistical principles to an new area of special and regional economics.

  18. Predictive event modelling in multicenter clinical trials with waiting time to response.

    Science.gov (United States)

    Anisimov, Vladimir V

    2011-01-01

    A new analytic statistical technique for predictive event modeling in ongoing multicenter clinical trials with waiting time to response is developed. It allows for the predictive mean and predictive bounds for the number of events to be constructed over time, accounting for the newly recruited patients and patients already at risk in the trial, and for different recruitment scenarios. For modeling patient recruitment, an advanced Poisson-gamma model is used, which accounts for the variation in recruitment over time, the variation in recruitment rates between different centers and the opening or closing of some centers in the future. A few models for event appearance allowing for 'recurrence', 'death' and 'lost-to-follow-up' events and using finite Markov chains in continuous time are considered. To predict the number of future events over time for an ongoing trial at some interim time, the parameters of the recruitment and event models are estimated using current data and then the predictive recruitment rates in each center are adjusted using individual data and Bayesian re-estimation. For a typical scenario (continue to recruit during some time interval, then stop recruitment and wait until a particular number of events happens), the closed-form expressions for the predictive mean and predictive bounds of the number of events at any future time point are derived under the assumptions of Markovian behavior of the event progression. The technique is efficiently applied to modeling different scenarios for some ongoing oncology trials. Case studies are considered. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Recent development of risk-prediction models for incident hypertension: An updated systematic review.

    Directory of Open Access Journals (Sweden)

    Dongdong Sun

    Full Text Available Hypertension is a leading global health threat and a major cardiovascular disease. Since clinical interventions are effective in delaying the disease progression from prehypertension to hypertension, diagnostic prediction models to identify patient populations at high risk for hypertension are imperative.Both PubMed and Embase databases were searched for eligible reports of either prediction models or risk scores of hypertension. The study data were collected, including risk factors, statistic methods, characteristics of study design and participants, performance measurement, etc.From the searched literature, 26 studies reporting 48 prediction models were selected. Among them, 20 reports studied the established models using traditional risk factors, such as body mass index (BMI, age, smoking, blood pressure (BP level, parental history of hypertension, and biochemical factors, whereas 6 reports used genetic risk score (GRS as the prediction factor. AUC ranged from 0.64 to 0.97, and C-statistic ranged from 60% to 90%.The traditional models are still the predominant risk prediction models for hypertension, but recently, more models have begun to incorporate genetic factors as part of their model predictors. However, these genetic predictors need to be well selected. The current reported models have acceptable to good discrimination and calibration ability, but whether the models can be applied in clinical practice still needs more validation and adjustment.

  20. Gambling and the Reasoned Action Model: Predicting Past Behavior, Intentions, and Future Behavior.

    Science.gov (United States)

    Dahl, Ethan; Tagler, Michael J; Hohman, Zachary P

    2018-03-01

    Gambling is a serious concern for society because it is highly addictive and is associated with a myriad of negative outcomes. The current study applied the Reasoned Action Model (RAM) to understand and predict gambling intentions and behavior. Although prior studies have taken a reasoned action approach to understand gambling, no prior study has fully applied the RAM or used the RAM to predict future gambling. Across two studies the RAM was used to predict intentions to gamble, past gambling behavior, and future gambling behavior. In study 1 the model significantly predicted intentions and past behavior in both a college student and Amazon Mechanical Turk sample. In study 2 the model predicted future gambling behavior, measured 2 weeks after initial measurement of the RAM constructs. This study stands as the first to show the utility of the RAM in predicting future gambling behavior. Across both studies, attitudes and perceived normative pressure were the strongest predictors of intentions to gamble. These findings provide increased understanding of gambling and inform the development of gambling interventions based on the RAM.

  1. Current Challenges in the First Principle Quantitative Modelling of the Lower Hybrid Current Drive in Tokamaks

    Science.gov (United States)

    Peysson, Y.; Bonoli, P. T.; Chen, J.; Garofalo, A.; Hillairet, J.; Li, M.; Qian, J.; Shiraiwa, S.; Decker, J.; Ding, B. J.; Ekedahl, A.; Goniche, M.; Zhai, X.

    2017-10-01

    The Lower Hybrid (LH) wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum). Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model), for robust interpretative and predictive simulations.

  2. Modeling and prediction of human word search behavior in interactive machine translation

    Science.gov (United States)

    Ji, Duo; Yu, Bai; Ma, Bin; Ye, Na

    2017-12-01

    As a kind of computer aided translation method, Interactive Machine Translation technology reduced manual translation repetitive and mechanical operation through a variety of methods, so as to get the translation efficiency, and played an important role in the practical application of the translation work. In this paper, we regarded the behavior of users' frequently searching for words in the translation process as the research object, and transformed the behavior to the translation selection problem under the current translation. The paper presented a prediction model, which is a comprehensive utilization of alignment model, translation model and language model of the searching words behavior. It achieved a highly accurate prediction of searching words behavior, and reduced the switching of mouse and keyboard operations in the users' translation process.

  3. Preventing patient absenteeism: validation of a predictive overbooking model.

    Science.gov (United States)

    Reid, Mark W; Cohen, Samuel; Wang, Hank; Kaung, Aung; Patel, Anish; Tashjian, Vartan; Williams, Demetrius L; Martinez, Bibiana; Spiegel, Brennan M R

    2015-12-01

    To develop a model that identifies patients at high risk for missing scheduled appointments ("no-shows" and cancellations) and to project the impact of predictive overbooking in a gastrointestinal endoscopy clinic-an exemplar resource-intensive environment with a high no-show rate. We retrospectively developed an algorithm that uses electronic health record (EHR) data to identify patients who do not show up to their appointments. Next, we prospectively validated the algorithm at a Veterans Administration healthcare network clinic. We constructed a multivariable logistic regression model that assigned a no-show risk score optimized by receiver operating characteristic curve analysis. Based on these scores, we created a calendar of projected open slots to offer to patients and compared the daily performance of predictive overbooking with fixed overbooking and typical "1 patient, 1 slot" scheduling. Data from 1392 patients identified several predictors of no-show, including previous absenteeism, comorbid disease burden, and current diagnoses of mood and substance use disorders. The model correctly classified most patients during the development (area under the curve [AUC] = 0.80) and validation phases (AUC = 0.75). Prospective testing in 1197 patients found that predictive overbooking averaged 0.51 unused appointments per day versus 6.18 for typical booking (difference = -5.67; 95% CI, -6.48 to -4.87; P < .0001). Predictive overbooking could have increased service utilization from 62% to 97% of capacity, with only rare clinic overflows. Information from EHRs can accurately predict whether patients will no-show. This method can be used to overbook appointments, thereby maximizing service utilization while staying within clinic capacity.

  4. Research on the Prediction Model of CPU Utilization Based on ARIMA-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Jina

    2016-01-01

    Full Text Available The dynamic deployment technology of the virtual machine is one of the current cloud computing research focuses. The traditional methods mainly work after the degradation of the service performance that usually lag. To solve the problem a new prediction model based on the CPU utilization is constructed in this paper. A reference offered by the new prediction model of the CPU utilization is provided to the VM dynamic deployment process which will speed to finish the deployment process before the degradation of the service performance. By this method it not only ensure the quality of services but also improve the server performance and resource utilization. The new prediction method of the CPU utilization based on the ARIMA-BP neural network mainly include four parts: preprocess the collected data, build the predictive model of ARIMA-BP neural network, modify the nonlinear residuals of the time series by the BP prediction algorithm and obtain the prediction results by analyzing the above data comprehensively.

  5. Neural Fuzzy Inference System-Based Weather Prediction Model and Its Precipitation Predicting Experiment

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2014-11-01

    Full Text Available We propose a weather prediction model in this article based on neural network and fuzzy inference system (NFIS-WPM, and then apply it to predict daily fuzzy precipitation given meteorological premises for testing. The model consists of two parts: the first part is the “fuzzy rule-based neural network”, which simulates sequential relations among fuzzy sets using artificial neural network; and the second part is the “neural fuzzy inference system”, which is based on the first part, but could learn new fuzzy rules from the previous ones according to the algorithm we proposed. NFIS-WPM (High Pro and NFIS-WPM (Ave are improved versions of this model. It is well known that the need for accurate weather prediction is apparent when considering the benefits. However, the excessive pursuit of accuracy in weather prediction makes some of the “accurate” prediction results meaningless and the numerical prediction model is often complex and time-consuming. By adapting this novel model to a precipitation prediction problem, we make the predicted outcomes of precipitation more accurate and the prediction methods simpler than by using the complex numerical forecasting model that would occupy large computation resources, be time-consuming and which has a low predictive accuracy rate. Accordingly, we achieve more accurate predictive precipitation results than by using traditional artificial neural networks that have low predictive accuracy.

  6. Performance prediction of a proton exchange membrane fuel cell using the ANFIS model

    Energy Technology Data Exchange (ETDEWEB)

    Vural, Yasemin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Houldsworth Building, LS2 9JT Leeds (United Kingdom)

    2009-11-15

    In this study, the performance (current-voltage curve) prediction of a Proton Exchange Membrane Fuel Cell (PEMFC) is performed for different operational conditions using an Adaptive Neuro-Fuzzy Inference System (ANFIS). First, ANFIS is trained with a set of input and output data. The trained model is then tested with an independent set of experimental data. The trained and tested model is then used to predict the performance curve of the PEMFC under various operational conditions. The model shows very good agreement with the experimental data and this indicates that ANFIS is capable of predicting fuel cell performance (in terms of cell voltage) with a high accuracy in an easy, rapid and cost effective way for the case presented. Finally, the capabilities and the limitations of the model for the application in fuel cells have been discussed. (author)

  7. An Evaluation of Growth Models as Predictive Tools for Estimates at Completion (EAC)

    National Research Council Canada - National Science Library

    Trahan, Elizabeth N

    2009-01-01

    ...) as the Estimates at Completion (EAC). Our research evaluates the prospect of nonlinear growth modeling as an alternative to the current predictive tools used for calculating EAC, such as the Cost Performance Index (CPI...

  8. Incorporating uncertainty in predictive species distribution modelling.

    Science.gov (United States)

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  9. Predicting Time Series Outputs and Time-to-Failure for an Aircraft Controller Using Bayesian Modeling

    Science.gov (United States)

    He, Yuning

    2015-01-01

    Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.

  10. Predictive user modeling with actionable attributes

    NARCIS (Netherlands)

    Zliobaite, I.; Pechenizkiy, M.

    2013-01-01

    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target

  11. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.

    Science.gov (United States)

    Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen

    2014-02-01

    The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.

  12. Predictive modelling of contagious deforestation in the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Purves, Drew; Souza, Carlos; Ewers, Robert M

    2013-01-01

    Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges "bottom up", as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated-pre- and post-PPCDAM ("Plano de Ação para Proteção e Controle do Desmatamento na Amazônia")-the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently

  13. Simulating the Current Water Cycle with the NASA Ames Mars Global Climate Model

    Science.gov (United States)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R. A.; Montmessin, F.

    2017-12-01

    The water cycle is a critical component of the current Mars climate system, and it is now widely recognized that water ice clouds significantly affect the nature of the simulated water cycle. Two processes are key to implementing clouds in a Mars global climate model (GCM): the microphysical processes of formation and dissipation, and their radiative effects on atmospheric heating/cooling rates. Together, these processes alter the thermal structure, change the atmospheric dynamics, and regulate inter-hemispheric transport. We have made considerable progress using the NASA Ames Mars GCM to simulate the current-day water cycle with radiatively active clouds. Cloud fields from our baseline simulation are in generally good agreement with observations. The predicted seasonal extent and peak IR optical depths are consistent MGS/TES observations. Additionally, the thermal response to the clouds in the aphelion cloud belt (ACB) is generally consistent with observations and other climate model predictions. Notably, there is a distinct gap in the predicted clouds over the North Residual Cap (NRC) during local summer, but the clouds reappear in this simulation over the NRC earlier than the observations indicate. Polar clouds are predicted near the seasonal CO2 ice caps, but the column thicknesses of these clouds are generally too thick compared to observations. Our baseline simulation is dry compared to MGS/TES-observed water vapor abundances, particularly in the tropics and subtropics. These areas of disagreement appear to be a consistent with other current water cycle GCMs. Future avenues of investigation will target improving our understanding of what controls the vertical extent of clouds and the apparent seasonal evolution of cloud particle sizes within the ACB.

  14. Protein (multi-)location prediction: utilizing interdependencies via a generative model

    Science.gov (United States)

    Shatkay, Hagit

    2015-01-01

    Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. Results: We introduce a probabilistic generative model for protein localization, and develop a system based on it—which we call MDLoc—that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. Contact: shatkay@udel.edu. PMID:26072505

  15. Protein (multi-)location prediction: utilizing interdependencies via a generative model.

    Science.gov (United States)

    Simha, Ramanuja; Briesemeister, Sebastian; Kohlbacher, Oliver; Shatkay, Hagit

    2015-06-15

    Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein's function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. We introduce a probabilistic generative model for protein localization, and develop a system based on it-which we call MDLoc-that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. © The Author 2015. Published by Oxford University Press.

  16. Identifying and Assessing Gaps in Subseasonal to Seasonal Prediction Skill using the North American Multi-model Ensemble

    Science.gov (United States)

    Pegion, K.; DelSole, T. M.; Becker, E.; Cicerone, T.

    2016-12-01

    Predictability represents the upper limit of prediction skill if we had an infinite member ensemble and a perfect model. It is an intrinsic limit of the climate system associated with the chaotic nature of the atmosphere. Producing a forecast system that can make predictions very near to this limit is the ultimate goal of forecast system development. Estimates of predictability together with calculations of current prediction skill are often used to define the gaps in our prediction capabilities on subseasonal to seasonal timescales and to inform the scientific issues that must be addressed to build the next forecast system. Quantification of the predictability is also important for providing a scientific basis for relaying to stakeholders what kind of climate information can be provided to inform decision-making and what kind of information is not possible given the intrinsic predictability of the climate system. One challenge with predictability estimates is that different prediction systems can give different estimates of the upper limit of skill. How do we know which estimate of predictability is most representative of the true predictability of the climate system? Previous studies have used the spread-error relationship and the autocorrelation to evaluate the fidelity of the signal and noise estimates. Using a multi-model ensemble prediction system, we can quantify whether these metrics accurately indicate an individual model's ability to properly estimate the signal, noise, and predictability. We use this information to identify the best estimates of predictability for 2-meter temperature, precipitation, and sea surface temperature from the North American Multi-model Ensemble and compare with current skill to indicate the regions with potential for improving skill.

  17. On tridimensional rip current modeling

    Science.gov (United States)

    Marchesiello, Patrick; Benshila, Rachid; Almar, Rafael; Uchiyama, Yusuke; McWilliams, James C.; Shchepetkin, Alexander

    2015-12-01

    Do lateral shear instabilities of nearshore circulation account for a substantial part of Very Low-Frequency (VLF) variability? If yes, it would promote stirring and mixing of coastal waters and surf-shelf exchanges. Another question is whether tridimensional transient processes are important for instability generation. An innovative modeling system with tridimensional wave-current interactions was designed to investigate transient nearshore currents and interactions between nearshore and innershelf circulations. We present here some validation of rip current modeling for the Aquitanian coast of France, using in-situ and remote video sensing. We then proceed to show the benefits of 3D versus 2D (depth-mean flow) modeling of rip currents and their low-frequency variability. It appears that a large part of VLF motions is due to intrinsic variability of the tridimensional flow. 3D models may thus provide a valuable, only marginally more expensive alternative to conventional 2D approaches that miss the vertical flow structure and its nonlinear interaction with the depth-averaged flow.

  18. Moving Towards Dynamic Ocean Management: How Well Do Modeled Ocean Products Predict Species Distributions?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Becker

    2016-02-01

    Full Text Available Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”, but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE, observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.

  19. Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection

    Science.gov (United States)

    Methods are needed improve the timeliness and accuracy of recreational water‐quality assessments. Traditional culture methods require 18–24 h to obtain results and may not reflect current conditions. Predictive models, based on environmental and water quality variables, have been...

  20. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  1. Prediction and assimilation of surf-zone processes using a Bayesian network: Part I: Forward models

    Science.gov (United States)

    Plant, Nathaniel G.; Holland, K. Todd

    2011-01-01

    Prediction of coastal processes, including waves, currents, and sediment transport, can be obtained from a variety of detailed geophysical-process models with many simulations showing significant skill. This capability supports a wide range of research and applied efforts that can benefit from accurate numerical predictions. However, the predictions are only as accurate as the data used to drive the models and, given the large temporal and spatial variability of the surf zone, inaccuracies in data are unavoidable such that useful predictions require corresponding estimates of uncertainty. We demonstrate how a Bayesian-network model can be used to provide accurate predictions of wave-height evolution in the surf zone given very sparse and/or inaccurate boundary-condition data. The approach is based on a formal treatment of a data-assimilation problem that takes advantage of significant reduction of the dimensionality of the model system. We demonstrate that predictions of a detailed geophysical model of the wave evolution are reproduced accurately using a Bayesian approach. In this surf-zone application, forward prediction skill was 83%, and uncertainties in the model inputs were accurately transferred to uncertainty in output variables. We also demonstrate that if modeling uncertainties were not conveyed to the Bayesian network (i.e., perfect data or model were assumed), then overly optimistic prediction uncertainties were computed. More consistent predictions and uncertainties were obtained by including model-parameter errors as a source of input uncertainty. Improved predictions (skill of 90%) were achieved because the Bayesian network simultaneously estimated optimal parameters while predicting wave heights.

  2. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs.

    Directory of Open Access Journals (Sweden)

    Qifan Kuang

    Full Text Available Early and accurate identification of adverse drug reactions (ADRs is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs.In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper.Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  3. Resistive switching near electrode interfaces: Estimations by a current model

    Science.gov (United States)

    Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer

    2013-02-01

    The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.

  4. Computational prediction of chemical reactions: current status and outlook.

    Science.gov (United States)

    Engkvist, Ola; Norrby, Per-Ola; Selmi, Nidhal; Lam, Yu-Hong; Peng, Zhengwei; Sherer, Edward C; Amberg, Willi; Erhard, Thomas; Smyth, Lynette A

    2018-06-01

    Over the past few decades, various computational methods have become increasingly important for discovering and developing novel drugs. Computational prediction of chemical reactions is a key part of an efficient drug discovery process. In this review, we discuss important parts of this field, with a focus on utilizing reaction data to build predictive models, the existing programs for synthesis prediction, and usage of quantum mechanics and molecular mechanics (QM/MM) to explore chemical reactions. We also outline potential future developments with an emphasis on pre-competitive collaboration opportunities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. MJO prediction skill of the subseasonal-to-seasonal (S2S) prediction models

    Science.gov (United States)

    Son, S. W.; Lim, Y.; Kim, D.

    2017-12-01

    The Madden-Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, provides the primary source of tropical and extratropical predictability on subseasonal to seasonal timescales. To better understand its predictability, this study conducts quantitative evaluation of MJO prediction skill in the state-of-the-art operational models participating in the subseasonal-to-seasonal (S2S) prediction project. Based on bivariate correlation coefficient of 0.5, the S2S models exhibit MJO prediction skill ranging from 12 to 36 days. These prediction skills are affected by both the MJO amplitude and phase errors, the latter becoming more important with forecast lead times. Consistent with previous studies, the MJO events with stronger initial amplitude are typically better predicted. However, essentially no sensitivity to the initial MJO phase is observed. Overall MJO prediction skill and its inter-model spread are further related with the model mean biases in moisture fields and longwave cloud-radiation feedbacks. In most models, a dry bias quickly builds up in the deep tropics, especially across the Maritime Continent, weakening horizontal moisture gradient. This likely dampens the organization and propagation of MJO. Most S2S models also underestimate the longwave cloud-radiation feedbacks in the tropics, which may affect the maintenance of the MJO convective envelop. In general, the models with a smaller bias in horizontal moisture gradient and longwave cloud-radiation feedbacks show a higher MJO prediction skill, suggesting that improving those processes would enhance MJO prediction skill.

  6. Predicting and understanding law-making with word vectors and an ensemble model.

    Science.gov (United States)

    Nay, John J

    2017-01-01

    Out of nearly 70,000 bills introduced in the U.S. Congress from 2001 to 2015, only 2,513 were enacted. We developed a machine learning approach to forecasting the probability that any bill will become law. Starting in 2001 with the 107th Congress, we trained models on data from previous Congresses, predicted all bills in the current Congress, and repeated until the 113th Congress served as the test. For prediction we scored each sentence of a bill with a language model that embeds legislative vocabulary into a high-dimensional, semantic-laden vector space. This language representation enables our investigation into which words increase the probability of enactment for any topic. To test the relative importance of text and context, we compared the text model to a context-only model that uses variables such as whether the bill's sponsor is in the majority party. To test the effect of changes to bills after their introduction on our ability to predict their final outcome, we compared using the bill text and meta-data available at the time of introduction with using the most recent data. At the time of introduction context-only predictions outperform text-only, and with the newest data text-only outperforms context-only. Combining text and context always performs best. We conducted a global sensitivity analysis on the combined model to determine important variables predicting enactment.

  7. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    Science.gov (United States)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model

  8. 'Will I want these stickers tomorrow?' Preschoolers' ability to predict current and future needs.

    Science.gov (United States)

    Martin-Ordas, Gema

    2017-11-01

    Between 3 and 5 years of age, children develop the ability to plan for their own and others' future needs; however, they have great difficulty predicting future needs that conflict with current ones. Importantly, this ability has only been tested in the domain of physiological states (e.g., thirst). Therefore, it is still an open question whether in a different context preschoolers can disengage from their current needs to secure a different future one. In a Resource Allocation task, 4- and 5-year-olds had to distribute three types of rewards between themselves and another child for either 'right now' or 'tomorrow'. Children's current needs were manipulated by providing them (or not) with their preferred reward at beginning of the task. Only 5-year-olds could predict future needs that conflict with their current ones and act accordingly. Younger children's performance is discussed in the context of temporal and social distance. Statement of contribution What is already known on this subject? By the age of 4, children can plan for their own and others' future needs. Seven-year-old children still have difficulty predicting future physiological needs that conflict with their current ones. What does this study add? In a Resource Allocation task, preschoolers had to share rewards with another child for 'right now' or 'tomorrow'. Children's current needs were manipulated by providing them (or not) with their preferred reward. This study shows that 5-year-olds can predict future (non-physiological) needs that conflict with their current ones. © 2017 The British Psychological Society.

  9. Modeling, robust and distributed model predictive control for freeway networks

    NARCIS (Netherlands)

    Liu, S.

    2016-01-01

    In Model Predictive Control (MPC) for traffic networks, traffic models are crucial since they are used as prediction models for determining the optimal control actions. In order to reduce the computational complexity of MPC for traffic networks, macroscopic traffic models are often used instead of

  10. Staying Power of Churn Prediction Models

    NARCIS (Netherlands)

    Risselada, Hans; Verhoef, Peter C.; Bijmolt, Tammo H. A.

    In this paper, we study the staying power of various churn prediction models. Staying power is defined as the predictive performance of a model in a number of periods after the estimation period. We examine two methods, logit models and classification trees, both with and without applying a bagging

  11. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    Science.gov (United States)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    ARMA(1,2) errors were fit to the observations. Preliminary model validation exercises at a 30-day forecast horizon show that the ARMA error models generally improve the predictive skill of the linear regression rating curves. Skill seems to vary based on the ambient hydrologic conditions at the onset of the forecast. For example, ARMA error model forecasts issued before a high flow/turbidity event do not show significant improvements over the rating curve approach. However, ARMA error model forecasts issued during the "falling limb" of the hydrograph are significantly more accurate than rating curves for both single day and accumulated event predictions. In order to assist in reservoir operations decisions associated with turbidity events and general water supply reliability, DEP has initiated design of an Operations Support Tool (OST). OST integrates a reservoir operations model with 2D hydrodynamic water quality models and a database compiling near-real-time data sources and hydrologic forecasts. Currently, OST uses conventional flow-turbidity rating curves and hydrologic forecasts for predictive turbidity inputs. Given the improvements in predictive skill over traditional rating curves, the ARMA error models are currently being evaluated as an addition to DEP's Operations Support Tool.

  12. Minimal see-saw model predicting best fit lepton mixing angles

    International Nuclear Information System (INIS)

    King, Stephen F.

    2013-01-01

    We discuss a minimal predictive see-saw model in which the right-handed neutrino mainly responsible for the atmospheric neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (0,1,1) and the right-handed neutrino mainly responsible for the solar neutrino mass has couplings to (ν e ,ν μ ,ν τ ) proportional to (1,4,2), with a relative phase η=−2π/5. We show how these patterns of couplings could arise from an A 4 family symmetry model of leptons, together with Z 3 and Z 5 symmetries which fix η=−2π/5 up to a discrete phase choice. The PMNS matrix is then completely determined by one remaining parameter which is used to fix the neutrino mass ratio m 2 /m 3 . The model predicts the lepton mixing angles θ 12 ≈34 ∘ ,θ 23 ≈41 ∘ ,θ 13 ≈9.5 ∘ , which exactly coincide with the current best fit values for a normal neutrino mass hierarchy, together with the distinctive prediction for the CP violating oscillation phase δ≈106 ∘

  13. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  14. Supervisory Model Predictive Control of the Heat Integrated Distillation Column

    DEFF Research Database (Denmark)

    Meyer, Kristian; Bisgaard, Thomas; Huusom, Jakob Kjøbsted

    2017-01-01

    This paper benchmarks a centralized control system based on model predictive control for the operation of the heat integrated distillation column (HIDiC) against a fully decentralized control system using the most complete column model currently available in the literature. The centralized control...... system outperforms the decentralized system, because it handles the interactions in the HIDiC process better. The integral absolute error (IAE) is reduced by a factor of 2 and a factor of 4 for control of the top and bottoms compositions, respectively....

  15. A probabilistic model to predict clinical phenotypic traits from genome sequencing.

    Science.gov (United States)

    Chen, Yun-Ching; Douville, Christopher; Wang, Cheng; Niknafs, Noushin; Yeo, Grace; Beleva-Guthrie, Violeta; Carter, Hannah; Stenson, Peter D; Cooper, David N; Li, Biao; Mooney, Sean; Karchin, Rachel

    2014-09-01

    Genetic screening is becoming possible on an unprecedented scale. However, its utility remains controversial. Although most variant genotypes cannot be easily interpreted, many individuals nevertheless attempt to interpret their genetic information. Initiatives such as the Personal Genome Project (PGP) and Illumina's Understand Your Genome are sequencing thousands of adults, collecting phenotypic information and developing computational pipelines to identify the most important variant genotypes harbored by each individual. These pipelines consider database and allele frequency annotations and bioinformatics classifications. We propose that the next step will be to integrate these different sources of information to estimate the probability that a given individual has specific phenotypes of clinical interest. To this end, we have designed a Bayesian probabilistic model to predict the probability of dichotomous phenotypes. When applied to a cohort from PGP, predictions of Gilbert syndrome, Graves' disease, non-Hodgkin lymphoma, and various blood groups were accurate, as individuals manifesting the phenotype in question exhibited the highest, or among the highest, predicted probabilities. Thirty-eight PGP phenotypes (26%) were predicted with area-under-the-ROC curve (AUC)>0.7, and 23 (15.8%) of these were statistically significant, based on permutation tests. Moreover, in a Critical Assessment of Genome Interpretation (CAGI) blinded prediction experiment, the models were used to match 77 PGP genomes to phenotypic profiles, generating the most accurate prediction of 16 submissions, according to an independent assessor. Although the models are currently insufficiently accurate for diagnostic utility, we expect their performance to improve with growth of publicly available genomics data and model refinement by domain experts.

  16. Software Code Smell Prediction Model Using Shannon, Rényi and Tsallis Entropies

    Directory of Open Access Journals (Sweden)

    Aakanshi Gupta

    2018-05-01

    Full Text Available The current era demands high quality software in a limited time period to achieve new goals and heights. To meet user requirements, the source codes undergo frequent modifications which can generate the bad smells in software that deteriorate the quality and reliability of software. Source code of the open source software is easily accessible by any developer, thus frequently modifiable. In this paper, we have proposed a mathematical model to predict the bad smells using the concept of entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub components of the Apache Abdera project, and different measures of entropy (Shannon, Rényi and Tsallis entropy. By applying non-linear regression techniques, the bad smells that can arise in the future versions of software are predicted based on the observed bad smells and entropy measures. The proposed model has been validated using goodness of fit parameters (prediction error, bias, variation, and Root Mean Squared Prediction Error (RMSPE. The values of model performance statistics ( R 2 , adjusted R 2 , Mean Square Error (MSE and standard error also justify the proposed model. We have compared the results of the prediction model with the observed results on real data. The results of the model might be helpful for software development industries and future researchers.

  17. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    Science.gov (United States)

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  18. Mathematical models to predict rheological parameters of lateritic hydromixtures

    Directory of Open Access Journals (Sweden)

    Gabriel Hernández-Ramírez

    2017-10-01

    Full Text Available The present work had as objective to establish mathematical models that allow the prognosis of the rheological parameters of the lateritic pulp at concentrations of solids from 35% to 48%, temperature of the preheated hydromixture superior to 82 ° C and number of mineral between 3 and 16. Four samples of lateritic pulp were used in the study at different process locations. The results allowed defining that the plastic properties of the lateritic pulp in the conditions of this study conform to the Herschel-Bulkley model for real plastics. In addition, they show that for current operating conditions, even for new situations, UPD mathematical models have a greater ability to predict rheological parameters than least squares mathematical models.

  19. Hysteresis-controlled instability waves in a scale-free driven current sheet model

    Directory of Open Access Journals (Sweden)

    V. M. Uritsky

    2005-01-01

    Full Text Available Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC. Along this line of research, a 2-dimensional driven current sheet (DCS model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b. The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b. The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW. In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

  20. Prediction Models for Dynamic Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.

    2015-11-02

    As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D2R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D2R, which we address in this paper. Our first contribution is the formal definition of D2R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D2R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D2R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D2R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D2R. Also, prediction models require just few days’ worth of data indicating that small amounts of

  1. Accuracy assessment of landslide prediction models

    International Nuclear Information System (INIS)

    Othman, A N; Mohd, W M N W; Noraini, S

    2014-01-01

    The increasing population and expansion of settlements over hilly areas has greatly increased the impact of natural disasters such as landslide. Therefore, it is important to developed models which could accurately predict landslide hazard zones. Over the years, various techniques and models have been developed to predict landslide hazard zones. The aim of this paper is to access the accuracy of landslide prediction models developed by the authors. The methodology involved the selection of study area, data acquisition, data processing and model development and also data analysis. The development of these models are based on nine different landslide inducing parameters i.e. slope, land use, lithology, soil properties, geomorphology, flow accumulation, aspect, proximity to river and proximity to road. Rank sum, rating, pairwise comparison and AHP techniques are used to determine the weights for each of the parameters used. Four (4) different models which consider different parameter combinations are developed by the authors. Results obtained are compared to landslide history and accuracies for Model 1, Model 2, Model 3 and Model 4 are 66.7, 66.7%, 60% and 22.9% respectively. From the results, rank sum, rating and pairwise comparison can be useful techniques to predict landslide hazard zones

  2. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan

    Directory of Open Access Journals (Sweden)

    Ayman A. Elshayeb

    2017-11-01

    Full Text Available Abstract Background Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. Objectives The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Methods Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. Results A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax − b. Minimum bactericidal concentration’s predication of resistance was given the exponential trend (y = n ex and the predictive coefficient R2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. Conclusion This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current

  3. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress.

    Science.gov (United States)

    Cheng, Ching-Hsue; Chan, Chia-Pang; Yang, Jun-He

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.

  4. Aespoe Pillar Stability Experiment. Summary of preparatory work and predictive modelling

    International Nuclear Information System (INIS)

    Andersson, J. Christer

    2004-11-01

    The Aespoe Pillar Stability Experiment, APSE, is a large scale rock mechanics experiment for research of the spalling process and the possibility for numerical modelling of it. The experiment can be summarized in three objectives: Demonstrate the current capability to predict spalling in a fractured rock mass; Demonstrate the effect of backfill (confining pressure) on the rock mass response; and Comparison of 2D and 3D mechanical and thermal predicting capabilities. This report is a summary of the works that has been performed in the experiment prior to the heating of the rock mass. The major activities that have been performed and are discussed herein are: 1) The geology of the experiment drift in general and the experiment volume in particular. 2) The design process of the experiment and thoughts behind some of the important decisions. 3) The monitoring programme and the supporting constructions for the instruments. 4) The numerical modelling, approaches taken and a summary of the predictions. In the end of the report there is a comparison of the results from the different models. Included is also a comparison of the time needed for building, realizing and make changes in the different models

  5. Poisson Mixture Regression Models for Heart Disease Prediction.

    Science.gov (United States)

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  6. Poisson Mixture Regression Models for Heart Disease Prediction

    Science.gov (United States)

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  7. Comparison of ITER performance predicted by semi-empirical and theory-based transport models

    International Nuclear Information System (INIS)

    Mukhovatov, V.; Shimomura, Y.; Polevoi, A.

    2003-01-01

    The values of Q=(fusion power)/(auxiliary heating power) predicted for ITER by three different methods, i.e., transport model based on empirical confinement scaling, dimensionless scaling technique, and theory-based transport models are compared. The energy confinement time given by the ITERH-98(y,2) scaling for an inductive scenario with plasma current of 15 MA and plasma density 15% below the Greenwald value is 3.6 s with one technical standard deviation of ±14%. These data are translated into a Q interval of [7-13] at the auxiliary heating power P aux = 40 MW and [7-28] at the minimum heating power satisfying a good confinement ELMy H-mode. Predictions of dimensionless scalings and theory-based transport models such as Weiland, MMM and IFS/PPPL overlap with the empirical scaling predictions within the margins of uncertainty. (author)

  8. Comparisons of Faulting-Based Pavement Performance Prediction Models

    Directory of Open Access Journals (Sweden)

    Weina Wang

    2017-01-01

    Full Text Available Faulting prediction is the core of concrete pavement maintenance and design. Highway agencies are always faced with the problem of lower accuracy for the prediction which causes costly maintenance. Although many researchers have developed some performance prediction models, the accuracy of prediction has remained a challenge. This paper reviews performance prediction models and JPCP faulting models that have been used in past research. Then three models including multivariate nonlinear regression (MNLR model, artificial neural network (ANN model, and Markov Chain (MC model are tested and compared using a set of actual pavement survey data taken on interstate highway with varying design features, traffic, and climate data. It is found that MNLR model needs further recalibration, while the ANN model needs more data for training the network. MC model seems a good tool for pavement performance prediction when the data is limited, but it is based on visual inspections and not explicitly related to quantitative physical parameters. This paper then suggests that the further direction for developing the performance prediction model is incorporating the advantages and disadvantages of different models to obtain better accuracy.

  9. Influence of covariate distribution on the predictive performance of pharmacokinetic models in paediatric research

    Science.gov (United States)

    Piana, Chiara; Danhof, Meindert; Della Pasqua, Oscar

    2014-01-01

    Aims The accuracy of model-based predictions often reported in paediatric research has not been thoroughly characterized. The aim of this exercise is therefore to evaluate the role of covariate distributions when a pharmacokinetic model is used for simulation purposes. Methods Plasma concentrations of a hypothetical drug were simulated in a paediatric population using a pharmacokinetic model in which body weight was correlated with clearance and volume of distribution. Two subgroups of children were then selected from the overall population according to a typical study design, in which pre-specified body weight ranges (10–15 kg and 30–40 kg) were used as inclusion criteria. The simulated data sets were then analyzed using non-linear mixed effects modelling. Model performance was assessed by comparing the accuracy of AUC predictions obtained for each subgroup, based on the model derived from the overall population and by extrapolation of the model parameters across subgroups. Results Our findings show that systemic exposure as well as pharmacokinetic parameters cannot be accurately predicted from the pharmacokinetic model obtained from a population with a different covariate range from the one explored during model building. Predictions were accurate only when a model was used for prediction in a subgroup of the initial population. Conclusions In contrast to current practice, the use of pharmacokinetic modelling in children should be limited to interpolations within the range of values observed during model building. Furthermore, the covariate point estimate must be kept in the model even when predictions refer to a subset different from the original population. PMID:24433411

  10. Predicting responses from Rasch measures.

    Science.gov (United States)

    Linacre, John M

    2010-01-01

    There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.

  11. Unreachable Setpoints in Model Predictive Control

    DEFF Research Database (Denmark)

    Rawlings, James B.; Bonné, Dennis; Jørgensen, John Bagterp

    2008-01-01

    In this work, a new model predictive controller is developed that handles unreachable setpoints better than traditional model predictive control methods. The new controller induces an interesting fast/slow asymmetry in the tracking response of the system. Nominal asymptotic stability of the optimal...... steady state is established for terminal constraint model predictive control (MPC). The region of attraction is the steerable set. Existing analysis methods for closed-loop properties of MPC are not applicable to this new formulation, and a new analysis method is developed. It is shown how to extend...

  12. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  13. Prediction Model of Battery State of Charge and Control Parameter Optimization for Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2015-07-01

    Full Text Available This paper presents the construction of a battery state of charge (SOC prediction model and the optimization method of the said model to appropriately control the number of parameters in compliance with the SOC as the battery output objectives. Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences has tested its electric vehicle research prototype on the road, monitoring its voltage, current, temperature, time, vehicle velocity, motor speed, and SOC during the operation. Using this experimental data, the prediction model of battery SOC was built. Stepwise method considering multicollinearity was able to efficiently develops the battery prediction model that describes the multiple control parameters in relation to the characteristic values such as SOC. It was demonstrated that particle swarm optimization (PSO succesfully and efficiently calculated optimal control parameters to optimize evaluation item such as SOC based on the model.

  14. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    Science.gov (United States)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this

  15. Observations and modeling of tsunami-induced currents in ports and harbors

    Science.gov (United States)

    Lynett, Patrick J.; Borrero, Jose C.; Weiss, Robert; Son, Sangyoung; Greer, Dougal; Renteria, Willington

    2012-04-01

    Tsunamis, or "harbor waves" in Japanese, are so-named due to common observations of enhanced wave heights, currents and damage in harbors and ports. However, dynamic currents induced by these waves, while regularly observed and known to cause significant damage, are poorly understood. Observations and modeling of the currents induced by the 2011 Tohoku and 2004 Indian Ocean tsunamis allows us to show that the strongest flows in harbor basins are governed by horizontally sheared and rotational shallow features, such as jets and large eddies. When examining currents in harbors, this conclusion will generally require a simulation approach that both includes the relevant physical processes in the governing equations and uses a numerical scheme that does not artificially damp these features. Without proper representation of the physics associated with these phenomena, predictive models may provide drag force estimates that are an order of magnitude or more in error. The immediate implementation of this type of analysis into tsunami hazard studies can mean the difference between an unaffected port and one in which 300 m long container vessels are detached from their moorings and drift chaotically.

  16. Electromagnetic modelling of current flow in the heart from TASER devices and the risk of cardiac dysrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Holden, S J [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Sheridan, R D [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Coffey, T J [Mathshop Ltd, Porton Down Science Park, Salisbury, Wiltshire SP4 0JQ (United Kingdom); Scaramuzza, R A [Flomerics Ltd, Electromagnetic Division, TLM House, Percy Street, Nottingham NG16 3EP (United Kingdom); Diamantopoulos, P [Bio-Medical Modelling Unit, School of Engineering, University of Sussex, Falmer, Sussex BN1 9QT (United Kingdom)

    2007-12-21

    Increasing use by law enforcement agencies of the M26 and X26 TASER electrical incapacitation devices has raised concerns about the arrhythmogenic potential of these weapons. Using a numerical phantom constructed from medical images of the human body in which the material properties of the tissues are represented, computational electromagnetic modelling has been used to predict the currents arising at the heart following injection of M26 and X26 waveforms at the anterior surface of the chest (with one TASER 'barb' directly overlying the ventricles). The modelling indicated that the peak absolute current densities at the ventricles were 0.66 and 0.11 mA mm{sup -2} for the M26 and X26 waveforms, respectively. When applied during the vulnerable period to the ventricular epicardial surface of guinea-pig isolated hearts, the M26 and X26 waveforms induced ectopic beats, but only at current densities greater than 60-fold those predicted by the modelling. When applied to the ventricles in trains designed to mimic the discharge patterns of the TASER devices, neither waveform induced ventricular fibrillation at peak currents >70-fold (for the M26 waveform) and >240-fold (for the X26) higher than the modelled current densities. This study provides evidence for a lack of arrhythmogenic action of the M26 and X26 TASER devices.

  17. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review.

    Science.gov (United States)

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-07-01

    Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water. To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking waters. These models were developed through laboratory and field-scale experiments using raw, pretreated and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess the model advantages and limitations, and to determine their applicability to different water supply systems. The paper identifies the current challenges and future research needs to better control DBP formation. Finally, important directions for future research are recommended to protect human health and to follow the best management practices.

  18. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  19. Multi-physics Model for the Aging Prediction of a Vanadium Redox Flow Battery System

    International Nuclear Information System (INIS)

    Merei, Ghada; Adler, Sophie; Magnor, Dirk; Sauer, Dirk Uwe

    2015-01-01

    Highlights: • Present a multi-physics model of vanadium redox-flow battery. • This model is essential for aging prediction. • It is applicable for VRB system of different power and capacity ratings. • Good results comparing with current research in this field. - Abstract: The all-vanadium redox-flow battery is an attractive candidate to compensate the fluctuations of non-dispatchable renewable energy generation. While several models for vanadium redox batteries have been described yet, no model has been published, which is adequate for the aging prediction. Therefore, the present paper presents a multi-physics model which determines all parameters that are essential for an aging prediction. In a following paper, the corresponding aging model of vanadium redox flow battery (VRB) is described. The model combines existing models for the mechanical losses and temperature development with new approaches for the batteries side reactions. The model was implemented in Matlab/Simulink. The modeling results presented in the paper prove to be consistent with the experimental results of other research groups

  20. Predictability of surface currents and fronts off the Mississippi Delta

    International Nuclear Information System (INIS)

    Walker, N.D.; Rouse, L.J.; Wiseman, W.J.

    2001-01-01

    The dynamic coastal region of the lower Mississippi River was examined under varying conditions of wind, river discharge and circulation patterns of the Gulf of Mexico. Nearly 7,000 deep-sea merchant vessels enter the port complex each year and the area boasts the highest concentration of offshore drilling rigs, rendering the Mississippi delta and adjacent coastal areas vulnerable to risk from oil spills. Satellite imagery has been useful in tracking movements of the Mississippi river plume as recognizable turbidity and temperature fronts are formed where river waters encounter ambient shelf waters. Oil spill modelers often base their predictions of oil movement on the surface wind field and surface currents, but past studies have indicated that this can be overly simplistic in regions affected by river flow because river fronts have significant control over the movement of oil in opposition to prevailing winds. Frontal zones, such as those found where river waters meet oceanic waters, are characterized by strong convergence of surface flow. These frontal zones can provide large and efficient traps or natural booms for spilled oil. In an effort to facilitate cleanup operations, this study made use of the National Ocean and Atmospheric Administration (NOAA) AVHRR satellite imagery of temperature and reflectance to study front locations and their variability in space and time. The main objectives were to quantify surface temperature structure and locations of fronts throughout the year using satellite image data, to map the structure of the Mississippi sediment plume and to assess the forcing factors responsible for its variability over space and time. The final objective was to use in-situ measurements of surface currents together with satellite image data to better understand surface flow in this region of strong and variable currents. It was concluded that the main factors controlling circulation in the Mississippi River outflow region are river discharge and

  1. Predict-first experimental analysis using automated and integrated magnetohydrodynamic modeling

    Science.gov (United States)

    Lyons, B. C.; Paz-Soldan, C.; Meneghini, O.; Lao, L. L.; Weisberg, D. B.; Belli, E. A.; Evans, T. E.; Ferraro, N. M.; Snyder, P. B.

    2018-05-01

    An integrated-modeling workflow has been developed for the purpose of performing predict-first analysis of transient-stability experiments. Starting from an existing equilibrium reconstruction from a past experiment, the workflow couples together the EFIT Grad-Shafranov solver [L. Lao et al., Fusion Sci. Technol. 48, 968 (2005)], the EPED model for the pedestal structure [P. B. Snyder et al., Phys. Plasmas 16, 056118 (2009)], and the NEO drift-kinetic-equation solver [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)] (for bootstrap current calculations) in order to generate equilibria with self-consistent pedestal structures as the plasma shape and various scalar parameters (e.g., normalized β, pedestal density, and edge safety factor [q95]) are changed. These equilibria are then analyzed using automated M3D-C1 extended-magnetohydrodynamic modeling [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)] to compute the plasma response to three-dimensional magnetic perturbations. This workflow was created in conjunction with a DIII-D experiment examining the effect of triangularity on the 3D plasma response. Several versions of the workflow were developed, and the initial ones were used to help guide experimental planning (e.g., determining the plasma current necessary to maintain the constant edge safety factor in various shapes). Subsequent validation with the experimental results was then used to revise the workflow, ultimately resulting in the complete model presented here. We show that quantitative agreement was achieved between the M3D-C1 plasma response calculated for equilibria generated by the final workflow and equilibria reconstructed from experimental data. A comparison of results from earlier workflows is used to show the importance of properly matching certain experimental parameters in the generated equilibria, including the normalized β, pedestal density, and q95. On the other hand, the details of the pedestal

  2. Numerical modeling of 3D halo current path in ITER structures

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Paolo; Marconato, Nicolò; Furno Palumbo, Maurizio; Peruzzo, Simone [Consorzio RFX, EURATOM-ENEA Association, C.so Stati Uniti 4, 35127 Padova (Italy); Specogna, Ruben, E-mail: ruben.specogna@uniud.it [DIEGM, Università di Udine, Via delle Scienze, 208, 33100 Udine (Italy); Albanese, Raffaele; Rubinacci, Guglielmo; Ventre, Salvatore; Villone, Fabio [Consorzio CREATE, EURATOM-ENEA Association, Via Claudio 21, 80125 Napoli (Italy)

    2013-10-15

    Highlights: ► Two numerical codes for the evaluation of halo currents in 3D structures are presented. ► A simplified plasma model is adopted to provide the input (halo current injected into the FW). ► Two representative test cases of ITER symmetric and asymmetric VDEs have been analyzed. ► The proposed approaches provide results in excellent agreement for both cases. -- Abstract: Disruptions represent one of the main concerns for Tokamak operation, especially in view of fusion reactors, or experimental test reactors, due to the electro-mechanical loads induced by halo and eddy currents. The development of a predictive tool which allows to estimate the magnitude and spatial distribution of the halo current forces is of paramount importance in order to ensure robust vessel and in-vessel component design. With this aim, two numerical codes (CARIDDI, CAFE) have been developed, which allow to calculate the halo current path (resistive distribution) in the passive structures surrounding the plasma. The former is based on an integral formulation for the eddy currents problem particularized to the static case; the latter implements a pair of 3D FEM complementary formulations for the solution of the steady-state current conduction problem. A simplified plasma model is adopted to provide the inputs (halo current injected into the first wall). Two representative test cases (ITER symmetric and asymmetric VDEs) have been selected to cross check the results of the proposed approaches.

  3. Multivariate Models for Prediction of Human Skin Sensitization Hazard

    Science.gov (United States)

    Strickland, Judy; Zang, Qingda; Paris, Michael; Lehmann, David M.; Allen, David; Choksi, Neepa; Matheson, Joanna; Jacobs, Abigail; Casey, Warren; Kleinstreuer, Nicole

    2016-01-01

    One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensitization suggests that no single alternative method will replace the currently accepted animal tests. ICCVAM is evaluating an integrated approach to testing and assessment based on the adverse outcome pathway for skin sensitization that uses machine learning approaches to predict human skin sensitization hazard. We combined data from three in chemico or in vitro assays—the direct peptide reactivity assay (DPRA), human cell line activation test (h-CLAT), and KeratinoSens™ assay—six physicochemical properties, and an in silico read-across prediction of skin sensitization hazard into 12 variable groups. The variable groups were evaluated using two machine learning approaches, logistic regression (LR) and support vector machine (SVM), to predict human skin sensitization hazard. Models were trained on 72 substances and tested on an external set of 24 substances. The six models (three LR and three SVM) with the highest accuracy (92%) used: (1) DPRA, h-CLAT, and read-across; (2) DPRA, h-CLAT, read-across, and KeratinoSens; or (3) DPRA, h-CLAT, read-across, KeratinoSens, and log P. The models performed better at predicting human skin sensitization hazard than the murine local lymph node assay (accuracy = 88%), any of the alternative methods alone (accuracy = 63–79%), or test batteries combining data from the individual methods (accuracy = 75%). These results suggest that computational methods are promising tools to effectively identify potential human skin sensitizers without animal testing. PMID:27480324

  4. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    Science.gov (United States)

    Dunne, M. G.; McCarthy, P. J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.; the ASDEX Upgrade Team

    2012-12-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications.

  5. Measurement of neoclassically predicted edge current density at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Dunne, M.G.; McCarthy, P.J.; Wolfrum, E.; Fischer, R.; Giannone, L.; Burckhart, A.

    2012-01-01

    Experimental confirmation of neoclassically predicted edge current density in an ELMy H-mode plasma is presented. Current density analysis using the CLISTE equilibrium code is outlined and the rationale for accuracy of the reconstructions is explained. Sample profiles and time traces from analysis of data at ASDEX Upgrade are presented. A high time resolution is possible due to the use of an ELM-synchronization technique. Additionally, the flux-surface-averaged current density is calculated using a neoclassical approach. Results from these two separate methods are then compared and are found to validate the theoretical formula. Finally, several discharges are compared as part of a fuelling study, showing that the size and width of the edge current density peak at the low-field side can be explained by the electron density and temperature drives and their respective collisionality modifications. (paper)

  6. A regional neural network model for predicting mean daily river water temperature

    Science.gov (United States)

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  7. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.

    Science.gov (United States)

    Ignasiak, Dominika; Dendorfer, Sebastian; Ferguson, Stephen J

    2016-04-11

    Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R(2)=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  9. Refining Sunrise/set Prediction Models by Accounting for the Effects of Refraction

    Science.gov (United States)

    Wilson, Teresa; Bartlett, Jennifer L.

    2016-01-01

    Current atmospheric models used to predict the times of sunrise and sunset have an error of one to four minutes at mid-latitudes (0° - 55° N/S). At higher latitudes, slight changes in refraction may cause significant discrepancies, including determining even whether the Sun appears to rise or set. While different components of refraction are known, how they affect predictions of sunrise/set has not yet been quantified. A better understanding of the contributions from temperature profile, pressure, humidity, and aerosols, could significantly improve the standard prediction. Because sunrise/set times and meteorological data from multiple locations will be necessary for a thorough investigation of the problem, we will collect this data using smartphones as part of a citizen science project. This analysis will lead to more complete models that will provide more accurate times for navigators and outdoorsman alike.

  10. Risk terrain modeling predicts child maltreatment.

    Science.gov (United States)

    Daley, Dyann; Bachmann, Michael; Bachmann, Brittany A; Pedigo, Christian; Bui, Minh-Thuy; Coffman, Jamye

    2016-12-01

    As indicated by research on the long-term effects of adverse childhood experiences (ACEs), maltreatment has far-reaching consequences for affected children. Effective prevention measures have been elusive, partly due to difficulty in identifying vulnerable children before they are harmed. This study employs Risk Terrain Modeling (RTM), an analysis of the cumulative effect of environmental factors thought to be conducive for child maltreatment, to create a highly accurate prediction model for future substantiated child maltreatment cases in the City of Fort Worth, Texas. The model is superior to commonly used hotspot predictions and more beneficial in aiding prevention efforts in a number of ways: 1) it identifies the highest risk areas for future instances of child maltreatment with improved precision and accuracy; 2) it aids the prioritization of risk-mitigating efforts by informing about the relative importance of the most significant contributing risk factors; 3) since predictions are modeled as a function of easily obtainable data, practitioners do not have to undergo the difficult process of obtaining official child maltreatment data to apply it; 4) the inclusion of a multitude of environmental risk factors creates a more robust model with higher predictive validity; and, 5) the model does not rely on a retrospective examination of past instances of child maltreatment, but adapts predictions to changing environmental conditions. The present study introduces and examines the predictive power of this new tool to aid prevention efforts seeking to improve the safety, health, and wellbeing of vulnerable children. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Output from Statistical Predictive Models as Input to eLearning Dashboards

    Directory of Open Access Journals (Sweden)

    Marlene A. Smith

    2015-06-01

    Full Text Available We describe how statistical predictive models might play an expanded role in educational analytics by giving students automated, real-time information about what their current performance means for eventual success in eLearning environments. We discuss how an online messaging system might tailor information to individual students using predictive analytics. The proposed system would be data-driven and quantitative; e.g., a message might furnish the probability that a student will successfully complete the certificate requirements of a massive open online course. Repeated messages would prod underperforming students and alert instructors to those in need of intervention. Administrators responsible for accreditation or outcomes assessment would have ready documentation of learning outcomes and actions taken to address unsatisfactory student performance. The article’s brief introduction to statistical predictive models sets the stage for a description of the messaging system. Resources and methods needed to develop and implement the system are discussed.

  12. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Asmussen, Magnus Færing; Bech, Michael Møller

    2018-01-01

    Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how...... the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how...

  13. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    Science.gov (United States)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  14. Case studies in archaeological predictive modelling

    NARCIS (Netherlands)

    Verhagen, Jacobus Wilhelmus Hermanus Philippus

    2007-01-01

    In this thesis, a collection of papers is put together dealing with various quantitative aspects of predictive modelling and archaeological prospection. Among the issues covered are the effects of survey bias on the archaeological data used for predictive modelling, and the complexities of testing

  15. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  16. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Science.gov (United States)

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  17. Predictive modeling of reactive wetting and metal joining.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  18. A demographic model to predict future growth of the Addo elephant population

    OpenAIRE

    A.M. Woodd

    1999-01-01

    An age-structured demographic model of the growth of the Addo elephant population was developed using parameters calculated from long-term data on the population. The model was used to provide estimates of future population growth. Expansion of the Addo Elephant National Park is currently underway, and the proposed target population size for elephant within the enlarged park is 2700. The model predicts that this population size will be reached during the year 2043, so that the Addo elephant p...

  19. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  20. Evaluation of the Current State of Integrated Water Quality Modelling

    Science.gov (United States)

    Arhonditsis, G. B.; Wellen, C. C.; Ecological Modelling Laboratory

    2010-12-01

    Environmental policy and management implementation require robust methods for assessing the contribution of various point and non-point pollution sources to water quality problems as well as methods for estimating the expected and achieved compliance with the water quality goals. Water quality models have been widely used for creating the scientific basis for management decisions by providing a predictive link between restoration actions and ecosystem response. Modelling water quality and nutrient transport is challenging due a number of constraints associated with the input data and existing knowledge gaps related to the mathematical description of landscape and in-stream biogeochemical processes. While enormous effort has been invested to make watershed models process-based and spatially-distributed, there has not been a comprehensive meta-analysis of model credibility in watershed modelling literature. In this study, we evaluate the current state of integrated water quality modeling across the range of temporal and spatial scales typically utilized. We address several common modeling questions by providing a quantitative assessment of model performance and by assessing how model performance depends on model development. The data compiled represent a heterogeneous group of modeling studies, especially with respect to complexity, spatial and temporal scales and model development objectives. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modelling, and ending in 2009, we selected over 150 papers fitting a number of criteria. These criteria involved publications that: (i) employed distributed or semi-distributed modelling approaches; (ii) provided predictions on flow and nutrient concentration state variables; and (iii) reported fit to measured data. Model performance was quantified with the Nash-Sutcliffe Efficiency, the relative error, and the coefficient of determination. Further, our

  1. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  2. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Issaku Kawashima

    2017-07-01

    Full Text Available Mind-wandering (MW, task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  3. Predictive modelling of interventions to improve iodine intake in New Zealand.

    Science.gov (United States)

    Schiess, Sonja; Cressey, Peter J; Thomson, Barbara M

    2012-10-01

    The potential effects of four interventions to improve iodine intakes of six New Zealand population groups are assessed. A model was developed to estimate iodine intake when (i) bread is manufactured with or without iodized salt, (ii) recommended foods are consumed to augment iodine intake, (iii) iodine supplementation as recommended for pregnant women is taken and (iv) the level of iodization for use in bread manufacture is doubled from 25-65 mg to 100 mg iodine/kg salt. New Zealanders have low and decreasing iodine intakes and low iodine status. Predictive modelling is a useful tool to assess the likely impact, and potential risk, of nutrition interventions. Food consumption information was sourced from 24 h diet recall records for 4576 New Zealanders aged over 5 years. Most consumers (73-100 %) are predicted to achieve an adequate iodine intake when salt iodized at 25-65 mg iodine/kg salt is used in bread manufacture, except in pregnant females of whom 37 % are likely to meet the estimated average requirement. Current dietary advice to achieve estimated average requirements is challenging for some consumers. Pregnant women are predicted to achieve adequate but not excessive iodine intakes when 150 μg of supplemental iodine is taken daily, assuming iodized salt in bread. The manufacture of bread with iodized salt and supplemental iodine for pregnant women are predicted to be effective interventions to lift iodine intakes in New Zealand. Current estimations of iodine intake will be improved with information on discretionary salt and supplemental iodine usage.

  4. Predictive modelling of complex agronomic and biological systems.

    Science.gov (United States)

    Keurentjes, Joost J B; Molenaar, Jaap; Zwaan, Bas J

    2013-09-01

    Biological systems are tremendously complex in their functioning and regulation. Studying the multifaceted behaviour and describing the performance of such complexity has challenged the scientific community for years. The reduction of real-world intricacy into simple descriptive models has therefore convinced many researchers of the usefulness of introducing mathematics into biological sciences. Predictive modelling takes such an approach another step further in that it takes advantage of existing knowledge to project the performance of a system in alternating scenarios. The ever growing amounts of available data generated by assessing biological systems at increasingly higher detail provide unique opportunities for future modelling and experiment design. Here we aim to provide an overview of the progress made in modelling over time and the currently prevalent approaches for iterative modelling cycles in modern biology. We will further argue for the importance of versatility in modelling approaches, including parameter estimation, model reduction and network reconstruction. Finally, we will discuss the difficulties in overcoming the mathematical interpretation of in vivo complexity and address some of the future challenges lying ahead. © 2013 John Wiley & Sons Ltd.

  5. Fingerprint verification prediction model in hand dermatitis.

    Science.gov (United States)

    Lee, Chew K; Chang, Choong C; Johor, Asmah; Othman, Puwira; Baba, Roshidah

    2015-07-01

    Hand dermatitis associated fingerprint changes is a significant problem and affects fingerprint verification processes. This study was done to develop a clinically useful prediction model for fingerprint verification in patients with hand dermatitis. A case-control study involving 100 patients with hand dermatitis. All patients verified their thumbprints against their identity card. Registered fingerprints were randomized into a model derivation and model validation group. Predictive model was derived using multiple logistic regression. Validation was done using the goodness-of-fit test. The fingerprint verification prediction model consists of a major criterion (fingerprint dystrophy area of ≥ 25%) and two minor criteria (long horizontal lines and long vertical lines). The presence of the major criterion predicts it will almost always fail verification, while presence of both minor criteria and presence of one minor criterion predict high and low risk of fingerprint verification failure, respectively. When none of the criteria are met, the fingerprint almost always passes the verification. The area under the receiver operating characteristic curve was 0.937, and the goodness-of-fit test showed agreement between the observed and expected number (P = 0.26). The derived fingerprint verification failure prediction model is validated and highly discriminatory in predicting risk of fingerprint verification in patients with hand dermatitis. © 2014 The International Society of Dermatology.

  6. Automated MRI segmentation for individualized modeling of current flow in the human head.

    Science.gov (United States)

    Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C

    2013-12-01

    High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible

  7. Mathematical approaches for complexity/predictivity trade-offs in complex system models : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Mayo, Jackson R.; Bhattacharyya, Arnab (Massachusetts Institute of Technology, Cambridge, MA); Armstrong, Robert C.; Vanderveen, Keith

    2008-09-01

    The goal of this research was to examine foundational methods, both computational and theoretical, that can improve the veracity of entity-based complex system models and increase confidence in their predictions for emergent behavior. The strategy was to seek insight and guidance from simplified yet realistic models, such as cellular automata and Boolean networks, whose properties can be generalized to production entity-based simulations. We have explored the usefulness of renormalization-group methods for finding reduced models of such idealized complex systems. We have prototyped representative models that are both tractable and relevant to Sandia mission applications, and quantified the effect of computational renormalization on the predictive accuracy of these models, finding good predictivity from renormalized versions of cellular automata and Boolean networks. Furthermore, we have theoretically analyzed the robustness properties of certain Boolean networks, relevant for characterizing organic behavior, and obtained precise mathematical constraints on systems that are robust to failures. In combination, our results provide important guidance for more rigorous construction of entity-based models, which currently are often devised in an ad-hoc manner. Our results can also help in designing complex systems with the goal of predictable behavior, e.g., for cybersecurity.

  8. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    Science.gov (United States)

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  9. Prevalence of current patterns and predictive trends of multidrug-resistant Salmonella Typhi in Sudan.

    Science.gov (United States)

    Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A

    2017-11-14

    Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2  > 0 current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.

  10. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    Science.gov (United States)

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  11. A Risk Prediction Model for Sporadic CRC Based on Routine Lab Results.

    Science.gov (United States)

    Boursi, Ben; Mamtani, Ronac; Hwang, Wei-Ting; Haynes, Kevin; Yang, Yu-Xiao

    2016-07-01

    Current risk scores for colorectal cancer (CRC) are based on demographic and behavioral factors and have limited predictive values. To develop a novel risk prediction model for sporadic CRC using clinical and laboratory data in electronic medical records. We conducted a nested case-control study in a UK primary care database. Cases included those with a diagnostic code of CRC, aged 50-85. Each case was matched with four controls using incidence density sampling. CRC predictors were examined using univariate conditional logistic regression. Variables with p value CRC prediction models which included age, sex, height, obesity, ever smoking, alcohol dependence, and previous screening colonoscopy had an AUC of 0.58 (0.57-0.59) with poor goodness of fit. A laboratory-based model including hematocrit, MCV, lymphocytes, and neutrophil-lymphocyte ratio (NLR) had an AUC of 0.76 (0.76-0.77) and a McFadden's R2 of 0.21 with a NRI of 47.6 %. A combined model including sex, hemoglobin, MCV, white blood cells, platelets, NLR, and oral hypoglycemic use had an AUC of 0.80 (0.79-0.81) with a McFadden's R2 of 0.27 and a NRI of 60.7 %. Similar results were shown in an internal validation set. A laboratory-based risk model had good predictive power for sporadic CRC risk.

  12. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  13. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress

    Science.gov (United States)

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies. PMID:29765399

  14. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress

    Directory of Open Access Journals (Sweden)

    Ching-Hsue Cheng

    2018-01-01

    Full Text Available The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i the proposed model is different from the previous models lacking the concept of time series; (ii the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.

  15. Higher spin currents in the critical O(N) vector model at 1/N2

    International Nuclear Information System (INIS)

    Manashov, A.N.; Strohmaier, M.

    2017-06-01

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N 2 . The results are shown to be in agreement with the four-loop perturbative computation in φ 4 theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N 2 corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  16. Finding Furfural Hydrogenation Catalysts via Predictive Modelling.

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-09-10

    We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (k(H):k(D)=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R(2)=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model's predictions, demonstrating the validity and value of predictive modelling in catalyst optimization.

  17. Model Predictive Control for Smart Energy Systems

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus

    pumps, heat tanks, electrical vehicle battery charging/discharging, wind farms, power plants). 2.Embed forecasting methodologies for the weather (e.g. temperature, solar radiation), the electricity consumption, and the electricity price in a predictive control system. 3.Develop optimization algorithms....... Chapter 3 introduces Model Predictive Control (MPC) including state estimation, filtering and prediction for linear models. Chapter 4 simulates the models from Chapter 2 with the certainty equivalent MPC from Chapter 3. An economic MPC minimizes the costs of consumption based on real electricity prices...... that determined the flexibility of the units. A predictive control system easily handles constraints, e.g. limitations in power consumption, and predicts the future behavior of a unit by integrating predictions of electricity prices, consumption, and weather variables. The simulations demonstrate the expected...

  18. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    Science.gov (United States)

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  19. Plasmonic Light Trapping in Thin-Film Solar Cells: Impact of Modeling on Performance Prediction

    Directory of Open Access Journals (Sweden)

    Alberto Micco

    2015-06-01

    Full Text Available We present a comparative study on numerical models used to predict the absorption enhancement in thin-film solar cells due to the presence of structured back-reflectors exciting, at specific wavelengths, hybrid plasmonic-photonic resonances. To evaluate the effectiveness of the analyzed models, they have been applied in a case study: starting from a U-shaped textured glass thin-film, µc-Si:H solar cells have been successfully fabricated. The fabricated cells, with different intrinsic layer thicknesses, have been morphologically, optically and electrically characterized. The experimental results have been successively compared with the numerical predictions. We have found that, in contrast to basic models based on the underlying schematics of the cell, numerical models taking into account the real morphology of the fabricated device, are able to effectively predict the cells performances in terms of both optical absorption and short-circuit current values.

  20. A Validated Prediction Model for Overall Survival From Stage III Non-Small Cell Lung Cancer: Toward Survival Prediction for Individual Patients

    Energy Technology Data Exchange (ETDEWEB)

    Oberije, Cary, E-mail: cary.oberije@maastro.nl [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); De Ruysscher, Dirk [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Universitaire Ziekenhuizen Leuven, KU Leuven (Belgium); Houben, Ruud [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands); Heuvel, Michel van de; Uyterlinde, Wilma [Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Deasy, Joseph O. [Memorial Sloan Kettering Cancer Center, New York (United States); Belderbos, Jose [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Dingemans, Anne-Marie C. [Department of Pulmonology, University Hospital Maastricht, Research Institute GROW of Oncology, Maastricht (Netherlands); Rimner, Andreas; Din, Shaun [Memorial Sloan Kettering Cancer Center, New York (United States); Lambin, Philippe [Radiation Oncology, Research Institute GROW of Oncology, Maastricht University Medical Center, Maastricht (Netherlands)

    2015-07-15

    Purpose: Although patients with stage III non-small cell lung cancer (NSCLC) are homogeneous according to the TNM staging system, they form a heterogeneous group, which is reflected in the survival outcome. The increasing amount of information for an individual patient and the growing number of treatment options facilitate personalized treatment, but they also complicate treatment decision making. Decision support systems (DSS), which provide individualized prognostic information, can overcome this but are currently lacking. A DSS for stage III NSCLC requires the development and integration of multiple models. The current study takes the first step in this process by developing and validating a model that can provide physicians with a survival probability for an individual NSCLC patient. Methods and Materials: Data from 548 patients with stage III NSCLC were available to enable the development of a prediction model, using stratified Cox regression. Variables were selected by using a bootstrap procedure. Performance of the model was expressed as the c statistic, assessed internally and on 2 external data sets (n=174 and n=130). Results: The final multivariate model, stratified for treatment, consisted of age, gender, World Health Organization performance status, overall treatment time, equivalent radiation dose, number of positive lymph node stations, and gross tumor volume. The bootstrapped c statistic was 0.62. The model could identify risk groups in external data sets. Nomograms were constructed to predict an individual patient's survival probability ( (www.predictcancer.org)). The data set can be downloaded at (https://www.cancerdata.org/10.1016/j.ijrobp.2015.02.048). Conclusions: The prediction model for overall survival of patients with stage III NSCLC highlights the importance of combining patient, clinical, and treatment variables. Nomograms were developed and validated. This tool could be used as a first building block for a decision support system.

  1. Risk Prediction Models in Psychiatry: Toward a New Frontier for the Prevention of Mental Illnesses.

    Science.gov (United States)

    Bernardini, Francesco; Attademo, Luigi; Cleary, Sean D; Luther, Charles; Shim, Ruth S; Quartesan, Roberto; Compton, Michael T

    2017-05-01

    We conducted a systematic, qualitative review of risk prediction models designed and tested for depression, bipolar disorder, generalized anxiety disorder, posttraumatic stress disorder, and psychotic disorders. Our aim was to understand the current state of research on risk prediction models for these 5 disorders and thus future directions as our field moves toward embracing prediction and prevention. Systematic searches of the entire MEDLINE electronic database were conducted independently by 2 of the authors (from 1960 through 2013) in July 2014 using defined search criteria. Search terms included risk prediction, predictive model, or prediction model combined with depression, bipolar, manic depressive, generalized anxiety, posttraumatic, PTSD, schizophrenia, or psychosis. We identified 268 articles based on the search terms and 3 criteria: published in English, provided empirical data (as opposed to review articles), and presented results pertaining to developing or validating a risk prediction model in which the outcome was the diagnosis of 1 of the 5 aforementioned mental illnesses. We selected 43 original research reports as a final set of articles to be qualitatively reviewed. The 2 independent reviewers abstracted 3 types of data (sample characteristics, variables included in the model, and reported model statistics) and reached consensus regarding any discrepant abstracted information. Twelve reports described models developed for prediction of major depressive disorder, 1 for bipolar disorder, 2 for generalized anxiety disorder, 4 for posttraumatic stress disorder, and 24 for psychotic disorders. Most studies reported on sensitivity, specificity, positive predictive value, negative predictive value, and area under the (receiver operating characteristic) curve. Recent studies demonstrate the feasibility of developing risk prediction models for psychiatric disorders (especially psychotic disorders). The field must now advance by (1) conducting more large

  2. Prediction skill of rainstorm events over India in the TIGGE weather prediction models

    Science.gov (United States)

    Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.

    2017-12-01

    Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.

  3. Predicting climate-induced range shifts: model differences and model reliability.

    Science.gov (United States)

    Joshua J. Lawler; Denis White; Ronald P. Neilson; Andrew R. Blaustein

    2006-01-01

    Predicted changes in the global climate are likely to cause large shifts in the geographic ranges of many plant and animal species. To date, predictions of future range shifts have relied on a variety of modeling approaches with different levels of model accuracy. Using a common data set, we investigated the potential implications of alternative modeling approaches for...

  4. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity.

    Science.gov (United States)

    Passini, Elisa; Britton, Oliver J; Lu, Hua Rong; Rohrbacher, Jutta; Hermans, An N; Gallacher, David J; Greig, Robert J H; Bueno-Orovio, Alfonso; Rodriguez, Blanca

    2017-01-01

    Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC 50 /Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca 2+ -transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca 2+ /late Na + currents and Na + /Ca 2+ -exchanger, reduced Na + /K + -pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density

  5. Human In Silico Drug Trials Demonstrate Higher Accuracy than Animal Models in Predicting Clinical Pro-Arrhythmic Cardiotoxicity

    Directory of Open Access Journals (Sweden)

    Elisa Passini

    2017-09-01

    Full Text Available Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient. Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs. Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density

  6. Analytical model development of an eddy-current-based non-contacting steel plate conveyance system

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.; Hwang, C.-C.

    2008-01-01

    A concise model for analyzing and predicting the quasi-static electromagnetic characteristics of an eddy-current-based non-contacting steel plate conveyance system has been developed. Confirmed by three-dimensional (3-D) finite element analysis (FEA), adequacy of the analytical model can be demonstrated. Such an effective approach, which can be conveniently used by the potential industries for preliminary system operational performance evaluations, will be essential for designers and on-site engineers

  7. A perspective on sustained marine observations for climate modelling and prediction.

    Science.gov (United States)

    Dunstone, Nick J

    2014-09-28

    Here, I examine some of the many varied ways in which sustained global ocean observations are used in numerical modelling activities. In particular, I focus on the use of ocean observations to initialize predictions in ocean and climate models. Examples are also shown of how models can be used to assess the impact of both current ocean observations and to simulate that of potential new ocean observing platforms. The ocean has never been better observed than it is today and similarly ocean models have never been as capable at representing the real ocean as they are now. However, there remain important unanswered questions that can likely only be addressed via future improvements in ocean observations. In particular, ocean observing systems need to respond to the needs of the burgeoning field of near-term climate predictions. Although new ocean observing platforms promise exciting new discoveries, there is a delicate balance to be made between their funding and that of the current ocean observing system. Here, I identify the need to secure long-term funding for ocean observing platforms as they mature, from a mainly research exercise to an operational system for sustained observation over climate change time scales. At the same time, considerable progress continues to be made via ship-based observing campaigns and I highlight some that are dedicated to addressing uncertainties in key ocean model parametrizations. The use of ocean observations to understand the prominent long time scale changes observed in the North Atlantic is another focus of this paper. The exciting first decade of monitoring of the Atlantic meridional overturning circulation by the RAPID-MOCHA array is highlighted. The use of ocean and climate models as tools to further probe the drivers of variability seen in such time series is another exciting development. I also discuss the need for a concerted combined effort from climate models and ocean observations in order to understand the current slow

  8. A deep learning-based multi-model ensemble method for cancer prediction.

    Science.gov (United States)

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Model predictive control classical, robust and stochastic

    CERN Document Server

    Kouvaritakis, Basil

    2016-01-01

    For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...

  10. Model predictive Controller for Mobile Robot

    OpenAIRE

    Alireza Rezaee

    2017-01-01

    This paper proposes a Model Predictive Controller (MPC) for control of a P2AT mobile robot. MPC refers to a group of controllers that employ a distinctly identical model of process to predict its future behavior over an extended prediction horizon. The design of a MPC is formulated as an optimal control problem. Then this problem is considered as linear quadratic equation (LQR) and is solved by making use of Ricatti equation. To show the effectiveness of the proposed method this controller is...

  11. Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Vural, Yasemin; Ma, Lin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Leeds (United Kingdom)

    2010-08-01

    In this study, multicomponent mass diffusion models, namely the Stefan-Maxwell model (SMM), the Dusty Gas model (DGM) and the Binary Friction model (BFM) have been compared in terms of their predictive capabilities of the concentration polarization of an anode supported solid oxide fuel cell (SOFC) anode. The results show that other than the pore diameter, current density and concentration of reactants, which have a high importance in concentration polarization predictions, the tortuosity (or porosity/tortuosity) term, has a substantial effect on the model predictions. Contrary to the previous discussions in the literature, for the fitted value of tortuosities, SMM and DGM predictions are similar, even for an average pore radius as small as 2.6e-07 and current density as high as 1.5 A cm{sup -2}. Also it is shown that the BFM predictions are similar to DGM for the case investigated in this study. Moreover, in this study, the effect of the pressure gradient term in the DGM and the BFM has been investigated by including and excluding this term from the model equations. It is shown that for the case investigated and model assumptions used in this study, the terms including the pressure coefficient have an insignificant effect on the predictions of both DGM and BFM and therefore they can be neglected. (author)

  12. Deep Predictive Models in Interactive Music

    OpenAIRE

    Martin, Charles P.; Ellefsen, Kai Olav; Torresen, Jim

    2018-01-01

    Automatic music generation is a compelling task where much recent progress has been made with deep learning models. In this paper, we ask how these models can be integrated into interactive music systems; how can they encourage or enhance the music making of human users? Musical performance requires prediction to operate instruments, and perform in groups. We argue that predictive models could help interactive systems to understand their temporal context, and ensemble behaviour. Deep learning...

  13. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  14. Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science.

    Science.gov (United States)

    Montes-Torres, Julio; Subirats, José Luis; Ribelles, Nuria; Urda, Daniel; Franco, Leonardo; Alba, Emilio; Jerez, José Manuel

    2016-01-01

    One of the prevailing applications of machine learning is the use of predictive modelling in clinical survival analysis. In this work, we present our view of the current situation of computer tools for survival analysis, stressing the need of transferring the latest results in the field of machine learning to biomedical researchers. We propose a web based software for survival analysis called OSA (Online Survival Analysis), which has been developed as an open access and user friendly option to obtain discrete time, predictive survival models at individual level using machine learning techniques, and to perform standard survival analysis. OSA employs an Artificial Neural Network (ANN) based method to produce the predictive survival models. Additionally, the software can easily generate survival and hazard curves with multiple options to personalise the plots, obtain contingency tables from the uploaded data to perform different tests, and fit a Cox regression model from a number of predictor variables. In the Materials and Methods section, we depict the general architecture of the application and introduce the mathematical background of each of the implemented methods. The study concludes with examples of use showing the results obtained with public datasets.

  15. Personalized Prediction of Lifetime Benefits with Statin Therapy for Asymptomatic Individuals: A Modeling Study

    NARCIS (Netherlands)

    B.S. Ferket (Bart); B.J.H. van Kempen (Bob); J. Heeringa (Jan); S. Spronk (Sandra); K.E. Fleischmann (Kirsten); R.L. Nijhuis (Rogier); A. Hofman (Albert); E.W. Steyerberg (Ewout); M.G.M. Hunink (Myriam)

    2012-01-01

    textabstractBackground: Physicians need to inform asymptomatic individuals about personalized outcomes of statin therapy for primary prevention of cardiovascular disease (CVD). However, current prediction models focus on short-term outcomes and ignore the competing risk of death due to other causes.

  16. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Science.gov (United States)

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  17. Evaluation of CASP8 model quality predictions

    KAUST Repository

    Cozzetto, Domenico

    2009-01-01

    The model quality assessment problem consists in the a priori estimation of the overall and per-residue accuracy of protein structure predictions. Over the past years, a number of methods have been developed to address this issue and CASP established a prediction category to evaluate their performance in 2006. In 2008 the experiment was repeated and its results are reported here. Participants were invited to infer the correctness of the protein models submitted by the registered automatic servers. Estimates could apply to both whole models and individual amino acids. Groups involved in the tertiary structure prediction categories were also asked to assign local error estimates to each predicted residue in their own models and their results are also discussed here. The correlation between the predicted and observed correctness measures was the basis of the assessment of the results. We observe that consensus-based methods still perform significantly better than those accepting single models, similarly to what was concluded in the previous edition of the experiment. © 2009 WILEY-LISS, INC.

  18. Neutrino nucleosynthesis in supernovae: Shell model predictions

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1989-01-01

    Almost all of the 3 · 10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. I will argue that these neutrinos interact with nuclei in the ejected shells of the supernovae to produce new elements. It appears that this nucleosynthesis mechanism is responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, and 180 Ta, and contributes significantly to the abundances of about 15 other light nuclei. I discuss shell model predictions for the charged and neutral current allowed and first-forbidden responses of the parent nuclei, as well as the spallation processes that produce the new elements. 18 refs., 1 fig., 1 tab

  19. Predictive models of moth development

    Science.gov (United States)

    Degree-day models link ambient temperature to insect life-stages, making such models valuable tools in integrated pest management. These models increase management efficacy by predicting pest phenology. In Wisconsin, the top insect pest of cranberry production is the cranberry fruitworm, Acrobasis v...

  20. Dinucleotide controlled null models for comparative RNA gene prediction.

    Science.gov (United States)

    Gesell, Tanja; Washietl, Stefan

    2008-05-27

    Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered. SISSIz

  1. Dinucleotide controlled null models for comparative RNA gene prediction

    Directory of Open Access Journals (Sweden)

    Gesell Tanja

    2008-05-01

    Full Text Available Abstract Background Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak et al. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available. Results We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content. Conclusion SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require

  2. Model Prediction Control For Water Management Using Adaptive Prediction Accuracy

    NARCIS (Netherlands)

    Tian, X.; Negenborn, R.R.; Van Overloop, P.J.A.T.M.; Mostert, E.

    2014-01-01

    In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for

  3. Robust model predictive control for constrained continuous-time nonlinear systems

    Science.gov (United States)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  4. Prediction modelling for trauma using comorbidity and 'true' 30-day outcome.

    Science.gov (United States)

    Bouamra, Omar; Jacques, Richard; Edwards, Antoinette; Yates, David W; Lawrence, Thomas; Jenks, Tom; Woodford, Maralyn; Lecky, Fiona

    2015-12-01

    Prediction models for trauma outcome routinely control for age but there is uncertainty about the need to control for comorbidity and whether the two interact. This paper describes recent revisions to the Trauma Audit and Research Network (TARN) risk adjustment model designed to take account of age and comorbidities. In addition linkage between TARN and the Office of National Statistics (ONS) database allows patient's outcome to be accurately identified up to 30 days after injury. Outcome at discharge within 30 days was previously used. Prospectively collected data between 2010 and 2013 from the TARN database were analysed. The data for modelling consisted of 129 786 hospital trauma admissions. Three models were compared using the area under the receiver operating curve (AuROC) for assessing the ability of the models to predict outcome, the Akaike information criteria to measure the quality between models and test for goodness-of-fit and calibration. Model 1 is the current TARN model, Model 2 is Model 1 augmented by a modified Charlson comorbidity index and Model 3 is Model 2 with ONS data on 30 day outcome. The values of the AuROC curve for Model 1 were 0.896 (95% CI 0.893 to 0.899), for Model 2 were 0.904 (0.900 to 0.907) and for Model 3 0.897 (0.896 to 0.902). No significant interaction was found between age and comorbidity in Model 2 or in Model 3. The new model includes comorbidity and this has improved outcome prediction. There was no interaction between age and comorbidity, suggesting that both independently increase vulnerability to mortality after injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Vafamand, Navid; Niknam, Taher

    2017-01-01

    Electric vehicles (EVs) play a significant role in different applications, such as commuter vehicles and short distance transport applications. This study presents a new structure of model-predictive control based on the Takagi-Sugeno fuzzy model, linear matrix inequalities, and a non......-quadratic Lyapunov function for the speed control of EVs including time-delay states and parameter uncertainty. Experimental data, using the Federal Test Procedure (FTP-75), is applied to test the performance and robustness of the suggested controller in the presence of time-varying parameters. Besides, a comparison...... is made between the results of the suggested robust strategy and those obtained from some of the most recent studies on the same topic, to assess the efficiency of the suggested controller. Finally, the experimental results based on a TMS320F28335 DSP are performed on a direct current motor. Simulation...

  6. Model Predictive Control of a Wave Energy Converter with Discrete Fluid Power Power Take-Off System

    Directory of Open Access Journals (Sweden)

    Anders Hedegaard Hansen

    2018-03-01

    Full Text Available Wave power extraction algorithms for wave energy converters are normally designed without taking system losses into account leading to suboptimal power extraction. In the current work, a model predictive power extraction algorithm is designed for a discretized power take of system. It is shown how the quantized nature of a discrete fluid power system may be included in a new model predictive control algorithm leading to a significant increase in the harvested power. A detailed investigation of the influence of the prediction horizon and the time step is reported. Furthermore, it is shown how the inclusion of a loss model may increase the energy output. Based on the presented results it is concluded that power extraction algorithms based on model predictive control principles are both feasible and favorable for use in a discrete fluid power power take-off system for point absorber wave energy converters.

  7. Mathematical model of voltage-current characteristics of Bi(2223)/Ag magnets under an external magnetic field

    CERN Document Server

    Pitel, J; Lehtonen, J; Kovács, P

    2002-01-01

    We have developed a mathematical model, which enables us to predict the voltage-current V(I) characteristics of a solenoidal high-temperature superconductor (HTS) magnet subjected to an external magnetic field parallel to the magnet axis. The model takes into account the anisotropy in the critical current-magnetic field (I sub c (B)) characteristic and the n-value of Bi(2223)Ag multifilamentary tape at 20 K. From the power law between the electric field and the ratio of the operating and critical currents, the voltage on the magnet terminals is calculated by integrating the contributions of individual turns. The critical current of each turn, at given values of operating current and external magnetic field, is obtained by simple linear interpolation between the two suitable points of the I sub c (B) characteristic, which corresponds to the angle alpha between the vector of the resulting magnetic flux density and the broad tape face. In fact, the model is valid for any value and orientation of external magneti...

  8. Predicting water main failures using Bayesian model averaging and survival modelling approach

    International Nuclear Information System (INIS)

    Kabir, Golam; Tesfamariam, Solomon; Sadiq, Rehan

    2015-01-01

    To develop an effective preventive or proactive repair and replacement action plan, water utilities often rely on water main failure prediction models. However, in predicting the failure of water mains, uncertainty is inherent regardless of the quality and quantity of data used in the model. To improve the understanding of water main failure, a Bayesian framework is developed for predicting the failure of water mains considering uncertainties. In this study, Bayesian model averaging method (BMA) is presented to identify the influential pipe-dependent and time-dependent covariates considering model uncertainties whereas Bayesian Weibull Proportional Hazard Model (BWPHM) is applied to develop the survival curves and to predict the failure rates of water mains. To accredit the proposed framework, it is implemented to predict the failure of cast iron (CI) and ductile iron (DI) pipes of the water distribution network of the City of Calgary, Alberta, Canada. Results indicate that the predicted 95% uncertainty bounds of the proposed BWPHMs capture effectively the observed breaks for both CI and DI water mains. Moreover, the performance of the proposed BWPHMs are better compare to the Cox-Proportional Hazard Model (Cox-PHM) for considering Weibull distribution for the baseline hazard function and model uncertainties. - Highlights: • Prioritize rehabilitation and replacements (R/R) strategies of water mains. • Consider the uncertainties for the failure prediction. • Improve the prediction capability of the water mains failure models. • Identify the influential and appropriate covariates for different models. • Determine the effects of the covariates on failure

  9. Testing the predictive power of nuclear mass models

    International Nuclear Information System (INIS)

    Mendoza-Temis, J.; Morales, I.; Barea, J.; Frank, A.; Hirsch, J.G.; Vieyra, J.C. Lopez; Van Isacker, P.; Velazquez, V.

    2008-01-01

    A number of tests are introduced which probe the ability of nuclear mass models to extrapolate. Three models are analyzed in detail: the liquid drop model, the liquid drop model plus empirical shell corrections and the Duflo-Zuker mass formula. If predicted nuclei are close to the fitted ones, average errors in predicted and fitted masses are similar. However, the challenge of predicting nuclear masses in a region stabilized by shell effects (e.g., the lead region) is far more difficult. The Duflo-Zuker mass formula emerges as a powerful predictive tool

  10. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which is a r...

  11. Foundation Settlement Prediction Based on a Novel NGM Model

    Directory of Open Access Journals (Sweden)

    Peng-Yu Chen

    2014-01-01

    Full Text Available Prediction of foundation or subgrade settlement is very important during engineering construction. According to the fact that there are lots of settlement-time sequences with a nonhomogeneous index trend, a novel grey forecasting model called NGM (1,1,k,c model is proposed in this paper. With an optimized whitenization differential equation, the proposed NGM (1,1,k,c model has the property of white exponential law coincidence and can predict a pure nonhomogeneous index sequence precisely. We used two case studies to verify the predictive effect of NGM (1,1,k,c model for settlement prediction. The results show that this model can achieve excellent prediction accuracy; thus, the model is quite suitable for simulation and prediction of approximate nonhomogeneous index sequence and has excellent application value in settlement prediction.

  12. Developing and implementing the use of predictive models for estimating water quality at Great Lakes beaches

    Science.gov (United States)

    Francy, Donna S.; Brady, Amie M.G.; Carvin, Rebecca B.; Corsi, Steven R.; Fuller, Lori M.; Harrison, John H.; Hayhurst, Brett A.; Lant, Jeremiah; Nevers, Meredith B.; Terrio, Paul J.; Zimmerman, Tammy M.

    2013-01-01

    Predictive models have been used at beaches to improve the timeliness and accuracy of recreational water-quality assessments over the most common current approach to water-quality monitoring, which relies on culturing fecal-indicator bacteria such as Escherichia coli (E. coli.). Beach-specific predictive models use environmental and water-quality variables that are easily and quickly measured as surrogates to estimate concentrations of fecal-indicator bacteria or to provide the probability that a State recreational water-quality standard will be exceeded. When predictive models are used for beach closure or advisory decisions, they are referred to as “nowcasts.” During the recreational seasons of 2010-12, the U.S. Geological Survey (USGS), in cooperation with 23 local and State agencies, worked to improve existing nowcasts at 4 beaches, validate predictive models at another 38 beaches, and collect data for predictive-model development at 7 beaches throughout the Great Lakes. This report summarizes efforts to collect data and develop predictive models by multiple agencies and to compile existing information on the beaches and beach-monitoring programs into one comprehensive report. Local agencies measured E. coli concentrations and variables expected to affect E. coli concentrations such as wave height, turbidity, water temperature, and numbers of birds at the time of sampling. In addition to these field measurements, equipment was installed by the USGS or local agencies at or near several beaches to collect water-quality and metrological measurements in near real time, including nearshore buoys, weather stations, and tributary staff gages and monitors. The USGS worked with local agencies to retrieve data from existing sources either manually or by use of tools designed specifically to compile and process data for predictive-model development. Predictive models were developed by use of linear regression and (or) partial least squares techniques for 42 beaches

  13. Numerical modeling of counter-current condensation in a Black Liquor Gasification plant

    International Nuclear Information System (INIS)

    Risberg, Mikael; Gebart, Rikard

    2013-01-01

    Pressurized Entrained flow High Temperature Black Liquor Gasification is a novel technique to recover the inorganic chemicals and available energy in black liquor originating from kraft pulping. The gasifier has a direct quench that quickly cools the raw syngas when it leaves the hot reactor by spraying the gas with a water solution. As a result, the raw syngas becomes saturated with steam. Typically the gasifier operates at 30 bar which corresponds to a dew point of about 235 °C and a steam concentration in the saturated syngas that is about 3 times higher than the total concentration of the other species in the syngas. After the quench cooler the syngas is passed through a counter-current condenser where the raw syngas is cooled and most of the steam is condensed. The condenser consists of several vertical tubes where reflux condensation occurs inside the tubes due to water cooling of the tubes on the shell-side. A large part of the condensation takes place inside the tubes on the wall and results in a counterflow of water driven by gravity through the counter current condenser. In this study a computational fluid dynamics model is developed for the two-phase fluid flow on the tube-side of the condenser and for the single phase flow of the shell-side. The two-phase flow was treated using an Euler–Euler formulation with closure correlations for heat flux, condensation rate and pressure drop inside the tubes. The single-phase model for the shell side uses closure correlations for the heat flux and pressure drop. Predictions of the model are compared with results from experimental measurements in a condenser used in a 3 MW Black Liquor Gasification development plant. The results are in good agreement with the limited experimental data that has been collected in the experimental gasifier. However, more validation data is necessary before a definite conclusion can be drawn about the predictive capability of the code. -- Highlights: • A multi-phase model for a

  14. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  15. Probabilistic predictive modelling of carbon nanocomposites for medical implants design.

    Science.gov (United States)

    Chua, Matthew; Chui, Chee-Kong

    2015-04-01

    Modelling of the mechanical properties of carbon nanocomposites based on input variables like percentage weight of Carbon Nanotubes (CNT) inclusions is important for the design of medical implants and other structural scaffolds. Current constitutive models for the mechanical properties of nanocomposites may not predict well due to differences in conditions, fabrication techniques and inconsistencies in reagents properties used across industries and laboratories. Furthermore, the mechanical properties of the designed products are not deterministic, but exist as a probabilistic range. A predictive model based on a modified probabilistic surface response algorithm is proposed in this paper to address this issue. Tensile testing of three groups of different CNT weight fractions of carbon nanocomposite samples displays scattered stress-strain curves, with the instantaneous stresses assumed to vary according to a normal distribution at a specific strain. From the probabilistic density function of the experimental data, a two factors Central Composite Design (CCD) experimental matrix based on strain and CNT weight fraction input with their corresponding stress distribution was established. Monte Carlo simulation was carried out on this design matrix to generate a predictive probabilistic polynomial equation. The equation and method was subsequently validated with more tensile experiments and Finite Element (FE) studies. The method was subsequently demonstrated in the design of an artificial tracheal implant. Our algorithm provides an effective way to accurately model the mechanical properties in implants of various compositions based on experimental data of samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Social network models predict movement and connectivity in ecological landscapes.

    Science.gov (United States)

    Fletcher, Robert J; Acevedo, Miguel A; Reichert, Brian E; Pias, Kyle E; Kitchens, Wiley M

    2011-11-29

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  17. Electrostatic ion thrusters - towards predictive modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kalentev, O.; Matyash, K.; Duras, J.; Lueskow, K.F.; Schneider, R. [Ernst-Moritz-Arndt Universitaet Greifswald, D-17489 (Germany); Koch, N. [Technische Hochschule Nuernberg Georg Simon Ohm, Kesslerplatz 12, D-90489 Nuernberg (Germany); Schirra, M. [Thales Electronic Systems GmbH, Soeflinger Strasse 100, D-89077 Ulm (Germany)

    2014-02-15

    The development of electrostatic ion thrusters so far has mainly been based on empirical and qualitative know-how, and on evolutionary iteration steps. This resulted in considerable effort regarding prototype design, construction and testing and therefore in significant development and qualification costs and high time demands. For future developments it is anticipated to implement simulation tools which allow for quantitative prediction of ion thruster performance, long-term behavior and space craft interaction prior to hardware design and construction. Based on integrated numerical models combining self-consistent kinetic plasma models with plasma-wall interaction modules a new quality in the description of electrostatic thrusters can be reached. These open the perspective for predictive modeling in this field. This paper reviews the application of a set of predictive numerical modeling tools on an ion thruster model of the HEMP-T (High Efficiency Multi-stage Plasma Thruster) type patented by Thales Electron Devices GmbH. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Integrating geophysics and hydrology for reducing the uncertainty of groundwater model predictions and improved prediction performance

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    the integration of geophysical data in the construction of a groundwater model increases the prediction performance. We suggest that modelers should perform a hydrogeophysical “test-bench” analysis of the likely value of geophysics data for improving groundwater model prediction performance before actually...... and the resulting predictions can be compared with predictions from the ‘true’ model. By performing this analysis we expect to give the modeler insight into how the uncertainty of model-based prediction can be reduced.......A major purpose of groundwater modeling is to help decision-makers in efforts to manage the natural environment. Increasingly, it is recognized that both the predictions of interest and their associated uncertainties should be quantified to support robust decision making. In particular, decision...

  19. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  20. NOx PREDICTION FOR FBC BOILERS USING EMPIRICAL MODELS

    Directory of Open Access Journals (Sweden)

    Jiří Štefanica

    2014-02-01

    Full Text Available Reliable prediction of NOx emissions can provide useful information for boiler design and fuel selection. Recently used kinetic prediction models for FBC boilers are overly complex and require large computing capacity. Even so, there are many uncertainties in the case of FBC boilers. An empirical modeling approach for NOx prediction has been used exclusively for PCC boilers. No reference is available for modifying this method for FBC conditions. This paper presents possible advantages of empirical modeling based prediction of NOx emissions for FBC boilers, together with a discussion of its limitations. Empirical models are reviewed, and are applied to operation data from FBC boilers used for combusting Czech lignite coal or coal-biomass mixtures. Modifications to the model are proposed in accordance with theoretical knowledge and prediction accuracy.

  1. Enhanced Voltage Control of VSC-HVDC Connected Offshore Wind Farms Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Guo, Yifei; Gao, Houlei; Wu, Qiuwei

    2018-01-01

    This paper proposes an enhanced voltage control strategy (EVCS) based on model predictive control (MPC) for voltage source converter based high voltage direct current (VSCHVDC) connected offshore wind farms (OWFs). In the proposed MPC based EVCS, all wind turbine generators (WTGs) as well...... as the wind farm side VSC are optimally coordinated to keep voltages within the feasible range and reduce system power losses. Considering the high ratio of the OWF collector system, the effects of active power outputs of WTGs on voltage control are also taken into consideration. The predictive model of VSC...

  2. Wall conditioning for ITER: Current experimental and modeling activities

    Energy Technology Data Exchange (ETDEWEB)

    Douai, D., E-mail: david.douai@cea.fr [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Kogut, D. [CEA, IRFM, Association Euratom-CEA, 13108 St. Paul lez Durance (France); Wauters, T. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Brezinsek, S. [FZJ, Institut für Energie- und Klimaforschung Plasmaphysik, 52441 Jülich (Germany); Hagelaar, G.J.M. [Laboratoire Plasma et Conversion d’Energie, UMR5213, Toulouse (France); Hong, S.H. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lomas, P.J. [CCFE, Culham Science Centre, OX14 3DB Abingdon (United Kingdom); Lyssoivan, A. [LPP-ERM/KMS, Association Belgian State, 1000 Brussels (Belgium); Nunes, I. [Associação EURATOM-IST, Instituto de Plasmas e Fusão Nuclear, 1049-001 Lisboa (Portugal); Pitts, R.A. [ITER International Organization, F-13067 St. Paul lez Durance (France); Rohde, V. [Max-Planck-Institut für Plasmaphysik, 85748 Garching (Germany); Vries, P.C. de [ITER International Organization, F-13067 St. Paul lez Durance (France)

    2015-08-15

    Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET–CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.

  3. Prediction of pipeline corrosion rate based on grey Markov models

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Peng Guichu; Wang Yuemin

    2009-01-01

    Based on the model that combined by grey model and Markov model, the prediction of corrosion rate of nuclear power pipeline was studied. Works were done to improve the grey model, and the optimization unbiased grey model was obtained. This new model was used to predict the tendency of corrosion rate, and the Markov model was used to predict the residual errors. In order to improve the prediction precision, rolling operation method was used in these prediction processes. The results indicate that the improvement to the grey model is effective and the prediction precision of the new model combined by the optimization unbiased grey model and Markov model is better, and the use of rolling operation method may improve the prediction precision further. (authors)

  4. Sweat loss prediction using a multi-model approach.

    Science.gov (United States)

    Xu, Xiaojiang; Santee, William R

    2011-07-01

    A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.

  5. Numerical Modeling of Edge-Localized-Mode Filaments on Divertor Plates Based on Thermoelectric Currents

    International Nuclear Information System (INIS)

    Wingen, A.; Spatschek, K. H.; Evans, T. E.; Lasnier, C. J.

    2010-01-01

    Edge localized modes (ELMs) are qualitatively and quantitatively modeled in tokamaks using current bursts which have been observed in the scrape-off-layer (SOL) during an ELM crash. During the initial phase of an ELM, a heat pulse causes thermoelectric currents. They first flow in short connection length flux tubes which are initially established by error fields or other nonaxisymmetric magnetic perturbations. The currents change the magnetic field topology in such a way that larger areas of short connection length flux tubes emerge. Then currents predominantly flow in short SOL-like flux tubes and scale with the area of the flux tube assuming a constant current density. Quantitative predictions of flux tube patterns for a given current are in excellent agreement with measurements of the heat load and current flow at the DIII-D target plates during an ELM cycle.

  6. What Time Is Sunrise? Revisiting the Refraction Component of Sunrise/set Prediction Models

    Science.gov (United States)

    Wilson, Teresa; Bartlett, Jennifer L.; Hilton, James Lindsay

    2017-01-01

    Algorithms that predict sunrise and sunset times currently have an error of one to four minutes at mid-latitudes (0° - 55° N/S) due to limitations in the atmospheric models they incorporate. At higher latitudes, slight changes in refraction can cause significant discrepancies, even including difficulties determining when the Sun appears to rise or set. While different components of refraction are known, how they affect predictions of sunrise/set has not yet been quantified. A better understanding of the contributions from temperature profile, pressure, humidity, and aerosols could significantly improve the standard prediction. We present a sunrise/set calculator that interchanges the refraction component by varying the refraction model. We then compare these predictions with data sets of observed rise/set times to create a better model. Sunrise/set times and meteorological data from multiple locations will be necessary for a thorough investigation of the problem. While there are a few data sets available, we will also begin collecting this data using smartphones as part of a citizen science project. The mobile application for this project will be available in the Google Play store. Data analysis will lead to more complete models that will provide more accurate rise/set times for the benefit of astronomers, navigators, and outdoorsmen everywhere.

  7. Students’ mental model in electric current

    Science.gov (United States)

    Pramesti, Y. S.; Setyowidodo, I.

    2018-05-01

    Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.

  8. Finding Furfural Hydrogenation Catalysts via Predictive Modelling

    Science.gov (United States)

    Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi

    2010-01-01

    Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388

  9. Alcator C-Mod predictive modeling

    International Nuclear Information System (INIS)

    Pankin, Alexei; Bateman, Glenn; Kritz, Arnold; Greenwald, Martin; Snipes, Joseph; Fredian, Thomas

    2001-01-01

    Predictive simulations for the Alcator C-mod tokamak [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] are carried out using the BALDUR integrated modeling code [C. E. Singer et al., Comput. Phys. Commun. 49, 275 (1988)]. The results are obtained for temperature and density profiles using the Multi-Mode transport model [G. Bateman et al., Phys. Plasmas 5, 1793 (1998)] as well as the mixed-Bohm/gyro-Bohm transport model [M. Erba et al., Plasma Phys. Controlled Fusion 39, 261 (1997)]. The simulated discharges are characterized by very high plasma density in both low and high modes of confinement. The predicted profiles for each of the transport models match the experimental data about equally well in spite of the fact that the two models have different dimensionless scalings. Average relative rms deviations are less than 8% for the electron density profiles and 16% for the electron and ion temperature profiles

  10. Clinical Predictive Modeling Development and Deployment through FHIR Web Services.

    Science.gov (United States)

    Khalilia, Mohammed; Choi, Myung; Henderson, Amelia; Iyengar, Sneha; Braunstein, Mark; Sun, Jimeng

    2015-01-01

    Clinical predictive modeling involves two challenging tasks: model development and model deployment. In this paper we demonstrate a software architecture for developing and deploying clinical predictive models using web services via the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. The services enable model development using electronic health records (EHRs) stored in OMOP CDM databases and model deployment for scoring individual patients through FHIR resources. The MIMIC2 ICU dataset and a synthetic outpatient dataset were transformed into OMOP CDM databases for predictive model development. The resulting predictive models are deployed as FHIR resources, which receive requests of patient information, perform prediction against the deployed predictive model and respond with prediction scores. To assess the practicality of this approach we evaluated the response and prediction time of the FHIR modeling web services. We found the system to be reasonably fast with one second total response time per patient prediction.

  11. Performance of a process-based hydrodynamic model in predicting shoreline change

    Science.gov (United States)

    Safak, I.; Warner, J. C.; List, J. H.

    2012-12-01

    Shoreline change is controlled by a complex combination of processes that include waves, currents, sediment characteristics and availability, geologic framework, human interventions, and sea level rise. A comprehensive data set of shoreline position (14 shorelines between 1978-2002) along the continuous and relatively non-interrupted North Carolina Coast from Oregon Inlet to Cape Hatteras (65 km) reveals a spatial pattern of alternating erosion and accretion, with an erosional average shoreline change rate of -1.6 m/yr and up to -8 m/yr in some locations. This data set gives a unique opportunity to study long-term shoreline change in an area hit by frequent storm events while relatively uninfluenced by human interventions and the effects of tidal inlets. Accurate predictions of long-term shoreline change may require a model that accurately resolves surf zone processes and sediment transport patterns. Conventional methods for predicting shoreline change such as one-line models and regression of shoreline positions have been designed for computational efficiency. These methods, however, not only have several underlying restrictions (validity for small angle of wave approach, assuming bottom contours and shoreline to be parallel, depth of closure, etc.) but also their empirical estimates of sediment transport rates in the surf zone have been shown to vary greatly from the calculations of process-based hydrodynamic models. We focus on hind-casting long-term shoreline change using components of the process-based, three-dimensional coupled-ocean-atmosphere-wave-sediment transport modeling system (COAWST). COAWST is forced with historical predictions of atmospheric and oceanographic data from public-domain global models. Through a method of coupled concurrent grid-refinement approach in COAWST, the finest grid with resolution of O(10 m) that covers the surf zone along the section of interest is forced at its spatial boundaries with waves and currents computed on the grids

  12. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    Science.gov (United States)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  13. Continuum Modeling of Inductor Hysteresis and Eddy Current Loss Effects in Resonant Circuits

    Energy Technology Data Exchange (ETDEWEB)

    Pries, Jason L. [ORNL; Tang, Lixin [ORNL; Burress, Timothy A. [ORNL

    2017-10-01

    This paper presents experimental validation of a high-fidelity toroid inductor modeling technique. The aim of this research is to accurately model the instantaneous magnetization state and core losses in ferromagnetic materials. Quasi–static hysteresis effects are captured using a Preisach model. Eddy currents are included by coupling the associated quasi-static Everett function to a simple finite element model representing the inductor cross sectional area. The modeling technique is validated against the nonlinear frequency response from two different series RLC resonant circuits using inductors made of electrical steel and soft ferrite. The method is shown to accurately model shifts in resonant frequency and quality factor. The technique also successfully predicts a discontinuity in the frequency response of the ferrite inductor resonant circuit.

  14. A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D. [Univ. of Glasgow (United Kingdom)

    1997-12-31

    This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.

  15. Higher spin currents in the critical O(N) vector model at 1/N{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Manashov, A.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Skvortsov, E.D. [Munich Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Lebedev Institute of Physics, Moscow (Russian Federation); Strohmaier, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik

    2017-06-15

    We calculate the anomalous dimensions of higher spin singlet currents in the critical O(N) vector model at order 1/N{sup 2}. The results are shown to be in agreement with the four-loop perturbative computation in φ{sup 4} theory in 4-2ε dimensions. It is known that the order 1/N anomalous dimensions of higher-spin currents happen to be the same in the Gross-Neveu and the critical vector model. On the contrary, the order 1/N{sup 2} corrections are different. The results can also be interpreted as a prediction for the two-loop computation in the dual higher-spin gravity.

  16. A systematic review of models to predict recruitment to multicentre clinical trials

    Directory of Open Access Journals (Sweden)

    Cook Andrew

    2010-07-01

    Full Text Available Abstract Background Less than one third of publicly funded trials managed to recruit according to their original plan often resulting in request for additional funding and/or time extensions. The aim was to identify models which might be useful to a major public funder of randomised controlled trials when estimating likely time requirements for recruiting trial participants. The requirements of a useful model were identified as usability, based on experience, able to reflect time trends, accounting for centre recruitment and contribution to a commissioning decision. Methods A systematic review of English language articles using MEDLINE and EMBASE. Search terms included: randomised controlled trial, patient, accrual, predict, enrol, models, statistical; Bayes Theorem; Decision Theory; Monte Carlo Method and Poisson. Only studies discussing prediction of recruitment to trials using a modelling approach were included. Information was extracted from articles by one author, and checked by a second, using a pre-defined form. Results Out of 326 identified abstracts, only 8 met all the inclusion criteria. Of these 8 studies examined, there are five major classes of model discussed: the unconditional model, the conditional model, the Poisson model, Bayesian models and Monte Carlo simulation of Markov models. None of these meet all the pre-identified needs of the funder. Conclusions To meet the needs of a number of research programmes, a new model is required as a matter of importance. Any model chosen should be validated against both retrospective and prospective data, to ensure the predictions it gives are superior to those currently used.

  17. Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data

    Directory of Open Access Journals (Sweden)

    Alexander P. Kartun-Giles

    2018-04-01

    Full Text Available A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing and equilibrium (static sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.

  18. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  19. Parameter estimation techniques and uncertainty in ground water flow model predictions

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Davis, P.A.

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs

  20. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  1. Stage-specific predictive models for breast cancer survivability.

    Science.gov (United States)

    Kate, Rohit J; Nadig, Ramya

    2017-01-01

    Survivability rates vary widely among various stages of breast cancer. Although machine learning models built in past to predict breast cancer survivability were given stage as one of the features, they were not trained or evaluated separately for each stage. To investigate whether there are differences in performance of machine learning models trained and evaluated across different stages for predicting breast cancer survivability. Using three different machine learning methods we built models to predict breast cancer survivability separately for each stage and compared them with the traditional joint models built for all the stages. We also evaluated the models separately for each stage and together for all the stages. Our results show that the most suitable model to predict survivability for a specific stage is the model trained for that particular stage. In our experiments, using additional examples of other stages during training did not help, in fact, it made it worse in some cases. The most important features for predicting survivability were also found to be different for different stages. By evaluating the models separately on different stages we found that the performance widely varied across them. We also demonstrate that evaluating predictive models for survivability on all the stages together, as was done in the past, is misleading because it overestimates performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Calculating electron cyclotron current drive stabilization of resistive tearing modes in a nonlinear magnetohydrodynamic model

    International Nuclear Information System (INIS)

    Jenkins, Thomas G.; Schnack, Dalton D.; Kruger, Scott E.; Hegna, C. C.; Sovinec, Carl R.

    2010-01-01

    A model which incorporates the effects of electron cyclotron current drive (ECCD) into the magnetohydrodynamic equations is implemented in the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] and used to investigate the effect of ECCD injection on the stability, growth, and dynamical behavior of magnetic islands associated with resistive tearing modes. In addition to qualitatively and quantitatively agreeing with numerical results obtained from the inclusion of localized ECCD deposition in static equilibrium solvers [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589 (1999)], predictions from the model further elaborate the role which rational surface motion plays in these results. The complete suppression of the (2,1) resistive tearing mode by ECCD is demonstrated and the relevant stabilization mechanism is determined. Consequences of the shifting of the mode rational surface in response to the injected current are explored, and the characteristic short-time responses of resistive tearing modes to spatial ECCD alignments which are stabilizing are also noted. We discuss the relevance of this work to the development of more comprehensive predictive models for ECCD-based mitigation and control of neoclassical tearing modes.

  3. Storm-time ring current: model-dependent results

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2012-01-01

    Full Text Available The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT on 6–7 November 1997 and one intense (SymH minimum of −230 nT on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM, in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.

  4. Impact of modellers' decisions on hydrological a priori predictions

    Science.gov (United States)

    Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.

    2014-06-01

    In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of

  5. Amplification of S-1 Spheromak current by an inductive current transformer

    International Nuclear Information System (INIS)

    Jardin, S.C.; Janos, A.; Yamada, M.

    1985-11-01

    We attempt to predict the consequences of adding an inductive current transformer (OH Transformer) to the present S-1 Spheromak experiment. Axisymmetric modeling with only classical dissipation shows an increase of toroidal current and a shrinking and hollowing of the current channel, conserving toroidal flux. These unstable profiles will undergo helical reconnection, conserving helicity K = ∫ A-vector x B-vector d tau while increasing the toroidal flux and decreasing the poloidal flux so that the plasma relaxes toward the Taylor state. This flux rearrangement is modeled by a new current viscosity term in the mean-field Ohm's law which conserves helicity and dissipates energy

  6. A multivariate model for predicting segmental body composition.

    Science.gov (United States)

    Tian, Simiao; Mioche, Laurence; Denis, Jean-Baptiste; Morio, Béatrice

    2013-12-01

    The aims of the present study were to propose a multivariate model for predicting simultaneously body, trunk and appendicular fat and lean masses from easily measured variables and to compare its predictive capacity with that of the available univariate models that predict body fat percentage (BF%). The dual-energy X-ray absorptiometry (DXA) dataset (52% men and 48% women) with White, Black and Hispanic ethnicities (1999-2004, National Health and Nutrition Examination Survey) was randomly divided into three sub-datasets: a training dataset (TRD), a test dataset (TED); a validation dataset (VAD), comprising 3835, 1917 and 1917 subjects. For each sex, several multivariate prediction models were fitted from the TRD using age, weight, height and possibly waist circumference. The most accurate model was selected from the TED and then applied to the VAD and a French DXA dataset (French DB) (526 men and 529 women) to assess the prediction accuracy in comparison with that of five published univariate models, for which adjusted formulas were re-estimated using the TRD. Waist circumference was found to improve the prediction accuracy, especially in men. For BF%, the standard error of prediction (SEP) values were 3.26 (3.75) % for men and 3.47 (3.95)% for women in the VAD (French DB), as good as those of the adjusted univariate models. Moreover, the SEP values for the prediction of body and appendicular lean masses ranged from 1.39 to 2.75 kg for both the sexes. The prediction accuracy was best for age < 65 years, BMI < 30 kg/m2 and the Hispanic ethnicity. The application of our multivariate model to large populations could be useful to address various public health issues.

  7. Two stage neural network modelling for robust model predictive control.

    Science.gov (United States)

    Patan, Krzysztof

    2018-01-01

    The paper proposes a novel robust model predictive control scheme realized by means of artificial neural networks. The neural networks are used twofold: to design the so-called fundamental model of a plant and to catch uncertainty associated with the plant model. In order to simplify the optimization process carried out within the framework of predictive control an instantaneous linearization is applied which renders it possible to define the optimization problem in the form of constrained quadratic programming. Stability of the proposed control system is also investigated by showing that a cost function is monotonically decreasing with respect to time. Derived robust model predictive control is tested and validated on the example of a pneumatic servomechanism working at different operating regimes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Decision Making in Reference to Model of Marketing Predictive Analytics – Theory and Practice

    Directory of Open Access Journals (Sweden)

    Piotr Tarka

    2014-03-01

    Full Text Available Purpose: The objective of this paper is to describe concepts and assumptions of predictive marketing analytics in reference to decision making. In particular, we highlight issues pertaining to the importance of data and the modern approach to data analysis and processing with the purpose of solving real marketing problems that companies encounter in business. Methodology: In this paper authors provide two study cases showing how, and to what extent predictive marketing analytics work can be useful in practice e.g., investigation of the marketing environment. The two cases are based on organizations operating mainly on Web site domain. The fi rst part of this article, begins a discussion with the explanation of a general idea of predictive marketing analytics. The second part runs through opportunities it creates for companies in the process of building strong competitive advantage in the market. The paper article ends with a brief comparison of predictive analytics versus traditional marketing-mix analysis. Findings: Analytics play an extremely important role in the current process of business management based on planning, organizing, implementing and controlling marketing activities. Predictive analytics provides the actual and current picture of the external environment. They also explain what problems are faced with the company in business activities. Analytics tailor marketing solutions to the right time and place at minimum costs. In fact they control the effi ciency and simultaneously increases the effectiveness of the firm. Practical implications: Based on the study cases comparing two enterprises carrying business activities in different areas, one can say that predictive analytics has far more been embraces extensively than classical marketing-mix analyses. The predictive approach yields greater speed of data collection and analysis, stronger predictive accuracy, better obtained competitor data, and more transparent models where one can

  9. Hybrid Corporate Performance Prediction Model Considering Technical Capability

    Directory of Open Access Journals (Sweden)

    Joonhyuck Lee

    2016-07-01

    Full Text Available Many studies have tried to predict corporate performance and stock prices to enhance investment profitability using qualitative approaches such as the Delphi method. However, developments in data processing technology and machine-learning algorithms have resulted in efforts to develop quantitative prediction models in various managerial subject areas. We propose a quantitative corporate performance prediction model that applies the support vector regression (SVR algorithm to solve the problem of the overfitting of training data and can be applied to regression problems. The proposed model optimizes the SVR training parameters based on the training data, using the genetic algorithm to achieve sustainable predictability in changeable markets and managerial environments. Technology-intensive companies represent an increasing share of the total economy. The performance and stock prices of these companies are affected by their financial standing and their technological capabilities. Therefore, we apply both financial indicators and technical indicators to establish the proposed prediction model. Here, we use time series data, including financial, patent, and corporate performance information of 44 electronic and IT companies. Then, we predict the performance of these companies as an empirical verification of the prediction performance of the proposed model.

  10. Improving volcanic ash predictions with the HYSPLIT dispersion model by assimilating MODIS satellite retrievals

    Science.gov (United States)

    Chai, Tianfeng; Crawford, Alice; Stunder, Barbara; Pavolonis, Michael J.; Draxler, Roland; Stein, Ariel

    2017-02-01

    Currently, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) runs the HYSPLIT dispersion model with a unit mass release rate to predict the transport and dispersion of volcanic ash. The model predictions provide information for the Volcanic Ash Advisory Centers (VAAC) to issue advisories to meteorological watch offices, area control centers, flight information centers, and others. This research aims to provide quantitative forecasts of ash distributions generated by objectively and optimally estimating the volcanic ash source strengths, vertical distribution, and temporal variations using an observation-modeling inversion technique. In this top-down approach, a cost functional is defined to quantify the differences between the model predictions and the satellite measurements of column-integrated ash concentrations weighted by the model and observation uncertainties. Minimizing this cost functional by adjusting the sources provides the volcanic ash emission estimates. As an example, MODIS (Moderate Resolution Imaging Spectroradiometer) satellite retrievals of the 2008 Kasatochi volcanic ash clouds are used to test the HYSPLIT volcanic ash inverse system. Because the satellite retrievals include the ash cloud top height but not the bottom height, there are different model diagnostic choices for comparing the model results with the observed mass loadings. Three options are presented and tested. Although the emission estimates vary significantly with different options, the subsequent model predictions with the different release estimates all show decent skill when evaluated against the unassimilated satellite observations at later times. Among the three options, integrating over three model layers yields slightly better results than integrating from the surface up to the observed volcanic ash cloud top or using a single model layer. Inverse tests also show that including the ash-free region to constrain the model is not

  11. Dynamic Simulation of Human Gait Model With Predictive Capability.

    Science.gov (United States)

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  12. Decentralized energy management strategy based on predictive controllers for a medium voltage direct current photovoltaic electric vehicle charging station

    International Nuclear Information System (INIS)

    Torreglosa, Juan P.; García-Triviño, Pablo; Fernández-Ramirez, Luis M.; Jurado, Francisco

    2016-01-01

    Highlights: • Electric vehicle charging station supplied by photovoltaic, batteries and grid connection is analyzed. • The bus voltage is the key parameter for controlling the system by decentralized approach. • Decentralized control approach facilities the enlargement of the system. • Photovoltaic and battery systems are controlled by model predictive controllers. • Response by model predictive controllers improves that by PI controllers. - Abstract: The use of distributed charging stations based on renewable energy sources for electric vehicles has increased in recent years. Combining photovoltaic solar energy and batteries as energy storage system, directly tied into a medium voltage direct current bus, and with the grid support, results to be an interesting option for improving the operation and efficiency of electric vehicle charging stations. In this paper, an electric vehicle charging station supplied by photovoltaic solar panels, batteries and with grid connection is analysed and evaluated. A decentralized energy management system is developed for regulating the energy flow among the photovoltaic system, the battery and the grid in order to achieve the efficient charging of electric vehicles. The medium voltage direct current bus voltage is the key parameter for controlling the system. The battery is controlled by a model predictive controller in order to keep the bus voltage at its reference value. Depending on the state-of-charge of the battery and the bus voltage, the photovoltaic system can work at maximum power point tracking mode or at bus voltage sustaining mode, or even the grid support can be needed. The results demonstrate the proper operation and energy management of the electric vehicle charging station under study.

  13. Massive Predictive Modeling using Oracle R Enterprise

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...

  14. Prediction of residential radon exposure of the whole Swiss population: comparison of model-based predictions with measurement-based predictions.

    Science.gov (United States)

    Hauri, D D; Huss, A; Zimmermann, F; Kuehni, C E; Röösli, M

    2013-10-01

    Radon plays an important role for human exposure to natural sources of ionizing radiation. The aim of this article is to compare two approaches to estimate mean radon exposure in the Swiss population: model-based predictions at individual level and measurement-based predictions based on measurements aggregated at municipality level. A nationwide model was used to predict radon levels in each household and for each individual based on the corresponding tectonic unit, building age, building type, soil texture, degree of urbanization, and floor. Measurement-based predictions were carried out within a health impact assessment on residential radon and lung cancer. Mean measured radon levels were corrected for the average floor distribution and weighted with population size of each municipality. Model-based predictions yielded a mean radon exposure of the Swiss population of 84.1 Bq/m(3) . Measurement-based predictions yielded an average exposure of 78 Bq/m(3) . This study demonstrates that the model- and the measurement-based predictions provided similar results. The advantage of the measurement-based approach is its simplicity, which is sufficient for assessing exposure distribution in a population. The model-based approach allows predicting radon levels at specific sites, which is needed in an epidemiological study, and the results do not depend on how the measurement sites have been selected. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Prediction of transverse asymmetries in MHD ducts with zero net Hall current

    International Nuclear Information System (INIS)

    Swean, T.F. Jr.; Oliver, D.A.; Maxwell, C.D.; Demetriades, S.T.

    1981-01-01

    A new class of fluid-electrical asymmetries in MHD generator channel flow are predicted. It is shown that the existence of interelectrode asymmetries is not confined to generators in which there exists a nonzero net axial current, but rather they are induced even in the case of the Faraday generators. Also demonstrated is the impact of these asymmetries upon the generator and diffuser flow. It is concluded that in MHD generators, the net axial current in the cross plane is identically zero, while at any given point in the plane, the local Hall current density is in general nonzero

  16. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre

    2005-07-01

    Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.

  17. Clinical Prediction Models for Cardiovascular Disease: Tufts Predictive Analytics and Comparative Effectiveness Clinical Prediction Model Database.

    Science.gov (United States)

    Wessler, Benjamin S; Lai Yh, Lana; Kramer, Whitney; Cangelosi, Michael; Raman, Gowri; Lutz, Jennifer S; Kent, David M

    2015-07-01

    Clinical prediction models (CPMs) estimate the probability of clinical outcomes and hold the potential to improve decision making and individualize care. For patients with cardiovascular disease, there are numerous CPMs available although the extent of this literature is not well described. We conducted a systematic review for articles containing CPMs for cardiovascular disease published between January 1990 and May 2012. Cardiovascular disease includes coronary heart disease, heart failure, arrhythmias, stroke, venous thromboembolism, and peripheral vascular disease. We created a novel database and characterized CPMs based on the stage of development, population under study, performance, covariates, and predicted outcomes. There are 796 models included in this database. The number of CPMs published each year is increasing steadily over time. Seven hundred seventeen (90%) are de novo CPMs, 21 (3%) are CPM recalibrations, and 58 (7%) are CPM adaptations. This database contains CPMs for 31 index conditions, including 215 CPMs for patients with coronary artery disease, 168 CPMs for population samples, and 79 models for patients with heart failure. There are 77 distinct index/outcome pairings. Of the de novo models in this database, 450 (63%) report a c-statistic and 259 (36%) report some information on calibration. There is an abundance of CPMs available for a wide assortment of cardiovascular disease conditions, with substantial redundancy in the literature. The comparative performance of these models, the consistency of effects and risk estimates across models and the actual and potential clinical impact of this body of literature is poorly understood. © 2015 American Heart Association, Inc.

  18. Prediction of resource volumes at untested locations using simple local prediction models

    Science.gov (United States)

    Attanasi, E.D.; Coburn, T.C.; Freeman, P.A.

    2006-01-01

    This paper shows how local spatial nonparametric prediction models can be applied to estimate volumes of recoverable gas resources at individual undrilled sites, at multiple sites on a regional scale, and to compute confidence bounds for regional volumes based on the distribution of those estimates. An approach that combines cross-validation, the jackknife, and bootstrap procedures is used to accomplish this task. Simulation experiments show that cross-validation can be applied beneficially to select an appropriate prediction model. The cross-validation procedure worked well for a wide range of different states of nature and levels of information. Jackknife procedures are used to compute individual prediction estimation errors at undrilled locations. The jackknife replicates also are used with a bootstrap resampling procedure to compute confidence bounds for the total volume. The method was applied to data (partitioned into a training set and target set) from the Devonian Antrim Shale continuous-type gas play in the Michigan Basin in Otsego County, Michigan. The analysis showed that the model estimate of total recoverable volumes at prediction sites is within 4 percent of the total observed volume. The model predictions also provide frequency distributions of the cell volumes at the production unit scale. Such distributions are the basis for subsequent economic analyses. ?? Springer Science+Business Media, LLC 2007.

  19. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function.

    Science.gov (United States)

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-04-28

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm.

  20. Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.

    Science.gov (United States)

    Kotzakoulakis, Konstantinos; George, Simon C

    2018-01-01

    The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    Tao Wu; Edward Lester; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2006-05-15

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.

  2. Comparative Study of Bancruptcy Prediction Models

    Directory of Open Access Journals (Sweden)

    Isye Arieshanti

    2013-09-01

    Full Text Available Early indication of bancruptcy is important for a company. If companies aware of  potency of their bancruptcy, they can take a preventive action to anticipate the bancruptcy. In order to detect the potency of a bancruptcy, a company can utilize a a model of bancruptcy prediction. The prediction model can be built using a machine learning methods. However, the choice of machine learning methods should be performed carefully. Because the suitability of a model depends on the problem specifically. Therefore, in this paper we perform a comparative study of several machine leaning methods for bancruptcy prediction. According to the comparative study, the performance of several models that based on machine learning methods (k-NN, fuzzy k-NN, SVM, Bagging Nearest Neighbour SVM, Multilayer Perceptron(MLP, Hybrid of MLP + Multiple Linear Regression, it can be showed that fuzzy k-NN method achieve the best performance with accuracy 77.5%

  3. Comparison between the electron cyclotron current drive experiments on DIII-D and predictions for T-10

    International Nuclear Information System (INIS)

    Lohr, J.; Harvey, R.W.; Luce, T.C.; Matsuda, Kyoko; Moeller, C.P.; Petty, C.C.; Prater, R.; James, R.A.; Giruzzi, G.; Gorelov, Y.; DeHaas, J.

    1990-11-01

    Electron cyclotron current drive has been demonstrated on the DIII-D tokamak in an experiment in which ∼1 MW of microwave power generated ∼50 kA of non-inductive current. The rf-generated portion was about 15% of the total current. On the T-10 tokamak, more than 3 MW of microwave power will be available for current generation, providing the possibility that all the plasma current could be maintained by this method. Fokker-Planck calculations using the code CQL3D and ray tracing calculations using TORAY have been performed to model both experiments. For DIII-D the agreement between the calculations and measurements is good, producing confidence in the validity of the computational models. The same calculations using the T-10 geometry predict that for n e (0) ∼ 1.8 x 10 13 cm -3 , and T e (0) ∼ 7 keV, 1.2 MW, that is, the power available from only three gyrotrons, could generate as much as 150 kA of non-inductive current. Parameter space scans in which temperature, density and resonance location were varied have been performed to indicate the current drive expected under different experimental conditions. The residual dc electric field was considered in the DIII-D analysis because of its nonlinear effect on the electron distribution, which complicates the interpretation of the results. A 110 GHz ECH system is being installed on DIII-D. Initial operations, planned for late 1991, will use four gyrotrons with 500 kW each and 10 second output pulses. Injection will be from the low field side from launchers which can be steered to heat at the desired location. These launchers, two of which are presently installed, are set at 20 degrees to the radial and rf current drive studies are planned for the initial operation. 8 refs., 10 figs

  4. A grey NGM(1,1, k) self-memory coupling prediction model for energy consumption prediction.

    Science.gov (United States)

    Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling

    2014-01-01

    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.

  5. Modeling geomagnetic induced currents in Australian power networks

    Science.gov (United States)

    Marshall, R. A.; Kelly, A.; Van Der Walt, T.; Honecker, A.; Ong, C.; Mikkelsen, D.; Spierings, A.; Ivanovich, G.; Yoshikawa, A.

    2017-07-01

    Geomagnetic induced currents (GICs) have been considered an issue for high-latitude power networks for some decades. More recently, GICs have been observed and studied in power networks located in lower latitude regions. This paper presents the results of a model aimed at predicting and understanding the impact of geomagnetic storms on power networks in Australia, with particular focus on the Queensland and Tasmanian networks. The model incorporates a "geoelectric field" determined using a plane wave magnetic field incident on a uniform conducting Earth, and the network model developed by Lehtinen and Pirjola (1985). Model results for two intense geomagnetic storms of solar cycle 24 are compared with transformer neutral monitors at three locations within the Queensland network and one location within the Tasmanian network. The model is then used to assess the impacts of the superintense geomagnetic storm of 29-31 October 2003 on the flow of GICs within these networks. The model results show good correlation with the observations with coefficients ranging from 0.73 to 0.96 across the observing sites. For Queensland, modeled GIC magnitudes during the superstorm of 29-31 October 2003 exceed 40 A with the larger GICs occurring in the south-east section of the network. Modeled GICs in Tasmania for the same storm do not exceed 30 A. The larger distance spans and general east-west alignment of the southern section of the Queensland network, in conjunction with some relatively low branch resistance values, result in larger modeled GICs despite Queensland being a lower latitude network than Tasmania.

  6. Risk predictive modelling for diabetes and cardiovascular disease.

    Science.gov (United States)

    Kengne, Andre Pascal; Masconi, Katya; Mbanya, Vivian Nchanchou; Lekoubou, Alain; Echouffo-Tcheugui, Justin Basile; Matsha, Tandi E

    2014-02-01

    Absolute risk models or clinical prediction models have been incorporated in guidelines, and are increasingly advocated as tools to assist risk stratification and guide prevention and treatments decisions relating to common health conditions such as cardiovascular disease (CVD) and diabetes mellitus. We have reviewed the historical development and principles of prediction research, including their statistical underpinning, as well as implications for routine practice, with a focus on predictive modelling for CVD and diabetes. Predictive modelling for CVD risk, which has developed over the last five decades, has been largely influenced by the Framingham Heart Study investigators, while it is only ∼20 years ago that similar efforts were started in the field of diabetes. Identification of predictive factors is an important preliminary step which provides the knowledge base on potential predictors to be tested for inclusion during the statistical derivation of the final model. The derived models must then be tested both on the development sample (internal validation) and on other populations in different settings (external validation). Updating procedures (e.g. recalibration) should be used to improve the performance of models that fail the tests of external validation. Ultimately, the effect of introducing validated models in routine practice on the process and outcomes of care as well as its cost-effectiveness should be tested in impact studies before wide dissemination of models beyond the research context. Several predictions models have been developed for CVD or diabetes, but very few have been externally validated or tested in impact studies, and their comparative performance has yet to be fully assessed. A shift of focus from developing new CVD or diabetes prediction models to validating the existing ones will improve their adoption in routine practice.

  7. Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.

    Directory of Open Access Journals (Sweden)

    Kyle A McQuisten

    2009-10-01

    Full Text Available Exogenous short interfering RNAs (siRNAs induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature sets have been applied to modeling siRNAs and their abilities to induce knockdown. There is some growing agreement to which techniques produce maximally predictive models and yet there is little consensus for methods to compare among predictive models. Also, there are few comparative studies that address what the effect of choosing learning technique, feature set or cross validation approach has on finding and discriminating among predictive models.Three learning techniques were used to develop predictive models for effective siRNA sequences including Artificial Neural Networks (ANNs, General Linear Models (GLMs and Support Vector Machines (SVMs. Five feature mapping methods were also used to generate models of siRNA activities. The 2 factors of learning technique and feature mapping were evaluated by complete 3x5 factorial ANOVA. Overall, both learning techniques and feature mapping contributed significantly to the observed variance in predictive models, but to differing degrees for precision and accuracy as well as across different kinds and levels of model cross-validation.The methods presented here provide a robust statistical framework to compare among models developed under distinct learning techniques and feature sets for siRNAs. Further comparisons among current or future modeling approaches should apply these or other suitable statistically equivalent methods to critically evaluate the performance of proposed models. ANN and GLM techniques tend to be more sensitive to the inclusion of noisy features, but the SVM technique is more robust under large numbers of features for measures of model precision and accuracy. Features found to result in maximally predictive models are

  8. Model-based uncertainty in species range prediction

    DEFF Research Database (Denmark)

    Pearson, R. G.; Thuiller, Wilfried; Bastos Araujo, Miguel

    2006-01-01

    Aim Many attempts to predict the potential range of species rely on environmental niche (or 'bioclimate envelope') modelling, yet the effects of using different niche-based methodologies require further investigation. Here we investigate the impact that the choice of model can have on predictions...

  9. Survival prediction model for postoperative hepatocellular carcinoma patients.

    Science.gov (United States)

    Ren, Zhihui; He, Shasha; Fan, Xiaotang; He, Fangping; Sang, Wei; Bao, Yongxing; Ren, Weixin; Zhao, Jinming; Ji, Xuewen; Wen, Hao

    2017-09-01

    This study is to establish a predictive index (PI) model of 5-year survival rate for patients with hepatocellular carcinoma (HCC) after radical resection and to evaluate its prediction sensitivity, specificity, and accuracy.Patients underwent HCC surgical resection were enrolled and randomly divided into prediction model group (101 patients) and model evaluation group (100 patients). Cox regression model was used for univariate and multivariate survival analysis. A PI model was established based on multivariate analysis and receiver operating characteristic (ROC) curve was drawn accordingly. The area under ROC (AUROC) and PI cutoff value was identified.Multiple Cox regression analysis of prediction model group showed that neutrophil to lymphocyte ratio, histological grade, microvascular invasion, positive resection margin, number of tumor, and postoperative transcatheter arterial chemoembolization treatment were the independent predictors for the 5-year survival rate for HCC patients. The model was PI = 0.377 × NLR + 0.554 × HG + 0.927 × PRM + 0.778 × MVI + 0.740 × NT - 0.831 × transcatheter arterial chemoembolization (TACE). In the prediction model group, AUROC was 0.832 and the PI cutoff value was 3.38. The sensitivity, specificity, and accuracy were 78.0%, 80%, and 79.2%, respectively. In model evaluation group, AUROC was 0.822, and the PI cutoff value was well corresponded to the prediction model group with sensitivity, specificity, and accuracy of 85.0%, 83.3%, and 84.0%, respectively.The PI model can quantify the mortality risk of hepatitis B related HCC with high sensitivity, specificity, and accuracy.

  10. Developing and validating a new precise risk-prediction model for new-onset hypertension: The Jichi Genki hypertension prediction model (JG model).

    Science.gov (United States)

    Kanegae, Hiroshi; Oikawa, Takamitsu; Suzuki, Kenji; Okawara, Yukie; Kario, Kazuomi

    2018-03-31

    No integrated risk assessment tools that include lifestyle factors and uric acid have been developed. In accordance with the Industrial Safety and Health Law in Japan, a follow-up examination of 63 495 normotensive individuals (mean age 42.8 years) who underwent a health checkup in 2010 was conducted every year for 5 years. The primary endpoint was new-onset hypertension (systolic blood pressure [SBP]/diastolic blood pressure [DBP] ≥ 140/90 mm Hg and/or the initiation of antihypertensive medications with self-reported hypertension). During the mean 3.4 years of follow-up, 7402 participants (11.7%) developed hypertension. The prediction model included age, sex, body mass index (BMI), SBP, DBP, low-density lipoprotein cholesterol, uric acid, proteinuria, current smoking, alcohol intake, eating rate, DBP by age, and BMI by age at baseline and was created by using Cox proportional hazards models to calculate 3-year absolute risks. The derivation analysis confirmed that the model performed well both with respect to discrimination and calibration (n = 63 495; C-statistic = 0.885, 95% confidence interval [CI], 0.865-0.903; χ 2 statistic = 13.6, degree of freedom [df] = 7). In the external validation analysis, moreover, the model performed well both in its discrimination and calibration characteristics (n = 14 168; C-statistic = 0.846; 95%CI, 0.775-0.905; χ 2 statistic = 8.7, df = 7). Adding LDL cholesterol, uric acid, proteinuria, alcohol intake, eating rate, and BMI by age to the base model yielded a significantly higher C-statistic, net reclassification improvement (NRI), and integrated discrimination improvement, especially NRI non-event (NRI = 0.127, 95%CI = 0.100-0.152; NRI non-event  = 0.108, 95%CI = 0.102-0.117). In conclusion, a highly precise model with good performance was developed for predicting incident hypertension using the new parameters of eating rate, uric acid, proteinuria, and BMI by age. ©2018 Wiley Periodicals, Inc.

  11. Methodology for Designing Models Predicting Success of Infertility Treatment

    OpenAIRE

    Alireza Zarinara; Mohammad Mahdi Akhondi; Hojjat Zeraati; Koorsh Kamali; Kazem Mohammad

    2016-01-01

    Abstract Background: The prediction models for infertility treatment success have presented since 25 years ago. There are scientific principles for designing and applying the prediction models that is also used to predict the success rate of infertility treatment. The purpose of this study is to provide basic principles for designing the model to predic infertility treatment success. Materials and Methods: In this paper, the principles for developing predictive models are explained and...

  12. A demographic model to predict future growth of the Addo elephant population

    Directory of Open Access Journals (Sweden)

    A.M. Woodd

    1999-07-01

    Full Text Available An age-structured demographic model of the growth of the Addo elephant population was developed using parameters calculated from long-term data on the population. The model was used to provide estimates of future population growth. Expansion of the Addo Elephant National Park is currently underway, and the proposed target population size for elephant within the enlarged park is 2700. The model predicts that this population size will be reached during the year 2043, so that the Addo elephant population can continue to increase for a further 44 years before its target size within the enlarged park is attained.

  13. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  14. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  15. On the formation of current ripples

    DEFF Research Database (Denmark)

    Bartholdy, Jesper; Ernstsen, Verner Brandbyge; Flemming, Burg W.

    2015-01-01

    such an explanation based on a virtual boundary layer concept, and present a model predicting ripple height on the basis of grain size, current velocity and water depth. The model contradicts the conventional view of current ripples as bedforms not scaling with flow depth. Furthermore, it confirms the dependence...

  16. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    Science.gov (United States)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes

  17. Development and application of an oil spill model with wave–current interactions in coastal areas

    International Nuclear Information System (INIS)

    Guo, WeiJun; Hao, Yanni; Zhang, Li; Xu, Tiaojian; Ren, Xiaozhong; Cao, Feng; Wang, Shoudong

    2014-01-01

    Highlights: • Numerical oil spill developed by incorporating wave–current interactions and applied to hindcasting the Dalian oil spill. • Numerical model results taking into wave–current coupling shows better conformity with the observed data. • Oil dispersion will be enhanced due to the gradient of surface wave radiation stress in the coastal waters. - Abstract: The present paper focuses on developing a numerical oil spill model that incorporates the full three-dimensional wave–current interactions for a better representation of the spilled oil transport mechanics in complicated coastal environments. The incorporation of surface wave effects is not only imposing a traditional drag coefficient formulation at the free surface, but also the 3D momentum equations are adjusted to include the impact of the vertically dependent radiation stresses on the currents. Based on the current data from SELFE and wave data from SWAN, the oil spill model utilizes oil particle method to predict the trajectory of individual droplets and the oil concentration. Compared with the observations in Dalian New Port oil spill event, the developed model taking into account wave–current coupling administers to giving better conformity than the one without. The comparisons demonstrates that 3D radiation stress impacts the spill dynamics drastically near the sea surface and along the coastline, while having less impact in deeper water

  18. Purely leptonic currents

    International Nuclear Information System (INIS)

    Gourdin, M.

    1976-01-01

    In most gauge theories weak neutral currents appear as a natural consequence of the models, but the specific properties are not predicted in a general way. In purely leptonic interactions the structure of these currents can be tested without making assumptions about the weak couplings of the hadrons. The influence of neutral currents appearing in the process e + e - → μ + μ - can be measured using the polarization of the outgoing myons. (BJ) [de

  19. To predict the niche, model colonization and extinction

    Science.gov (United States)

    Charles B. Yackulic; James D. Nichols; Janice Reid; Ricky Der

    2015-01-01

    Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species’ niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both...

  20. Prediction of porosity of food materials during drying: Current challenges and directions.

    Science.gov (United States)

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  1. Modeling and Control of CSTR using Model based Neural Network Predictive Control

    OpenAIRE

    Shrivastava, Piyush

    2012-01-01

    This paper presents a predictive control strategy based on neural network model of the plant is applied to Continuous Stirred Tank Reactor (CSTR). This system is a highly nonlinear process; therefore, a nonlinear predictive method, e.g., neural network predictive control, can be a better match to govern the system dynamics. In the paper, the NN model and the way in which it can be used to predict the behavior of the CSTR process over a certain prediction horizon are described, and some commen...

  2. Consensus models to predict endocrine disruption for all ...

    Science.gov (United States)

    Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and thus have the potential to be endocrine disruptors. Most of these environmental chemicals have never been tested for their ability to disrupt the endocrine system, in particular, their ability to interact with the estrogen receptor. EPA needs tools to prioritize thousands of chemicals, for instance in the Endocrine Disruptor Screening Program (EDSP). Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) was intended to be a demonstration of the use of predictive computational models on HTS data including ToxCast and Tox21 assays to prioritize a large chemical universe of 32464 unique structures for one specific molecular target – the estrogen receptor. CERAPP combined multiple computational models for prediction of estrogen receptor activity, and used the predicted results to build a unique consensus model. Models were developed in collaboration between 17 groups in the U.S. and Europe and applied to predict the common set of chemicals. Structure-based techniques such as docking and several QSAR modeling approaches were employed, mostly using a common training set of 1677 compounds provided by U.S. EPA, to build a total of 42 classification models and 8 regression models for binding, agonist and antagonist activity. All predictions were evaluated on ToxCast data and on an exte

  3. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...... on underlying basic assumptions, such as diffuse fields, high modal overlap, resonant field being dominant, etc., and the consequences of these in terms of limitations in the theory and in the practical use of the models....

  4. Predicting lymphatic filariasis transmission and elimination dynamics using a multi-model ensemble framework

    Directory of Open Access Journals (Sweden)

    Morgan E. Smith

    2017-03-01

    Full Text Available Mathematical models of parasite transmission provide powerful tools for assessing the impacts of interventions. Owing to complexity and uncertainty, no single model may capture all features of transmission and elimination dynamics. Multi-model ensemble modelling offers a framework to help overcome biases of single models. We report on the development of a first multi-model ensemble of three lymphatic filariasis (LF models (EPIFIL, LYMFASIM, and TRANSFIL, and evaluate its predictive performance in comparison with that of the constituents using calibration and validation data from three case study sites, one each from the three major LF endemic regions: Africa, Southeast Asia and Papua New Guinea (PNG. We assessed the performance of the respective models for predicting the outcomes of annual MDA strategies for various baseline scenarios thought to exemplify the current endemic conditions in the three regions. The results show that the constructed multi-model ensemble outperformed the single models when evaluated across all sites. Single models that best fitted calibration data tended to do less well in simulating the out-of-sample, or validation, intervention data. Scenario modelling results demonstrate that the multi-model ensemble is able to compensate for variance between single models in order to produce more plausible predictions of intervention impacts. Our results highlight the value of an ensemble approach to modelling parasite control dynamics. However, its optimal use will require further methodological improvements as well as consideration of the organizational mechanisms required to ensure that modelling results and data are shared effectively between all stakeholders.

  5. Comparison of Simple Versus Performance-Based Fall Prediction Models

    Directory of Open Access Journals (Sweden)

    Shekhar K. Gadkaree BS

    2015-05-01

    Full Text Available Objective: To compare the predictive ability of standard falls prediction models based on physical performance assessments with more parsimonious prediction models based on self-reported data. Design: We developed a series of fall prediction models progressing in complexity and compared area under the receiver operating characteristic curve (AUC across models. Setting: National Health and Aging Trends Study (NHATS, which surveyed a nationally representative sample of Medicare enrollees (age ≥65 at baseline (Round 1: 2011-2012 and 1-year follow-up (Round 2: 2012-2013. Participants: In all, 6,056 community-dwelling individuals participated in Rounds 1 and 2 of NHATS. Measurements: Primary outcomes were 1-year incidence of “ any fall ” and “ recurrent falls .” Prediction models were compared and validated in development and validation sets, respectively. Results: A prediction model that included demographic information, self-reported problems with balance and coordination, and previous fall history was the most parsimonious model that optimized AUC for both any fall (AUC = 0.69, 95% confidence interval [CI] = [0.67, 0.71] and recurrent falls (AUC = 0.77, 95% CI = [0.74, 0.79] in the development set. Physical performance testing provided a marginal additional predictive value. Conclusion: A simple clinical prediction model that does not include physical performance testing could facilitate routine, widespread falls risk screening in the ambulatory care setting.

  6. Quantification by qPCR of Pathobionts in Chronic Periodontitis: Development of Predictive Models of Disease Severity at Site-Specific Level

    OpenAIRE

    Tomás, Inmaculada; Regueira-Iglesias, Alba; López, Maria; Arias-Bujanda, Nora; Novoa, Lourdes; Balsa-Castro, Carlos; Tomás, Maria

    2017-01-01

    Currently, there is little evidence available on the development of predictive models for the diagnosis or prognosis of chronic periodontitis based on the qPCR quantification of subgingival pathobionts. Our objectives were to: (1) analyze and internally validate pathobiont-based models that could be used to distinguish different periodontal conditions at site-specific level within the same patient with chronic periodontitis; (2) develop nomograms derived from predictive models. Subgingival pl...

  7. Antioxidant-capacity-based models for the prediction of acrylamide reduction by flavonoids.

    Science.gov (United States)

    Cheng, Jun; Chen, Xinyu; Zhao, Sheng; Zhang, Yu

    2015-02-01

    The aim of this study was to investigate the applicability of artificial neural network (ANN) and multiple linear regression (MLR) models for the estimation of acrylamide reduction by flavonoids, using multiple antioxidant capacities of Maillard reaction products as variables via a microwave food processing workstation. The addition of selected flavonoids could effectively reduce acrylamide formation, which may be closely related to the number of phenolic hydroxyl groups of flavonoids (R: 0.735-0.951, Pcapacity (ΔTEAC) measured by DPPH (R(2)=0.833), ABTS (R(2)=0.860) or FRAP (R(2)=0.824) assay. Both ANN and MLR models could effectively serve as predictive tools for estimating the reduction of acrylamide affected by flavonoids. The current predictive model study provides a low-cost and easy-to-use approach to the estimation of rates at which acrylamide is degraded, while avoiding tedious sample pretreatment procedures and advanced instrumental analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    Science.gov (United States)

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  9. A Grey NGM(1,1, k) Self-Memory Coupling Prediction Model for Energy Consumption Prediction

    Science.gov (United States)

    Guo, Xiaojun; Liu, Sifeng; Wu, Lifeng; Tang, Lingling

    2014-01-01

    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1, k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1, k) model. The traditional grey model's weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1, k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span. PMID:25054174

  10. Systematic Review of Health Economic Impact Evaluations of Risk Prediction Models : Stop Developing, Start Evaluating

    NARCIS (Netherlands)

    van Giessen, Anoukh; Peters, Jaime; Wilcher, Britni; Hyde, Chris; Moons, Carl; de Wit, Ardine; Koffijberg, Erik

    2017-01-01

    Background: Although health economic evaluations (HEEs) are increasingly common for therapeutic interventions, they appear to be rare for the use of risk prediction models (PMs). Objectives: To evaluate the current state of HEEs of PMs by performing a comprehensive systematic review. Methods: Four

  11. Bayesian Predictive Models for Rayleigh Wind Speed

    DEFF Research Database (Denmark)

    Shahirinia, Amir; Hajizadeh, Amin; Yu, David C

    2017-01-01

    predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....

  12. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  13. Development of Models to Predict the Redox State of Nuclear Waste Containment Glass

    Energy Technology Data Exchange (ETDEWEB)

    Pinet, O.; Guirat, R.; Advocat, T. [Commissariat a l' Energie Atomique (CEA), Departement de Traitement et de Conditionnement des Dechets, Marcoule, BP 71171, 30207 Bagnols-sur-Ceze Cedex (France); Phalippou, J. [Universite de Montpellier II, Laboratoire des Colloides, Verres et Nanomateriaux, 34095 Montpellier Cedex 5 (France)

    2008-07-01

    Vitrification is one of the recommended immobilization routes for nuclear waste, and is currently implemented at industrial scale in several countries, notably for high-level waste. To optimize nuclear waste vitrification, research is conducted to specify suitable glass formulations and develop more effective processes. This research is based not only on experiments at laboratory or technological scale, but also on computer models. Vitrified nuclear waste often contains several multi-valent species whose oxidation state can impact the properties of the melt and of the final glass; these include iron, cerium, ruthenium, manganese, chromium and nickel. Cea is therefore also developing models to predict the final glass redox state. Given the raw materials and production conditions, the model predicts the oxygen fugacity at equilibrium in the melt. It can also estimate the ratios between the oxidation states of the multi-valent species contained in the molten glass. The oxidizing or reductive nature of the atmosphere above the glass melt is also taken into account. Unlike the models used in the conventional glass industry based on empirical methods with a limited range of application, the models proposed are based on the thermodynamic properties of the redox species contained in the waste vitrification feed stream. The thermodynamic data on which the model is based concern the relationship between the glass redox state and the oxygen fugacity in the molten glass. The model predictions were compared with oxygen fugacity measurements for some fifty glasses. The experiments carried out at laboratory and industrial scale with a cold crucible melter. The oxygen fugacity of the glass samples was measured by electrochemical methods and compared with the predicted value. The differences between the predicted and measured oxygen fugacity values were generally less than 0.5 Log unit. (authors)

  14. A robust predictive current controller for healthy and open-circuit faulty conditions of five-phase BLDC drives applicable for wind generators and electric vehicles

    International Nuclear Information System (INIS)

    Salehi Arashloo, Ramin; Salehifar, Mehdi; Romeral, Luis; Sala, Vicent

    2015-01-01

    Highlights: • Model predictive deadbeat control of generator stator phase currents. • Fault tolerant control of five-phase BLDC generator. • Control of stator phase currents under normal and open-circuit faulty conditions. • MATLAB simulation and experimental verification of proposed control method. • Verification of robustness and fast respond of proposed controlling method. - Abstract: Fault tolerant control of five-phase brushless direct current (BLDC) machines is gaining more importance in high-safety applications such as offshore wind generators and automotive industries. In many applications, traditional controllers (such as PI controllers) are used to control the stator currents under faulty conditions. These controllers have good performance with dc signals. However, in the case of missing one or two of the phases, appropriate reference currents of these machines have oscillatory dynamics both in phase- and synchronous-reference frames. Non-constant nature of these reference values requires the implication of fast current controllers. In this paper, model predictive deadbeat controllers are proposed to control the stator currents of five-phase BLDC machines under normal and faulty conditions. Open circuit fault is considered for both one and two stator phases, and the behaviour of proposed controlling method is evaluated. This evaluation is generally focused on first, sensitivity of proposed controlling method and second, its speed in following reference current values under transient states. Proposed method is simulated and is verified experimentally on a five-phase BLDC drive

  15. Revised predictive equations for salt intrusion modelling in estuaries

    NARCIS (Netherlands)

    Gisen, J.I.A.; Savenije, H.H.G.; Nijzink, R.C.

    2015-01-01

    For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient $K$ and the dispersion

  16. Preprocedural Prediction Model for Contrast-Induced Nephropathy Patients.

    Science.gov (United States)

    Yin, Wen-Jun; Yi, Yi-Hu; Guan, Xiao-Feng; Zhou, Ling-Yun; Wang, Jiang-Lin; Li, Dai-Yang; Zuo, Xiao-Cong

    2017-02-03

    Several models have been developed for prediction of contrast-induced nephropathy (CIN); however, they only contain patients receiving intra-arterial contrast media for coronary angiographic procedures, which represent a small proportion of all contrast procedures. In addition, most of them evaluate radiological interventional procedure-related variables. So it is necessary for us to develop a model for prediction of CIN before radiological procedures among patients administered contrast media. A total of 8800 patients undergoing contrast administration were randomly assigned in a 4:1 ratio to development and validation data sets. CIN was defined as an increase of 25% and/or 0.5 mg/dL in serum creatinine within 72 hours above the baseline value. Preprocedural clinical variables were used to develop the prediction model from the training data set by the machine learning method of random forest, and 5-fold cross-validation was used to evaluate the prediction accuracies of the model. Finally we tested this model in the validation data set. The incidence of CIN was 13.38%. We built a prediction model with 13 preprocedural variables selected from 83 variables. The model obtained an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.907 and gave prediction accuracy of 80.8%, sensitivity of 82.7%, specificity of 78.8%, and Matthews correlation coefficient of 61.5%. For the first time, 3 new factors are included in the model: the decreased sodium concentration, the INR value, and the preprocedural glucose level. The newly established model shows excellent predictive ability of CIN development and thereby provides preventative measures for CIN. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Time dependent patient no-show predictive modelling development.

    Science.gov (United States)

    Huang, Yu-Li; Hanauer, David A

    2016-05-09

    Purpose - The purpose of this paper is to develop evident-based predictive no-show models considering patients' each past appointment status, a time-dependent component, as an independent predictor to improve predictability. Design/methodology/approach - A ten-year retrospective data set was extracted from a pediatric clinic. It consisted of 7,291 distinct patients who had at least two visits along with their appointment characteristics, patient demographics, and insurance information. Logistic regression was adopted to develop no-show models using two-thirds of the data for training and the remaining data for validation. The no-show threshold was then determined based on minimizing the misclassification of show/no-show assignments. There were a total of 26 predictive model developed based on the number of available past appointments. Simulation was employed to test the effective of each model on costs of patient wait time, physician idle time, and overtime. Findings - The results demonstrated the misclassification rate and the area under the curve of the receiver operating characteristic gradually improved as more appointment history was included until around the 20th predictive model. The overbooking method with no-show predictive models suggested incorporating up to the 16th model and outperformed other overbooking methods by as much as 9.4 per cent in the cost per patient while allowing two additional patients in a clinic day. Research limitations/implications - The challenge now is to actually implement the no-show predictive model systematically to further demonstrate its robustness and simplicity in various scheduling systems. Originality/value - This paper provides examples of how to build the no-show predictive models with time-dependent components to improve the overbooking policy. Accurately identifying scheduled patients' show/no-show status allows clinics to proactively schedule patients to reduce the negative impact of patient no-shows.

  18. A heuristic model for computational prediction of human branch point sequence.

    Science.gov (United States)

    Wen, Jia; Wang, Jue; Zhang, Qing; Guo, Dianjing

    2017-10-24

    Pre-mRNA splicing is the removal of introns from precursor mRNAs (pre-mRNAs) and the concurrent ligation of the flanking exons to generate mature mRNA. This process is catalyzed by the spliceosome, where the splicing factor 1 (SF1) specifically recognizes the seven-nucleotide branch point sequence (BPS) and the U2 snRNP later displaces the SF1 and binds to the BPS. In mammals, the degeneracy of BPS motifs together with the lack of a large set of experimentally verified BPSs complicates the task of BPS prediction in silico. In this paper, we develop a simple and yet efficient heuristic model for human BPS prediction based on a novel scoring scheme, which quantifies the splicing strength of putative BPSs. The candidate BPS is restricted exclusively within a defined BPS search region to avoid the influences of other elements in the intron and therefore the prediction accuracy is improved. Moreover, using two types of relative frequencies for human BPS prediction, we demonstrate our model outperformed other current implementations on experimentally verified human introns. We propose that the binding energy contributes to the molecular recognition involved in human pre-mRNA splicing. In addition, a genome-wide human BPS prediction is carried out. The characteristics of predicted BPSs are in accordance with experimentally verified human BPSs, and branch site positions relative to the 3'ss and the 5'end of the shortened AGEZ are consistent with the results of published papers. Meanwhile, a webserver for BPS predictor is freely available at http://biocomputer.bio.cuhk.edu.hk/BPS .

  19. A prediction model of drug-induced ototoxicity developed by an optimal support vector machine (SVM) method.

    Science.gov (United States)

    Zhou, Shu; Li, Guo-Bo; Huang, Lu-Yi; Xie, Huan-Zhang; Zhao, Ying-Lan; Chen, Yu-Zong; Li, Lin-Li; Yang, Sheng-Yong

    2014-08-01

    Drug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM. Three GA-CG-SVM models were developed based on three training sets containing agents bearing different risk levels of drug-induced ototoxicity. For comparison, models based on naïve Bayesian (NB) and recursive partitioning (RP) methods were also used on the same training sets. Among all the prediction models, the GA-CG-SVM model II showed the best performance, which offered prediction accuracies of 85.33% and 83.05% for two independent test sets, respectively. Overall, the good performance of the GA-CG-SVM model II indicates that it could be used for the prediction of drug-induced ototoxicity in the early stage of drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; van Bilsen, Jolanda; Głogowski, Robert

    2016-01-01

    of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally...... validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant...

  1. Development of a Predictive Model for Induction Success of Labour

    Directory of Open Access Journals (Sweden)

    Cristina Pruenza

    2018-03-01

    Full Text Available Induction of the labour process is an extraordinarily common procedure used in some pregnancies. Obstetricians face the need to end a pregnancy, for medical reasons usually (maternal or fetal requirements or less frequently, social (elective inductions for convenience. The success of induction procedure is conditioned by a multitude of maternal and fetal variables that appear before or during pregnancy or birth process, with a low predictive value. The failure of the induction process involves performing a caesarean section. This project arises from the clinical need to resolve a situation of uncertainty that occurs frequently in our clinical practice. Since the weight of clinical variables is not adequately weighted, we consider very interesting to know a priori the possibility of success of induction to dismiss those inductions with high probability of failure, avoiding unnecessary procedures or postponing end if possible. We developed a predictive model of induced labour success as a support tool in clinical decision making. Improve the predictability of a successful induction is one of the current challenges of Obstetrics because of its negative impact. The identification of those patients with high chances of failure, will allow us to offer them better care improving their health outcomes (adverse perinatal outcomes for mother and newborn, costs (medication, hospitalization, qualified staff and patient perceived quality. Therefore a Clinical Decision Support System was developed to give support to the Obstetricians. In this article, we had proposed a robust method to explore and model a source of clinical information with the purpose of obtaining all possible knowledge. Generally, in classification models are difficult to know the contribution that each attribute provides to the model. We had worked in this direction to offer transparency to models that may be considered as black boxes. The positive results obtained from both the

  2. Climate modelling, uncertainty and responses to predictions of change

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    1996-01-01

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can't yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes

  3. Prediction of early summer rainfall over South China by a physical-empirical model

    Science.gov (United States)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  4. Current density and continuity in discretized models

    International Nuclear Information System (INIS)

    Boykin, Timothy B; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schroedinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying discrete models, students can encounter conceptual difficulties with the representation of the current and its divergence because different finite-difference expressions, all of which reduce to the current density in the continuous limit, measure different physical quantities. Understanding these different discrete currents is essential and requires a careful analysis of the current operator, the divergence of the current and the continuity equation. Here we develop point forms of the current and its divergence valid for an arbitrary mesh and basis. We show that in discrete models currents exist only along lines joining atomic sites (or mesh points). Using these results, we derive a discrete analogue of the divergence theorem and demonstrate probability conservation in a purely localized-basis approach.

  5. Hydrological model calibration for flood prediction in current and future climates using probability distributions of observed peak flows and model based rainfall

    Science.gov (United States)

    Haberlandt, Uwe; Wallner, Markus; Radtke, Imke

    2013-04-01

    Derived flood frequency analysis based on continuous hydrological modelling is very demanding regarding the required length and temporal resolution of precipitation input data. Often such flood predictions are obtained using long precipitation time series from stochastic approaches or from regional climate models as input. However, the calibration of the hydrological model is usually done using short time series of observed data. This inconsistent employment of different data types for calibration and application of a hydrological model increases its uncertainty. Here, it is proposed to calibrate a hydrological model directly on probability distributions of observed peak flows using model based rainfall in line with its later application. Two examples are given to illustrate the idea. The first one deals with classical derived flood frequency analysis using input data from an hourly stochastic rainfall model. The second one concerns a climate impact analysis using hourly precipitation from a regional climate model. The results show that: (I) the same type of precipitation input data should be used for calibration and application of the hydrological model, (II) a model calibrated on extreme conditions works quite well for average conditions but not vice versa, (III) the calibration of the hydrological model using regional climate model data works as an implicit bias correction method and (IV) the best performance for flood estimation is usually obtained when model based precipitation and observed probability distribution of peak flows are used for model calibration.

  6. Model predictive control using fuzzy decision functions

    NARCIS (Netherlands)

    Kaymak, U.; Costa Sousa, da J.M.

    2001-01-01

    Fuzzy predictive control integrates conventional model predictive control with techniques from fuzzy multicriteria decision making, translating the goals and the constraints to predictive control in a transparent way. The information regarding the (fuzzy) goals and the (fuzzy) constraints of the

  7. Predicting and Modelling of Survival Data when Cox's Regression Model does not hold

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; competing risk; Cox regression; flexible modeling; goodness of fit; prediction of survival; survival analysis; time-varying effects...

  8. A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes

    International Nuclear Information System (INIS)

    Yuan, X.-X.; Mao, D.; Pandey, M.D.

    2009-01-01

    Steam generators in nuclear power plants have experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting damage is necessary for effective life-cycle management of steam generators. This paper presents an advanced probabilistic model of pitting corrosion characterizing the inherent randomness of the pitting process and measurement uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. A Markov chain Monte Carlo simulation-based Bayesian method, enhanced by a data augmentation technique, is developed for estimating the model parameters. The proposed model is able to predict the actual pit number, the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting corrosion model. The study also reveals the significance of inspection uncertainties in the modeling of pitting flaws using the ISI data: Without considering the probability-of-detection issues and measurement errors, the leakage risk resulted from the pitting corrosion would be under-estimated, despite the fact that the actual pit depth would usually be over-estimated.

  9. Evaluating the Predictive Value of Growth Prediction Models

    Science.gov (United States)

    Murphy, Daniel L.; Gaertner, Matthew N.

    2014-01-01

    This study evaluates four growth prediction models--projection, student growth percentile, trajectory, and transition table--commonly used to forecast (and give schools credit for) middle school students' future proficiency. Analyses focused on vertically scaled summative mathematics assessments, and two performance standards conditions (high…

  10. Data-Based Predictive Control with Multirate Prediction Step

    Science.gov (United States)

    Barlow, Jonathan S.

    2010-01-01

    Data-based predictive control is an emerging control method that stems from Model Predictive Control (MPC). MPC computes current control action based on a prediction of the system output a number of time steps into the future and is generally derived from a known model of the system. Data-based predictive control has the advantage of deriving predictive models and controller gains from input-output data. Thus, a controller can be designed from the outputs of complex simulation code or a physical system where no explicit model exists. If the output data happens to be corrupted by periodic disturbances, the designed controller will also have the built-in ability to reject these disturbances without the need to know them. When data-based predictive control is implemented online, it becomes a version of adaptive control. One challenge of MPC is computational requirements increasing with prediction horizon length. This paper develops a closed-loop dynamic output feedback controller that minimizes a multi-step-ahead receding-horizon cost function with multirate prediction step. One result is a reduced influence of prediction horizon and the number of system outputs on the computational requirements of the controller. Another result is an emphasis on portions of the prediction window that are sampled more frequently. A third result is the ability to include more outputs in the feedback path than in the cost function.

  11. Recent advances using rodent models for predicting human allergenicity

    International Nuclear Information System (INIS)

    Knippels, Leon M.J.; Penninks, Andre H.

    2005-01-01

    The potential allergenicity of newly introduced proteins in genetically engineered foods has become an important safety evaluation issue. However, to evaluate the potential allergenicity and the potency of new proteins in our food, there are still no widely accepted and reliable test systems. The best-known allergy assessment proposal for foods derived from genetically engineered plants was the careful stepwise process presented in the so-called ILSI/IFBC decision tree. A revision of this decision tree strategy was proposed by a FAO/WHO expert consultation. As prediction of the sensitizing potential of the novel introduced protein based on animal testing was considered to be very important, animal models were introduced as one of the new test items, despite the fact that non of the currently studied models has been widely accepted and validated yet. In this paper, recent results are summarized of promising models developed in rat and mouse

  12. Numerical modelling as a cost-reduction tool for probability of detection of bolt hole eddy current testing

    Science.gov (United States)

    Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.

    2011-03-01

    Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.

  13. Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data

    KAUST Repository

    Xie, Qing

    2016-02-23

    Alzheimer\\'s Disease (AD) is currently attracting much attention in elders\\' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD\\'s progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients\\' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer\\'s Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.

  14. Modeling and Predicting AD Progression by Regression Analysis of Sequential Clinical Data

    KAUST Repository

    Xie, Qing; Wang, Su; Zhu, Jia; Zhang, Xiangliang

    2016-01-01

    Alzheimer's Disease (AD) is currently attracting much attention in elders' care. As the increasing availability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly significant to precisely identify and predict the potential AD's progression based on the knowledge in the diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease progression for AD patients' care. Different from the conventional approaches using only initial or static diagnosis data to model the disease progression for different durations, we design a score-involved approach and make use of the sequential diagnosis information in different disease stages to jointly simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction more pertinent and reliable. We examined our approach by extensive experiments on the clinical data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results indicate that the proposed approach is more effective to simulate and predict the disease progression compared with the existing methods.

  15. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  16. Uncertainties in model-based outcome predictions for treatment planning

    International Nuclear Information System (INIS)

    Deasy, Joseph O.; Chao, K.S. Clifford; Markman, Jerry

    2001-01-01

    Purpose: Model-based treatment-plan-specific outcome predictions (such as normal tissue complication probability [NTCP] or the relative reduction in salivary function) are typically presented without reference to underlying uncertainties. We provide a method to assess the reliability of treatment-plan-specific dose-volume outcome model predictions. Methods and Materials: A practical method is proposed for evaluating model prediction based on the original input data together with bootstrap-based estimates of parameter uncertainties. The general framework is applicable to continuous variable predictions (e.g., prediction of long-term salivary function) and dichotomous variable predictions (e.g., tumor control probability [TCP] or NTCP). Using bootstrap resampling, a histogram of the likelihood of alternative parameter values is generated. For a given patient and treatment plan we generate a histogram of alternative model results by computing the model predicted outcome for each parameter set in the bootstrap list. Residual uncertainty ('noise') is accounted for by adding a random component to the computed outcome values. The residual noise distribution is estimated from the original fit between model predictions and patient data. Results: The method is demonstrated using a continuous-endpoint model to predict long-term salivary function for head-and-neck cancer patients. Histograms represent the probabilities for the level of posttreatment salivary function based on the input clinical data, the salivary function model, and the three-dimensional dose distribution. For some patients there is significant uncertainty in the prediction of xerostomia, whereas for other patients the predictions are expected to be more reliable. In contrast, TCP and NTCP endpoints are dichotomous, and parameter uncertainties should be folded directly into the estimated probabilities, thereby improving the accuracy of the estimates. Using bootstrap parameter estimates, competing treatment

  17. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  18. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  19. A model for electron currents near a field null

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1987-01-01

    The fluid approximation is invalid near a field null, since the local electron orbit size and the magnetic scale length are comparable. To model the electron currents in this region we propose a single equation of motion describing the bulk electron dynamics. The equation applies to the plasma within one thermal orbit size of the null. The region is treated as unmagnetized; electrons are accelerated by the inductive electric field and drag on ions; damping is provided by viscosity due to electrons and collisions with ions. Through variational calculations and a particle tracking code for electrons, the size of the terms in the equation of motion have been estimated. The resulting equation of motion combines with Faraday's Law to produce a governing equation which implicitly contains the self inductive field of the electrons. This governing equation predicts that viscosity prevents complete cancellation of the ion current density by the electrons in the null region. Thus electron dynamics near the field null should not prevent the formation and deepening of field reversal using neutral-beam injection

  20. Prediction error, ketamine and psychosis: An updated model.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Fletcher, Paul C

    2016-11-01

    In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.

  1. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  2. Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk

    Directory of Open Access Journals (Sweden)

    Khaled Halteh

    2018-05-01

    Full Text Available Credit risk is a critical issue that affects banks and companies on a global scale. Possessing the ability to accurately predict the level of credit risk has the potential to help the lender and borrower. This is achieved by alleviating the number of loans provided to borrowers with poor financial health, thereby reducing the number of failed businesses, and, in effect, preventing economies from collapsing. This paper uses state-of-the-art stochastic models, namely: Decision trees, random forests, and stochastic gradient boosting to add to the current literature on credit-risk modelling. The Australian mining industry has been selected to test our methodology. Mining in Australia generates around $138 billion annually, making up more than half of the total goods and services. This paper uses publicly-available financial data from 750 risky and not risky Australian mining companies as variables in our models. Our results indicate that stochastic gradient boosting was the superior model at correctly classifying the good and bad credit-rated companies within the mining sector. Our model showed that ‘Property, Plant, & Equipment (PPE turnover’, ‘Invested Capital Turnover’, and ‘Price over Earnings Ratio (PER’ were the variables with the best explanatory power pertaining to predicting credit risk in the Australian mining sector.

  3. Combining process-based and correlative models improves predictions of climate change effects on Schistosoma mansoni transmission in eastern Africa

    Directory of Open Access Journals (Sweden)

    Anna-Sofie Stensgaard

    2016-03-01

    Full Text Available Currently, two broad types of approach for predicting the impact of climate change on vector-borne diseases can be distinguished: i empirical-statistical (correlative approaches that use statistical models of relationships between vector and/or pathogen presence and environmental factors; and ii process-based (mechanistic approaches that seek to simulate detailed biological or epidemiological processes that explicitly describe system behavior. Both have advantages and disadvantages, but it is generally acknowledged that both approaches have value in assessing the response of species in general to climate change. Here, we combine a previously developed dynamic, agentbased model of the temperature-sensitive stages of the Schistosoma mansoni and intermediate host snail lifecycles, with a statistical model of snail habitat suitability for eastern Africa. Baseline model output compared to empirical prevalence data suggest that the combined model performs better than a temperature-driven model alone, and highlights the importance of including snail habitat suitability when modeling schistosomiasis risk. There was general agreement among models in predicting changes in risk, with 24-36% of the eastern Africa region predicted to experience an increase in risk of up-to 20% as a result of increasing temperatures over the next 50 years. Vice versa the models predicted a general decrease in risk in 30-37% of the study area. The snail habitat suitability models also suggest that anthropogenically altered habitat play a vital role for the current distribution of the intermediate snail host, and hence we stress the importance of accounting for land use changes in models of future changes in schistosomiasis risk.

  4. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

    DEFF Research Database (Denmark)

    Guisan, Antoine; Rahbek, Carsten

    2011-01-01

    Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts...

  5. Model complexity control for hydrologic prediction

    NARCIS (Netherlands)

    Schoups, G.; Van de Giesen, N.C.; Savenije, H.H.G.

    2008-01-01

    A common concern in hydrologic modeling is overparameterization of complex models given limited and noisy data. This leads to problems of parameter nonuniqueness and equifinality, which may negatively affect prediction uncertainties. A systematic way of controlling model complexity is therefore

  6. Predictive Model of Systemic Toxicity (SOT)

    Science.gov (United States)

    In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human systemic toxicity has proved difficult and remains a ...

  7. Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction

    Science.gov (United States)

    Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro

    Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.

  8. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  9. Development of a 3D electromagnetic model for eddy current tubing inspection application to steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Maillot, V. [Institut de Radioprotection et de Surete Nucleaire, IRSN, 92 - Fontenay aux Roses (France); Pichenot, G.; Premel, D.; Sollier, T. [CEA Saclay, DRT/DECS, 91 - Gif-sur-Yvette (France)

    2003-10-01

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws. (authors)

  10. Cost prediction following traumatic brain injury: model development and validation.

    Science.gov (United States)

    Spitz, Gershon; McKenzie, Dean; Attwood, David; Ponsford, Jennie L

    2016-02-01

    The ability to predict costs following a traumatic brain injury (TBI) would assist in planning treatment and support services by healthcare providers, insurers and other agencies. The objective of the current study was to develop predictive models of hospital, medical, paramedical, and long-term care (LTC) costs for the first 10 years following a TBI. The sample comprised 798 participants with TBI, the majority of whom were male and aged between 15 and 34 at time of injury. Costing information was obtained for hospital, medical, paramedical, and LTC costs up to 10 years postinjury. Demographic and injury-severity variables were collected at the time of admission to the rehabilitation hospital. Duration of PTA was the most important single predictor for each cost type. The final models predicted 44% of hospital costs, 26% of medical costs, 23% of paramedical costs, and 34% of LTC costs. Greater costs were incurred, depending on cost type, for individuals with longer PTA duration, obtaining a limb or chest injury, a lower GCS score, older age at injury, not being married or defacto prior to injury, living in metropolitan areas, and those reporting premorbid excessive or problem alcohol use. This study has provided a comprehensive analysis of factors predicting various types of costs following TBI, with the combination of injury-related and demographic variables predicting 23-44% of costs. PTA duration was the strongest predictor across all cost categories. These factors may be used for the planning and case management of individuals following TBI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Research of Coal Resources Reserves Prediction Based on GM (1, 1) Model

    Science.gov (United States)

    Xiao, Jiancheng

    2018-01-01

    Based on the forecast of China’s coal reserves, this paper uses the GM (1, 1) gray forecasting theory to establish the gray forecasting model of China’s coal reserves based on the data of China’s coal reserves from 2002 to 2009, and obtained the trend of coal resources reserves with the current economic and social development situation, and the residual test model is established, so the prediction model is more accurate. The results show that China’s coal reserves can ensure the use of production at least 300 years of use. And the results are similar to the mainstream forecast results, and that are in line with objective reality.

  12. Logistic regression modelling: procedures and pitfalls in developing and interpreting prediction models

    Directory of Open Access Journals (Sweden)

    Nataša Šarlija

    2017-01-01

    Full Text Available This study sheds light on the most common issues related to applying logistic regression in prediction models for company growth. The purpose of the paper is 1 to provide a detailed demonstration of the steps in developing a growth prediction model based on logistic regression analysis, 2 to discuss common pitfalls and methodological errors in developing a model, and 3 to provide solutions and possible ways of overcoming these issues. Special attention is devoted to the question of satisfying logistic regression assumptions, selecting and defining dependent and independent variables, using classification tables and ROC curves, for reporting model strength, interpreting odds ratios as effect measures and evaluating performance of the prediction model. Development of a logistic regression model in this paper focuses on a prediction model of company growth. The analysis is based on predominantly financial data from a sample of 1471 small and medium-sized Croatian companies active between 2009 and 2014. The financial data is presented in the form of financial ratios divided into nine main groups depicting following areas of business: liquidity, leverage, activity, profitability, research and development, investing and export. The growth prediction model indicates aspects of a business critical for achieving high growth. In that respect, the contribution of this paper is twofold. First, methodological, in terms of pointing out pitfalls and potential solutions in logistic regression modelling, and secondly, theoretical, in terms of identifying factors responsible for high growth of small and medium-sized companies.

  13. Maintenance personnel performance simulation (MAPPS): a model for predicting maintenance performance reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Knee, H.E.; Krois, P.A.; Haas, P.M.; Siegel, A.I.; Ryan, T.G.

    1983-01-01

    The NRC has developed a structured, quantitative, predictive methodology in the form of a computerized simulation model for assessing maintainer task performance. Objective of the overall program is to develop, validate, and disseminate a practical, useful, and acceptable methodology for the quantitative assessment of NPP maintenance personnel reliability. The program was organized into four phases: (1) scoping study, (2) model development, (3) model evaluation, and (4) model dissemination. The program is currently nearing completion of Phase 2 - Model Development

  14. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  15. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1991-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections. 11 refs.; 10 figs

  16. A statistical intercomparison of temperature and precipitation predicted by four general circulation models with historical data

    International Nuclear Information System (INIS)

    Grotch, S.L.

    1990-01-01

    This study is a detailed intercomparison of the results produced by four general circulation models (GCMs) that have been used to estimate the climatic consequences of a doubling of the CO 2 concentration. Two variables, surface air temperature and precipitation, annually and seasonally averaged, are compared for both the current climate and for the predicted equilibrium changes after a doubling of the atmospheric CO 2 concentration. The major question considered here is: how well do the predictions from different GCMs agree with each other and with historical climatology over different areal extents, from the global scale down to the range of only several gridpoints? Although the models often agree well when estimating averages over large areas, substantial disagreements become apparent as the spatial scale is reduced. At scales below continental, the correlations observed between different model predictions are often very poor. The implications of this work for investigation of climatic impacts on a regional scale are profound. For these two important variables, at least, the poor agreement between model simulations of the current climate on the regional scale calls into question the ability of these models to quantitatively estimate future climatic change on anything approaching the scale of a few (< 10) gridpoints, which is essential if these results are to be used in meaningful resource-assessment studies. A stronger cooperative effort among the different modeling groups will be necessary to assure that we are getting better agreement for the right reasons, a prerequisite for improving confidence in model projections

  17. Neuro-fuzzy modeling in bankruptcy prediction

    Directory of Open Access Journals (Sweden)

    Vlachos D.

    2003-01-01

    Full Text Available For the past 30 years the problem of bankruptcy prediction had been thoroughly studied. From the paper of Altman in 1968 to the recent papers in the '90s, the progress of prediction accuracy was not satisfactory. This paper investigates an alternative modeling of the system (firm, combining neural networks and fuzzy controllers, i.e. using neuro-fuzzy models. Classical modeling is based on mathematical models that describe the behavior of the firm under consideration. The main idea of fuzzy control, on the other hand, is to build a model of a human control expert who is capable of controlling the process without thinking in a mathematical model. This control expert specifies his control action in the form of linguistic rules. These control rules are translated into the framework of fuzzy set theory providing a calculus, which can stimulate the behavior of the control expert and enhance its performance. The accuracy of the model is studied using datasets from previous research papers.

  18. Short-Term Wind Speed Prediction Using EEMD-LSSVM Model

    Directory of Open Access Journals (Sweden)

    Aiqing Kang

    2017-01-01

    Full Text Available Hybrid Ensemble Empirical Mode Decomposition (EEMD and Least Square Support Vector Machine (LSSVM is proposed to improve short-term wind speed forecasting precision. The EEMD is firstly utilized to decompose the original wind speed time series into a set of subseries. Then the LSSVM models are established to forecast these subseries. Partial autocorrelation function is adopted to analyze the inner relationships between the historical wind speed series in order to determine input variables of LSSVM models for prediction of every subseries. Finally, the superposition principle is employed to sum the predicted values of every subseries as the final wind speed prediction. The performance of hybrid model is evaluated based on six metrics. Compared with LSSVM, Back Propagation Neural Networks (BP, Auto-Regressive Integrated Moving Average (ARIMA, combination of Empirical Mode Decomposition (EMD with LSSVM, and hybrid EEMD with ARIMA models, the wind speed forecasting results show that the proposed hybrid model outperforms these models in terms of six metrics. Furthermore, the scatter diagrams of predicted versus actual wind speed and histograms of prediction errors are presented to verify the superiority of the hybrid model in short-term wind speed prediction.

  19. PREDICTED PERCENTAGE DISSATISFIED (PPD) MODEL ...

    African Journals Online (AJOL)

    HOD

    their low power requirements, are relatively cheap and are environment friendly. ... PREDICTED PERCENTAGE DISSATISFIED MODEL EVALUATION OF EVAPORATIVE COOLING ... The performance of direct evaporative coolers is a.

  20. Effect on Prediction when Modeling Covariates in Bayesian Nonparametric Models.

    Science.gov (United States)

    Cruz-Marcelo, Alejandro; Rosner, Gary L; Müller, Peter; Stewart, Clinton F

    2013-04-01

    In biomedical research, it is often of interest to characterize biologic processes giving rise to observations and to make predictions of future observations. Bayesian nonparametric methods provide a means for carrying out Bayesian inference making as few assumptions about restrictive parametric models as possible. There are several proposals in the literature for extending Bayesian nonparametric models to include dependence on covariates. Limited attention, however, has been directed to the following two aspects. In this article, we examine the effect on fitting and predictive performance of incorporating covariates in a class of Bayesian nonparametric models by one of two primary ways: either in the weights or in the locations of a discrete random probability measure. We show that different strategies for incorporating continuous covariates in Bayesian nonparametric models can result in big differences when used for prediction, even though they lead to otherwise similar posterior inferences. When one needs the predictive density, as in optimal design, and this density is a mixture, it is better to make the weights depend on the covariates. We demonstrate these points via a simulated data example and in an application in which one wants to determine the optimal dose of an anticancer drug used in pediatric oncology.

  1. An electro-thermal model and its application on a spiral-wound lithium ion battery with porous current collectors

    International Nuclear Information System (INIS)

    Ye, Yonghuang; Shi, Yixiang; Saw, Lip Huat; Tay, Andrew A.O.

    2014-01-01

    Highlights: • A local electro-thermal model is developed to verify the validity of a lump electro-thermal model. • Comparisons on edge effect of batteries with porous current collectors and batteries normal current collector foil. • Investigation on thermal performance of novel battery with porous current collector sheets. - Abstract: A local electro-thermal model for a spiral-wound lithium ion battery is developed to provide detailed and local insights of electrochemistry, transport phenomenon and heat transfer processes in spiral-wound geometries. The discharging potential, bulk heat generation rate, battery surface temperature and the temperature distribution within battery predicted by the model are used to verify a lumped electro-thermal model. The results show good agreement between the lumped electro-thermal model and the local electro-thermal model. The edge effect is investigated using the local electro-thermal model. And the results indicate that a novel battery with porous current collector sheets has a higher utilization rate of porous electrode materials than a commercial battery with normal current collector foils. The novel battery with porous current collector sheets is also investigated using the local electro-thermal model, simulation results show smaller liquid phase potential gradient and smaller liquid concentration gradient in the novel battery. The increased electrical resistance has minor effect on the overall heat generation within the battery when the porous current collector is employed, while it reduces the discharging potential of the battery

  2. Three dimensional transient electromagnetic model study for fracture prediction from tunnel face; Sanjigen model keisan ni yoru TEM ho no tunnel zenpo tansa eno tekiyosei no kento

    Energy Technology Data Exchange (ETDEWEB)

    Wada, K; Tsutsui, T; Saito, A [Mitsui Mineral Development Engineering Co. Ltd., Tokyo (Japan); Hara, T [Toda Corp., Tokyo, (Japan); Zhdanov, M [University of Utah, UT (United States)

    1996-10-01

    In order to apply TEM model to fracture prediction at tunnel face, 3-D TEM model computation by FEM was conducted by installing a transmission loop on a tunnel face. MT field responses diffusing into the 3-D model were computed by time-domain difference calculus, and analytical precision was improved by introducing a staggered grid method. In the case where a low resistive zone exists before a tunnel face, time variance in diffused eddy current and induction current in the low resistive zone could be obtained. The difference in tunnel-axial transient curve (transient phenomenon curve in magnetic field) between uniform medium and low resistive zone models was based on the absorption process of diffused eddy current into the low resistive zone, and the expanding process of it toward the outside. Change in background condition could be predicted from the background and the ratio of transient curves every measurement. The detection limit of the low resistive zone was dependent on resistivity contrast, distance and geometry. Fluctuation in measurement due to noises and S/N ratio were also essential. 3 refs., 10 figs.

  3. Extended partially conserved axial-vector current hypothesis and model-dependent results

    International Nuclear Information System (INIS)

    Dominguez, C.A.

    1977-01-01

    The corrections to Goldberger-Treiman relations for ΔS = 0 and vertical-bardeltaSvertical-bar = 1 β decays (Δ/sub π/and Δ/sub K/, respectively) are estimated from a Veneziano-type model for three-point functions. The effect of unitarizing the model is also discussed, and it turns out that Δ/sub π/and Δ/sub K/ are almost insensitive to a variation in the widths of the pseudoscalar-meson daughters. Moreover, the predictions for Δ/sub π/and Δ/sub K/ are in close agreement with experiment. Finally, on-mass-shell extrapolation factors for chiral anomalies in eta → γγ and eta → π + π - γ are also derived, and agreement with experiment is found without the need for invoking eta-eta' mixing. In summary, the model discussed here seems to be a suitable implementation of the recently proposed extended partially conserved axial-vector current hypothesis

  4. Modeling the prediction of business intelligence system effectiveness.

    Science.gov (United States)

    Weng, Sung-Shun; Yang, Ming-Hsien; Koo, Tian-Lih; Hsiao, Pei-I

    2016-01-01

    Although business intelligence (BI) technologies are continually evolving, the capability to apply BI technologies has become an indispensable resource for enterprises running in today's complex, uncertain and dynamic business environment. This study performed pioneering work by constructing models and rules for the prediction of business intelligence system effectiveness (BISE) in relation to the implementation of BI solutions. For enterprises, effectively managing critical attributes that determine BISE to develop prediction models with a set of rules for self-evaluation of the effectiveness of BI solutions is necessary to improve BI implementation and ensure its success. The main study findings identified the critical prediction indicators of BISE that are important to forecasting BI performance and highlighted five classification and prediction rules of BISE derived from decision tree structures, as well as a refined regression prediction model with four critical prediction indicators constructed by logistic regression analysis that can enable enterprises to improve BISE while effectively managing BI solution implementation and catering to academics to whom theory is important.

  5. [Application of ARIMA model on prediction of malaria incidence].

    Science.gov (United States)

    Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai

    2016-01-29

    To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.

  6. PREDICTIVE CAPACITY OF ARCH FAMILY MODELS

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Amaro

    2016-03-01

    Full Text Available In the last decades, a remarkable number of models, variants from the Autoregressive Conditional Heteroscedastic family, have been developed and empirically tested, making extremely complex the process of choosing a particular model. This research aim to compare the predictive capacity, using the Model Confidence Set procedure, than five conditional heteroskedasticity models, considering eight different statistical probability distributions. The financial series which were used refers to the log-return series of the Bovespa index and the Dow Jones Industrial Index in the period between 27 October 2008 and 30 December 2014. The empirical evidences showed that, in general, competing models have a great homogeneity to make predictions, either for a stock market of a developed country or for a stock market of a developing country. An equivalent result can be inferred for the statistical probability distributions that were used.

  7. Seasonal predictability of Kiremt rainfall in coupled general circulation models

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel S.; Demissie, Teferi D.; Counillon, François; Wang, Yiguo; Viste, Ellen

    2017-11-01

    The Ethiopian economy and population is strongly dependent on rainfall. Operational seasonal predictions for the main rainy season (Kiremt, June-September) are based on statistical approaches with Pacific sea surface temperatures (SST) as the main predictor. Here we analyse dynamical predictions from 11 coupled general circulation models for the Kiremt seasons from 1985-2005 with the forecasts starting from the beginning of May. We find skillful predictions from three of the 11 models, but no model beats a simple linear prediction model based on the predicted Niño3.4 indices. The skill of the individual models for dynamically predicting Kiremt rainfall depends on the strength of the teleconnection between Kiremt rainfall and concurrent Pacific SST in the models. Models that do not simulate this teleconnection fail to capture the observed relationship between Kiremt rainfall and the large-scale Walker circulation.

  8. Prediction of lithium-ion battery capacity with metabolic grey model

    International Nuclear Information System (INIS)

    Chen, Lin; Lin, Weilong; Li, Junzi; Tian, Binbin; Pan, Haihong

    2016-01-01

    Given the popularity of Lithium-ion batteries in EVs (electric vehicles), predicting the capacity quickly and accurately throughout a battery's full life-time is still a challenging issue for ensuring the reliability of EVs. This paper proposes an approach in predicting the varied capacity with discharge cycles based on metabolic grey theory and consider issues from two perspectives: 1) three metabolic grey models will be presented, including MGM (metabolic grey model), MREGM (metabolic Residual-error grey model), and MMREGM (metabolic Markov-residual-error grey model); 2) the universality of these models will be explored under different conditions (such as various discharge rates and temperatures). Furthermore, the research findings in this paper demonstrate the excellent performance of the prediction depending on the three models; however, the precision of the MREGM model is inferior compared to the others. Therefore, we have obtained the conclusion in which the MGM model and the MMREGM model have excellent performances in predicting the capacity under a variety of load conditions, even using few data points for modeling. Also, the universality of the metabolic grey prediction theory is verified by predicting the capacity of batteries under different discharge rates and different temperatures. - Highlights: • The metabolic mechanism is introduced in a grey system for capacity prediction. • Three metabolic grey models are presented and studied. • The universality of these models under different conditions is assessed. • A few data points are required for predicting the capacity with these models.

  9. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model.

    Science.gov (United States)

    Suresh, Krithika; Taylor, Jeremy M G; Spratt, Daniel E; Daignault, Stephanie; Tsodikov, Alexander

    2017-11-01

    Dynamic prediction incorporates time-dependent marker information accrued during follow-up to improve personalized survival prediction probabilities. At any follow-up, or "landmark", time, the residual time distribution for an individual, conditional on their updated marker values, can be used to produce a dynamic prediction. To satisfy a consistency condition that links dynamic predictions at different time points, the residual time distribution must follow from a prediction function that models the joint distribution of the marker process and time to failure, such as a joint model. To circumvent the assumptions and computational burden associated with a joint model, approximate methods for dynamic prediction have been proposed. One such method is landmarking, which fits a Cox model at a sequence of landmark times, and thus is not a comprehensive probability model of the marker process and the event time. Considering an illness-death model, we derive the residual time distribution and demonstrate that the structure of the Cox model baseline hazard and covariate effects under the landmarking approach do not have simple form. We suggest some extensions of the landmark Cox model that should provide a better approximation. We compare the performance of the landmark models with joint models using simulation studies and cognitive aging data from the PAQUID study. We examine the predicted probabilities produced under both methods using data from a prostate cancer study, where metastatic clinical failure is a time-dependent covariate for predicting death following radiation therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Grey NGM(1,1,k Self-Memory Coupling Prediction Model for Energy Consumption Prediction

    Directory of Open Access Journals (Sweden)

    Xiaojun Guo

    2014-01-01

    Full Text Available Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1,k self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1,k model. The traditional grey model’s weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1,k self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span.

  11. Improving Predictive Modeling in Pediatric Drug Development: Pharmacokinetics, Pharmacodynamics, and Mechanistic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Slikker, William; Young, John F.; Corley, Rick A.; Dorman, David C.; Conolly, Rory B.; Knudsen, Thomas; Erstad, Brian L.; Luecke, Richard H.; Faustman, Elaine M.; Timchalk, Chuck; Mattison, Donald R.

    2005-07-26

    A workshop was conducted on November 18?19, 2004, to address the issue of improving predictive models for drug delivery to developing humans. Although considerable progress has been made for adult humans, large gaps remain for predicting pharmacokinetic/pharmacodynamic (PK/PD) outcome in children because most adult models have not been tested during development. The goals of the meeting included a description of when, during development, infants/children become adultlike in handling drugs. The issue of incorporating the most recent advances into the predictive models was also addressed: both the use of imaging approaches and genomic information were considered. Disease state, as exemplified by obesity, was addressed as a modifier of drug pharmacokinetics and pharmacodynamics during development. Issues addressed in this workshop should be considered in the development of new predictive and mechanistic models of drug kinetics and dynamics in the developing human.

  12. Global Optimization of Ventricular Myocyte Model to Multi-Variable Objective Improves Predictions of Drug-Induced Torsades de Pointes

    Directory of Open Access Journals (Sweden)

    Trine Krogh-Madsen

    2017-12-01

    Full Text Available In silico cardiac myocyte models present powerful tools for drug safety testing and for predicting phenotypical consequences of ion channel mutations, but their accuracy is sometimes limited. For example, several models describing human ventricular electrophysiology perform poorly when simulating effects of long QT mutations. Model optimization represents one way of obtaining models with stronger predictive power. Using a recent human ventricular myocyte model, we demonstrate that model optimization to clinical long QT data, in conjunction with physiologically-based bounds on intracellular calcium and sodium concentrations, better constrains model parameters. To determine if the model optimized to congenital long QT data better predicts risk of drug-induced long QT arrhythmogenesis, in particular Torsades de Pointes risk, we tested the optimized model against a database of known arrhythmogenic and non-arrhythmogenic ion channel blockers. When doing so, the optimized model provided an improved risk assessment. In particular, we demonstrate an elimination of false-positive outcomes generated by the baseline model, in which simulations of non-torsadogenic drugs, in particular verapamil, predict action potential prolongation. Our results underscore the importance of currents beyond those directly impacted by a drug block in determining torsadogenic risk. Our study also highlights the need for rich data in cardiac myocyte model optimization and substantiates such optimization as a method to generate models with higher accuracy of predictions of drug-induced cardiotoxicity.

  13. Prediction models : the right tool for the right problem

    NARCIS (Netherlands)

    Kappen, Teus H.; Peelen, Linda M.

    2016-01-01

    PURPOSE OF REVIEW: Perioperative prediction models can help to improve personalized patient care by providing individual risk predictions to both patients and providers. However, the scientific literature on prediction model development and validation can be quite technical and challenging to

  14. Risk prediction models for major adverse cardiac event (MACE) following percutaneous coronary intervention (PCI): A review

    Science.gov (United States)

    Manan, Norhafizah A.; Abidin, Basir

    2015-02-01

    Five percent of patients who went through Percutaneous Coronary Intervention (PCI) experienced Major Adverse Cardiac Events (MACE) after PCI procedure. Risk prediction of MACE following a PCI procedure therefore is helpful. This work describes a review of such prediction models currently in use. Literature search was done on PubMed and SCOPUS database. Thirty literatures were found but only 4 studies were chosen based on the data used, design, and outcome of the study. Particular emphasis was given and commented on the study design, population, sample size, modeling method, predictors, outcomes, discrimination and calibration of the model. All the models had acceptable discrimination ability (C-statistics >0.7) and good calibration (Hosmer-Lameshow P-value >0.05). Most common model used was multivariate logistic regression and most popular predictor was age.

  15. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery

    International Nuclear Information System (INIS)

    Ng, Selina S.Y.; Xing, Yinjiao; Tsui, Kwok L.

    2014-01-01

    Highlights: • Robustness of RUL predictions for lithium-ion batteries is analyzed quantitatively. • RUL predictions of the same battery over cycle life are evaluated. • RUL predictions of batteries over different operating conditions are evaluated. • Naive Bayes (NB) is proposed for predictions under constant discharge environments. • Its robustness and accuracy are compared with that of support vector machine (SVM). - Abstract: Online state-of-health (SoH) estimation and remaining useful life (RUL) prediction is a critical problem in battery health management. This paper studies the modeling of battery degradation under different usage conditions and ambient temperatures, which is seldom considered in the literature. Li-ion battery RUL prediction under constant operating conditions at different values of ambient temperature and discharge current are considered. A naive Bayes (NB) model is proposed for RUL prediction of batteries under different operating conditions. It is shown in this analysis that under constant discharge environments, the RUL of Li-ion batteries can be predicted with the NB method, irrespective of the exact values of the operating conditions. The case study shows that the NB generates stable and competitive prediction performance over that of the support vector machine (SVM). This also suggests that, while it is well known that the environmental conditions have big impact on the degradation trend, it is the changes in operating conditions of a Li-ion battery over cycle life that makes the Li-ion battery degradation and RUL prediction even more difficult

  16. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  17. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    Science.gov (United States)

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and

  18. Autoregressive spatially varying coefficients model for predicting daily PM2.5 using VIIRS satellite AOT

    Science.gov (United States)

    Schliep, E. M.; Gelfand, A. E.; Holland, D. M.

    2015-12-01

    There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.

  19. Analytical modeling of subthreshold current and subthreshold swing of Gaussian-doped strained-Si-on-insulator MOSFETs

    International Nuclear Information System (INIS)

    Rawat, Gopal; Kumar, Sanjay; Goel, Ekta; Kumar, Mirgender; Jit, S.; Dubey, Sarvesh

    2014-01-01

    This paper presents the analytical modeling of subthreshold current and subthreshold swing of short-channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping profile in the channel. The subthreshold current and subthreshold swing have been derived using the parabolic approximation method. In addition to the effect of strain on silicon layer, various other device parameters such as channel length (L), gate-oxide thickness (t ox ), strained-Si channel thickness (t s-Si ), peak doping concentration (N P ), project range (R p ) and straggle (σ p ) of the Gaussian profile have been considered while predicting the device characteristics. The present work may help to overcome the degradation in subthreshold characteristics with strain engineering. These subthreshold current and swing models provide valuable information for strained-Si MOSFET design. Accuracy of the proposed models is verified using the commercially available ATLAS™, a two-dimensional (2D) device simulator from SILVACO. (semiconductor devices)

  20. Robust predictions of the interacting boson model

    International Nuclear Information System (INIS)

    Casten, R.F.; Koeln Univ.

    1994-01-01

    While most recognized for its symmetries and algebraic structure, the IBA model has other less-well-known but equally intrinsic properties which give unavoidable, parameter-free predictions. These predictions concern central aspects of low-energy nuclear collective structure. This paper outlines these ''robust'' predictions and compares them with the data